1
|
Gorges DM, Filippin-Monteiro FB. Genetic variants in the LRP5 gene associated with gain and loss of bone mineral density. In Silico Pharmacol 2025; 13:61. [PMID: 40255261 PMCID: PMC12003225 DOI: 10.1007/s40203-025-00341-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 03/17/2025] [Indexed: 04/22/2025] Open
Abstract
The low-density lipoprotein receptor-related protein 5 (LRP5) plays a pivotal role in bone formation, influencing the proliferation and differentiation of osteoblasts and thereby impacting overall bone mass. Genetic variations stemming from non-synonymous single nucleotide polymorphisms (nsSNPs) within the LRP5 gene can lead to either enhanced or diminished function of the resultant protein, culminating in distinct phenotypic expressions such as osteoporosis-pseudoglioma syndrome (OPPG) and high bone mass (HBM). Through in silico analysis of 17 identified nsSNPs, it was observed that 14 of these variants induced damage at highly conserved sites, resulting in the destabilization of both protein function and structure. Notably, the functional alteration, be it a gain or loss, is primarily dictated by the interaction between the molecule and LRP5, rather than the specific amino acid substitution. This research offers an identification of detrimental nsSNPs within the LRP5 protein and serves as a foundation for population-based investigations into the phenotypic repercussions on a broader scale.
Collapse
Affiliation(s)
- Daphany Marah Gorges
- Department of Clinical Analysis, Health Sciences Center, Federal University of Santa Catarina, Florianópolis, SC 88040900 Brazil
| | - Fabíola Branco Filippin-Monteiro
- Department of Clinical Analysis, Health Sciences Center, Federal University of Santa Catarina, Florianópolis, SC 88040900 Brazil
| |
Collapse
|
2
|
Chen JC, Goodrich JA, Walker DI, Liao J, Costello E, Alderete TL, Valvi D, Hampson H, Li S, Baumert BO, Rock S, Jones DP, Eckel SP, McConnell R, Gilliland FD, Aung MT, Conti DV, Chen Z, Chatzi L. Exposure to per- and polyfluoroalkyl substances and high-throughput proteomics in Hispanic youth. ENVIRONMENT INTERNATIONAL 2024; 186:108601. [PMID: 38537583 PMCID: PMC11479670 DOI: 10.1016/j.envint.2024.108601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 03/20/2024] [Accepted: 03/22/2024] [Indexed: 04/26/2024]
Abstract
BACKGROUND Strong epidemiological evidence shows positive associations between exposure to per- and polyfluoroalkyl substances (PFAS) and adverse cardiometabolic outcomes (e.g., diabetes, hypertension, and dyslipidemia). However, the underlying cardiometabolic-relevant biological activities of PFAS in humans remain largely unclear. AIM We evaluated the associations of PFAS exposure with high-throughput proteomics in Hispanic youth. MATERIAL AND METHODS We included 312 overweight/obese adolescents from the Study of Latino Adolescents at Risk (SOLAR) between 2001 and 2012, along with 137 young adults from the Metabolic and Asthma Incidence Research (Meta-AIR) between 2014 and 2018. Plasma PFAS (i.e., PFOS, PFOA, PFHxS, PFHpS, PFNA) were quantified using liquid-chromatography high-resolution mass spectrometry. Plasma proteins (n = 334) were measured utilizing the proximity extension assay using an Olink Explore Cardiometabolic Panel I. We conducted linear regression with covariate adjustment to identify PFAS-associated proteins. Ingenuity Pathway Analysis, protein-protein interaction network analysis, and protein annotation were used to investigate alterations in biological functions and protein clusters. RESULTS Results after adjusting for multiple comparisons showed 13 significant PFAS-associated proteins in SOLAR and six in Meta-AIR, sharing similar functions in inflammation, immunity, and oxidative stress. In SOLAR, PFNA demonstrated significant positive associations with the largest number of proteins, including ACP5, CLEC1A, HMOX1, LRP11, MCAM, SPARCL1, and SSC5D. After considering the mixture effect of PFAS, only SSC5D remained significant. In Meta-AIR, PFAS mixtures showed positive associations with GDF15 and IL6. Exploratory analysis showed similar findings. Specifically, pathway analysis in SOLAR showed PFOA- and PFNA-associated activation of immune-related pathways, and PFNA-associated activation of inflammatory response. In Meta-AIR, PFHxS-associated activation of dendric cell maturation was found. Moreover, PFAS was associated with common protein clusters of immunoregulatory interactions and JAK-STAT signaling in both cohorts. CONCLUSION PFAS was associated with broad alterations of the proteomic profiles linked to pro-inflammation and immunoregulation. The biological functions of these proteins provide insight into potential molecular mechanisms of PFAS toxicity.
Collapse
Affiliation(s)
- Jiawen Carmen Chen
- Department of Population and Public Health Sciences, University of Southern California Keck School of Medicine, Los Angeles, CA, United States.
| | - Jesse A Goodrich
- Department of Population and Public Health Sciences, University of Southern California Keck School of Medicine, Los Angeles, CA, United States
| | - Douglas I Walker
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Jiawen Liao
- Department of Population and Public Health Sciences, University of Southern California Keck School of Medicine, Los Angeles, CA, United States
| | - Elizabeth Costello
- Department of Population and Public Health Sciences, University of Southern California Keck School of Medicine, Los Angeles, CA, United States
| | - Tanya L Alderete
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, United States
| | - Damaskini Valvi
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Hailey Hampson
- Department of Population and Public Health Sciences, University of Southern California Keck School of Medicine, Los Angeles, CA, United States
| | - Shiwen Li
- Department of Population and Public Health Sciences, University of Southern California Keck School of Medicine, Los Angeles, CA, United States
| | - Brittney O Baumert
- Department of Population and Public Health Sciences, University of Southern California Keck School of Medicine, Los Angeles, CA, United States
| | - Sarah Rock
- Department of Population and Public Health Sciences, University of Southern California Keck School of Medicine, Los Angeles, CA, United States
| | - Dean P Jones
- Clinical Biomarkers Laboratory, Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University, Atlanta, GA, United States
| | - Sandrah P Eckel
- Department of Population and Public Health Sciences, University of Southern California Keck School of Medicine, Los Angeles, CA, United States
| | - Rob McConnell
- Department of Population and Public Health Sciences, University of Southern California Keck School of Medicine, Los Angeles, CA, United States
| | - Frank D Gilliland
- Department of Population and Public Health Sciences, University of Southern California Keck School of Medicine, Los Angeles, CA, United States
| | - Max T Aung
- Department of Population and Public Health Sciences, University of Southern California Keck School of Medicine, Los Angeles, CA, United States
| | - David V Conti
- Department of Population and Public Health Sciences, University of Southern California Keck School of Medicine, Los Angeles, CA, United States
| | - Zhanghua Chen
- Department of Population and Public Health Sciences, University of Southern California Keck School of Medicine, Los Angeles, CA, United States
| | - Lida Chatzi
- Department of Population and Public Health Sciences, University of Southern California Keck School of Medicine, Los Angeles, CA, United States
| |
Collapse
|
3
|
Carneiro I, Krustrup P, Castagna C, Pereira R, Jørgensen NR, Coelho E, Póvoas S. Bone health, body composition and physical fitness dose-response effects of 16 weeks of recreational team handball for inactive middle-to-older-aged males - A randomised controlled trial. Eur J Sport Sci 2023; 23:2251-2263. [PMID: 37376804 DOI: 10.1080/17461391.2023.2222685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
In this study we aimed at analysing the effects of different weekly exercise volumes (1, 2 or 3 times 60-min) on bone health, body composition and physical fitness of inactive middle-to-older-aged males, after 16 weeks of recreational team handball (RTH). Fifty-four men (68 ± 4 years, stature 169 ± 6 cm; body mass 78.4 ± 10.7 kg; fat mass 27.1 ± 5.3%; BMI 27.4 ± 2.9 kg/m2; VO2peak 27.3 ± 4.8 mL/min/kg) were randomised into three intervention groups (TH1, n = 13; TH2, n = 15; or TH3, n = 12, performing 1, 2 and 3 weekly 60-min training sessions, respectively), and a control group (CG, n = 14). The training sessions consisted mainly of RTH matches played as small-sided and formal game formats (4v4, 5v5, 6v6 or 7v7) with adapted rules. Matches' mean and peak heart rate (HR) ranged from 78-80% and 86-89%HRmax, respectively, and distance covered from 4676 to 5202 m. A time x group interaction was observed for procollagen type-1 amino-terminal propeptide (P1NP), osteocalcin (OC), carboxy-terminal type-1 collagen crosslinks (CTX), sclerostin, upper and lower body dynamic strength, right arm fat mass, left and right arm, right leg and android total mass (TM; p ≤ 0.047) with the greatest effects being shown for TH2 and TH3 groups. Post-intervention group differences were observed in CTX, left arm and right leg TM (TH3 > TH1), P1NP (TH2 > CG), OC, right arm TM (TH3 > CG), upper (CG < TH1, TH2 and TH3) and lower body dynamic strength (CG < TH1 and TH3) (p ≤ 0.047). RTH was effective in enhancing bone health, body composition and physical fitness in middle-to-older-aged males, especially for the intervention groups that performed 2-3 weekly training sessions.ClinicalTrials.gov ID: NCT05295511.Trial registration: ClinicalTrials.gov identifier: NCT05295511.HighlightsAfter 16 weeks of recreational team handball small-sided and formal matches, inactive middle-to-older-aged males improved bone health, body composition and physical fitness, by performing 1, 2 or 3 60-min weekly sessions, however, greater improvements were shown in the groups that performed 2 or 3 weekly training sessions.Training intensity was similar across the intervention groups that performed recreational team handball for 1, 2 or 3 60-min weekly sessions, which means that training volume is most likely to be the reason for the different health effects shown.The very high fun levels reported by all intervention groups shows that recreational team handball is a social and fun exercise modality for middle-to-older-aged males, with potential to intrinsically motivate the participants and assure long-term adherence to exercise.
Collapse
Affiliation(s)
- Ivone Carneiro
- Research Center in Sports Sciences, Health Sciences and Human Development, CIDESD, University of Maia, Maia, Portugal
| | - Peter Krustrup
- Department of Sports Science and Clinical Biomechanics, SDU Sport and Health Sciences Cluster (SHSC), University of Southern Denmark, Odense, Denmark
- Danish Institute for Advanced Study (DIAS), University of Southern Denmark, Odense, Denmark
- Sport and Health Sciences, University of Exeter, Exeter, United Kingdom
| | - Carlo Castagna
- Department of Sports Science and Clinical Biomechanics, SDU Sport and Health Sciences Cluster (SHSC), University of Southern Denmark, Odense, Denmark
- Department of Biomolecular Sciences, School of Exercise and Health Sciences, Carlo Bo Urbino University, Urbino, Italy
| | - Rita Pereira
- Research Centre in Physical Activity, Health and Leisure (CIAFEL), Faculty of Sport, University of Porto, Porto, Portugal
- University of Maia, Maia, Portugal
| | - Niklas Rye Jørgensen
- Department of Clinical Biochemistry, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Eduardo Coelho
- Porto Sports Medicine Center (IPDJ, IP), Porto, Portugal
| | - Susana Póvoas
- Research Center in Sports Sciences, Health Sciences and Human Development, CIDESD, University of Maia, Maia, Portugal
- Department of Sports Science and Clinical Biomechanics, SDU Sport and Health Sciences Cluster (SHSC), University of Southern Denmark, Odense, Denmark
| |
Collapse
|
4
|
De Mattia G, Maffi M, Mosca M, Mazzantini M. LRP5 high bone mass (Worth-type autosomal dominant endosteal hyperostosis): case report and historical review of the literature. Arch Osteoporos 2023; 18:112. [PMID: 37659026 PMCID: PMC10474981 DOI: 10.1007/s11657-023-01319-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 08/07/2023] [Indexed: 09/05/2023]
Abstract
PURPOSE LRP5 high bone mass (HBM) is an autosomal dominant endosteal hyperostosis caused by mutations of the low-density lipoprotein receptor-related protein 5 (LRP5) gene. Alternative names included "autosomal dominant osteosclerosis" and "Worth disease." The aim of the paper is to provide an historical overview of a disorder whose literature is complicated and confusing due to the past use of several denominations and lack of reviews. METHODS We collected case reports of HBM with evidence of autosomal dominant transmission preceding the identification of the LRP5 mutations in 2002 (Worth-type endosteal hyperostosis) and cases of LRP5 HBM confirmed by genetic analysis since 2002. The prevalence of relevant clinical and laboratory findings was estimated. We described an affected woman with neurological manifestations. RESULTS A 44-year-old Caucasian woman with torus palatinus complained of headache, hypo-/anosmia, and complete mixed deafness. Dual-energy X-ray absorptiometry (DEXA) scan revealed elevated bone mass. The A242T mutation of the LRP5 gene was detected. Including the present case, 155 patients have been reported to date. Neurological involvement and increased serum alkaline phosphatase (ALP) were present in 19.4% and 3.7% of cases, respectively. Facial changes and torus palatinus were observed in 61% and 41% of cases, respectively. CONCLUSIONS We present the only historical review on Worth-type endosteal hyperostosis, now known as LRP5 HBM. Neurological manifestations, previously considered absent in the disease, affect 19.4% of the patients. Genetic analysis and appropriate denomination of LRP5 HBM are fundamental for diagnosis and to mitigate the confusion that has long characterized this disease.
Collapse
Affiliation(s)
- Giammarco De Mattia
- Rare Bone Diseases Clinic, Rheumatology Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy.
| | - Michele Maffi
- Rare Bone Diseases Clinic, Rheumatology Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Marta Mosca
- Rheumatology Unit, Department of Clinical and Experimental Medicine, University of Pisa, Via Roma, 67 -, 56126, Pisa, Italy
| | - Maurizio Mazzantini
- Rare Bone Diseases Clinic, Rheumatology Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| |
Collapse
|
5
|
Dincel AS, Jørgensen NR. New Emerging Biomarkers for Bone Disease: Sclerostin and Dickkopf-1 (DKK1). Calcif Tissue Int 2023; 112:243-257. [PMID: 36165920 DOI: 10.1007/s00223-022-01020-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 08/26/2022] [Indexed: 01/25/2023]
Abstract
A healthy skeleton depends on a continuous renewal and maintenance of the bone tissue. The process of bone remodeling is highly controlled and consists of a fine-tuned balance between bone formation and bone resorption. Biochemical markers of bone turnover are already in use for monitoring diseases and treatment involving the skeletal system, but novel biomarkers reflecting specific biological processes in bone and interacting tissues may prove useful for diagnostic, prognostic, and monitoring purposes. The Wnt-signaling pathway is one of the most important pathways controlling bone metabolism and consequently the action of inhibitors of the pathway such as sclerostin and Dickkopf-related protein 1 (DKK1) have crucial roles in controlling bone formation and resorption. Thus, they might be potential markers for clinical use as they reflect a number of physiological and pathophysiological events in bone and in the cross-talk with other tissues in the human body. This review focuses on the clinical utility of measurements of circulating sclerostin and DKK1 levels based on preanalytical and analytical considerations and on evidence obtained from published clinical studies. While accumulating evidence points to clear associations with a number of disease states for the two markers, and thus, the potential for especially sclerostin as a biochemical marker that may be used clinically, the lack of standardization or harmonization of the assays still hampers the clinical utility of the markers.
