1
|
Rakoczy K, Szymańska N, Stecko J, Kisiel M, Sleziak J, Gajewska-Naryniecka A, Kulbacka J. The Role of RAC2 and PTTG1 in Cancer Biology. Cells 2025; 14:330. [PMID: 40072059 PMCID: PMC11899714 DOI: 10.3390/cells14050330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 02/19/2025] [Accepted: 02/20/2025] [Indexed: 03/14/2025] Open
Abstract
Several molecular pathways are likely involved in the regulation of cancer stem cells (CSCs) via Ras-associated C3 botulinum toxin substrate 2, RAC2, and pituitary tumor-transforming gene 1 product, PTTG1, given their roles in cellular signaling, survival, proliferation, and metastasis. RAC2 is a member of the Rho GTPase family and plays a crucial role in actin cytoskeleton dynamics, reactive oxygen species production, and cell migration, contributing to epithelial-mesenchymal transition (EMT), immune evasion, and therapy resistance. PTTG1, also known as human securin, regulates key processes such as cell cycle progression, apoptosis suppression, and EMT, promoting metastasis and enhancing cancer cell survival. This article aims to describe the molecular pathways involved in the proliferation, invasiveness, and drug response of cancer cells through RAC2 and PTTG1, aiming to clarify their respective roles in neoplastic process dependencies. Both proteins are involved in critical signaling pathways, including PI3K/AKT, TGF-β, and NF-κB, which facilitate tumor progression by modulating CSC properties, angiogenesis, and immune response. This review highlights the molecular mechanisms by which RAC2 and PTTG1 influence tumorigenesis and describes their potential and efficacy as prognostic biomarkers and therapeutic targets in managing various neoplasms.
Collapse
Affiliation(s)
- Katarzyna Rakoczy
- Faculty of Medicine, Wroclaw Medical University, Pasteura 1, 50-367 Wroclaw, Poland; (K.R.); (N.S.); (J.S.); (M.K.); (J.S.)
| | - Natalia Szymańska
- Faculty of Medicine, Wroclaw Medical University, Pasteura 1, 50-367 Wroclaw, Poland; (K.R.); (N.S.); (J.S.); (M.K.); (J.S.)
| | - Jakub Stecko
- Faculty of Medicine, Wroclaw Medical University, Pasteura 1, 50-367 Wroclaw, Poland; (K.R.); (N.S.); (J.S.); (M.K.); (J.S.)
| | - Michał Kisiel
- Faculty of Medicine, Wroclaw Medical University, Pasteura 1, 50-367 Wroclaw, Poland; (K.R.); (N.S.); (J.S.); (M.K.); (J.S.)
| | - Jakub Sleziak
- Faculty of Medicine, Wroclaw Medical University, Pasteura 1, 50-367 Wroclaw, Poland; (K.R.); (N.S.); (J.S.); (M.K.); (J.S.)
| | - Agnieszka Gajewska-Naryniecka
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211a, 50-556 Wroclaw, Poland;
| | - Julita Kulbacka
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211a, 50-556 Wroclaw, Poland;
- Department of Immunology and Bioelectrochemistry, State Research Institute Centre for Innovative Medicine, Santariškių g. 5, LT-08406 Vilnius, Lithuania
| |
Collapse
|
2
|
Pearce A, Redfern-Nichols T, Wills E, Rosa M, Manulak I, Sisk C, Huang X, Atakpa-Adaji P, Prole DL, Ladds G. Quantitative approaches for studying G protein-coupled receptor signalling and pharmacology. J Cell Sci 2025; 138:JCS263434. [PMID: 39810711 PMCID: PMC11828474 DOI: 10.1242/jcs.263434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025] Open
Abstract
G protein-coupled receptor (GPCR) signalling pathways underlie numerous physiological processes, are implicated in many diseases and are major targets for therapeutics. There are more than 800 GPCRs, which together transduce a vast array of extracellular stimuli into a variety of intracellular signals via heterotrimeric G protein activation and multiple downstream effectors. A key challenge in cell biology research and the pharmaceutical industry is developing tools that enable the quantitative investigation of GPCR signalling pathways to gain mechanistic insights into the varied cellular functions and pharmacology of GPCRs. Recent progress in this area has been rapid and extensive. In this Review, we provide a critical overview of these new, state-of-the-art approaches to investigate GPCR signalling pathways. These include novel sensors, Förster or bioluminescence resonance energy transfer assays, libraries of tagged G proteins and transcriptional reporters. These approaches enable improved quantitative studies of different stages of GPCR signalling, including GPCR activation, G protein activation, second messenger (cAMP and Ca2+) signalling, β-arrestin recruitment and the internalisation and intracellular trafficking of GPCRs.
Collapse
Affiliation(s)
- Abigail Pearce
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1PD, UK
| | - Theo Redfern-Nichols
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1PD, UK
| | - Edward Wills
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1PD, UK
| | - Matthew Rosa
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1PD, UK
| | - Iga Manulak
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1PD, UK
| | - Claudia Sisk
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1PD, UK
| | - Xianglin Huang
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1PD, UK
| | - Peace Atakpa-Adaji
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1PD, UK
| | - David L. Prole
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1PD, UK
| | - Graham Ladds
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1PD, UK
| |
Collapse
|
3
|
Chiarini A, Armato U, Gui L, Yin M, Chang S, Dal Prà I. Early divergent modulation of NLRP2's and NLRP3's inflammasome sensors vs. AIM2's one by signals from Aβ·Calcium-sensing receptor complexes in human astrocytes. Brain Res 2024; 1846:149283. [PMID: 39426463 DOI: 10.1016/j.brainres.2024.149283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 10/04/2024] [Accepted: 10/14/2024] [Indexed: 10/21/2024]
Abstract
Alzheimer's disease (AD), the most prevalent human dementia, is driven by accruals of extracellular Aβ42 senile patches and intracellular neurofibrillary tangles of hyperphosphorylated Tau (p-Tau) proteins. AD's concurrent neuroinflammation is prompted by innate immunity-related cytosolic protein oligomers named inflammasomes. Upon proper "first" (priming) and "second" (activating) signals, inflammasomes overproduce proinflammatory Interleukin (IL)-1β, and IL-18 while cleaving pyroptosis-promoting Gasdermin D's N-terminal fragments. Our earlier studies highlighted that in pure monocultures, exogenous Aβ25-35-treated nonproliferating human cortical astrocytes (HCAs) made and released surpluses of endogenous Aβ42-oligomers (-os) and p-Tau-os, just as alike-treated human cortical neurons did. Aβ25-35-exposed HCAs also over-released NO, VEGFA, and IL-6. Aβ•CaSR (Aβ·Calcium-Sensing Receptor) complexes generated intracellular signals mediating all such neurotoxic effects since CaSR's negative allosteric modulators (aka NAMs or calcilytics, e.g., NPS2143) fully suppressed them. However, it had hitherto remained unexplored whether signals from Aβ·CaSR complexes also induced the early expression and/or activation of NOD-like 2 (NLRP2) and 3 (NLRP3) and of PYHIN absent in melanoma 2 (AIM2) inflammasomes in monocultured HCAs. To clarify this topic, we used in-situ-Proximity Ligation, qRT-PCR, double antibody arrays, immunoblots, and Caspase 1/4 enzymatic assays. Aβ·CaSR complexes quickly assembled on HCAs surface and issued intracellular signals activating Akt and JAK/STAT axes. In turn, the latter upregulated NLRP2 and NLRP3 PRRs (pattern recognition receptors) yet downregulated AIM2. These effects were specific, being significantly hindered by NPS2143 and inhibitors of PI3K (LY294002), AMPKα (Dorsomorphin), mTOR (Torin1), and JAK/TYK (Brepoticinib). A wide-spectrum inhibitor, Bay11-7082, intensified the Aβ·CaSR/Akt/JAK/STAT axis-driven opposite control of NLRP3's and AIM2's PRR proteins without affecting NLRP2 PRR upregulation. However, the said effects on the PRRs proteins vanished within 24-h. Moreover, Aβ·CaSR signals neither concurrently changed ASC, pro-IL-1β, and Gasdermin-D (holo- and fragments) protein levels and Caspases 1 and 4 enzymatic activities nor induced pyroptosis. Therefore, Aβ·CaSR cues acted as "first (priming) signals" temporarily increasing NLRP2 and NLRP3 PRRs expression without activating the corresponding inflammasomes. The neatly divergent modulation of NLRP3's vs. AIM2's PRR proteins by Aβ·CaSR cues and by Bay11-7082 suggests that, when bacterial or viral DNA fragments are absent, AIM2 might play "anti-inflammasomal" or other roles in HCAs. However, Bay11-7082's no effect on NLRP2 PRR overexpression also reveals that CaSR's downstream mechanisms controlling inflammasomes' sensors are quite complex in HCAs, and hence, given AD's impact on human health, well worth further studies.
Collapse
Affiliation(s)
- Anna Chiarini
- Department of Surgery, Dentistry, Pediatrics, and Gynecology, University of Verona, 8 Strada Le Grazie, 37134 Verona, Italy.
| | - Ubaldo Armato
- Department of Surgery, Dentistry, Pediatrics, and Gynecology, University of Verona, 8 Strada Le Grazie, 37134 Verona, Italy.
| | - Li Gui
- Department of Neurology, Southwest Hospital, Army Medical University, 29 Gaotanyan Street, Chongqing, 400038, China.
| | - Meifang Yin
- Department of Surgery, Dentistry, Pediatrics, and Gynecology, University of Verona, 8 Strada Le Grazie, 37134 Verona, Italy.
| | - Shusen Chang
- Department of Surgery, Dentistry, Pediatrics, and Gynecology, University of Verona, 8 Strada Le Grazie, 37134 Verona, Italy.
| | - Ilaria Dal Prà
- Department of Surgery, Dentistry, Pediatrics, and Gynecology, University of Verona, 8 Strada Le Grazie, 37134 Verona, Italy.
| |
Collapse
|
4
|
Sharma A, Lysenko A, Boroevich KA, Tsunoda T. DeepInsight-3D architecture for anti-cancer drug response prediction with deep-learning on multi-omics. Sci Rep 2023; 13:2483. [PMID: 36774402 PMCID: PMC9922304 DOI: 10.1038/s41598-023-29644-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 02/08/2023] [Indexed: 02/13/2023] Open
Abstract
Modern oncology offers a wide range of treatments and therefore choosing the best option for particular patient is very important for optimal outcome. Multi-omics profiling in combination with AI-based predictive models have great potential for streamlining these treatment decisions. However, these encouraging developments continue to be hampered by very high dimensionality of the datasets in combination with insufficiently large numbers of annotated samples. Here we proposed a novel deep learning-based method to predict patient-specific anticancer drug response from three types of multi-omics data. The proposed DeepInsight-3D approach relies on structured data-to-image conversion that then allows use of convolutional neural networks, which are particularly robust to high dimensionality of the inputs while retaining capabilities to model highly complex relationships between variables. Of particular note, we demonstrate that in this formalism additional channels of an image can be effectively used to accommodate data from different omics layers while implicitly encoding the connection between them. DeepInsight-3D was able to outperform other state-of-the-art methods applied to this task. The proposed improvements can facilitate the development of better personalized treatment strategies for different cancers in the future.
Collapse
Affiliation(s)
- Alok Sharma
- Laboratory for Medical Science Mathematics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan.
- Institute for Integrated and Intelligent Systems, Griffith University, Brisbane, Australia.
| | - Artem Lysenko
- Laboratory for Medical Science Mathematics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan.
- Laboratory for Medical Science Mathematics, Department of Biological Sciences, School of Science, The University of Tokyo, Tokyo, Japan.
| | - Keith A Boroevich
- Laboratory for Medical Science Mathematics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Tatsuhiko Tsunoda
- Laboratory for Medical Science Mathematics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan.
- Laboratory for Medical Science Mathematics, Department of Biological Sciences, School of Science, The University of Tokyo, Tokyo, Japan.
- Laboratory for Medical Science Mathematics, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
5
|
TIAM2 promotes proliferation and invasion of osteosarcoma cells by activating the JAK2/STAT3 signaling pathway. J Bone Oncol 2022; 37:100461. [DOI: 10.1016/j.jbo.2022.100461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 11/11/2022] [Accepted: 11/11/2022] [Indexed: 11/16/2022] Open
|
6
|
Yin G, Zeng W, Li R, Zeng M, Chen R, Liu Y, Jiang R, Wang Y. Glia Maturation Factor-β Supports Liver Regeneration by Remodeling Actin Network to Enhance STAT3 Proliferative Signals. Cell Mol Gastroenterol Hepatol 2022; 14:1123-1145. [PMID: 35953024 PMCID: PMC9606832 DOI: 10.1016/j.jcmgh.2022.07.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 07/24/2022] [Accepted: 07/25/2022] [Indexed: 01/31/2023]
Abstract
BACKGROUND & AIMS Glia maturation factor-β (GMFB) is a bona fide member of the actin depolymerizing factor homology family. Recently, emerging evidence suggested its implication in liver diseases, but data on its role in liver remain limited. METHODS Assessment of GMFB in liver histology, impact on liver regeneration and hepatocyte proliferation, and the underlying molecular pathways were conducted using mouse models with acute liver injury. RESULTS GMFB is widely distributed in normal liver. Its expression increases within 24 hours after partial hepatectomy (PHx). Adult Gmfb knockout mice and wild-type littermates are similar in gross appearance, body weight, liver function, and histology. However, compared with wild-type control, Gmfb knockout mice post-PHx develop more serious liver damage and steatosis and have delayed liver regeneration; the dominant change in liver transcriptome at 24 hours after PHx is the significantly suppressed acute inflammation pathways; the top down-regulated gene sets relate to interleukin (IL)6/Janus kinase/signal transducer and activator of transcription 3 (STAT3) signaling. Another mouse model intoxicated with carbon tetrachloride replicated these findings. Furthermore, Gmfb knockout and wild-type groups have the similar numbers of Kupffer cells, but Gmfb knockout Kupffer cells once stimulated produce less IL6, tumor necrosis factor, and IL1β. In hepatocytes treated with IL6, GMFB associates positively with cell proliferation and STAT3/cyclin D1 activation, but without any direct interaction with STAT3. In Gmfb knockout hepatocytes, cytoskeleton-related gene expression was changed significantly, with an abnormal-appearing morphology of actin networks. In hepatocyte modeling, actin-filament turnover, STAT3 activation, and metabolite excretion show a strong reliance on the status of actin-filament organization. CONCLUSIONS GMFB plays a significant role in liver regeneration by promoting acute inflammatory response in Kupffer cells and by intracellularly coordinating the responsive hepatocyte proliferation.
