1
|
Lin ZR, Xia TL, Wang MY, Zhang LJ, Liu YM, Yuan BY, Zhou AJ, Yuan L, Zheng J, Bei JX, Lin DX, Zeng MS, Zhong Q. Inactivation of TACC2 epigenetically represses CDKN1A and confers sensitivity to CDK inhibitors. MED 2025; 6:100568. [PMID: 39793578 DOI: 10.1016/j.medj.2024.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 10/28/2024] [Accepted: 12/12/2024] [Indexed: 01/13/2025]
Abstract
BACKGROUND The genomic landscape of esophageal squamous cell carcinoma (ESCC) has been characterized extensively, but there remains a significant need for actionable targets and effective therapies. METHODS Here, we perform integrative analysis of genome-wide loss of heterozygosity and expression to identify potential tumor suppressor genes. The functions and mechanisms of one of the candidates, TACC2, are then explored both in vitro and in vivo, leading to the proposal of a therapeutic strategy based on the concept of synthetic lethality. FINDINGS We reveal that the inactivation of TACC2, due to copy number loss and promoter hypermethylation, is associated with poor prognosis in ESCC patients. TACC2 depletion enhances ESCC tumorigenesis and progression, as demonstrated in Tacc2 knockout mouse models and by increased growth abilities of ESCC cells. Mechanistically, TACC2 interacts with components of the NuRD and CoREST co-repressor complexes, including MTA1, MBD3, and HMG20B, in the cytoplasm. TACC2 loss leads to the translocation of these proteins into the nucleus, facilitating the formation of functional NuRD and CoREST complexes and the epigenetic repression of CDKN1A. This repression results in elevated CDK1/2 activation. Furthermore, TACC2-deficient cells and ESCC patient-derived organoids with reduced TACC2 expression show increased sensitivity to CDK inhibitors, particularly dinaciclib, which is currently in a phase III trial. Notably, the combination of TACC2-specific RNAi and dinaciclib in subcutaneous ESCC models significantly impairs tumor growth. CONCLUSIONS The findings suggest a strategy for cancer treatment based on synthetic lethality. FUNDING Funded by NKRDP, NSFC, GDIIET, GDBABRF, GDECISTP, and SYSUTP.
Collapse
Affiliation(s)
- Zhi-Rui Lin
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, P.R. China; Department of Pathology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510000, P.R. China
| | - Tian-Liang Xia
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, P.R. China
| | - Meng-Yao Wang
- Radiation Oncology Department, Guangzhou Institute of Cancer Research, the Affiliated Cancer Hospital, Guangzhou Medical University, Guangzhou 510245, P.R. China
| | - Lan-Jun Zhang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, P.R. China
| | - Yan-Min Liu
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, P.R. China
| | - Bo-Yu Yuan
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, P.R. China
| | - Ai-Jun Zhou
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, P.R. China
| | - Li Yuan
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, P.R. China
| | - Jian Zheng
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, P.R. China
| | - Jin-Xin Bei
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, P.R. China
| | - Dong-Xin Lin
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, P.R. China; Department of Etiology and Carcinogenesis, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P.R. China
| | - Mu-Sheng Zeng
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, P.R. China.
| | - Qian Zhong
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, P.R. China.
| |
Collapse
|
2
|
Ye Y, Wu G, Wang H, Duan M, Shang P, Chamba Y. The Role of the MYL4 Gene in Porcine Muscle Development and Its Molecular Regulatory Mechanisms. Animals (Basel) 2024; 14:1370. [PMID: 38731374 PMCID: PMC11083461 DOI: 10.3390/ani14091370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 04/24/2024] [Accepted: 04/30/2024] [Indexed: 05/13/2024] Open
Abstract
Muscle growth stands as a pivotal economic trait within pig production, governed by a complex interplay of multiple genes, each playing a role in its quantitative manifestation. Understanding the intricate regulatory mechanisms of porcine muscle development is crucial for enhancing both pork yield and quality. This study used the GSE99749 dataset downloaded from the GEO database, conducting a detailed analysis of the RNA-seq results from the longissimus dorsi muscle (LD) of Tibetan pigs (TP), Wujin pigs (WJ) and large white pigs (LW) at 60 days of gestation, representing diverse body sizes and growth rates. Comparative analyses between TPvsWJ and TPvsLW, along with differential gene expression (DEG) analysis, functional enrichment analysis, and protein-protein interaction (PPI) network analysis, revealed 1048 and 1157 significantly differentially expressed genes (p < 0.001) in TPvsWJ and TPvsLW, respectively. With stricter screening criteria, 37 DEGs were found to overlap between the 2 groups. PPI analysis identified MYL5, MYL4, and ACTC1 as the three core genes. This article focuses on exploring the MYL4 gene. Molecular-level experimental validation, through overexpression and interference of the MYL4 gene combined with EDU staining experiments, demonstrated that overexpression of MYL4 significantly promoted the proliferation of porcine skeletal muscle satellite cells (PSMSC), while interference with MYL4 inhibited their proliferation. Furthermore, by examining the effects of overexpressing and interfering with the MYL4 gene on the muscle hypertrophy marker Fst gene and the muscle degradation marker FOXO3 gene, the pivotal role of the MYL4 gene in promoting muscle growth and preventing muscle degradation was further confirmed. These findings offer a new perspective on the molecular mechanisms behind porcine muscle growth and development, furnishing valuable data and insights for muscle biology research.
Collapse
Affiliation(s)
- Yourong Ye
- College of Animal Science, Tibet Agriculture and Animal Husbandry College, Linzhi 860000, China; (Y.Y.); (G.W.); (H.W.); (M.D.)
- The Provincial and Ministerial Co-Founded Collaborative Innovation Center for R&D in Tibet Characteristic Agricultural and Animal Husbandry Resources, Linzhi 860000, China
- Key Laboratory for the Genetic Improvement and Reproduction Technology of the Xizang Swine, Linzhi 860000, China
| | - Guoxin Wu
- College of Animal Science, Tibet Agriculture and Animal Husbandry College, Linzhi 860000, China; (Y.Y.); (G.W.); (H.W.); (M.D.)
