1
|
Grzechnik P, Mischo HE. Fateful Decisions of Where to Cut the Line: Pathology Associated with Aberrant 3' End Processing and Transcription Termination. J Mol Biol 2025; 437:168802. [PMID: 39321865 PMCID: PMC11870849 DOI: 10.1016/j.jmb.2024.168802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/17/2024] [Accepted: 09/19/2024] [Indexed: 09/27/2024]
Abstract
Aberrant gene expression lies at the heart of many pathologies. This review will point out how 3' end processing, the final mRNA-maturation step in the transcription cycle, is surprisingly prone to regulated as well as stochastic variations with a wide range of consequences. Whereas smaller variations contribute to the plasticity of gene expression, larger alternations to 3' end processing and coupled transcription termination can lead to pathological consequences. These can be caused by the local mutation of one gene or affect larger numbers of genes systematically, if aspects of the mechanisms of 3' end processing and transcription termination are altered.
Collapse
Affiliation(s)
- Pawel Grzechnik
- Division of Molecular and Cellular Function, School of Biological Sciences, University of Manchester, United Kingdom
| | - Hannah E Mischo
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King's College London, United Kingdom.
| |
Collapse
|
2
|
Burgardt R, Lambert D, Heuwieser C, Sack M, Wagner G, Weinberg Z, Wachter A. Positioning of pyrimidine motifs around cassette exons defines their PTB-dependent splicing in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 118:2202-2218. [PMID: 38578875 DOI: 10.1111/tpj.16739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 03/14/2024] [Indexed: 04/07/2024]
Abstract
Alternative splicing (AS) is a complex process that generates transcript variants from a single pre-mRNA and is involved in numerous biological functions. Many RNA-binding proteins are known to regulate AS; however, little is known about the underlying mechanisms, especially outside the mammalian clade. Here, we show that polypyrimidine tract binding proteins (PTBs) from Arabidopsis thaliana regulate AS of cassette exons via pyrimidine (Py)-rich motifs close to the alternative splice sites. Mutational studies on three PTB-dependent cassette exon events revealed that only some of the Py motifs in this region are critical for AS. Moreover, in vitro binding of PTBs did not reflect a motif's impact on AS in vivo. Our mutational studies and bioinformatic investigation of all known PTB-regulated cassette exons from A. thaliana and human suggested that the binding position of PTBs relative to a cassette exon defines whether its inclusion or skipping is induced. Accordingly, exon skipping is associated with a higher frequency of Py stretches within the cassette exon, and in human also upstream of it, whereas exon inclusion is characterized by increased Py motif occurrence downstream of said exon. Enrichment of Py motifs downstream of PTB-activated 5' splice sites is also seen for PTB-dependent intron removal and alternative 5' splice site events from A. thaliana, suggesting this is a common step of exon definition. In conclusion, the position-dependent AS regulatory mechanism by PTB homologs has been conserved during the separate evolution of plants and mammals, while other critical features, in particular intron length, have considerably changed.
Collapse
Affiliation(s)
- Rica Burgardt
- Institute for Molecular Physiology (imP), University of Mainz, Hanns-Dieter-Hüsch-Weg 17, 55128, Mainz, Germany
| | - Dorothee Lambert
- Center for Plant Molecular Biology (ZMBP), University of Tübingen, Auf der Morgenstelle 32, 72076, Tübingen, Germany
| | - Christina Heuwieser
- Center for Plant Molecular Biology (ZMBP), University of Tübingen, Auf der Morgenstelle 32, 72076, Tübingen, Germany
| | - Maximilian Sack
- Bioinformatics Group, Department of Computer Science and Interdisciplinary Centre for Bioinformatics, Leipzig University, Härtelstraße 16-18, 04107, Leipzig, Germany
| | - Gabriele Wagner
- Center for Plant Molecular Biology (ZMBP), University of Tübingen, Auf der Morgenstelle 32, 72076, Tübingen, Germany
| | - Zasha Weinberg
- Bioinformatics Group, Department of Computer Science and Interdisciplinary Centre for Bioinformatics, Leipzig University, Härtelstraße 16-18, 04107, Leipzig, Germany
| | - Andreas Wachter
- Institute for Molecular Physiology (imP), University of Mainz, Hanns-Dieter-Hüsch-Weg 17, 55128, Mainz, Germany
- Center for Plant Molecular Biology (ZMBP), University of Tübingen, Auf der Morgenstelle 32, 72076, Tübingen, Germany
| |
Collapse
|
3
|
Lee S, Aubee JI, Lai EC. Regulation of alternative splicing and polyadenylation in neurons. Life Sci Alliance 2023; 6:e202302000. [PMID: 37793776 PMCID: PMC10551640 DOI: 10.26508/lsa.202302000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 09/22/2023] [Accepted: 09/25/2023] [Indexed: 10/06/2023] Open
Abstract
Cell-type-specific gene expression is a fundamental feature of multicellular organisms and is achieved by combinations of regulatory strategies. Although cell-restricted transcription is perhaps the most widely studied mechanism, co-transcriptional and post-transcriptional processes are also central to the spatiotemporal control of gene functions. One general category of expression control involves the generation of multiple transcript isoforms from an individual gene, whose balance and cell specificity are frequently tightly regulated via diverse strategies. The nervous system makes particularly extensive use of cell-specific isoforms, specializing the neural function of genes that are expressed more broadly. Here, we review regulatory strategies and RNA-binding proteins that direct neural-specific isoform processing. These include various classes of alternative splicing and alternative polyadenylation events, both of which broadly diversify the neural transcriptome. Importantly, global alterations of splicing and alternative polyadenylation are characteristic of many neural pathologies, and recent genetic studies demonstrate how misregulation of individual neural isoforms can directly cause mutant phenotypes.
Collapse
Affiliation(s)
- Seungjae Lee
- Developmental Biology Program, Sloan Kettering Institute, New York, NY, USA
| | - Joseph I Aubee
- Developmental Biology Program, Sloan Kettering Institute, New York, NY, USA
| | - Eric C Lai
- Developmental Biology Program, Sloan Kettering Institute, New York, NY, USA
| |
Collapse
|
4
|
Carico C, Placzek WJ. Reviewing PTBP1 Domain Modularity in the Pre-Genomic Era: A Foundation to Guide the Next Generation of Exploring PTBP1 Structure-Function Relationships. Int J Mol Sci 2023; 24:11218. [PMID: 37446395 DOI: 10.3390/ijms241311218] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 06/28/2023] [Accepted: 07/06/2023] [Indexed: 07/15/2023] Open
Abstract
Polypyrimidine tract binding protein 1 (PTBP1) is one of the most well-described RNA binding proteins, known initially for its role as a splicing repressor before later studies revealed its numerous roles in RNA maturation, stability, and translation. While PTBP1's various biological roles have been well-described, it remains unclear how its four RNA recognition motif (RRM) domains coordinate these functions. The early PTBP1 literature saw extensive effort placed in detailing structures of each of PTBP1's RRMs, as well as their individual RNA sequence and structure preferences. However, limitations in high-throughput and high-resolution genomic approaches (i.e., next-generation sequencing had not yet been developed) precluded the functional translation of these findings into a mechanistic understanding of each RRM's contribution to overall PTBP1 function. With the emergence of new technologies, it is now feasible to begin elucidating the individual contributions of each RRM to PTBP1 biological functions. Here, we review all the known literature describing the apo and RNA bound structures of each of PTBP1's RRMs, as well as the emerging literature describing the dependence of specific RNA processing events on individual RRM domains. Our goal is to provide a framework of the structure-function context upon which to facilitate the interpretation of future studies interrogating the dynamics of PTBP1 function.
Collapse
Affiliation(s)
- Christine Carico
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - William J Placzek
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
5
|
Göder A, Quinlan A, Rainey MD, Bennett D, Shamavu D, Corso J, Santocanale C. PTBP1 enforces ATR-CHK1 signaling determining the potency of CDC7 inhibitors. iScience 2023; 26:106951. [PMID: 37378325 PMCID: PMC10291475 DOI: 10.1016/j.isci.2023.106951] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 04/27/2023] [Accepted: 05/22/2023] [Indexed: 06/29/2023] Open
Abstract
CDC7 kinase is crucial for DNA replication initiation and fork processing. CDC7 inhibition mildly activates the ATR pathway, which further limits origin firing; however, to date the relationship between CDC7 and ATR remains controversial. We show that CDC7 and ATR inhibitors are either synergistic or antagonistic depending on the degree of inhibition of each individual kinase. We find that Polypyrimidine Tract Binding Protein 1 (PTBP1) is important for ATR activity in response to CDC7 inhibition and genotoxic agents. Compromised PTBP1 expression makes cells defective in RPA recruitment, genomically unstable, and resistant to CDC7 inhibitors. PTBP1 deficiency affects the expression and splicing of many genes indicating a multifactorial impact on drug response. We find that an exon skipping event in RAD51AP1 contributes to checkpoint deficiency in PTBP1-deficient cells. These results identify PTBP1 as a key factor in replication stress response and define how ATR activity modulates the activity of CDC7 inhibitors.
Collapse
Affiliation(s)
- Anja Göder
- Centre for Chromosome Biology, School of Biological and Chemical Sciences, University of Galway, Galway H91W2TY, Ireland
| | - Aisling Quinlan
- Centre for Chromosome Biology, School of Biological and Chemical Sciences, University of Galway, Galway H91W2TY, Ireland
| | - Michael D. Rainey
- Centre for Chromosome Biology, School of Biological and Chemical Sciences, University of Galway, Galway H91W2TY, Ireland
| | - Declan Bennett
- School of Mathematical & Statistical Sciences, University of Galway, Galway H91TK33, Ireland
| | - Daniel Shamavu
- Centre for Chromosome Biology, School of Biological and Chemical Sciences, University of Galway, Galway H91W2TY, Ireland
| | - Jacqueline Corso
- Centre for Chromosome Biology, School of Biological and Chemical Sciences, University of Galway, Galway H91W2TY, Ireland
| | - Corrado Santocanale
- Centre for Chromosome Biology, School of Biological and Chemical Sciences, University of Galway, Galway H91W2TY, Ireland
| |
Collapse
|
6
|
Vlasenok M, Margasyuk S, Pervouchine DD. Transcriptome sequencing suggests that pre-mRNA splicing counteracts widespread intronic cleavage and polyadenylation. NAR Genom Bioinform 2023; 5:lqad051. [PMID: 37260513 PMCID: PMC10227441 DOI: 10.1093/nargab/lqad051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 05/09/2023] [Accepted: 05/17/2023] [Indexed: 06/02/2023] Open
Abstract
Alternative splicing (AS) and alternative polyadenylation (APA) are two crucial steps in the post-transcriptional regulation of eukaryotic gene expression. Protocols capturing and sequencing RNA 3'-ends have uncovered widespread intronic polyadenylation (IPA) in normal and disease conditions, where it is currently attributed to stochastic variations in the pre-mRNA processing. Here, we took advantage of the massive amount of RNA-seq data generated by the Genotype Tissue Expression project (GTEx) to simultaneously identify and match tissue-specific expression of intronic polyadenylation sites with tissue-specific splicing. A combination of computational methods including the analysis of short reads with non-templated adenines revealed that APA events are more abundant in introns than in exons. While the rate of IPA in composite terminal exons and skipped terminal exons expectedly correlates with splicing, we observed a considerable fraction of IPA events that lack AS support and attributed them to spliced polyadenylated introns (SPI). We hypothesize that SPIs represent transient byproducts of a dynamic coupling between APA and AS, in which the spliceosome removes the intron while it is being cleaved and polyadenylated. These findings indicate that cotranscriptional pre-mRNA splicing could serve as a rescue mechanism to suppress premature transcription termination at intronic polyadenylation sites.
Collapse
Affiliation(s)
- Maria Vlasenok
- Center for Molecular and Cellular Biology, Skolkovo Institute of Science and Technology, Bolshoy Bulvar 30, Moscow 121205, Russia
| | - Sergey Margasyuk
- Center for Molecular and Cellular Biology, Skolkovo Institute of Science and Technology, Bolshoy Bulvar 30, Moscow 121205, Russia
| | - Dmitri D Pervouchine
- Center for Molecular and Cellular Biology, Skolkovo Institute of Science and Technology, Bolshoy Bulvar 30, Moscow 121205, Russia
| |
Collapse
|
7
|
Carico C, Cui J, Acton A, Placzek WJ. Polypyrimidine tract binding protein 1 (PTBP1) contains a novel regulatory sequence, the rBH3, that binds the pro-survival protein MCL1. J Biol Chem 2023:104778. [PMID: 37142223 DOI: 10.1016/j.jbc.2023.104778] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 04/25/2023] [Accepted: 04/27/2023] [Indexed: 05/06/2023] Open
Abstract
The maturation of RNA from its nascent transcription to ultimate utilization (e.g., translation, miR-mediated RNA silencing, etc.) involves an intricately coordinated series of biochemical reactions regulated by RNA binding proteins (RBPs). Over the past several decades, there has been extensive effort to elucidate the biological factors that control the specificity and selectivity of RNA target binding and downstream function. Polypyrimidine tract binding protein 1 (PTBP1) is an RBP that is involved in all steps of RNA maturation and serves as a key regulator of alternative splicing, and therefore understanding its regulation is of critical biologic importance. While several mechanisms of RBP specificity have been proposed (e.g., cell-specific expression of RBPs and secondary structure of target RNA), recently protein-protein interactions with individual domains of RBPs have been suggested to be important determinants of downstream function. Here we demonstrate a novel binding interaction between the first RNA recognition motif (RRM1) of PTBP1 and the pro-survival protein MCL1. Using both in silico and in vitro analyses, we demonstrate that MCL1 binds a novel regulatory sequence on RRM1, termed the rBH3. NMR spectroscopy reveals this interaction allosterically perturbs key residues in the RNA binding interface of RRM1 and negatively impacts RRM1 association with target RNA. Furthermore, pulldown of MCL1 by endogenous PTBP1 verifies that these proteins interact in an endogenous cellular environment, establishing the biological relevance of this binding event. Overall, our findings suggest a novel mechanism of regulation of PTBP1 in which a protein-protein interaction with a single RRM can impact RNA association.