Collapse
Affiliation(s)
- Aylin Sepinci Dincel
- Department of Medical Biochemistry, Faculty of Medicine, Gazi University, Ankara, Turkey
- Department of Clinical Biochemistry, Rigshospitalet, Valdemar Hansens Vej 13 Glostrup, 2600, Copenhagen, Denmark
- Institute of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Niklas Rye Jørgensen
- Department of Medical Biochemistry, Faculty of Medicine, Gazi University, Ankara, Turkey.
- Department of Clinical Biochemistry, Rigshospitalet, Valdemar Hansens Vej 13 Glostrup, 2600, Copenhagen, Denmark.
- Institute of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | | |
Collapse
|
6
|
Vlashi R, Zhang X, Wu M, Chen G. Wnt signaling: essential roles in osteoblast differentiation, bone metabolism and therapeutic implications for bone and skeletal disorders. Genes Dis 2022. [DOI: 10.1016/j.gendis.2022.07.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022] Open
|
7
|
Martínez‐Gil N, Ovejero D, Garcia‐Giralt N, Bruque CD, Mellibovsky L, Nogués X, Rabionet R, Grinberg D, Balcells S. Genetic analysis in a familial case with high bone mineral density suggests additive effects at two
loci. JBMR Plus 2022; 6:e10602. [PMID: 35434450 PMCID: PMC9009133 DOI: 10.1002/jbm4.10602] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 12/24/2021] [Accepted: 01/16/2022] [Indexed: 11/21/2022] Open
Abstract
Osteoporosis is the most common bone disease, characterized by a low bone mineral density (BMD) and increased risk of fracture. At the other end of the BMD spectrum, some individuals present strong, fracture‐resistant, bones. Both osteoporosis and high BMD are heritable and their genetic architecture encompasses polygenic inheritance of common variants and some cases of monogenic highly penetrant variants in causal genes. We have investigated the genetics of high BMD in a family segregating this trait in an apparently Mendelian dominant pattern. We searched for rare causal variants by whole‐exome sequencing in three affected and three nonaffected family members. Using this approach, we have identified 38 rare coding variants present in the proband and absent in the three individuals with normal BMD. Although we have found four variants shared by the three affected members of the family, we have not been able to relate any of these to the high‐BMD phenotype. In contrast, we have identified missense variants in two genes, VAV3 and ADGRE5, each shared by two of out of three affected members, whose loss of function fits with the phenotype of the family. In particular, the proband, a woman displaying the highest BMD (sum Z‐score = 7), carries both variants, whereas the other two affected members carry one each. VAV3 encodes a guanine‐nucleotide‐exchange factor with an important role in osteoclast activation and function. Although no previous cases of VAV3 mutations have been reported in humans, Vav3 knockout (KO) mice display dense bones, similarly to the high‐BMD phenotype present in our family. The ADGRE5 gene encodes an adhesion G protein‐coupled receptor expressed in osteoclasts whose KO mouse displays increased trabecular bone volume. Combined, these mouse and human data highlight VAV3 and ADGRE5 as novel putative high‐BMD genes with additive effects, and potential therapeutic targets for osteoporosis. © 2022 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Núria Martínez‐Gil
- Department of Genetics, Microbiology and Statistics Faculty of Biology, Universitat de Barcelona, CIBERER, IBUB, IRSJD Barcelona Spain
| | - Diana Ovejero
- Musculoskeletal Research Group, IMIM (Hospital del Mar Medical Research Institute), Centro de Investigación Biomédica en Red en Fragilidad y Envejecimiento Saludable (CIBERFES), ISCIII Barcelona Spain
| | - Natalia Garcia‐Giralt
- Musculoskeletal Research Group, IMIM (Hospital del Mar Medical Research Institute), Centro de Investigación Biomédica en Red en Fragilidad y Envejecimiento Saludable (CIBERFES), ISCIII Barcelona Spain
| | - Carlos David Bruque
- Unidad de Conocimiento Traslacional Hospitalaria Patagónica, Hospital de Alta Complejidad SAMIC El Calafate Santa Cruz Argentina
| | - Leonardo Mellibovsky
- Musculoskeletal Research Group, IMIM (Hospital del Mar Medical Research Institute), Centro de Investigación Biomédica en Red en Fragilidad y Envejecimiento Saludable (CIBERFES), ISCIII Barcelona Spain
| | - Xavier Nogués
- Musculoskeletal Research Group, IMIM (Hospital del Mar Medical Research Institute), Centro de Investigación Biomédica en Red en Fragilidad y Envejecimiento Saludable (CIBERFES), ISCIII Barcelona Spain
| | - Raquel Rabionet
- Department of Genetics, Microbiology and Statistics Faculty of Biology, Universitat de Barcelona, CIBERER, IBUB, IRSJD Barcelona Spain
| | - Daniel Grinberg
- Department of Genetics, Microbiology and Statistics Faculty of Biology, Universitat de Barcelona, CIBERER, IBUB, IRSJD Barcelona Spain
| | - Susanna Balcells
- Department of Genetics, Microbiology and Statistics Faculty of Biology, Universitat de Barcelona, CIBERER, IBUB, IRSJD Barcelona Spain
| |
Collapse
|
8
|
Martínez-Gil N, Ugartondo N, Grinberg D, Balcells S. Wnt Pathway Extracellular Components and Their Essential Roles in Bone Homeostasis. Genes (Basel) 2022; 13:genes13010138. [PMID: 35052478 PMCID: PMC8775112 DOI: 10.3390/genes13010138] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/10/2022] [Accepted: 01/11/2022] [Indexed: 12/11/2022] Open
Abstract
The Wnt pathway is involved in several processes essential for bone development and homeostasis. For proper functioning, the Wnt pathway is tightly regulated by numerous extracellular elements that act by both activating and inhibiting the pathway at different moments. This review aims to describe, summarize and update the findings regarding the extracellular modulators of the Wnt pathway, including co-receptors, ligands and inhibitors, in relation to bone homeostasis, with an emphasis on the animal models generated, the diseases associated with each gene and the bone processes in which each member is involved. The precise knowledge of all these elements will help us to identify possible targets that can be used as a therapeutic target for the treatment of bone diseases such as osteoporosis.
Collapse
|
9
|
Choi RB, Robling AG. The Wnt pathway: An important control mechanism in bone's response to mechanical loading. Bone 2021; 153:116087. [PMID: 34271473 PMCID: PMC8478810 DOI: 10.1016/j.bone.2021.116087] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 06/01/2021] [Accepted: 06/21/2021] [Indexed: 10/25/2022]
Abstract
The conversion of mechanical energy into biochemical changes within living cells is process known as mechanotransduction. Bone is a quintessential tissue for studying the molecular mechanisms of mechanotransduction, as the skeleton's mechanical competence is crucial for vertebrate movement. Bone cell mechanotransduction is facilitated by a number of cell biological pathways, one of the most prominent of which is the Wnt signaling cascade. The Wnt co-receptor Lrp5 has been identified as a crucial protein for mechanical signaling in bone, and modifiers of Lrp5 activity play important roles in mediating signaling efficiency through Lrp5, including sclerostin, Dkk1, and the co-receptor Lrp4. Mechanical regulation of sclerostin is mediated by certain members of the Hdac family. Other mechanisms that influence Wnt signaling-some of which are mechanoresponsive-are coming to light, including R-spondins and their role in organizing the Rnf43/Znrf3 and Lgr4/5/6 complex that liberates Lrp5. While the identity of the key Wnt proteins involved in bone cell mechanical signaling are elusive, the likely pool of key players is narrowing. Identification of Wnt-based molecular targets that can be modulated pharmacologically to make mechanical stimulation (e.g., exercise) more beneficial is an emerging approach to improving skeletal integrity and reducing fracture risk.
Collapse
Affiliation(s)
- Roy B Choi
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Alexander G Robling
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN, USA; Department of Biomedical Engineering, Indiana University-Purdue University at Indianapolis, Indianapolis, IN, USA; Richard L. Roudebush Veterans Affairs Medical Center, Indianapolis, IN, USA; Indiana Center for Musculoskeletal Health, Indianapolis, IN, USA.
| |
Collapse
|
10
|
Rios JJ, Denton K, Russell J, Kozlitina J, Ferreira CR, Lewanda AF, Mayfield JE, Moresco E, Ludwig S, Tang M, Li X, Lyon S, Khanshour A, Paria N, Khalid A, Li Y, Xie X, Feng JQ, Xu Q, Lu Y, Hammer RE, Wise CA, Beutler B. Germline Saturation Mutagenesis Induces Skeletal Phenotypes in Mice. J Bone Miner Res 2021; 36:1548-1565. [PMID: 33905568 PMCID: PMC8862308 DOI: 10.1002/jbmr.4323] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 04/07/2021] [Accepted: 04/21/2021] [Indexed: 12/28/2022]
Abstract
Proper embryonic and postnatal skeletal development require coordination of myriad complex molecular mechanisms. Disruption of these processes, through genetic mutation, contributes to variation in skeletal development. We developed a high-throughput N-ethyl-N-nitrosourea (ENU)-induced saturation mutagenesis skeletal screening approach in mice to identify genes required for proper skeletal development. Here, we report initial results from live-animal X-ray and dual-energy X-ray absorptiometry (DXA) imaging of 27,607 G3 mice from 806 pedigrees, testing the effects of 32,198 coding/splicing mutations in 13,020 genes. A total of 39.7% of all autosomal genes were severely damaged or destroyed by mutations tested twice or more in the homozygous state. Results from our study demonstrate the feasibility of in vivo mutagenesis to identify mouse models of skeletal disease. Furthermore, our study demonstrates how ENU mutagenesis provides opportunities to create and characterize putative hypomorphic mutations in developmentally essential genes. Finally, we present a viable mouse model and case report of recessive skeletal disease caused by mutations in FAM20B. Results from this study, including engineered mouse models, are made publicly available via the online Mutagenetix database. © 2021 American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Jonathan J Rios
- Center for Pediatric Bone Biology and Translational Research, Scottish Rite for Children, Dallas, TX, USA.,Department of Pediatrics, UT Southwestern Medical Center, Dallas, TX, USA.,McDermott Center for Human Growth and Development, UT Southwestern Medical Center, Dallas, TX, USA.,Department of Orthopaedic Surgery, UT Southwestern Medical Center, Dallas, TX, USA.,Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX, USA
| | - Kristin Denton
- Center for Pediatric Bone Biology and Translational Research, Scottish Rite for Children, Dallas, TX, USA
| | - Jamie Russell
- Center for Genetics of Host Defense, UT Southwestern Medical Center, Dallas, TX, USA
| | - Julia Kozlitina
- McDermott Center for Human Growth and Development, UT Southwestern Medical Center, Dallas, TX, USA
| | - Carlos R Ferreira
- Skeletal Genomics Unit, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Amy F Lewanda
- Rare Disease Institute, Children's National Hospital, Washington, DC, USA
| | - Joshua E Mayfield
- Department of Pharmacology, University of California, San Diego, CA, USA
| | - Eva Moresco
- Center for Genetics of Host Defense, UT Southwestern Medical Center, Dallas, TX, USA
| | - Sara Ludwig
- Center for Genetics of Host Defense, UT Southwestern Medical Center, Dallas, TX, USA
| | - Miao Tang
- Center for Genetics of Host Defense, UT Southwestern Medical Center, Dallas, TX, USA
| | - Xiaohong Li
- Center for Genetics of Host Defense, UT Southwestern Medical Center, Dallas, TX, USA
| | - Stephen Lyon
- Center for Genetics of Host Defense, UT Southwestern Medical Center, Dallas, TX, USA
| | - Anas Khanshour
- Center for Pediatric Bone Biology and Translational Research, Scottish Rite for Children, Dallas, TX, USA
| | - Nandina Paria
- Center for Pediatric Bone Biology and Translational Research, Scottish Rite for Children, Dallas, TX, USA
| | - Aysha Khalid
- Center for Pediatric Bone Biology and Translational Research, Scottish Rite for Children, Dallas, TX, USA
| | - Yang Li
- Center for Pediatric Bone Biology and Translational Research, Scottish Rite for Children, Dallas, TX, USA
| | - Xudong Xie
- Department of Restorative Sciences, School of Dentistry, Texas A&M University, Dallas, TX, USA
| | - Jian Q Feng
- Department of Restorative Sciences, School of Dentistry, Texas A&M University, Dallas, TX, USA
| | - Qian Xu
- Department of Restorative Sciences, School of Dentistry, Texas A&M University, Dallas, TX, USA
| | - Yongbo Lu
- Department of Restorative Sciences, School of Dentistry, Texas A&M University, Dallas, TX, USA
| | - Robert E Hammer
- Department of Biochemistry, UT Southwestern Medical Center, Dallas, TX, USA
| | - Carol A Wise
- Center for Pediatric Bone Biology and Translational Research, Scottish Rite for Children, Dallas, TX, USA.,Department of Pediatrics, UT Southwestern Medical Center, Dallas, TX, USA.,McDermott Center for Human Growth and Development, UT Southwestern Medical Center, Dallas, TX, USA.,Department of Orthopaedic Surgery, UT Southwestern Medical Center, Dallas, TX, USA
| | - Bruce Beutler
- Center for Genetics of Host Defense, UT Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
11
|
Abstract
The WNT/β-catenin signalling pathway is a rich and complex network of cellular proteins that orchestrates diverse short-range cell-to-cell communication in metazoans and is essential for both embryonic development and adult homeostasis. Due to its fundamental importance in controlling cell behaviour at multiple levels, its deregulation is associated with a wide range of diseases in humans and identification of drugs targeting the pathway has attracted strong interest in the pharmaceutical sector. Transduction of WNT signals across the plasma membrane of cells involves a staggering degree of complexity and variety with respect to ligand-receptor, receptor-receptor and receptor-co-receptor interactions (Niehrs, Nat Rev Mol Cell Biol 13:767-779, 2012). Although the low-density-lipoprotein-receptor-related-protein (LRP) family is best known for its role in binding and endocytosis of lipoproteins, specific members appear to have additional roles in cellular communication. Indeed, for WNT/β-catenin signalling one apparently universal requirement is the presence of either LRP5 or LRP6 in combination with one of the ten Frizzled (FZD) WNT receptors (FZD1-10). In the 20 years since their discovery as WNT/FZD co-receptors, research on the LRP family has contributed greatly to our understanding of WNT signalling and LRPs have emerged as central players in WNT/β-catenin signalling. LRP5/6 are highly similar and represent the least redundant class of WNT receptor that transduce WNT/β-catenin signalling from a wide range of different WNT and FZD subtypes. This apparent simplicity however belies the complex arrangement of binding sites in the extracellular domain (ECD) of LRP5/6, which regulate interaction not only with WNTs but also with several inhibitors of WNT signalling. This chapter provides a historical overview, chronologically charting this remarkable progress in the field during the last 20 years of research on LRPs and their role in WNT/-catenin signalling. A more focused overview of the structural, functional and mechanistic aspects of LRP biology is also provided, together with the implications this has for pharmacological targeting of this notoriously intractable pathway.