- The Provincial and Ministerial Co-Founded Collaborative Innovation Center for R&D in Tibet Characteristic Agricultural and Animal Husbandry Resources, Linzhi 860000, China
- Key Laboratory for the Genetic Improvement and Reproduction Technology of the Xizang Swine, Linzhi 860000, China
| | - Haoqi Wang
- College of Animal Science, Tibet Agriculture and Animal Husbandry College, Linzhi 860000, China; (Y.Y.); (G.W.); (H.W.); (M.D.)
- The Provincial and Ministerial Co-Founded Collaborative Innovation Center for R&D in Tibet Characteristic Agricultural and Animal Husbandry Resources, Linzhi 860000, China
- Key Laboratory for the Genetic Improvement and Reproduction Technology of the Xizang Swine, Linzhi 860000, China
| | - Mengqi Duan
- College of Animal Science, Tibet Agriculture and Animal Husbandry College, Linzhi 860000, China; (Y.Y.); (G.W.); (H.W.); (M.D.)
- The Provincial and Ministerial Co-Founded Collaborative Innovation Center for R&D in Tibet Characteristic Agricultural and Animal Husbandry Resources, Linzhi 860000, China
- Key Laboratory for the Genetic Improvement and Reproduction Technology of the Xizang Swine, Linzhi 860000, China
| | - Peng Shang
- College of Animal Science, Tibet Agriculture and Animal Husbandry College, Linzhi 860000, China; (Y.Y.); (G.W.); (H.W.); (M.D.)
- The Provincial and Ministerial Co-Founded Collaborative Innovation Center for R&D in Tibet Characteristic Agricultural and Animal Husbandry Resources, Linzhi 860000, China
- Key Laboratory for the Genetic Improvement and Reproduction Technology of the Xizang Swine, Linzhi 860000, China
| | - Yangzom Chamba
- College of Animal Science, Tibet Agriculture and Animal Husbandry College, Linzhi 860000, China; (Y.Y.); (G.W.); (H.W.); (M.D.)
- The Provincial and Ministerial Co-Founded Collaborative Innovation Center for R&D in Tibet Characteristic Agricultural and Animal Husbandry Resources, Linzhi 860000, China
- Key Laboratory for the Genetic Improvement and Reproduction Technology of the Xizang Swine, Linzhi 860000, China
| |
Collapse
|
3
|
Saatci O, Sahin O. TACC3: a multi-functional protein promoting cancer cell survival and aggressiveness. Cell Cycle 2023; 22:2637-2655. [PMID: 38197196 PMCID: PMC10936615 DOI: 10.1080/15384101.2024.2302243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/30/2023] [Accepted: 01/02/2024] [Indexed: 01/11/2024] Open
Abstract
TACC3 is the most oncogenic member of the transforming acidic coiled-coil domain-containing protein (TACC) family. It is one of the major recruitment factors of distinct multi-protein complexes. TACC3 is localized to spindles, centrosomes, and nucleus, and regulates key oncogenic processes, including cell proliferation, migration, invasion, and stemness. Recently, TACC3 inhibition has been identified as a vulnerability in highly aggressive cancers, such as cancers with centrosome amplification (CA). TACC3 has spatiotemporal functions throughout the cell cycle; therefore, targeting TACC3 causes cell death in mitosis and interphase in cancer cells with CA. In the clinics, TACC3 is highly expressed and associated with worse survival in multiple cancers. Furthermore, TACC3 is a part of one of the most common fusions of FGFR, FGFR3-TACC3 and is important for the oncogenicity of the fusion. A detailed understanding of the regulation of TACC3 expression, its key partners, and molecular functions in cancer cells is vital for uncovering the most vulnerable tumors and maximizing the therapeutic potential of targeting this highly oncogenic protein. In this review, we summarize the established and emerging interactors and spatiotemporal functions of TACC3 in cancer cells, discuss the potential of TACC3 as a biomarker in cancer, and therapeutic potential of its inhibition.
Collapse
Affiliation(s)
- Ozge Saatci
- Department of Biochemistry and Molecular Biology, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA
| | - Ozgur Sahin
- Department of Biochemistry and Molecular Biology, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA
| |
Collapse
|
4
|
Brick LA, Micalizzi L, Knopik VS, Palmer RHC. Characterization of DSM-IV Opioid Dependence Among Individuals of European Ancestry. J Stud Alcohol Drugs 2020. [PMID: 31250797 DOI: 10.15288/jsad.2019.80.319] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
OBJECTIVE The opioid epidemic in the United States has led to unprecedented increases in morbidity and mortality, posing a serious public health crisis. Although twin and family studies, as well as genome-wide association studies (GWAS), all identify significant genetic factors contributing to opioid dependence, no studies to date have estimated marker-based heritability estimates of opioid dependence. The goal of the current study was to use a large, genetically imputed, case/control sample of 4,064 participants (after quality control and imputation) with genome-wide data to estimate the unbiased heritability tagged by single nucleotide polymorphisms (SNPs). METHOD Study data were part of the Genome-wide Study of Heroin Dependence obtained via the Database for Genotypes and Phenotypes (dbGaP). Genomic-Relatedness-Matrix Restricted Maximum Likelihood with adjustment for minor allele frequency (MAF) and linkage disequilibrium (LD; GREML-LDMS) was used to determine the variation in opioid dependence attributable to common SNPs from imputed data. Mixed linear models were used in an exploratory GWAS to assess effects of single SNPs. RESULTS At least 45% of the variance in opioid dependence according to the Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition, was attributable to common SNPs, after stratifying to account for differences in MAF and LD across the genome. Most of the genetic variance was tagged by SNPs in the 1%-9% MAF range and in low LD with other SNPs in the region. Two markers in LOC101927293 survived multiple-testing correction (i.e., q value < .05). CONCLUSIONS Nearly half of the variation in opioid dependence can be attributed to common SNPs. Most of this variation is due to rare variants in low LD with other markers in the region.