Collapse
Affiliation(s)
- Guo Yin
- Biomedical Research Center, Southern Medical University, Guangzhou, China,Medical Research Center of Nanfang Hospital, Southern Medical University, Guangzhou, China,School of Pharmaceutical Science, Southern Medical University, Guangzhou, China
| | - Weilan Zeng
- Biomedical Research Center, Southern Medical University, Guangzhou, China,School of Pharmaceutical Science, Southern Medical University, Guangzhou, China
| | - Rong Li
- Department of Radiation Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
| | - Manman Zeng
- Department of Gynecology, Women and Children's Hospital of Guangdong, Guangzhou, China
| | - Ronghua Chen
- Medical Research Center of Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yaxue Liu
- Biomedical Research Center, Southern Medical University, Guangzhou, China,School of Pharmaceutical Science, Southern Medical University, Guangzhou, China
| | - Ronglong Jiang
- Department of Hepatology, Southern Medical University Affiliated Shenzhen Hospital, Shenzhen, China
| | - Yan Wang
- Biomedical Research Center, Southern Medical University, Guangzhou, China,Department of Hepatology, Southern Medical University Affiliated Shenzhen Hospital, Shenzhen, China,Correspondence Address correspondence to: Yan Wang, MD, PhD, Biomedical Research Center, Southern Medical University, No 1023 Sha Tai Nan Avenue, Guangzhou 510515, China. fax: (86) 20-6164-7396.
| |
Collapse
|
7
|
Opioids and Vitamin C: Known Interactions and Potential for Redox-Signaling Crosstalk. Antioxidants (Basel) 2022; 11:antiox11071267. [PMID: 35883757 PMCID: PMC9312198 DOI: 10.3390/antiox11071267] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/17/2022] [Accepted: 06/21/2022] [Indexed: 12/10/2022] Open
Abstract
Opioids are among the most widely used classes of pharmacologically active compounds both clinically and recreationally. Beyond their analgesic efficacy via μ opioid receptor (MOR) agonism, a prominent side effect is central respiratory depression, leading to systemic hypoxia and free radical generation. Vitamin C (ascorbic acid; AA) is an essential antioxidant vitamin and is involved in the recycling of redox cofactors associated with inflammation. While AA has been shown to reduce some of the negative side effects of opioids, the underlying mechanisms have not been explored. The present review seeks to provide a signaling framework under which MOR activation and AA may interact. AA can directly quench reactive oxygen and nitrogen species induced by opioids, yet this activity alone does not sufficiently describe observations. Downstream of MOR activation, confounding effects from AA with STAT3, HIF1α, and NF-κB have the potential to block production of antioxidant proteins such as nitric oxide synthase and superoxide dismutase. Further mechanistic research is necessary to understand the underlying signaling crosstalk of MOR activation and AA in the amelioration of the negative, potentially fatal side effects of opioids.
Collapse
|
8
|
Awasthi N, Liongue C, Ward AC. STAT proteins: a kaleidoscope of canonical and non-canonical functions in immunity and cancer. J Hematol Oncol 2021; 14:198. [PMID: 34809691 PMCID: PMC8607625 DOI: 10.1186/s13045-021-01214-y] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 11/09/2021] [Indexed: 12/24/2022] Open
Abstract
STAT proteins represent an important family of evolutionarily conserved transcription factors that play key roles in diverse biological processes, notably including blood and immune cell development and function. Classically, STAT proteins have been viewed as inducible activators of transcription that mediate cellular responses to extracellular signals, particularly cytokines. In this 'canonical' paradigm, latent STAT proteins become tyrosine phosphorylated following receptor activation, typically via downstream JAK proteins, facilitating their dimerization and translocation into the nucleus where they bind to specific sequences in the regulatory region of target genes to activate transcription. However, growing evidence has challenged this paradigm and identified alternate 'non-canonical' functions, such as transcriptional repression and roles outside the nucleus, with both phosphorylated and unphosphorylated STATs involved. This review provides a revised framework for understanding the diverse kaleidoscope of STAT protein functional modalities. It further discusses the implications of this framework for our understanding of STAT proteins in normal blood and immune cell biology and diseases such as cancer, and also provides an evolutionary context to place the origins of these alternative functional modalities.
Collapse
Affiliation(s)
- Nagendra Awasthi
- School of Medicine, Deakin University, Pigdons Road, Geelong, VIC, 3216, Australia.,Institue of Mental and Physical Health and Clinical Translation (IMPACT), Deakin University, Geelong, VIC, Australia
| | - Clifford Liongue
- School of Medicine, Deakin University, Pigdons Road, Geelong, VIC, 3216, Australia.,Institue of Mental and Physical Health and Clinical Translation (IMPACT), Deakin University, Geelong, VIC, Australia
| | - Alister C Ward
- School of Medicine, Deakin University, Pigdons Road, Geelong, VIC, 3216, Australia. .,Institue of Mental and Physical Health and Clinical Translation (IMPACT), Deakin University, Geelong, VIC, Australia.
| |
Collapse
|
9
|
Glogowska A, Thanasupawat T, Beiko J, Pitz M, Hombach-Klonisch S, Klonisch T. Novel CTRP8-RXFP1-JAK3-STAT3 axis promotes Cdc42-dependent actin remodeling for enhanced filopodia formation and motility in human glioblastoma cells. Mol Oncol 2021; 16:368-387. [PMID: 33960104 PMCID: PMC8763656 DOI: 10.1002/1878-0261.12981] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 03/23/2021] [Accepted: 05/04/2021] [Indexed: 12/14/2022] Open
Abstract
C1q tumor necrosis factor‐related peptide 8 (CTRP8) is the least studied member of the C1Q‐TNF‐related peptide family. We identified CTRP8 as a ligand of the G protein‐coupled receptor relaxin family peptide receptor 1 (RXFP1) in glioblastoma multiforme (GBM). The CTRP8‐RXFP1 ligand–receptor system protects human GBM cells against the DNA‐alkylating damage‐inducing temozolomide (TMZ), the drug of choice for the treatment of patients with GBM. The DNA protective role of CTRP8 was dependent on a functional RXFP1‐STAT3 signaling cascade and targeted the monofunctional glycosylase N‐methylpurine DNA glycosylase (MPG) for more efficient base excision repair of TMZ‐induced DNA‐damaged sites. CTRP8 also improved the survival of GBM cells by upregulating anti‐apoptotic BCl‐2 and BCL‐XL. Here, we have identified Janus‐activated kinase 3 (JAK3) as a novel member of a novel CTRP8‐RXFP1‐JAK3‐STAT3 signaling cascade that caused an increase in cellular protein content and activity of the small Rho GTPase Cdc42. This is associated with significant F‐actin remodeling and increased GBM motility. Cdc42 was critically important for the upregulation of the actin nucleation complex N‐Wiskott–Aldrich syndrome protein/Arp3/4 and actin elongation factor profilin‐1. The activation of the RXFP1‐JAK3‐STAT3‐Cdc42 axis by both RXFP1 agonists, CTRP8 and relaxin‐2, caused extensive filopodia formation. This coincided with enhanced activity of ezrin, a key factor in tethering F‐actin to the plasma membrane, and inhibition of the actin filament severing activity of cofilin. The F‐actin remodeling and pro‐migratory activities promoted by the novel RXFP1‐JAK3‐STAT3‐Cdc42 axis were blocked by JAK3 inhibitor tofacitinib and STAT3 inhibitor STAT3 inhibitor VI. This provides a new rationale for the design of JAK3 and STAT3 inhibitors with better brain permeability for clinical treatment of the pervasive brain invasiveness of GBM.
Collapse
Affiliation(s)
- Aleksandra Glogowska
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, College of Medicine, University of Manitoba, Winnipeg, Canada
| | - Thatchawan Thanasupawat
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, College of Medicine, University of Manitoba, Winnipeg, Canada
| | - Jason Beiko
- Department of Surgery, Rady Faculty of Health Sciences, College of Medicine, University of Manitoba, Winnipeg, Canada
| | - Marshall Pitz
- Research Institute in Oncology and Hematology (RIOH), CancerCare Manitoba, Rady Faculty of Health Sciences, College of Medicine, University of Manitoba, Winnipeg, Canada
| | - Sabine Hombach-Klonisch
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, College of Medicine, University of Manitoba, Winnipeg, Canada.,Research Institute in Oncology and Hematology (RIOH), CancerCare Manitoba, Rady Faculty of Health Sciences, College of Medicine, University of Manitoba, Winnipeg, Canada
| | - Thomas Klonisch
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, College of Medicine, University of Manitoba, Winnipeg, Canada.,Department of Surgery, Rady Faculty of Health Sciences, College of Medicine, University of Manitoba, Winnipeg, Canada.,Research Institute in Oncology and Hematology (RIOH), CancerCare Manitoba, Rady Faculty of Health Sciences, College of Medicine, University of Manitoba, Winnipeg, Canada.,Department of Medical Microbiology & Infectious Diseases, Rady Faculty of Health Sciences, College of Medicine, University of Manitoba, Winnipeg, Canada.,Department of Pathology, Rady Faculty of Health Sciences, College of Medicine, University of Manitoba, Winnipeg, Canada
| |
Collapse
|
10
|
Lorimer IAJ. Aberrant Rac pathway signalling in glioblastoma. Small GTPases 2021; 12:81-95. [PMID: 31032735 PMCID: PMC7849730 DOI: 10.1080/21541248.2019.1612694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 04/23/2019] [Accepted: 04/25/2019] [Indexed: 10/26/2022] Open
Abstract
Glioblastoma is an aggressive and incurable form of brain cancer. Both mutation analysis in human glioblastoma and mouse modelling studies have shown that aberrant activation of the PI 3-kinase pathway is a central driver of glioblastoma malignancy. The small GTPase Rac is activated downstream of this pathway, mediating a subset of the effects of aberrant PI 3-kinase pathway activation. Here I discuss the current state of our knowledge on Rac activation mechanisms in glioblastoma. Current knowledge on roles for specific PI 3-kinase pathway responsive Rac guanine nucleotide exchange factors in glioblastoma is reviewed. Rac is best known for its role in promoting cell motility and invasion, but there is also evidence for roles in multiple other cellular processes with cancer relevance, including proliferation, differentiation, apoptosis, DNA damage responses, metabolism, angiogenesis and immunosuppression. I review what is known about the role of Rac in these processes in glioblastoma. Finally, I assess possible strategies to inhibit this pathway in glioblastoma through either direct inhibition of Rac or inhibition of upstream activators or downstream mediators of Rac signalling.
Collapse
Affiliation(s)
- Ian AJ Lorimer
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, Canada
- Department of Medicine, University of Ottawa, Ottawa, Ontario, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
11
|
Dilasser F, Rose L, Hassoun D, Klein M, Rousselle M, Brosseau C, Guignabert C, Taillé C, Dombret MC, Di Candia L, Heddebaut N, Bouchaud G, Pretolani M, Magnan A, Loirand G, Sauzeau V. Essential role of smooth muscle Rac1 in severe asthma-associated airway remodelling. Thorax 2021; 76:326-334. [PMID: 33542087 PMCID: PMC7982925 DOI: 10.1136/thoraxjnl-2020-216271] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 11/20/2020] [Accepted: 12/02/2020] [Indexed: 12/15/2022]
Abstract
Background Severe asthma is a chronic lung disease characterised by inflammation, airway hyperresponsiveness (AHR) and airway remodelling. The molecular mechanisms underlying uncontrolled airway smooth muscle cell (aSMC) proliferation involved in pulmonary remodelling are still largely unknown. Small G proteins of the Rho family (RhoA, Rac1 and Cdc42) are key regulators of smooth muscle functions and we recently demonstrated that Rac1 is activated in aSMC from allergic mice. The objective of this study was to assess the role of Rac1 in severe asthma-associated airway remodelling. Methods and results Immunofluorescence analysis in human bronchial biopsies revealed an increased Rac1 activity in aSMC from patients with severe asthma compared with control subjects. Inhibition of Rac1 by EHT1864 showed that Rac1 signalling controlled human aSMC proliferation induced by mitogenic stimuli through the signal transducer and activator of transcription 3 (STAT3) signalling pathway. In vivo, specific deletion of Rac1 in SMC or pharmacological inhibition of Rac1 by nebulisation of NSC23766 prevented AHR and aSMC hyperplasia in a mouse model of severe asthma. Moreover, the Rac1 inhibitor prevented goblet cell hyperplasia and epithelial cell hypertrophy whereas treatment with corticosteroids had less effect. Nebulisation of NSC23766 also decreased eosinophil accumulation in the bronchoalveolar lavage of asthmatic mice. Conclusion This study demonstrates that Rac1 is overactive in the airways of patients with severe asthma and is essential for aSMC proliferation. It also provides evidence that Rac1 is causally involved in AHR and airway remodelling. Rac1 may represent as an interesting target for treating both AHR and airway remodelling of patients with severe asthma.
Collapse
Affiliation(s)
| | | | | | | | | | - Carole Brosseau
- Centre de recherche en transplantation, Inserm 1064, Nantes, France
| | | | - Camille Taillé
- Service de Pneumologie et Centre de Référence des Maladies Pulmonaires Rares, Hôpital Bichat - Claude-Bernard, Paris, France
| | | | - Leonarda Di Candia
- Service de Pneumologie et Centre de Référence des Maladies Pulmonaires Rares, Hôpital Bichat - Claude-Bernard, Paris, France
| | | | | | | | - Antoine Magnan
- Institut du Thorax UMR1087 CNRS 6291, INSERM, Université de Nantes, CHU de Nantes, DHU2020, Nantes, France
| | | | | |
Collapse
|
12
|
van Gastel J, Leysen H, Boddaert J, Vangenechten L, Luttrell LM, Martin B, Maudsley S. Aging-related modifications to G protein-coupled receptor signaling diversity. Pharmacol Ther 2020; 223:107793. [PMID: 33316288 DOI: 10.1016/j.pharmthera.2020.107793] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 11/26/2020] [Indexed: 02/06/2023]
Abstract
Aging is a highly complex molecular process, affecting nearly all tissue systems in humans and is the highest risk factor in developing neurodegenerative disorders such as Alzheimer's and Parkinson's disease, cardiovascular disease and Type 2 diabetes mellitus. The intense complexity of the aging process creates an incentive to develop more specific drugs that attenuate or even reverse some of the features of premature aging. As our current pharmacopeia is dominated by therapeutics that target members of the G protein-coupled receptor (GPCR) superfamily it may be prudent to search for effective anti-aging therapeutics in this fertile domain. Since the first demonstration of GPCR-based β-arrestin signaling, it has become clear that an enhanced appreciation of GPCR signaling diversity may facilitate the creation of therapeutics with selective signaling activities. Such 'biased' ligand signaling profiles can be effectively investigated using both standard molecular biological techniques as well as high-dimensionality data analyses. Through a more nuanced appreciation of the quantitative nature across the multiple dimensions of signaling bias that drugs possess, researchers may be able to further refine the efficacy of GPCR modulators to impact the complex aberrations that constitute the aging process. Identifying novel effector profiles could expand the effective pharmacopeia and assist in the design of precision medicines. This review discusses potential non-G protein effectors, and specifically their potential therapeutic suitability in aging and age-related disorders.