Collapse
Affiliation(s)
- Christine Carico
- Department of Biochemistry and Molecular Genetics, The University of Alabama at Birmingham, Birmingham, AL 35294
| | - Jia Cui
- Department of Biochemistry and Molecular Genetics, The University of Alabama at Birmingham, Birmingham, AL 35294
| | - Alexus Acton
- Department of Biochemistry and Molecular Genetics, The University of Alabama at Birmingham, Birmingham, AL 35294
| | - William J Placzek
- Department of Biochemistry and Molecular Genetics, The University of Alabama at Birmingham, Birmingham, AL 35294.
| |
Collapse
|
8
|
Figueiredo AS, Loureiro JR, Macedo-Ribeiro S, Silveira I. Advances in Nucleotide Repeat Expansion Diseases: Transcription Gets in Phase. Cells 2023; 12:826. [PMID: 36980167 PMCID: PMC10047669 DOI: 10.3390/cells12060826] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/03/2023] [Accepted: 03/06/2023] [Indexed: 03/09/2023] Open
Abstract
Unstable DNA repeat expansions and insertions have been found to cause more than 50 neurodevelopmental, neurodegenerative, and neuromuscular disorders. One of the main hallmarks of repeat expansion diseases is the formation of abnormal RNA or protein aggregates in the neuronal cells of affected individuals. Recent evidence indicates that alterations of the dynamic or material properties of biomolecular condensates assembled by liquid/liquid phase separation are critical for the formation of these aggregates. This is a thermodynamically-driven and reversible local phenomenon that condenses macromolecules into liquid-like compartments responsible for compartmentalizing molecules required for vital cellular processes. Disease-associated repeat expansions modulate the phase separation properties of RNAs and proteins, interfering with the composition and/or the material properties of biomolecular condensates and resulting in the formation of abnormal aggregates. Since several repeat expansions have arisen in genes encoding crucial players in transcription, this raises the hypothesis that wide gene expression dysregulation is common to multiple repeat expansion diseases. This review will cover the impact of these mutations in the formation of aberrant aggregates and how they modify gene transcription.
Collapse
Affiliation(s)
- Ana S. Figueiredo
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal
- Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, 4200-135 Porto, Portugal
- Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, 4050-313 Porto, Portugal
| | - Joana R. Loureiro
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal
- Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, 4200-135 Porto, Portugal
| | - Sandra Macedo-Ribeiro
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal
- Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, 4200-135 Porto, Portugal
| | - Isabel Silveira
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal
- Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, 4200-135 Porto, Portugal
| |
Collapse
|
9
|
Qureshi QUA, Audas TE, Morin RD, Coyle KM. Emerging roles for heterogeneous ribonuclear proteins in normal and malignant B cells. Biochem Cell Biol 2023; 101:160-171. [PMID: 36745874 DOI: 10.1139/bcb-2022-0332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Heterogeneous nuclear ribonucleoproteins (hnRNPs) are among the most abundantly expressed RNA binding proteins in the cell and play major roles in all facets of RNA metabolism. hnRNPs are increasingly appreciated as essential for mammalian B cell development by regulating the carefully ordered expression of specific genes. Due to this tight regulation of the hnRNP-RNA network, it is no surprise that a growing number of genes encoding hnRNPs have been causally associated with the onset or progression of many cancers, including B cell neoplasms. Here we discuss our current understanding of hnRNP-driven regulation in normal, perturbed, and malignant B cells, and the most recent and emerging therapeutic innovations aimed at targeting the hnRNP-RNA network in lymphoma.
Collapse
Affiliation(s)
- Qurat Ul Ain Qureshi
- Department of Molecular Biology & Biochemistry, Simon Fraser University, Burnaby, BC, Canada
| | - Timothy E Audas
- Department of Molecular Biology & Biochemistry, Simon Fraser University, Burnaby, BC, Canada
| | - Ryan D Morin
- Department of Molecular Biology & Biochemistry, Simon Fraser University, Burnaby, BC, Canada.,Canada's Michael Smith Genome Sciences Centre at BC Cancer, Vancouver, BC, Canada
| | - Krysta M Coyle
- Department of Molecular Biology & Biochemistry, Simon Fraser University, Burnaby, BC, Canada
| |
Collapse
|
10
|
D'Angeli V, Monzón‐Casanova E, Matheson LS, Gizlenci Ö, Petkau G, Gooding C, Berrens RV, Smith CWJ, Turner M. Polypyrimidine tract binding protein 1 regulates the activation of mouse CD8 T cells. Eur J Immunol 2022; 52:1058-1068. [PMID: 35460072 PMCID: PMC9546061 DOI: 10.1002/eji.202149781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 04/20/2022] [Accepted: 04/21/2022] [Indexed: 12/30/2022]
Abstract
The RNA-binding protein polypyrimidine tract binding protein 1 (PTBP1) has been found to have roles in CD4 T-cell activation, but its function in CD8 T cells remains untested. We show it is dispensable for the development of naïve mouse CD8 T cells, but is necessary for the optimal expansion and production of effector molecules by antigen-specific CD8 T cells in vivo. PTBP1 has an essential role in regulating the early events following activation of the naïve CD8 T cell leading to IL-2 and TNF production. It is also required to protect activated CD8 T cells from apoptosis. PTBP1 controls alternative splicing of over 400 genes in naïve CD8 T cells in addition to regulating the abundance of ∼200 mRNAs. PTBP1 is required for the nuclear accumulation of c-Fos, NFATc2, and NFATc3, but not NFATc1. This selective effect on NFAT proteins correlates with PTBP1-promoted expression of the shorter Aβ1 isoform and exon 13 skipped Aβ2 isoform of the catalytic A-subunit of calcineurin phosphatase. These findings reveal a crucial role for PTBP1 in regulating CD8 T-cell activation.
Collapse
Affiliation(s)
- Vanessa D'Angeli
- Laboratory of Lymphocyte Signalling and DevelopmentThe Babraham InstituteCambridgeUK
- IONTAS, The Works, Unity CampusCambridgeCB22 3EFUK
| | - Elisa Monzón‐Casanova
- Laboratory of Lymphocyte Signalling and DevelopmentThe Babraham InstituteCambridgeUK
- Department of BiochemistryUniversity of CambridgeCambridgeUK
- Oxford Biomedica (UK) LtdOxfordOX4 6LTUK
| | - Louise S. Matheson
- Laboratory of Lymphocyte Signalling and DevelopmentThe Babraham InstituteCambridgeUK
| | - Özge Gizlenci
- Laboratory of Lymphocyte Signalling and DevelopmentThe Babraham InstituteCambridgeUK
| | - Georg Petkau
- Laboratory of Lymphocyte Signalling and DevelopmentThe Babraham InstituteCambridgeUK
| | - Clare Gooding
- Department of BiochemistryUniversity of CambridgeCambridgeUK
| | - Rebecca V. Berrens
- Cancer Research UK Cambridge InstituteUniversity of CambridgeCambridgeUnited Kingdom
| | | | - Martin Turner
- Laboratory of Lymphocyte Signalling and DevelopmentThe Babraham InstituteCambridgeUK
| |
Collapse
|
11
|
Chen Q, Tian F, Cheng T, Jiang J, Zhu G, Gao Z, Lin H, Hu J, Qian Q, Fang X, Chen F. Translational repression of FZP mediated by CU-rich element/OsPTB interactions modulates panicle development in rice. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 110:1319-1331. [PMID: 35293072 DOI: 10.1111/tpj.15737] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 03/03/2022] [Accepted: 03/07/2022] [Indexed: 06/14/2023]
Abstract
Panicle development is an important determinant of the grain number in rice. A thorough characterization of the molecular mechanism underlying panicle development will lead to improved breeding of high-yielding rice varieties. Frizzy Panicle (FZP), a critical gene for panicle development, is regulated by OsBZR1 and OsARFs at the transcriptional stage. However, the translational modulation of FZP has not been reported. We reveal that the CU-rich elements (CUREs) in the 3' UTR of the FZP mRNA are crucial for efficient FZP translation. The knockout of CUREs in the FZP 3' UTR or the over-expression of the FZP 3' UTR fragment containing CUREs resulted in an increase in FZP mRNA translation efficiency. Moreover, the number of secondary branches (NSB) and the grain number per panicle (GNP) decreased in the transformed rice plants. The CUREs in the 3' UTR of FZP mRNA were verified as the targets of the polypyrimidine tract-binding proteins OsPTB1 and OsPTB2 in rice. Both OsPTB1 and OsPTB2 were highly expressed in young panicles. The knockout of OsPTB1/2 resulted in an increase in the FZP translational efficiency and a decrease in the NSB and GNP. Furthermore, the over-expression of OsPTB1/2 decreased the translation of the reporter gene fused to FZP 3' UTR in vivo and in vitro. These results suggest that OsPTB1/2 can mediate FZP translational repression by interacting with CUREs in the 3' UTR of FZP mRNA, leading to changes in the NSB and GNP. Accordingly, in addition to transcriptional regulation, FZP expression is also fine-tuned at the translational stage during rice panicle development.
Collapse
Affiliation(s)
- Qiong Chen
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, The Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- Hainan Yazhou Bay Seed Laboratory, Sanya, 572025, China
| | - Fa'an Tian
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, The Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Tingting Cheng
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, The Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jun'e Jiang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, The Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Guanlin Zhu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, The Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Zhenyu Gao
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
| | - Haiyan Lin
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
| | - Jiang Hu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
| | - Qian Qian
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
| | - Xiaohua Fang
- Genetic Resource R&D Center, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Chang Zhou, 213001, China
| | - Fan Chen
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, The Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- Hainan Yazhou Bay Seed Laboratory, Sanya, 572025, China
| |
Collapse
|
12
|
Mohanan NK, Shaji F, Koshre GR, Laishram RS. Alternative polyadenylation: An enigma of transcript length variation in health and disease. WILEY INTERDISCIPLINARY REVIEWS-RNA 2021; 13:e1692. [PMID: 34581021 DOI: 10.1002/wrna.1692] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 06/16/2021] [Accepted: 08/24/2021] [Indexed: 12/19/2022]
Abstract
Alternative polyadenylation (APA) is a molecular mechanism during a pre-mRNA processing that involves usage of more than one polyadenylation site (PA-site) generating transcripts of varying length from a single gene. The location of a PA-site affects transcript length and coding potential of an mRNA contributing to both mRNA and protein diversification. This variation in the transcript length affects mRNA stability and translation, mRNA subcellular and tissue localization, and protein function. APA is now considered as an important regulatory mechanism in the pathophysiology of human diseases. An important consequence of the changes in the length of 3'-untranslated region (UTR) from disease-induced APA is altered protein expression. Yet, the relationship between 3'-UTR length and protein expression remains a paradox in a majority of diseases. Here, we review occurrence of APA, mechanism of PA-site selection, and consequences of transcript length variation in different diseases. Emerging evidence reveals coordinated involvement of core RNA processing factors including poly(A) polymerases in the PA-site selection in diseases-associated APAs. Targeting such APA regulators will be therapeutically significant in combating drug resistance in cancer and other complex diseases. This article is categorized under: RNA Processing > 3' End Processing RNA in Disease and Development > RNA in Disease Translation > Regulation.
Collapse
Affiliation(s)
- Neeraja K Mohanan
- Cardiovascular and Diabetes Biology Group, Rajiv Gandhi Centre for Biotechnology, Trivandrum, India
- Manipal Academy of Higher Education, Manipal, India
| | - Feba Shaji
- Cardiovascular and Diabetes Biology Group, Rajiv Gandhi Centre for Biotechnology, Trivandrum, India
- Regional Centre for Biotechnology, Faridabad, India
| | - Ganesh R Koshre
- Cardiovascular and Diabetes Biology Group, Rajiv Gandhi Centre for Biotechnology, Trivandrum, India
- Manipal Academy of Higher Education, Manipal, India
| | - Rakesh S Laishram
- Cardiovascular and Diabetes Biology Group, Rajiv Gandhi Centre for Biotechnology, Trivandrum, India
| |
Collapse
|
13
|
Agarwal V, Lopez-Darwin S, Kelley DR, Shendure J. The landscape of alternative polyadenylation in single cells of the developing mouse embryo. Nat Commun 2021; 12:5101. [PMID: 34429411 PMCID: PMC8385098 DOI: 10.1038/s41467-021-25388-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 08/06/2021] [Indexed: 02/07/2023] Open
Abstract
3′ untranslated regions (3′ UTRs) post-transcriptionally regulate mRNA stability, localization, and translation rate. While 3′-UTR isoforms have been globally quantified in limited cell types using bulk measurements, their differential usage among cell types during mammalian development remains poorly characterized. In this study, we examine a dataset comprising ~2 million nuclei spanning E9.5–E13.5 of mouse embryonic development to quantify transcriptome-wide changes in alternative polyadenylation (APA). We observe a global lengthening of 3′ UTRs across embryonic stages in all cell types, although we detect shorter 3′ UTRs in hematopoietic lineages and longer 3′ UTRs in neuronal cell types within each stage. An analysis of RNA-binding protein (RBP) dynamics identifies ELAV-like family members, which are concomitantly induced in neuronal lineages and developmental stages experiencing 3′-UTR lengthening, as putative regulators of APA. By measuring 3′-UTR isoforms in an expansive single cell dataset, our work provides a transcriptome-wide and organism-wide map of the dynamic landscape of alternative polyadenylation during mammalian organogenesis. Alternative polyadenylation regulates localization, half-life and translation of mRNA isoforms. Here the authors investigate alternative polyadenylation using single cell RNA sequencing data from mouse embryos and identify 3’-UTR isoforms that are regulated across cell types and developmental time.
Collapse
Affiliation(s)
| | | | | | - Jay Shendure
- Department of Genome Sciences, University of Washington, Seattle, WA, USA. .,Howard Hughes Medical Institute, Seattle, WA, USA. .,Brotman Baty Institute for Precision Medicine, University of Washington, Seattle, WA, USA. .,Allen Discovery Center for Cell Lineage Tracing, Seattle, WA, USA.
| |
Collapse
|
14
|
Pereira-Castro I, Moreira A. On the function and relevance of alternative 3'-UTRs in gene expression regulation. WILEY INTERDISCIPLINARY REVIEWS-RNA 2021; 12:e1653. [PMID: 33843145 DOI: 10.1002/wrna.1653] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 03/15/2021] [Accepted: 03/16/2021] [Indexed: 12/12/2022]
Abstract
Messanger RNA (mRNA) isoforms with alternative 3'-untranslated regions (3'-UTRs) are produced by alternative polyadenylation (APA), which occurs during transcription in most eukaryotic genes. APA fine-tunes gene expression in a cell-type- and cellular state-dependent manner. Selection of an APA site entails the binding of core cleavage and polyadenylation factors to a particular polyadenylation site localized in the pre-mRNA and is controlled by multiple regulatory determinants, including transcription, pre-mRNA cis-regulatory sequences, and protein factors. Alternative 3'-UTRs serve as platforms for specific RNA binding proteins and microRNAs, which regulate gene expression in a coordinated manner by controlling mRNA fate and function in the cell. Genome-wide studies illustrated the full extent of APA prevalence and revealed that specific 3'-UTR profiles are associated with particular cellular states and diseases. Generally, short 3'-UTRs are associated with proliferative and cancer cells, and long 3'-UTRs are mostly found in polarized and differentiated cells. Fundamental new insights on the physiological consequences of this widespread event and the molecular mechanisms involved have been revealed through single-cell studies. Publicly available comprehensive databases that cover all APA mRNA isoforms identified in many cellular states and diseases reveal specific APA signatures. Therapies tackling APA mRNA isoforms or APA regulators may be regarded as innovative and attractive tools for diagnostics or treatment of several pathologies. We highlight the function of APA and alternative 3'-UTRs in gene expression regulation, the control of these mechanisms, their physiological consequences, and their potential use as new biomarkers and therapeutic tools. This article is categorized under: RNA Processing > 3' End Processing RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications RNA in Disease and Development > RNA in Disease.