Collapse
Affiliation(s)
- Leslie A Brick
- Department of Psychiatry and Human Behavior, Alpert Medical School, Brown University, Providence, Rhode Island
| | - Lauren Micalizzi
- Center for Alcohol and Addiction Studies, Department of Behavioral and Social Sciences, School of Public Health, Brown University, Providence, Rhode Island
| | - Valerie S Knopik
- Department of Human Development and Family Studies, Purdue University, West Lafayette, Indiana
| | - Rohan H C Palmer
- Behavioral Genetics of Addiction Laboratory, Department of Psychology, Emory University, Atlanta, Georgia
| |
Collapse
|
5
|
Mallampalli RK, Li X, Jang JH, Kaminski T, Hoji A, Coon T, Chandra D, Welty S, Teng Y, Sembrat J, Rojas M, Zhao Y, Lafyatis R, Zou C, Sciurba F, Sundd P, Lan L, Nyunoya T. Cigarette smoke exposure enhances transforming acidic coiled-coil-containing protein 2 turnover and thereby promotes emphysema. JCI Insight 2020; 5:125895. [PMID: 31996486 PMCID: PMC7098723 DOI: 10.1172/jci.insight.125895] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 12/18/2019] [Indexed: 01/09/2023] Open
Abstract
Our integrative genomic and functional analysis identified transforming acidic coiled-coil-containing protein 2 (TACC2) as a chronic obstructive pulmonary disease (COPD) candidate gene. Here, we found that smokers with COPD exhibit a marked decrease in lung TACC2 protein levels relative to smokers without COPD. Single cell RNA sequencing reveals that TACC2 is expressed primarily in lung epithelial cells in normal human lungs. Furthermore, suppression of TACC2 expression impairs the efficiency of homologous recombination repair and augments spontaneous and cigarette smoke extract-induced (CSE-induced) DNA damage and cytotoxicity in immortalized human bronchial epithelial cells. By contrast, enforced expression of TACC2 attenuates the CSE effects. We also found that CSE enhances TACC2 degradation via the ubiquitin-proteasome system mediated by the ubiquitin E3 ligase subunit, F box L7. Furthermore, cellularly expressed TACC2 proteins harboring naturally occurring mutations exhibited altered protein lifespan coupled with modified DNA damage repair and cytotoxic responses. CS triggers emphysematous changes accompanied by accumulated DNA damage, apoptosis of alveolar epithelia, and lung inflammation in Tacc2-/- compared with Tacc2+/+ mice. Our results suggest that CS destabilizes TACC2 protein in lung epithelia by the ubiquitin proteasome system, leading to subsequent DNA damage, cytotoxicity, and emphysema.
Collapse
Affiliation(s)
- Rama K. Mallampalli
- Department of Medicine, The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Xiuying Li
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Medical Specialty Service Line, Veterans Affairs Pittsburgh Healthcare System, Pittsburg, Pennsylvania, USA
| | - Jun-Ho Jang
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Tomasz Kaminski
- Vascular Medical Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Aki Hoji
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Tiffany Coon
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Divay Chandra
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Starr Welty
- Department of Microbiology & Molecular Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- UMPC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
| | - Yaqun Teng
- School of Medicine, Tsinghua University, No. 1 Tsinghua Yuan, Beijing, China
| | - John Sembrat
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Mauricio Rojas
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Yutong Zhao
- Department of Physiology and Cell Biology, The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Robert Lafyatis
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Chunbin Zou
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Medical Specialty Service Line, Veterans Affairs Pittsburgh Healthcare System, Pittsburg, Pennsylvania, USA
| | - Frank Sciurba
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Prithu Sundd
- Vascular Medical Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Li Lan
- Department of Radiation Oncology, Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, Massachusetts, USA
| | - Toru Nyunoya
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Medical Specialty Service Line, Veterans Affairs Pittsburgh Healthcare System, Pittsburg, Pennsylvania, USA
| |
Collapse
|
6
|
Tao S, Zhou T, Saelao P, Wang Y, Zhu Y, Li T, Zhou H, Wang J. Intrauterine Growth Restriction Alters the Genome-Wide DNA Methylation Profiles in Small Intestine, Liver and Longissimus Dorsi Muscle of Newborn Piglets. Curr Protein Pept Sci 2019; 20:713-726. [PMID: 30678618 DOI: 10.2174/1389203720666190124165243] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 12/30/2018] [Accepted: 01/01/2019] [Indexed: 01/20/2023]
Abstract
Intrauterine growth restriction (IUGR) remains a major problem in swine production since the associated low birth weight leads to high rates of pre-weaning morbidity and mortality, and permanent retardation of growth and development. The underlying regulatory mechanisms from the aspects of epigenetic modification has received widespread attention. Studies explore the changes in genome wide methylation in small intestine (SI), liver and longissimus dorsi muscle (LDM) between IUGR and normal birth weight (NBW) newborn piglets using a methylated DNA immunoprecipitation-sequencing (MeDIP-Seq) approach. The data demonstrated that methylated peaks were prominently distributed in distal intergenic regions and the quantities of peaks in IUGR piglets were more than that of NBW piglets. IUGR piglets had relatively high methylated level in promoters, introns and coding exons in all the three tissues. Through KEGG pathway analysis of differentially methylated genes found that 33, 54 and 5 differentially methylated genes in small intestine, liver and longissimus dorsi muscle between NBW and IUGR piglets, respectively, which are related to development and differentiation, carbohydrate and energy metabolism, lipid metabolism, protein turnover, immune response, detoxification, oxidative stress and apoptosis pathway. The objective of this review is to assess the impact of differentially methylation status on developmental delay, metabolic disorders and immune deficiency of IUGR piglets.