Collapse
Affiliation(s)
- Jaana van Gastel
- Receptor Biology Lab, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium; Faculty of Pharmacy, Biomedical and Veterinary Science, University of Antwerp, Antwerp, Belgium
| | - Hanne Leysen
- Receptor Biology Lab, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium; Faculty of Pharmacy, Biomedical and Veterinary Science, University of Antwerp, Antwerp, Belgium
| | - Jan Boddaert
- Molecular Pathology Group, Faculty of Medicine and Health Sciences, Laboratory of Cell Biology and Histology, Antwerp, Belgium
| | - Laura Vangenechten
- Receptor Biology Lab, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Louis M Luttrell
- Division of Endocrinology, Diabetes & Medical Genetics, Medical University of South Carolina, USA
| | - Bronwen Martin
- Faculty of Pharmacy, Biomedical and Veterinary Science, University of Antwerp, Antwerp, Belgium
| | - Stuart Maudsley
- Receptor Biology Lab, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium; Faculty of Pharmacy, Biomedical and Veterinary Science, University of Antwerp, Antwerp, Belgium.
| |
Collapse
|
13
|
Wang L, Shen S, Xiao H, Ding F, Wang M, Li G, Hu F. ARHGAP24 inhibits cell proliferation and cell cycle progression and induces apoptosis of lung cancer via a STAT6-WWP2-p27 axis. Carcinogenesis 2020; 41:711-721. [PMID: 31430374 PMCID: PMC7197742 DOI: 10.1093/carcin/bgz144] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 07/18/2019] [Accepted: 08/15/2019] [Indexed: 12/17/2022] Open
Abstract
Rho GTPase-activating proteins (RhoGAPs) have been reported to be of great importance in the initiation and development of many different cancers. However, their biological roles and regulatory mechanisms in lung cancer development and progression are poorly defined. Real-time PCR or western blotting analysis was used to detect Rho GTPase-activating protein 24 (ARHGAP24), WWP2, p27, p-STAT6 and STAT6 expression levels as well as the activity of RhoA and Rac1 in lung cancer. Cell proliferation, apoptosis and cell cycle were measured by CCK-8 and flow cytometry analysis. Tumor growth of lung cancer cells was measured using a nude mouse xenograft experiment model in vivo. The correlation between WWP2 and p27 was measured by co-immunoprecipitation and ubiquitination analysis. We found that ARHGAP24 expression was lower in lung cancer tissues collected from the The Cancer Genome Atlas and independent hospital database. Overexpression of ARHGAP24 significantly suppressed cell proliferation and the activity of RhoA and Rac1, induced cell apoptosis and arrested cell cycle at the G0–G1 phase. ARHGAP24 overexpression also inhibited tumor growth in nude mice, whereas knockdown of ARHGAP24 significantly promoted cell proliferation and WWP2 expression and inhibited cell cycle arrest at G1 phase through activating STAT6 signaling. ARHGAP24 overexpression inhibited WWP2 overexpression-induced cell proliferation, cell cycle progression and the decreased p27 expression. Moreover, WWP2 was found interacted with p27, and WWP2 overexpression promoted the ubiquitination of p27. In conclusion, our findings suggest that ARHGAP24 inhibits cell proliferation and cell cycle progression and induces cell apoptosis of lung cancer via a STAT6-WWP2-p27 axis.
Collapse
Affiliation(s)
- Lei Wang
- Department of Cardiothoracic Surgery, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Saie Shen
- Department of Anesthesiology, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Haibo Xiao
- Department of Cardiothoracic Surgery, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fangbao Ding
- Department of Cardiothoracic Surgery, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mingsong Wang
- Department of Cardiothoracic Surgery, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guoqing Li
- Department of Cardiothoracic Surgery, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fengqing Hu
- Department of Cardiothoracic Surgery, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
14
|
Proteomic analysis of plasma exosomes from Cystic Echinococcosis patients provides in vivo support for distinct immune response profiles in active vs inactive infection and suggests potential biomarkers. PLoS Negl Trop Dis 2020; 14:e0008586. [PMID: 33017416 PMCID: PMC7535053 DOI: 10.1371/journal.pntd.0008586] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 07/10/2020] [Indexed: 02/07/2023] Open
Abstract
The reference diagnostic method of human abdominal Cystic Echinococcosis (CE) is imaging, particularly ultrasound, supported by serology when imaging is inconclusive. However, current diagnostic tools are neither optimal nor widely available. The availability of a test detecting circulating biomarkers would considerably improve CE diagnosis and cyst staging (active vs inactive), as well as treatments and follow-up of patients. Exosomes are extracellular vesicles involved in intercellular communication, including immune system responses, and are a recognized source of biomarkers. With the aim of identifying potential biomarkers, plasma pools from patients infected by active or inactive CE, as well as from control subjects, were processed to isolate exosomes for proteomic label-free quantitative analysis. Results were statistically processed and subjected to bioinformatics analysis to define distinct features associated with parasite viability. First, a few parasite proteins were identified that were specifically associated with either active or inactive CE, which represent potential biomarkers to be validated in further studies. Second, numerous identified proteins of human origin were common to active and inactive CE, confirming an overlap of several immune response pathways. However, a subset of human proteins specific to either active or inactive CE, and central in the respective protein-protein interaction networks, were identified. These include the Src family kinases Src and Lyn, and the immune-suppressive cytokine TGF-β in active CE, and Cdc42 in inactive CE. The Src and Lyn Kinases were confirmed as potential markers of active CE in totally independent plasma pools. In addition, insights were obtained on immune response profiles: largely consistent with previous evidence, our observations hint to a Th1/Th2/regulatory immune environment in patients with active CE and a Th1/inflammatory environment with a component of the wound healing response in the presence of inactive CE. Of note, our results were obtained for the first time from the analysis of samples obtained in vivo from a well-characterized, large cohort of human subjects.
Collapse
|
15
|
Villalobos-Escobedo JM, Esparza-Reynoso S, Pelagio-Flores R, López-Ramírez F, Ruiz-Herrera LF, López-Bucio J, Herrera-Estrella A. The fungal NADPH oxidase is an essential element for the molecular dialog between Trichoderma and Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 103:2178-2192. [PMID: 32578269 DOI: 10.1111/tpj.14891] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 06/10/2020] [Accepted: 06/12/2020] [Indexed: 06/11/2023]
Abstract
Members of the fungal genus Trichoderma stimulate growth and reinforce plant immunity. Nevertheless, how fungal signaling elements mediate the establishment of a successful Trichoderma-plant interaction is largely unknown. In this work, we analyzed growth, root architecture and defense in an Arabidopsis-Trichoderma co-cultivation system, including the wild-type (WT) strain of the fungus and mutants affected in NADPH oxidase. Global gene expression profiles were assessed in both the plant and the fungus during the establishment of the interaction. Trichoderma atroviride WT improved root branching and growth of seedling as previously reported. This effect diminished in co-cultivation with the ∆nox1, ∆nox2 and ∆noxR null mutants. The data gathered of the Arabidopsis interaction with the ∆noxR strain showed that the seedlings had a heightened immune response linked to jasmonic acid in roots and shoots. In the fungus, we observed repression of genes involved in complex carbohydrate degradation in the presence of the plant before contact. However, in the absence of NoxR, such repression was lost, apparently due to a poor ability to adequately utilize simple carbon sources such as sucrose, a typical plant exudate. Our results unveiled the critical role played by the Trichoderma NoxR in the establishment of a fine-tuned communication between the plant and the fungus even before physical contact. In this dialog, the fungus appears to respond to the plant by adjusting its metabolism, while in the plant, fungal perception determines a delicate growth-defense balance.
Collapse
Affiliation(s)
- José M Villalobos-Escobedo
- Laboratorio Nacional de Genómica para la Biodiversidad-Unidad de Genómica Avanzada, Centro de Investigación y de Estudios Avanzados del IPN, Km. 9.6 libramiento Norte Carretera Irapuato-León, Irapuato, C. P. 36824, México
| | - Saraí Esparza-Reynoso
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Edificio B3, Ciudad Universitaria, Morelia, C. P. 58030, México
| | - Ramón Pelagio-Flores
- Laboratorio Nacional de Genómica para la Biodiversidad-Unidad de Genómica Avanzada, Centro de Investigación y de Estudios Avanzados del IPN, Km. 9.6 libramiento Norte Carretera Irapuato-León, Irapuato, C. P. 36824, México
- Facultad de Químico Farmacobiología, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, C. P. 58240, México
| | - Fabiola López-Ramírez
- Laboratorio Nacional de Genómica para la Biodiversidad-Unidad de Genómica Avanzada, Centro de Investigación y de Estudios Avanzados del IPN, Km. 9.6 libramiento Norte Carretera Irapuato-León, Irapuato, C. P. 36824, México
| | - León F Ruiz-Herrera
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Edificio B3, Ciudad Universitaria, Morelia, C. P. 58030, México
| | - José López-Bucio
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Edificio B3, Ciudad Universitaria, Morelia, C. P. 58030, México
| | - Alfredo Herrera-Estrella
- Laboratorio Nacional de Genómica para la Biodiversidad-Unidad de Genómica Avanzada, Centro de Investigación y de Estudios Avanzados del IPN, Km. 9.6 libramiento Norte Carretera Irapuato-León, Irapuato, C. P. 36824, México
| |
Collapse
|
16
|
Calender A, Weichhart T, Valeyre D, Pacheco Y. Current Insights in Genetics of Sarcoidosis: Functional and Clinical Impacts. J Clin Med 2020; 9:E2633. [PMID: 32823753 PMCID: PMC7465171 DOI: 10.3390/jcm9082633] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 08/05/2020] [Accepted: 08/11/2020] [Indexed: 12/17/2022] Open
Abstract
Sarcoidosis is a complex disease that belongs to the vast group of autoinflammatory disorders, but the etiological mechanisms of which are not known. At the crosstalk of environmental, infectious, and genetic factors, sarcoidosis is a multifactorial disease that requires a multidisciplinary approach for which genetic research, in particular, next generation sequencing (NGS) tools, has made it possible to identify new pathways and propose mechanistic hypotheses. Codified treatments for the disease cannot always respond to the most progressive forms and the identification of new genetic and metabolic tracks is a challenge for the future management of the most severe patients. Here, we review the current knowledge regarding the genes identified by both genome wide association studies (GWAS) and whole exome sequencing (WES), as well the connection of these pathways with the current research on sarcoidosis immune-related disorders.
Collapse
Affiliation(s)
- Alain Calender
- Department of Molecular and Medical genetics, Hospices Civils de Lyon, University Hospital, 69500 Bron, France;
- CNRS UMR 5305, Tissue Biology and Therapeutic Engineering Laboratory, University Claude Bernard Lyon 1, 69007 Lyon, France
| | - Thomas Weichhart
- Center for Pathobiochemistry and Genetics, Institute of Medical Genetics, Medical University of Vienna, 1090 Vienna, Austria;
| | - Dominique Valeyre
- INSERM UMR 1272, Department of Pulmonology, Avicenne Hospital, University Sorbonne Paris Nord, Saint Joseph Hospital, AP-HP, 75014 Paris, France;
| | - Yves Pacheco
- Department of Molecular and Medical genetics, Hospices Civils de Lyon, University Hospital, 69500 Bron, France;
- CNRS UMR 5305, Tissue Biology and Therapeutic Engineering Laboratory, University Claude Bernard Lyon 1, 69007 Lyon, France
| |
Collapse
|
17
|
Townsend MH, Ence ZE, Cox TP, Lattin JE, Burrup W, Boyer MK, Piccolo SR, Robison RA, O’Neill KL. Evaluation of the upregulation and surface expression of hypoxanthine guanine phosphoribosyltransferase in acute lymphoblastic leukemia and Burkitt's B cell lymphoma. Cancer Cell Int 2020; 20:375. [PMID: 32782434 PMCID: PMC7409661 DOI: 10.1186/s12935-020-01457-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 07/20/2020] [Accepted: 07/25/2020] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND The aim of this study is to determine whether Hypoxanthine Guanine Phosphoribosyltransferase (HPRT) could be used as a biomarker for the diagnosis and treatment of B cell malignancies. With 4.3% of all new cancers diagnosed as Non-Hodgkin lymphoma, finding new biomarkers for the treatment of B cell cancers is an ongoing pursuit. HPRT is a nucleotide salvage pathway enzyme responsible for the synthesis of guanine and inosine throughout the cell cycle. METHODS Raji cells were used for this analysis due to their high HPRT internal expression. Internal expression was evaluated utilizing western blotting and RNA sequencing. Surface localization was analyzed using flow cytometry, confocal microscopy, and membrane biotinylation. To determine the source of HPRT surface expression, a CRISPR knockdown of HPRT was generated and confirmed using western blotting. To determine clinical significance, patient blood samples were collected and analyzed for HPRT surface localization. RESULTS We found surface localization of HPRT on both Raji cancer cells and in 77% of the malignant ALL samples analyzed and observed no significant expression in healthy cells. Surface expression was confirmed in Raji cells with confocal microscopy, where a direct overlap between HPRT specific antibodies and a membrane-specific dye was observed. HPRT was also detected in biotinylated membranes of Raji cells. Upon HPRT knockdown in Raji cells, we found a significant reduction in surface expression, which shows that the HPRT found on the surface originates from the cells themselves. Finally, we found that cells that had elevated levels of HPRT had a direct correlation to XRCC2, BRCA1, PIK3CA, MSH2, MSH6, WDYHV1, AK7, and BLMH expression and an inverse correlation to PRKD2, PTGS2, TCF7L2, CDH1, IL6R, MC1R, AMPD1, TLR6, and BAK1 expression. Of the 17 genes with significant correlation, 9 are involved in cellular proliferation and DNA synthesis, regulation, and repair. CONCLUSIONS As a surface biomarker that is found on malignant cells and not on healthy cells, HPRT could be used as a surface antigen for targeted immunotherapy. In addition, the gene correlations show that HPRT may have an additional role in regulation of cancer proliferation that has not been previously discovered.
