1
|
Bai M, Xu S, Jiang M, Guo Y, Hu D, He J, Wang T, Zhang Y, Guo Y, Zhang Y, Huang S, Jia Z, Zhang A. Meis1 Targets Protein Tyrosine Phosphatase Receptor J in Fibroblast to Retard Chronic Kidney Disease Progression. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2309754. [PMID: 39162106 PMCID: PMC11497016 DOI: 10.1002/advs.202309754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 07/11/2024] [Indexed: 08/21/2024]
Abstract
Renal fibrosis is a common pathological feature of chronic kidney disease (CKD) with the proliferation and activation of myofibroblasts being definite effectors and drivers. Here, increased expression of Meis1 (myeloid ecotropic viral integration site 1) is observed, predominantly in the nucleus of the kidney of CKD patients and mice, and negatively correlates with serum creatinine. Fibroblast-specific knock-in of Meis1 inhibits myofibroblast activation and attenuates renal fibrosis and kidney dysfunction in CKD models. Overexpression of Meis1 in NRK-49F cells suppresses the pro-fibrotic response induced by transforming growth factor-β1 but accelerates by its knockdown. Mechanistically, Meis1 targets protein tyrosine phosphatase receptor J (Ptprj) to block renal fibrosis by inhibiting the proliferation and activation of fibroblasts. Finally, a new activator of Ptprj is identified through computer-aided virtual screening, which has the effect of alleviating renal fibrosis. Collectively, these results illustrate that the Meis1/Ptprj axis has therapeutic potential for clinically treating CKD.
Collapse
Affiliation(s)
- Mi Bai
- Department of Nephrology, State Key Laboratory of Reproductive MedicineChildren's Hospital of Nanjing Medical UniversityNanjing210008China
- Jiangsu Key Laboratory of Early Development and Chronic Diseases Prevention in ChildrenNanjing Medical UniversityNanjing210029China
- Nanjing Key Lab of PediatricsChildren's Hospital of Nanjing Medical UniversityNanjing210008China
| | - Shuang Xu
- Department of Nephrology, State Key Laboratory of Reproductive MedicineChildren's Hospital of Nanjing Medical UniversityNanjing210008China
- Jiangsu Key Laboratory of Early Development and Chronic Diseases Prevention in ChildrenNanjing Medical UniversityNanjing210029China
| | - Mingzhu Jiang
- Department of Nephrology, State Key Laboratory of Reproductive MedicineChildren's Hospital of Nanjing Medical UniversityNanjing210008China
- Jiangsu Key Laboratory of Early Development and Chronic Diseases Prevention in ChildrenNanjing Medical UniversityNanjing210029China
| | - Yuxian Guo
- Department of Nephrology, State Key Laboratory of Reproductive MedicineChildren's Hospital of Nanjing Medical UniversityNanjing210008China
- Jiangsu Key Laboratory of Early Development and Chronic Diseases Prevention in ChildrenNanjing Medical UniversityNanjing210029China
| | - Dandan Hu
- Department of Nephrology, State Key Laboratory of Reproductive MedicineChildren's Hospital of Nanjing Medical UniversityNanjing210008China
- Jiangsu Key Laboratory of Early Development and Chronic Diseases Prevention in ChildrenNanjing Medical UniversityNanjing210029China
| | - Jia He
- Department of Nephrology, State Key Laboratory of Reproductive MedicineChildren's Hospital of Nanjing Medical UniversityNanjing210008China
- Jiangsu Key Laboratory of Early Development and Chronic Diseases Prevention in ChildrenNanjing Medical UniversityNanjing210029China
| | - Ting Wang
- Department of Nephrology, State Key Laboratory of Reproductive MedicineChildren's Hospital of Nanjing Medical UniversityNanjing210008China
- Jiangsu Key Laboratory of Early Development and Chronic Diseases Prevention in ChildrenNanjing Medical UniversityNanjing210029China
| | - Yu Zhang
- Department of Nephrology, State Key Laboratory of Reproductive MedicineChildren's Hospital of Nanjing Medical UniversityNanjing210008China
- Jiangsu Key Laboratory of Early Development and Chronic Diseases Prevention in ChildrenNanjing Medical UniversityNanjing210029China
- Medical School of Nanjing UniversityNanjing210093China
| | - Yan Guo
- Department of Nephrology, State Key Laboratory of Reproductive MedicineChildren's Hospital of Nanjing Medical UniversityNanjing210008China
- Jiangsu Key Laboratory of Early Development and Chronic Diseases Prevention in ChildrenNanjing Medical UniversityNanjing210029China
| | - Yue Zhang
- Department of Nephrology, State Key Laboratory of Reproductive MedicineChildren's Hospital of Nanjing Medical UniversityNanjing210008China
- Jiangsu Key Laboratory of Early Development and Chronic Diseases Prevention in ChildrenNanjing Medical UniversityNanjing210029China
- Nanjing Key Lab of PediatricsChildren's Hospital of Nanjing Medical UniversityNanjing210008China
| | - Songming Huang
- Department of Nephrology, State Key Laboratory of Reproductive MedicineChildren's Hospital of Nanjing Medical UniversityNanjing210008China
- Jiangsu Key Laboratory of Early Development and Chronic Diseases Prevention in ChildrenNanjing Medical UniversityNanjing210029China
- Nanjing Key Lab of PediatricsChildren's Hospital of Nanjing Medical UniversityNanjing210008China
| | - Zhanjun Jia
- Department of Nephrology, State Key Laboratory of Reproductive MedicineChildren's Hospital of Nanjing Medical UniversityNanjing210008China
- Jiangsu Key Laboratory of Early Development and Chronic Diseases Prevention in ChildrenNanjing Medical UniversityNanjing210029China
- Nanjing Key Lab of PediatricsChildren's Hospital of Nanjing Medical UniversityNanjing210008China
| | - Aihua Zhang
- Department of Nephrology, State Key Laboratory of Reproductive MedicineChildren's Hospital of Nanjing Medical UniversityNanjing210008China
- Jiangsu Key Laboratory of Early Development and Chronic Diseases Prevention in ChildrenNanjing Medical UniversityNanjing210029China
- Nanjing Key Lab of PediatricsChildren's Hospital of Nanjing Medical UniversityNanjing210008China
| |
Collapse
|
2
|
Iske J, Roesel MJ, Cesarovic N, Pitts L, Steiner A, Knoedler L, Nazari-Shafti TZ, Akansel S, Jacobs S, Falk V, Kempfert J, Kofler M. The Potential of Intertwining Gene Diagnostics and Surgery for Mitral Valve Prolapse. J Clin Med 2023; 12:7441. [PMID: 38068501 PMCID: PMC10707074 DOI: 10.3390/jcm12237441] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/18/2023] [Accepted: 11/29/2023] [Indexed: 12/13/2024] Open
Abstract
Mitral valve prolapse (MVP) is common among heart valve disease patients, causing severe mitral regurgitation (MR). Although complications such as cardiac arrhythmias and sudden cardiac death are rare, the high prevalence of the condition leads to a significant number of such events. Through next-generation gene sequencing approaches, predisposing genetic components have been shown to play a crucial role in the development of MVP. After the discovery of the X-linked inheritance of filamin A, autosomal inherited genes were identified. In addition, the study of sporadic MVP identified several genes, including DZIP1, TNS1, LMCD1, GLIS1, PTPRJ, FLYWCH, and MMP2. The early screening of these genetic predispositions may help to determine the patient population at risk for severe complications of MVP and impact the timing of reconstructive surgery. Surgical mitral valve repair is an effective treatment option for MVP, resulting in excellent short- and long-term outcomes. Repair rates in excess of 95% and low complication rates have been consistently reported for minimally invasive mitral valve repair performed in high-volume centers. We therefore conceptualize a potential preventive surgical strategy for the treatment of MVP in patients with genetic predisposition, which is currently not considered in guideline recommendations. Further genetic studies on MVP pathology and large prospective clinical trials will be required to support such an approach.
Collapse
Affiliation(s)
- Jasper Iske
- Department of Cardiothoracic and Vascular Surgery, Deutsches Herzzentrum der Charité (DHZC), 13353 Berlin, Germany; (J.I.); (M.J.R.); (N.C.); (L.P.); (T.Z.N.-S.); (S.A.); (S.J.); (V.F.); (J.K.)
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany
- Berlin Institute of Health, 10117 Berlin, Germany
| | - Maximilian J. Roesel
- Department of Cardiothoracic and Vascular Surgery, Deutsches Herzzentrum der Charité (DHZC), 13353 Berlin, Germany; (J.I.); (M.J.R.); (N.C.); (L.P.); (T.Z.N.-S.); (S.A.); (S.J.); (V.F.); (J.K.)
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany
| | - Nikola Cesarovic
- Department of Cardiothoracic and Vascular Surgery, Deutsches Herzzentrum der Charité (DHZC), 13353 Berlin, Germany; (J.I.); (M.J.R.); (N.C.); (L.P.); (T.Z.N.-S.); (S.A.); (S.J.); (V.F.); (J.K.)
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany
- Department of Health Sciences and Technology, ETH Zuerich, 8092 Zuerich, Switzerland
| | - Leonard Pitts
- Department of Cardiothoracic and Vascular Surgery, Deutsches Herzzentrum der Charité (DHZC), 13353 Berlin, Germany; (J.I.); (M.J.R.); (N.C.); (L.P.); (T.Z.N.-S.); (S.A.); (S.J.); (V.F.); (J.K.)
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany
| | | | - Leonard Knoedler
- Department of Plastic, Hand and Reconstructive Surgery, University Hospital Regensburg, 93053 Regensburg, Germany;
| | - Timo Z. Nazari-Shafti
- Department of Cardiothoracic and Vascular Surgery, Deutsches Herzzentrum der Charité (DHZC), 13353 Berlin, Germany; (J.I.); (M.J.R.); (N.C.); (L.P.); (T.Z.N.-S.); (S.A.); (S.J.); (V.F.); (J.K.)
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany
- BIH Center for Regenerative Therapies (BCRT), Berlin Institute of Health at Charité-Universitätsmedizin, Berlin, 13353 Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, 10785 Berlin, Germany
| | - Serdar Akansel
- Department of Cardiothoracic and Vascular Surgery, Deutsches Herzzentrum der Charité (DHZC), 13353 Berlin, Germany; (J.I.); (M.J.R.); (N.C.); (L.P.); (T.Z.N.-S.); (S.A.); (S.J.); (V.F.); (J.K.)
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany
| | - Stephan Jacobs
- Department of Cardiothoracic and Vascular Surgery, Deutsches Herzzentrum der Charité (DHZC), 13353 Berlin, Germany; (J.I.); (M.J.R.); (N.C.); (L.P.); (T.Z.N.-S.); (S.A.); (S.J.); (V.F.); (J.K.)
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany
| | - Volkmar Falk
- Department of Cardiothoracic and Vascular Surgery, Deutsches Herzzentrum der Charité (DHZC), 13353 Berlin, Germany; (J.I.); (M.J.R.); (N.C.); (L.P.); (T.Z.N.-S.); (S.A.); (S.J.); (V.F.); (J.K.)
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany
- BIH Center for Regenerative Therapies (BCRT), Berlin Institute of Health at Charité-Universitätsmedizin, Berlin, 13353 Berlin, Germany
- Berlin Institute of Health, Charité—Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Joerg Kempfert
- Department of Cardiothoracic and Vascular Surgery, Deutsches Herzzentrum der Charité (DHZC), 13353 Berlin, Germany; (J.I.); (M.J.R.); (N.C.); (L.P.); (T.Z.N.-S.); (S.A.); (S.J.); (V.F.); (J.K.)
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany
| | - Markus Kofler
- Department of Cardiothoracic and Vascular Surgery, Deutsches Herzzentrum der Charité (DHZC), 13353 Berlin, Germany; (J.I.); (M.J.R.); (N.C.); (L.P.); (T.Z.N.-S.); (S.A.); (S.J.); (V.F.); (J.K.)
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany
| |
Collapse
|
3
|
The Structure, Function and Regulation of Protein Tyrosine Phosphatase Receptor Type J and Its Role in Diseases. Cells 2022; 12:cells12010008. [PMID: 36611803 PMCID: PMC9818648 DOI: 10.3390/cells12010008] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/08/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022] Open
Abstract
Protein tyrosine phosphatase receptor type J (PTPRJ), also known as DEP-1, HPTPη, or CD148, belongs to the R3 subfamily of receptor protein tyrosine phosphatases (RPTPs). It was first identified as an antioncogene due to its protein level being significantly downregulated in most epithelial tumors and cancer cell lines (e.g., colon, lung, thyroid, breast, and pancreas). PTPRJ regulates mouse optic nerve projection by inhibiting the phosphorylation of the erythropoietin-producing hepatocellular carcinoma (Eph) receptor and abelson murine leukemia viral oncogene homolog 1 (c-Abl). PTPRJ is crucial for metabolism. Recent studies have demonstrated that PTPRJ dephosphorylates JAK2 at positions Y813 and Y868 to inhibit leptin signaling. Akt is more phosphorylated at the Ser473 and Thr308 sites in Ptprj-/- mice, suggesting that PTPRJ may be a novel negative regulator of insulin signaling. PTPRJ also plays an important role in balancing the pro- and anti-osteoclastogenic activity of the M-CSF receptor (M-CSFR), and in maintaining NFATc1 expression during the late stages of osteoclastogenesis to promote bone-resorbing osteoclast (OCL) maturation. Furthermore, multiple receptor tyrosine kinases (RTKs) as substrates of PTPRJ are probably a potential therapeutic target for many types of diseases, such as cancer, neurodegenerative diseases, and metabolic diseases, by inhibiting their phosphorylation activity. In light of the important roles that PTPRJ plays in many diseases, this review summarizes the structural features of the protein, its expression pattern, and the physiological and pathological functions of PTPRJ, to provide new ideas for treating PTPRJ as a potential therapeutic target for related metabolic diseases and cancer.