Collapse
Affiliation(s)
- Gary Davidson
- Institute of Biological and Chemical Systems-Functional Molecular Systems (IBSC-FMS), Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen, Germany.
| |
Collapse
|
12
|
Zhang Y, Luo G, Yu X. Cellular Communication in Bone Homeostasis and the Related Anti-osteoporotic Drug Development. Curr Med Chem 2020; 27:1151-1169. [PMID: 30068268 DOI: 10.2174/0929867325666180801145614] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 06/28/2018] [Accepted: 07/19/2018] [Indexed: 02/08/2023]
Abstract
Background:Intercellular crosstalk among osteoblast, osteoclast, osteocyte and chondrocyte is involved in the precise control of bone homeostasis. Disruption of this cellular and molecular signaling would lead to metabolic bone diseases such as osteoporosis. Currently a number of anti-osteoporosis interventions are restricted by side effects, complications and long-term intolerance. This review aims to summarize the bone cellular communication involved in bone remodeling and its usage to develop new drugs for osteoporosis. Methods:We searched PubMed for publications from 1 January 1980 to 1 January 2018 to identify relevant and latest literatures, evaluation and prospect of osteoporosis medication were summarized. Detailed search terms were 'osteoporosis', 'osteocyte', 'osteoblast', 'osteoclast', 'bone remodeling', 'chondrocyte', 'osteoporosis treatment', 'osteoporosis therapy', 'bisphosphonates', 'denosumab', 'Selective Estrogen Receptor Modulator (SERM)', 'PTH', 'romosozumab', 'dkk-1 antagonist', 'strontium ranelate'. Results:A total of 170 papers were included in the review. About 80 papers described bone cell interactions involved in bone remodeling. The remaining papers were focused on the novel advanced and new horizons in osteoporosis therapies. Conclusion:There exists a complex signal network among bone cells involved in bone remodeling. The disorder of cell-cell communications may be the underlying mechanism of osteoporosis. Current anti-osteoporosis therapies are effective but accompanied by certain drawbacks simultaneously. Restoring the abnormal signal network and individualized therapy are critical for ideal drug development.
Collapse
Affiliation(s)
- Yi Zhang
- Laboratory of Endocrinology and Metabolism, Department of Endocrinology and Metabolism, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Guojing Luo
- Laboratory of Endocrinology and Metabolism, Department of Endocrinology and Metabolism, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xijie Yu
- Laboratory of Endocrinology and Metabolism, Department of Endocrinology and Metabolism, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
13
|
Whyte MP, McAlister WH, Zhang F, Bijanki VN, Nenninger A, Gottesman GS, Lin EL, Huskey M, Duan S, Dahir K, Mumm S. New explanation for autosomal dominant high bone mass: Mutation of low-density lipoprotein receptor-related protein 6. Bone 2019; 127:228-243. [PMID: 31085352 DOI: 10.1016/j.bone.2019.05.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 05/01/2019] [Accepted: 05/03/2019] [Indexed: 01/10/2023]
Abstract
LRP5 encodes low-density lipoprotein receptor-related protein 5 (LRP5). When LRP5 with a Frizzled receptor join on the surface of an osteoblast and bind a member of the Wnt family of ligands, canonical Wnt/β-catenin signaling occurs and increases bone formation. Eleven heterozygous gain-of-function missense mutations within LRP5 are known to prevent the LRP5 inhibitory ligands sclerostin and dickkopf1 from attaching to LRP5's first β-propeller, and thereby explain the rare autosomal dominant (AD) skeletal disorder "high bone mass" (HBM). LRP6 is a cognate co-receptor of LRP5 and similarly controls Wnt signaling in osteoblasts, yet the consequences of increased LRP6-mediated signaling remain unknown. We investigated two multi-generational American families manifesting the clinical and routine laboratory features of LRP5 HBM but without an LRP5 defect and instead carrying a heterozygous LRP6 missense mutation that would alter the first β-propeller of LRP6. In Family 1 LRP6 c.602C>T, p.A201V was homologous to LRP5 HBM mutation c.641C>T, p.A214V, and in Family 2 LRP6 c.553A>C, p.N185H was homologous to LRP5 HBM mutation c.593A>G, p.N198S but predicting a different residue at the identical amino acid position. In both families the LRP6 mutation co-segregated with striking generalized osteosclerosis and hyperostosis. Clinical features shared by the seven LRP6 HBM family members and ten LRP5 HBM patients included a broad jaw, torus palatinus, teeth encased in bone and, reportedly, resistance to fracturing and inability to float in water. For both HBM disorders, all affected individuals were taller than average for Americans (Ps < 0.005), but with similar mean height Z-scores (P = 0.7606) and indistinguishable radiographic skeletal features. Absence of adult maxillary lateral incisors was reported by some LRP6 HBM individuals. In contrast, our 16 patients with AD osteopetrosis [i.e., Albers-Schönberg disease (A-SD)] had an unremarkable mean height Z-score (P = 0.9401) lower than for either HBM group (Ps < 0.05). DXA mean BMD Z-scores in LRP6 HBM versus LRP5 HBM were somewhat higher at the lumbar spine (+7.8 vs +6.5, respectively; P = 0.0403), but no different at the total hip (+7.9 vs +7.7, respectively; P = 0.7905). Among the three diagnostic groups, only the LRP6 HBM DXA BMD values at the spine seemed to increase with subject age (R = +0.7183, P = 0.0448). Total hip BMD Z-scores were not significantly different among the three disorders (Ps > 0.05), and showed no age effect (Ps > 0.1). HR-pQCT available only for LRP6 HBM revealed indistinct corticomedullary boundaries, high distal forearm and tibial total volumetric BMD, and finite element analysis predicted marked fracture resistance. Hence, we have discovered mutations of LRP6 that cause a dento-osseous disorder indistinguishable without mutation analysis from LRP5 HBM. LRP6 HBM seems associated with generally good health, providing some reassurance for the development of anabolic treatments aimed to enhance LRP5/LRP6-mediated osteogenesis.
Collapse
Affiliation(s)
- Michael P Whyte
- Center for Metabolic Bone Disease and Molecular Research, Shriners Hospitals for Children - St. Louis, St. Louis, MO 63110, USA; Division of Bone and Mineral Diseases, Department of Internal Medicine, Washington University School of Medicine at Barnes-Jewish Hospital, St. Louis, MO 63110, USA.
| | - William H McAlister
- Mallinckrodt Institute of Radiology, Washington University School of Medicine at St. Louis Children's Hospital, St. Louis, MO 63110, USA.
| | - Fan Zhang
- Center for Metabolic Bone Disease and Molecular Research, Shriners Hospitals for Children - St. Louis, St. Louis, MO 63110, USA.
| | - Vinieth N Bijanki
- Center for Metabolic Bone Disease and Molecular Research, Shriners Hospitals for Children - St. Louis, St. Louis, MO 63110, USA.
| | - Angela Nenninger
- Center for Metabolic Bone Disease and Molecular Research, Shriners Hospitals for Children - St. Louis, St. Louis, MO 63110, USA.
| | - Gary S Gottesman
- Center for Metabolic Bone Disease and Molecular Research, Shriners Hospitals for Children - St. Louis, St. Louis, MO 63110, USA.
| | - Elizabeth L Lin
- Center for Metabolic Bone Disease and Molecular Research, Shriners Hospitals for Children - St. Louis, St. Louis, MO 63110, USA; Division of Bone and Mineral Diseases, Department of Internal Medicine, Washington University School of Medicine at Barnes-Jewish Hospital, St. Louis, MO 63110, USA.
| | - Margaret Huskey
- Division of Bone and Mineral Diseases, Department of Internal Medicine, Washington University School of Medicine at Barnes-Jewish Hospital, St. Louis, MO 63110, USA.
| | - Shenghui Duan
- Division of Bone and Mineral Diseases, Department of Internal Medicine, Washington University School of Medicine at Barnes-Jewish Hospital, St. Louis, MO 63110, USA.
| | - Kathryn Dahir
- Department of Endocrinology and Diabetes, Vanderbilt University Medical Center, Nashville, TN 37232, USA.
| | - Steven Mumm
- Center for Metabolic Bone Disease and Molecular Research, Shriners Hospitals for Children - St. Louis, St. Louis, MO 63110, USA; Division of Bone and Mineral Diseases, Department of Internal Medicine, Washington University School of Medicine at Barnes-Jewish Hospital, St. Louis, MO 63110, USA.
| |
Collapse
|
14
|
González S, Oh D, Baclagon ER, Zheng JJ, Deng SX. Wnt Signaling Is Required for the Maintenance of Human Limbal Stem/Progenitor Cells In Vitro. Invest Ophthalmol Vis Sci 2019; 60:107-112. [PMID: 30640975 PMCID: PMC6333110 DOI: 10.1167/iovs.18-25740] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Purpose A chemical approach to examine the role of Wnt signaling in maintaining the stemness and/or proliferation of limbal stem/progenitor cells (LSCs). Methods LSCs were isolated from human donor eyes and cultured as single cells for 12 to 14 days with the following small molecules: IIIC3, an antagonist of the Wnt signaling inhibitor Dickkopf (DKK), and IC15, a Wnt signaling inhibitor. Proliferation of LSCs in the presence of IIIC3 and IC15 was determined by the number of cells and colonies established. Maintenance of stemness was determined by p63α, cytokeratin (K)12, and K14 expression. Results Activation of Wnt, through IIIC3-mediated DKK inhibition, resulted in similar colony forming efficiency (CFE) as in the untreated LSCs, but significantly increased the number of cultivated cells 7.21% with 5 μM. Inhibition of Wnt with IC15 significantly reduced the CFE (P ≤ 0.01) and the number of cultivated cells by 16% to 29%. Percentage of cells expressing high levels of p63α (p63αbright) and quantity of small cells (≤12 μm), which contain the LSCs, increased 4.71% and 11.26% (both P < 0.05), respectively, with 5 μM IIIC3. All concentrations of IIIC3 and IC15 retained the K14 undifferentiated marker (97%), while differentiation, as detected by expression of K12, was found in up to 2% of cells in 1 μM IIIC3, 1 μM IC15, or 5 μM IIIC3. Conclusions Wnt signaling is required in LSC proliferation and maintenance of an undifferentiated state. The current study is a proof of concept that the Wnt pathway could be modulated in LSCs to enhance or decrease the efficiency of human LSC expansion.
Collapse
Affiliation(s)
- Sheyla González
- Stein Eye Institute, University of California, Los Angeles, California, United States
| | - Denise Oh
- Stein Eye Institute, University of California, Los Angeles, California, United States
| | - Elfren R Baclagon
- Stein Eye Institute, University of California, Los Angeles, California, United States
| | - Jie J Zheng
- Stein Eye Institute, University of California, Los Angeles, California, United States
| | - Sophie X Deng
- Stein Eye Institute, University of California, Los Angeles, California, United States
| |
Collapse
|
15
|
Patel S, Barkell AM, Gupta D, Strong SL, Bruton S, Muskett FW, Addis PW, Renshaw PS, Slocombe PM, Doyle C, Clargo A, Taylor RJ, Prosser CE, Henry AJ, Robinson MK, Waters LC, Holdsworth G, Carr MD. Structural and functional analysis of Dickkopf 4 (Dkk4): New insights into Dkk evolution and regulation of Wnt signaling by Dkk and Kremen proteins. J Biol Chem 2018; 293:12149-12166. [PMID: 29925589 PMCID: PMC6078440 DOI: 10.1074/jbc.ra118.002918] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 06/11/2018] [Indexed: 11/06/2022] Open
Abstract
Dickkopf (Dkk) family proteins are important regulators of Wnt signaling pathways, which play key roles in many essential biological processes. Here, we report the first detailed structural and dynamics study of a full-length mature Dkk protein (Dkk4, residues 19–224), including determination of the first atomic-resolution structure for the N-terminal cysteine-rich domain (CRD1) conserved among Dkk proteins. We discovered that CRD1 has significant structural homology to the Dkk C-terminal cysteine-rich domain (CRD2), pointing to multiple gene duplication events during Dkk family evolution. We also show that Dkk4 consists of two independent folded domains (CRD1 and CRD2) joined by a highly flexible, nonstructured linker. Similarly, the N-terminal region preceding CRD1 and containing a highly conserved NXI(R/K) sequence motif was shown to be dynamic and highly flexible. We demonstrate that Dkk4 CRD2 mediates high-affinity binding to both the E1E2 region of low-density lipoprotein receptor–related protein 6 (LRP6 E1E2) and the Kremen1 (Krm1) extracellular domain. In contrast, the N-terminal region alone bound with only moderate affinity to LRP6 E1E2, consistent with binding via the conserved NXI(R/K) motif, but did not interact with Krm proteins. We also confirmed that Dkk and Krm family proteins function synergistically to inhibit Wnt signaling. Insights provided by our integrated structural, dynamics, interaction, and functional studies have allowed us to refine the model of synergistic regulation of Wnt signaling by Dkk proteins. Our results indicate the potential for the formation of a diverse range of ternary complexes comprising Dkk, Krm, and LRP5/6 proteins, allowing fine-tuning of Wnt-dependent signaling.