Collapse
Affiliation(s)
- Michelle H. Townsend
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT USA
| | - Zac E. Ence
- Department of Biology, Brigham Young University, Provo, UT USA
| | - Taylor P. Cox
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT USA
| | - John E. Lattin
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT USA
| | - Weston Burrup
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT USA
| | - Michael K. Boyer
- Division of Hematology and Hematologic Malignancies, Department of Medicine, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT USA
| | - Stephen R. Piccolo
- Department of Biology, Brigham Young University, Provo, UT USA
- Department of Biomedical Informatics, University of Utah, Salt Lake City, UT 84132 USA
| | - Richard A. Robison
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT USA
| | - Kim L. O’Neill
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT USA
| |
Collapse
|
18
|
Larribère L, Utikal J. Update on GNA Alterations in Cancer: Implications for Uveal Melanoma Treatment. Cancers (Basel) 2020; 12:E1524. [PMID: 32532044 PMCID: PMC7352965 DOI: 10.3390/cancers12061524] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 06/05/2020] [Accepted: 06/08/2020] [Indexed: 02/06/2023] Open
Abstract
Tumorigenesis is correlated with abnormal expression and activity of G protein-coupled receptors (GPCRs) and associated G proteins. Oncogenic mutations in both GPCRs and G proteins (GNAS, GNAQ or GNA11) encoding genes have been identified in a significant number of tumors. Interestingly, uveal melanoma driver mutations in GNAQ/GNA11 were identified for a decade, but their discovery did not lead to mutation-specific drug development, unlike it the case for BRAF mutations in cutaneous melanoma which saw enormous success. Moreover, new immunotherapies strategies such as immune checkpoint inhibitors have given underwhelming results. In this review, we summarize the current knowledge on cancer-associated alterations of GPCRs and G proteins and we focus on the case of uveal melanoma. Finally, we discuss the possibilities that this signaling might represent in regard to novel drug development for cancer prevention and treatment.
Collapse
Affiliation(s)
- Lionel Larribère
- Skin Cancer Unit, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany;
- Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, 68167 Mannheim, Germany
| | - Jochen Utikal
- Skin Cancer Unit, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany;
- Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, 68167 Mannheim, Germany
| |
Collapse
|
19
|
da Costa Fernandes CJ, Bezerra FJB, de Campos Souza B, Campos MA, Zambuzzi WF. Titanium-enriched medium drives low profile of ECM remodeling as a pre-requisite to pre-osteoblast viability and proliferative phenotype. J Trace Elem Med Biol 2018; 50:339-346. [PMID: 30262301 DOI: 10.1016/j.jtemb.2018.07.015] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2018] [Revised: 07/16/2018] [Accepted: 07/19/2018] [Indexed: 01/13/2023]
Abstract
Titanium is widely used for biomedical applications, but little information is being delivered regarding the cellular/molecular mechanisms explaining their efficacy, mainly considering the effects of the Ti-released trace elements on pre-osteoblasts. We addressed this issue by investigating decisive intracellular signal transduction able to modulate cytoskeleton rearrangement, proliferative phenotype and extracellular matrix (ECM) remodeling. We considered titanium grades IV and V, submitted or not to dual acid-etching (w/DAE or wo/DAE, respectively). Our results showed there is no cytotoxicity, preserving AKT involvement. Additionally, Ti-enriched medium promoted a diminution of the downstream signaling upon integrin activation (phosphorylating Rac1 and cofilin), guaranteeing a dynamic cytoskeleton rearrangement. Moreover, the low profile of ECM remodeling obtained in response to trace molecules released by Ti-based devices seems contributing to the osteoblast performance in mediating extracellular support to cell anchorage. This hypothesis was validated by the up-expression of ß1-integrin, src and Focal adhesion kinase (fak) genes, mainly in response to titanium grade V. Proliferative phenotype showed an unbalance between cyclin-dependent kinases (CDKs) and p15INK4b/p21Cip1. In conjunction, we showed for the first time that trace elements from Ti-based biomedical devices provoke important modulation of the osteoblast biology, driving cell anchoring, viability, and proliferative phenotype. Certainly, these biological outcomes compromise implant osseointegration.
Collapse
Affiliation(s)
- Celio J da Costa Fernandes
- Dept. of Chemistry and Biochemistry, Bioscience Institute, São Paulo State University, UNESP, Campus Botucatu, Botucatu, São Paulo, Brazil
| | - Fábio J B Bezerra
- Dept. of Chemistry and Biochemistry, Bioscience Institute, São Paulo State University, UNESP, Campus Botucatu, Botucatu, São Paulo, Brazil
| | - Bruno de Campos Souza
- Dept. of Chemistry and Biochemistry, Bioscience Institute, São Paulo State University, UNESP, Campus Botucatu, Botucatu, São Paulo, Brazil
| | - Mônica Aparecida Campos
- Dept. of Chemistry and Biochemistry, Bioscience Institute, São Paulo State University, UNESP, Campus Botucatu, Botucatu, São Paulo, Brazil
| | - Willian Fernando Zambuzzi
- Dept. of Chemistry and Biochemistry, Bioscience Institute, São Paulo State University, UNESP, Campus Botucatu, Botucatu, São Paulo, Brazil; Electron Microscopy Center, IBB, UNESP, Botucatu, SP, Brazil.
| |
Collapse
|
20
|
Xu XF, Wang JJ, Ding L, Ye JS, Huang LJ, Tao L, Gao F, Ji Y. Suppression of BMX-ARHGAP fusion gene inhibits epithelial-mesenchymal transition in gastric cancer cells via RhoA-mediated blockade of JAK/STAT axis. J Cell Biochem 2018; 120:439-451. [PMID: 30216523 DOI: 10.1002/jcb.27400] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 07/11/2018] [Indexed: 12/24/2022]
Abstract
Gastric cancer (GC) is one of the main causes of cancer-related mortality worldwide. Epithelial-mesenchymal transition (EMT) is an important biological process involving the process by which malignant tumor cells obtain the ability of migration, invasion, resistance of apoptosis, and degradation in the extracellular matrix. The current study aimed at investigating whether bone marrow X kinase Rho GTPase activating protein 12 (BMX-ARHGAP) fusion gene affects GC. First, short hairpin RNA (shRNA) against BMX-ARHGAP or BMX-ARHGAP were introduced to treat SGC-7901 cells with the highest BMX-ARHGAP among the five GC cell lines (SGC-7901, MKN-45, NCI-N87, SNU-5, and AGS). Next, cell vitality, drug resistance, migration, and invasion of SGC-7901 cells, activities of Rho and JAK/STAT axis, as well as EMT and lymph node metastasis (LNM) were evaluated. The survival rate of the mice was then determined through the transfection of the specific pathogen-free NOD-SCID mice with treated SGC-7901 cells. The results showed that BMX-ARHGAP expression was associated with the infiltration degree of GC tumor and poor prognosis for patients with GC. BMX-ARHGAP silencing was found to play an inhibitory role in the Rho and JAK/STAT axis to reduce cell vitality, drug resistance, migration and invasion, reverse EMT process, as well as inhibit LNM. BMX-ARHGAP overexpression was observed to have induced effects on GC cells as opposed to those inhibited by BMX-ARHGAP silencing. The survival rate of mice was increased after transfection with silenced BMX-ARHGAP. These findings provided evidence that the suppression of BMX-ARHGAP resulted in the inhibition of RhoA to restraint the development of GC cells by blocking the JAK/STAT axis.
Collapse
Affiliation(s)
- Xiao-Feng Xu
- Department of Clinical Laboratory, Jingjiang People's Hospital, Jingjiang, China
| | - Jian-Jiang Wang
- Department of Gastrointestinal Surgery, Jingjiang People's Hospital, Jingjiang, China
| | - Li Ding
- Department of Clinical Laboratory, Jingjiang People's Hospital, Jingjiang, China
| | - Jin-Song Ye
- Department of Clinical Laboratory, Jingjiang People's Hospital, Jingjiang, China
| | - Li-Juan Huang
- Department of Clinical Laboratory, Jingjiang People's Hospital, Jingjiang, China
| | - Lan Tao
- Department of Clinical Laboratory, Jingjiang People's Hospital, Jingjiang, China
| | - Feng Gao
- Department of Gastrointestinal Surgery, Jingjiang People's Hospital, Jingjiang, China
| | - Yong Ji
- Department of Gastrointestinal Surgery, Jingjiang People's Hospital, Jingjiang, China
| |
Collapse
|
21
|
Winge MCG, Marinkovich MP. Epidermal activation of the small GTPase Rac1 in psoriasis pathogenesis. Small GTPases 2017; 10:163-168. [PMID: 28055293 DOI: 10.1080/21541248.2016.1273861] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
The small GTPase Ras-related C3 botulinum toxin substrate 1 (RAC1) plays a central role in skin homeostasis, including barrier function, wound healing and inflammatory responses. Psoriasis is a common skin disease characterized by deregulation of these functions, and affected skin exhibit keratinocyte hyperproliferation, inflammation and immune cell infiltration. Although psoriasis is often triggered by environmental stimulus, there is a strong genetic association with genes expressed in both immune cells and keratinocytes, of which several are linked to Rac1 signaling. Rac1 is highly active in human psoriatic lesional skin and keratinocytes, and keratinocyte-specific overexpression of an activated mutant of Rac1, Rac1V12, in a transgenic mouse model closely mimics the presentation of human psoriasis. Both Rac1 activation in keratinocytes and immune derived stimulus are required to drive psoriasiform signaling in transgenic mouse and human xenograft models of psoriasis. Therefore, understanding how increased Rac1 activation in psoriatic epidermis is regulated is central to understanding how the abnormal crosstalk between keratinocytes and immune cells is maintained.
Collapse
Affiliation(s)
- Mårten C G Winge
- a Program in Epithelial Biology , Stanford University School of Medicine , Stanford , CA , USA
| | - M Peter Marinkovich
- a Program in Epithelial Biology , Stanford University School of Medicine , Stanford , CA , USA.,b Dermatology Service , Veterans Affairs Medical Center , Palo Alto , CA , USA
| |
Collapse
|
22
|
Wang CY, Lu CY, Li SW, Lai CC, Hua CH, Huang SH, Lin YJ, Hour MJ, Lin CW. SARS coronavirus papain-like protease up-regulates the collagen expression through non-Samd TGF-β1 signaling. Virus Res 2017; 235:58-66. [PMID: 28414040 PMCID: PMC7114548 DOI: 10.1016/j.virusres.2017.04.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 04/03/2017] [Accepted: 04/10/2017] [Indexed: 12/16/2022]
Abstract
SARS-CoV PLpro induced TGF-β1-dependent up-regulation of Type I collagen in vitro and in vivo. Non-SMAD pathways in TGF-β1 signaling involved in PLpro-induced collagen expression. STAT6 activation was required for TGF-β1-dependent collagen up-regulation by PLpro.
SARS coronavirus (CoV) papain-like protease (PLpro) reportedly induced the production of TGF-β1 through p38 MAPK/STAT3-meidated Egr-1-dependent activation (Sci. Rep. 6, 25754). This study investigated the correlation of PLpro-induced TGF-β1 with the expression of Type I collagen in human lung epithelial cells and mouse pulmonary tissues. Specific inhibitors for TGF-βRI, p38 MAPK, MEK, and STAT3 proved that SARS-CoV PLpro induced TGF-β1-dependent up-regulation of Type I collagen in vitro and in vivo. Subcellular localization analysis of SMAD3 and SMAD7 indicated that non-SMAD pathways in TGF-β1 signaling involved in the production of Type I collagen in transfected cells with pSARS-PLpro. Comprehensive analysis of ubiquitin-conjugated proteins using immunoprecipitation and nanoLC–MS/MS indicated that SARS-CoV PLpro caused the change in the ubiquitination profile of Rho GTPase family proteins, in which linked with the increase of Rho-like GTPase family proteins. Moreover, selective inhibitors TGF-βRI and STAT6 (AS1517499) ascertained that STAT6 activation was required for PLpro-induced TGF-β1-dependent up-regulation of Type I collagen in human lung epithelial cells. The results showed that SARS-CoV PLpro stimulated TGF-β1-dependent expression of Type I collagen via activating STAT6 pathway.