Collapse
Affiliation(s)
- Isabel Pereira-Castro
- Gene Regulation, i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,IBMC, Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | - Alexandra Moreira
- Gene Regulation, i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,IBMC, Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal.,ICBAS, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| |
Collapse
|
15
|
Kishor A, Fritz SE, Haque N, Ge Z, Tunc I, Yang W, Zhu J, Hogg JR. Activation and inhibition of nonsense-mediated mRNA decay control the abundance of alternative polyadenylation products. Nucleic Acids Res 2020; 48:7468-7482. [PMID: 32542372 DOI: 10.1093/nar/gkaa491] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 05/26/2020] [Accepted: 05/29/2020] [Indexed: 12/16/2022] Open
Abstract
Alternative polyadenylation (APA) produces transcript 3' untranslated regions (3'UTRs) with distinct sequences, lengths, stabilities and functions. We show here that APA products include a class of cryptic nonsense-mediated mRNA decay (NMD) substrates with extended 3'UTRs that gene- or transcript-level analyses of NMD often fail to detect. Transcriptome-wide, the core NMD factor UPF1 preferentially recognizes long 3'UTR products of APA, leading to their systematic downregulation. Counteracting this mechanism, the multifunctional RNA-binding protein PTBP1 regulates the balance of short and long 3'UTR isoforms by inhibiting NMD, in addition to its previously described modulation of co-transcriptional polyadenylation (polyA) site choice. Further, we find that many transcripts with altered APA isoform abundance across multiple tumor types are controlled by NMD. Together, our findings reveal a widespread role for NMD in shaping the outcomes of APA.
Collapse
Affiliation(s)
- Aparna Kishor
- Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sarah E Fritz
- Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Nazmul Haque
- Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Zhiyun Ge
- Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ilker Tunc
- Bioinformatics and Computational Biology Laboratory, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Wenjing Yang
- Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jun Zhu
- Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - J Robert Hogg
- Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
16
|
Moss ND, Sussel L. mRNA Processing: An Emerging Frontier in the Regulation of Pancreatic β Cell Function. Front Genet 2020; 11:983. [PMID: 33088281 PMCID: PMC7490333 DOI: 10.3389/fgene.2020.00983] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 08/03/2020] [Indexed: 01/04/2023] Open
Abstract
Robust endocrine cell function, particularly β cell function, is required to maintain blood glucose homeostasis. Diabetes can result from the loss or dysfunction of β cells. Despite decades of clinical and basic research, the precise regulation of β cell function and pathogenesis in diabetes remains incompletely understood. In this review, we highlight RNA processing of mRNAs as a rapidly emerging mechanism regulating β cell function and survival. RNA-binding proteins (RBPs) and RNA modifications are primed to be the next frontier to explain many of the poorly understood molecular processes that regulate β cell formation and function, and provide an exciting potential for the development of novel therapeutics. Here we outline the current understanding of β cell specific functions of several characterized RBPs, alternative splicing events, and transcriptome wide changes in RNA methylation. We also highlight several RBPs that are dysregulated in both Type 1 and Type 2 diabetes, and discuss remaining knowledge gaps in the field.
Collapse
Affiliation(s)
- Nicole D Moss
- Cell, Stem Cells, and Development Graduate Program, Department of Pediatrics, Barbara Davis Center, University of Colorado Denver Anschutz Medical Campus, Aurora, CO, United States
| | - Lori Sussel
- Cell, Stem Cells, and Development Graduate Program, Department of Pediatrics, Barbara Davis Center, University of Colorado Denver Anschutz Medical Campus, Aurora, CO, United States
| |
Collapse
|
17
|
Maris C, Jayne S, Damberger FF, Beusch I, Dorn G, Ravindranathan S, Allain FHT. A transient α-helix in the N-terminal RNA recognition motif of polypyrimidine tract binding protein senses RNA secondary structure. Nucleic Acids Res 2020; 48:4521-4537. [PMID: 32170319 PMCID: PMC7192611 DOI: 10.1093/nar/gkaa155] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 02/22/2020] [Accepted: 03/04/2020] [Indexed: 12/14/2022] Open
Abstract
The polypyrimidine tract binding protein (PTB) is a multi-domain protein involved in alternative splicing, mRNA localization, stabilization, polyadenylation and translation initiation from internal ribosome entry sites (IRES). In this latter process, PTB promotes viral translation by interacting extensively with complex structured regions in the 5′-untranslated regions of viral RNAs at pyrimidine-rich targets located in single strand and hairpin regions. To better understand how PTB recognizes structured elements in RNA targets, we solved the solution structure of the N-terminal RNA recognition motif (RRM) in complex with an RNA hairpin embedding the loop sequence UCUUU, which is frequently found in IRESs of the picornovirus family. Surprisingly, a new three-turn α3 helix C-terminal to the RRM, folds upon binding the RNA hairpin. Although α3 does not mediate any contacts to the RNA, it acts as a sensor of RNA secondary structure, suggesting a role for RRM1 in detecting pyrimidine tracts in the context of structured RNA. Moreover, the degree of helix formation depends on the RNA loop sequence. Finally, we show that the α3 helix region, which is highly conserved in vertebrates, is crucial for PTB function in enhancing Encephalomyocarditis virus IRES activity.
Collapse
Affiliation(s)
| | - Sandrine Jayne
- Department of Biology, ETH Zurich, 8093 Zürich, Switzerland
| | | | - Irene Beusch
- Department of Biology, ETH Zurich, 8093 Zürich, Switzerland
| | - Georg Dorn
- Department of Biology, ETH Zurich, 8093 Zürich, Switzerland
| | | | | |
Collapse
|
18
|
Senoo M, Hozoji H, Ishikawa-Yamauchi Y, Takijiri T, Ohta S, Ukai T, Kabata M, Yamamoto T, Yamada Y, Ikawa M, Ozawa M. RNA-binding protein Ptbp1 regulates alternative splicing and transcriptome in spermatogonia and maintains spermatogenesis in concert with Nanos3. J Reprod Dev 2020; 66:459-467. [PMID: 32624547 PMCID: PMC7593632 DOI: 10.1262/jrd.2020-060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
PTBP1, a well-conserved RNA-binding protein, regulates cellular development by tuning posttranscriptional mRNA modification such as alternative splicing (AS)
or mRNA stabilization. We previously revealed that the loss of Ptbp1 in spermatogonia causes the dysregulation of spermatogenesis, but the
molecular mechanisms by which PTBP1 regulates spermatogonium homeostasis are unclear. In this study, changes of AS or transcriptome in
Ptbp1-knockout (KO) germline stem cells (GSC), an in vitro model of proliferating spermatogonia, was determined by next
generation sequencing. We identified more than 200 differentially expressed genes, as well as 85 genes with altered AS due to the loss of PTBP1. Surprisingly,
no differentially expressed genes overlapped with different AS genes in Ptbp1-KO GSC. In addition, we observed that the mRNA expression of
Nanos3, an essential gene for normal spermatogenesis, was significantly decreased in Ptbp1-KO spermatogonia. We also
revealed that PTBP1 protein binds to Nanos3 mRNA in spermatogonia. Furthermore,
Nanos3+/−;Ptbp1+/− mice exhibited abnormal spermatogenesis, which resembled the effects of germ
cell-specific Ptbp1 KO, whereas no significant abnormality was observed in mice heterozygous for either gene alone. These data implied that
PTBP1 regulates alternative splicing and transcriptome in spermatogonia under different molecular pathways, and contributes spermatogenesis, at least in part,
in concert with NANOS3.
Collapse
Affiliation(s)
- Manami Senoo
- Laboratory of Reproductive Systems Biology, Center for Experimental Medicine and Systems Biology, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan.,Graduate School of Frontier Sciences, The University of Tokyo, Tokyo 108-8639, Japan
| | - Hiroshi Hozoji
- Laboratory of Reproductive Systems Biology, Center for Experimental Medicine and Systems Biology, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan.,Graduate School of Frontier Sciences, The University of Tokyo, Tokyo 108-8639, Japan
| | - Yu Ishikawa-Yamauchi
- Laboratory of Reproductive Systems Biology, Center for Experimental Medicine and Systems Biology, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| | - Takashi Takijiri
- Laboratory of Reproductive Systems Biology, Center for Experimental Medicine and Systems Biology, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan.,Graduate School of Frontier Sciences, The University of Tokyo, Tokyo 108-8639, Japan
| | - Sho Ohta
- Division of Stem Cell Pathology, Center for Experimental Medicine and Systems Biology, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan
| | - Tomoyo Ukai
- Division of Stem Cell Pathology, Center for Experimental Medicine and Systems Biology, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan
| | - Mio Kabata
- Department of Life Science Frontiers, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto 606-8507, Japan
| | - Takuya Yamamoto
- Department of Life Science Frontiers, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto 606-8507, Japan.,Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Kyoto 606-8501, Japan.,AMED-CREST, Tokyo 100-0004, Japan.,Medical-risk Avoidance based on iPS Cells Team, RIKEN Center for Advanced Intelligence Project (AIP), Kyoto 606-8507, Japan
| | - Yasuhiro Yamada
- Division of Stem Cell Pathology, Center for Experimental Medicine and Systems Biology, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan
| | - Masahito Ikawa
- Laboratory of Reproductive Systems Biology, Center for Experimental Medicine and Systems Biology, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan.,Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan
| | - Manabu Ozawa
- Laboratory of Reproductive Systems Biology, Center for Experimental Medicine and Systems Biology, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| |
Collapse
|
19
|
Yang Y, Ying G, Wu S, Wu F, Chen Z. In vitro inhibition effects of hepatitis B virus by dandelion and taraxasterol. Infect Agent Cancer 2020; 15:44. [PMID: 32647534 PMCID: PMC7336670 DOI: 10.1186/s13027-020-00309-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 06/23/2020] [Indexed: 12/13/2022] Open
Abstract
Hepatitis B virus (HBV) causes hepatitis, which progresses to fatal liver diseases and remains a global health problem. Current treatments for chronic hepatitis B are unable to cure hepatitis. Thus, new antiviral drugs must be developed. In this study, the viral inhibition effects of dandelion and taraxasterol were assessed in HepG2.2.15 cell line. Taraxacum officinale F.H.Wigg. (compositae) with English name dandelion is used as a traditional herb for liver disorders and as a common antiviral agent. Taraxasterol is one of the active compounds of dandelion. The secretion of HBV DNA and HBV surface antigen (HBsAg) and HBeAg was detected using fluorescence quantitative PCR (qPCR) and ELISA, respectively. Intracellular HBsAg was detected by immunofluorescence. In order to demonstrate the potential mechanism of anti-viral activity, the expression levels of host factors polypyrimidine tract binding protein 1 (PTBP1) and sirtuin 1 (SIRT1) were detected with Western blotting and qPCR. Dandelion and taraxasterol effectively reduced the secretion of HBsAg, HBeAg and the HBV DNA in cell supernatants, and significantly reduced the intracellular HBsAg as indicated by immunofluorescence results. Taraxasterol may be one of the main effective components of dandelion. It significantly decreased the protein expression levels of PTBP1 and SIRT1. The present study revealed that dandelion and its component taraxasterol could inhibit HBV and may be a potential anti-HBV drug, whose potential targets were the host factors PTBP1 and SIRT1.
Collapse
Affiliation(s)
- Ying Yang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Zhejiang, China
| | - Gaoxiang Ying
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Zhejiang, China
| | - Shanshan Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Zhejiang, China
| | - Fengtian Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Zhejiang, China
| | - Zhi Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Zhejiang, China
| |
Collapse
|
20
|
Shen T, Li H, Song Y, Li L, Lin J, Wei G, Ni T. Alternative polyadenylation dependent function of splicing factor SRSF3 contributes to cellular senescence. Aging (Albany NY) 2020; 11:1356-1388. [PMID: 30835716 PMCID: PMC6428108 DOI: 10.18632/aging.101836] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Accepted: 02/17/2019] [Indexed: 12/18/2022]
Abstract
Down-regulated splicing factor SRSF3 is known to promote cellular senescence, an important biological process in preventing cancer and contributing to individual aging, via its alternative splicing dependent function in human cells. Here we discovered alternative polyadenylation (APA) dependent function of SRSF3 as a novel mechanism explaining SRSF3 downregulation induced cellular senescence. Knockdown of SRSF3 resulted in preference usage of proximal poly(A) sites and thus global shortening of 3′ untranslated regions (3′ UTRs) of mRNAs. SRSF3-depletion also induced senescence-related phenotypes in both human and mouse cells. These 3′ UTR shortened genes were enriched in senescence-associated pathways. Shortened 3′ UTRs tended to produce more proteins than the longer ones. Simulating the effects of 3′ UTR shortening by overexpression of three candidate genes (PTEN, PIAS1 and DNMT3A) all led to senescence-associated phenotypes. Mechanistically, SRSF3 has higher binding density near proximal poly(A) site than distal one in 3′ UTR shortened genes. Further, upregulation of PTEN by either ectopic overexpression or SRSF3-knockdown induction both led to reduced phosphorylation of AKT and ultimately senescence-associated phenotypes. We revealed for the first time that reduced SRSF3 expression could promote cellular senescence through its APA-dependent function, largely extending our mechanistic understanding in splicing factor regulated cellular senescence.