Collapse
Affiliation(s)
- Saleha Patel
- Leicester Institute of Structural and Chemical Biology, Lancaster Road, Leicester LE1 7HB, United Kingdom; Department of Molecular and Cell Biology, University of Leicester, Lancaster Road, Leicester LE1 7HB, United Kingdom
| | - Alice M Barkell
- Leicester Institute of Structural and Chemical Biology, Lancaster Road, Leicester LE1 7HB, United Kingdom; Department of Molecular and Cell Biology, University of Leicester, Lancaster Road, Leicester LE1 7HB, United Kingdom
| | - Deepti Gupta
- UCB, 208 Bath Road, Slough SL1 3WE, United Kingdom
| | - Sarah L Strong
- Leicester Institute of Structural and Chemical Biology, Lancaster Road, Leicester LE1 7HB, United Kingdom; Department of Molecular and Cell Biology, University of Leicester, Lancaster Road, Leicester LE1 7HB, United Kingdom
| | - Shaun Bruton
- Leicester Institute of Structural and Chemical Biology, Lancaster Road, Leicester LE1 7HB, United Kingdom; Department of Molecular and Cell Biology, University of Leicester, Lancaster Road, Leicester LE1 7HB, United Kingdom
| | - Frederick W Muskett
- Leicester Institute of Structural and Chemical Biology, Lancaster Road, Leicester LE1 7HB, United Kingdom; Department of Molecular and Cell Biology, University of Leicester, Lancaster Road, Leicester LE1 7HB, United Kingdom
| | - Philip W Addis
- Leicester Institute of Structural and Chemical Biology, Lancaster Road, Leicester LE1 7HB, United Kingdom; Department of Molecular and Cell Biology, University of Leicester, Lancaster Road, Leicester LE1 7HB, United Kingdom
| | - Philip S Renshaw
- Leicester Institute of Structural and Chemical Biology, Lancaster Road, Leicester LE1 7HB, United Kingdom; Department of Molecular and Cell Biology, University of Leicester, Lancaster Road, Leicester LE1 7HB, United Kingdom
| | | | - Carl Doyle
- UCB, 208 Bath Road, Slough SL1 3WE, United Kingdom
| | | | | | - Christine E Prosser
- Leicester Institute of Structural and Chemical Biology, Lancaster Road, Leicester LE1 7HB, United Kingdom; UCB, 208 Bath Road, Slough SL1 3WE, United Kingdom
| | | | | | - Lorna C Waters
- Leicester Institute of Structural and Chemical Biology, Lancaster Road, Leicester LE1 7HB, United Kingdom; Department of Molecular and Cell Biology, University of Leicester, Lancaster Road, Leicester LE1 7HB, United Kingdom.
| | | | - Mark D Carr
- Leicester Institute of Structural and Chemical Biology, Lancaster Road, Leicester LE1 7HB, United Kingdom; Department of Molecular and Cell Biology, University of Leicester, Lancaster Road, Leicester LE1 7HB, United Kingdom.
| |
Collapse
|
16
|
Witcher PC, Miner SE, Horan DJ, Bullock WA, Lim KE, Kang KS, Adaniya AL, Ross RD, Loots GG, Robling AG. Sclerostin neutralization unleashes the osteoanabolic effects of Dkk1 inhibition. JCI Insight 2018; 3:98673. [PMID: 29875318 DOI: 10.1172/jci.insight.98673] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 04/26/2018] [Indexed: 12/12/2022] Open
Abstract
The WNT pathway has become an attractive target for skeletal therapies. High-bone-mass phenotypes in patients with loss-of-function mutations in the LRP5/6 inhibitor Sost (sclerosteosis), or in its downstream enhancer region (van Buchem disease), highlight the utility of targeting Sost/sclerostin to improve bone properties. Sclerostin-neutralizing antibody is highly osteoanabolic in animal models and in human clinical trials, but antibody-based inhibition of another potent LRP5/6 antagonist, Dkk1, is largely inefficacious for building bone in the unperturbed adult skeleton. Here, we show that conditional deletion of Dkk1 from bone also has negligible effects on bone mass. Dkk1 inhibition increases Sost expression, suggesting a potential compensatory mechanism that might explain why Dkk1 suppression lacks anabolic action. To test this concept, we deleted Sost from osteocytes in, or administered sclerostin neutralizing antibody to, mice with a Dkk1-deficient skeleton. A robust anabolic response to Dkk1 deletion was manifest only when Sost/sclerostin was impaired. Whole-body DXA scans, μCT measurements of the femur and spine, histomorphometric measures of femoral bone formation rates, and biomechanical properties of whole bones confirmed the anabolic potential of Dkk1 inhibition in the absence of sclerostin. Further, combined administration of sclerostin and Dkk1 antibody in WT mice produced a synergistic effect on bone gain that greatly exceeded individual or additive effects of the therapies, confirming the therapeutic potential of inhibiting multiple WNT antagonists for skeletal health. In conclusion, the osteoanabolic effects of Dkk1 inhibition can be realized if sclerostin upregulation is prevented. Anabolic therapies for patients with low bone mass might benefit from a strategy that accounts for the compensatory milieu of WNT inhibitors in bone tissue.
Collapse
Affiliation(s)
- Phillip C Witcher
- Department of Anatomy & Cell Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Sara E Miner
- Department of Anatomy & Cell Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Daniel J Horan
- Department of Anatomy & Cell Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Whitney A Bullock
- Department of Anatomy & Cell Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Kyung-Eun Lim
- Department of Anatomy & Cell Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Kyung Shin Kang
- Department of Anatomy & Cell Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA.,Department of Physical Sciences & Engineering, Anderson University, Anderson, Indiana, USA
| | - Alison L Adaniya
- Department of Anatomy & Cell Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Ryan D Ross
- Department of Cell & Molecular Medicine, Rush University Medical Center, Chicago, Illinois, USA
| | - Gabriela G Loots
- Biology and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, California, USA.,School of Natural Sciences, University of California, Merced, California, USA
| | - Alexander G Robling
- Department of Anatomy & Cell Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA.,Richard L. Roudebush Veterans Affairs Medical Center, Indianapolis, Indiana, USA.,Department of Biomedical Engineering, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana, USA.,Indiana Center for Musculoskeletal Health, Indianapolis, Indiana, USA
| |
Collapse
|
17
|
Kagey MH, He X. Rationale for targeting the Wnt signalling modulator Dickkopf-1 for oncology. Br J Pharmacol 2017; 174:4637-4650. [PMID: 28574171 PMCID: PMC5727329 DOI: 10.1111/bph.13894] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 05/12/2017] [Accepted: 05/19/2017] [Indexed: 12/15/2022] Open
Abstract
Wnt signalling is a fundamental pathway involved in embryonic development and adult tissue homeostasis. Mutations in the pathway frequently lead to developmental defects and cancer. As such, therapeutic intervention of this pathway has generated tremendous interest. Dickkopf-1 (DKK1) is a secreted inhibitor of β-catenin-dependent Wnt signalling and was originally characterized as a tumour suppressor based on the prevailing view that Wnt signalling promotes cancer pathogenesis. However, DKK1 appears to increase tumour growth and metastasis in preclinical models and its elevated expression correlates with a poor prognosis in a range of cancers, indicating that DKK1 has more complex cellular and biological functions than originally appreciated. Here, we review current evidence for the cancer-promoting activity of DKK1 and recent insights into the effects of DKK1 on signalling pathways in both cancer and immune cells. We discuss the rationale and promise of targeting DKK1 for oncology. LINKED ARTICLES This article is part of a themed section on WNT Signalling: Mechanisms and Therapeutic Opportunities. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v174.24/issuetoc.
Collapse
Affiliation(s)
| | - Xi He
- The F. M. Kirby Neurobiology Center, Boston Children's Hospital, Department of NeurologyHarvard Medical SchoolBostonMAUSA
| |
Collapse
|
18
|
Lee WJ, Lee JS, Ahn HM, Na Y, Yang CE, Lee JH, Hong J, Yun CO. Decoy Wnt receptor (sLRP6E1E2)-expressing adenovirus induces anti-fibrotic effect via inhibition of Wnt and TGF-β signaling. Sci Rep 2017; 7:15070. [PMID: 29118355 PMCID: PMC5678438 DOI: 10.1038/s41598-017-14893-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 10/18/2017] [Indexed: 12/16/2022] Open
Abstract
Aberrant activation of the canonical Wingless type (Wnt) signaling pathway plays a key role in the development of hypertrophic scars and keloids, and this aberrant activation of Wnt pathway can be a potential target for the development of novel anti-fibrotic agents. In this study, we evaluated the anti-fibrotic potential of a soluble Wnt decoy receptor (sLRP6E1E2)-expressing non-replicating adenovirus (Ad; dE1-k35/sLRP6E1E2) on human dermal fibroblasts (HDFs), keloid fibroblasts (KFs), and keloid tissue explants. Higher Wnt3a and β-catenin expression was observed in the keloid region compared to the adjacent normal tissues. The activity of β-catenin and mRNA expression of type-I and -III collagen were significantly decreased following treatment with dE1-k35/sLRP6E1E2 in HDFs and KFs. The expression of LRP6, β-catenin, phosphorylated glycogen synthase kinase 3 beta, Smad 2/3 complex, and TGF-β1 were decreased in Wnt3a- or TGF-β1-activated HDFs, following administration of dE1-k35/sLRP6E1E2. Moreover, dE1-k35/sLRP6E1E2 markedly inhibited nuclear translocation of both β-catenin and Smad 2/3 complex. The expression levels of type-I and -III collagen, fibronectin, and elastin were also significantly reduced in keloid tissue explants after treatment with dE1-k35/sLRP6E1E2. These results indicate that Wnt decoy receptor-expressing Ad can degrade extracellular matrix in HDFs, KFs, and primary keloid tissue explants, and thus it may be beneficial for treatment of keloids.
Collapse
Affiliation(s)
- Won Jai Lee
- Institute for Human Tissue Restoration, Department of Plastic & Reconstructive Surgery, Yonsei University College of Medicine, Seoul, Korea
| | - Jung-Sun Lee
- Department of Bioengineering, College of Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 04763, Korea
| | - Hyo Min Ahn
- Department of Bioengineering, College of Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 04763, Korea
| | - Youjin Na
- Department of Bioengineering, College of Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 04763, Korea
| | - Chae Eun Yang
- Institute for Human Tissue Restoration, Department of Plastic & Reconstructive Surgery, Yonsei University College of Medicine, Seoul, Korea
| | - Ju Hee Lee
- Department of Dermatology, Yonsei University College of Medicine, Seoul, Korea
| | - JinWoo Hong
- Department of Bioengineering, College of Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 04763, Korea
| | - Chae-Ok Yun
- Department of Bioengineering, College of Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 04763, Korea.
| |
Collapse
|
19
|
Pekkinen M, Grigelioniene G, Akin L, Shah K, Karaer K, Kurtoğlu S, Ekbote A, Aycan Z, Sağsak E, Danda S, Åström E, Mäkitie O. Novel mutations in the LRP5 gene in patients with Osteoporosis-pseudoglioma syndrome. Am J Med Genet A 2017; 173:3132-3135. [PMID: 29055141 DOI: 10.1002/ajmg.a.38491] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 08/22/2017] [Accepted: 09/05/2017] [Indexed: 12/12/2022]
Affiliation(s)
- Minna Pekkinen
- Folkhälsan Institute of Genetics, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland.,Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Giedre Grigelioniene
- Center for Molecular Medicine, Karolinska Institutet and Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Leyla Akin
- Erciyes University, Faculty of Medicine, Department of Pediatric Endocrinology, Turkey
| | - Krati Shah
- Department of Clinical Genetics, Christian Medical College and Hospital Vellore, India
| | - Kadri Karaer
- Intergen, Genetic Diagnosis Research and Application Center, Ankara, Turkey
| | - Selim Kurtoğlu
- Erciyes University, Faculty of Medicine, Department of Pediatric Endocrinology, Turkey
| | - Alka Ekbote
- Department of Clinical Genetics, Christian Medical College and Hospital Vellore, India
| | - Zehra Aycan
- Dr.Sami Ulus Children's Hospital, Department of Pediatric Endocrinology, Ankara, Turkey
| | - Elif Sağsak
- Dr.Sami Ulus Children's Hospital, Department of Pediatric Endocrinology, Ankara, Turkey
| | - Sumita Danda
- Department of Clinical Genetics, Christian Medical College and Hospital Vellore, India
| | - Eva Åström
- Department of Woman and Child Health, Karolinska Institutet and Pediatric Neurology, Astrid Lindgren Children's Hospital at Karolinska University Hospital, Stockholm, Sweden
| | - Outi Mäkitie
- Folkhälsan Institute of Genetics, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland.,Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.,Center for Molecular Medicine, Karolinska Institutet and Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
20
|
Yang T, Williams BO. Low-Density Lipoprotein Receptor-Related Proteins in Skeletal Development and Disease. Physiol Rev 2017; 97:1211-1228. [PMID: 28615463 DOI: 10.1152/physrev.00013.2016] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 03/07/2017] [Accepted: 03/15/2017] [Indexed: 02/06/2023] Open
Abstract
The identification of the low-density lipoprotein receptor (LDLR) provided a foundation for subsequent studies in lipoprotein metabolism, receptor-mediated endocytosis, and many other fundamental biological functions. The importance of the LDLR led to numerous studies that identified homologous molecules and ultimately resulted in the description of the LDL-receptor superfamily, a group of proteins that contain domains also found in the LDLR. Subsequent studies have revealed that members of the LDLR-related protein family play roles in regulating many aspects of signal transduction. This review is focused on the roles of selected members of this protein family in skeletal development and disease. We present background on the identification of this subgroup of receptors, discuss the phenotypes associated with alterations in their function in human patients and mouse models, and describe the current efforts to therapeutically target these proteins to treat human skeletal disease.
Collapse
Affiliation(s)
- Tao Yang
- Program in Skeletal Disease and Tumor Microenvironment, Center for Cancer and Cell Biology, Van Andel Research Institute, Grand Rapids, Michigan
| | - Bart O Williams
- Program in Skeletal Disease and Tumor Microenvironment, Center for Cancer and Cell Biology, Van Andel Research Institute, Grand Rapids, Michigan
| |
Collapse
|
21
|
Computationally Design of Inhibitory Peptides Against Wnt Signaling Pathway: In Silico Insight on Complex of DKK1 and LRP6. Int J Pept Res Ther 2017. [DOI: 10.1007/s10989-017-9589-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
22
|
Alowolodu O, Johnson G, Alashwal L, Addou I, Zhdanova IV, Uversky VN. Intrinsic disorder in spondins and some of their interacting partners. INTRINSICALLY DISORDERED PROTEINS 2016; 4:e1255295. [PMID: 28232900 DOI: 10.1080/21690707.2016.1255295] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 10/22/2016] [Accepted: 10/27/2016] [Indexed: 12/28/2022]
Abstract
Spondins, which are proteins that inhibit and promote adherence of embryonic cells so as to aid axonal growth are part of the thrombospondin-1 family. Spondins function in several important biological processes, such as apoptosis, angiogenesis, etc. Spondins constitute a thrombospondin subfamily that includes F-spondin, a protein that interacts with Aβ precursor protein and inhibits its proteolytic processing; R-spondin, a 4-membered group of proteins that regulates Wnt pathway and have other functions, such as regulation of kidney proliferation, induction of epithelial proliferation, the tumor suppressant action; M-spondin that mediates mechanical linkage between the muscles and apodemes; and the SCO-spondin, a protein important for neuronal development. In this study, we investigated intrinsic disorder status of human spondins and their interacting partners, such as members of the LRP family, LGR family, Frizzled family, and several other binding partners in order to establish the existence and importance of disordered regions in spondins and their interacting partners by conducting a detailed analysis of their sequences, finding disordered regions, and establishing a correlation between their structure and biological functions.