Collapse
Affiliation(s)
- Ching-Ying Wang
- Department of Medical Laboratory Science and Biotechnology, China Medical University, Taiwan
| | - Chien-Yi Lu
- Department of Medical Laboratory Science and Biotechnology, China Medical University, Taiwan
| | - Shih-Wen Li
- Department of Medical Laboratory Science and Biotechnology, China Medical University, Taiwan
| | - Chien-Chen Lai
- Institute of Molecular Biology, National Chung Hsing University, Taichung, Taiwan
| | - Chun-Hung Hua
- Department of Otolaryngology, China Medical University Hospital, Taichung, Taiwan
| | - Su-Hua Huang
- Department of Biotechnology, College of Health Science, Asia University, Wufeng, Taichung, Taiwan
| | - Ying-Ju Lin
- Department of Medical Genetics and Medical Research, China Medical University Hospital, Taichung, Taiwan
| | - Mann-Jen Hour
- School of Pharmacy, China Medical University, Taichung, Taiwan
| | - Cheng-Wen Lin
- Department of Medical Laboratory Science and Biotechnology, China Medical University, Taiwan; Department of Biotechnology, College of Health Science, Asia University, Wufeng, Taichung, Taiwan.
| |
Collapse
|
23
|
Senescence Mediated by p16 INK4a Impedes Reprogramming of Human Corneal Endothelial Cells into Neural Crest Progenitors. Sci Rep 2016; 6:35166. [PMID: 27739458 PMCID: PMC5064359 DOI: 10.1038/srep35166] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 09/26/2016] [Indexed: 12/13/2022] Open
Abstract
Human corneal endothelial cells (HCECs) have limited proliferative capacity due to “contact-inhibition” at G1 phase. Such contact-inhibition can be delayed from Day 21 to Day 42 by switching EGF-containing SHEM to LIF/bFGF-containing MESCM through transient activation of LIF-JAK1-STAT3 signaling that delays eventual nuclear translocation of p16INK4a. Using the latter system, we have reported a novel tissue engineering technique by implementing 5 weekly knockdowns with p120 catenin (p120) and Kaiso siRNAs since Day 7 to achieve effective expansion of HCEC monolayers to a transplantable size with a normal HCEC density, through reprogramming of HCECs into neural crest progenitors by activating p120-Kaiso-RhoA-ROCK-canonical BMP signaling. Herein, we noted that a single knockdown with p120-Kaiso siRNAs at Day 42 failed to achieve such reprogramming when contact inhibition transitioned to senescence with nuclear translocation of p16INK4a. In contrast, 5 weekly knockdowns with p120-Kaiso siRNAs since Day 7 precluded senescence mediated by p16INK4a by inducing nuclear translocation of Bmi1 because of sustained activation of JAK2-STAT3 signaling downstream of p120-Kaiso-RhoA-ROCK signaling. STAT3 or Bmi1 siRNA impeded nuclear exclusion of p16INK4a and suppressed the reprogramming induced by p120-Kaiso siRNAs, suggesting that another important engineering strategy of HCEC lies in prevention of senescence mediated by nuclear translocation of p16INK4a.
Collapse
|
24
|
Xie T, Luo G, Zhang Y, Wang X, Wang X, Wu M, Li G. Rho-kinase inhibitor fasudil reduces allergic airway inflammation and mucus hypersecretion by regulating STAT6 and NFκB. Clin Exp Allergy 2016; 45:1812-22. [PMID: 26245530 DOI: 10.1111/cea.12606] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Revised: 07/07/2015] [Accepted: 07/24/2015] [Indexed: 02/03/2023]
Abstract
BACKGROUND Airway mucus hypersecretion is a key pathophysiological feature in asthma. Fasudil, a selective Rho-A/Rho kinase inhibitor, has been used in clinical trials to treat pulmonary hypertension. However, its function in modulating airway mucus hypersecretion in asthma remains undefined. OBJECTIVE We examined whether fasudil, a selective Rho-A/Rho kinase inhibitor, affects the mucus hypersecretion by suppressing MUC5AC via signal transducer and activator of transcription factor 6 (STAT6) and nuclear factor-kappa B (NFκB) in mice and cells. METHODS We measured mucus secretion and the expression of Rho-kinase in the airway tissue of patients with asthma. BALB/c mice were sensitized and challenged with ovalbumin (OVA) followed with fasudil treatment. The lung tissues were assessed for airway inflammation and mucus secretion. Cytokine levels and airway responsiveness were determined. STAT6 and NFκB were quantified by Western blot. 16HBE cells were stimulated with house dust mite (HDM) extracts. MUC5AC and muc5ac promoter activities were measured. Using siRNA to knockdown STAT6 in epithelial cells, we determined the impact of STAT6 on muc5ac promoter activity. NFκB nuclear translocation was observed with immunostaining. RESULTS Fasudil administration significantly decreased the number of inflammatory cells, inflammation index in the lung and airway responsiveness. Fasudil also reduced mucous secretion and MUC5AC expression in OVA-challenged mice. Fasudil down-regulated the levels of IL-17, IL-4 and IL-13 in the lung tissue of OVA-challenged mice. Fasudil also decreased the expression and phosphorylation of NFκB and STAT6 as well as the nuclear translocation of NFκB. In addition, human airway epithelial cells (16HBE) were challenged with HDM extracts and then treated with fasudil. Fasudil inhibited HDM extract-induced MUC5AC expression, which is associated with a reduction in STAT6 and NFκB in epithelial cells. CONCLUSIONS AND CLINICAL RELEVANCE These findings indicate that the Rho-A/Rho kinase inhibitor, fasudil, plays a negative regulatory role in allergen-induced mucus secretion and MUC5AC expression by regulating STAT6 and NFκB.
Collapse
Affiliation(s)
- T Xie
- Inflammations & Allergic Diseases Research Unit, First Affiliated Hospital of Sichuan Medical University, Luzhou, Sichuan, China
| | - Gy Luo
- Staff Health Clinic, Sichuan Medical University, Luzhou, Sichuan, China
| | - Y Zhang
- Inflammations & Allergic Diseases Research Unit, First Affiliated Hospital of Sichuan Medical University, Luzhou, Sichuan, China
| | - X Wang
- Inflammations & Allergic Diseases Research Unit, First Affiliated Hospital of Sichuan Medical University, Luzhou, Sichuan, China
| | - Xy Wang
- Inflammations & Allergic Diseases Research Unit, First Affiliated Hospital of Sichuan Medical University, Luzhou, Sichuan, China
| | - M Wu
- Department of Basic Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, USA
| | - Gp Li
- Inflammations & Allergic Diseases Research Unit, First Affiliated Hospital of Sichuan Medical University, Luzhou, Sichuan, China.,State Key Laboratory of Respiratory Disease for Allergy, School of Medicine, Shenzhen University, Shenzhen, Guangdong, China
| |
Collapse
|
25
|
Huang SH, Lien JC, Chen CJ, Liu YC, Wang CY, Ping CF, Lin YF, Huang AC, Lin CW. Antiviral Activity of a Novel Compound CW-33 against Japanese Encephalitis Virus through Inhibiting Intracellular Calcium Overload. Int J Mol Sci 2016; 17:ijms17091386. [PMID: 27563890 PMCID: PMC5037666 DOI: 10.3390/ijms17091386] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Revised: 07/26/2016] [Accepted: 08/18/2016] [Indexed: 01/31/2023] Open
Abstract
Japanese encephalitis virus (JEV), a mosquito-borne flavivirus, has five genotypes (I, II, III, IV, and V). JEV genotype I circulates widely in some Asian countries. However, current JEV vaccines based on genotype III strains show low neutralizing capacities against genotype I variants. In addition, JE has no specific treatment, except a few supportive treatments. Compound CW-33, an intermediate synthesized derivative of furoquinolines, was investigated for its antiviral activities against JEV in this study. CW-33 exhibited the less cytotoxicity to Syrian baby hamster kidney (BHK-21) and human medulloblastoma (TE761) cells. CW-33 dose-dependently reduced the cytopathic effect and apoptosis of JEV-infected cells. Supernatant virus yield assay pinpointed CW-33 as having potential anti-JEV activity with IC50 values ranging from 12.7 to 38.5 μM. Time-of-addition assay with CW-33 indicated that simultaneous and post-treatment had no plaque reduction activity, but continuous and simultaneous treatments proved to have highly effective antiviral activity, with IC50 values of 32.7 and 48.5 μM, respectively. CW-33 significantly moderated JEV-triggered Ca2+ overload, which correlated with the recovery of mitochondria membrane potential as well as the activation of Akt/mTOR and Jak/STAT1 signals in treated infected cells. Phosphopeptide profiling by LC-MS/MS revealed that CW-33 upregulated proteins from the enzyme modulator category, such as protein phosphatase inhibitor 2 (I-2), Rho GTPase-activating protein 35, ARF GTPase-activating protein GIT2, and putative 3-phosphoinositide-dependent protein kinase 2. These enzyme modulators identified were associated with the activation of Akt/mTOR and Jak/STAT1 signals. Meanwhile, I-2 treatment substantially inhibited the apoptosis of JEV-infected cells. The results demonstrated that CW-33 exhibited a significant potential in the development of anti-JEV agents.
Collapse
Affiliation(s)
- Su-Hua Huang
- Department of Biotechnology, Asia University, Wufeng, Taichung 413, Taiwan.
| | - Jin-Cherng Lien
- School of Pharmacy, China Medical University, Taichung 404, Taiwan.
| | - Chao-Jung Chen
- Proteomics Core Laboratory, Department of Medical Research, China Medical University Hospital, Taichung 404, Taiwan.
| | - Yu-Ching Liu
- Proteomics Core Laboratory, Department of Medical Research, China Medical University Hospital, Taichung 404, Taiwan.
| | - Ching-Ying Wang
- Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung 404, Taiwan.
| | - Chia-Fong Ping
- Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung 404, Taiwan.
| | - Yu-Fong Lin
- Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung 404, Taiwan.
| | - An-Cheng Huang
- Department of Nursing, St. Mary's Junior College of Medicine, Nursing and Management, Yilan County 266, Taiwan.
| | - Cheng-Wen Lin
- Department of Biotechnology, Asia University, Wufeng, Taichung 413, Taiwan.
- Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung 404, Taiwan.
| |
Collapse
|
26
|
Wieczfinska J, Kacprzak D, Pospiech K, Sokolowska M, Nowakowska M, Pniewska E, Bednarek A, Kuprys-Lipinska I, Kuna P, Pawliczak R. The whole-genome expression analysis of peripheral blood mononuclear cells from aspirin sensitive asthmatics versus aspirin tolerant patients and healthy donors after in vitro aspirin challenge. Respir Res 2015; 16:147. [PMID: 26646719 PMCID: PMC4673746 DOI: 10.1186/s12931-015-0305-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2015] [Accepted: 11/25/2015] [Indexed: 01/01/2023] Open
Abstract
Background Up to 30 % of adults with severe asthma are hypersensitive to aspirin and no unambiguous theory exists which provides a satisfactory explanation for the occurrence of aspirin-induced asthma (AIA) in some asthmatic patients. Therefore, the aim of this study was to compare the AIA expression profile against aspirin tolerant asthma (ATA) and healthy volunteers (HV) profile in peripheral blood mononuclear cells (PBMCs) after in vitro aspirin challenge in Caucasian population. Methods PBMCs were separated from blood of three groups of subjects - 11 AIA, 7 ATA and 15 HV and then stimulated by either 2 μM lysine aspirin or 20 μM lysine as a control. Subsequently, RNA was isolated, transcribed into cDNA and subjected to microarray and qPCR studies. Simultaneously, protein was extracted from PBMCs and used in further immunoblotting analysis. Results The validation of results at mRNA level has shown only three genes, whose expression was significantly altered between comprising groups. mRNA expression of CNPY3 in PBMCs in AIA was significantly lower (-0.41 ± 2.67) than in HV (1.04 ± 2.69), (p = 0.02); mRNA expression of FOSL1 in PBMCs in AIA was also significantly decreased (-0.66 ± 2.97) as opposed to HV (0.31 ± 4.83), (p = 0.02). While mRNA expression of ERAS in PBMCs was increased (1.15 ± 0.23) in AIA in comparison to HV (-1.32 ± 0.41), (p = 0.03). At protein level the changed expression of one protein was confirmed. Protein expression of FOSL1 in PBMCs in AIA was both significantly lower (-0.86 ± 0.08) than in ATA (0.39 ± 0.42), (p = 0.046) and in HV (0.9 ± 0.27), (p = 0.007). Conclusions This pilot study implies a positive association between CNPY3, ERAS, FOSL1 and aspirin-intolerant asthma, suggesting that these findings would be useful for further investigations of NSAIDs mechanism. Electronic supplementary material The online version of this article (doi:10.1186/s12931-015-0305-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Joanna Wieczfinska
- Department of Immunopathology, Medical University of Lodz, Chair of Allergology, Immunology and Dermatology, 7/9 Zeligowskiego, 90-752, Lodz, Poland.
| | - Dorota Kacprzak
- Department of Immunopathology, Medical University of Lodz, Chair of Allergology, Immunology and Dermatology, 7/9 Zeligowskiego, 90-752, Lodz, Poland.
| | - Karolina Pospiech
- Department of Molecular Carcinogenesis, Medical University of Lodz, Chair of Molecular Medicine and Biotechnology, Lodz, Poland.
| | - Milena Sokolowska
- Department of Immunopathology, Medical University of Lodz, Chair of Allergology, Immunology and Dermatology, 7/9 Zeligowskiego, 90-752, Lodz, Poland. .,Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Christine Kühne-Center for Allergy Research and Education, Davos, Switzerland.
| | - Magdalena Nowakowska
- Department of Molecular Carcinogenesis, Medical University of Lodz, Chair of Molecular Medicine and Biotechnology, Lodz, Poland.
| | - Ewa Pniewska
- Department of Immunopathology, Medical University of Lodz, Chair of Allergology, Immunology and Dermatology, 7/9 Zeligowskiego, 90-752, Lodz, Poland.
| | - Andrzej Bednarek
- Department of Molecular Carcinogenesis, Medical University of Lodz, Chair of Molecular Medicine and Biotechnology, Lodz, Poland.
| | - Izabela Kuprys-Lipinska
- Department of Internal Medicine, Asthma and Allergy, Medical University of Lodz, Lodz, Poland.
| | - Piotr Kuna
- Department of Internal Medicine, Asthma and Allergy, Medical University of Lodz, Lodz, Poland.
| | - Rafal Pawliczak
- Department of Immunopathology, Medical University of Lodz, Chair of Allergology, Immunology and Dermatology, 7/9 Zeligowskiego, 90-752, Lodz, Poland.
| |
Collapse
|
27
|
Suman S, Sharma PK, Rai G, Mishra S, Arora D, Gupta P, Shukla Y. Current perspectives of molecular pathways involved in chronic inflammation-mediated breast cancer. Biochem Biophys Res Commun 2015; 472:401-9. [PMID: 26522220 DOI: 10.1016/j.bbrc.2015.10.133] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 10/25/2015] [Indexed: 02/07/2023]
Abstract
Inflammation has multifaceted role in cancer progression including initiation, promotion and invasion by affecting the immune surveillance and associated signaling pathways. Inflammation facilitates the over-expression of cytokines, chemokines and growth factors involved in progression of different cancers including breast cancer progression. Deregulation of biological processes such as oxidative stress, angiogenesis, and autophagy elicit favorable immune response towards chronic inflammation. Apart from the role in carcinogenesis, chronic inflammation also favors the emergence of drug resistance clones by inducing the growth of breast cancer stem-like cells. Immunomodulation mediated by cytokines, chemokines and several other growth factors present in the tumor microenvironment regulate chronic inflammatory response and alter crosstalk among various signaling pathways such as NF-κB, Nrf-2, JAK-STAT, Akt and MAPKs involved in the progression of breast cancer. In this review, we focused on cellular and molecular processes involved in chronic inflammation, crosstalk among different signaling pathways and their association in breast cancer pathogenesis.