Collapse
|
4
|
Goob G, Adrian J, Cossu C, Hauck CR. Phagocytosis mediated by the human granulocyte receptor CEACAM3 is limited by the receptor-type protein tyrosine phosphatase PTPRJ. J Biol Chem 2022; 298:102269. [PMID: 35850306 PMCID: PMC9418913 DOI: 10.1016/j.jbc.2022.102269] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 07/04/2022] [Accepted: 07/06/2022] [Indexed: 11/18/2022] Open
Abstract
Carcinoembryonic Antigen-related Cell Adhesion Molecule 3 (CEACAM3) is a human granulocyte receptor mediating the efficient phagocytosis of a subset of human-restricted bacterial pathogens. Its function depends on phosphorylation of a tyrosine-based sequence motif, but the enzyme(s) responsible for reversing this modification are unclear. Here, we identify the receptor-type protein tyrosine phosphatase PTPRJ as a negative regulator of CEACAM3-mediated phagocytosis. We show depletion of PTPRJ results in a gain-of-function phenotype, while overexpression of a constitutively active PTPRJ phosphatase strongly reduces bacterial uptake via CEACAM3. We also determined that recombinant PTPRJ directly dephosphorylates the cytoplasmic tyrosine residues of purified full-length CEACAM3 and recognizes synthetic CEACAM3-derived phospho-peptides as substrates. Dephosphorylation of CEACAM3 by PTPRJ is also observed in intact cells, thereby limiting receptor-initiated cytoskeletal re-arrangements, lamellipodia formation, and bacterial uptake. Finally, we show that human phagocytes deficient for PTPRJ exhibit exaggerated lamellipodia formation and enhanced opsonin-independent phagocytosis of CEACAM3-binding bacteria. Taken together, our results highlight PTPRJ as a bona fide negative regulator of CEACAM3-initiated phagocyte functions, revealing a potential molecular target to limit CEACAM3-driven inflammatory responses.
Collapse
Affiliation(s)
- Griseldis Goob
- Lehrstuhl Zellbiologie, Fachbereich Biologie, Universität Konstanz, Germany
| | - Jonas Adrian
- Lehrstuhl Zellbiologie, Fachbereich Biologie, Universität Konstanz, Germany
| | - Chiara Cossu
- Lehrstuhl Zellbiologie, Fachbereich Biologie, Universität Konstanz, Germany
| | - Christof R Hauck
- Lehrstuhl Zellbiologie, Fachbereich Biologie, Universität Konstanz, Germany; Konstanz Research School Chemical Biology, Universität Konstanz, Germany.
| |
Collapse
|
5
|
Williams SA, Ostroff R, Hinterberg MA, Coresh J, Ballantyne CM, Matsushita K, Mueller CE, Walter J, Jonasson C, Holman RR, Shah SH, Sattar N, Taylor R, Lean ME, Kato S, Shimokawa H, Sakata Y, Nochioka K, Parikh CR, Coca SG, Omland T, Chadwick J, Astling D, Hagar Y, Kureshi N, Loupy K, Paterson C, Primus J, Simpson M, Trujillo NP, Ganz P. A proteomic surrogate for cardiovascular outcomes that is sensitive to multiple mechanisms of change in risk. Sci Transl Med 2022; 14:eabj9625. [PMID: 35385337 DOI: 10.1126/scitranslmed.abj9625] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A reliable, individualized, and dynamic surrogate of cardiovascular risk, synoptic for key biologic mechanisms, could shorten the path for drug development, enhance drug cost-effectiveness and improve patient outcomes. We used highly multiplexed proteomics to address these objectives, measuring about 5000 proteins in each of 32,130 archived plasma samples from 22,849 participants in nine clinical studies. We used machine learning to derive a 27-protein model predicting 4-year likelihood of myocardial infarction, stroke, heart failure, or death. The 27 proteins encompassed 10 biologic systems, and 12 were associated with relevant causal genetic traits. We independently validated results in 11,609 participants. Compared to a clinical model, the ratio of observed events in quintile 5 to quintile 1 was 6.7 for proteins versus 2.9 for the clinical model, AUCs (95% CI) were 0.73 (0.72 to 0.74) versus 0.64 (0.62 to 0.65), c-statistics were 0.71 (0.69 to 0.72) versus 0.62 (0.60 to 0.63), and the net reclassification index was +0.43. Adding the clinical model to the proteins only improved discrimination metrics by 0.01 to 0.02. Event rates in four predefined protein risk categories were 5.6, 11.2, 20.0, and 43.4% within 4 years; median time to event was 1.71 years. Protein predictions were directionally concordant with changed outcomes. Adverse risks were predicted for aging, approaching an event, anthracycline chemotherapy, diabetes, smoking, rheumatoid arthritis, cancer history, cardiovascular disease, high systolic blood pressure, and lipids. Reduced risks were predicted for weight loss and exenatide. The 27-protein model has potential as a "universal" surrogate end point for cardiovascular risk.
Collapse
Affiliation(s)
| | | | | | - Josef Coresh
- Johns Hopkins University, Baltimore, MD 21218, USA
| | | | | | - Christian E Mueller
- Cardiovascular Research Institute, University of Basel, Basel 4001, Switzerland
| | - Joan Walter
- Cardiovascular Research Institute, University of Basel, Basel 4001, Switzerland.,Institute of Diagnostic and Interventional Radiology, University Hospital Zürich, University of Zürich, Zürich 7491, Switzerland
| | - Christian Jonasson
- Jebsen Centre for Genetic Epidemiology, Department of Public Health and Nursing, Norwegian University of Science and Technology, Trondheim 7491, Norway
| | - Rury R Holman
- Diabetes Trials Unit, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DU, UK
| | - Svati H Shah
- Division of Cardiology, Duke Department of Medicine, and Duke Molecular Physiology Institute, Duke University, Durham, NC 27710, USA
| | - Naveed Sattar
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Roy Taylor
- Newcastle Magnetic Resonance Centre, University of Newcastle upon Tyne, Newcastle upon Tyne NE1 7RU, UK
| | - Michael E Lean
- School of Medicine, Nursing and Dentistry, University of Glasgow, Glasgow G12 8QQ, UK
| | | | - Hiroaki Shimokawa
- Tohoku University Graduate School of Medicine, Sendai 980-8576, Japan.,Graduate School, International University of Health and Welfare, Narita 286-8686, Japan
| | - Yasuhiko Sakata
- Tohoku University Graduate School of Medicine, Sendai 980-8576, Japan
| | - Kotaro Nochioka
- Tohoku University Graduate School of Medicine, Sendai 980-8576, Japan
| | | | - Steven G Coca
- Mt Sinai Clinical and Translational Science Research Unit, Icahn School of Medicine at Mount Sinai, New York, NY 11766, USA
| | - Torbjørn Omland
- Department of Cardiology, Akershus University Hospital and University of Oslo, Oslo 1478, Norway
| | | | | | | | | | | | | | | | | | | | - Peter Ganz
- Zuckerberg San Francisco General Hospital, University of California, San Francisco, San Francisco, CA 94110, USA
| |
Collapse
|
6
|
Elmore SA, Cochran RZ, Bolon B, Lubeck B, Mahler B, Sabio D, Ward JM. Histology Atlas of the Developing Mouse Placenta. Toxicol Pathol 2021; 50:60-117. [PMID: 34872401 PMCID: PMC8678285 DOI: 10.1177/01926233211042270] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The use of the mouse as a model organism is common in translational research. This mouse-human similarity holds true for placental development as well. Proper formation of the placenta is vital for development and survival of the maturing embryo. Placentation involves sequential steps with both embryonic and maternal cell lineages playing important roles. The first step in placental development is formation of the blastocyst wall (approximate embryonic days [E] 3.0-3.5). After implantation (∼E4.5), extraembryonic endoderm progressively lines the inner surface of the blastocyst wall (∼E4.5-5.0), forming the yolk sac that provides histiotrophic support to the embryo; subsequently, formation of the umbilical vessels (∼E8.5) supports transition to the chorioallantoic placenta and hemotrophic nutrition. The fully mature ("definitive") placenta is established by ∼E12.5. Abnormal placental development often leads to embryonic mortality, with the timing of death depending on when placental insufficiency takes place and which cells are involved. This comprehensive macroscopic and microscopic atlas highlights the key features of normal and abnormal mouse placental development from E4.5 to E18.5. This in-depth overview of a transient (and thus seldom-analyzed) developmental tissue should serve as a useful reference to aid researchers in identifying and describing mouse placental changes in engineered, induced, and spontaneous disease models.
Collapse
Affiliation(s)
- Susan A Elmore
- National Toxicology Program, 6857National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Robert Z Cochran
- National Toxicology Program, 6857National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | | | - Beth Lubeck
- National Toxicology Program, 6857National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Beth Mahler
- Experimental Pathology Laboratories, Inc., Research Triangle Park, NC, USA
| | - David Sabio
- Experimental Pathology Laboratories, Inc., Research Triangle Park, NC, USA
| | - Jerrold M Ward
- Global Vet Pathology, Montgomery Village, MD, USA *Co-first authors
| |
Collapse
|
7
|
Deepak KGK, Vempati R, Nagaraju GP, Dasari VR, S N, Rao DN, Malla RR. Tumor microenvironment: Challenges and opportunities in targeting metastasis of triple negative breast cancer. Pharmacol Res 2020; 153:104683. [PMID: 32050092 DOI: 10.1016/j.phrs.2020.104683] [Citation(s) in RCA: 357] [Impact Index Per Article: 71.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 02/06/2020] [Accepted: 02/06/2020] [Indexed: 02/08/2023]
Abstract
Triple negative breast cancer (TNBC) is most aggressive subtype of breast cancers with high probability of metastasis as well as lack of specific targets and targeted therapeutics. TNBC is characterized with unique tumor microenvironment (TME), which differs from other subtypes. TME is associated with induction of proliferation, angiogenesis, inhibition of apoptosis and immune system suppression, and drug resistance. Exosomes are promising nanovesicles, which orchestrate the TME by communicating with different cells within TME. The components of TME including transformed ECM, soluble factors, immune suppressive cells, epigenetic modifications and re-programmed fibroblasts together hamper antitumor response and helps progression and metastasis of TNBCs. Therefore, TME could be a therapeutic target of TNBC. The current review presents latest updates on the role of exosomes in modulation of TME, approaches for targeting TME and combination of immune checkpoint inhibitors and target chemotherapeutics. Finally, we also discussed various phytochemicals that alter genetic, transcriptomic and proteomic profiles of TME along with current challenges and future implications. Thus, as TME is associated with the hallmarks of TNBC, the understanding of the impact of different components can improve the clinical benefits of TNBC patients.
Collapse
Affiliation(s)
- K G K Deepak
- Cancer Biology Lab, Department of Biochemistry and Bioinformatics, Institute of Science, GITAM (Deemed to be University), Visakhapatnam, 530045, India
| | - Rahul Vempati
- Cancer Biology Lab, Department of Biochemistry and Bioinformatics, Institute of Science, GITAM (Deemed to be University), Visakhapatnam, 530045, India
| | - Ganji Purnachandra Nagaraju
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, GA, 30322, USA
| | - Venkata Ramesh Dasari
- Department of Molecular and Functional Genomics, Geisinger Clinic, 100 N. Academy Ave, Danville, PA, 17822, USA
| | - Nagini S
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Annamalainagar, 608 002, India
| | - D N Rao
- Department of Biochemistry, All India Institute of Medical Science, New Delhi, India
| | - Rama Rao Malla
- Cancer Biology Lab, Department of Biochemistry and Bioinformatics, Institute of Science, GITAM (Deemed to be University), Visakhapatnam, 530045, India.
| |
Collapse
|
8
|
The protein tyrosine phosphatase PTPRJ/DEP-1 contributes to the regulation of the Notch-signaling pathway and sprouting angiogenesis. Angiogenesis 2019; 23:145-157. [DOI: 10.1007/s10456-019-09683-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 09/23/2019] [Indexed: 12/15/2022]
|
9
|
Flister MJ, Bergom C. Genetic Modifiers of the Breast Tumor Microenvironment. Trends Cancer 2018; 4:429-444. [PMID: 29860987 DOI: 10.1016/j.trecan.2018.04.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 04/13/2018] [Accepted: 04/16/2018] [Indexed: 02/06/2023]
Abstract
Multiple nonmalignant cell types in the tumor microenvironment (TME) impact breast cancer risk, metastasis, and response to therapy, yet most heritable mechanisms that influence TME cell function and breast cancer outcomes are largely unknown. Breast cancer risk is ∼30% heritable and >170 genetic loci have been associated with breast cancer traits. However, the majority of candidate genes have poorly defined mechanistic roles in breast cancer biology. Research indicates that breast cancer risk modifiers directly impact cancer cells, yet it is equally plausible that some modifier alleles impact the nonmalignant TME. The objective of this review is to examine the list of current breast cancer candidate genes that may modify breast cancer risk and outcome through the TME.
Collapse
Affiliation(s)
- Michael J Flister
- Genomic Sciences and Precision Medicine Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA; Cancer Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA; Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA.
| | - Carmen Bergom
- Cancer Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA; Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| |
Collapse
|
10
|
Recent advances in understanding the role of protein-tyrosine phosphatases in development and disease. Dev Biol 2017; 428:283-292. [PMID: 28728679 DOI: 10.1016/j.ydbio.2017.03.023] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 03/01/2017] [Accepted: 03/02/2017] [Indexed: 01/15/2023]
Abstract
Protein-tyrosine phosphatases (PTPs) remove phosphate groups from tyrosine residues, and thereby propagate or inhibit signal transduction, and hence influence cellular processes such as cell proliferation and differentiation. The importance of tightly controlled PTP activity is reflected by the numerous mechanisms employed by the cell to control PTP activity, including a variety of post-translational modifications, and restricted subcellular localization. This review highlights the strides made in the last decade and discusses the important role of PTPs in key aspects of embryonic development: the regulation of stem cell self-renewal and differentiation, gastrulation and somitogenesis during early embryonic development, osteogenesis, and angiogenesis. The tentative importance of PTPs in these processes is highlighted by the diseases that present upon aberrant activity.