Collapse
Affiliation(s)
- Ting Shen
- State Key Laboratory of Genetic Engineering and Ministry of Education (MOE) Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center of Genetics and Development, Human Phenome Institute, School of Life Sciences and Huashan Hospital, Fudan University, Shanghai 200438, China
| | - Huan Li
- State Key Laboratory of Genetic Engineering and Ministry of Education (MOE) Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center of Genetics and Development, Human Phenome Institute, School of Life Sciences and Huashan Hospital, Fudan University, Shanghai 200438, China
| | - Yifang Song
- State Key Laboratory of Genetic Engineering and Ministry of Education (MOE) Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center of Genetics and Development, Human Phenome Institute, School of Life Sciences and Huashan Hospital, Fudan University, Shanghai 200438, China
| | - Li Li
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Jinzhong Lin
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Gang Wei
- State Key Laboratory of Genetic Engineering and Ministry of Education (MOE) Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center of Genetics and Development, Human Phenome Institute, School of Life Sciences and Huashan Hospital, Fudan University, Shanghai 200438, China
| | - Ting Ni
- State Key Laboratory of Genetic Engineering and Ministry of Education (MOE) Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center of Genetics and Development, Human Phenome Institute, School of Life Sciences and Huashan Hospital, Fudan University, Shanghai 200438, China
| |
Collapse
|
21
|
A three-dimensional bioprinted model to evaluate the effect of stiffness on neuroblastoma cell cluster dynamics and behavior. Sci Rep 2020; 10:6370. [PMID: 32286364 PMCID: PMC7156444 DOI: 10.1038/s41598-020-62986-w] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 03/19/2020] [Indexed: 12/20/2022] Open
Abstract
Three-dimensional (3D) bioprinted culture systems allow to accurately control microenvironment components and analyze their effects at cellular and tissue levels. The main objective of this study was to identify, quantify and localize the effects of physical-chemical communication signals between tumor cells and the surrounding biomaterial stiffness over time, defining how aggressiveness increases in SK-N-BE(2) neuroblastoma (NB) cell line. Biomimetic hydrogels with SK-N-BE(2) cells, methacrylated gelatin and increasing concentrations of methacrylated alginate (AlgMA 0%, 1% and 2%) were used. Young's modulus was used to define the stiffness of bioprinted hydrogels and NB tumors. Stained sections of paraffin-embedded hydrogels were digitally quantified. Human NB and 1% AlgMA hydrogels presented similar Young´s modulus mean, and orthotopic NB mice tumors were equally similar to 0% and 1% AlgMA hydrogels. Porosity increased over time; cell cluster density decreased over time and with stiffness, and cell cluster occupancy generally increased with time and decreased with stiffness. In addition, cell proliferation, mRNA metabolism and antiapoptotic activity advanced over time and with stiffness. Together, this rheological, optical and digital data show the potential of the 3D in vitro cell model described herein to infer how intercellular space stiffness patterns drive the clinical behavior associated with NB patients.
Collapse
|
22
|
Sasanuma H, Ozawa M, Yoshida N. RNA-binding protein Ptbp1 is essential for BCR-mediated antibody production. Int Immunol 2020; 31:157-166. [PMID: 30476084 PMCID: PMC6400050 DOI: 10.1093/intimm/dxy077] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 11/21/2018] [Indexed: 11/22/2022] Open
Abstract
The RNA-binding protein polypyrimidine tract-binding protein-1 (Ptbp1) binds to the pyrimidine-rich sequence of target RNA and controls gene expression via post-transcriptional regulation such as alternative splicing. Although Ptbp1 is highly expressed in B lymphocytes, its role to date is largely unknown. To clarify the role of Ptbp1 in B-cell development and function, we generated B-cell-specific Ptbp1-deficient (P1BKO) mice. B-cell development in the bone marrow, spleen and peritoneal cavity of the P1BKO mice was nearly normal. However, the P1BKO mice had significantly lower levels of natural antibodies in serum compared with those of the control mice. To investigate the effect of Ptbp1 deficiency on the immune response in vivo, we immunized the P1BKO mice with T-cell-independent type-2 (TI-2) antigen NP-Ficoll and T-cell-dependent (TD) antigen NP-CGG. We found that B-cell-specific Ptbp1 deficiency causes an immunodeficiency phenotype due to defective production of antibody against both TI-2 and TD antigen. This immunodeficiency was accompanied by impaired B-cell receptor (BCR)-mediated B-cell activation and plasmablast generation. These findings demonstrate that Ptbp1 is essential for the humoral immune response.
Collapse
Affiliation(s)
- Hiroki Sasanuma
- Laboratory of Developmental Genetics, Center for Experimental Medicine and Systems Biology, The Institute of Medical Science, The University of Tokyo, Shirokanedai, Minato-ku, Tokyo, Japan
| | - Manabu Ozawa
- Laboratory of Reproductive Systems Biology, Center for Experimental Medicine and Systems Biology, The Institute of Medical Science, The University of Tokyo, Shirokanedai, Minato-ku, Tokyo, Japan
| | - Nobuaki Yoshida
- Laboratory of Developmental Genetics, Center for Experimental Medicine and Systems Biology, The Institute of Medical Science, The University of Tokyo, Shirokanedai, Minato-ku, Tokyo, Japan
| |
Collapse
|
23
|
Cell Cycle Kinase Polo Is Controlled by a Widespread 3' Untranslated Region Regulatory Sequence in Drosophila melanogaster. Mol Cell Biol 2019; 39:MCB.00581-18. [PMID: 31085682 DOI: 10.1128/mcb.00581-18] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 05/04/2019] [Indexed: 01/06/2023] Open
Abstract
Alternative polyadenylation generates transcriptomic diversity, although the physiological impact and regulatory mechanisms involved are still poorly understood. The cell cycle kinase Polo is controlled by alternative polyadenylation in the 3' untranslated region (3'UTR), with critical physiological consequences. Here, we characterized the molecular mechanisms required for polo alternative polyadenylation. We identified a conserved upstream sequence element (USE) close to the polo proximal poly(A) signal. Transgenic flies without this sequence show incorrect selection of polo poly(A) signals with consequent downregulation of Polo expression levels and insufficient/defective activation of Polo kinetochore targets Mps1 and Aurora B. Deletion of the USE results in abnormal mitoses in neuroblasts, revealing a role for this sequence in vivo We found that Hephaestus binds to the USE RNA and that hephaestus mutants display defects in polo alternative polyadenylation concomitant with a striking reduction in Polo protein levels, leading to mitotic errors and aneuploidy. Bioinformatic analyses show that the USE is preferentially localized upstream of noncanonical polyadenylation signals in Drosophila melanogaster genes. Taken together, our results revealed the molecular mechanisms involved in polo alternative polyadenylation, with remarkable physiological functions in Polo expression and activity at the kinetochores, and disclosed a new in vivo function for USEs in Drosophila melanogaster.
Collapse
|
24
|
Sadek J, Omer A, Hall D, Ashour K, Gallouzi IE. Alternative polyadenylation and the stress response. WILEY INTERDISCIPLINARY REVIEWS-RNA 2019; 10:e1540. [DOI: 10.1002/wrna.1540] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 03/18/2019] [Accepted: 04/02/2019] [Indexed: 01/06/2023]
Affiliation(s)
- Jason Sadek
- Department of Biochemistry McGill University, Rosalind and Morris Goodman Cancer Centre Montreal Quebec Canada
| | - Amr Omer
- Department of Biochemistry McGill University, Rosalind and Morris Goodman Cancer Centre Montreal Quebec Canada
| | - Derek Hall
- Department of Biochemistry McGill University, Rosalind and Morris Goodman Cancer Centre Montreal Quebec Canada
| | - Kholoud Ashour
- Department of Biochemistry McGill University, Rosalind and Morris Goodman Cancer Centre Montreal Quebec Canada
| | - Imed Eddine Gallouzi
- Department of Biochemistry McGill University, Rosalind and Morris Goodman Cancer Centre Montreal Quebec Canada
| |
Collapse
|
25
|
Weng T, Ko J, Masamha CP, Xia Z, Xiang Y, Chen NY, Molina JG, Collum S, Mertens TC, Luo F, Philip K, Davies J, Huang J, Wilson C, Thandavarayan RA, Bruckner BA, Jyothula SS, Volcik KA, Li L, Han L, Li W, Assassi S, Karmouty-Quintana H, Wagner EJ, Blackburn MR. Cleavage factor 25 deregulation contributes to pulmonary fibrosis through alternative polyadenylation. J Clin Invest 2019; 129:1984-1999. [PMID: 30830875 DOI: 10.1172/jci122106] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic and deadly disease with a poor prognosis and few treatment options. Pathological remodeling of the extracellular matrix (ECM) by myofibroblasts is a key factor that drives disease pathogenesis, although the underlying mechanisms remain unknown. Alternative polyadenylation (APA) has recently been shown to play a major role in cellular responses to stress by driving the expression of fibrotic factors and ECMs through altering microRNA sensitivity, but a connection to IPF has not been established. Here, we demonstrate that CFIm25, a global regulator of APA, is down-regulated in the lungs of patients with IPF and mice with pulmonary fibrosis, with its expression selectively reduced in alpha-smooth muscle actin (α-SMA) positive fibroblasts. Following the knockdown of CFIm25 in normal human lung fibroblasts, we identified 808 genes with shortened 3'UTRs, including those involved in the transforming growth factor-β signaling pathway, the Wnt signaling pathway, and cancer pathways. The expression of key pro-fibrotic factors can be suppressed by CFIm25 overexpression in IPF fibroblasts. Finally, we demonstrate that deletion of CFIm25 in fibroblasts or myofibroblast precursors using either the Col1a1 or the Foxd1 promoter enhances pulmonary fibrosis after bleomycin exposure in mice. Taken together, our results identified CFIm25 down-regulation as a novel mechanism to elevate pro-fibrotic gene expression in pulmonary fibrosis.
Collapse
Affiliation(s)
- Tingting Weng
- Department of Biochemistry and Molecular Biology, McGovern Medical School at UTHealth, Houston, Texas, USA
| | - Junsuk Ko
- Department of Biochemistry and Molecular Biology, McGovern Medical School at UTHealth, Houston, Texas, USA
| | - Chioniso P Masamha
- Department of Biochemistry and Molecular Biology, McGovern Medical School at UTHealth, Houston, Texas, USA
| | - Zheng Xia
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine Houston, Texas, USA
| | - Yu Xiang
- Department of Biochemistry and Molecular Biology, McGovern Medical School at UTHealth, Houston, Texas, USA
| | - Ning-Yuan Chen
- Department of Biochemistry and Molecular Biology, McGovern Medical School at UTHealth, Houston, Texas, USA
| | - Jose G Molina
- Department of Biochemistry and Molecular Biology, McGovern Medical School at UTHealth, Houston, Texas, USA
| | - Scott Collum
- Department of Biochemistry and Molecular Biology, McGovern Medical School at UTHealth, Houston, Texas, USA
| | - Tinne C Mertens
- Department of Biochemistry and Molecular Biology, McGovern Medical School at UTHealth, Houston, Texas, USA
| | - Fayong Luo
- Department of Biochemistry and Molecular Biology, McGovern Medical School at UTHealth, Houston, Texas, USA
| | - Kemly Philip
- Department of Biochemistry and Molecular Biology, McGovern Medical School at UTHealth, Houston, Texas, USA
| | - Jonathan Davies
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
| | - Jingjing Huang
- The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Cory Wilson
- Department of Biochemistry and Molecular Biology, McGovern Medical School at UTHealth, Houston, Texas, USA
| | | | - Brian A Bruckner
- Houston Methodist DeBakey Transplant Center, Houston Methodist Hospital, Houston, Texas, USA
| | - Soma Sk Jyothula
- Department of Internal Medicine, McGovern Medical School at UTHealth, Houston, Texas, USA
| | - Kelly A Volcik
- Department of Biochemistry and Molecular Biology, McGovern Medical School at UTHealth, Houston, Texas, USA
| | - Lei Li
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine Houston, Texas, USA
| | - Leng Han
- Department of Biochemistry and Molecular Biology, McGovern Medical School at UTHealth, Houston, Texas, USA
| | - Wei Li
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine Houston, Texas, USA
| | - Shervin Assassi
- Department of Internal Medicine, McGovern Medical School at UTHealth, Houston, Texas, USA
| | - Harry Karmouty-Quintana
- Department of Biochemistry and Molecular Biology, McGovern Medical School at UTHealth, Houston, Texas, USA
| | - Eric J Wagner
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch at Galveston, Galveston, Texas, USA
| | - Michael R Blackburn
- Department of Biochemistry and Molecular Biology, McGovern Medical School at UTHealth, Houston, Texas, USA
| |
Collapse
|
26
|
Hu J, Qian H, Xue Y, Fu XD. PTB/nPTB: master regulators of neuronal fate in mammals. BIOPHYSICS REPORTS 2018; 4:204-214. [PMID: 30310857 PMCID: PMC6153489 DOI: 10.1007/s41048-018-0066-y] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Accepted: 07/21/2018] [Indexed: 01/15/2023] Open
Abstract
PTB was initially discovered as a polypyrimidine tract-binding protein (hence the name), which corresponds to a specific RNA-binding protein associated with heterogeneous ribonucleoprotein particle (hnRNP I). The PTB family consists of three members in mammalian genomes, with PTBP1 (PTB) expressed in most cell types, PTBP2 (also known as nPTB or brPTB) exclusively found in the nervous system, and PTBP3 (also known as ROD1) predominately detected in immune cells. During neural development, PTB is down-regulated, which induces nPTB, and the expression of both PTB and nPTB becomes diminished when neurons mature. This programed switch, which largely takes place at the splicing level, is critical for the development of the nervous system, with PTB playing a central role in neuronal induction and nPTB guarding neuronal maturation. Remarkably, sequential knockdown of PTB and nPTB has been found to be necessary and sufficient to convert non-neuronal cells to the neuronal lineage. These findings, coupled with exquisite understanding of the molecular circuits regulated by these RNA-binding proteins, establish a critical foundation for their future applications in regenerative medicine.
Collapse
Affiliation(s)
- Jing Hu
- 1Department of Cellular and Molecular Medicine, University of California, La Jolla, San Diego, CA 92093-0651 USA
| | - Hao Qian
- 1Department of Cellular and Molecular Medicine, University of California, La Jolla, San Diego, CA 92093-0651 USA
| | - Yuanchao Xue
- 2Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101 China
| | - Xiang-Dong Fu
- 1Department of Cellular and Molecular Medicine, University of California, La Jolla, San Diego, CA 92093-0651 USA.,2Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101 China
| |
Collapse
|
27
|
PTBP3 contributes to the metastasis of gastric cancer by mediating CAV1 alternative splicing. Cell Death Dis 2018; 9:569. [PMID: 29752441 PMCID: PMC5948206 DOI: 10.1038/s41419-018-0608-8] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 04/13/2018] [Accepted: 04/16/2018] [Indexed: 12/23/2022]
Abstract
Polypyrimidine tract-binding protein 3 (PTBP3) is an essential RNA-binding protein with roles in RNA splicing, 3' end processing and translation. Although increasing evidence implicates PTBP3 in several cancers, its role in gastric cancer metastasis remains poorly explored. In this study, we found that PTBP3 was upregulated in the gastric cancer tissues of patients with lymph node metastasis. Patients with high PTBP3 expression levels had significantly shorter survival than those with low PTBP3 expression. Overexpression/knockdown of PTBP3 expression had no effect on proliferation, whereas it regulated migration and invasion in vitro. In addition, when a mouse xenotransplant model of MKN45 was established, knockdown of PTBP3 in MKN45 cells caused the formation of tumours that were smaller in size than their counterparts, with suppression of tumour lymphangiogenesis and metastasis to regional lymph nodes. Furthermore, we identified caveolin 1 (CAV1) as a downstream target of PTBP3. RNA immunoprecipitation (RIP) assays and dual-luciferase reporter gene assays indicated that PTBP3 interacted with the CU-rich region of the CAV1 gene to downregulate CAV1α expression. Knockdown of CAV1α abrogated the reduction of FAK and Src induced by PTBP3 knockdown. In summary, our findings provide experimental evidence that PTBP3 may function as a metastatic gene in gastric cancer by regulating CAV1 through alternative splicing.