Collapse
Affiliation(s)
- Shankar Suman
- Proteomics & Environmental Carcinogenesis Laboratory, Food, Drug and Chemical Toxicology Group, CSIR-Indian Institute of Toxicology Research, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research, CSIR-IITR Campus, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India
| | - Pradeep Kumar Sharma
- Proteomics & Environmental Carcinogenesis Laboratory, Food, Drug and Chemical Toxicology Group, CSIR-Indian Institute of Toxicology Research, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research, CSIR-IITR Campus, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India.
| | - Girish Rai
- Proteomics & Environmental Carcinogenesis Laboratory, Food, Drug and Chemical Toxicology Group, CSIR-Indian Institute of Toxicology Research, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research, CSIR-IITR Campus, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India
| | - Sanjay Mishra
- Proteomics & Environmental Carcinogenesis Laboratory, Food, Drug and Chemical Toxicology Group, CSIR-Indian Institute of Toxicology Research, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research, CSIR-IITR Campus, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India
| | - Deepika Arora
- Proteomics & Environmental Carcinogenesis Laboratory, Food, Drug and Chemical Toxicology Group, CSIR-Indian Institute of Toxicology Research, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India; Department of Bioscience, Integral University, Lucknow 226026, Uttar Pradesh, India
| | - Prachi Gupta
- Proteomics & Environmental Carcinogenesis Laboratory, Food, Drug and Chemical Toxicology Group, CSIR-Indian Institute of Toxicology Research, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research, CSIR-IITR Campus, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India
| | - Yogeshwer Shukla
- Proteomics & Environmental Carcinogenesis Laboratory, Food, Drug and Chemical Toxicology Group, CSIR-Indian Institute of Toxicology Research, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research, CSIR-IITR Campus, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India.
| |
Collapse
|
28
|
Zaanan A, Okamoto K, Kawakami H, Khazaie K, Huang S, Sinicrope FA. The Mutant KRAS Gene Up-regulates BCL-XL Protein via STAT3 to Confer Apoptosis Resistance That Is Reversed by BIM Protein Induction and BCL-XL Antagonism. J Biol Chem 2015; 290:23838-49. [PMID: 26245900 DOI: 10.1074/jbc.m115.657833] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Indexed: 01/05/2023] Open
Abstract
In colorectal cancers with oncogenic GTPase Kras (KRAS) mutations, inhibition of downstream MEK/ERK signaling has shown limited efficacy, in part because of failure to induce a robust apoptotic response. We studied the mechanism of apoptosis resistance in mutant KRAS cells and sought to enhance the efficacy of a KRAS-specific MEK/ERK inhibitor, GDC-0623. GDC-0623 was shown to potently up-regulate BIM expression to a greater extent versus other MEK inhibitors in isogenic KRAS HCT116 and mutant KRAS SW620 colon cancer cells. ERK silencing enhanced BIM up-regulation by GDC-0623 that was due to its loss of phosphorylation at Ser(69), confirmed by a BIM-EL phosphorylation-defective mutant (S69G) that increased protein stability and blocked BIM induction. Despite BIM and BIK induction, the isogenic KRAS mutant versus wild-type cells remained resistant to GDC-0623-induced apoptosis, in part because of up-regulation of BCL-XL. KRAS knockdown by a doxycycline-inducible shRNA attenuated BCL-XL expression. BCL-XL knockdown sensitized KRAS mutant cells to GDC-0623-mediated apoptosis, as did the BH3 mimetic ABT-263. GDC-0623 plus ABT-263 induced a synergistic apoptosis by a mechanism that includes release of BIM from its sequestration by BCL-XL. Furthermore, mutant KRAS activated p-STAT3 (Tyr(705)) in the absence of IL-6 secretion, and STAT3 knockdown reduced BCL-XL mRNA and protein expression. These data suggest that BCL-XL up-regulation by STAT3 contributes to mutant KRAS-mediated apoptosis resistance. Such resistance can be overcome by potent BIM induction and concurrent BCL-XL antagonism to enable a synergistic apoptotic response.
Collapse
Affiliation(s)
- Aziz Zaanan
- From the Departments of Medicine and Oncology, Gastroenterology Research Unit, and the Mayo Clinic Cancer Center and
| | - Koichi Okamoto
- From the Departments of Medicine and Oncology, Gastroenterology Research Unit, and the Mayo Clinic Cancer Center and
| | - Hisato Kawakami
- From the Departments of Medicine and Oncology, Gastroenterology Research Unit, and the Mayo Clinic Cancer Center and
| | | | - Shengbing Huang
- From the Departments of Medicine and Oncology, Gastroenterology Research Unit, and the Mayo Clinic Cancer Center and
| | - Frank A Sinicrope
- From the Departments of Medicine and Oncology, Gastroenterology Research Unit, and the Mayo Clinic Cancer Center and
| |
Collapse
|
29
|
Telford BJ, Chen A, Beetham H, Frick J, Brew TP, Gould CM, Single A, Godwin T, Simpson KJ, Guilford P. Synthetic Lethal Screens Identify Vulnerabilities in GPCR Signaling and Cytoskeletal Organization in E-Cadherin–Deficient Cells. Mol Cancer Ther 2015; 14:1213-23. [DOI: 10.1158/1535-7163.mct-14-1092] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2014] [Accepted: 03/06/2015] [Indexed: 11/16/2022]
|
30
|
Llavero F, Urzelai B, Osinalde N, Gálvez P, Lacerda HM, Parada LA, Zugaza JL. Guanine nucleotide exchange factor αPIX leads to activation of the Rac 1 GTPase/glycogen phosphorylase pathway in interleukin (IL)-2-stimulated T cells. J Biol Chem 2015; 290:9171-82. [PMID: 25694429 DOI: 10.1074/jbc.m114.608414] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Indexed: 01/27/2023] Open
Abstract
Recently, we have reported that the active form of Rac 1 GTPase binds to the glycogen phosphorylase muscle isoform (PYGM) and modulates its enzymatic activity leading to T cell proliferation. In the lymphoid system, Rac 1 and in general other small GTPases of the Rho family participate in the signaling cascades that are activated after engagement of the T cell antigen receptor. However, little is known about the IL-2-dependent Rac 1 activator molecules. For the first time, a signaling pathway leading to the activation of Rac 1/PYGM in response to IL-2-stimulated T cell proliferation is described. More specifically, αPIX, a known guanine nucleotide exchange factor for the small GTPases of the Rho family, preferentially Rac 1, mediates PYGM activation in Kit 225 T cells stimulated with IL-2. Using directed mutagenesis, phosphorylation of αPIX Rho-GEF serines 225 and 488 is required for activation of the Rac 1/PYGM pathway. IL-2-stimulated serine phosphorylation was corroborated in Kit 225 T cells cultures. A parallel pharmacological and genetic approach identified PKCθ as the serine/threonine kinase responsible for αPIX serine phosphorylation. The phosphorylated state of αPIX was required to activate first Rac 1 and subsequently PYGM. These results demonstrate that the IL-2 receptor activation, among other early events, leads to activation of PKCθ. To activate Rac 1 and consequently PYGM, PKCθ phosphorylates αPIX in T cells. The biological significance of this PKCθ/αPIX/Rac 1 GTPase/PYGM signaling pathway seems to be the control of different cellular responses such as migration and proliferation.
Collapse
Affiliation(s)
- Francisco Llavero
- From the Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country, 48940 Leioa, Spain, the Achucarro Basque Center for Neuroscience, Bizkaia Science and Technology Park, Building 205, 48170 Zamudio, Spain
| | - Bakarne Urzelai
- From the Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country, 48940 Leioa, Spain
| | - Nerea Osinalde
- the Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense, Denmark
| | - Patricia Gálvez
- the Pharmascience Division, Technological Park of Health Sciences, Avda. de la Ciencia, s/n 18100 Armilla, Granada, Spain
| | - Hadriano M Lacerda
- the Department of Biomedical Sciences and Human Oncology, Unit of Cancer Epidemiology, Università degli Studi di Torino, 10124 Torino, Italy
| | - Luis A Parada
- the Instituto de Patología Experimental, Universidad Nacional de Salta, 4400 Salta, Argentina, and
| | - José L Zugaza
- From the Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country, 48940 Leioa, Spain, the Achucarro Basque Center for Neuroscience, Bizkaia Science and Technology Park, Building 205, 48170 Zamudio, Spain, the IKERBASQUE, Basque Foundation for Science, Maria Diaz de Haro 3, 48013 Bilbao, Spain
| |
Collapse
|
31
|
Requisite role for Nck adaptors in cardiovascular development, endothelial-to-mesenchymal transition, and directed cell migration. Mol Cell Biol 2015; 35:1573-87. [PMID: 25691664 DOI: 10.1128/mcb.00072-15] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 02/07/2015] [Indexed: 01/06/2023] Open
Abstract
Development of the cardiovascular system is critically dependent on the ability of endothelial cells (ECs) to reorganize their intracellular actin architecture to facilitate migration, adhesion, and morphogenesis. Nck family cytoskeletal adaptors function as key mediators of actin dynamics in numerous cell types, though their role in EC biology remains largely unexplored. Here, we demonstrate an essential requirement for Nck within ECs. Mouse embryos lacking endothelial Nck1/2 expression develop extensive angiogenic defects that result in lethality at about embryonic day 10. Mutant embryos show immature vascular networks, with decreased vessel branching, aberrant perivascular cell recruitment, and reduced cardiac trabeculation. Strikingly, embryos deficient in endothelial Nck also fail to undergo the endothelial-to-mesenchymal transition (EnMT) required for cardiac valve morphogenesis, with loss of Nck disrupting expression of major EnMT markers, as well as suppressing mesenchymal outgrowth. Furthermore, we show that Nck-null ECs are unable to migrate downstream of vascular endothelial growth factor and angiopoietin-1, and they exhibit profound perturbations in cytoskeletal patterning, with disorganized cellular projections, impaired focal adhesion turnover, and disrupted actin-based signaling. Our collective findings thereby reveal a crucial role for Nck as a master regulator within the endothelium to control actin cytoskeleton organization, vascular network remodeling, and EnMT during cardiovascular development.
Collapse
|
32
|
Regulation of Stat5 by FAK and PAK1 in Oncogenic FLT3- and KIT-Driven Leukemogenesis. Cell Rep 2014; 9:1333-48. [PMID: 25456130 DOI: 10.1016/j.celrep.2014.10.039] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Revised: 09/09/2014] [Accepted: 10/15/2014] [Indexed: 12/31/2022] Open
Abstract
Oncogenic mutations of FLT3 and KIT receptors are associated with poor survival in patients with acute myeloid leukemia (AML) and myeloproliferative neoplasms (MPNs), and currently available drugs are largely ineffective. Although Stat5 has been implicated in regulating several myeloid and lymphoid malignancies, how precisely Stat5 regulates leukemogenesis, including its nuclear translocation to induce gene transcription, is poorly understood. In leukemic cells, we show constitutive activation of focal adhesion kinase (FAK) whose inhibition represses leukemogenesis. Downstream of FAK, activation of Rac1 is regulated by RacGEF Tiam1, whose inhibition prolongs the survival of leukemic mice. Inhibition of the Rac1 effector PAK1 prolongs the survival of leukemic mice in part by inhibiting the nuclear translocation of Stat5. These results reveal a leukemic pathway involving FAK/Tiam1/Rac1/PAK1 and demonstrate an essential role for these signaling molecules in regulating the nuclear translocation of Stat5 in leukemogenesis.
Collapse
|
33
|
Zhang J, Carnduff L, Norman G, Josey T, Wang Y, Sawyer TW, Martyniuk CJ, Langlois VS. Transcriptional profiling in rat hair follicles following simulated Blast insult: a new diagnostic tool for traumatic brain injury. PLoS One 2014; 9:e104518. [PMID: 25136963 PMCID: PMC4138085 DOI: 10.1371/journal.pone.0104518] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Accepted: 07/11/2014] [Indexed: 01/05/2023] Open
Abstract
With wide adoption of explosive-dependent weaponry during military activities, Blast-induced neurotrauma (BINT)-induced traumatic brain injury (TBI) has become a significant medical issue. Therefore, a robust and accessible biomarker system is in demand for effective and efficient TBI diagnosis. Such systems will also be beneficial to studies of TBI pathology. Here we propose the mammalian hair follicles as a potential candidate. An Advanced Blast Simulator (ABS) was developed to generate shock waves simulating traumatic conditions on brains of rat model. Microarray analysis was performed in hair follicles to identify the gene expression profiles that are associated with shock waves. Gene set enrichment analysis (GSEA) and sub-network enrichment analysis (SNEA) were used to identify cell processes and molecular signaling cascades affected by simulated bomb blasts. Enrichment analyses indicated that genes with altered expression levels were involved in central nervous system (CNS)/peripheral nervous system (PNS) responses as well as signal transduction including Ca2+, K+-transportation-dependent signaling, Toll-Like Receptor (TLR) signaling and Mitogen Activated Protein Kinase (MAPK) signaling cascades. Many of the pathways identified as affected by shock waves in the hair follicles have been previously reported to be TBI responsive in other organs such as brain and blood. The results suggest that the hair follicle has some common TBI responsive molecular signatures to other tissues. Moreover, various TBI-associated diseases were identified as preferentially affected using a gene network approach, indicating that the hair follicle may be capable of reflecting comprehensive responses to TBI conditions. Accordingly, the present study demonstrates that the hair follicle is a potentially viable system for rapid and non-invasive TBI diagnosis.