Collapse
|
11
|
Haskell GT, Jensen BC, Skrzynia C, Pulikkotil T, Tilley CR, Lu Y, Marchuk DS, Ann Samsa L, Wilhelmsen KC, Lange E, Patterson C, Evans JP, Berg JS. Genetic Complexity of Mitral Valve Prolapse Revealed by Clinical and Genetic Evaluation of a Large Family. THE JOURNAL OF HEART VALVE DISEASE 2017; 26:569-580. [PMID: 29762926 PMCID: PMC6676909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
BACKGROUND A genetic component to familial mitral valve prolapse (MVP) has been proposed for decades. Despite this, very few genes have been linked to MVP. Herein is described a four-generation pedigree with numerous individuals affected with severe MVP, some at strikingly young ages. METHODS A detailed clinical evaluation performed on all affected family members demonstrated a spectrum of MVP morphologies and associated phenotypes. RESULTS Linkage analysis failed to identify strong candidate loci, but revealed significant regions, which were investigated further using whole-exome sequencing of one of the severely affected family members. Whole-exome sequencing identified variants in this individual that fell within linkage analysis peak regions, but none was an obvious pathogenic candidate. Follow up segregation analysis of all exome-identified variants was performed to genotype other affected and unaffected individuals in the family, but no variants emerged as clear pathogenic candidates. Two notable variants of uncertain significance in candidate genes were identified: p.I1013S in PTPRJ at 11p11.2 and FLYWCH1 p.R540Q at 16p13.3. Neither gene has been previously linked to MVP in humans, although PTPRJ mutant mice display defects in endocardial cushions, which give rise to the cardiac valves. PTPRJ and FLYWCH1 expression was detected in adult human mitral valve cells, and in-silico analysis of these variants suggests they may be deleterious. However, neither variant segregated completely with all of the affected individuals in the family, particularly when 'affected' was broadly defined. CONCLUSIONS While a contributory role for PTPRJ and FLYWCH1 in this family cannot be excluded, the study results underscored the difficulties involved in uncovering the genomic contribution to MVP, even in apparently Mendelian families.
Collapse
Affiliation(s)
- Gloria T Haskell
- Department of Genetics, University of North Carolina at Chapel Hill, NC, USA. Electronic correspondence:
| | - Brian C Jensen
- Department of Pharmacology, University of North Carolina at Chapel Hill, NC, USA
- Division of Cardiology, Department of Medicine, University of North Carolina at Chapel Hill, NC, USA
- University of North Carolina McAllister Heart Institute, University of North Carolina at Chapel Hill, NC, USA
| | - Cecile Skrzynia
- Department of Genetics, University of North Carolina at Chapel Hill, NC, USA
| | - Thelsa Pulikkotil
- Division of Cardiology, Department of Medicine, University of North Carolina at Chapel Hill, NC, USA
- Kaiser Permanente, Atlanta, GA, USA
| | - Christian R Tilley
- Department of Genetics, University of North Carolina at Chapel Hill, NC, USA
| | - Yurong Lu
- Department of Genetics, University of North Carolina at Chapel Hill, NC, USA
| | - Daniel S Marchuk
- Department of Genetics, University of North Carolina at Chapel Hill, NC, USA
| | - Leigh Ann Samsa
- University of North Carolina McAllister Heart Institute, University of North Carolina at Chapel Hill, NC, USA
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, NC, USA
| | - Kirk C Wilhelmsen
- Department of Genetics, University of North Carolina at Chapel Hill, NC, USA
- Renaissance Computing Institute, Chapel Hill, NC, USA
| | - Ethan Lange
- Department of Genetics, University of North Carolina at Chapel Hill, NC, USA
| | - Cam Patterson
- Departments of Medicine and Cardiology, New York Presbyterian Hospital, Weill Cornell Medical Center, New York, USA
| | - James P Evans
- Department of Genetics, University of North Carolina at Chapel Hill, NC, USA
| | - Jonathan S Berg
- Department of Genetics, University of North Carolina at Chapel Hill, NC, USA
| |
Collapse
|
12
|
Corti F, Simons M. Modulation of VEGF receptor 2 signaling by protein phosphatases. Pharmacol Res 2017; 115:107-123. [PMID: 27888154 PMCID: PMC5205541 DOI: 10.1016/j.phrs.2016.11.022] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Revised: 11/18/2016] [Accepted: 11/21/2016] [Indexed: 12/21/2022]
Abstract
Phosphorylation of serines, threonines, and tyrosines is a central event in signal transduction cascades in eukaryotic cells. The phosphorylation state of any particular protein reflects a balance of activity between kinases and phosphatases. Kinase biology has been exhaustively studied and is reasonably well understood, however, much less is known about phosphatases. A large body of evidence now shows that protein phosphatases do not behave as indiscriminate signal terminators, but can function both as negative or positive regulators of specific signaling pathways. Genetic models have also shown that different protein phosphatases play precise biological roles in health and disease. Finally, genome sequencing has unveiled the existence of many protein phosphatases and associated regulatory subunits comparable in number to kinases. A wide variety of roles for protein phosphatase roles have been recently described in the context of cancer, diabetes, hereditary disorders and other diseases. In particular, there have been several recent advances in our understanding of phosphatases involved in regulation of vascular endothelial growth factor receptor 2 (VEGFR2) signaling. The receptor is the principal signaling molecule mediating a wide spectrum of VEGF signal and, thus, is of paramount significance in a wide variety of diseases ranging from cancer to cardiovascular to ophthalmic. This review focuses on the current knowledge about protein phosphatases' regulation of VEGFR2 signaling and how these enzymes can modulate its biological effects.
Collapse
Affiliation(s)
- Federico Corti
- Yale Cardiovascular Research Center, Department of Internal Medicine and Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA.
| | - Michael Simons
- Yale Cardiovascular Research Center, Department of Internal Medicine and Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
13
|
Fournier P, Dussault S, Fusco A, Rivard A, Royal I. Tyrosine Phosphatase PTPRJ/DEP-1 Is an Essential Promoter of Vascular Permeability, Angiogenesis, and Tumor Progression. Cancer Res 2016; 76:5080-91. [PMID: 27364551 DOI: 10.1158/0008-5472.can-16-1071] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 06/24/2016] [Indexed: 11/16/2022]
Abstract
The protein tyrosine phosphatase PTPRJ/DEP-1 has been implicated in negative growth regulation in endothelial cells, where its expression varies at transitions between proliferation and contact inhibition. However, in the same cells, DEP-1 has also been implicated in VEGF-dependent Src activation, permeability, and capillary formation, suggesting a positive role in regulating these functions. To resolve this dichotomy in vivo, we investigated postnatal angiogenesis and vascular permeability in a DEP-1-deficient mouse. In this study, we report that DEP-1 is required for Src activation and phosphorylation of its endothelial cell-specific substrate, VE-cadherin, after systemic injection of VEGF. Accordingly, VEGF-induced vascular leakage was abrogated in the DEP-1-deficient mice. Furthermore, capillary formation was impaired in murine aortic tissue rings or Matrigel plugs infused with VEGF. In the absence of DEP-1, angiogenesis triggered by ischemia or during tumor formation was defective, which in the latter case was associated with reduced tumor cell proliferation and increased apoptosis. Macrophage infiltration was also impaired, reflecting reduced vascular permeability in the tumors or a possible cell autonomous effect of DEP-1. Consequently, the formation of spontaneous and experimental lung metastases was strongly decreased in DEP-1-deficient mice. In clinical specimens of cancer, less vascularized tumors exhibited lower microvascular expression of DEP-1. Altogether, our results established DEP-1 as an essential driver of VEGF-dependent permeability, angiogenesis, and metastasis, suggesting a novel therapeutic route to cancer treatment. Cancer Res; 76(17); 5080-91. ©2016 AACR.
Collapse
Affiliation(s)
- Patrick Fournier
- CRCHUM - Centre de recherche du Centre Hospitalier de l'Université de Montréal, Montréal, Quebec, Canada. Institut du cancer de Montréal, Montréal, Quebec, Canada
| | - Sylvie Dussault
- CRCHUM - Centre de recherche du Centre Hospitalier de l'Université de Montréal, Montréal, Quebec, Canada
| | - Alfredo Fusco
- Dipartimento di Biologia e Patologia Cellulare e Molecolare, Università degli Studi di Napoli "Federico II", Naples, Italy
| | - Alain Rivard
- CRCHUM - Centre de recherche du Centre Hospitalier de l'Université de Montréal, Montréal, Quebec, Canada. Département de Médecine, Université de Montréal, Montréal, Quebec, Canada
| | - Isabelle Royal
- CRCHUM - Centre de recherche du Centre Hospitalier de l'Université de Montréal, Montréal, Quebec, Canada. Institut du cancer de Montréal, Montréal, Quebec, Canada. Département de Médecine, Université de Montréal, Montréal, Quebec, Canada.
| |
Collapse
|
14
|
Priest JR, Osoegawa K, Mohammed N, Nanda V, Kundu R, Schultz K, Lammer EJ, Girirajan S, Scheetz T, Waggott D, Haddad F, Reddy S, Bernstein D, Burns T, Steimle JD, Yang XH, Moskowitz IP, Hurles M, Lifton RP, Nickerson D, Bamshad M, Eichler EE, Mital S, Sheffield V, Quertermous T, Gelb BD, Portman M, Ashley EA. De Novo and Rare Variants at Multiple Loci Support the Oligogenic Origins of Atrioventricular Septal Heart Defects. PLoS Genet 2016; 12:e1005963. [PMID: 27058611 PMCID: PMC4825975 DOI: 10.1371/journal.pgen.1005963] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Accepted: 03/07/2016] [Indexed: 12/15/2022] Open
Abstract
Congenital heart disease (CHD) has a complex genetic etiology, and recent studies suggest that high penetrance de novo mutations may account for only a small fraction of disease. In a multi-institutional cohort surveyed by exome sequencing, combining analysis of 987 individuals (discovery cohort of 59 affected trios and 59 control trios, and a replication cohort of 100 affected singletons and 533 unaffected singletons) we observe variation at novel and known loci related to a specific cardiac malformation the atrioventricular septal defect (AVSD). In a primary analysis, by combining developmental coexpression networks with inheritance modeling, we identify a de novo mutation in the DNA binding domain of NR1D2 (p.R175W). We show that p.R175W changes the transcriptional activity of Nr1d2 using an in vitro transactivation model in HUVEC cells. Finally, we demonstrate previously unrecognized cardiovascular malformations in the Nr1d2tm1-Dgen knockout mouse. In secondary analyses we map genetic variation to protein-interaction networks suggesting a role for two collagen genes in AVSD, which we corroborate by burden testing in a second replication cohort of 100 AVSDs and 533 controls (p = 8.37e-08). Finally, we apply a rare-disease inheritance model to identify variation in genes previously associated with CHD (ZFPM2, NSD1, NOTCH1, VCAN, and MYH6), cardiac malformations in mouse models (ADAM17, CHRD, IFT140, PTPRJ, RYR1 and ATE1), and hypomorphic alleles of genes causing syndromic CHD (EHMT1, SRCAP, BBS2, NOTCH2, and KMT2D) in 14 of 59 trios, greatly exceeding variation in control trios without CHD (p = 9.60e-06). In total, 32% of trios carried at least one putatively disease-associated variant across 19 loci,suggesting that inherited and de novo variation across a heterogeneous group of loci may contribute to disease risk.
Collapse
Affiliation(s)
- James R. Priest
- Division of Pediatric Cardiology, Stanford University School of Medicine, Stanford University, Stanford, California, United States of America
- Cardiovascular Institute, Stanford University School of Medicine, Stanford University, Stanford, California, United States of America
| | - Kazutoyo Osoegawa
- Department of Pathology, Stanford University School of Medicine, Stanford University, Stanford, California, United States of America
| | - Nebil Mohammed
- University of California San Francisco Benioff Children’s Hospital Oakland, University of California San Francisco, San Francisco, California, United States of America
| | - Vivek Nanda
- Department of Vascular Surgery, Stanford University School of Medicine, Stanford University, Stanford, California, United States of America
| | - Ramendra Kundu
- Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford University, Stanford, California, United States of America
| | - Kathleen Schultz
- University of California San Francisco Benioff Children’s Hospital Oakland, University of California San Francisco, San Francisco, California, United States of America
| | - Edward J. Lammer
- University of California San Francisco Benioff Children’s Hospital Oakland, University of California San Francisco, San Francisco, California, United States of America
| | - Santhosh Girirajan
- Departments of Biochemistry, Molecular Biology, and Anthropology, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Todd Scheetz
- College of Engineering, University of Iowa, Iowa City, Iowa, United States of America
| | - Daryl Waggott
- Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford University, Stanford, California, United States of America
| | - Francois Haddad
- Cardiovascular Institute, Stanford University School of Medicine, Stanford University, Stanford, California, United States of America
- Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford University, Stanford, California, United States of America
| | - Sushma Reddy
- Division of Pediatric Cardiology, Stanford University School of Medicine, Stanford University, Stanford, California, United States of America
- Cardiovascular Institute, Stanford University School of Medicine, Stanford University, Stanford, California, United States of America
| | - Daniel Bernstein
- Division of Pediatric Cardiology, Stanford University School of Medicine, Stanford University, Stanford, California, United States of America
- Cardiovascular Institute, Stanford University School of Medicine, Stanford University, Stanford, California, United States of America
| | - Trudy Burns
- College of Public Health, University of Iowa, Iowa City, Iowa, United States of America
| | - Jeffrey D. Steimle
- Department of Pathology, University of Chicago, Chicago, Illinois, United States of America
| | - Xinan H. Yang
- Department of Pathology, University of Chicago, Chicago, Illinois, United States of America
| | - Ivan P. Moskowitz
- Department of Pathology, University of Chicago, Chicago, Illinois, United States of America
| | - Matthew Hurles
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, United Kingdom
| | - Richard P. Lifton
- Department of Genetics, Yale University, New Haven, Connecticut, United States of America
- Howard Hughes Medical Institute, Chevy Chase, Maryland, United States of America
| | - Debbie Nickerson
- Department of Genome Sciences, University of Washington, Seattle, Washington, United States of America
| | - Michael Bamshad
- Department of Genome Sciences, University of Washington, Seattle, Washington, United States of America
- Department of Pediatrics, University of Washington, Seattle, Washington, United States of America
| | - Evan E. Eichler
- Howard Hughes Medical Institute, Chevy Chase, Maryland, United States of America
- Department of Genome Sciences, University of Washington, Seattle, Washington, United States of America
| | - Seema Mital
- Department of Pediatrics, University of Toronto, Toronto, Ontario, Canada
| | - Val Sheffield
- Howard Hughes Medical Institute, Chevy Chase, Maryland, United States of America
- Division of Medical Genetics, University of Iowa Carver College of Medicine, Iowa City, Iowa, United States of America
| | - Thomas Quertermous
- Cardiovascular Institute, Stanford University School of Medicine, Stanford University, Stanford, California, United States of America
- Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford University, Stanford, California, United States of America
| | - Bruce D. Gelb
- Mindich Child Health and Development Institute, Icahn School of Medicine at Mt. Sinai, New York, New York, United States of America
| | - Michael Portman
- Department of Pediatrics, University of Washington, Seattle, Washington, United States of America
| | - Euan A. Ashley
- Cardiovascular Institute, Stanford University School of Medicine, Stanford University, Stanford, California, United States of America
- Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford University, Stanford, California, United States of America
| |
Collapse
|
15
|
Song S, Yao N, Yang M, Liu X, Dong K, Zhao Q, Pu Y, He X, Guan W, Yang N, Ma Y, Jiang L. Exome sequencing reveals genetic differentiation due to high-altitude adaptation in the Tibetan cashmere goat (Capra hircus). BMC Genomics 2016; 17:122. [PMID: 26892324 PMCID: PMC4758086 DOI: 10.1186/s12864-016-2449-0] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 02/09/2016] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND The Tibetan cashmere goat (Capra hircus), one of the most ancient breeds in China, has historically been a critical source of meat and cashmere production for local farmers. To adapt to the high-altitude area, extremely harsh climate, and hypoxic environment that the Tibetan cashmere goat lives in, this goat has developed distinct phenotypic traits compared to lowland breeds. However, the genetic components underlying this phenotypic adaptation remain largely unknown. RESULTS We obtained 118,700 autosomal SNPs through exome sequencing of 330 cashmere goats located at a wide geographic range, including the Tibetan Plateau and low-altitude regions in China. The great majority of SNPs showed low genetic differentiation among populations; however, approximately 2-3% of the loci showed more genetic differentiation than expected under a selectively neutral model. Together with a combined analysis of high- and low-altitude breeds, we revealed 339 genes potentially under high-altitude selection. Genes associated with cardiovascular system development were significantly enriched in our study. Among these genes, the most evident one was endothelial PAS domain protein 1 (EPAS1), which has been previously reported to be involved in complex oxygen sensing and significantly associated with high-altitude adaptation of human, dog, and grey wolf. The missense mutation Q579L that we identified in EPAS1, which occurs next to the Hypoxia-Inducible Factor-1 (HIF-1) domain, was exclusively enriched in the high-altitude populations. CONCLUSIONS Our study provides insights concerning the population variation in six different cashmere goat populations in China. The variants in cardiovascular system-related genes may explain the observed phenotypic adaptation of the Tibetan cashmere goat.