Collapse
Affiliation(s)
- Shiyu Tao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Tianjiao Zhou
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Perot Saelao
- Department of Animal Science, University of California, Davis, CA 95616, United States
| | - Ying Wang
- Department of Animal Science, University of California, Davis, CA 95616, United States
| | - Yuhua Zhu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Tiantian Li
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Huaijun Zhou
- Department of Animal Science, University of California, Davis, CA 95616, United States
| | - Junjun Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| |
Collapse
|
7
|
Shakya M, Zhou A, Dai D, Zhong Q, Zhou Z, Zhang Y, Li X, Bholee AK, Chen M. High expression of TACC2 in hepatocellular carcinoma is associated with poor prognosis. Cancer Biomark 2018; 22:611-619. [PMID: 29843208 PMCID: PMC6130418 DOI: 10.3233/cbm-170091] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND: Transforming acidic coiled-coil protein 2 (TACC2) is a member of TACC family proteins which is mainly involved in the stabilization of spindles and regulation of microtubule dynamics through interactions with molecules involved in centrosomes/microtubules. TACC2 is involved in tumorigenesis of variety of cancers but the clinical significance of TACC2 protein in hepatocellular carcinoma (HCC) is still unclear. OBJECTIVE: This study aims to investigate the expression of TACC2 in HCC and determine if clinical significance and prognostic relevance exists. METHODS: We performed quantitative PCR (qPCR) and western blot to examine TACC2 mRNA and protein expression in paired HCC tissues and matched adjacent non-cancerous tissues. Immunohistochemistry was performed in 106 postoperative HCC samples. RESULTS: There was higher expression of TACC2 protein and mRNA in HCC tissue. Immunohistochemistry analysis showed high expression of TACC2 in HCC tissue and was significantly associated with the capsular extension, tumor recurrence and shortened overall and disease free survival. The Cox regression analysis suggested that a high expression of TACC2 was an independent prognostic factor for HCC patients. CONCLUSION: This finding suggests that TACC2 may be a useful tool as a candidate biomarker to predict the recurrence and prognosis of HCC.
Collapse
Affiliation(s)
- Manjul Shakya
- Department of Hepatobiliary Surgery, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, China.,Department of Hepatobiliary Surgery, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, China
| | - Aijun Zhou
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Southern China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, China.,Department of Hepatobiliary Surgery, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, China
| | - Danian Dai
- Department of Breast Oncology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, China.,Department of Hepatobiliary Surgery, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, China
| | - Qian Zhong
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Southern China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, China
| | - Zhongguo Zhou
- Department of Hepatobiliary Surgery, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, China
| | - Yaojun Zhang
- Department of Hepatobiliary Surgery, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, China
| | - Xu Li
- Department of Hepatobiliary Surgery, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, China
| | - Ashwin Kumar Bholee
- Department of Hepatobiliary Surgery, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, China
| | - Minshan Chen
- Department of Hepatobiliary Surgery, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, China
| |
Collapse
|
8
|
Wakasugi H, Takahashi H, Niinuma T, Kitajima H, Oikawa R, Matsumoto N, Takeba Y, Otsubo T, Takagi M, Ariizumi Y, Suzuki M, Okuse C, Iwabuchi S, Nakano M, Akutsu N, Kang JH, Matsui T, Yamada N, Sasaki H, Yamamoto E, Kai M, Sasaki Y, Sasaki S, Tanaka Y, Yotsuyanagi H, Tsutsumi T, Yamamoto H, Tokino T, Nakase H, Suzuki H, Itoh F. Dysregulation of miRNA in chronic hepatitis B is associated with hepatocellular carcinoma risk after nucleos(t)ide analogue treatment. Cancer Lett 2018; 434:91-100. [PMID: 30026054 DOI: 10.1016/j.canlet.2018.07.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 06/04/2018] [Accepted: 07/12/2018] [Indexed: 02/07/2023]
Abstract
Hepatitis B virus (HBV) infection is a major cause of hepatocellular carcinoma (HCC). Nucleos(t)ide analogue (NA) therapy effectively reduces the incidence of HCC, but it does not completely prevent the disease. Here, we show that dysregulation of microRNAs (miRNAs) is involved in post-NA HCC development. We divided chronic hepatitis B (CHB) patients who received NA therapy into two groups: 1) those who did not develop HCC during the follow-up period after NA therapy (no-HCC group) and 2) those who did (HCC group). miRNA expression profiles were significantly altered in CHB tissues as compared to normal liver, and the HCC group showed greater alteration than the no-HCC group. NA treatment restored the miRNA expression profiles to near-normal in the no-HCC group, but it was less effective in the HCC group. A number of miRNAs implicated in HCC, including miR-101, miR-140, miR-152, miR-199a-3p, and let-7g, were downregulated in CHB. Moreover, we identified CDK7 and TACC2 as novel target genes of miR-199a-3p. Our results suggest that altered miRNA expression in CHB contributes to HCC development, and that improvement of miRNA expression after NA treatment is associated with reduced HCC risk.