Collapse
Affiliation(s)
- Oluwole Alowolodu
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida , Tampa, FL, USA
| | - Gbemisola Johnson
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida , Tampa, FL, USA
| | - Lamis Alashwal
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida , Tampa, FL, USA
| | - Iqbal Addou
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida , Tampa, FL, USA
| | - Irina V Zhdanova
- Department of Anatomy & Neurobiology, Boston University School of Medicine , Boston, MA, USA
| | - Vladimir N Uversky
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, USA; USF Health Byrd Alzheimer Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, USA; Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, St. Petersburg, Russia
| |
Collapse
|
23
|
RAY S, KHASSAWNA TEL, SOMMER U, THORMANN U, WIJEKOON N, LIPS K, HEISS C, ALT V. Differences in expression of Wnt antagonist Dkk1 in healthy versus pathological bone samples. J Microsc 2016; 265:111-120. [DOI: 10.1111/jmi.12469] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 08/04/2016] [Accepted: 08/08/2016] [Indexed: 12/17/2022]
Affiliation(s)
- S. RAY
- Laboratory of Experimental Trauma Surgery; Justus-Liebig-University; Giessen Germany
| | - T. EL KHASSAWNA
- Laboratory of Experimental Trauma Surgery; Justus-Liebig-University; Giessen Germany
| | - U. SOMMER
- Laboratory of Experimental Trauma Surgery; Justus-Liebig-University; Giessen Germany
| | - U. THORMANN
- Laboratory of Experimental Trauma Surgery; Justus-Liebig-University; Giessen Germany
- Departments of Trauma, Hand and Reconstructive Surgery; University Hospital Giessen and Marburg; Campus Giessen Germany
| | - N.D. WIJEKOON
- Laboratory of Experimental Trauma Surgery; Justus-Liebig-University; Giessen Germany
| | - K. LIPS
- Laboratory of Experimental Trauma Surgery; Justus-Liebig-University; Giessen Germany
| | - C. HEISS
- Laboratory of Experimental Trauma Surgery; Justus-Liebig-University; Giessen Germany
- Departments of Trauma, Hand and Reconstructive Surgery; University Hospital Giessen and Marburg; Campus Giessen Germany
| | - V. ALT
- Laboratory of Experimental Trauma Surgery; Justus-Liebig-University; Giessen Germany
- Departments of Trauma, Hand and Reconstructive Surgery; University Hospital Giessen and Marburg; Campus Giessen Germany
| |
Collapse
|
24
|
Osteogenesis induced by frizzled-related protein (FRZB) is linked to the netrin-like domain. J Transl Med 2016; 96:570-80. [PMID: 26927515 DOI: 10.1038/labinvest.2016.38] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Revised: 01/05/2016] [Accepted: 01/25/2016] [Indexed: 12/17/2022] Open
Abstract
Abnormal Wnt signaling is associated with bone mass disorders. Frizzled-related protein (FRZB, also known as secreted frizzled-related protein-3 (SFRP3)) is a Wnt modulator that contains an amino-terminal cysteine-rich domain (CRD) and a carboxy-terminal Netrin-like (NTN) motif. Frzb(-/-) mice show increased cortical thickness. However, the direct effect of FRZB on osteogenic differentiation and the involvement of the structural domains herein are not fully understood. In this study, we observed that stable overexpression of Frzb in MC3T3-E1 cells increased calcium deposition and osteoblast markers compared with control. Western blot analysis showed that the increased osteogenesis was associated with reduced canonical, but increased non-canonical Wnt signaling. On the contrary, loss of Frzb induced the opposite effects on osteogenesis and Wnt signaling. To translationally validate the positive effects of FRZB on primary human cells, we treated human periosteal and human bone marrow stromal cells with conditioned medium from MC3T3-E1 cells overexpressing Frzb and observed an increase in Alizarin red staining. We further studied the effect of the domains. FrzbNTN overexpression induced similar effects on osteogenesis as full-length Frzb, whereas FrzbCRD overexpressing cells mimicked loss of Frzb experiments. The CRD is considered as the Wnt binding domain, but the NTN domain also has important effects on bone biology. FRZB and other SFRPs or their specific domains may hold surprising potential as therapeutics for bone and joint disorders considering that excess of SFRPs has effects that are not expected under physiological, endogenous expression conditions.
Collapse
|
25
|
Wnt/β-catenin signaling plays an ever-expanding role in stem cell self-renewal, tumorigenesis and cancer chemoresistance. Genes Dis 2016; 3:11-40. [PMID: 27077077 PMCID: PMC4827448 DOI: 10.1016/j.gendis.2015.12.004] [Citation(s) in RCA: 208] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Wnt signaling transduces evolutionarily conserved pathways which play important roles in initiating and regulating a diverse range of cellular activities, including cell proliferation, calcium homeostasis, and cell polarity. The role of Wnt signaling in controlling cell proliferation and stem cell self-renewal is primarily carried out through the canonical pathway, which is the best-characterized the multiple Wnt signaling branches. The past 10 years has seen a rapid expansion in our understanding of the complexity of this pathway, as many new components of Wnt signaling have been identified and linked to signaling regulation, stem cell functions, and adult tissue homeostasis. Additionally, a substantial body of evidence links Wnt signaling to tumorigenesis of cancer types and implicates it in the development of cancer drug resistance. Thus, a better understanding of the mechanisms by which dysregulation of Wnt signaling precedes the development and progression of human cancer may hasten the development of pathway inhibitors to augment current therapy. This review summarizes and synthesizes our current knowledge of the canonical Wnt pathway in development and disease. We begin with an overview of the components of the canonical Wnt signaling pathway and delve into the role this pathway has been shown to play in stemness, tumorigenesis, and cancer drug resistance. Ultimately, we hope to present an organized collection of evidence implicating Wnt signaling in tumorigenesis and chemoresistance to facilitate the pursuit of Wnt pathway modulators that may improve outcomes of cancers in which Wnt signaling contributes to aggressive disease and/or treatment resistance.
Collapse
|
26
|
Abstract
Wnt signaling plays key roles in many aspects of development. In this review, we will briefly describe the components of signaling pathways induced by Wnt ligands and then describe the current state of research as this applies to aspects of development and disease as it relates to skeletal muscle and bone. We will conclude with a discussion of the parallels and differences in Wnt signaling in these two contexts and how these pathways are being (or could potentially be) targeted for therapeutic treatment of musculoskeletal diseases. This article is part of a Special Issue entitled "Muscle Bone Interactions".
Collapse
Affiliation(s)
- Michael A Rudnicki
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada; Department Medicine, University of Ottawa, Ottawa, Ontario, Canada.
| | - Bart O Williams
- Center for Skeletal Disease and Tumor Metastasis, Van Andel Research Institute, Grand Rapids, MI, USA.
| |
Collapse
|
27
|
Niziolek PJ, MacDonald BT, Kedlaya R, Zhang M, Bellido T, He X, Warman ML, Robling AG. High Bone Mass-Causing Mutant LRP5 Receptors Are Resistant to Endogenous Inhibitors In Vivo. J Bone Miner Res 2015; 30:1822-30. [PMID: 25808845 PMCID: PMC4580530 DOI: 10.1002/jbmr.2514] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Revised: 03/17/2015] [Accepted: 03/19/2015] [Indexed: 12/17/2022]
Abstract
Certain missense mutations affecting LRP5 cause high bone mass (HBM) in humans. Based on in vitro evidence, HBM LRP5 receptors are thought to exert their effects by providing resistance to binding/inhibition of secreted LRP5 inhibitors such as sclerostin (SOST) and Dickkopf homolog-1 (DKK1). We previously reported the creation of two Lrp5 HBM knock-in mouse models, in which the human p.A214V or p.G171V missense mutations were knocked into the endogenous Lrp5 locus. To determine whether HBM knock-in mice are resistant to SOST- or DKK1-induced osteopenia, we bred Lrp5 HBM mice with transgenic mice that overexpress human SOST in osteocytes ((8kb) Dmp1-SOST) or mouse DKK1 in osteoblasts and osteocytes ((2.3kb) Col1a1-Dkk1). We observed that the (8kb) Dmp1-SOST transgene significantly lowered whole-body bone mineral density (BMD), bone mineral content (BMC), femoral and vertebral trabecular bone volume fraction (BV/TV), and periosteal bone-formation rate (BFR) in wild-type mice but not in mice with Lrp5 p.G171V and p.A214V alleles. The (2.3kb) Col1a1-Dkk1 transgene significantly lowered whole-body BMD, BMC, and vertebral BV/TV in wild-type mice and affected p.A214V mice more than p.G171V mice. These in vivo data support in vitro studies regarding the mechanism of HBM-causing mutations, and imply that HBM LRP5 receptors differ in their relative sensitivity to inhibition by SOST and DKK1.
Collapse
Affiliation(s)
- Paul J. Niziolek
- Department of Anatomy & Cell Biology, Indiana University School of Medicine, Indianapolis, IN, USA
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
| | - Bryan T. MacDonald
- The F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA
- Department of Neurology, Harvard Medical School, Boston, MA USA
| | - Rajendra Kedlaya
- Department of Anatomy & Cell Biology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Minjie Zhang
- Howard Hughes Medical Institute, Boston Children’s Hospital, Boston, MA, USA
- Departments of Orthopaedic Surgery and Genetics, Harvard Medical School, Boston, MA, USA
| | - Teresita Bellido
- Department of Anatomy & Cell Biology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Xi He
- The F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA
- Department of Neurology, Harvard Medical School, Boston, MA USA
| | - Matthew L. Warman
- Howard Hughes Medical Institute, Boston Children’s Hospital, Boston, MA, USA
- Departments of Orthopaedic Surgery and Genetics, Harvard Medical School, Boston, MA, USA
| | - Alexander G. Robling
- Department of Anatomy & Cell Biology, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Biomedical Engineering, Indiana University–Purdue University at Indianapolis (IUPUI), Indianapolis, IN, USA
- Richard L. Roudebush VA Medical Center, Indianapolis, IN USA
| |
Collapse
|
28
|
Bordoli MR, Yum J, Breitkopf SB, Thon JN, Italiano JE, Xiao J, Worby C, Wong SK, Lin G, Edenius M, Keller TL, Asara JM, Dixon JE, Yeo CY, Whitman M. A secreted tyrosine kinase acts in the extracellular environment. Cell 2014; 158:1033-1044. [PMID: 25171405 PMCID: PMC4149754 DOI: 10.1016/j.cell.2014.06.048] [Citation(s) in RCA: 103] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Revised: 05/06/2014] [Accepted: 06/20/2014] [Indexed: 11/17/2022]
Abstract
Although tyrosine phosphorylation of extracellular proteins has been reported to occur extensively in vivo, no secreted protein tyrosine kinase has been identified. As a result, investigation of the potential role of extracellular tyrosine phosphorylation in physiological and pathological tissue regulation has not been possible. Here, we show that VLK, a putative protein kinase previously shown to be essential in embryonic development, is a secreted protein kinase, with preference for tyrosine, that phosphorylates a broad range of secreted and ER-resident substrate proteins. We find that VLK is rapidly and quantitatively secreted from platelets in response to stimuli and can tyrosine phosphorylate coreleased proteins utilizing endogenous as well as exogenous ATP sources. We propose that discovery of VLK activity provides an explanation for the extensive and conserved pattern of extracellular tyrosine phosphophorylation seen in vivo, and extends the importance of regulated tyrosine phosphorylation into the extracellular environment.
Collapse
Affiliation(s)
- Mattia R Bordoli
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA 02115, USA
| | - Jina Yum
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA 02115, USA; Department of Life Science and Global Top5 Research Program, Ewha Womans University, Seoul 120-750, Republic of Korea
| | - Susanne B Breitkopf
- Division of Signal Transduction, Beth Israel Deaconess Medical Center, Boston, MA 02115, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Jonathan N Thon
- Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA; Harvard Medical School, Boston, MA 02115, USA
| | - Joseph E Italiano
- Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA; Harvard Medical School, Boston, MA 02115, USA; Vascular Biology Program, Department of Surgery, Children's Hospital, Boston, MA 02115, USA
| | - Junyu Xiao
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92031, USA
| | - Carolyn Worby
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92031, USA
| | - Swee-Kee Wong
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA 02115, USA
| | - Grace Lin
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA 02115, USA
| | - Maja Edenius
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA 02115, USA
| | - Tracy L Keller
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA 02115, USA
| | - John M Asara
- Division of Signal Transduction, Beth Israel Deaconess Medical Center, Boston, MA 02115, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Jack E Dixon
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92031, USA
| | - Chang-Yeol Yeo
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA 02115, USA; Department of Life Science and Global Top5 Research Program, Ewha Womans University, Seoul 120-750, Republic of Korea.
| | - Malcolm Whitman
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA 02115, USA.
| |
Collapse
|
29
|
Liedert A, Röntgen V, Schinke T, Benisch P, Ebert R, Jakob F, Klein-Hitpass L, Lennerz JK, Amling M, Ignatius A. Osteoblast-specific Krm2 overexpression and Lrp5 deficiency have different effects on fracture healing in mice. PLoS One 2014; 9:e103250. [PMID: 25061805 PMCID: PMC4111586 DOI: 10.1371/journal.pone.0103250] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Accepted: 06/28/2014] [Indexed: 01/09/2023] Open
Abstract
The canonical Wnt/β-catenin pathway plays a key role in the regulation of bone remodeling in mice and humans. Two transmembrane proteins that are involved in decreasing the activity of this pathway by binding to extracellular antagonists, such as Dickkopf 1 (Dkk1), are the low-density lipoprotein receptor related protein 5 (Lrp5) and Kremen 2 (Krm2). Lrp 5 deficiency (Lrp5−/−) as well as osteoblast-specific overexpression of Krm2 in mice (Col1a1-Krm2) result in severe osteoporosis occurring at young age. In this study, we analyzed the influence of Lrp5 deficiency and osteoblast-specific overexpression of Krm2 on fracture healing in mice using flexible and semi-rigid fracture fixation. We demonstrated that fracture healing was highly impaired in both mouse genotypes, but that impairment was more severe in Col1a1-Krm2 than in Lrp5−/− mice and particularly evident in mice in which the more flexible fixation was used. Bone formation was more reduced in Col1a1-Krm2 than in Lrp5−/− mice, whereas osteoclast number was similarly increased in both genotypes in comparison with wild-type mice. Using microarray analysis we identified reduced expression of genes mainly involved in osteogenesis that seemed to be responsible for the observed stronger impairment of healing in Col1a1-Krm2 mice. In line with these findings, we detected decreased expression of sphingomyelin phosphodiesterase 3 (Smpd3) and less active β-catenin in the calli of Col1a1-Krm2 mice. Since Krm2 seems to play a significant role in regulating bone formation during fracture healing, antagonizing KRM2 might be a therapeutic option to improve fracture healing under compromised conditions, such as osteoporosis.