Collapse
Affiliation(s)
- Shen Song
- The Key Laboratory for Farm Animal Genetic Resources and Utilization of Ministry of Agriculture of China, Institute of Animal Science (IAS), Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100193, China.
- Department of Animal Genetics and Breeding, China Agricultural University, Beijing, 100094, China.
| | - Na Yao
- The Key Laboratory for Farm Animal Genetic Resources and Utilization of Ministry of Agriculture of China, Institute of Animal Science (IAS), Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100193, China.
| | - Min Yang
- The Key Laboratory for Farm Animal Genetic Resources and Utilization of Ministry of Agriculture of China, Institute of Animal Science (IAS), Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100193, China.
| | - Xuexue Liu
- The Key Laboratory for Farm Animal Genetic Resources and Utilization of Ministry of Agriculture of China, Institute of Animal Science (IAS), Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100193, China.
| | - Kunzhe Dong
- The Key Laboratory for Farm Animal Genetic Resources and Utilization of Ministry of Agriculture of China, Institute of Animal Science (IAS), Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100193, China.
| | - Qianjun Zhao
- The Key Laboratory for Farm Animal Genetic Resources and Utilization of Ministry of Agriculture of China, Institute of Animal Science (IAS), Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100193, China.
| | - Yabin Pu
- The Key Laboratory for Farm Animal Genetic Resources and Utilization of Ministry of Agriculture of China, Institute of Animal Science (IAS), Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100193, China.
| | - Xiaohong He
- The Key Laboratory for Farm Animal Genetic Resources and Utilization of Ministry of Agriculture of China, Institute of Animal Science (IAS), Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100193, China.
| | - Weijun Guan
- The Key Laboratory for Farm Animal Genetic Resources and Utilization of Ministry of Agriculture of China, Institute of Animal Science (IAS), Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100193, China.
| | - Ning Yang
- Department of Animal Genetics and Breeding, China Agricultural University, Beijing, 100094, China.
| | - Yuehui Ma
- The Key Laboratory for Farm Animal Genetic Resources and Utilization of Ministry of Agriculture of China, Institute of Animal Science (IAS), Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100193, China.
| | - Lin Jiang
- The Key Laboratory for Farm Animal Genetic Resources and Utilization of Ministry of Agriculture of China, Institute of Animal Science (IAS), Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100193, China.
| |
Collapse
|
16
|
Regulation of Endothelial Adherens Junctions by Tyrosine Phosphorylation. Mediators Inflamm 2015; 2015:272858. [PMID: 26556953 PMCID: PMC4628659 DOI: 10.1155/2015/272858] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 08/16/2015] [Indexed: 12/14/2022] Open
Abstract
Endothelial cells form a semipermeable, regulated barrier that limits the passage of fluid, small molecules, and leukocytes between the bloodstream and the surrounding tissues. The adherens junction, a major mechanism of intercellular adhesion, is comprised of transmembrane cadherins forming homotypic interactions between adjacent cells and associated cytoplasmic catenins linking the cadherins to the cytoskeleton. Inflammatory conditions promote the disassembly of the adherens junction and a loss of intercellular adhesion, creating openings or gaps in the endothelium through which small molecules diffuse and leukocytes transmigrate. Tyrosine kinase signaling has emerged as a central regulator of the inflammatory response, partly through direct phosphorylation and dephosphorylation of the adherens junction components. This review discusses the findings that support and those that argue against a direct effect of cadherin and catenin phosphorylation in the disassembly of the adherens junction. Recent findings indicate a complex interaction between kinases, phosphatases, and the adherens junction components that allow a fine regulation of the endothelial permeability to small molecules, leukocyte migration, and barrier resealing.
Collapse
|
17
|
De Rossi G, Evans AR, Kay E, Woodfin A, McKay TR, Nourshargh S, Whiteford JR. Shed syndecan-2 inhibits angiogenesis. J Cell Sci 2015; 127:4788-99. [PMID: 25179601 PMCID: PMC4215719 DOI: 10.1242/jcs.153015] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Angiogenesis is essential for the development of a normal vasculature, tissue repair and reproduction, and also has roles in the progression of diseases such as cancer and rheumatoid arthritis. The heparan sulphate proteoglycan syndecan-2 is expressed on mesenchymal cells in the vasculature and, like the other members of its family, can be shed from the cell surface resulting in the release of its extracellular core protein. The purpose of this study was to establish whether shed syndecan-2 affects angiogenesis. We demonstrate that shed syndecan-2 regulates angiogenesis by inhibiting endothelial cell migration in human and rodent models and, as a result, reduces tumour growth. Furthermore, our findings show that these effects are mediated by the protein tyrosine phosphatase receptor CD148 (also known as PTPRJ) and this interaction corresponds with a decrease in active β1 integrin. Collectively, these data demonstrate an unexplored pathway for the regulation of new blood vessel formation and identify syndecan-2 as a therapeutic target in pathologies characterised by angiogenesis.
Collapse
Affiliation(s)
- Giulia De Rossi
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Alun R Evans
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Emma Kay
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Abigail Woodfin
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Tristan R McKay
- Division of Biomedical Sciences, St. George's University of London, Cranmer Terrace, London SW17 0NE, UK
| | - Sussan Nourshargh
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - James R Whiteford
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| |
Collapse
|
18
|
Heterozygous expression of the oncogenic Pik3caH1047R mutation during murine development results in fatal embryonic and extraembryonic defects. Dev Biol 2015; 404:14-26. [DOI: 10.1016/j.ydbio.2015.04.022] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2015] [Revised: 04/25/2015] [Accepted: 04/27/2015] [Indexed: 01/13/2023]
|
19
|
Jerkic M, Letarte M. Increased endothelial cell permeability in endoglin-deficient cells. FASEB J 2015; 29:3678-88. [PMID: 25972355 DOI: 10.1096/fj.14-269258] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Accepted: 05/04/2015] [Indexed: 01/12/2023]
Abstract
Endoglin (ENG) is a TGF-β superfamily coreceptor essential for vascular endothelium integrity. ENG mutations lead to a vascular dysplasia associated with frequent hemorrhages in multiple organs, whereas ENG null mouse embryos die at midgestation with impaired heart development and leaky vasculature. ENG interacts with several proteins involved in cell adhesion, and we postulated that it regulates vascular permeability. The current study assessed the permeability of ENG homozygous null (Eng(-/-)), heterozygous (Eng(+/-)), and normal (Eng(+/+)) mouse embryonic endothelial cell (EC) lines. Permeability, measured by passage of fluorescent dextran through EC monolayers, was increased 2.9- and 1.7-fold for Eng(-/-) and Eng(+/-) ECs, respectively, compared to control ECs and was not increased by TGF-β1 or VEGF. Prolonged starvation increased Eng(-/-) EC permeability by 3.7-fold with no effect on control ECs; neutrophils transmigrated faster through Eng(-/-) than Eng(+/+) monolayers. Using a pull-down assay, we demonstrate that Ras homolog gene family (Rho) A is constitutively active in Eng(-/-) and Eng(+/-) ECs. We show that the endothelial barrier destabilizing factor thrombospondin-1 and its receptor-like protein tyrosine phosphatase are increased, whereas stabilizing factors VEGF receptor 2, vascular endothelial-cadherin, p21-activated kinase, and Ras-related C3 botulinum toxin substrate 2 are decreased in Eng(-/-) cells. Our findings indicate that ENG deficiency leads to EC hyperpermeability through constitutive activation of RhoA and destabilization of endothelial barrier function.
Collapse
Affiliation(s)
- Mirjana Jerkic
- *Molecular Structure and Function Program, The Hospital for Sick Children, Toronto, Ontario, Canada; and Department of Immunology and Keenan Research Centre for Biomedical Science, Anesthesia Research, St. Michael's Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Michelle Letarte
- *Molecular Structure and Function Program, The Hospital for Sick Children, Toronto, Ontario, Canada; and Department of Immunology and Keenan Research Centre for Biomedical Science, Anesthesia Research, St. Michael's Hospital, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
20
|
Flister MJ, Endres BT, Rudemiller N, Sarkis AB, Santarriaga S, Roy I, Lemke A, Geurts AM, Moreno C, Ran S, Tsaih SW, De Pons J, Carlson DF, Tan W, Fahrenkrug SC, Lazarova Z, Lazar J, North PE, LaViolette PS, Dwinell MB, Shull JD, Jacob HJ. CXM: a new tool for mapping breast cancer risk in the tumor microenvironment. Cancer Res 2014; 74:6419-29. [PMID: 25172839 DOI: 10.1158/0008-5472.can-13-3212] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The majority of causative variants in familial breast cancer remain unknown. Of the known risk variants, most are tumor cell autonomous, and little attention has been paid yet to germline variants that may affect the tumor microenvironment. In this study, we developed a system called the Consomic Xenograft Model (CXM) to map germline variants that affect only the tumor microenvironment. In CXM, human breast cancer cells are orthotopically implanted into immunodeficient consomic strains and tumor metrics are quantified (e.g., growth, vasculogenesis, and metastasis). Because the strain backgrounds vary, whereas the malignant tumor cells do not, any observed changes in tumor progression are due to genetic differences in the nonmalignant microenvironment. Using CXM, we defined genetic variants on rat chromosome 3 that reduced relative tumor growth and hematogenous metastasis in the SS.BN3(IL2Rγ) consomic model compared with the SS(IL2Rγ) parental strain. Paradoxically, these effects occurred despite an increase in the density of tumor-associated blood vessels. In contrast, lymphatic vasculature and lymphogenous metastasis were unaffected by the SS.BN3(IL2Rγ) background. Through comparative mapping and whole-genome sequence analysis, we narrowed candidate variants on rat chromosome 3 to six genes with a priority for future analysis. Collectively, our results establish the utility of CXM to localize genetic variants affecting the tumor microenvironment that underlie differences in breast cancer risk.
Collapse
Affiliation(s)
- Michael J Flister
- Human and Molecular Genetics Center, Medical College of Wisconsin, Milwaukee, Wisconsin. Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin.
| | - Bradley T Endres
- Human and Molecular Genetics Center, Medical College of Wisconsin, Milwaukee, Wisconsin. Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Nathan Rudemiller
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Allison B Sarkis
- Human and Molecular Genetics Center, Medical College of Wisconsin, Milwaukee, Wisconsin. Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | | | - Ishan Roy
- Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Angela Lemke
- Human and Molecular Genetics Center, Medical College of Wisconsin, Milwaukee, Wisconsin. Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Aron M Geurts
- Human and Molecular Genetics Center, Medical College of Wisconsin, Milwaukee, Wisconsin. Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Carol Moreno
- Human and Molecular Genetics Center, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Sophia Ran
- SimonsCooper Cancer Institute, Southern Illinois University School of Medicine, Springfield, Illinois. Department of Medical Microbiology, Immunology, and Cell Biology, Southern Illinois University School of Medicine, Springfield, Illinois
| | - Shirng-Wern Tsaih
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Jeffery De Pons
- Human and Molecular Genetics Center, Medical College of Wisconsin, Milwaukee, Wisconsin
| | | | - Wenfang Tan
- Department of Animal Science, University of Minnesota, Saint Paul, Minnesota. Center for Genome Engineering, University of Minnesota, Minneapolis, Minnesota
| | - Scott C Fahrenkrug
- Recombinetics Inc, Saint Paul, Minnesota. Department of Animal Science, University of Minnesota, Saint Paul, Minnesota. Center for Genome Engineering, University of Minnesota, Minneapolis, Minnesota
| | - Zelmira Lazarova
- Department of Dermatology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Jozef Lazar
- Human and Molecular Genetics Center, Medical College of Wisconsin, Milwaukee, Wisconsin. Department of Dermatology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Paula E North
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Peter S LaViolette
- Department of Radiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Michael B Dwinell
- Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - James D Shull
- McArdle Laboratory for Cancer Research, University of Wisconsin, Madison, Wisconsin. Department of Oncology, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin. UW Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin
| | - Howard J Jacob
- Human and Molecular Genetics Center, Medical College of Wisconsin, Milwaukee, Wisconsin. Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin. Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin.
| |
Collapse
|
21
|
Pan CC, Kumar S, Shah N, Hoyt DG, Hawinkels LJAC, Mythreye K, Lee NY. Src-mediated post-translational regulation of endoglin stability and function is critical for angiogenesis. J Biol Chem 2014; 289:25486-96. [PMID: 25070888 DOI: 10.1074/jbc.m114.578609] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Endoglin is a transforming growth factor β (TGF-β) co-receptor essential for angiogenesis and tumor vascularization. Endoglin modulates the crucial balance between pro- and anti-angiogenic signaling by activin receptor-like kinase (ALK) 1, 5, and TGF-β type II (TβRII) receptors. Despite its established role in physiology and disease, the mechanism of endoglin down-regulation remains unknown. Here we report that the conserved juxtamembrane cytoplasmic tyrosine motif ((612)YIY(614)) is a critical determinant of angiogenesis. Src directly phosphorylates this motif to induce endoglin internalization and degradation via the lysosome. We identified epidermal growth factor (EGF) and vascular endothelial growth factor (VEGF) as Src-activators that induce endoglin turnover following (612)YIY(614) phosphorylation. Interestingly, Src phosphorylation of endoglin-(612)YIY(614) was also an important process for receptor down-regulation by TRACON105 (TRC105), an endoglin-targeting antibody currently in clinical trials. The regulation of (612)YIY(614) phosphorylation was critical for angiogenesis, as both the phosphomimetic and unphosphorylatable mutants impaired endothelial functions including proliferation, migration, and capillary tube formation. Collectively, these findings establish Src and pro-angiogenic mitogens as critical mediators of endoglin stability and function.