Collapse
Affiliation(s)
- Hideki Wakasugi
- Department of Gastroenterology and Hepatology, Sapporo Medical University School of Medicine, Sapporo, Japan; Department of Molecular Biology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Hideaki Takahashi
- Department of Molecular Biology, Sapporo Medical University School of Medicine, Sapporo, Japan; Division of Gastroenterology and Hepatology, Department of Internal Medicine, St. Marianna University School of Medicine, Kawasaki, Japan; Division of Gastroenterology, Department of Internal Medicine, St. Marianna University School of Medicine Yokohama City Seibu Hospital, Yokohama, Japan
| | - Takeshi Niinuma
- Department of Molecular Biology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Hiroshi Kitajima
- Department of Molecular Biology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Ritsuko Oikawa
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, St. Marianna University School of Medicine, Kawasaki, Japan
| | - Naoki Matsumoto
- Department of Pharmacology, St. Marianna University School of Medicine, Kawasaki, Japan
| | - Yuko Takeba
- Department of Pharmacology, St. Marianna University School of Medicine, Kawasaki, Japan
| | - Takehito Otsubo
- Department of Gastroenterological and General Surgery, St. Marianna University School of Medicine, Kawasaki, Japan
| | - Masayuki Takagi
- Department of Pathology, St. Marianna University, Kawasaki, Japan
| | - Yasushi Ariizumi
- Department of Pathology, St. Marianna University, Kawasaki, Japan
| | - Michihiro Suzuki
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, St. Marianna University School of Medicine, Kawasaki, Japan; Division of Gastroenterology and Hepatology, Kawasaki Municipal Tama Hospital, Japan
| | - Chiaki Okuse
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, St. Marianna University School of Medicine, Kawasaki, Japan; Division of Gastroenterology and Hepatology, Kawasaki Municipal Tama Hospital, Japan
| | - Shogo Iwabuchi
- Center for Hepato-Biliary-Pancreatic and Digestive Disease, Shonan Fujisawa Tokushukai Hospital, Kanagawa, Japan
| | - Masayuki Nakano
- Department of Pathology, Shonan Fujisawa Tokushukai Hospital, Kanagawa, Japan
| | - Noriyuki Akutsu
- Department of Gastroenterology and Hepatology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Jong-Hon Kang
- Center for Gastroenterology, Teine Keijinkai Hospital, Sapporo, Japan
| | - Takeshi Matsui
- Center for Gastroenterology, Teine Keijinkai Hospital, Sapporo, Japan
| | - Norie Yamada
- Department of Internal Medicine, Center for Liver Diseases, Kiyokawa Hospital, Tokyo, Japan
| | - Hajime Sasaki
- Department of Gastroenterology and Hepatology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Eiichiro Yamamoto
- Department of Gastroenterology and Hepatology, Sapporo Medical University School of Medicine, Sapporo, Japan; Department of Molecular Biology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Masahiro Kai
- Department of Molecular Biology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Yasushi Sasaki
- Department of Medical Genome Sciences, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Shigeru Sasaki
- Department of Gastroenterology and Hepatology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Yasuhito Tanaka
- Department of Virology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan; Department Liver Unit, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Hiroshi Yotsuyanagi
- Division of Infectious Diseases and Applied Immunology, Research Hospital, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Takeya Tsutsumi
- Division of Infectious Diseases, Advanced Clinical Research Center, The Institute of Medical Science, The University of Tokyo, Japan
| | - Hiroyuki Yamamoto
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, St. Marianna University School of Medicine, Kawasaki, Japan
| | - Takashi Tokino
- Department of Medical Genome Sciences, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Hiroshi Nakase
- Department of Gastroenterology and Hepatology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Hiromu Suzuki
- Department of Molecular Biology, Sapporo Medical University School of Medicine, Sapporo, Japan.
| | - Fumio Itoh
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, St. Marianna University School of Medicine, Kawasaki, Japan
| |
Collapse
|
9
|
Rutherford EL, Carandang L, Ebbert PT, Mills AN, Bowers JT, Lowery LA. Xenopus TACC2 is a microtubule plus end-tracking protein that can promote microtubule polymerization during embryonic development. Mol Biol Cell 2016; 27:3013-3020. [PMID: 27559128 PMCID: PMC5063610 DOI: 10.1091/mbc.e16-03-0198] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 08/17/2016] [Indexed: 11/23/2022] Open
Abstract
Xenopus TACC2 is a microtubule plus end–tracking protein that localizes in front of EB1 and overlaps with TACC1 and TACC3 in cultured embryonic mesenchymal cells and neuronal growth cones. TACC2 OE can promote increased microtubule polymerization in mesenchymal cells but not growth cones, suggesting cell-type specificity to its function. Microtubule dynamics is regulated by plus end–tracking proteins (+TIPs), which localize to the plus ends of microtubules (MTs). We previously showed that TACC1 and TACC3, members of the transforming acidic coiled-coil protein family, can act as +TIPs to regulate MT dynamics in Xenopus laevis. Here we characterize TACC2 as a +TIP that localizes to MT plus ends in front of EB1 and overlapping with TACC1 and TACC3 in multiple embryonic cell types. We also show that TACC2 can promote MT polymerization in mesenchymal cells but not neuronal growth cones, thus displaying cell-type specificity. Structure–function analysis demonstrates that the C-terminal region of TACC2 is both necessary and sufficient to localize to MT plus ends and promote increased rates of MT polymerization, whereas the N-terminal region cannot bind to MT plus ends but can act in a dominant-negative capacity to reduce polymerization rates. Finally, we analyze mRNA expression patterns in Xenopus embryos for each TACC protein and observe neural enrichment of TACC3 expression compared with TACC1 and TACC2, which are also expressed in mesodermal tissues, including somites. Overall these data provide a novel assessment of all three TACC proteins as a family of +TIPs by highlighting the unique attributes of each, as well as their collective characteristics.
Collapse
|
10
|
Zhou DS, Wang HB, Zhou ZG, Zhang YJ, Zhong Q, Xu L, Huang YH, Yeung SC, Chen MS, Zeng MS. TACC3 promotes stemness and is a potential therapeutic target in hepatocellular carcinoma. Oncotarget 2016. [PMID: 26219398 PMCID: PMC4695177 DOI: 10.18632/oncotarget.4643] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Transforming acidic coiled-coil protein 3 (TACC3) is essential for cell mitosis and transcriptional functions. In the present study, we first demonstrated that both TACC3 protein and mRNA levels were elevated in HCC tissue samples compared with non-cancerous tissue biopsies according to western blot analyses, immunohistochemistry (IHC) and quantitative real-time PCR (qRT-PCR) assays. Moreover, high TACC3 expression was positively correlated with poor overall survival (OS) and disease-free survival (DFS) (p < 0.001). Using HCC cell lines, we then demonstrated that either TACC3 knockdown or treatment with the potential TACC3 inhibitor KHS101 suppressed cell growth and sphere formation as well as the expression of stem cell transcription factors, including Bmi1, c-Myc and Nanog. Silencing TACC3 may suppress the Wnt/β-catenin and PI3K/AKT signaling pathways, which regulate cancer stem cell-like characteristics. Taken together, these data suggest that TACC3 is enriched in HCC and that TACC3 down-regulation inhibits the proliferation, clonogenicity, and cancer stem cell-like phenotype of HCC cells. KHS101, a TACC3 inhibitor, may serve as a novel therapeutic agent for HCC patients with tumors characterized by high TACC3 expression.