Collapse
Affiliation(s)
- Astrid Liedert
- Institute of Orthopaedic Research and Biomechanics, Center of Musculoskeletal Research, University of Ulm, Ulm, Germany
- * E-mail:
| | - Viktoria Röntgen
- Institute of Orthopaedic Research and Biomechanics, Center of Musculoskeletal Research, University of Ulm, Ulm, Germany
| | - Thorsten Schinke
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Peggy Benisch
- Orthopaedic Center for Musculoskeletal Research, University of Würzburg, Würzburg, Germany
| | - Regina Ebert
- Orthopaedic Center for Musculoskeletal Research, University of Würzburg, Würzburg, Germany
| | - Franz Jakob
- Orthopaedic Center for Musculoskeletal Research, University of Würzburg, Würzburg, Germany
| | | | | | - Michael Amling
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Anita Ignatius
- Institute of Orthopaedic Research and Biomechanics, Center of Musculoskeletal Research, University of Ulm, Ulm, Germany
| |
Collapse
|
30
|
Liu S, Tian W, Wang J, Cheng L, Jia J, Ma X. Two single-nucleotide polymorphisms in the DKK1 gene are associated with developmental dysplasia of the hip in the Chinese Han female population. Genet Test Mol Biomarkers 2014; 18:557-61. [PMID: 24926963 DOI: 10.1089/gtmb.2014.0044] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
AIMS Developmental dysplasia of the hip (DDH) is a common congenital or acquired skeletal disease characterized by subluxation, dislocation, or dysplasia of the hip joint. This study aimed to explore the potential impact of Dickkopf-1 (DKK1) gene polymorphisms on embryonic hip joint development and the course of DDH. METHODS One hundred ninety-two unrelated Chinese Han female DDH patients and 191 unrelated, healthy, ethnically matched female controls were recruited and genotyped for two tag single-nucleotide polymorphisms (SNPs) of DKK1 using the Sequenom method. RESULTS One of the two DKK1 tag SNPs, rs11001560, was not shown to be significantly statistically different in allele frequency between DDH patients and control groups (χ(2)=0.898, df=1, p=0.343). However, a significant difference in genotype distribution was observed (χ(2)=21.987, df=2, p<0.0001). For SNP rs1569198, significant differences were observed in both allele frequency and genotype distribution between the DDH group and control group (χ(2)=31.484, df=1, p<0.0001 and χ(2)=30.323, df=2, p<0.0001). The A allele frequency of rs1569198 has a significant association to increased risk of DDH development (odds ratio [OR]=3.032, 95% confidence interval [95% CI]: 2.034-4.519). CONCLUSION In conclusion, the association between two tag SNPs of the DKK1 gene and DDH development reached statistical significance in our study population; the results of our genetic association analysis indicated that DKK1 may be a good candidate responsible for DDH development in the Chinese Han female population.
Collapse
Affiliation(s)
- Shengnan Liu
- 1 Graduate School of Peking Union Medical College , Beijing, China
| | | | | | | | | | | |
Collapse
|
31
|
Wan W, Xia S, Kalionis B, Liu L, Li Y. The role of Wnt signaling in the development of Alzheimer's disease: a potential therapeutic target? BIOMED RESEARCH INTERNATIONAL 2014; 2014:301575. [PMID: 24883305 PMCID: PMC4026919 DOI: 10.1155/2014/301575] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2013] [Accepted: 04/10/2014] [Indexed: 12/31/2022]
Abstract
Accumulating evidence supports a key role for Wnt signaling in the development of the central nervous system (CNS) during embryonic development and in the regulation of the structure and function of the adult brain. Alzheimer's disease (AD) is the most common form of senile dementia, which is characterized by β -amyloid (A β ) deposition in specific brain regions. However, the molecular mechanism underlying AD pathology remains elusive. Dysfunctional Wnt signaling is associated with several diseases such as epilepsy, cancer, metabolic disease, and AD. Increasing evidence suggests that downregulation of Wnt signaling, induced by A β , is associated with disease progression of AD. More importantly, persistent activation of Wnt signaling through Wnt ligands, or inhibition of negative regulators of Wnt signaling, such as Dickkopf-1 (DKK-1) and glycogen synthase kinase-3 β (GSK-3 β ) that are hyperactive in the disease state, is able to protect against A β toxicity and ameliorate cognitive performance in AD. Together, these data suggest that Wnt signaling might be a potential therapeutic target of AD. Here, we review recent studies related to the progression of AD where Wnt signaling might be relevant and participate in the development of the disease. Then, we focus on the potential relevance of manipulating the Wnt signaling pathway for the treatment of AD.
Collapse
Affiliation(s)
- Wenbin Wan
- Geriatrics Department of Traditional Chinese Medicine, Huadong Hospital, Fudan University, Shanghai 200040, China
| | - Shijin Xia
- Shanghai Institute of Geriatrics, Huadong Hospital, Fudan University, Shanghai 200040, China
| | - Bill Kalionis
- Department of Perinatal Medicine Pregnancy Research Centre and University of Melbourne Department of Obstetrics and Gynaecology, Royal Women's Hospital, Parkville, VIC 3052, Australia
| | - Lumei Liu
- Geriatrics Department of Traditional Chinese Medicine, Huadong Hospital, Fudan University, Shanghai 200040, China
| | - Yaming Li
- Geriatrics Department of Traditional Chinese Medicine, Huadong Hospital, Fudan University, Shanghai 200040, China
| |
Collapse
|
32
|
Sarrión P, Mellibovsky L, Urreizti R, Civit S, Cols N, García-Giralt N, Yoskovitz G, Aranguren A, Malouf J, Di Gregorio S, Río LD, Güerri R, Nogués X, Díez-Pérez A, Grinberg D, Balcells S. Genetic analysis of high bone mass cases from the BARCOS cohort of Spanish postmenopausal women. PLoS One 2014; 9:e94607. [PMID: 24736728 PMCID: PMC3988071 DOI: 10.1371/journal.pone.0094607] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Accepted: 03/17/2014] [Indexed: 12/17/2022] Open
Abstract
The aims of the study were to establish the prevalence of high bone mass (HBM) in a cohort of Spanish postmenopausal women (BARCOS) and to assess the contribution of LRP5 and DKK1 mutations and of common bone mineral density (BMD) variants to a HBM phenotype. Furthermore, we describe the expression of several osteoblast-specific and Wnt-pathway genes in primary osteoblasts from two HBM cases. A 0.6% of individuals (10/1600) displayed Z-scores in the HBM range (sum Z-score >4). While no mutation in the relevant exons of LRP5 was detected, a rare missense change in DKK1 was found (p.Y74F), which cosegregated with the phenotype in a small pedigree. Fifty-five BMD SNPs from Estrada et al. [NatGenet 44:491-501,2012] were genotyped in the HBM cases to obtain risk scores for each individual. In this small group of samples, Z-scores were found inversely related to risk scores, suggestive of a polygenic etiology. There was a single exception, which may be explained by a rare penetrant genetic variant, counterbalancing the additive effect of the risk alleles. The expression analysis in primary osteoblasts from two HBM cases and five controls suggested that IL6R, DLX3, TWIST1 and PPARG are negatively related to Z-score. One HBM case presented with high levels of RUNX2, while the other displayed very low SOX6. In conclusion, we provide evidence of lack of LRP5 mutations and of a putative HBM-causing mutation in DKK1. Additionally, we present SNP genotyping and expression results that suggest additive effects of several genes for HBM.
Collapse
Affiliation(s)
- Patricia Sarrión
- Departament de Genètica, Universitat de Barcelona, IBUB, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Barcelona, Spain
- Institut de Biomedicina Universitat de Barcelona (IBUB), Barcelona, Spain
| | - Leonardo Mellibovsky
- Unitat de Recerca en Fisiologia Òssia i Articular (URFOA), Institut Municipal d'Investigacions Mèdiques (IMIM), Hospital del Mar, Barcelona, Spain
- Red Tematica de Investigación Cooperativa en Envejecimiento y Fragilidad (RETICEF), Instituto de Salud Carlos III, Barcelona, Spain
| | - Roser Urreizti
- Departament de Genètica, Universitat de Barcelona, IBUB, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Barcelona, Spain
- Institut de Biomedicina Universitat de Barcelona (IBUB), Barcelona, Spain
| | - Sergi Civit
- Departament d'Estadística, Universitat de Barcelona, Barcelona, Spain
| | - Neus Cols
- Departament de Genètica, Universitat de Barcelona, IBUB, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Barcelona, Spain
- Institut de Biomedicina Universitat de Barcelona (IBUB), Barcelona, Spain
| | - Natàlia García-Giralt
- Unitat de Recerca en Fisiologia Òssia i Articular (URFOA), Institut Municipal d'Investigacions Mèdiques (IMIM), Hospital del Mar, Barcelona, Spain
- Red Tematica de Investigación Cooperativa en Envejecimiento y Fragilidad (RETICEF), Instituto de Salud Carlos III, Barcelona, Spain
| | - Guy Yoskovitz
- Unitat de Recerca en Fisiologia Òssia i Articular (URFOA), Institut Municipal d'Investigacions Mèdiques (IMIM), Hospital del Mar, Barcelona, Spain
- Red Tematica de Investigación Cooperativa en Envejecimiento y Fragilidad (RETICEF), Instituto de Salud Carlos III, Barcelona, Spain
| | - Alvaro Aranguren
- Departament de Genètica, Universitat de Barcelona, IBUB, Barcelona, Spain
| | - Jorge Malouf
- Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Silvana Di Gregorio
- Red Tematica de Investigación Cooperativa en Envejecimiento y Fragilidad (RETICEF), Instituto de Salud Carlos III, Barcelona, Spain
- CETIR Medical Imaging Centre, Barcelona, Spain
| | - Luís Del Río
- Red Tematica de Investigación Cooperativa en Envejecimiento y Fragilidad (RETICEF), Instituto de Salud Carlos III, Barcelona, Spain
- CETIR Medical Imaging Centre, Barcelona, Spain
| | - Roberto Güerri
- Unitat de Recerca en Fisiologia Òssia i Articular (URFOA), Institut Municipal d'Investigacions Mèdiques (IMIM), Hospital del Mar, Barcelona, Spain
- Red Tematica de Investigación Cooperativa en Envejecimiento y Fragilidad (RETICEF), Instituto de Salud Carlos III, Barcelona, Spain
| | - Xavier Nogués
- Unitat de Recerca en Fisiologia Òssia i Articular (URFOA), Institut Municipal d'Investigacions Mèdiques (IMIM), Hospital del Mar, Barcelona, Spain
- Red Tematica de Investigación Cooperativa en Envejecimiento y Fragilidad (RETICEF), Instituto de Salud Carlos III, Barcelona, Spain
| | - Adolfo Díez-Pérez
- Unitat de Recerca en Fisiologia Òssia i Articular (URFOA), Institut Municipal d'Investigacions Mèdiques (IMIM), Hospital del Mar, Barcelona, Spain
- Red Tematica de Investigación Cooperativa en Envejecimiento y Fragilidad (RETICEF), Instituto de Salud Carlos III, Barcelona, Spain
| | - Daniel Grinberg
- Departament de Genètica, Universitat de Barcelona, IBUB, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Barcelona, Spain
- Institut de Biomedicina Universitat de Barcelona (IBUB), Barcelona, Spain
| | - Susana Balcells
- Departament de Genètica, Universitat de Barcelona, IBUB, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Barcelona, Spain
- Institut de Biomedicina Universitat de Barcelona (IBUB), Barcelona, Spain
| |
Collapse
|
33
|
Qian L, Cai C, Yuan P, Jeong SY, Yang X, Dealmeida V, Ernst J, Costa M, Cohen SN, Wei W. Bidirectional effect of Wnt signaling antagonist DKK1 on the modulation of anthrax toxin uptake. SCIENCE CHINA-LIFE SCIENCES 2014; 57:469-81. [PMID: 24671437 DOI: 10.1007/s11427-014-4646-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Accepted: 03/07/2014] [Indexed: 01/07/2023]
Abstract
LRP6, a co-receptor for the morphogen Wnt, aids endocytosis of anthrax complexes. Here we report that Dickkopf1 (DKK1) protein, a secreted LRP6 ligand and antagonist, is also a modulator of anthrax toxin sensitivity. shRNA-mediated gene silencing or TALEN-mediated gene knockout of DKK1 reduced sensitivity of cells to PA-dependent hybrid toxins. However, unlike the solely inhibitory effect on Wnt signaling, the effects of DKK1 overexpression on anthrax toxicity were bidirectional, depending on its endogenous expression and cell context. Fluorescence microscopy and biochemical analyses showed that DKK1 facilitates internalization of anthrax toxins and their receptors, an event mediated by DKK1-LRP6-Kremen2 complex. Monoclonal antibodies against DKK1 provided dose-dependent protection to macrophages from killing by anthrax lethal toxin (LT). Our discovery that DKK1 forms ternary structure with LRP6 and Kremen2 in promoting PA-mediated toxin internalization provides a paradigm for bacterial exploitation of mechanisms that host cells use to internalize signaling proteins.
Collapse
Affiliation(s)
- LiLi Qian
- College of Life Sciences and State Key Laboratory of Protein and Plant Gene Research, Peking University, Beijing, 100871, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Liedert A, Schinke T, Ignatius A, Amling M. The role of midkine in skeletal remodelling. Br J Pharmacol 2014; 171:870-8. [PMID: 24102259 PMCID: PMC3925025 DOI: 10.1111/bph.12412] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Revised: 09/02/2013] [Accepted: 09/09/2013] [Indexed: 12/13/2022] Open
Abstract
UNLABELLED Bone tissue is subjected to continuous remodelling, replacing old or damaged bone throughout life. In bone remodelling, the coordinated activities of bone-forming osteoblasts and bone-resorbing osteoclasts ensure the maintenance of bone mass and strength. In early life, the balance of these cellular activities is tightly regulated by various factors, including systemic hormones, the mechanical environment and locally released growth factors. Age-related changes in the activity of these factors in bone remodelling can result in diseases with low bone mass, such as osteoporosis. Osteoporosis is a systemic and age-related skeletal disease characterized by low bone mass and structural degeneration of bone tissue, predisposing the patient to an increased fracture risk. The growth factor midkine (Mdk) plays a key role in bone remodelling and it is expressed during bone formation and fracture repair. Using a mouse deficient in Mdk, our group have identified this protein as a negative regulator of bone formation and mechanically induced bone remodelling. Thus, specific Mdk antagonists might represent a therapeutic option for diseases characterized by low bone mass, such as osteoporosis. LINKED ARTICLES This article is part of a themed section on Midkine. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2014.171.issue-4.