Collapse
Affiliation(s)
| | - Sanjay Kumar
- From the Division of Pharmacology, College of Pharmacy, and
| | - Nirav Shah
- From the Division of Pharmacology, College of Pharmacy, and
| | - Dale G Hoyt
- From the Division of Pharmacology, College of Pharmacy, and
| | - Lukas J A C Hawinkels
- the Department of Molecular Cell Biology, Leiden University Medical Center, Leiden University, 2333 Leiden, the Netherlands
| | - Karthikeyan Mythreye
- the Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, and
| | - Nam Y Lee
- From the Division of Pharmacology, College of Pharmacy, and Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio 43210,
| |
Collapse
|
22
|
Lanahan AA, Lech D, Dubrac A, Zhang J, Zhuang ZW, Eichmann A, Simons M. PTP1b is a physiologic regulator of vascular endothelial growth factor signaling in endothelial cells. Circulation 2014; 130:902-9. [PMID: 24982127 DOI: 10.1161/circulationaha.114.009683] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
BACKGROUND Regulation of vascular endothelial growth factor receptor-2 (VEGFR2) signaling is a control point that determines the extent of vascular tree formation. Recent studies demonstrated an important role played by VEGFR2 endothelial trafficking in control of its activity and suggested the involvement of a phosphotyrosine phosphatase 1b (PTP1b) in this process. This study was designed to define the role of PTP1b in endothelial VEGFR2 signaling and its role in regulation of angiogenesis and arteriogenesis. METHODS AND RESULTS We generated mice carrying an endothelial-specific deletion of PTP1b and examined the effect of this knockout on VEGF signaling, angiogenesis, and arteriogenesis in vitro and in vivo. PTP1b knockout endothelial cells had increased VEGF-dependent activation of extracellular signal-regulated kinase signaling, sprouting, migration, and proliferation compared with controls. Endothelial PTP1b null mice had increased retinal and Matrigel implant angiogenesis and accelerated wound healing, pointing to enhanced angiogenesis. Increased arteriogenesis was demonstrated by observations of faster recovery of arterial blood flow and large numbers of newly formed arterioles in the hindlimb ischemia mouse model. PTP1b endothelial knockout also rescued impaired blood flow recovery after common femoral artery ligation in synectin null mice. CONCLUSIONS PTP1b is a key regulator of endothelial VEGFR2 signaling and plays an important role in regulation of the extent of vascular tree formation.
Collapse
Affiliation(s)
- Anthony A Lanahan
- From the Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine (A.A.L., D.L., A.D., J.Z., Z.W.Z., A.E., M.S.) and the Department of Cell Biology (M.S.), Yale University School of Medicine, New Haven, CT
| | - Diana Lech
- From the Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine (A.A.L., D.L., A.D., J.Z., Z.W.Z., A.E., M.S.) and the Department of Cell Biology (M.S.), Yale University School of Medicine, New Haven, CT
| | - Alexandre Dubrac
- From the Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine (A.A.L., D.L., A.D., J.Z., Z.W.Z., A.E., M.S.) and the Department of Cell Biology (M.S.), Yale University School of Medicine, New Haven, CT
| | - Jiasheng Zhang
- From the Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine (A.A.L., D.L., A.D., J.Z., Z.W.Z., A.E., M.S.) and the Department of Cell Biology (M.S.), Yale University School of Medicine, New Haven, CT
| | - Zhen W Zhuang
- From the Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine (A.A.L., D.L., A.D., J.Z., Z.W.Z., A.E., M.S.) and the Department of Cell Biology (M.S.), Yale University School of Medicine, New Haven, CT
| | - Anne Eichmann
- From the Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine (A.A.L., D.L., A.D., J.Z., Z.W.Z., A.E., M.S.) and the Department of Cell Biology (M.S.), Yale University School of Medicine, New Haven, CT
| | - Michael Simons
- From the Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine (A.A.L., D.L., A.D., J.Z., Z.W.Z., A.E., M.S.) and the Department of Cell Biology (M.S.), Yale University School of Medicine, New Haven, CT.
| |
Collapse
|
23
|
Spring K, Lapointe L, Caron C, Langlois S, Royal I. Phosphorylation of DEP-1/PTPRJ on threonine 1318 regulates Src activation and endothelial cell permeability induced by vascular endothelial growth factor. Cell Signal 2014; 26:1283-93. [DOI: 10.1016/j.cellsig.2014.02.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Accepted: 02/18/2014] [Indexed: 12/23/2022]
|
24
|
Du X, Dong Y, Shi H, Li J, Kong S, Shi D, Sun LV, Xu T, Deng K, Tao W. Mst1 and mst2 are essential regulators of trophoblast differentiation and placenta morphogenesis. PLoS One 2014; 9:e90701. [PMID: 24595170 PMCID: PMC3942462 DOI: 10.1371/journal.pone.0090701] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Accepted: 02/03/2014] [Indexed: 12/21/2022] Open
Abstract
The placenta is essential for survival and growth of the fetus because it promotes the delivery of nutrients and oxygen from the maternal circulation as well as fetal waste disposal. Mst1 and Mst2 (Mst1/2), key components of the mammalian hpo/Mst signaling pathway, encode two highly conserved Ser/Thr kinases and play important roles in the prevention of tumorigenesis and autoimmunity, control of T cell development and trafficking, and embryonic development. However, their functions in placental development are not fully understood, and the underlying cellular and molecular mechanisms remain elusive. Here, we investigated the functions of Mst1/2 in mouse placental development using both conventional and conditional (endothelial) Mst1/2 double knockout mice. We found that the number of trophoblast giant cells dramatically increased while spongiotrophoblast cells almost completely disappeared in Mst1/2 deficient placentas. We showed that Mst1/2 deficiency down regulated the expression of Mash2, which is required for suppressing the differentiation of trophoblast giant cells. Furthermore, we demonstrated that endothelial-specific deletion of Mst1/2 led to impaired placental labyrinthine vasculature and embryonic lethality at E11.5, but neither affected vasculature in yolk sac and embryo proper nor endocardium development. Collectively, our findings suggest that Mst1/2 regulate placental development by control of trophoblast cell differentiation and labyrinthine vasculature at midgestation and Mst1/2 control labyrinth morphogenesis in trophoblast- and fetal endothelial-dependent manners. Thus, our studies have defined novel roles of Mst1/2 in mouse placental development.
Collapse
Affiliation(s)
- Xingrong Du
- State Key Laboratory of Genetic Engineering and National Center for International Research of Development and Disease, Institute of Developmental Biology and Molecular Medicine, School of Life Sciences, Fudan University, Shanghai, China
| | - Yongli Dong
- State Key Laboratory of Genetic Engineering and National Center for International Research of Development and Disease, Institute of Developmental Biology and Molecular Medicine, School of Life Sciences, Fudan University, Shanghai, China
| | - Hao Shi
- State Key Laboratory of Genetic Engineering and National Center for International Research of Development and Disease, Institute of Developmental Biology and Molecular Medicine, School of Life Sciences, Fudan University, Shanghai, China
| | - Jiang Li
- State Key Laboratory of Genetic Engineering and National Center for International Research of Development and Disease, Institute of Developmental Biology and Molecular Medicine, School of Life Sciences, Fudan University, Shanghai, China
| | - Shanshan Kong
- State Key Laboratory of Genetic Engineering and National Center for International Research of Development and Disease, Institute of Developmental Biology and Molecular Medicine, School of Life Sciences, Fudan University, Shanghai, China
| | - Donghua Shi
- State Key Laboratory of Genetic Engineering and National Center for International Research of Development and Disease, Institute of Developmental Biology and Molecular Medicine, School of Life Sciences, Fudan University, Shanghai, China
| | - Ling V. Sun
- State Key Laboratory of Genetic Engineering and National Center for International Research of Development and Disease, Institute of Developmental Biology and Molecular Medicine, School of Life Sciences, Fudan University, Shanghai, China
| | - Tian Xu
- State Key Laboratory of Genetic Engineering and National Center for International Research of Development and Disease, Institute of Developmental Biology and Molecular Medicine, School of Life Sciences, Fudan University, Shanghai, China
- Howard Hughes Medical Institute, Department of Genetics, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Kejing Deng
- State Key Laboratory of Genetic Engineering and National Center for International Research of Development and Disease, Institute of Developmental Biology and Molecular Medicine, School of Life Sciences, Fudan University, Shanghai, China
- * E-mail: (WT); (KD)
| | - Wufan Tao
- State Key Laboratory of Genetic Engineering and National Center for International Research of Development and Disease, Institute of Developmental Biology and Molecular Medicine, School of Life Sciences, Fudan University, Shanghai, China
- * E-mail: (WT); (KD)
| |
Collapse
|
25
|
Küppers V, Vockel M, Nottebaum AF, Vestweber D. Phosphatases and kinases as regulators of the endothelial barrier function. Cell Tissue Res 2014; 355:577-86. [DOI: 10.1007/s00441-014-1812-1] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Accepted: 01/13/2014] [Indexed: 01/03/2023]
|
26
|
McCole DF. Phosphatase regulation of intercellular junctions. Tissue Barriers 2013; 1:e26713. [PMID: 24868494 DOI: 10.4161/tisb.26713] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2013] [Revised: 10/03/2013] [Accepted: 10/04/2013] [Indexed: 02/06/2023] Open
Abstract
Intercellular junctions represent the key contact points and sites of communication between neighboring cells. Assembly of these junctions is absolutely essential for the structural integrity of cell monolayers, tissues and organs. Disruption of junctions can have severe consequences such as diarrhea, edema and sepsis, and contribute to the development of chronic inflammatory diseases. Cell junctions are not static structures, but rather they represent highly dynamic micro-domains that respond to signals from the intracellular and extracellular environments to modify their composition and function. This review article will focus on the regulation of tight junctions and adherens junctions by phosphatase enzymes that play an essential role in preserving and modulating the properties of intercellular junction proteins.
Collapse
Affiliation(s)
- Declan F McCole
- Division of Biomedical Sciences; University of California, Riverside; Riverside, CA USA
| |
Collapse
|
27
|
Udan RS, Vadakkan TJ, Dickinson ME. Dynamic responses of endothelial cells to changes in blood flow during vascular remodeling of the mouse yolk sac. Development 2013; 140:4041-50. [PMID: 24004946 DOI: 10.1242/dev.096255] [Citation(s) in RCA: 125] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Despite extensive work showing the importance of blood flow in angiogenesis and vessel remodeling, very little is known about how changes in vessel diameter are orchestrated at the cellular level in response to mechanical forces. To define the cellular changes necessary for remodeling, we performed live confocal imaging of cultured mouse embryos during vessel remodeling. Our data revealed that vessel diameter increase occurs via two distinct processes that are dependent on normal blood flow: vessel fusions and directed endothelial cell migrations. Vessel fusions resulted in a rapid change in vessel diameter and were restricted to regions that experience the highest flow near the vitelline artery and vein. Directed cell migrations induced by blood flow resulted in the recruitment of endothelial cells to larger vessels from smaller capillaries and were observed in larger artery segments as they expanded. The dynamic and specific endothelial cell behaviors captured in this study reveal how sensitive endothelial cells are to changes in blood flow and how such responses drive vascular remodeling.
Collapse
Affiliation(s)
- Ryan S Udan
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | |
Collapse
|
28
|
Sakuraba J, Shintani T, Tani S, Noda M. Substrate specificity of R3 receptor-like protein-tyrosine phosphatase subfamily toward receptor protein-tyrosine kinases. J Biol Chem 2013; 288:23421-31. [PMID: 23814054 DOI: 10.1074/jbc.m113.458489] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Receptor-like protein-tyrosine phosphatases (RPTPs) are involved in various aspects of cellular functions, such as proliferation, differentiation, survival, migration, and metabolism. A small number of RPTPs have been reported to regulate activities of some cellular proteins including receptor protein-tyrosine kinases (RPTKs). However, our understanding about the roles of individual RPTPs in the regulation of RPTKs is still limited. The R3 RPTP subfamily reportedly plays pivotal roles in the development of several tissues including the vascular and nervous systems. Here, we examined enzyme-substrate relationships between the four R3 RPTP subfamily members and 21 RPTK members selected from 14 RPTK subfamilies by using a mammalian two-hybrid system with substrate-trapping RPTP mutants. Among the 84 RPTP-RPTK combinations conceivable, we detected 30 positive interactions: 25 of the enzyme-substrate relationships were novel. We randomly chose several RPTKs assumed to be substrates for R3 RPTPs, and validated the results of this screen by in vitro dephosphorylation assays, and by cell-based assays involving overexpression and knock-down experiments. Because their functional relationships were verified without exception, it is probable that the RPTKs identified as potential substrates are actually physiological substrates for the R3 RPTPs. Interestingly, some RPTKs were recognized as substrates by all R3 members, but others were recognized by only one or a few members. The enzyme-substrate relationships identified in the present study will shed light on physiological roles of the R3 RPTP subfamily.