Collapse
Affiliation(s)
- Dong-Sheng Zhou
- Sun Yat-sen University Cancer Center, State Key Laboratory of Southern China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, P. R. China.,Shandong Provincial Qianfoshan Hospital, Jinan, P. R. China
| | - Hong-Bo Wang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Southern China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, P. R. China.,Guangdong Provincial Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, P. R. China
| | - Zhong-Guo Zhou
- Sun Yat-sen University Cancer Center, State Key Laboratory of Southern China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, P. R. China
| | - Yao-Jun Zhang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Southern China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, P. R. China
| | - Qian Zhong
- Sun Yat-sen University Cancer Center, State Key Laboratory of Southern China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, P. R. China
| | - Li Xu
- Sun Yat-sen University Cancer Center, State Key Laboratory of Southern China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, P. R. China
| | - Yue-Hua Huang
- Guangdong Provincial Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, P. R. China
| | - Sai-Ching Yeung
- Department of General Internal Medicine, Ambulatory Treatment and Emergency Care, University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Department of Endocrine Neoplasia and Hormonal Disorders, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Min-Shan Chen
- Sun Yat-sen University Cancer Center, State Key Laboratory of Southern China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, P. R. China
| | - Mu-Sheng Zeng
- Sun Yat-sen University Cancer Center, State Key Laboratory of Southern China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, P. R. China
| |
Collapse
|
11
|
Nelson KN, Meyer AN, Siari A, Campos AR, Motamedchaboki K, Donoghue DJ. Oncogenic Gene Fusion FGFR3-TACC3 Is Regulated by Tyrosine Phosphorylation. Mol Cancer Res 2016; 14:458-69. [DOI: 10.1158/1541-7786.mcr-15-0497] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 02/03/2016] [Indexed: 11/16/2022]
|
12
|
Whole exome sequencing identifies novel candidate genes that modify chronic obstructive pulmonary disease susceptibility. Hum Genomics 2016; 10:1. [PMID: 26744305 PMCID: PMC4705629 DOI: 10.1186/s40246-015-0058-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 12/30/2015] [Indexed: 12/30/2022] Open
Abstract
Background Chronic obstructive pulmonary disease (COPD) is characterized by an irreversible airflow limitation in response to inhalation of noxious stimuli, such as cigarette smoke. However, only 15–20 % smokers manifest COPD, suggesting a role for genetic predisposition. Although genome-wide association studies have identified common genetic variants that are associated with susceptibility to COPD, effect sizes of the identified variants are modest, as is the total heritability accounted for by these variants. In this study, an extreme phenotype exome sequencing study was combined with in vitro modeling to identify COPD candidate genes. Results We performed whole exome sequencing of 62 highly susceptible smokers and 30 exceptionally resistant smokers to identify rare variants that may contribute to disease risk or resistance to COPD. This was a cross-sectional case-control study without therapeutic intervention or longitudinal follow-up information. We identified candidate genes based on rare variant analyses and evaluated exonic variants to pinpoint individual genes whose function was computationally established to be significantly different between susceptible and resistant smokers. Top scoring candidate genes from these analyses were further filtered by requiring that each gene be expressed in human bronchial epithelial cells (HBECs). A total of 81 candidate genes were thus selected for in vitro functional testing in cigarette smoke extract (CSE)-exposed HBECs. Using small interfering RNA (siRNA)-mediated gene silencing experiments, we showed that silencing of several candidate genes augmented CSE-induced cytotoxicity in vitro. Conclusions Our integrative analysis through both genetic and functional approaches identified two candidate genes (TACC2 and MYO1E) that augment cigarette smoke (CS)-induced cytotoxicity and, potentially, COPD susceptibility. Electronic supplementary material The online version of this article (doi:10.1186/s40246-015-0058-7) contains supplementary material, which is available to authorized users.
Collapse
|
13
|
Kim BH, Kim HN, Roh SJ, Lee MK, Yang S, Lee SK, Sung YA, Chung HW, Cho NH, Shin C, Sung J, Kim HL. GWA meta-analysis of personality in Korean cohorts. J Hum Genet 2015; 60:455-60. [PMID: 25994864 DOI: 10.1038/jhg.2015.52] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Revised: 03/06/2015] [Accepted: 04/08/2015] [Indexed: 12/11/2022]
Abstract
Personality is a determinant of behavior and lifestyle that is associated with health and human diseases. Despite the heritability of personality traits is well established, the understanding of the genetic contribution to personality trait variation is extremely limited. To identify genetic variants associated with each of the five dimensions of personality, we performed a genome-wide association (GWA) meta-analysis of three cohorts, followed by comparison of a family cohort. Personality traits were measured with the Revised NEO Personality Inventory for the five-factor model (FFM) of personality. We investigated the top five single-nucleotide polymorphisms (SNPs) for each trait, and revealed the most highly association with neuroticism and TACC2 (rs1010657, P=8.79 × 10(-7)), extraversion and PTPN12 (rs12537271, P=1.47 × 10(-7)), openness and IMPAD1 (rs16921695, P=5 × 10(-8)), agreeableness and RPS29 (rs8015351, P=1.27 × 10(-6)) and conscientiousness and LMO4 (rs912765, P=2.91 × 10(-6)). It had no SNP reached the GWA study threshold (P<5 × 10(-8)). When expanded the SNPs up to top 100, the correlation of PTPRD (rs1029089) and agreeableness was confirmed in Healthy Twin cohort with other 13 SNPs. This GWA meta-analysis on FFM personality traits is meaningful as it was the first on a non-Caucasian population targeted to FFM of personality traits.