Collapse
Affiliation(s)
- Jing Zhang
- Chemistry and Chemical Engineering Department, Royal Military College of Canada, Kingston, Ontario, Canada
| | - Lisa Carnduff
- Chemistry and Chemical Engineering Department, Royal Military College of Canada, Kingston, Ontario, Canada
| | - Grant Norman
- Chemistry and Chemical Engineering Department, Royal Military College of Canada, Kingston, Ontario, Canada
| | - Tyson Josey
- Defence Research and Development Canada – Suffield, Medicine Hat, Alberta, Canada
| | - Yushan Wang
- Defence Research and Development Canada – Suffield, Medicine Hat, Alberta, Canada
| | - Thomas W. Sawyer
- Defence Research and Development Canada – Suffield, Medicine Hat, Alberta, Canada
| | | | - Valerie S. Langlois
- Chemistry and Chemical Engineering Department, Royal Military College of Canada, Kingston, Ontario, Canada
- * E-mail:
| |
Collapse
|
34
|
Genetic Interactions of STAT3 and Anticancer Drug Development. Cancers (Basel) 2014; 6:494-525. [PMID: 24662938 PMCID: PMC3980611 DOI: 10.3390/cancers6010494] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Revised: 02/18/2014] [Accepted: 02/20/2014] [Indexed: 12/18/2022] Open
Abstract
Signal transducer and activator of transcription 3 (STAT3) plays critical roles in tumorigenesis and malignant evolution and has been intensively studied as a therapeutic target for cancer. A number of STAT3 inhibitors have been evaluated for their antitumor activity in vitro and in vivo in experimental tumor models and several approved therapeutic agents have been reported to function as STAT3 inhibitors. Nevertheless, most STAT3 inhibitors have yet to be translated to clinical evaluation for cancer treatment, presumably because of pharmacokinetic, efficacy, and safety issues. In fact, a major cause of failure of anticancer drug development is lack of efficacy. Genetic interactions among various cancer-related pathways often provide redundant input from parallel and/or cooperative pathways that drives and maintains survival environments for cancer cells, leading to low efficacy of single-target agents. Exploiting genetic interactions of STAT3 with other cancer-related pathways may provide molecular insight into mechanisms of cancer resistance to pathway-targeted therapies and strategies for development of more effective anticancer agents and treatment regimens. This review focuses on functional regulation of STAT3 activity; possible interactions of the STAT3, RAS, epidermal growth factor receptor, and reduction-oxidation pathways; and molecular mechanisms that modulate therapeutic efficacies of STAT3 inhibitors.
Collapse
|
35
|
Hau CS, Kanda N, Makimura K, Watanabe S. Antimycotics suppress theMalasseziaextract-induced production of CXC chemokine ligand 10 in human keratinocytes. J Dermatol 2014; 41:124-34. [DOI: 10.1111/1346-8138.12380] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2013] [Accepted: 11/17/2013] [Indexed: 11/30/2022]
Affiliation(s)
- Carren S. Hau
- Department of Dermatology; Teikyo University School of Medicine; Tokyo Japan
| | - Naoko Kanda
- Department of Dermatology; Teikyo University School of Medicine; Tokyo Japan
| | - Koichi Makimura
- Teikyo University Institute of Medical Mycology; Teikyo University; Tokyo Japan
| | - Shinichi Watanabe
- Department of Dermatology; Teikyo University School of Medicine; Tokyo Japan
| |
Collapse
|
36
|
Abstract
Redox agents have been historically considered pathological agents which can react with and damage many biological macromolecules including DNA, proteins, and lipids. However, a growing number of reports have suggested that mammalian cells can rapidly respond to ligand stimulation with a change in intracellular ROS thus indicating that the production of intracellular redox agents is tightly regulated and that they serve as intracellular signaling molecules being involved in a variety of cell signaling pathways. Numerous observations have suggested that some members of the Ras GTPase superfamily appear to regulate the production of redox agents and that oxidants can function as effector molecules for the small GTPases, thus contributing to their overall biological function. In addition, many of the Ras superfamily small GTPases have been shown to be redox sensitive, thanks to the presence of redox-sensitive sequences in their primary structure. The action of redox agents on these redox-sensitive GTPases is similar to that of guanine nucleotide exchange factors in that they perturb GTPase nucleotide-binding interactions that result in the enhancement of the guanine nucleotide exchange of small GTPases. Thus, Ras GTPases may act both as upstream regulators and downstream effectors of redox agents. Here we overview current understanding concerning the interplay between Ras GTPases and redox agents, also taking into account pathological implications of misregulation of this cross talk and highlighting the potentiality of these cellular pathways as new therapeutical targets for different pathologies.
Collapse
|
37
|
Wen Z, Liao Q, Zhao J, Hu Y, You L, Lu Z, Jia C, Wei Y, Zhao Y. High expression of interleukin-22 and its receptor predicts poor prognosis in pancreatic ductal adenocarcinoma. Ann Surg Oncol 2014; 21:125-32. [PMID: 24132627 DOI: 10.1245/s10434-013-3322-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Indexed: 12/22/2022]
Abstract
BACKGROUND The cytokine interleukin-22 (IL-22) and its receptor are present in the tumor microenvironment. Their function in pancreatic ductal adenocarcinoma (PDAC) remains largely unknown. The goal of the present study was to measure the expression of IL-22 and IL-22R in PDAC and assess their relationship with clinicopathological features and prognosis. METHODS The expression of IL-22 and IL-22R was evaluated by immunohistochemistry in PDAC tissues from 57 patients and by Western blotting in six tumors and adjacent nontumor tissues. A statistical analysis was conducted to assess the relationship between levels of expression, clinicopathological factors, and overall survival. In addition, the relationship between the expression of IL-22 and IL-22R and invasion was assessed by Western blotting and transwell assay with the PDAC cell lines PANC1 and BxPC3. RESULTS Positive IL-22 staining was detected in PDAC tissues and adjacent nontumor tissues. Positive IL-22R staining was detected in PDAC cells. High expression of IL-22 and IL-22R correlated significantly with lymph node involvement. IL-22 increased the phosphorylation of signal transducer and activator of transcription3, the expression of matrix metalloproteinase 9, and the invasion in PANC1 and BxPC3 cells in vitro while silencing of IL-22R RNA caused opposite effects. Most importantly, overall survival was significantly poorer in patients with high expression of IL-22 and IL-22R than in those with low expression. CONCLUSIONS These findings reveal the positive role of IL-22 and IL-22R in invasion and metastasis in human PDAC. IL-22 and IL-22R may be suitable independent prognostic markers in PDAC.
Collapse
Affiliation(s)
- Zhang Wen
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Tsinghua University, Beijing, China
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Doyon P, van Zuylen WJ, Servant MJ. Role of IκB kinase-β in the growth-promoting effects of angiotensin II in vitro and in vivo. Arterioscler Thromb Vasc Biol 2013; 33:2850-7. [PMID: 24135021 DOI: 10.1161/atvbaha.113.302487] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Angiotensin II (Ang II) is implicated in processes underlying the development of arterial wall remodeling events, including cellular hypertrophy and inflammation. We previously documented the activation of IκB kinase-β (IKKβ) in Ang II-treated cells, a kinase involved in inflammatory reactions. In light of a study suggesting a role of IKKβ in angiogenesis through its effect on the tuberous sclerosis (TSC)1/2-mammalian target of rapamycin complex 1 pathway in cancer cells, we hypothesized that targeting IKKβ could reduce arterial remodeling events by affecting both the inflammatory and the growth-promoting response of Ang II. APPROACH AND RESULTS Treatment of aortic vascular smooth muscle cells with Ang II induced the rapid and sustained phosphorylation of TSC1 on Ser511, which paralleled the activation of effectors of the mammalian target of rapamycin complex 1 pathway. Furthermore, we show that Ser511 of TSC1 acted as a phosphoacceptor site for Ang II-activated IKKβ. Consistent with this, the use of different short hairpin RNA constructs targeting IKKβ reduced Ang II-induced TSC1, S6 kinase, and eukaryotic translation initiation factor 4E-binding protein 1 phosphorylation and the rate of protein synthesis. Overexpression of TSC1 lacking Ser511 in vascular smooth muscle cells also exerted detrimental effects on the hypertrophic effect of Ang II. Furthermore, the selective IKKβ inhibitor N-(6-chloro-7-methoxy-9H-β-carbolin-8-yl)-2 methylnicotinamide reduced the inflammatory response and dose-dependently diminished Ang II-induced TSC1 phosphorylation and effectors of the mammalian target of rapamycin complex 1 pathway, leading to inhibition of protein synthesis in vitro and in rat arteries in vivo. CONCLUSIONS Our findings provide new insights into the molecular understanding of the pathological role of Ang II and assist in identifying the beneficial effects of IKKβ inhibition for the treatment of cardiovascular diseases.
Collapse
Affiliation(s)
- Priscilla Doyon
- From the Faculty of Pharmacy, Université de Montréal, Montréal, Canada
| | | | | |
Collapse
|
39
|
Leyva-Illades D, Demorrow S. Orphan G protein receptor GPR55 as an emerging target in cancer therapy and management. Cancer Manag Res 2013; 5:147-55. [PMID: 23869178 PMCID: PMC3706254 DOI: 10.2147/cmar.s35175] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
G protein-coupled receptors (GPCRs) modulate a vast array of cellular processes. The current review gives an overview of the general characteristics of GPCRs and their role in physiological conditions. In addition, it describes the current knowledge of the physiological and pathophysiological functions of GPR55, an orphan GPCR, and how it can be exploited as a therapeutic target to combat various cancers.
Collapse
Affiliation(s)
- Dinorah Leyva-Illades
- Digestive Disease Research Center, Scott and White Hospital, Temple, TX, USA ; Department of Internal MedicineTexas A&M Health Science Center, Temple, TX, USA ; Research Service, Central Texas Veterans Health Care System, Temple, TX, USA
| | | |
Collapse
|
40
|
Meisch JP, Vogel RM, Schlatzer DM, Li X, Chance MR, Levine AD. Human β-defensin 3 induces STAT1 phosphorylation, tyrosine phosphatase activity, and cytokine synthesis in T cells. J Leukoc Biol 2013; 94:459-71. [PMID: 23804808 DOI: 10.1189/jlb.0612300] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The AMP hBD-3 stimulates numerous immune effector functions in myeloid cells and keratinocytes, predominantly through the MAPK signaling cascade. In contrast, hBD-3 was reported to neutralize the activation of T cells by antagonizing MAPK signaling initiated by SDF-1α through CXCR4. With the use of complementary proteomic and immunochemical approaches, we investigated possible stimulatory effects of hBD-3 on T cells and demonstrate that hBD-3 induces STAT1 tyrosine phosphorylation within 5 min yet is unable to induce MAPK activation. Inclusion of a PTPase inhibitor increased hBD-3-induced phosphorylation dramatically, suggesting that hBD-3 also stimulates PTPase activity concurrently. The increase in PTPase activity was confirmed by demonstrating that hBD-3 suppresses IFN-γ-induced STAT1 tyrosine phosphorylation but not STAT1 serine and ERK1/2 threonine phosphorylation and stimulates the translocation of SHP-2 into the nucleus within 15 min. The signaling pathways initiated by hBD-3 may lead to the observed enhancement of distinct T cell effector functions during TCR activation, such as the increase in IL-2 and IL-10, but not IFN-γ secretion. Thus, hBD-3 initiates distinct lineage-specific signaling cascades in various cells involved in host defense and induces a concurrent tyrosine kinase and tyrosine phosphatase signaling cascade that may activate simultaneously the targeted T cells and inhibit their response to other immune mediators. Furthermore, these results suggest that this evolutionarily conserved peptide, which exhibits a broad spectrum of antimicrobial and immunomodulatory activities, serves to integrate innate and adaptive immunity.
Collapse
Affiliation(s)
- Jeffrey P Meisch
- Department of Medicine, Case Western Reserve University School ofMedicine, Cleveland, Ohio 44106-4952, USA
| | | | | | | | | | | |
Collapse
|
41
|
Toll-like receptor 4-linked Janus kinase 2 signaling contributes to internalization of Brucella abortus by macrophages. Infect Immun 2013; 81:2448-58. [PMID: 23630962 DOI: 10.1128/iai.00403-13] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Brucella abortus is an intracellular pathogen that uses a crafty strategy to invade and proliferate within host cells, but the distinct signaling pathways associated with phagocytic mechanisms of B. abortus remain unclear. The present study was performed to test the hypothesis that Toll-like receptor 4 (TLR4)-linked signaling interacting with Janus kinase 2 (JAK2) plays an essential role in B. abortus phagocytosis by macrophages. The effects of TLR4-JAK2 signaling on B. abortus phagocytosis in murine macrophage RAW 264.7 cells were observed through an infection assay and confocal microscopy. We determined that the uptake of B. abortus was negatively affected by the dysfunction of TLR4 and JAK2. F-actin polymerization detected by flow cytometry and F-actin assay was amplified for B. abortus entry, whereas that event was attenuated by the disruption of TLR4 and JAK2. Importantly, JAK2 phosphorylation and actin skeleton reorganization were suppressed immediately after B. abortus infection in bone marrow-derived macrophages (BMDMs) from TLR4(-/-) mice, showing the cooperation of JAK2 with TLR4. Furthermore, small GTPase Cdc42 participated in the intermediate pathway of TLR4-JAK2 signaling on B. abortus phagocytosis. Consequently, TLR4-associated JAK2 activation in the early cellular signaling events plays a pivotal role in B. abortus-induced phagocytic processes in macrophages, implying the pathogenic significance of JAK2-mediated entry. Here, we elucidate that this specific phagocytic mechanism of B. abortus might provide achievable strategies for inhibiting B. abortus invasion.
Collapse
|
42
|
Larco DO, Cho-Clark M, Mani SK, Wu TJ. The metabolite GnRH-(1-5) inhibits the migration of immortalized GnRH neurons. Endocrinology 2013; 154:783-95. [PMID: 23321696 DOI: 10.1210/en.2012-1746] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The decapeptide GnRH is an important regulator of reproductive behavior and function. In the extracellular matrix, GnRH is metabolized by the endopeptidase EC3.4.24.15 (EP24.15) to generate the pentapeptide GnRH-(1-5). In addition to its expression in the adult hypothalamus, EP24.15 is expressed along the migratory path of GnRH-expressing neurons during development. Although we have previously demonstrated a role for EP24.15 in the generation of the biologically active pentapeptide GnRH-(1-5) in regulating GnRH expression and mediating sexual behavior during adulthood in rodents, the modulatory role of GnRH-(1-5) in the migration of GnRH neurons during development remains unknown. To address this information gap, we examined the effect of GnRH-(1-5) on the cellular migration of a premigratory GnRH-secreting neuronal cell line, the GN11 cell, using a wound-healing assay. Dose- and time-response studies demonstrated that GnRH-(1-5) significantly delayed wound closure. We then sought to identify the mechanism by which GnRH-(1-5) inhibits migration. Because the cognate GnRH receptor is a G protein-coupled receptor, we examined whether GnRH-(1-5) regulates migration by also activating a G protein-coupled receptor. Using a high-throughput β-arrestin recruitment assay, we identified an orphan G protein-coupled receptor (GPR173) that was specifically activated by GnRH-(1-5). Interestingly, small interfering RNA to GPR173 reversed the GnRH-(1-5)-mediated inhibition on migration of GN11 neurons. Furthermore, we also demonstrate that the GnRH-(1-5)-activated GPR173-dependent signal transduction pathway involves the activation of the signal transducer and activator of transcription 3 in GnRH migration. These findings indicate a potential regulatory role for GnRH-(1-5) in GnRH neuronal migration during development.