Collapse
Affiliation(s)
- Juichi Sakuraba
- Division of Molecular Neurobiology, National Institute for Basic Biology, Graduate University for Advanced Studies (SOKENDAI), Okazaki 444-8787, Japan
| | | | | | | |
Collapse
|
29
|
Nunes-Xavier CE, Martín-Pérez J, Elson A, Pulido R. Protein tyrosine phosphatases as novel targets in breast cancer therapy. Biochim Biophys Acta Rev Cancer 2013; 1836:211-26. [PMID: 23756181 DOI: 10.1016/j.bbcan.2013.06.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2013] [Accepted: 06/01/2013] [Indexed: 02/07/2023]
Abstract
Breast cancer is linked to hyperactivation of protein tyrosine kinases (PTKs), and recent studies have unveiled that selective tyrosine dephosphorylation by protein tyrosine phosphatases (PTPs) of specific substrates, including PTKs, may activate or inactivate oncogenic pathways in human breast cancer cell growth-related processes. Here, we review the current knowledge on the involvement of PTPs in breast cancer, as major regulators of breast cancer therapy-targeted PTKs, such as HER1/EGFR, HER2/Neu, and Src. The functional interplay between PTKs and PTK-activating or -inactivating PTPs, and its implications in novel breast cancer therapies based on targeting of specific PTPs, are discussed.
Collapse
Affiliation(s)
- Caroline E Nunes-Xavier
- BioCruces Health Research Institute, Hospital de Cruces, Plaza Cruces s/n, 48903 Barakaldo, Spain
| | | | | | | |
Collapse
|
30
|
Hendriks WJAJ, Pulido R. Protein tyrosine phosphatase variants in human hereditary disorders and disease susceptibilities. Biochim Biophys Acta Mol Basis Dis 2013; 1832:1673-96. [PMID: 23707412 DOI: 10.1016/j.bbadis.2013.05.022] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Revised: 05/14/2013] [Accepted: 05/16/2013] [Indexed: 12/18/2022]
Abstract
Reversible tyrosine phosphorylation of proteins is a key regulatory mechanism to steer normal development and physiological functioning of multicellular organisms. Phosphotyrosine dephosphorylation is exerted by members of the super-family of protein tyrosine phosphatase (PTP) enzymes and many play such essential roles that a wide variety of hereditary disorders and disease susceptibilities in man are caused by PTP alleles. More than two decades of PTP research has resulted in a collection of PTP genetic variants with corresponding consequences at the molecular, cellular and physiological level. Here we present a comprehensive overview of these PTP gene variants that have been linked to disease states in man. Although the findings have direct bearing for disease diagnostics and for research on disease etiology, more work is necessary to translate this into therapies that alleviate the burden of these hereditary disorders and disease susceptibilities in man.
Collapse
Affiliation(s)
- Wiljan J A J Hendriks
- Department of Cell Biology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands.
| | | |
Collapse
|
31
|
Lampugnani MG. Endothelial cell-to-cell junctions: adhesion and signaling in physiology and pathology. Cold Spring Harb Perspect Med 2012; 2:cshperspect.a006528. [PMID: 23028127 DOI: 10.1101/cshperspect.a006528] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Besides intercellular recognition and adhesion, which are primarily performed by the transmembrane components, many of the molecules associated in endothelial cell-to-cell junctions initiate or regulate signal transmission. Clustering of molecules at junctions has the consequence of allowing new local interactions to direct specific cellular responses with crucial effects on the physiology and pathology of the endothelium and, more generally, of the vascular system. The implication is that cell-to-cell junctions could be envisaged as molecular targets for different types of therapeutic intervention. These could be directed to "cure" the defects of endothelial junctions that accompany several pathologies or to reversibly open them in a controlled way for the efficient delivery of drugs to the tissues. These aims can become more and more approachable as the knowledge of the molecular organization and function of endothelial junctions increases and their organ and tissue specificities become understood.
Collapse
|
32
|
Tyrosine phosphorylation of DEP-1/CD148 as a mechanism controlling Src kinase activation, endothelial cell permeability, invasion, and capillary formation. Blood 2012; 120:2745-56. [PMID: 22898603 DOI: 10.1182/blood-2011-12-398040] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
DEP-1/CD148 is a receptor-like protein tyrosine phosphatase with antiproliferative and tumor-suppressive functions. Interestingly, it also positively regulates Src family kinases in hematopoietic and endothelial cells, where we showed it promotes VE-cadherin-associated Src activation and endothelial cell survival upon VEGF stimulation. However, the molecular mechanism involved and its biologic functions in endothelial cells remain ill-defined. We demonstrate here that DEP-1 is phosphorylated in a Src- and Fyn-dependent manner on Y1311 and Y1320, which bind the Src SH2 domain. This allows DEP-1-catalyzed dephosphorylation of Src inhibitory Y529 and favors the VEGF-induced phosphorylation of Src substrates VE-cadherin and Cortactin. Accordingly, RNA interference (RNAi)-mediated knockdown of DEP-1 or expression of DEP-1 Y1311F/Y1320F impairs Src-dependent biologic responses mediated by VEGF including permeability, invasion, and branching capillary formation. In addition, our work further reveals that above a threshold expression level, DEP-1 can also dephosphorylate Src Y418 and attenuate downstream signaling and biologic responses, consistent with the quiescent behavior of confluent endothelial cells that express the highest levels of endogenous DEP-1. Collectively, our findings identify the VEGF-dependent phosphorylation of DEP-1 as a novel mechanism controlling Src activation, and show this is essential for the proper regulation of permeability and the promotion of the angiogenic response.
Collapse
|
33
|
Receptor type protein tyrosine phosphatases (RPTPs) - roles in signal transduction and human disease. J Cell Commun Signal 2012; 6:125-38. [PMID: 22851429 DOI: 10.1007/s12079-012-0171-5] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2012] [Accepted: 07/12/2012] [Indexed: 01/06/2023] Open
Abstract
Protein tyrosine phosphorylation is a fundamental regulatory mechanism controlling cell proliferation, differentiation, communication, and adhesion. Disruption of this key regulatory mechanism contributes to a variety of human diseases including cancer, diabetes, and auto-immune diseases. Net protein tyrosine phosphorylation is determined by the dynamic balance of the activity of protein tyrosine kinases (PTKs) and protein tyrosine phosphatases (PTPs). Mammals express many distinct PTKs and PTPs. Both of these families can be sub-divided into non-receptor and receptor subtypes. Receptor protein tyrosine kinases (RPTKs) comprise a large family of cell surface proteins that initiate intracellular tyrosine phosphorylation-dependent signal transduction in response to binding of extracellular ligands, such as growth factors and cytokines. Receptor-type protein tyrosine phosphatases (RPTPs) are enzymatic and functional counterparts of RPTKs. RPTPs are a family of integral cell surface proteins that possess intracellular PTP activity, and extracellular domains that have sequence homology to cell adhesion molecules. In comparison to extensively studied RPTKs, much less is known about RPTPs, especially regarding their substrate specificities, regulatory mechanisms, biological functions, and their roles in human diseases. Based on the structure of their extracellular domains, the RPTP family can be grouped into eight sub-families. This article will review one representative member from each RPTP sub-family.
Collapse
|
34
|
Labbé DP, Hardy S, Tremblay ML. Protein tyrosine phosphatases in cancer: friends and foes! PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2012; 106:253-306. [PMID: 22340721 DOI: 10.1016/b978-0-12-396456-4.00009-2] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Tyrosine phosphorylation of proteins serves as an exquisite switch in controlling several key oncogenic signaling pathways involved in cell proliferation, apoptosis, migration, and invasion. Since protein tyrosine phosphatases (PTPs) counteract protein kinases by removing phosphate moieties on target proteins, one may intuitively think that PTPs would act as tumor suppressors. Indeed, one of the most described PTPs, namely, the phosphatase and tensin homolog (PTEN), is a tumor suppressor. However, a growing body of evidence suggests that PTPs can also function as potent oncoproteins. In this chapter, we provide a broad historical overview of the PTPs, their mechanism of action, and posttranslational modifications. Then, we focus on the dual properties of classical PTPs (receptor and nonreceptor) and dual-specificity phosphatases in cancer and summarize the current knowledge of the signaling pathways regulated by key PTPs in human cancer. In conclusion, we present our perspective on the potential of these PTPs to serve as therapeutic targets in cancer.
Collapse
Affiliation(s)
- David P Labbé
- Goodman Cancer Research Centre, McGill University, Montréal, Québec, Canada
| | | | | |
Collapse
|
35
|
Smart CE, Askarian Amiri ME, Wronski A, Dinger ME, Crawford J, Ovchinnikov DA, Vargas AC, Reid L, Simpson PT, Song S, Wiesner C, French JD, Dave RK, da Silva L, Purdon A, Andrew M, Mattick JS, Lakhani SR, Brown MA, Kellie S. Expression and function of the protein tyrosine phosphatase receptor J (PTPRJ) in normal mammary epithelial cells and breast tumors. PLoS One 2012; 7:e40742. [PMID: 22815804 PMCID: PMC3398958 DOI: 10.1371/journal.pone.0040742] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2012] [Accepted: 06/12/2012] [Indexed: 12/31/2022] Open
Abstract
The protein tyrosine phosphatase receptor J, PTPRJ, is a tumor suppressor gene that has been implicated in a range of cancers, including breast cancer, yet little is known about its role in normal breast physiology or in mammary gland tumorigenesis. In this paper we show that PTPRJ mRNA is expressed in normal breast tissue and reduced in corresponding tumors. Meta-analysis revealed that the gene encoding PTPRJ is frequently lost in breast tumors and that low expression of the transcript associated with poorer overall survival at 20 years. Immunohistochemistry of PTPRJ protein in normal human breast tissue revealed a distinctive apical localisation in the luminal cells of alveoli and ducts. Qualitative analysis of a cohort of invasive ductal carcinomas revealed retention of normal apical PTPRJ localization where tubule formation was maintained but that tumors mostly exhibited diffuse cytoplasmic staining, indicating that dysregulation of localisation associated with loss of tissue architecture in tumorigenesis. The murine ortholog, Ptprj, exhibited a similar localisation in normal mammary gland, and was differentially regulated throughout lactational development, and in an in vitro model of mammary epithelial differentiation. Furthermore, ectopic expression of human PTPRJ in HC11 murine mammary epithelial cells inhibited dome formation. These data indicate that PTPRJ may regulate differentiation of normal mammary epithelia and that dysregulation of protein localisation may be associated with tumorigenesis.
Collapse
MESH Headings
- Animals
- Breast Neoplasms/enzymology
- Breast Neoplasms/genetics
- Breast Neoplasms/pathology
- Cell Differentiation/genetics
- Cell Line, Tumor
- Down-Regulation/genetics
- Epithelial Cells/enzymology
- Epithelial Cells/pathology
- Epithelium/enzymology
- Epithelium/pathology
- Female
- Gene Dosage/genetics
- Gene Expression Regulation, Neoplastic
- Genetic Loci/genetics
- Humans
- Introns/genetics
- Mammary Glands, Animal/enzymology
- Mammary Glands, Animal/growth & development
- Mammary Glands, Animal/pathology
- Mammary Glands, Human/enzymology
- Mammary Glands, Human/pathology
- Mammary Neoplasms, Animal/enzymology
- Mammary Neoplasms, Animal/genetics
- Mammary Neoplasms, Animal/pathology
- Meta-Analysis as Topic
- Mice
- Mice, Inbred C57BL
- Pregnancy
- RNA, Antisense/genetics
- RNA, Long Noncoding/genetics
- RNA, Long Noncoding/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Receptor-Like Protein Tyrosine Phosphatases, Class 3/genetics
- Receptor-Like Protein Tyrosine Phosphatases, Class 3/metabolism
Collapse
Affiliation(s)
- Chanel E. Smart
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
- Centre for Clinical Research, The University of Queensland, Brisbane, Queensland, Australia
- Queensland Institute of Medical Research, Brisbane, Queensland, Australia
| | - Marjan E. Askarian Amiri
- Institute for Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Ania Wronski
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Marcel E. Dinger
- Institute for Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Joanna Crawford
- Institute for Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Dmitry A. Ovchinnikov
- Institute for Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Ana Cristina Vargas
- Centre for Clinical Research, The University of Queensland, Brisbane, Queensland, Australia
- Queensland Institute of Medical Research, Brisbane, Queensland, Australia
| | - Lynne Reid
- Centre for Clinical Research, The University of Queensland, Brisbane, Queensland, Australia
- Queensland Institute of Medical Research, Brisbane, Queensland, Australia
| | - Peter T. Simpson
- Centre for Clinical Research, The University of Queensland, Brisbane, Queensland, Australia
- Queensland Institute of Medical Research, Brisbane, Queensland, Australia
| | - Sarah Song
- Centre for Clinical Research, The University of Queensland, Brisbane, Queensland, Australia
- Institute for Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Christiane Wiesner
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Juliet D. French
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Richa K. Dave
- Institute for Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Leonard da Silva
- Centre for Clinical Research, The University of Queensland, Brisbane, Queensland, Australia
- Queensland Institute of Medical Research, Brisbane, Queensland, Australia
| | - Amy Purdon
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
- Institute for Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Megan Andrew
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
| | - John S. Mattick
- Institute for Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Sunil R. Lakhani
- Centre for Clinical Research, The University of Queensland, Brisbane, Queensland, Australia
- Queensland Institute of Medical Research, Brisbane, Queensland, Australia
- School of Medicine, The University of Queensland, Brisbane, Queensland, Australia
- University of Queensland, Department of Anatomical Pathology, Brisbane, Queensland, Australia
| | - Melissa A. Brown
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Stuart Kellie
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
- Institute for Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
- * E-mail:
| |
Collapse
|
36
|
Abstract
CD148 is a receptor-type protein tyrosine phosphatase that is expressed in several cell types, including vascular endothelial cells and duct epithelial cells. Growing evidence demonstrates a prominent role for CD148 in negative regulation of growth factor signals, suppressing cell proliferation and transformation. However, its extracellular ligand(s) remain unknown. To identify the ligand(s) of CD148, we introduced HA-tagged CD148 into cultured endothelial cells and then isolated its interacting extracellular protein(s) by biotin surface labeling and subsequent affinity purifications. The binding proteins were identified by mass spectrometry. Here we report that soluble thrombospondin-1 (TSP1) binds to the extracellular part of CD148 with high affinity and specificity, and its binding increases CD148 catalytic activity, leading to dephosphorylation of the substrate proteins. Consistent with these findings, introduction of CD148 conferred TSP1-mediated inhibition of cell growth to cells which lack CD148 and TSP1 inhibition of growth. Further, we demonstrate that TSP1-mediated inhibition of endothelial cell growth is antagonized by soluble CD148 ectodomain as well as by CD148 gene silencing. These findings provide evidence that CD148 functions as a receptor for TSP1 and mediates its inhibition of cell growth.