Collapse
|
28
|
Suess B, Kemmerer K, Weigand JE. Splicing and Alternative Splicing Impact on Gene Design. Synth Biol (Oxf) 2018. [DOI: 10.1002/9783527688104.ch7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- Beatrix Suess
- Department of Biology; Technische Universität Darmstadt; Schnittspahnstraße 10 64287 Darmstadt Germany
| | - Katrin Kemmerer
- Department of Biology; Technische Universität Darmstadt; Schnittspahnstraße 10 64287 Darmstadt Germany
| | - Julia E. Weigand
- Department of Biology; Technische Universität Darmstadt; Schnittspahnstraße 10 64287 Darmstadt Germany
| |
Collapse
|
29
|
Discovery of physiological and cancer-related regulators of 3' UTR processing with KAPAC. Genome Biol 2018; 19:44. [PMID: 29592812 PMCID: PMC5875010 DOI: 10.1186/s13059-018-1415-3] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 02/28/2018] [Indexed: 11/10/2022] Open
Abstract
3' Untranslated regions (3' UTRs) length is regulated in relation to cellular state. To uncover key regulators of poly(A) site use in specific conditions, we have developed PAQR, a method for quantifying poly(A) site use from RNA sequencing data and KAPAC, an approach that infers activities of oligomeric sequence motifs on poly(A) site choice. Application of PAQR and KAPAC to RNA sequencing data from normal and tumor tissue samples uncovers motifs that can explain changes in cleavage and polyadenylation in specific cancers. In particular, our analysis points to polypyrimidine tract binding protein 1 as a regulator of poly(A) site choice in glioblastoma.
Collapse
|
30
|
Conservation of polypyrimidine tract binding proteins and their putative target RNAs in several storage root crops. BMC Genomics 2018; 19:124. [PMID: 29415650 PMCID: PMC5803842 DOI: 10.1186/s12864-018-4502-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 01/28/2018] [Indexed: 11/21/2022] Open
Abstract
Background Polypyrimidine-tract binding proteins (PTBs) are ubiquitous RNA-binding proteins in plants and animals that play diverse role in RNA metabolic processes. PTB proteins bind to target RNAs through motifs rich in cytosine/uracil residues to fine-tune transcript metabolism. Among tuber and root crops, potato has been widely studied to understand the mobile signals that activate tuber development. Potato PTBs, designated as StPTB1 and StPTB6, function in a long-distance transport system by binding to specific mRNAs (StBEL5 and POTH1) to stabilize them and facilitate their movement from leaf to stolon, the site of tuber induction, where they activate tuber and root growth. Storage tubers and root crops are important sustenance food crops grown throughout the world. Despite the availability of genome sequence for sweet potato, cassava, carrot and sugar beet, the molecular mechanism of root-derived storage organ development remains completely unexplored. Considering the pivotal role of PTBs and their target RNAs in potato storage organ development, we propose that a similar mechanism may be prevalent in storage root crops as well. Results Through a bioinformatics survey utilizing available genome databases, we identify the orthologues of potato PTB proteins and two phloem-mobile RNAs, StBEL5 and POTH1, in five storage root crops - sweet potato, cassava, carrot, radish and sugar beet. Like potato, PTB1/6 type proteins from these storage root crops contain four conserved RNA Recognition Motifs (characteristic of RNA-binding PTBs) in their protein sequences. Further, 3´ UTR (untranslated region) analysis of BEL5 and POTH1 orthologues revealed the presence of several cytosine/uracil motifs, similar to those present in potato StBEL5 and POTH1 RNAs. Using RT-qPCR assays, we verified the presence of these related transcripts in leaf and root tissues of these five storage root crops. Similar to potato, BEL5-, PTB1/6- and POTH1-like orthologue RNAs from the aforementioned storage root crops exhibited differential accumulation patterns in leaf and storage root tissues. Conclusions Our results suggest that the PTB1/6-like orthologues and their putative targets, BEL5- and POTH1-like mRNAs, from storage root crops could interact physically, similar to that in potato, and potentially, could function as key molecular signals controlling storage organ development in root crops. Electronic supplementary material The online version of this article (10.1186/s12864-018-4502-7) contains supplementary material, which is available to authorized users.
Collapse
|
31
|
Hwang HW, Saito Y, Park CY, Blachère NE, Tajima Y, Fak JJ, Zucker-Scharff I, Darnell RB. cTag-PAPERCLIP Reveals Alternative Polyadenylation Promotes Cell-Type Specific Protein Diversity and Shifts Araf Isoforms with Microglia Activation. Neuron 2017; 95:1334-1349.e5. [PMID: 28910620 DOI: 10.1016/j.neuron.2017.08.024] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 07/07/2017] [Accepted: 08/11/2017] [Indexed: 12/23/2022]
Abstract
Alternative polyadenylation (APA) is increasingly recognized to regulate gene expression across different cell types, but obtaining APA maps from individual cell types typically requires prior purification, a stressful procedure that can itself alter cellular states. Here, we describe a new platform, cTag-PAPERCLIP, that generates APA profiles from single cell populations in intact tissues; cTag-PAPERCLIP requires no tissue dissociation and preserves transcripts in native states. Applying cTag-PAPERCLIP to profile four major cell types in the mouse brain revealed common APA preferences between excitatory and inhibitory neurons distinct from astrocytes and microglia, regulated in part by neuron-specific RNA-binding proteins NOVA2 and PTBP2. We further identified a role of APA in switching Araf protein isoforms during microglia activation, impacting production of downstream inflammatory cytokines. Our results demonstrate the broad applicability of cTag-PAPERCLIP and a previously undiscovered role of APA in contributing to protein diversity between different cell types and cellular states within the brain.
Collapse
Affiliation(s)
- Hun-Way Hwang
- Laboratory of Molecular Neuro-Oncology and Howard Hughes Medical Institute, The Rockefeller University, 1230 York Avenue, New York, New York 10065, USA; Department of Pathology, University of Pittsburgh, School of Medicine, 3550 Terrace Street, Pittsburgh, PA 15213, USA.
| | - Yuhki Saito
- Laboratory of Molecular Neuro-Oncology and Howard Hughes Medical Institute, The Rockefeller University, 1230 York Avenue, New York, New York 10065, USA
| | - Christopher Y Park
- Laboratory of Molecular Neuro-Oncology and Howard Hughes Medical Institute, The Rockefeller University, 1230 York Avenue, New York, New York 10065, USA; New York Genome Center, 101 Avenue of the Americas, New York, NY 10013, USA
| | - Nathalie E Blachère
- Laboratory of Molecular Neuro-Oncology and Howard Hughes Medical Institute, The Rockefeller University, 1230 York Avenue, New York, New York 10065, USA
| | - Yoko Tajima
- Laboratory of Molecular Neuro-Oncology and Howard Hughes Medical Institute, The Rockefeller University, 1230 York Avenue, New York, New York 10065, USA
| | - John J Fak
- Laboratory of Molecular Neuro-Oncology and Howard Hughes Medical Institute, The Rockefeller University, 1230 York Avenue, New York, New York 10065, USA
| | - Ilana Zucker-Scharff
- Laboratory of Molecular Neuro-Oncology and Howard Hughes Medical Institute, The Rockefeller University, 1230 York Avenue, New York, New York 10065, USA
| | - Robert B Darnell
- Laboratory of Molecular Neuro-Oncology and Howard Hughes Medical Institute, The Rockefeller University, 1230 York Avenue, New York, New York 10065, USA; New York Genome Center, 101 Avenue of the Americas, New York, NY 10013, USA.
| |
Collapse
|
32
|
Turner RE, Pattison AD, Beilharz TH. Alternative polyadenylation in the regulation and dysregulation of gene expression. Semin Cell Dev Biol 2017; 75:61-69. [PMID: 28867199 DOI: 10.1016/j.semcdb.2017.08.056] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 08/30/2017] [Accepted: 08/30/2017] [Indexed: 01/08/2023]
Abstract
Transcriptional control shapes a cell's transcriptome composition, but it is RNA processing that refines its expression. The untranslated regions (UTRs) of mRNA are hotspots for regulatory control. Features in these can impact mRNA stability, localisation and translation. Here we describe how alternative cleavage and polyadenylation can change mRNA fate by changing the length of its 3'UTR.
Collapse
Affiliation(s)
- Rachael Emily Turner
- Development and stem cells Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Victoria, 3800, Australia
| | - Andrew David Pattison
- Development and stem cells Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Victoria, 3800, Australia
| | - Traude Helene Beilharz
- Development and stem cells Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Victoria, 3800, Australia.
| |
Collapse
|
33
|
Functional interactions between polypyrimidine tract binding protein and PRI peptide ligand containing proteins. Biochem Soc Trans 2017; 44:1058-65. [PMID: 27528752 DOI: 10.1042/bst20160080] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Indexed: 02/04/2023]
Abstract
Polypyrimidine tract binding protein (PTBP1) is a heterogeneous nuclear ribonucleoprotein (hnRNP) that plays roles in most stages of the life-cycle of pre-mRNA and mRNAs in the nucleus and cytoplasm. PTBP1 has four RNA binding domains of the RNA recognition motif (RRM) family, each of which can bind to pyrimidine motifs. In addition, RRM2 can interact via its dorsal surface with proteins containing short peptide ligands known as PTB RRM2 interacting (PRI) motifs, originally found in the protein Raver1. Here we review our recent progress in understanding the interactions of PTB with RNA and with various proteins containing PRI ligands.
Collapse
|
34
|
Neve J, Patel R, Wang Z, Louey A, Furger AM. Cleavage and polyadenylation: Ending the message expands gene regulation. RNA Biol 2017; 14:865-890. [PMID: 28453393 PMCID: PMC5546720 DOI: 10.1080/15476286.2017.1306171] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 03/02/2017] [Accepted: 03/09/2017] [Indexed: 12/13/2022] Open
Abstract
Cleavage and polyadenylation (pA) is a fundamental step that is required for the maturation of primary protein encoding transcripts into functional mRNAs that can be exported from the nucleus and translated in the cytoplasm. 3'end processing is dependent on the assembly of a multiprotein processing complex on the pA signals that reside in the pre-mRNAs. Most eukaryotic genes have multiple pA signals, resulting in alternative cleavage and polyadenylation (APA), a widespread phenomenon that is important to establish cell state and cell type specific transcriptomes. Here, we review how pA sites are recognized and comprehensively summarize how APA is regulated and creates mRNA isoform profiles that are characteristic for cell types, tissues, cellular states and disease.
Collapse
Affiliation(s)
- Jonathan Neve
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Radhika Patel
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Zhiqiao Wang
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Alastair Louey
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | | |
Collapse
|
35
|
Taniguchi K, Sakai M, Sugito N, Kumazaki M, Shinohara H, Yamada N, Nakayama T, Ueda H, Nakagawa Y, Ito Y, Futamura M, Uno B, Otsuki Y, Yoshida K, Uchiyama K, Akao Y. PTBP1-associated microRNA-1 and -133b suppress the Warburg effect in colorectal tumors. Oncotarget 2017; 7:18940-52. [PMID: 26980745 PMCID: PMC4951342 DOI: 10.18632/oncotarget.8005] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 02/05/2016] [Indexed: 01/24/2023] Open
Abstract
It is known that pyruvate kinase in muscle (PKM), which is a rate-limiting glycolytic enzyme, has essential roles in the Warburg effect and that expression of cancer-dominant PKM2 is increased by polypyrimidine tract-binding protein 1 (PTBP1), which is a splicer of the PKM gene. In other words, PKM2 acts as a promoter of the Warburg effect. Previously, we demonstrated that the Warburg effect was partially established by down-regulation of several microRNAs (miRs) that bind to PTBP1 and that ectopic expression of these miRs suppressed the Warburg effect. In this study, we investigated the functions of miR-1 and -133b, which are well known as muscle-specific miRs, from the viewpoint of the Warburg effect in colorectal tumors. The expression levels of miR-1 and -133b were relatively high in colon tissue except muscle and very frequently down-regulated in 75 clinical colorectal tumors samples, even in adenomas, compared with those of the adjacent normal tissue samples. The ectopic expression of these miRs induced growth suppression and autophagic cell death through the switching of PKM isoform expression from PKM2 to PKM1 by silencing PTBP1 expression both in vitro and in vivo. Also, we showed that the resultant increase in the intracellular level of reactive oxygen species (ROS) was involved in this mechanism. Furthermore, PTBP1 was highly expressed in most of the 30 clinical colorectal tumor samples examined, even in adenomas. Our results suggested that PTBP1 and PTBP1-associated miR-1 and -133b are crucial molecules for the maintenance of the Warburg effect in colorectal tumors.