Collapse
Affiliation(s)
- A Liedert
- Institute of Orthopedic Research and Biomechanics, Center of Musculoskeletal Research, University of Ulm, Ulm, Germany
| | | | | | | |
Collapse
|
35
|
Chang MK, Kramer I, Keller H, Gooi JH, Collett C, Jenkins D, Ettenberg SA, Cong F, Halleux C, Kneissel M. Reversing LRP5-dependent osteoporosis and SOST deficiency-induced sclerosing bone disorders by altering WNT signaling activity. J Bone Miner Res 2014; 29:29-42. [PMID: 23901037 DOI: 10.1002/jbmr.2059] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Revised: 07/26/2013] [Accepted: 07/29/2013] [Indexed: 12/23/2022]
Abstract
The bone formation inhibitor sclerostin encoded by SOST binds in vitro to low-density lipoprotein receptor-related protein (LRP) 5/6 Wnt co-receptors, thereby inhibiting Wnt/β-catenin signaling, a central pathway of skeletal homeostasis. Lrp5/LRP5 deficiency results in osteoporosis-pseudoglioma (OPPG), whereas Sost/SOST deficiency induces lifelong bone gain in mice and humans. Here, we analyzed the bone phenotype of mice lacking Sost (Sost(-/-) ), Lrp5 (Lrp5(-/-) ), or both (Sost(-/-) ;Lrp5(-/-) ) to elucidate the mechanism of action of Sost in vivo. Sost deficiency-induced bone gain was significantly blunted in Sost(-/-) ;Lrp5(-/-) mice. Yet the Lrp5 OPPG phenotype was fully rescued in Sost(-/-) ;Lrp5(-/-) mice and most bone parameters were elevated relative to wild-type. To test whether the remaining bone increases in Sost(-/-) ;Lrp5(-/-) animals depend on Lrp6, we treated wild-type, Sost(-/-) , and Sost(-/-) ;Lrp5(-/-) mice with distinct Lrp6 function blocking antibodies. Selective blockage of Wnt1 class-mediated Lrp6 signaling reduced cancellous bone mass and density in wild-type mice. Surprisingly, it reversed the abnormal bone gain in Sost(-/-) and Sost(-/-) ;Lrp5(-/-) mice to wild-type levels irrespective of enhancement or blockage of Wnt3a class-mediated Lrp6 activity. Thus, whereas Sost deficiency-induced bone anabolism partially requires Lrp5, it fully depends on Wnt1 class-induced Lrp6 activity. These findings indicate: first, that OPPG syndrome patients suffering from LRP5 loss-of-function should benefit from principles antagonizing SOST/sclerostin action; and second, that therapeutic WNT signaling inhibitors may stop the debilitating bone overgrowth in sclerosing disorders related to SOST deficiency, such as sclerosteosis, van Buchem disease, and autosomal dominant craniodiaphyseal dysplasia, which are rare disorders without viable treatment options.
Collapse
Affiliation(s)
- Ming-Kang Chang
- Musculoskeletal Disease Area, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Koromila T, Georgoulias P, Dailiana Z, Ntzani EE, Samara S, Chassanidis C, Aleporou-Marinou V, Kollia P. CER1 gene variations associated with bone mineral density, bone markers, and early menopause in postmenopausal women. Hum Genomics 2013; 7:21. [PMID: 24138842 PMCID: PMC3844872 DOI: 10.1186/1479-7364-7-21] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Accepted: 10/10/2013] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Osteoporosis has a multifactorial pathogenesis characterized by a combination of low bone mass and increased fragility. In our study, we focused on the effects of polymorphisms in CER1 and DKK1 genes, recently reported as important susceptibility genes for osteoporosis, on bone mineral density (BMD) and bone markers in osteoporotic women. Our objective was to evaluate the effect of CER1 and DKK1 variations in 607 postmenopausal women. The entire DKK1 gene sequence and five selected CER1 SNPs were amplified and resequenced to assess whether there is a correlation between these genes and BMD, early menopause, and bone turnover markers in osteoporotic patients. RESULTS Osteoporotic women seem to suffer menopause 2 years earlier than the control group. The entire DKK1 gene sequence analysis revealed six variations. There was no correlation between the six DKK1 variations and osteoporosis, in contrast to the five common CER1 variations that were significantly associated with BMD. Additionally, osteoporotic patients with rs3747532 and rs7022304 CER1 variations had significantly higher serum levels of parathyroid hormone and calcitonin and lower serum levels of osteocalcin and IGF-1. CONCLUSIONS No significant association between the studied DKK1 variations and osteoporosis was found, while CER1 variations seem to play a significant role in the determination of osteoporosis and a potential predictive role, combined with bone markers, in postmenopausal osteoporotic women.
Collapse
Affiliation(s)
- Theodora Koromila
- Laboratory of Human Genetics, Department of Genetics & Biotechnology, Faculty of Biology, National and Kapodistrian University of Athens, Athens 15701, Greece
| | - Panagiotis Georgoulias
- Department of Nuclear Medicine, University Hospital of Larissa, School of Medicine, University of Thessaly, Larissa 41110, Greece
| | - Zoe Dailiana
- Department of Orthopaedic Surgery, School of Medicine, University of Thessaly, Larissa 41110, Greece
| | - Evangelia E Ntzani
- Department of Hygiene and Epidemiology, University of Ioannina School of Medicine, Ioannina 45110, Greece
| | - Stavroula Samara
- Department of Orthopaedic Surgery, School of Medicine, University of Thessaly, Larissa 41110, Greece
| | - Chris Chassanidis
- Department of Orthopaedic Surgery, School of Medicine, University of Thessaly, Larissa 41110, Greece
| | - Vassiliki Aleporou-Marinou
- Laboratory of Human Genetics, Department of Genetics & Biotechnology, Faculty of Biology, National and Kapodistrian University of Athens, Athens 15701, Greece
| | - Panagoula Kollia
- Laboratory of Human Genetics, Department of Genetics & Biotechnology, Faculty of Biology, National and Kapodistrian University of Athens, Athens 15701, Greece
| |
Collapse
|
37
|
Abstract
Few investigators think of bone as an endocrine gland, even after the discovery that osteocytes produce circulating fibroblast growth factor 23 that targets the kidney and potentially other organs. In fact, until the last few years, osteocytes were perceived by many as passive, metabolically inactive cells. However, exciting recent discoveries have shown that osteocytes encased within mineralized bone matrix are actually multifunctional cells with many key regulatory roles in bone and mineral homeostasis. In addition to serving as endocrine cells and regulators of phosphate homeostasis, these cells control bone remodeling through regulation of both osteoclasts and osteoblasts, are mechanosensory cells that coordinate adaptive responses of the skeleton to mechanical loading, and also serve as a manager of the bone's reservoir of calcium. Osteocytes must survive for decades within the bone matrix, making them one of the longest lived cells in the body. Viability and survival are therefore extremely important to ensure optimal function of the osteocyte network. As we continue to search for new therapeutics, in addition to the osteoclast and the osteoblast, the osteocyte should be considered in new strategies to prevent and treat bone disease.
Collapse
Affiliation(s)
- Sarah L Dallas
- PhD, Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri-Kansas City, 650 East 25th Street, Kansas City, Missouri 64108.
| | | | | |
Collapse
|
38
|
Boudin E, Fijalkowski I, Piters E, Van Hul W. The role of extracellular modulators of canonical Wnt signaling in bone metabolism and diseases. Semin Arthritis Rheum 2013; 43:220-40. [DOI: 10.1016/j.semarthrit.2013.01.004] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Revised: 01/11/2013] [Accepted: 01/16/2013] [Indexed: 12/17/2022]
|
39
|
Wheater G, Elshahaly M, Tuck SP, Datta HK, van Laar JM. The clinical utility of bone marker measurements in osteoporosis. J Transl Med 2013; 11:201. [PMID: 23984630 PMCID: PMC3765909 DOI: 10.1186/1479-5876-11-201] [Citation(s) in RCA: 211] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Accepted: 08/21/2013] [Indexed: 02/07/2023] Open
Abstract
Osteoporosis is characterised by low bone mass and structural deterioration of bone tissue, resulting in increased fragility and susceptibility to fracture. Osteoporotic fractures are a significant cause of morbidity and mortality. Direct medical costs from such fractures in the UK are currently estimated at over two billion pounds per year, resulting in a substantial healthcare burden that is expected to rise exponentially due to increasing life expectancy. Currently bone mineral density is the WHO standard for diagnosis of osteoporosis, but poor sensitivity means that potential fractures will be missed if it is used alone. During the past decade considerable progress has been made in the identification and characterisation of specific biomarkers to aid the management of metabolic bone disease. Technological developments have greatly enhanced assay performance producing reliable, rapid, non-invasive cost effective assays with improved sensitivity and specificity. We now have a greater understanding of the need to regulate pre-analytical sample collection to minimise the effects of biological variation. However, bone turnover markers (BTMs) still have limited clinical utility. It is not routinely recommended to use BTMs to select those at risk of fractures, but baseline measurements of resorption markers are useful before commencement of anti-resorptive treatment and can be checked 3–6 months later to monitor response and adherence to treatment. Similarly, formation markers can be used to monitor bone forming agents. BTMs may also be useful when monitoring patients during treatment holidays and aid in the decision as to when therapy should be recommenced. Recent recommendations by the Bone Marker Standards Working Group propose to standardise research and include a specific marker of bone resorption (CTX) and bone formation (P1NP) in all future studies. It is hoped that improved research in turn will lead to optimised markers for the clinical management of osteoporosis and other bone diseases.
Collapse
Affiliation(s)
- Gillian Wheater
- Department of Biochemistry, The James Cook University Hospital, Middlesbrough TS4 3BW, UK.
| | | | | | | | | |
Collapse
|
40
|
Rossini M, Gatti D, Adami S. Involvement of WNT/β-catenin signaling in the treatment of osteoporosis. Calcif Tissue Int 2013; 93:121-32. [PMID: 23748710 DOI: 10.1007/s00223-013-9749-z] [Citation(s) in RCA: 179] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Accepted: 05/05/2013] [Indexed: 12/17/2022]
Abstract
Osteoblast differentiation is predominantly regulated by the WNT/β-catenin signaling (canonical WNT pathway), which, together with bone morphogenetic proteins, acts as the master regulator of osteogenesis. The recent characterization of the canonical WNT pathway in the regulation of bone modeling and remodeling provided important insights for our understanding of the pathophysiology of a number of conditions and of the mechanism of action of hormones or drugs with important effect on bone metabolism. This review is mainly focused on the growing therapeutic implications of these new findings. WNT/β-catenin signaling plays a key role in bone tissue by determining the differentiation of stem cells into mature osteoblasts rather than into chondrocytes and adipocytes. Its regulation is predominantly driven by the production of two WNT signaling antagonists: sclerostin (SOST) and Dickkopf-related protein 1 (DKK1). The most proximate regulator of SOST expression by osteocytes and its serum levels is bone mechanical load. SOST expression is increased with advancing age, by glucocorticoid treatment and during treatment with antiresorptive agents such as bisphosphonates and denosumab, while it is decreased by parathyroid hormone excess or administration of estrogens. Correlation between DKK1 serum levels and bone formation in various pathological conditions or during osteoporosis treatment has been reported. Inhibitors of the negative regulators of WNT/β-catenin signaling ("inhibiting the endogenous inhibitors") are potential candidates for the prevention and treatment of bone loss. Inactivating monoclonal antibodies against SOST appears to be the most attractive strategy because SOST is the only component of the WNT pathway expressed almost exclusively by osteocytes.
Collapse
Affiliation(s)
- Maurizio Rossini
- Department of Medicine, Rheumatology Section, Policlinico Borgo Roma, University of Verona, Piazzale Scuro, 10, 37134, Verona, Italy
| | | | | |
Collapse
|
41
|
Boudin E, Jennes K, de Freitas F, Tegay D, Mortier G, Van Hul W. No mutations in the serotonin related TPH1 and HTR1B genes in patients with monogenic sclerosing bone disorders. Bone 2013; 55:52-6. [PMID: 23563356 DOI: 10.1016/j.bone.2013.03.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Revised: 02/25/2013] [Accepted: 03/21/2013] [Indexed: 10/27/2022]
Abstract
Since the identification of LRP5 as the causative gene for the osteoporosis pseudoglioma syndrome (OPPG) as well as the high bone mass (HBM) phenotype, LRP5 and the Wnt/β-catenin signaling have been extensively studied for their role in the differentiation and proliferation of osteoblasts, in the apoptosis of osteoblasts and osteocytes and in the response of bone to mechanical loading. However, more recently the direct effect of LRP5 on osteoblasts and bone formation has been questioned. Gene expression studies showed that mice lacking lrp5 have increased expression of tph1, the rate limiting enzyme for the production of serotonin in the gut. Furthermore mice lacking either tph1 or htr1B, the receptor for serotonin on the osteoblasts, were reported to have an increased bone mass due to increased bone formation. This led to the still controversial hypothesis that LRP5 influences bone formation indirectly by regulating the expression of thp1 and as a consequence influencing the production of serotonin in the gut. Based on these data we decided to evaluate the role of TPH1 and HTR1B in the development of craniotubular hyperostoses, a group of monogenic sclerosing bone dysplasias. We screened the coding regions of both genes in 53 patients lacking a mutation in the known causative genes LRP5, LRP4 and SOST. We could not find disease-causing coding variants in neither of the tested genes and therefore, we cannot provide support for an important function of TPH1 and HTR1B in the pathogenesis of sclerosing bone dysplasias in our tested patient cohort.
Collapse
Affiliation(s)
- Eveline Boudin
- Department of Medical Genetics, University and University Hospital of Antwerp, Edegem, Belgium.
| | | | | | | | | | | |
Collapse
|
42
|
Burgers TA, Williams BO. Regulation of Wnt/β-catenin signaling within and from osteocytes. Bone 2013; 54:244-9. [PMID: 23470835 PMCID: PMC3652284 DOI: 10.1016/j.bone.2013.02.022] [Citation(s) in RCA: 101] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Accepted: 02/22/2013] [Indexed: 12/17/2022]
Abstract
Bone has long been known to be responsive to mechanical loading. For at least 25 years it has been known that osteocytes sense mechanical load, and because of their response to mechanical loading, osteocytes are believed to be the mechanosensory cell. The Wnt/β-catenin signaling pathway has been shown to be crucial in bone development. Mutations in LRP5 and SOST, which cause high bone mass, have increased interest in the Wnt pathway as a potential target for osteoporosis therapy and have helped link Wnt/β-catenin signaling to bone's response to mechanical loading. Because of its specificity to osteocytes, the Wnt inhibitor sclerostin is a target for anabolic bone therapies. The response of bone to mechanical loading is critically regulated by osteocytes secreting sclerostin, which binds to Lrp5.