Collapse
Affiliation(s)
- Bo-Hye Kim
- Department of Biochemistry, School of Medicine, Ewha Womans University, Seoul, Republic of Korea
| | - Han-Na Kim
- Department of Biochemistry, School of Medicine, Ewha Womans University, Seoul, Republic of Korea
| | - Seung-Ju Roh
- Department of Biochemistry, School of Medicine, Ewha Womans University, Seoul, Republic of Korea
| | - Mi Kyeong Lee
- Complex Disease and Genetic Epidemiology Branch, Department of Epidemiology and Institute of Environment and Health, School of Public Health, Seoul National University, Seoul, Republic of Korea
| | - Sarah Yang
- Complex Disease and Genetic Epidemiology Branch, Department of Epidemiology and Institute of Environment and Health, School of Public Health, Seoul National University, Seoul, Republic of Korea
| | - Seung Ku Lee
- Institute of Human Genomic Study, Korea University Ansan Hospital, Ansan, Republic of Korea
| | - Yeon-Ah Sung
- Department of Internal Medicine, School of Medicine, Ewha Womans University, Seoul, Republic of Korea
| | - Hye Won Chung
- Department of Obstetrics and Gynecology, School of Medicine, Ewha Womans University, Seoul, Republic of Korea
| | - Nam H Cho
- Department of Preventive Medicine, School of Medicine, Ajou University, Suwon, Republic of Korea
| | - Chol Shin
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Korea University Hospital, Ansan, Republic of Korea
| | - Joohon Sung
- Complex Disease and Genetic Epidemiology Branch, Department of Epidemiology and Institute of Environment and Health, School of Public Health, Seoul National University, Seoul, Republic of Korea
| | - Hyung-Lae Kim
- Department of Biochemistry, School of Medicine, Ewha Womans University, Seoul, Republic of Korea
| |
Collapse
|
14
|
Purrington KS, Slettedahl S, Bolla MK, Michailidou K, Czene K, Nevanlinna H, Bojesen SE, Andrulis IL, Cox A, Hall P, Carpenter J, Yannoukakos D, Haiman CA, Fasching PA, Mannermaa A, Winqvist R, Brenner H, Lindblom A, Chenevix-Trench G, Benitez J, Swerdlow A, Kristensen V, Guénel P, Meindl A, Darabi H, Eriksson M, Fagerholm R, Aittomäki K, Blomqvist C, Nordestgaard BG, Nielsen SF, Flyger H, Wang X, Olswold C, Olson JE, Mulligan AM, Knight JA, Tchatchou S, Reed MWR, Cross SS, Liu J, Li J, Humphreys K, Clarke C, Scott R, ABCTB Investigators, Fostira F, Fountzilas G, Konstantopoulou I, Henderson BE, Schumacher F, Le Marchand L, Ekici AB, Hartmann A, Beckmann MW, Hartikainen JM, Kosma VM, Kataja V, Jukkola-Vuorinen A, Pylkäs K, Kauppila S, Dieffenbach AK, Stegmaier C, Arndt V, Margolin S, Australian Ovarian Cancer Study Group, kConFab Investigators, Balleine R, Arias Perez JI, Pilar Zamora M, Menéndez P, Ashworth A, Jones M, Orr N, Arveux P, Kerbrat P, Truong T, Bugert P, Toland AE, Ambrosone CB, Labrèche F, Goldberg MS, Dumont M, Ziogas A, Lee E, Dite GS, Apicella C, Southey MC, Long J, Shrubsole M, Deming-Halverson S, Ficarazzi F, Barile M, Peterlongo P, Durda K, Jaworska-Bieniek K, Tollenaar RAEM, Seynaeve C, GENICA Network, Brüning T, et alPurrington KS, Slettedahl S, Bolla MK, Michailidou K, Czene K, Nevanlinna H, Bojesen SE, Andrulis IL, Cox A, Hall P, Carpenter J, Yannoukakos D, Haiman CA, Fasching PA, Mannermaa A, Winqvist R, Brenner H, Lindblom A, Chenevix-Trench G, Benitez J, Swerdlow A, Kristensen V, Guénel P, Meindl A, Darabi H, Eriksson M, Fagerholm R, Aittomäki K, Blomqvist C, Nordestgaard BG, Nielsen SF, Flyger H, Wang X, Olswold C, Olson JE, Mulligan AM, Knight JA, Tchatchou S, Reed MWR, Cross SS, Liu J, Li J, Humphreys K, Clarke C, Scott R, ABCTB Investigators, Fostira F, Fountzilas G, Konstantopoulou I, Henderson BE, Schumacher F, Le Marchand L, Ekici AB, Hartmann A, Beckmann MW, Hartikainen JM, Kosma VM, Kataja V, Jukkola-Vuorinen A, Pylkäs K, Kauppila S, Dieffenbach AK, Stegmaier C, Arndt V, Margolin S, Australian Ovarian Cancer Study Group, kConFab Investigators, Balleine R, Arias Perez JI, Pilar Zamora M, Menéndez P, Ashworth A, Jones M, Orr N, Arveux P, Kerbrat P, Truong T, Bugert P, Toland AE, Ambrosone CB, Labrèche F, Goldberg MS, Dumont M, Ziogas A, Lee E, Dite GS, Apicella C, Southey MC, Long J, Shrubsole M, Deming-Halverson S, Ficarazzi F, Barile M, Peterlongo P, Durda K, Jaworska-Bieniek K, Tollenaar RAEM, Seynaeve C, GENICA Network, Brüning T, Ko YD, Van Deurzen CHM, Martens JWM, Kriege M, Figueroa JD, Chanock SJ, Lissowska J, Tomlinson I, Kerin MJ, Miller N, Schneeweiss A, Tapper WJ, Gerty SM, Durcan L, Mclean C, Milne RL, Baglietto L, dos Santos Silva I, Fletcher O, Johnson N, Van'T Veer LJ, Cornelissen S, Försti A, Torres D, Rüdiger T, Rudolph A, Flesch-Janys D, Nickels S, Weltens C, Floris G, Moisse M, Dennis J, Wang Q, Dunning AM, Shah M, Brown J, Simard J, Anton-Culver H, Neuhausen SL, Hopper JL, Bogdanova N, Dörk T, Zheng W, Radice P, Jakubowska A, Lubinski J, Devillee P, Brauch H, Hooning M, García-Closas M, Sawyer E, Burwinkel B, Marmee F, Eccles DM, Giles GG, Peto J, Schmidt M, Broeks A, Hamann U, Chang-Claude J, Lambrechts D, Pharoah PDP, Easton D, Pankratz VS, Slager S, Vachon CM, Couch FJ. Genetic variation in mitotic regulatory pathway genes is associated with breast tumor grade. Hum Mol Genet 2014; 23:6034-46. [PMID: 24927736 PMCID: PMC4204763 DOI: 10.1093/hmg/ddu300] [Show More Authors] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Revised: 05/20/2014] [Accepted: 06/10/2014] [Indexed: 01/01/2023] Open