Collapse
|
37
|
Whiteford JR, Xian X, Chaussade C, Vanhaesebroeck B, Nourshargh S, Couchman JR. Syndecan-2 is a novel ligand for the protein tyrosine phosphatase receptor CD148. Mol Biol Cell 2011; 22:3609-24. [PMID: 21813734 PMCID: PMC3183016 DOI: 10.1091/mbc.e11-02-0099] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The proteoglycan syndecan-2 is a novel ligand for the tyrosine phosphatase receptor CD148, an interaction that stimulates a signaling pathway leading to integrin-mediated cell adhesion. The pathway involves SRC and PI3 kinases and is an example of cell surface receptor cross-talk influencing integrin-mediated cellular processes. Syndecan-2 is a heparan sulfate proteoglycan that has a cell adhesion regulatory domain contained within its extracellular core protein. Cell adhesion to the syndecan-2 extracellular domain (S2ED) is β1 integrin dependent; however, syndecan-2 is not an integrin ligand. Here the protein tyrosine phosphatase receptor CD148 is shown to be a key intermediary in cell adhesion to S2ED, with downstream β1 integrin–mediated adhesion and cytoskeletal organization. We show that S2ED is a novel ligand for CD148 and identify the region proximal to the transmembrane domain of syndecan-2 as the site of interaction with CD148. A mechanism for the transduction of the signal from CD148 to β1 integrins is elucidated requiring Src kinase and potential implication of the C2β isoform of phosphatidylinositol 3 kinase. Our data uncover a novel pathway for β1 integrin–mediated adhesion of importance in cellular processes such as angiogenesis and inflammation.
Collapse
Affiliation(s)
- James R Whiteford
- Centre for Microvascular Research, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, United Kingdom.
| | | | | | | | | | | |
Collapse
|
38
|
Density enhanced phosphatase-1 down-regulates urokinase receptor surface expression in confluent endothelial cells. Blood 2011; 117:4154-61. [PMID: 21304107 DOI: 10.1182/blood-2010-09-307694] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
VEGF(165), the major angiogenic growth factor, is known to activate various steps in proangiogenic endothelial cell behavior, such as endothelial cell migration and invasion, or endothelial cell survival. Thereby, the urokinase-type plasminogen activator (uPA) system has been shown to play an essential role not only by its proteolytic capacities, but also by induction of intracellular signal transduction. Therefore, expression of its cell surface receptor uPAR is thought to be an essential regulatory mechanism in angiogenesis. We found that uPAR expression on the surface of confluent endothelial cells was down-regulated compared with subconfluent proliferating endothelial cells. Regulation of uPAR expression was most probably affected by extracellular signal-regulated kinase 1/2 (ERK1/2) activation, a downstream signaling event of the VEGF/VEGF-receptor system. Consistently, the receptor-like protein tyrosine phosphatase DEP-1 (density enhanced phosphatase-1/CD148), which is abundantly expressed in confluent endothelial cells, inhibited the VEGF-dependent activation of ERK1/2, leading to down-regulation of uPAR expression. Overexpression of active ERK1 rescued the DEP-1 effect on uPAR. That DEP-1 plays a biologic role in angiogenic endothelial cell behavior was demonstrated in endothelial cell migration, proliferation, and capillary-like tube formation assays in vitro.
Collapse
|
39
|
Petermann A, Haase D, Wetzel A, Balavenkatraman KK, Tenev T, Gührs KH, Friedrich S, Nakamura M, Mawrin C, Böhmer FD. Loss of the protein-tyrosine phosphatase DEP-1/PTPRJ drives meningioma cell motility. Brain Pathol 2010; 21:405-18. [PMID: 21091576 DOI: 10.1111/j.1750-3639.2010.00464.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
DEP-1/PTPRJ is a transmembrane protein-tyrosine phosphatase which has been proposed as a suppressor of epithelial tumors. We have found loss of heterozygosity (LOH) of the PTPRJ gene and loss of DEP-1 protein expression in a subset of human meningiomas. RNAi-mediated suppression of DEP-1 in DEP-1 positive meningioma cell lines caused enhanced motility and colony formation in semi-solid media. Cells devoid of DEP-1 exhibited enhanced signaling of endogenous platelet-derived growth factor (PDGF) receptors, and reduced paxillin phosphorylation upon seeding. Moreover, DEP-1 loss caused diminished adhesion to different matrices, and impaired cell spreading. DEP-1-deficient meningioma cells exhibited invasive growth in an orthotopic xenotransplantation model in nude mice, indicating that elevated motility translates into a biological phenotype in vivo. We propose that negative regulation of PDGF receptor signaling and positive regulation of adhesion signaling by DEP-1 cooperate in inhibition of meningioma cell motility, and possibly tumor invasiveness. These phenotypes of DEP-1 loss reveal functions of DEP-1 in adherent cells, and may be more generally relevant for tumorigenesis.
Collapse
Affiliation(s)
- Astrid Petermann
- Institute of Molecular Cell Biology, Center for Molecular Biomedicine, Jena, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Matozaki T, Murata Y, Mori M, Kotani T, Okazawa H, Ohnishi H. Expression, localization, and biological function of the R3 subtype of receptor-type protein tyrosine phosphatases in mammals. Cell Signal 2010; 22:1811-7. [PMID: 20633639 DOI: 10.1016/j.cellsig.2010.07.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2010] [Accepted: 07/06/2010] [Indexed: 11/26/2022]
Abstract
The R3 subtype of receptor-type protein tyrosine phosphatases (RPTPs) includes VE-PTP, DEP-1, PTPRO, and SAP-1. All of these enzymes share a similar structure, with a single catalytic domain and putative tyrosine phosphorylation sites in the cytoplasmic region and fibronectin type III-like domains in the extracellular region. The expression of each R3 RPTP is largely restricted to a single or limited number of cell types, with VE-PTP and DEP-1 being expressed in endothelial or hematopoietic cells, PTPRO in neurons and in podocytes of the renal glomerulus, and SAP-1 in gastrointestinal epithelial cells. In addition, these RPTPs are localized specifically at the apical surface of polarized cells. The structure, expression, and localization of the R3 RPTPs suggest that they perform tissue-specific functions and that they might act through a common mechanism that includes activation of Src family kinases. In this review, we describe recent insights into R3-subtype RPTPs, particularly those of mammals.
Collapse
Affiliation(s)
- Takashi Matozaki
- Laboratory of Biosignal Sciences, Institute for Molecular and Cellular Regulation, Gunma University, 3-39-15 Showa-Machi, Maebashi, Gunma 371-8512, Japan.
| | | | | | | | | | | |
Collapse
|
41
|
Navis AC, van den Eijnden M, Schepens JTG, Hooft van Huijsduijnen R, Wesseling P, Hendriks WJAJ. Protein tyrosine phosphatases in glioma biology. Acta Neuropathol 2010; 119:157-75. [PMID: 19936768 PMCID: PMC2808538 DOI: 10.1007/s00401-009-0614-0] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2009] [Revised: 11/13/2009] [Accepted: 11/13/2009] [Indexed: 01/01/2023]
Abstract
Gliomas are a diverse group of brain tumors of glial origin. Most are characterized by diffuse infiltrative growth in the surrounding brain. In combination with their refractive nature to chemotherapy this makes it almost impossible to cure patients using combinations of conventional therapeutic strategies. The drastically increased knowledge about the molecular underpinnings of gliomas during the last decade has elicited high expectations for a more rational and effective therapy for these tumors. Most studies on the molecular pathways involved in glioma biology thus far had a strong focus on growth factor receptor protein tyrosine kinase (PTK) and phosphatidylinositol phosphatase signaling pathways. Except for the tumor suppressor PTEN, much less attention has been paid to the PTK counterparts, the protein tyrosine phosphatase (PTP) superfamily, in gliomas. PTPs are instrumental in the reversible phosphorylation of tyrosine residues and have emerged as important regulators of signaling pathways that are linked to various developmental and disease-related processes. Here, we provide an overview of the current knowledge on PTP involvement in gliomagenesis. So far, the data point to the potential implication of receptor-type (RPTPδ, DEP1, RPTPμ, RPTPζ) and intracellular (PTP1B, TCPTP, SHP2, PTPN13) classical PTPs, dual-specific PTPs (MKP-1, VHP, PRL-3, KAP, PTEN) and the CDC25B and CDC25C PTPs in glioma biology. Like PTKs, these PTPs may represent promising targets for the development of novel diagnostic and therapeutic strategies in the treatment of high-grade gliomas.
Collapse
Affiliation(s)
- Anna C. Navis
- Department of Cell Biology, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Geert Grooteplein 28, 6525 GA Nijmegen, The Netherlands
- Department of Pathology, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Monique van den Eijnden
- Department of Neurobiology, Geneva Research Center, Merck Serono International S.A, Geneva, Switzerland
| | - Jan T. G. Schepens
- Department of Cell Biology, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Geert Grooteplein 28, 6525 GA Nijmegen, The Netherlands
| | | | - Pieter Wesseling
- Department of Pathology, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Wiljan J. A. J. Hendriks
- Department of Cell Biology, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Geert Grooteplein 28, 6525 GA Nijmegen, The Netherlands
| |
Collapse
|
42
|
Winderlich M, Keller L, Cagna G, Broermann A, Kamenyeva O, Kiefer F, Deutsch U, Nottebaum AF, Vestweber D. VE-PTP controls blood vessel development by balancing Tie-2 activity. ACTA ACUST UNITED AC 2009; 185:657-71. [PMID: 19451274 PMCID: PMC2711575 DOI: 10.1083/jcb.200811159] [Citation(s) in RCA: 148] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Vascular endothelial protein tyrosine phosphatase (VE-PTP) is an endothelial-specific receptor-type tyrosine phosphatase that associates with Tie-2 and VE-cadherin. VE-PTP gene disruption leads to embryonic lethality, vascular remodeling defects, and enlargement of vascular structures in extraembryonic tissues. We show here that antibodies against the extracellular part of VE-PTP mimic the effects of VE-PTP gene disruption exemplified by vessel enlargement in allantois explants. These effects require the presence of the angiopoietin receptor Tie-2. Analyzing the mechanism we found that anti-VE-PTP antibodies trigger endocytosis and selectively affect Tie-2-associated, but not VE-cadherin-associated VE-PTP. Dissociation of VE-PTP triggers the activation of Tie-2, leading to enhanced endothelial cell proliferation and enlargement of vascular structures through activation of Erk1/2. Importantly, the antibody effect on vessel enlargement is also observed in newborn mice. We conclude that VE-PTP is required to balance Tie-2 activity and endothelial cell proliferation, thereby controlling blood vessel development and vessel size.
Collapse
Affiliation(s)
- Mark Winderlich
- Max-Planck-Institute of Molecular Biomedicine, D-48149 Münster, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Sacco F, Tinti M, Palma A, Ferrari E, Nardozza AP, van Huijsduijnen RH, Takahashi T, Castagnoli L, Cesareni G. Tumor suppressor density-enhanced phosphatase-1 (DEP-1) inhibits the RAS pathway by direct dephosphorylation of ERK1/2 kinases. J Biol Chem 2009; 284:22048-22058. [PMID: 19494114 DOI: 10.1074/jbc.m109.002758] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Density-enhanced phosphatase-1 (DEP-1) is a trans-membrane receptor protein-tyrosine phosphatase that plays a recognized prominent role as a tumor suppressor. However, the mechanistic details underlying its function are poorly understood because its primary physiological substrate(s) have not been firmly established. To shed light on the mechanisms underlying the anti-proliferative role of this phosphatase, we set out to identify new DEP-1 substrates by a novel approach based on screening of high density peptide arrays. The results of the array experiment were combined with a bioinformatics filter to identify eight potential DEP-1 targets among the proteins annotated in the MAPK pathway. In this study we show that one of these potential targets, the ERK1/2, is indeed a direct DEP-1 substrate in vivo. Pulldown and in vitro dephosphorylation assays confirmed our prediction and demonstrated an overall specificity of DEP-1 in targeting the phosphorylated tyrosine 204 of ERK1/2. After epidermal growth factor stimulation, the phosphorylation of the activation loop of ERK1/2 can be modulated by changing the concentration of DEP-1, without affecting the activity of the upstream kinase MEK. In addition, we show that DEP-1 contains a KIM-like motif to recruit ERK1/2 proteins by a docking mechanism mediated by the common docking domain in ERK1/2. ERK proteins that are mutated in the conserved docking domain become insensitive to DEP-1 de-phosphorylation. Overall this study provides novel insights into the anti-proliferative role of this phosphatase and proposes a new mechanism that may also be relevant for the regulation of density-dependent growth inhibition.