Collapse
|
43
|
Jastrzebski S, Kalinowski J, Stolina M, Mirza F, Torreggiani E, Kalajzic I, Won HY, Lee SK, Lorenzo J. Changes in bone sclerostin levels in mice after ovariectomy vary independently of changes in serum sclerostin levels. J Bone Miner Res 2013; 28:618-26. [PMID: 23044658 PMCID: PMC3554870 DOI: 10.1002/jbmr.1773] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Revised: 09/10/2012] [Accepted: 09/14/2012] [Indexed: 01/09/2023]
Abstract
We examined the effects that ovariectomy had on sclerostin mRNA and protein levels in the bones of 8-week-old mice that were either sham-operated (SHAM) or ovariectomized (OVX) and then euthanized 3 or 6 weeks later. In this model, bone loss occurred between 3 and 5 weeks postsurgery. In calvaria, ovariectomy significantly decreased sclerostin mRNA levels at 6 weeks postsurgery (by 52%) but had no significant effect at 3 weeks. In contrast, sclerostin mRNA levels were significantly lower in OVX femurs at 3 weeks postsurgery (by 53%) but equal to that of SHAM at 6 weeks. The effects of ovariectomy on sclerostin were not a global response of osteocytes because they were not mimicked by changes in the mRNA levels for two other relatively osteocyte-specific genes: DMP-1 and FGF-23. Sclerostin protein decreased by 83% and 60%, at 3 and 6 weeks postsurgery in calvaria, respectively, and by 38% in lumbar vertebrae at 6 weeks. We also detected decreases in sclerostin by immunohistochemistry in cortical osteocytes of the humerus at 3 weeks postsurgery. However, there were no significant effects of ovariectomy on sclerostin protein in femurs or on serum sclerostin at 3 and 6 weeks postsurgery. These results demonstrate that ovariectomy has variable effects on sclerostin mRNA and protein in mice, which are dependent on the bones examined and the time after surgery. Given the discrepancy between the effects of ovariectomy on serum sclerostin levels and sclerostin mRNA and protein levels in various bones, these results argue that, at least in mice, serum sclerostin levels may not accurately reflect changes in the local production of sclerostin in bones. Additional studies are needed to evaluate whether this is also the case in humans.
Collapse
Affiliation(s)
- Sandra Jastrzebski
- The Department of Medicine, The University of Connecticut Health Center, Farmington, CT, USA
| | - Judith Kalinowski
- The Department of Medicine, The University of Connecticut Health Center, Farmington, CT, USA
| | | | - Faryal Mirza
- The Department of Medicine, The University of Connecticut Health Center, Farmington, CT, USA
| | - Elena Torreggiani
- The Department of Reconstructive Sciences, The University of Connecticut Health Center, Farmington, CT, USA
| | - Ivo Kalajzic
- The Department of Reconstructive Sciences, The University of Connecticut Health Center, Farmington, CT, USA
| | - Hee Yeon Won
- The Center on Aging, The University of Connecticut Health Center, Farmington, CT, USA
| | - Sun-Kyeong Lee
- The Center on Aging, The University of Connecticut Health Center, Farmington, CT, USA
| | - Joseph Lorenzo
- The Department of Medicine, The University of Connecticut Health Center, Farmington, CT, USA
| |
Collapse
|
44
|
Kim JM, Choi JS, Kim YH, Jin SH, Lim S, Jang HJ, Kim KT, Ryu SH, Suh PG. An activator of the cAMP/PKA/CREB pathway promotes osteogenesis from human mesenchymal stem cells. J Cell Physiol 2013; 228:617-26. [PMID: 22886506 DOI: 10.1002/jcp.24171] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2012] [Accepted: 07/31/2012] [Indexed: 02/06/2023]
Abstract
Mesenchymal stem cells (MSCs) are multipotent adult stem cells capable of differentiating along the osteoblast, adipocyte, and chondrocyte lineages. Regulation of MSCs differentiation may be a useful tool for regenerative medicine and cell-based therapy. The discovery of small molecule that activates the osteogenic differentiation of MSCs could aid in the development of a new anabolic drug for osteoporosis treatment. We identified CW008, a derivative of pyrazole-pyridine, that stimulates osteoblast differentiation of human MSCs and increases bone formation in ovariectomized mice. CW008 promotes osteogenesis by activating cAMP/PKA/CREB signaling pathway and inhibiting leptin secretion. These results suggest that CW008 is an agonist of cAMP/PKA/CREB pathway in osteogenic differentiation and that application of CW008 may be useful for the treatment of bone-related diseases and for the study of bone biology.
Collapse
Affiliation(s)
- Jung-Min Kim
- School of Nano-Bioscience and Chemical Engineering, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Ma D, Li Y, Hackfort B, Zhao Y, Xiao J, Swanson PC, Lappe J, Xiao P, Cullen D, Akhter M, Recker R, Xiao GG. Smoke-induced signal molecules in bone marrow cells from altered low-density lipoprotein receptor-related protein 5 mice. J Proteome Res 2012; 11:3548-60. [PMID: 22616666 DOI: 10.1021/pr2012158] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Mechanism underlying smoke-induced loss of bone mass is unknown. In this study, we hypothesized that protein signals induced by smoking in bone marrow may be associated with the loss of bone mass. Using a proteomics approach, we identified 38 proteins differentially expressed in bone marrow cells from low-density lipoprotein receptor-related protein 5 (Lrp5) mice exposed to cigarette smoking. Smoking effects on protein expression in bone marrow among three genotypes (Lrp5(+/+), Lrp5(G171V), and Lrp5(-/-)) varied. On the basis of the ratio of protein expression induced by smoking versus nonsmoking, smoke induced protein expression significantly in wild-type mice compared to the other two genotypes (Lrp5(G171V) and Lrp5(-/-)). These proteins include inhibitors of β-catenin and proteins associated with differentiation of osteoclasts. We observed that S100A8 and S100A9 were overexpressed in human smokers compared to nonsmokers, which confirmed the effect of smoking on the expression of two proteins in Lrp5 mice, suggesting the role of these proteins in bone remodeling. Smoke induced expression of S100A8 and S100A9 in a time-dependent fashion, which was opposite of the changes in the ratio of OPG/RANKL in bone marrow cells, suggesting that the high levels of S100A8 and S100A9 may be associated with smoke-induced bone loss by increasing bone resorption.
Collapse
Affiliation(s)
- Danjun Ma
- Genomics & Functional Proteomics Laboratories, Osteoporosis Research Center, Creighton University Medical Center, 601 N 30th Street, Suite 6730, Omaha, Nebraska 68131, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Chemical and genetic evidence for the involvement of Wnt antagonist Dickkopf2 in regulation of glucose metabolism. Proc Natl Acad Sci U S A 2012; 109:11402-7. [PMID: 22733757 DOI: 10.1073/pnas.1205015109] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Mutations in Wnt receptor LRP5/6 and polymorphism in Wnt-regulated transcription factor TCF7L2 are associated with dysregulation of glucose metabolism. However, it is not clear whether Wnt antagonist Dickkopf (Dkk) has a significant role in the regulation of glucose metabolism. Here, we identified small-molecule inhibitors of Wnt antagonist Dkk through molecular modeling, computation-based virtual screens, and biological assays. One of the Dkk inhibitors reduced basal blood-glucose concentrations and improved glucose tolerance in mice. This Dkk inhibitor appeared to act through DKK2 because the inhibitor exerted no additional effects on glucose metabolism in the Dkk2(-/-) mice. Our study of Dkk2(-/-) mice showed that DKK2 deficiency was associated with increased hepatic glycogen accumulation and decreased hepatic glucose output. DKK2 deficiency did not cause in increase in insulin production but resulted in increased Wnt activity and GLP1 production in the intestines. Given that the Dkk inhibitor improved glucose tolerance in a murine model of type 2 diabetes (db/db), we suggest that DKK2 may be a potential therapeutic target for treating type 2 diabetes.
Collapse
|
47
|
Abstract
Low-density lipoprotein receptor-related proteins 5 and 6 (LRP5/6) mediate canonical Wnt-β-catenin signaling by forming a complex with the co-receptor Frizzled, which binds to Wnt proteins. Dickkopf (DKK)-related proteins inhibit the Wnt signaling pathway by directly binding to the ectodomains of LRP5/6. However, the mechanism for DKK-mediated antagonism has not been fully understood as of yet. Crystal structures of the LRP6 ectodomain in complex with DKK1, along with mutagenesis studies, provide considerable insights into the molecular basis for DKK-mediated inhibition and Wnt signaling through LRP5/6.
Collapse
Affiliation(s)
- Ju Bao
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | | | | |
Collapse
|
48
|
Lee JS, Hur MW, Lee SK, Choi WI, Kwon YG, Yun CO. A novel sLRP6E1E2 inhibits canonical Wnt signaling, epithelial-to-mesenchymal transition, and induces mitochondria-dependent apoptosis in lung cancer. PLoS One 2012; 7:e36520. [PMID: 22606268 PMCID: PMC3351461 DOI: 10.1371/journal.pone.0036520] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2011] [Accepted: 04/03/2012] [Indexed: 01/05/2023] Open
Abstract
Aberrant activation of the Wnt pathway contributes to human cancer progression. Antagonists that interfere with Wnt ligand/receptor interactions can be useful in cancer treatments. In this study, we evaluated the therapeutic potential of a soluble Wnt receptor decoy in cancer gene therapy. We designed a Wnt antagonist sLRP6E1E2, and generated a replication-incompetent adenovirus (Ad), dE1-k35/sLRP6E1E2, and a replication-competent oncolytic Ad, RdB-k35/sLRP6E1E2, both expressing sLRP6E1E2. sLRP6E1E2 prevented Wnt-mediated stabilization of cytoplasmic β-catenin, decreased Wnt/β-catenin signaling and cell proliferation via the mitogen-activated protein kinase, and phosphatidylinositol 3-kinase pathways. sLRP6E1E2 induced apoptosis, cytochrome c release, and increased cleavage of PARP and caspase-3. sLRP6E1E2 suppressed growth of the human lung tumor xenograft, and reduced motility and invasion of cancer cells. In addition, sLRP6E1E2 upregulated expression of epithelial marker genes, while sLRP6E1E2 downregulated mesenchymal marker genes. Taken together, sLRP6E1E2, by inhibiting interaction between Wnt and its receptor, suppressed Wnt-induced cell proliferation and epithelial-to-mesenchymal transition.
Collapse
Affiliation(s)
- Jung-Sun Lee
- Brain Korea 21 Project for Medical Sciences, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Korea
- Institute for Cancer Research, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Korea
| | - Man-Wook Hur
- Department of Biochemistry and Molecular Biology, Yonsei University College of Medicine, Seoul, Korea
| | - Seong Kyung Lee
- Brain Korea 21 Project for Medical Sciences, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Korea
- Institute for Cancer Research, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Korea
| | - Won-Il Choi
- Brain Korea 21 Project for Medical Sciences, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Korea
- Department of Biochemistry and Molecular Biology, Yonsei University College of Medicine, Seoul, Korea
| | - Young-Guen Kwon
- Department of Biochemistry and Molecular Biology, College of Life Science and Biotechnology, Yonsei University, Seoul, Korea
| | - Chae-Ok Yun
- Department of Bioengineering, College of Engineering, Hanyang University, Seoul, Korea
- * E-mail:
| |
Collapse
|
49
|
Centrella M, McCarthy TL. Estrogen receptor dependent gene expression by osteoblasts - direct, indirect, circumspect, and speculative effects. Steroids 2012; 77:174-84. [PMID: 22093482 DOI: 10.1016/j.steroids.2011.10.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2011] [Accepted: 10/31/2011] [Indexed: 12/15/2022]
Abstract
Hormone activated estrogen receptors (ERs) have long been appreciated as potent mediators of gene expression in female reproductive tissues. These highly targeted responses likely evolved from more elemental roles in lower organisms, in agreement with their widespread effects in the cardiovascular, immunological, central nervous, and skeletal tissue systems. Still, despite intense investigation, the multiple and often perplexing roles of ERs retain significant attention. In the skeleton, this in part derives from apparently opposing effects by ER agonists on bone growth versus bone remodeling, and in younger versus older individuals. The complexity associated with ER activation can also derive from their interactions with other hormone and growth factor systems, and their direct and indirect effects on gene expression. We propose that part of this complexity results from essential interactions between ERs and other transcription factors, each with their own biochemical and molecular intricacies. Solving some of the many questions that persist may help to achieve better, or better directed, use of agents that can drive ER activation in focused and possibly tissue restricted ways.
Collapse
Affiliation(s)
- Michael Centrella
- Department of Surgery, Yale University School of Medicine, 310 Cedar Street, New Haven, CT 06520-8041, United States.
| | | |
Collapse
|
50
|
Iozzi S, Remelli R, Lelli B, Diamanti D, Pileri S, Bracci L, Roncarati R, Caricasole A, Bernocco S. Functional Characterization of a Small-Molecule Inhibitor of the DKK1-LRP6 Interaction. ISRN MOLECULAR BIOLOGY 2012; 2012:823875. [PMID: 27398238 PMCID: PMC4908242 DOI: 10.5402/2012/823875] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2011] [Accepted: 10/04/2011] [Indexed: 12/17/2022]
Abstract
Background. DKK1 antagonizes canonical Wnt signalling through high-affinity binding to LRP5/6, an essential component of the Wnt receptor complex responsible for mediating downstream canonical Wnt signalling. DKK1 overexpression is known for its pathological implications in osteoporosis, cancer, and neurodegeneration, suggesting the interaction with LRP5/6 as a potential therapeutic target. Results. We show that the small-molecule NCI8642 can efficiently displace DKK1 from LRP6 and block DKK1 inhibitory activity on canonical Wnt signalling, as shown in binding and cellular assays, respectively. We further characterize NCI8642 binding activity on LRP6 by Surface Plasmon Resonance (SPR) technology. Conclusions. This study demonstrates that the DKK1-LRP6 interaction can be the target of small molecules and unlocks the possibility of new therapeutic tools for diseases associated with DKK1 dysregulation.
Collapse
Affiliation(s)
- Sara Iozzi
- Pharmacology Department, Sienabiotech S.p.A, Strada del Petriccio e Belriguardo 35, 53100 Siena, Italy; Dipartimento di Biotecnologie, Università Degli Studi di Siena, Via Fiorentina 1, 53100 Siena, Italy
| | - Rosaria Remelli
- Pharmacology Department, Sienabiotech S.p.A, Strada del Petriccio e Belriguardo 35, 53100 Siena, Italy
| | - Barbara Lelli
- Dipartimento di Biotecnologie, Università Degli Studi di Siena, Via Fiorentina 1, 53100 Siena, Italy
| | - Daniela Diamanti
- Pharmacology Department, Sienabiotech S.p.A, Strada del Petriccio e Belriguardo 35, 53100 Siena, Italy
| | - Silvia Pileri
- Dipartimento di Biotecnologie, Università Degli Studi di Siena, Via Fiorentina 1, 53100 Siena, Italy
| | - Luisa Bracci
- Dipartimento di Biotecnologie, Università Degli Studi di Siena, Via Fiorentina 1, 53100 Siena, Italy
| | - Renza Roncarati
- Pharmacology Department, Sienabiotech S.p.A, Strada del Petriccio e Belriguardo 35, 53100 Siena, Italy; High-throughput Screening Unit, Center for Genomic Regulation, Dr. Aiguader, 88, 08003 Barcelona, Spain
| | - Andrea Caricasole
- Pharmacology Department, Sienabiotech S.p.A, Strada del Petriccio e Belriguardo 35, 53100 Siena, Italy
| | - Simonetta Bernocco
- Pharmacology Department, Sienabiotech S.p.A, Strada del Petriccio e Belriguardo 35, 53100 Siena, Italy
| |
Collapse
|