Collapse
Affiliation(s)
- Kohei Taniguchi
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Gifu 501-1193, Japan.,Department of General and Gastroenterological Surgery, Osaka Medical College, Takatsuki, Osaka 569-8686, Japan
| | - Miku Sakai
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Gifu 501-1193, Japan
| | - Nobuhiko Sugito
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Gifu 501-1193, Japan
| | - Minami Kumazaki
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Gifu 501-1193, Japan
| | - Haruka Shinohara
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Gifu 501-1193, Japan
| | - Nami Yamada
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Gifu 501-1193, Japan
| | - Tatsushi Nakayama
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Gifu 501-1193, Japan
| | - Hiroshi Ueda
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Gifu 501-1193, Japan
| | - Yoshihito Nakagawa
- Department of Gastroenterology, Fujita Health University, School of Medicine, Kutsukake-cho, Toyoake, Aichi 470-1192, Japan
| | - Yuko Ito
- Department of Anatomy and Cell Biology, Division of Life Sciences, Osaka Medical College, Takatsuki, Osaka 569-8686, Japan
| | - Manabu Futamura
- Department of Oncological Surgery, Gifu University School of Medicine, Gifu 501-1193, Japan
| | - Bunji Uno
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Gifu 501-1193, Japan
| | - Yoshinori Otsuki
- Department of Anatomy and Cell Biology, Division of Life Sciences, Osaka Medical College, Takatsuki, Osaka 569-8686, Japan
| | - Kazuhiro Yoshida
- Department of Oncological Surgery, Gifu University School of Medicine, Gifu 501-1193, Japan
| | - Kazuhisa Uchiyama
- Department of General and Gastroenterological Surgery, Osaka Medical College, Takatsuki, Osaka 569-8686, Japan
| | - Yukihiro Akao
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Gifu 501-1193, Japan
| |
Collapse
|
36
|
Jiao H, Dong P, Yan L, Yang Z, Lv X, Li Q, Zong X, Fan J, Fu X, Liu X, Xiao R. TGF-β1 Induces Polypyrimidine Tract-Binding Protein to Alter Fibroblasts Proliferation and Fibronectin Deposition in Keloid. Sci Rep 2016; 6:38033. [PMID: 27897224 PMCID: PMC5126665 DOI: 10.1038/srep38033] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2016] [Accepted: 11/03/2016] [Indexed: 02/04/2023] Open
Abstract
Human dermal fibrotic disease keloid has been a clinical challenge because of its tumour-like growth and the lack of effective therapy. Dysregulated alternative splicing events have been demonstrated in tumours and fibrosis. In the current study, for the first time, it was demonstrated that the splicing regulator polypyrimidine tract-binding protein (PTB), which plays a pivotal role in tumour proliferation, invasion and metastasis, is overexpressed in keloid tissues and fibroblasts. Additionally, TGF-β1 upregulated the expressions of PTB and its upstream regulator, C-MYC, in keloid fibroblasts. Furthermore, we suppressed PTB using siRNA in keloid fibroblasts and in a keloid xenograft nude mouse model. PTB knockdown significantly slowed the proliferation of keloid fibroblasts and accelerated the regression of transplanted keloid tissues, which was accompanied by a shift in the alternative splicing of USP5 and RTN4. Moreover, when PTB was suppressed, there was a reduction in excessive deposition of FN1 and COL3A1 in transplanted keloid tissues. However, only FN1 was downregulated in keloid fibroblasts that were cultured in media supplemented with TGF-β1. Our study provides evidence for the role of PTB in keloid pathophysiology and offers a novel therapeutic target for keloids. Most importantly, the role TGF-β1 regulation of PTB may provide new insights into the mechanisms underlying inflammatory cytokine-induced fibrosis.
Collapse
Affiliation(s)
- Hu Jiao
- Research Center of Plastic Surgery Hospital, Chinese Academy of Medical Sciences &Peking Union Medical College, Beijing, P.R. China
| | - Ping Dong
- Research Center of Plastic Surgery Hospital, Chinese Academy of Medical Sciences &Peking Union Medical College, Beijing, P.R. China
| | - Li Yan
- Research Center of Plastic Surgery Hospital, Chinese Academy of Medical Sciences &Peking Union Medical College, Beijing, P.R. China
| | - Zhigang Yang
- Research Center of Plastic Surgery Hospital, Chinese Academy of Medical Sciences &Peking Union Medical College, Beijing, P.R. China
| | - Xiaoyan Lv
- Research Center of Plastic Surgery Hospital, Chinese Academy of Medical Sciences &Peking Union Medical College, Beijing, P.R. China
| | - Qiuchen Li
- Research Center of Plastic Surgery Hospital, Chinese Academy of Medical Sciences &Peking Union Medical College, Beijing, P.R. China
| | - Xianlei Zong
- Scar Plastic Department of Plastic Surgery Hospital, Chinese Academy of Medical Sciences &Peking Union Medical College, Beijing, P.R. China
| | - Jincai Fan
- Scar Plastic Department of Plastic Surgery Hospital, Chinese Academy of Medical Sciences &Peking Union Medical College, Beijing, P.R. China
| | - Xin Fu
- Research Center of Plastic Surgery Hospital, Chinese Academy of Medical Sciences &Peking Union Medical College, Beijing, P.R. China
| | - Xia Liu
- Research Center of Plastic Surgery Hospital, Chinese Academy of Medical Sciences &Peking Union Medical College, Beijing, P.R. China
| | - Ran Xiao
- Research Center of Plastic Surgery Hospital, Chinese Academy of Medical Sciences &Peking Union Medical College, Beijing, P.R. China
| |
Collapse
|
37
|
The Cstf2t Polyadenylation Gene Plays a Sex-Specific Role in Learning Behaviors in Mice. PLoS One 2016; 11:e0165976. [PMID: 27812195 PMCID: PMC5094787 DOI: 10.1371/journal.pone.0165976] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 10/20/2016] [Indexed: 11/19/2022] Open
Abstract
Polyadenylation is an essential mechanism for the processing of mRNA 3′ ends. CstF-64 (the 64,000 Mr subunit of the cleavage stimulation factor; gene symbol Cstf2) is an RNA-binding protein that regulates mRNA polyadenylation site usage. We discovered a paralogous form of CstF-64 called τCstF-64 (Cstf2t). The Cstf2t gene is conserved in all eutherian mammals including mice and humans, but the τCstF-64 protein is expressed only in a subset of mammalian tissues, mostly testis and brain. Male mice that lack Cstf2t (Cstf2t-/- mice) experience disruption of spermatogenesis and are infertile, although female fertility is unaffected. However, a role for τCstF-64 in the brain has not yet been determined. Given the importance of RNA polyadenylation and splicing in neuronal gene expression, we chose to test the hypothesis that τCstF-64 is important for brain function. Male and female 185-day old wild type and Cstf2t-/- mice were examined for motor function, general activity, learning, and memory using rotarod, open field activity, 8-arm radial arm maze, and Morris water maze tasks. Male wild type and Cstf2t-/- mice did not show differences in learning and memory. However, female Cstf2t-/- mice showed significantly better retention of learned maze tasks than did female wild type mice. These results suggest that τCstf-64 is important in memory function in female mice. Interestingly, male Cstf2t-/- mice displayed less thigmotactic behavior than did wild type mice, suggesting that Cstf2t may play a role in anxiety in males. Taken together, our studies highlight the importance of mRNA processing in cognition and behavior as well as their established functions in reproduction.
Collapse
|
38
|
He X, Yuan C, Yang J. Regulation and functional significance of CDC42 alternative splicing in ovarian cancer. Oncotarget 2016; 6:29651-63. [PMID: 26336992 PMCID: PMC4745753 DOI: 10.18632/oncotarget.4865] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Accepted: 08/12/2015] [Indexed: 02/03/2023] Open
Abstract
Our previous study found that splicing factor polypyrimidine tract-binding protein 1 (PTBP1) had a role in tumorigenesis but the underlying mechanism remained unclear. In this study, we observed that knockdown of PTBP1 inhibited filopodia formation. Subsequently, we found that PTBP1 regulated the alternative splicing of CDC42, a major regulator of filopodia formation. Two CDC42 variants, CDC42-v1 and CDC42-v2, can be generated through alternative splicing. Knockdown of PTBP1 increased the expression of CDC42-v2. Ectopic expression of individual variants showed that CDC42-v2 suppressed filopodia formation, opposite to the effect of CDC42-v1. Quantitative RT-PCR revealed that CDC42-v2 was expressed at lower levels in ovarian cancer cell lines and ovarian tumor tissues than in normal control cells and tissues. Further, CDC42-v2 was observed to have inhibitory effects on ovarian tumor cell growth, colony formation in soft agar and invasiveness. In contrast, these inhibitory effects were not found with CDC42-v1. Taken together, above results suggest that the role of PTBP1 in tumorigenesis may be partly mediated by its regulation of CDC42 alternative splicing and CDC42-v2 might function as a tumor suppressor.
Collapse
Affiliation(s)
- Xiaolong He
- Department of Biopharmaceutical Sciences, College of Pharmacy-Rockford, The University of Illinois at Chicago, Rockford, IL 61107, USA
| | - Chengfu Yuan
- Medical College of China Three Gorges University, Yichang, Hubei, 443002, People's Republic of China
| | - Jilai Yang
- Department of Biopharmaceutical Sciences, College of Pharmacy-Rockford, The University of Illinois at Chicago, Rockford, IL 61107, USA
| |
Collapse
|
39
|
Two Polypyrimidine Tracts in Intron 4 of the Major Immediate Early Gene Are Critical for Gene Expression Switching from IE1 to IE2 and for Replication of Human Cytomegalovirus. J Virol 2016; 90:7339-7349. [PMID: 27252533 DOI: 10.1128/jvi.00837-16] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 05/25/2016] [Indexed: 02/07/2023] Open
Abstract
UNLABELLED The human cytomegalovirus (HCMV) major immediate early (MIE) gene is essential for viral replication. The most abundant products encoded by the MIE gene include IE1 and IE2. Genes of IE1 and IE2 share the MIE promoter (MIEP), the first 3 exons, and the first 2 introns. IE1 is expressed earlier than IE2 after CMV infection or MIE gene transfection. In this study, we identified 2 polypyrimidine (Py) tracts in intron 4 (between exons 4 and 5) that are responsible for transcriptional switching from IE1 to IE2. The first Py is important and the second one is essential for the splicing and expression of IE2. In searching for the mechanisms of MIE gene switching from IE1 to IE2, we found that the second Py was required for the IE2's fourth intron to bind to a splicing factor such as U2AF65, as determined by an RNA electrophoretic mobility shift assay and a chromatin immunoprecipitation (ChIP) assay, while the first Py enhanced the binding of U2AF65 with the intron. An HCMV BACmid with the second Py mutated failed to produce any virus, while the HCMV with the first Py mutated replicated with a defective phenotype. Furthermore, we designed a small RNA (scRNAPy) that is complementary to the intron RNA covering the two Pys. The scRNAPy interfered with the interaction of U2AF65 with the intron and repressed the IE2 expression. Therefore, our studies implied that IE2 gene splicing might be an anti-CMV target. IMPORTANCE CMV is a ubiquitous herpesvirus and a significant cause of disease and death in the immunocompromised and elderly. Insights into its gene regulation will provide clues in designing anti-CMV strategies. The MIE gene is one of the earliest genes of CMV and is essential for CMV replication. It is known that the MIE gene needs to be spliced to produce more than two proteins; however, how MIE gene splicing is regulated remains elusive. In the present studies, we identified two Pys in intron 4 and found that the first Py is important and the second is required for the splicing and expression of IE2. We further investigated the mechanisms of gene switching from IE1 to IE2 and found that the two Pys are responsible for U2AF65's binding with intron 4. Therefore, the Pys in intron 4 are the cis elements that determine the fate of IE2 splicing. Furthermore, we found that a small RNA that is complementary to intron 4 repressed IE2 expression. Hence, we provide the first piece of evidence for a unique mechanism of MIE gene regulation at the splicing level.
Collapse
|
40
|
Gruber AJ, Schmidt R, Gruber AR, Martin G, Ghosh S, Belmadani M, Keller W, Zavolan M. A comprehensive analysis of 3' end sequencing data sets reveals novel polyadenylation signals and the repressive role of heterogeneous ribonucleoprotein C on cleavage and polyadenylation. Genome Res 2016; 26:1145-59. [PMID: 27382025 PMCID: PMC4971764 DOI: 10.1101/gr.202432.115] [Citation(s) in RCA: 157] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 05/31/2016] [Indexed: 12/22/2022]
Abstract
Alternative polyadenylation (APA) is a general mechanism of transcript diversification in mammals, which has been recently linked to proliferative states and cancer. Different 3′ untranslated region (3′ UTR) isoforms interact with different RNA-binding proteins (RBPs), which modify the stability, translation, and subcellular localization of the corresponding transcripts. Although the heterogeneity of pre-mRNA 3′ end processing has been established with high-throughput approaches, the mechanisms that underlie systematic changes in 3′ UTR lengths remain to be characterized. Through a uniform analysis of a large number of 3′ end sequencing data sets, we have uncovered 18 signals, six of which are novel, whose positioning with respect to pre-mRNA cleavage sites indicates a role in pre-mRNA 3′ end processing in both mouse and human. With 3′ end sequencing we have demonstrated that the heterogeneous ribonucleoprotein C (HNRNPC), which binds the poly(U) motif whose frequency also peaks in the vicinity of polyadenylation (poly(A)) sites, has a genome-wide effect on poly(A) site usage. HNRNPC-regulated 3′ UTRs are enriched in ELAV-like RBP 1 (ELAVL1) binding sites and include those of the CD47 gene, which participate in the recently discovered mechanism of 3′ UTR–dependent protein localization (UDPL). Our study thus establishes an up-to-date, high-confidence catalog of 3′ end processing sites and poly(A) signals, and it uncovers an important role of HNRNPC in regulating 3′ end processing. It further suggests that U-rich elements mediate interactions with multiple RBPs that regulate different stages in a transcript's life cycle.
Collapse
Affiliation(s)
- Andreas J Gruber
- Computational and Systems Biology, Biozentrum, University of Basel, 4056 Basel, Switzerland
| | - Ralf Schmidt
- Computational and Systems Biology, Biozentrum, University of Basel, 4056 Basel, Switzerland
| | - Andreas R Gruber
- Computational and Systems Biology, Biozentrum, University of Basel, 4056 Basel, Switzerland
| | - Georges Martin
- Computational and Systems Biology, Biozentrum, University of Basel, 4056 Basel, Switzerland
| | - Souvik Ghosh
- Computational and Systems Biology, Biozentrum, University of Basel, 4056 Basel, Switzerland
| | - Manuel Belmadani
- Computational and Systems Biology, Biozentrum, University of Basel, 4056 Basel, Switzerland
| | - Walter Keller
- Computational and Systems Biology, Biozentrum, University of Basel, 4056 Basel, Switzerland
| | - Mihaela Zavolan
- Computational and Systems Biology, Biozentrum, University of Basel, 4056 Basel, Switzerland
| |
Collapse
|
41
|
Kainov YA, Aushev VN, Naumenko SA, Tchevkina EM, Bazykin GA. Complex Selection on Human Polyadenylation Signals Revealed by Polymorphism and Divergence Data. Genome Biol Evol 2016; 8:1971-9. [PMID: 27324920 PMCID: PMC4943204 DOI: 10.1093/gbe/evw137] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/05/2016] [Indexed: 12/19/2022] Open
Abstract
Polyadenylation is a step of mRNA processing which is crucial for its expression and stability. The major polyadenylation signal (PAS) represents a nucleotide hexamer that adheres to the AATAAA consensus sequence. Over a half of human genes have multiple cleavage and polyadenylation sites, resulting in a great diversity of transcripts differing in function, stability, and translational activity. Here, we use available whole-genome human polymorphism data together with data on interspecies divergence to study the patterns of selection acting on PAS hexamers. Common variants of PAS hexamers are depleted of single nucleotide polymorphisms (SNPs), and SNPs within PAS hexamers have a reduced derived allele frequency (DAF) and increased conservation, indicating prevalent negative selection; at the same time, the SNPs that "improve" the PAS (i.e., those leading to higher cleavage efficiency) have increased DAF, compared to those that "impair" it. SNPs are rarer at PAS of "unique" polyadenylation sites (one site per gene); among alternative polyadenylation sites, at the distal PAS and at exonic PAS. Similar trends were observed in DAFs and divergence between species of placental mammals. Thus, selection permits PAS mutations mainly at redundant and/or weakly functional PAS. Nevertheless, a fraction of the SNPs at PAS hexamers likely affect gene functions; in particular, some of the observed SNPs are associated with disease.