Collapse
Affiliation(s)
- Francesca Sacco
- Department of Biology, University of Rome Tor Vergata, Via della Ricerca Scientifica, 00133 Rome, Italy
| | - Michele Tinti
- Department of Biology, University of Rome Tor Vergata, Via della Ricerca Scientifica, 00133 Rome, Italy
| | - Anita Palma
- Department of Biology, University of Rome Tor Vergata, Via della Ricerca Scientifica, 00133 Rome, Italy
| | - Emanuela Ferrari
- Department of Biology, University of Rome Tor Vergata, Via della Ricerca Scientifica, 00133 Rome, Italy
| | - Aurelio P Nardozza
- Department of Biology, University of Rome Tor Vergata, Via della Ricerca Scientifica, 00133 Rome, Italy
| | | | - Takamune Takahashi
- Nephrology Division and Center for Vascular Biology, Vanderbilt University Medical Center, Nashville, Tennessee 37232
| | - Luisa Castagnoli
- Department of Biology, University of Rome Tor Vergata, Via della Ricerca Scientifica, 00133 Rome, Italy
| | - Gianni Cesareni
- Department of Biology, University of Rome Tor Vergata, Via della Ricerca Scientifica, 00133 Rome, Italy; Istituto di Ricovero e Cura a Carattere Scientifico Fondazione Santa Lucia, 00143 Rome, Italy
| |
Collapse
|
44
|
Miguet L, Béchade G, Fornecker L, Zink E, Felden C, Gervais C, Herbrecht R, van Dorsselaer A, Mauvieux L, Sanglier-Cianferani S. Proteomic Analysis of Malignant B-Cell Derived Microparticles Reveals CD148 as a Potentially Useful Antigenic Biomarker for Mantle Cell Lymphoma Diagnosis. J Proteome Res 2009; 8:3346-54. [DOI: 10.1021/pr801102c] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Laurent Miguet
- Laboratoire de Spectrométrie de Masse Bio-Organique, IPHC-DSA, UDS, CNRS, UMR7178, ECPM 25 rue Becquerel, 67087 Strasbourg, France, Laboratoire d’Hématologie cellulaire EA 3948, Institut d’Hématologie, Strasbourg, France, and Pôle d’Onco-Hématologie - Hôpitaux Universitaires de Strasbourg, France
| | - Guillaume Béchade
- Laboratoire de Spectrométrie de Masse Bio-Organique, IPHC-DSA, UDS, CNRS, UMR7178, ECPM 25 rue Becquerel, 67087 Strasbourg, France, Laboratoire d’Hématologie cellulaire EA 3948, Institut d’Hématologie, Strasbourg, France, and Pôle d’Onco-Hématologie - Hôpitaux Universitaires de Strasbourg, France
| | - Luc Fornecker
- Laboratoire de Spectrométrie de Masse Bio-Organique, IPHC-DSA, UDS, CNRS, UMR7178, ECPM 25 rue Becquerel, 67087 Strasbourg, France, Laboratoire d’Hématologie cellulaire EA 3948, Institut d’Hématologie, Strasbourg, France, and Pôle d’Onco-Hématologie - Hôpitaux Universitaires de Strasbourg, France
| | - Estelle Zink
- Laboratoire de Spectrométrie de Masse Bio-Organique, IPHC-DSA, UDS, CNRS, UMR7178, ECPM 25 rue Becquerel, 67087 Strasbourg, France, Laboratoire d’Hématologie cellulaire EA 3948, Institut d’Hématologie, Strasbourg, France, and Pôle d’Onco-Hématologie - Hôpitaux Universitaires de Strasbourg, France
| | - Claire Felden
- Laboratoire de Spectrométrie de Masse Bio-Organique, IPHC-DSA, UDS, CNRS, UMR7178, ECPM 25 rue Becquerel, 67087 Strasbourg, France, Laboratoire d’Hématologie cellulaire EA 3948, Institut d’Hématologie, Strasbourg, France, and Pôle d’Onco-Hématologie - Hôpitaux Universitaires de Strasbourg, France
| | - Carine Gervais
- Laboratoire de Spectrométrie de Masse Bio-Organique, IPHC-DSA, UDS, CNRS, UMR7178, ECPM 25 rue Becquerel, 67087 Strasbourg, France, Laboratoire d’Hématologie cellulaire EA 3948, Institut d’Hématologie, Strasbourg, France, and Pôle d’Onco-Hématologie - Hôpitaux Universitaires de Strasbourg, France
| | - Raoul Herbrecht
- Laboratoire de Spectrométrie de Masse Bio-Organique, IPHC-DSA, UDS, CNRS, UMR7178, ECPM 25 rue Becquerel, 67087 Strasbourg, France, Laboratoire d’Hématologie cellulaire EA 3948, Institut d’Hématologie, Strasbourg, France, and Pôle d’Onco-Hématologie - Hôpitaux Universitaires de Strasbourg, France
| | - Alain van Dorsselaer
- Laboratoire de Spectrométrie de Masse Bio-Organique, IPHC-DSA, UDS, CNRS, UMR7178, ECPM 25 rue Becquerel, 67087 Strasbourg, France, Laboratoire d’Hématologie cellulaire EA 3948, Institut d’Hématologie, Strasbourg, France, and Pôle d’Onco-Hématologie - Hôpitaux Universitaires de Strasbourg, France
| | - Laurent Mauvieux
- Laboratoire de Spectrométrie de Masse Bio-Organique, IPHC-DSA, UDS, CNRS, UMR7178, ECPM 25 rue Becquerel, 67087 Strasbourg, France, Laboratoire d’Hématologie cellulaire EA 3948, Institut d’Hématologie, Strasbourg, France, and Pôle d’Onco-Hématologie - Hôpitaux Universitaires de Strasbourg, France
| | - Sarah Sanglier-Cianferani
- Laboratoire de Spectrométrie de Masse Bio-Organique, IPHC-DSA, UDS, CNRS, UMR7178, ECPM 25 rue Becquerel, 67087 Strasbourg, France, Laboratoire d’Hématologie cellulaire EA 3948, Institut d’Hématologie, Strasbourg, France, and Pôle d’Onco-Hématologie - Hôpitaux Universitaires de Strasbourg, France
| |
Collapse
|
45
|
Murakami M, Simons M. Regulation of vascular integrity. J Mol Med (Berl) 2009; 87:571-82. [PMID: 19337719 DOI: 10.1007/s00109-009-0463-2] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2009] [Revised: 03/03/2009] [Accepted: 03/06/2009] [Indexed: 12/13/2022]
Abstract
The integrity of blood vessels is critical to vascular homeostasis. Maintenance of vascular integrity has been conventionally regarded as a passive process that is largely dependent on continuous blood flow. Recent studies, however, have begun unveiling molecular processes essential for maintenance of vascular integrity and homeostasis under physiological conditions, leading to the notion that maintenance of the vasculature is an active biological process that requires continuous, basal cellular signaling. Failure of this system results in serious consequences such as hemorrhage, edema, inflammation, and tissue ischemia. In this review, we will discuss the emerging concepts in regulation of vascular integrity with the emphasis on structural components of blood vessels that are essential for vascular maintenance.
Collapse
Affiliation(s)
- Masahiro Murakami
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
| | | |
Collapse
|
46
|
Hermiston ML, Zikherman J, Zhu JW. CD45, CD148, and Lyp/Pep: critical phosphatases regulating Src family kinase signaling networks in immune cells. Immunol Rev 2009; 228:288-311. [PMID: 19290935 PMCID: PMC2739744 DOI: 10.1111/j.1600-065x.2008.00752.x] [Citation(s) in RCA: 123] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Reciprocal regulation of tyrosine phosphorylation by protein tyrosine kinases (PTKs) and protein tyrosine phosphatases (PTPs) is central to normal immune cell function. Disruption of the equilibrium between PTK and PTP activity can result in immunodeficiency, autoimmunity, or malignancy. Src family kinases (SFKs) play a central role in both immune cell function and disease due to their proximal position in numerous signal transduction cascades including those emanating from integrin, T and B-cell antigen receptors, Fc, growth factor, and cytokine receptors. Given that tight regulation of SFKs activity is critical for appropriate responses to stimulation of these various signaling pathways, it is perhaps not surprising that multiple PTPs are involved in their regulation. Here, we focus on the role of three phosphatases, CD45, CD148, and LYP/PEP, which are critical regulators of SFKs in hematopoietic cells. We review our current understanding of their structures, expression, functions in different hematopoietic cell subsets, regulation, and putative roles in disease. Finally, we discuss remaining questions that must be addressed if we are to have a clearer understanding of the coordinated regulation of tyrosine phosphorylation and signaling networks in hematopoietic cells and how they could potentially be manipulated therapeutically in disease.
Collapse
Affiliation(s)
- Michelle L. Hermiston
- Department of Pediatrics, University of California, San Francisco, San Francisco, CA 94143, Phone: 415-476-2413, Fax: 415-502-5127,
| | - Julie Zikherman
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, Phone: 415-476-4115, Fax: 502-5081, ;
| | - Jing W. Zhu
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, Phone: 415-476-4115, Fax: 502-5081, ;
| |
Collapse
|
47
|
New role for the protein tyrosine phosphatase DEP-1 in Akt activation and endothelial cell survival. Mol Cell Biol 2008; 29:241-53. [PMID: 18936167 DOI: 10.1128/mcb.01374-08] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Functional inactivation of the protein tyrosine phosphatase DEP-1 leads to increased endothelial cell proliferation and failure of vessels to remodel and branch. DEP-1 has also been proposed to contribute to the contact inhibition of endothelial cell growth via dephosphorylation of vascular endothelial growth factor receptor 2 (VEGFR2), a mediator of vascular development. However, how DEP-1 regulates VEGF-dependent signaling and biological responses remains ill-defined. We show here that DEP-1 targets tyrosine residues in the VEGFR2 kinase activation loop. Consequently, depletion of DEP-1 results in the increased phosphorylation of all major VEGFR2 autophosphorylation sites, but surprisingly, not in the overall stimulation of VEGF-dependent signaling. The increased phosphorylation of Src on Y529 under these conditions results in impaired Src and Akt activation. This inhibition is similarly observed upon expression of catalytically inactive DEP-1, and coexpression of an active Src-Y529F mutant rescues Akt activation. Reduced Src activity correlates with decreased phosphorylation of Gab1, an adapter protein involved in VEGF-dependent Akt activation. Hypophosphorylated Gab1 is unable to fully associate with phosphatidylinositol 3-kinase, VEGFR2, and VE-cadherin complexes, leading to suboptimal Akt activation and increased cell death. Overall, our results reveal that despite its negative role on global VEGFR2 phosphorylation, DEP-1 is a positive regulator of VEGF-mediated Src and Akt activation and endothelial cell survival.
Collapse
|
48
|
Rodriguez F, Vacaru A, Overvoorde J, den Hertog J. The receptor protein-tyrosine phosphatase, Dep1, acts in arterial/venous cell fate decisions in zebrafish development. Dev Biol 2008; 324:122-30. [PMID: 18835554 DOI: 10.1016/j.ydbio.2008.09.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2007] [Revised: 09/08/2008] [Accepted: 09/09/2008] [Indexed: 02/07/2023]
Abstract
Dep1 is a transmembrane protein-tyrosine phosphatase (PTP) that is expressed in vascular endothelial cells and has tumor suppressor activity. Mouse models with gene targeted Dep1 either show vascular defects, or do not show any defects at all. We used the zebrafish to investigate the role of Dep1 in early development. The zebrafish genome encodes two highly homologous Dep1 genes, Dep1a and Dep1b. Morpholinos specific for Dep1a and Dep1b induced defects in vasculature, resulting in defective blood circulation. However, Green Fluorescent Protein expression in fli1a::gfp1 transgenic embryos and cdh5 expression, markers of vascular endothelial cells, were normal upon Dep1a- and Dep1b-MO injection. Molecular markers indicated that arterial specification was reduced and venous markers were expanded in Dep1 morphants. Moreover, the Dep1a/Dep1b knockdowns were rescued by inhibition of Phosphatidylinositol-3 kinase (PI3K) and by expression of active Notch and Grl/Hey2. Our results suggest a model in which Dep1 acts upstream in a signaling pathway inhibiting PI3K, resulting in expression of Notch and Grl, thus regulating arterial specification in development.
Collapse
Affiliation(s)
- Fiona Rodriguez
- Hubrecht Institute-KNAW and University Medical Center Utrecht, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| | | | | | | |
Collapse
|
49
|
Merks RMH, Perryn ED, Shirinifard A, Glazier JA. Contact-inhibited chemotaxis in de novo and sprouting blood-vessel growth. PLoS Comput Biol 2008; 4:e1000163. [PMID: 18802455 PMCID: PMC2528254 DOI: 10.1371/journal.pcbi.1000163] [Citation(s) in RCA: 129] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2006] [Accepted: 07/18/2008] [Indexed: 12/16/2022] Open
Abstract
Blood vessels form either when dispersed endothelial cells (the cells lining the inner walls of fully formed blood vessels) organize into a vessel network (vasculogenesis), or by sprouting or splitting of existing blood vessels (angiogenesis). Although they are closely related biologically, no current model explains both phenomena with a single biophysical mechanism. Most computational models describe sprouting at the level of the blood vessel, ignoring how cell behavior drives branch splitting during sprouting. We present a cell-based, Glazier-Graner-Hogeweg model (also called Cellular Potts Model) simulation of the initial patterning before the vascular cords form lumens, based on plausible behaviors of endothelial cells. The endothelial cells secrete a chemoattractant, which attracts other endothelial cells. As in the classic Keller-Segel model, chemotaxis by itself causes cells to aggregate into isolated clusters. However, including experimentally observed VE-cadherin-mediated contact inhibition of chemotaxis in the simulation causes randomly distributed cells to organize into networks and cell aggregates to sprout, reproducing aspects of both de novo and sprouting blood-vessel growth. We discuss two branching instabilities responsible for our results. Cells at the surfaces of cell clusters attempting to migrate to the centers of the clusters produce a buckling instability. In a model variant that eliminates the surface-normal force, a dissipative mechanism drives sprouting, with the secreted chemical acting both as a chemoattractant and as an inhibitor of pseudopod extension. Both mechanisms would also apply if force transmission through the extracellular matrix rather than chemical signaling mediated cell-cell interactions. The branching instabilities responsible for our results, which result from contact inhibition of chemotaxis, are both generic developmental mechanisms and interesting examples of unusual patterning instabilities.
Collapse
|
50
|
Nyqvist D, Giampietro C, Dejana E. Deciphering the functional role of endothelial junctions by using in vivo models. EMBO Rep 2008; 9:742-7. [PMID: 18600233 DOI: 10.1038/embor.2008.123] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2008] [Accepted: 05/23/2008] [Indexed: 11/09/2022] Open
Abstract
Endothelial cell-to-cell junctions are vital for the formation and integrity of blood vessels. The main adhesive junctional complexes in endothelial cells, adherens junctions and tight junctions, are formed by transmembrane adhesive proteins that are linked to intracellular signalling partners and cytoskeletal-binding proteins. Gene inactivation and blocking antibodies in mouse models have revealed some of the functions of the individual junctional components in vivo, and are increasing our understanding of the functional role of endothelial cell junctions in angiogenesis and vascular homeostasis. Adherens-junction organization is required for correct vascular morphogenesis during embryo development. By contrast, the data available suggest that tight-junction proteins are not essential for vascular development but are necessary for endothelial barrier function.
Collapse
Affiliation(s)
- Daniel Nyqvist
- IFOM, FIRC Institute of Molecular Oncology, Via Adamello 16, 20139 Milan, Italy
| | | | | |
Collapse
|