Collapse
Affiliation(s)
- Darwin O Larco
- Program in Molecular and Cellular Biology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | | | | | | |
Collapse
|
43
|
Abstract
: Hyper-IgE syndrome is a primary immunodeficiency marked by abnormalities in the coordination of cell-cell signaling with the potential to affect TH17 cell, B cell, and neutrophil responses. Clinical manifestations include recurrent skin and lung infections, serum IgE elevation, connective tissue repair and development alterations, and the propensity for vascular abnormalities and tumor development. Signal transducer and activator of transcription 3 (STAT3) signaling, dedicator of cytokinesis 8 (DOCK8) signaling, and tyrosine kinase 2 (TYK2) signaling alterations have been implicated in 3 forms of hyper-IgE syndrome.
Collapse
|
44
|
Bai KJ, Chen BC, Pai HC, Weng CM, Yu CC, Hsu MJ, Yu MC, Ma HP, Wu CH, Hong CY, Kuo ML, Lin CH. Thrombin-induced CCN2 expression in human lung fibroblasts requires the c-Src/JAK2/STAT3 pathway. J Leukoc Biol 2013; 93:101-112. [DOI: 10.1189/jlb.0911449] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023] Open
Abstract
Abstract
Thrombin might activate c-Src to induce JAK2 activation, which causes STAT3 activation, inducing CCN2 expression in human lung fibroblasts.
Thrombin is a multifunctional serine protease and an important fibrotic mediator that induces CCN2 expression. We previously showed that thrombin induces CCN2 expression via an ASK1-dependent JNK/AP-1 pathway in human lung fibroblasts. In this study, we further investigated the roles of c-Src, JAK2, and STAT3 in thrombin-induced CCN2 expression. Thrombin-induced CCN2 expression and CCN2-Luc activity were attenuated by a JAK inhibitor (AG490) and JAK2DN, STAT3DN, and the STAT decoy ODN. Moreover, transfection of cells with a CCN2-mtSTAT-Luc construct inhibited thrombin-induced CCN2-Luc activity. Treatment of cells with thrombin caused JAK2 phosphorylation at Tyr1007/1008 and STAT3 phosphorylation at Tyr705 in time-dependent manners. Thrombin-induced STAT3 phosphorylation was inhibited by AG490 and JAK2DN. Thrombin-induced STAT3 binding to the CCN2 promoter was analyzed by a DNA-binding affinity pull-down assay. In addition, thrombin-induced CCN2 expression and CCN2-Luc activity were inhibited by c-SrcDN and PP2 (an Src inhibitor). Transfection of cells with c-SrcDN also inhibited thrombin-induced JAK2 and STAT3 phosphorylation. Taken together, these results indicate that thrombin might activate c-Src to induce JAK2 activation, which in turn, causes STAT3 activation, and finally induces CCN2 expression in human lung fibroblasts.
Collapse
Affiliation(s)
- Kua-Jen Bai
- Department of Pulmonary Medicine, Taipei Medical University–Wanfang Hospital, Taipei Medical University , Taipei, Taiwan
- School of Respiratory Therapy, Taipei Medical University , Taipei, Taiwan
| | - Bing-Chang Chen
- School of Respiratory Therapy, Taipei Medical University , Taipei, Taiwan
| | - Hui-Chen Pai
- Graduate Institute of Medical Sciences, Taipei Medical University , Taipei, Taiwan
| | - Chih-Ming Weng
- Graduate Institute of Medical Sciences, Taipei Medical University , Taipei, Taiwan
| | - Chung-Chi Yu
- Graduate Institute of Medical Sciences, Taipei Medical University , Taipei, Taiwan
| | - Ming-Jen Hsu
- Graduate Institute of Medical Sciences, Taipei Medical University , Taipei, Taiwan
- Department of Pharmacology, College of Medicine, Taipei Medical University , Taipei, Taiwan
| | - Ming-Chih Yu
- Department of Pulmonary Medicine, Taipei Medical University–Wanfang Hospital, Taipei Medical University , Taipei, Taiwan
- School of Respiratory Therapy, Taipei Medical University , Taipei, Taiwan
| | - Hon-Ping Ma
- Taipei Medical University–Shuang Ho Hospital , New Taipei City, Taiwan
| | - Chih-Hsiung Wu
- Taipei Medical University–Shuang Ho Hospital , New Taipei City, Taiwan
| | - Chuang-Ye Hong
- Department of Pulmonary Medicine, Taipei Medical University–Wanfang Hospital, Taipei Medical University , Taipei, Taiwan
| | - Min-Liang Kuo
- Angiogenesis Research Center, Laboratory of Molecular and Cellular Toxicology, Institute of Toxicology, College of Medicine, National Taiwan University , Taipei, Taiwan
| | - Chien-Huang Lin
- Department of Pulmonary Medicine, Taipei Medical University–Wanfang Hospital, Taipei Medical University , Taipei, Taiwan
- Graduate Institute of Medical Sciences, Taipei Medical University , Taipei, Taiwan
- Taipei Medical University–Shuang Ho Hospital , New Taipei City, Taiwan
| |
Collapse
|
45
|
Zhang X, Tao Y, Wang J, Garcia-Mata R, Markovic-Plese S. Simvastatin inhibits secretion of Th17-polarizing cytokines and antigen presentation by DCs in patients with relapsing remitting multiple sclerosis. Eur J Immunol 2012; 43:281-9. [DOI: 10.1002/eji.201242566] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Revised: 08/16/2012] [Accepted: 10/12/2012] [Indexed: 12/16/2022]
Affiliation(s)
- Xin Zhang
- Department of Neurology; University of North Carolina at Chapel Hill; NC; USA
| | - Yazhong Tao
- Department of Neurology; University of North Carolina at Chapel Hill; NC; USA
| | - Jinzhao Wang
- Department of Neurology; University of North Carolina at Chapel Hill; NC; USA
| | - Rafael Garcia-Mata
- Department of Cell and Developmental Biology; University of North Carolina at Chapel Hill; NC; USA
| | | |
Collapse
|
46
|
Mattagajasingh SN, Yang XP, Irani K, Mattagajasingh I, Becker LC. Activation of Stat3 in endothelial cells following hypoxia-reoxygenation is mediated by Rac1 and protein Kinase C. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2012; 1823:997-1006. [PMID: 22791907 DOI: 10.1016/j.bbamcr.2012.02.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Stat3 is an important transcription factor that regulates both proinflammatory and anit-apoptotic pathways in the heart. This study examined the mechanisms of activation of Stat3 in human endothelial cells following hypoxia/reoxygenation (H/R). By expression of constitutively active Rac1 mutant protein, and by RNA silencing of Rac1, we found that Stat3 forms a multiprotein complex with Rac1 and PKC in an H/R-dependent manner, which at least in part, appears to regulate Stat3 S727 phosphorylation. Selective inhibition of PKC with calphostin C produces a marked suppression of Stat3 S727 phosphorylation. The association of Stat3 with Rax1 occurs predominantly at the cell membrane, but also inside the nucleus, and occurs through the binding of the coiled-coil domain of Stat3 to the 54 NH(2)-terminal residues of Rac1. Transfection with a peptide comprising the NH(2)-terminal 17 amino acid residues of Rac1-dependent signaling pathways resulting in physical association between Rac1 and Stat3 and the formation of a novel multiprotein complex with PKC.
Collapse
Affiliation(s)
- Subhendra N Mattagajasingh
- Division of Cardiology, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | | | | | | |
Collapse
|
47
|
Subramaniam A, Shanmugam MK, Perumal E, Li F, Nachiyappan A, Dai X, Swamy SN, Ahn KS, Kumar AP, Tan BKH, Hui KM, Sethi G. Potential role of signal transducer and activator of transcription (STAT)3 signaling pathway in inflammation, survival, proliferation and invasion of hepatocellular carcinoma. Biochim Biophys Acta Rev Cancer 2012; 1835:46-60. [PMID: 23103770 DOI: 10.1016/j.bbcan.2012.10.002] [Citation(s) in RCA: 150] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Revised: 10/18/2012] [Accepted: 10/21/2012] [Indexed: 12/14/2022]
Abstract
Hepatocellular carcinoma (HCC) is one of the most lethal malignancies, and is also the fourth most common cancer worldwide with around 700,000 new cases each year. Currently, first line chemotherapeutic drugs used for HCC include fluorouracil, cisplatin, doxorubicin, paclitaxel and mitomycin, but most of these are non-selective cytotoxic molecules with significant side effects. Sorafenib is the only approved targeted therapy by the U.S. Food and Drug Administration for HCC treatment, but patients suffer from various kinds of adverse effects, including hypertension. The signal-transducer-and-activator-of-transcription 3 (STAT3) protein, one of the members of STATs transcription factor family, has been implicated in signal transduction by different cytokines, growth factors and oncogenes. In normal cells, STAT3 activation is tightly controlled to prevent dysregulated gene transcription, whereas constitutively activated STAT3 plays an important role in tumorigenesis through the upregulation of genes involved in anti-apoptosis, proliferation and angiogenesis. Thus, pharmacologically safe and effective agents that can block STAT3 activation have the potential both for the prevention and treatment of HCC. In the present review, we discuss the possible role of STAT3 signaling cascade and its interacting partners in the initiation of HCC and also analyze the role of various STAT3 regulated genes in HCC progression, inflammation, survival, invasion and angiogenesis.
Collapse
Affiliation(s)
- Aruljothi Subramaniam
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Huang LY, Chen P, Xu LX, Zhou YF, Zhang YP, Yuan YZ. Fractalkine upregulates inflammation through CX3CR1 and the Jak-Stat pathway in severe acute pancreatitis rat model. Inflammation 2012; 35:1023-30. [PMID: 22213034 DOI: 10.1007/s10753-011-9406-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Based on the function of chemokine fractalkine (FKN), acting as both adhesion and chemoattractant, FKN plays a role in acute inflammatory response. In this study, we investigated the mechanism of FKN mediated upregulation inflammation in severe acute pancreatitis (SAP) rat models. Western blot, reverse transcriptase-polymerase chain reaction, and immunofluorescence demonstrated that FKN and its receptor CX3CR1 were overexpressed in cerulein-stimulated AR42J cells. AG490 and FKN-siRNA inhibited activation of Janus kinase/signal transducers and activators of transcription (Jak/Stat) in cerulein-stimulated AR42J cells. Following exposure AG490 and FKN-siRNA inhibited tumor necrosis factor-alpha expression by enzyme-linked immunosorbent assay and immunohistochemistry in vivo the SAP rat models. These results showed FKN and CX3CR1 were involved inflammatory response in cerulein-stimulated AR42J cells. FKN upregulates inflammation through CX3CR1 and the Jak/Stat pathway in SAP rat models.
Collapse
Affiliation(s)
- Li-ya Huang
- Department of Gastroenterology, Affiliated Hospital of Ningxia Medical University, Yinchuan 750004, Ningxia Hui Autonomous Region, China.
| | | | | | | | | | | |
Collapse
|
49
|
Barros P, Lam EWF, Jordan P, Matos P. Rac1 signalling modulates a STAT5/BCL-6 transcriptional switch on cell-cycle-associated target gene promoters. Nucleic Acids Res 2012; 40:7776-87. [PMID: 22723377 PMCID: PMC3439931 DOI: 10.1093/nar/gks571] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Gene expression depends on binding of transcriptional regulators to gene promoters, a process controlled by signalling pathways. The transcriptional repressor B-cell lymphoma (BCL)-6 downregulates genes involved in cell-cycle progression and becomes inactivated following phosphorylation by the Rac1 GTPase-activated protein kinase PAK1. Interestingly, the DNA motifs recognized by BCL-6 and signal transducers and activators of transcription 5 (STAT5) are similar. Because STAT5 stimulation in epithelial cells can also be triggered by Rac1 signalling, we asked whether both factors have opposing roles in transcriptional regulation and whether Rac1 signalling may coordinate a transcription factor switch. We used chromatin immunoprecipitation to show that active Rac1 promotes release of the repressor BCL-6 while increasing binding of STAT5A to a BCL-6-regulated reporter gene. We further show in colorectal cell lines that the endogenous activation status of the Rac1/PAK1 pathway correlated with the phosphorylation status of BCL-6 and STAT5A. Three cellular genes (cyclin D2, p15INK4B, small ubiquitin-like modifier 1) were identified to be inversely regulated by BCL-6 and STAT5A and responded to Rac1 signalling with increased expression and corresponding changes in promoter occupancy. Together, our data show that Rac1 signalling controls a group of target genes that are repressed by BCL-6 and activated by STAT5A, providing novel insights into the modulation of gene transcription by GTPase signalling.
Collapse
Affiliation(s)
- Patrícia Barros
- Department of Genetics, National Health Institute Dr. Ricardo Jorge, Avenida Padre Cruz, 1649-016 Lisbon, Portugal
| | | | | | | |
Collapse
|
50
|
Abstract
Sphingosine-1-phosphate (S1P) was first described as a signaling molecule over 20 years ago. Since then, great strides have been made to reveal its vital roles in vastly different cellular and disease processes. Initially, S1P was considered nothing more than the terminal point of sphingolipid metabolism; however, over the past two decades, a large number of reports have helped unveil its full potential as an important regulatory, bioactive sphingolipid metabolite. S1P has a plethora of physiological functions, due in part to its many sites of actions and its different pools, which are both intra- and extracellular. S1P plays pivotal roles in many physiological processes, including the regulation of cell growth, migration, autophagy, angiogenesis, and survival, and thus, not surprisingly, S1P has been linked to cancer. In this review, we will summarize the vast body of knowledge, highlighting the connection between S1P and cancer. We will also suggest new avenues for future research.
Collapse
|