Collapse
Affiliation(s)
- Yaroslav A Kainov
- Centre for Developmental Neurobiology, King's College London, London, United Kingdom Oncogenes Regulation Department, N.N. Blokhin Russian Cancer Research Center, Institute of Carcinogenesis, Moscow, Russia
| | - Vasily N Aushev
- Oncogenes Regulation Department, N.N. Blokhin Russian Cancer Research Center, Institute of Carcinogenesis, Moscow, Russia Department of Preventive Medicine, Icahn School of Medicine at Mount Sinai, New York
| | - Sergey A Naumenko
- Institute for Information Transmission Problems (Kharkevich Institute) of the Russian Academy of Sciences, Moscow, Russia Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, Canada
| | - Elena M Tchevkina
- Oncogenes Regulation Department, N.N. Blokhin Russian Cancer Research Center, Institute of Carcinogenesis, Moscow, Russia
| | - Georgii A Bazykin
- Institute for Information Transmission Problems (Kharkevich Institute) of the Russian Academy of Sciences, Moscow, Russia Skolkovo Institute of Science and Technology, Skolkovo, Russia Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Russia Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Russia Pirogov Russian National Research Medical University, Moscow, Russia
| |
Collapse
|
42
|
Yap K, Xiao Y, Friedman BA, Je HS, Makeyev EV. Polarizing the Neuron through Sustained Co-expression of Alternatively Spliced Isoforms. Cell Rep 2016; 15:1316-28. [PMID: 27134173 PMCID: PMC4870516 DOI: 10.1016/j.celrep.2016.04.012] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Revised: 02/29/2016] [Accepted: 03/29/2016] [Indexed: 10/31/2022] Open
Abstract
Alternative splicing (AS) is an important source of proteome diversity in eukaryotes. However, how this affects protein repertoires at a single-cell level remains an open question. Here, we show that many 3'-terminal exons are persistently co-expressed with their alternatives in mammalian neurons. In an important example of this scenario, cell polarity gene Cdc42, a combination of polypyrimidine tract-binding, protein-dependent, and constitutive splicing mechanisms ensures a halfway switch from the general (E7) to the neuron-specific (E6) alternative 3'-terminal exon during neuronal differentiation. Perturbing the nearly equimolar E6/E7 ratio in neurons results in defects in both axonal and dendritic compartments and suggests that Cdc42E7 is involved in axonogenesis, whereas Cdc42E6 is required for normal development of dendritic spines. Thus, co-expression of a precise blend of functionally distinct splice isoforms rather than a complete switch from one isoform to another underlies proper structural and functional polarization of neurons.
Collapse
Affiliation(s)
- Karen Yap
- MRC Centre for Developmental Neurobiology, King's College London, London SE1 1UL, UK
| | - Yixin Xiao
- Molecular Neurophysiology Laboratory, Signature Program in Neuroscience and Behavioral Disorders, Duke NUS Graduate Medical School, 8 College Road, 169857 Singapore, Singapore; Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, 117597 Singapore, Singapore
| | - Brad A Friedman
- Department of Bioinformatics and Computational Biology, Genentech, South San Francisco, CA 94080, USA
| | - H Shawn Je
- Molecular Neurophysiology Laboratory, Signature Program in Neuroscience and Behavioral Disorders, Duke NUS Graduate Medical School, 8 College Road, 169857 Singapore, Singapore; Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, 117597 Singapore, Singapore
| | - Eugene V Makeyev
- MRC Centre for Developmental Neurobiology, King's College London, London SE1 1UL, UK; School of Biological Sciences, Nanyang Technological University, 637551 Singapore, Singapore.
| |
Collapse
|
43
|
Domingues RG, Lago-Baldaia I, Pereira-Castro I, Fachini JM, Oliveira L, Drpic D, Lopes N, Henriques T, Neilson JR, Carmo AM, Moreira A. CD5 expression is regulated during human T-cell activation by alternative polyadenylation, PTBP1, and miR-204. Eur J Immunol 2016; 46:1490-503. [PMID: 27005442 DOI: 10.1002/eji.201545663] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Revised: 02/17/2016] [Accepted: 03/16/2016] [Indexed: 01/29/2023]
Abstract
T lymphocytes stimulated through their antigen receptor (TCR) preferentially express mRNA isoforms with shorter 3´ untranslated regions (3´-UTRs) derived from alternative pre-mRNA cleavage and polyadenylation (APA). However, the physiological relevance of APA programs remains poorly understood. CD5 is a T-cell surface glycoprotein that negatively regulates TCR signaling from the onset of T-cell activation. CD5 plays a pivotal role in mediating outcomes of cell survival or apoptosis, and may prevent both autoimmunity and cancer. In human primary T lymphocytes and Jurkat cells we found three distinct mRNA isoforms encoding CD5, each derived from distinct poly(A) signals (PASs). Upon T-cell activation, there is an overall increase in CD5 mRNAs with a specific increase in the relative expression of the shorter isoforms. 3´-UTRs derived from these shorter isoforms confer higher reporter expression in activated T cells relative to the longer isoform. We further show that polypyrimidine tract binding protein (PTB/PTBP1) directly binds to the proximal PAS and PTB siRNA depletion causes a decrease in mRNA derived from this PAS, suggesting an effect on stability or poly(A) site selection to circumvent targeting of the longer CD5 mRNA isoform by miR-204. These mechanisms fine-tune CD5 expression levels and thus ultimately T-cell responses.
Collapse
Affiliation(s)
- Rita G Domingues
- Gene Regulation Group, IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Portugal
| | - Inês Lago-Baldaia
- Gene Regulation Group, IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Portugal
| | - Isabel Pereira-Castro
- Gene Regulation Group, IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Portugal.,Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal
| | - Joseph M Fachini
- Department of Molecular Physiology and Biophysics, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Liliana Oliveira
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal.,Cell Activation and Gene Expression Group, IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Portugal
| | - Danica Drpic
- Gene Regulation Group, IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Portugal.,Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal
| | - Nair Lopes
- Gene Regulation Group, IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Portugal
| | - Telmo Henriques
- Gene Regulation Group, IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Portugal
| | - Joel R Neilson
- Department of Molecular Physiology and Biophysics, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Alexandre M Carmo
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal.,Cell Activation and Gene Expression Group, IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Portugal.,ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Portugal
| | - Alexandra Moreira
- Gene Regulation Group, IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Portugal.,Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal.,ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Portugal
| |
Collapse
|
44
|
Xue J, Liu Y, Yang Y, Wu S, Hu Y, Yang F, Zhou X, Wang J, Chen F, Zheng M, Zhu H, Chen Z. MEAN inhibits hepatitis C virus replication by interfering with a polypyrimidine tract-binding protein. J Cell Mol Med 2016; 20:1255-65. [PMID: 26929148 PMCID: PMC4929307 DOI: 10.1111/jcmm.12798] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2015] [Accepted: 12/22/2015] [Indexed: 01/10/2023] Open
Abstract
MEAN (6‐methoxyethylamino‐numonafide) is a small molecule compound, and here, we report that it effectively inhibits hepatitis C virus (HCV) infection in an HCV cell culture system using a JC1‐Luc chimeric virus, with a 50% effective concentration (EC50) of 2.36 ± 0.29 μM. Drug combination usage analyses demonstrated that MEAN was synergistic with interferon α, ITX5061 and ribavirin. In addition, MEAN effectively inhibits N415D mutant virus and G451R mutant viral infections. Mechanistic studies show that the treatment of HCV‐infected hepatocytes with MEAN inhibits HCV replication but not translation. Furthermore, treatment with MEAN significantly reduces polypyrimidine tract‐binding protein (PTB) levels and blocks the cytoplasmic redistribution of PTB upon infection. In the host cytoplasm, PTB is directly associated with HCV replication, and the inhibition of HCV replication by MEAN can result in the sequestration of PTB in treated nuclei. Taken together, these results indicate that MEAN is a potential therapeutic candidate for HCV infection, and the targeting of the nucleo‐cytoplasmic translocation of the host PTB protein could be a novel strategy to interrupt HCV replication.
Collapse
Affiliation(s)
- Jihua Xue
- State Key Lab of Diagnostic and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, 1st Affiliated Hospital of Medical School, Zhejiang University, Hangzhou, China
| | - Yanning Liu
- State Key Lab of Diagnostic and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, 1st Affiliated Hospital of Medical School, Zhejiang University, Hangzhou, China
| | - Ying Yang
- State Key Lab of Diagnostic and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, 1st Affiliated Hospital of Medical School, Zhejiang University, Hangzhou, China
| | - Shanshan Wu
- State Key Lab of Diagnostic and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, 1st Affiliated Hospital of Medical School, Zhejiang University, Hangzhou, China
| | - Ying Hu
- State Key Lab of Diagnostic and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, 1st Affiliated Hospital of Medical School, Zhejiang University, Hangzhou, China
| | - Fan Yang
- State Key Lab of Diagnostic and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, 1st Affiliated Hospital of Medical School, Zhejiang University, Hangzhou, China
| | - Xiaotang Zhou
- State Key Lab of Diagnostic and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, 1st Affiliated Hospital of Medical School, Zhejiang University, Hangzhou, China
| | | | - Feng Chen
- State Key Lab of Diagnostic and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, 1st Affiliated Hospital of Medical School, Zhejiang University, Hangzhou, China
| | - Min Zheng
- State Key Lab of Diagnostic and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, 1st Affiliated Hospital of Medical School, Zhejiang University, Hangzhou, China
| | - Haihong Zhu
- State Key Lab of Diagnostic and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, 1st Affiliated Hospital of Medical School, Zhejiang University, Hangzhou, China
| | - Zhi Chen
- State Key Lab of Diagnostic and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, 1st Affiliated Hospital of Medical School, Zhejiang University, Hangzhou, China
| |
Collapse
|
45
|
Huang G, Huang S, Wang R, Yan X, Li Y, Feng Y, Wang S, Yang X, Chen L, Li J, You L, Chen S, Luo G, Xu A. Dynamic Regulation of Tandem 3' Untranslated Regions in Zebrafish Spleen Cells during Immune Response. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2016; 196:715-725. [PMID: 26673144 DOI: 10.4049/jimmunol.1500847] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 11/08/2015] [Indexed: 12/24/2022]
Abstract
Alternative polyadenylation (APA) has been found to be involved in tumorigenesis, development, and cell differentiation, as well as in the activation of several subsets of immune cells in vitro. Whether APA takes place in immune responses in vivo is largely unknown. We profiled the variation in tandem 3' untranslated regions (UTRs) in pathogen-challenged zebrafish and identified hundreds of APA genes with ∼ 10% being immune response genes. The detected immune response APA genes were enriched in TLR signaling, apoptosis, and JAK-STAT signaling pathways. A greater number of microRNA target sites and AU-rich elements were found in the extended 3' UTRs than in the common 3' UTRs of these APA genes. Further analysis suggested that microRNA and AU-rich element-mediated posttranscriptional regulation plays an important role in modulating the expression of APA genes. These results indicate that APA is extensively involved in immune responses in vivo, and it may be a potential new paradigm for immune regulation.
Collapse
Affiliation(s)
- Guangrui Huang
- School of Basic Medical Sciences, Beijing University of Chinese Medicine, Beijing 100029, People's Republic of China; State Key Laboratory of Biocontrol, Department of Biochemistry, School of Life Sciences, Sun Yat-Sen (Zhongshan) University, Guangzhou, Guangdong 510275, People's Republic of China; and Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH 44106
| | - Shengfeng Huang
- State Key Laboratory of Biocontrol, Department of Biochemistry, School of Life Sciences, Sun Yat-Sen (Zhongshan) University, Guangzhou, Guangdong 510275, People's Republic of China; and
| | - Ruihua Wang
- State Key Laboratory of Biocontrol, Department of Biochemistry, School of Life Sciences, Sun Yat-Sen (Zhongshan) University, Guangzhou, Guangdong 510275, People's Republic of China; and
| | - Xinyu Yan
- State Key Laboratory of Biocontrol, Department of Biochemistry, School of Life Sciences, Sun Yat-Sen (Zhongshan) University, Guangzhou, Guangdong 510275, People's Republic of China; and
| | - Yuxin Li
- State Key Laboratory of Biocontrol, Department of Biochemistry, School of Life Sciences, Sun Yat-Sen (Zhongshan) University, Guangzhou, Guangdong 510275, People's Republic of China; and
| | - Yuchao Feng
- State Key Laboratory of Biocontrol, Department of Biochemistry, School of Life Sciences, Sun Yat-Sen (Zhongshan) University, Guangzhou, Guangdong 510275, People's Republic of China; and
| | - Shaozhou Wang
- State Key Laboratory of Biocontrol, Department of Biochemistry, School of Life Sciences, Sun Yat-Sen (Zhongshan) University, Guangzhou, Guangdong 510275, People's Republic of China; and
| | - Xia Yang
- State Key Laboratory of Biocontrol, Department of Biochemistry, School of Life Sciences, Sun Yat-Sen (Zhongshan) University, Guangzhou, Guangdong 510275, People's Republic of China; and
| | - Liutao Chen
- State Key Laboratory of Biocontrol, Department of Biochemistry, School of Life Sciences, Sun Yat-Sen (Zhongshan) University, Guangzhou, Guangdong 510275, People's Republic of China; and
| | - Jun Li
- State Key Laboratory of Biocontrol, Department of Biochemistry, School of Life Sciences, Sun Yat-Sen (Zhongshan) University, Guangzhou, Guangdong 510275, People's Republic of China; and
| | - Leiming You
- School of Basic Medical Sciences, Beijing University of Chinese Medicine, Beijing 100029, People's Republic of China; State Key Laboratory of Biocontrol, Department of Biochemistry, School of Life Sciences, Sun Yat-Sen (Zhongshan) University, Guangzhou, Guangdong 510275, People's Republic of China; and
| | - Shangwu Chen
- State Key Laboratory of Biocontrol, Department of Biochemistry, School of Life Sciences, Sun Yat-Sen (Zhongshan) University, Guangzhou, Guangdong 510275, People's Republic of China; and
| | - Guangbin Luo
- School of Basic Medical Sciences, Beijing University of Chinese Medicine, Beijing 100029, People's Republic of China; Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH 44106
| | - Anlong Xu
- School of Basic Medical Sciences, Beijing University of Chinese Medicine, Beijing 100029, People's Republic of China; State Key Laboratory of Biocontrol, Department of Biochemistry, School of Life Sciences, Sun Yat-Sen (Zhongshan) University, Guangzhou, Guangdong 510275, People's Republic of China; and
| |
Collapse
|
46
|
Marnef A, Jády BE, Kiss T. Human polypyrimidine tract-binding protein interacts with mitochondrial tRNA(Thr) in the cytosol. Nucleic Acids Res 2015; 44:1342-53. [PMID: 26657638 PMCID: PMC4756820 DOI: 10.1093/nar/gkv1355] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 11/22/2015] [Indexed: 11/12/2022] Open
Abstract
Human polypyrimidine tract-binding protein PTB is a multifunctional RNA-binding protein with four RNA recognition motifs (RRM1 to RRM4). PTB is a nucleocytoplasmic shuttle protein that functions as a key regulator of alternative pre-mRNA splicing in the nucleoplasm and promotes internal ribosome entry site-mediated translation initiation of viral and cellular mRNAs in the cytoplasm. Here, we demonstrate that PTB and its paralogs, nPTB and ROD1, specifically interact with mitochondrial (mt) tRNA(Thr) both in human and mouse cells. In vivo and in vitro RNA-binding experiments demonstrate that PTB forms a direct interaction with the T-loop and the D-stem-loop of mt tRNA(Thr) using its N-terminal RRM1 and RRM2 motifs. RNA sequencing and cell fractionation experiments show that PTB associates with correctly processed and internally modified, mature mt tRNA(Thr) in the cytoplasm outside of mitochondria. Consistent with this, PTB activity is not required for mt tRNA(Thr) biogenesis or for correct mitochondrial protein synthesis. PTB association with mt tRNA(Thr) is largely increased upon induction of apoptosis, arguing for a potential role of the mt tRNA(Thr)/PTB complex in apoptosis. Our results lend strong support to the recently emerging conception that human mt tRNAs can participate in novel cytoplasmic processes independent from mitochondrial protein synthesis.
Collapse
Affiliation(s)
- Aline Marnef
- Laboratoire de Biologie Moléculaire Eucaryote du CNRS, UMR5099, CNRS, Université Paul Sabatier, 118 route de Narbonne, 31062 Toulouse Cedex 9, France
| | - Beáta E Jády
- Laboratoire de Biologie Moléculaire Eucaryote du CNRS, UMR5099, CNRS, Université Paul Sabatier, 118 route de Narbonne, 31062 Toulouse Cedex 9, France
| | - Tamás Kiss
- Laboratoire de Biologie Moléculaire Eucaryote du CNRS, UMR5099, CNRS, Université Paul Sabatier, 118 route de Narbonne, 31062 Toulouse Cedex 9, France Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| |
Collapse
|
47
|
Zhang L, Tran NT, Su H, Wang R, Lu Y, Tang H, Aoyagi S, Guo A, Khodadadi-Jamayran A, Zhou D, Qian K, Hricik T, Côté J, Han X, Zhou W, Laha S, Abdel-Wahab O, Levine RL, Raffel G, Liu Y, Chen D, Li H, Townes T, Wang H, Deng H, Zheng YG, Leslie C, Luo M, Zhao X. Cross-talk between PRMT1-mediated methylation and ubiquitylation on RBM15 controls RNA splicing. eLife 2015; 4:07938. [PMID: 26575292 PMCID: PMC4775220 DOI: 10.7554/elife.07938] [Citation(s) in RCA: 113] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2015] [Accepted: 11/16/2015] [Indexed: 12/24/2022] Open
Abstract
RBM15, an RNA binding protein, determines cell-fate specification of many tissues including blood. We demonstrate that RBM15 is methylated by protein arginine methyltransferase 1 (PRMT1) at residue R578, leading to its degradation via ubiquitylation by an E3 ligase (CNOT4). Overexpression of PRMT1 in acute megakaryocytic leukemia cell lines blocks megakaryocyte terminal differentiation by downregulation of RBM15 protein level. Restoring RBM15 protein level rescues megakaryocyte terminal differentiation blocked by PRMT1 overexpression. At the molecular level, RBM15 binds to pre-messenger RNA intronic regions of genes important for megakaryopoiesis such as GATA1, RUNX1, TAL1 and c-MPL. Furthermore, preferential binding of RBM15 to specific intronic regions recruits the splicing factor SF3B1 to the same sites for alternative splicing. Therefore, PRMT1 regulates alternative RNA splicing via reducing RBM15 protein concentration. Targeting PRMT1 may be a curative therapy to restore megakaryocyte differentiation for acute megakaryocytic leukemia. DOI:http://dx.doi.org/10.7554/eLife.07938.001 The many different cell types in an adult animal all develop from a single fertilized egg. The development of cells into more specialized cell types is called ‘differentiation’. Proteins and other molecules from both inside and outside of the cells regulate the differentiation process. RNA is a molecule that is similar to DNA, and performs several important roles inside cells. Perhaps most importantly, RNA molecules act as messengers and carry genetic instructions during gene expression. RBM15 is an RNA-binding protein that is found throughout nature, and is involved in a number of developmental processes. Previous research has linked the incorrect control of RBM15 with an increased risk of certain cancers, including megakaryocytic leukemia. However, it is not clear what role RNA-binding proteins such as RBM15 play during differentiation. Now, Zhang, Tran, Su et al. have investigated the role of RBM15 during the development of large cells found in human bone marrow (called megakaryocytes). First, the experiments demonstrated that an enzyme called PRMT1 modifies RBM15. This enzyme adds a chemical mark called a methyl group at a specific site (an arginine amino acid) on the RNA-binding protein. Next, Zhang, Tran, Su et al. showed that the addition of this methyl group earmarks RBM15 for destruction. This means that an increase in PRMT1 levels reduces the amount of RBM15 in cells, while decreases in PRMT1 have the opposite effect. Further experiments showed that RBM15 normally processes the RNA messengers that carry the genetic instructions needed for the differentiation of bone marrow cells. An excess of PRMT1 enzyme leads to a lack of this RNA-binding protein. This in turn interferes with the differentiation process, and can contribute to the development of cancers such as megakaryocytic leukemia. Future work will therefore explore whether targeting PRMT1 with drugs could represent an effective treatment for these kinds of cancers. DOI:http://dx.doi.org/10.7554/eLife.07938.002
Collapse
Affiliation(s)
- Li Zhang
- Department of Biochemistry and Molecular Genetics, UAB Stem Cell Institute, The University of Alabama at Birmingham, Birmingham, United States
| | - Ngoc-Tung Tran
- Department of Biochemistry and Molecular Genetics, UAB Stem Cell Institute, The University of Alabama at Birmingham, Birmingham, United States
| | - Hairui Su
- Department of Biochemistry and Molecular Genetics, UAB Stem Cell Institute, The University of Alabama at Birmingham, Birmingham, United States
| | - Rui Wang
- Program of Molecular Pharmacology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, United States
| | - Yuheng Lu
- Computational Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, United States
| | - Haiping Tang
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Sayura Aoyagi
- Cell Signaling Technology, Inc., Danvers, United States
| | - Ailan Guo
- Cell Signaling Technology, Inc., Danvers, United States
| | - Alireza Khodadadi-Jamayran
- Department of Biochemistry and Molecular Genetics, UAB Stem Cell Institute, The University of Alabama at Birmingham, Birmingham, United States
| | - Dewang Zhou
- Department of Biochemistry and Molecular Genetics, UAB Stem Cell Institute, The University of Alabama at Birmingham, Birmingham, United States
| | - Kun Qian
- Department of Pharmaceutical and Biomedical Sciences, The University of Georgia, Athens, United States
| | - Todd Hricik
- Human Oncology and Pathogenesis Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, United States
| | - Jocelyn Côté
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Canada
| | - Xiaosi Han
- Department of Neurology, Comprehensive Cancer Center, The University of Alabama at Birmingham, Birmingham, United States
| | - Wenping Zhou
- Department of Internal Medicine, Zhengzhou - Henan Cancer Hospital, Zhengzhou, China
| | - Suparna Laha
- Division of Hematology and Oncology, University of Massachusetts Medical School, Worcester, United States
| | - Omar Abdel-Wahab
- Human Oncology and Pathogenesis Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, United States
| | - Ross L Levine
- Human Oncology and Pathogenesis Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, United States
| | - Glen Raffel
- Division of Hematology and Oncology, University of Massachusetts Medical School, Worcester, United States
| | - Yanyan Liu
- Department of Internal Medicine, Zhengzhou - Henan Cancer Hospital, Zhengzhou, China
| | - Dongquan Chen
- Division of Preventive Medicine, The University of Alabama at Birmingham, Birmingham, United States
| | - Haitao Li
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Tim Townes
- Department of Biochemistry and Molecular Genetics, UAB Stem Cell Institute, The University of Alabama at Birmingham, Birmingham, United States
| | - Hengbin Wang
- Department of Biochemistry and Molecular Genetics, UAB Stem Cell Institute, The University of Alabama at Birmingham, Birmingham, United States
| | - Haiteng Deng
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Y George Zheng
- Department of Pharmaceutical and Biomedical Sciences, The University of Georgia, Athens, United States
| | - Christina Leslie
- Computational Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, United States
| | - Minkui Luo
- Program of Molecular Pharmacology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, United States
| | - Xinyang Zhao
- Department of Biochemistry and Molecular Genetics, UAB Stem Cell Institute, The University of Alabama at Birmingham, Birmingham, United States
| |
Collapse
|
48
|
Abstract
Alternative pre-mRNA processing greatly increases the coding capacity of the human genome and regulatory factors involved in RNA processing play critical roles in tissue development and maintenance. Indeed, abnormal functions of RNA processing factors have been associated with a wide range of human diseases from cancer to neurodegenerative disorders. While many studies have emphasized the importance of alternative splicing (AS), recent high-throughput sequencing efforts have also allowed global surveys of alternative polyadenylation (APA). For the majority of pre-mRNAs, as well as some non-coding transcripts such as lncRNAs, APA selects different 3'-ends and thus modulates the availability of regulatory sites recognized by trans-acting regulatory effectors, including miRs and RNA binding proteins (RBPs). Here, we compare the available technologies for assessing global polyadenylation patterns, summarize the roles of auxiliary factors on APA, and discuss the impact of differential polyA site (pA) selection in the determination of cell fate, transformation and disease.
Collapse
Affiliation(s)
- Ranjan Batra
- a Department of Cellular and Molecular Medicine ; Institute for Genomic Medicine; UCSD Stem Cell Program; University of California ; San Diego , CA USA
| | | | | |
Collapse
|
49
|
Shi Y, Manley JL. The end of the message: multiple protein-RNA interactions define the mRNA polyadenylation site. Genes Dev 2015; 29:889-97. [PMID: 25934501 PMCID: PMC4421977 DOI: 10.1101/gad.261974.115] [Citation(s) in RCA: 199] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Recent studies have significantly reshaped current models for the protein–RNA interactions involved in poly(A) site recognition. Here, Shi and Manley review the recent advances in this area and provide a perspective for future studies. The key RNA sequence elements and protein factors necessary for 3′ processing of polyadenylated mRNA precursors are well known. Recent studies, however, have significantly reshaped current models for the protein–RNA interactions involved in poly(A) site recognition, painting a picture more complex than previously envisioned and also providing new insights into regulation of this important step in gene expression. Here we review the recent advances in this area and provide a perspective for future studies.
Collapse
Affiliation(s)
- Yongsheng Shi
- Department of Microbiology and Molecular Genetics, School of Medicine, University of California at Irvine, Irvine, California 92697, USA;
| | - James L Manley
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| |
Collapse
|
50
|
Takahashi H, Nishimura J, Kagawa Y, Kano Y, Takahashi Y, Wu X, Hiraki M, Hamabe A, Konno M, Haraguchi N, Takemasa I, Mizushima T, Ishii M, Mimori K, Ishii H, Doki Y, Mori M, Yamamoto H. Significance of Polypyrimidine Tract-Binding Protein 1 Expression in Colorectal Cancer. Mol Cancer Ther 2015; 14:1705-1716. [PMID: 25904505 DOI: 10.1158/1535-7163.mct-14-0142] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Accepted: 04/12/2015] [Indexed: 11/16/2022]
Abstract
Polypyrimidine tract-binding protein (PTBP1) is an RNA-binding protein with various molecular functions related to RNA metabolism and a major repressive regulator of alternative splicing, causing exon skipping in numerous alternatively spliced pre-mRNAs. Here, we have investigated the role of PTBP1 in colorectal cancer. PTBP1 expression levels were significantly overexpressed in cancerous tissues compared with corresponding normal mucosal tissues. We also observed that PTBP1 expression levels, c-MYC expression levels, and PKM2:PKM1 ratio were positively correlated in colorectal cancer specimens. Moreover, PTBP1 expression levels were positively correlated to poor prognosis and lymph node metastasis. In analyses of colorectal cancer cells using siRNA for PTBP1, we observed that PTBP1 affects cell invasion, which was partially correlated to CD44 splicing, and this correlation was also confirmed in clinical samples. PTBP1 expression also affected anchorage-independent growth in colorectal cancer cell lines. PTBP1 expression also affected cell proliferation. Using time-lapse imaging analysis, PTBP1 was implicated in prolonged G2-M phase in HCT116 cells. As for the mechanism of prolonged G2-M phase in HCT116 siPTBP1 cells, Western blotting revealed that PTBP1 expression level was correlated to CDK11(p58) expression level, which was reported to play an important role on progression to complete mitosis. These findings indicated that PTBP1 is a potential therapeutic target for colorectal cancer.
Collapse
Affiliation(s)
- Hidekazu Takahashi
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Junichi Nishimura
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Yoshinori Kagawa
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Osaka, Japan. Laboratory of Cellular Dynamics, WPI-Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Yoshihiro Kano
- Department of Frontier-Science for Cancer and Chemotherapy, Graduate School of Medicine, Osaka, Japan
| | - Yusuke Takahashi
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Osaka, Japan. Department of Molecular and Cellular Biology, Division of Molecular and Surgical Oncology, Kyushu University, Medical Institute of Bioregulation, Ohita, Japan
| | - Xin Wu
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Masayuki Hiraki
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Atsushi Hamabe
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Masamitsu Konno
- Department of Frontier-Science for Cancer and Chemotherapy, Graduate School of Medicine, Osaka, Japan
| | - Naotsugu Haraguchi
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Ichiro Takemasa
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Tsunekazu Mizushima
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Masaru Ishii
- Laboratory of Cellular Dynamics, WPI-Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Koshi Mimori
- Department of Molecular and Cellular Biology, Division of Molecular and Surgical Oncology, Kyushu University, Medical Institute of Bioregulation, Ohita, Japan
| | - Hideshi Ishii
- Department of Frontier-Science for Cancer and Chemotherapy, Graduate School of Medicine, Osaka, Japan
| | - Yuichiro Doki
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Masaki Mori
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Hirofumi Yamamoto
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Osaka, Japan.
| |
Collapse
|