Abstract
Mitotic index is an important component of histologic grade and has an etiologic role in breast tumorigenesis. Several small candidate gene studies have reported associations between variation in mitotic genes and breast cancer risk. We measured associations between 2156 single nucleotide polymorphisms (SNPs) from 194 mitotic genes and breast cancer risk, overall and by histologic grade, in the Breast Cancer Association Consortium (BCAC) iCOGS study (n = 39 067 cases; n = 42 106 controls). SNPs in TACC2 [rs17550038: odds ratio (OR) = 1.24, 95% confidence interval (CI) 1.16-1.33, P = 4.2 × 10(-10)) and EIF3H (rs799890: OR = 1.07, 95% CI 1.04-1.11, P = 8.7 × 10(-6)) were significantly associated with risk of low-grade breast cancer. The TACC2 signal was retained (rs17550038: OR = 1.15, 95% CI 1.07-1.23, P = 7.9 × 10(-5)) after adjustment for breast cancer risk SNPs in the nearby FGFR2 gene, suggesting that TACC2 is a novel, independent genome-wide significant genetic risk locus for low-grade breast cancer. While no SNPs were individually associated with high-grade disease, a pathway-level gene set analysis showed that variation across the 194 mitotic genes was associated with high-grade breast cancer risk (P = 2.1 × 10(-3)). These observations will provide insight into the contribution of mitotic defects to histological grade and the etiology of breast cancer.
Collapse
Affiliation(s)
- Kristen S Purrington
- Department of Health Sciences Research, Department of Oncology, Wayne State University School of Medicine and Karmanos Cancer Institute, Detroit, USA
| | | | - Manjeet K Bolla
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care
| | - Kyriaki Michailidou
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care
| | - Kamila Czene
- Department of Medical Epidemiology and Biostatistics
| | | | - Stig E Bojesen
- Copenhagen General Population Study, Department of Clinical Biochemistry, Herlev Hospital, Copenhagen University Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Irene L Andrulis
- Ontario Cancer Genetics Network, Department of Molecular Genetics
| | - Angela Cox
- CRUK/YCR Sheffield Cancer Research Centre, Department of Oncology
| | - Per Hall
- Department of Medical Epidemiology and Biostatistics
| | | | - Drakoulis Yannoukakos
- Molecular Diagnostics Laboratory INRASTES, National Centre for Scientific Research 'Demokritos', Athens, Greece
| | - Christopher A Haiman
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, USA
| | - Peter A Fasching
- University Breast Center Franconia, Department of Gynecology and Obstetrics, David Geffen School of Medicine, Department of Medicine Division of Hematology and Oncology, University of California at Los Angeles, Los Angeles, USA
| | - Arto Mannermaa
- School of Medicine, Institute of Clinical Medicine, Oncology, Cancer Center of Eastern Finland, University of Eastern Finland, Kuopio, Finland, Imaging Center, Department of Clinical Pathology
| | - Robert Winqvist
- Laboratory of Cancer Genetics and Tumor Biology, Department of Clinical Chemistry and Biocenter Oulu, University of Oulu, Oulu University Hospital/NordLab Oulu, Oulu, Finland
| | - Hermann Brenner
- Division of Clinical Epidemiology and Aging Research, German Cancer Consortium (DKTK), Heidelberg, Germany
| | | | | | - Javier Benitez
- Human Genetics Group, Human Cancer Genetics Program, Spanish National Cancer Research Centre (CNIO), Madrid, Spain, Centro de Investigación en Red de Enfermedades Raras (CIBERER), Valencia, Spain
| | - Anthony Swerdlow
- Division of Genetics and Epidemiology, Division of Breast Cancer Research, Institute of Cancer Research, Sutton, UK
| | - Vessela Kristensen
- Department of Genetics, Institute for Cancer Research, Oslo University Hospital, Radiumhospitalet, Oslo, Norway, Faculty of Medicine (Faculty Division Ahus), University of Oslo (UiO), Oslo, Norway
| | - Pascal Guénel
- Inserm (National Institute of Health and Medical Research), CESP (Center for Research in Epidemiology and Population Health), U1018, Environmental Epidemiology of Cancer, Villejuif, France, University Paris-Sud, UMRS 1018, Villejuif, France
| | - Alfons Meindl
- Division of Gynaecology and Obstetrics, Technische Universität München, Munich, Germany
| | - Hatef Darabi
- Department of Medical Epidemiology and Biostatistics
| | | | - Rainer Fagerholm
- Department of Obstetrics and Gynecology, Oncology and Clinical Genetics
| | | | - Carl Blomqvist
- Department of Oncology, University of Helsinki and Helsinki University Central Hospital, Helsinki, Finland
| | - Børge G Nordestgaard
- Department of Clinical Biochemistry, Herlev Hospital, Copenhagen University Hospital, University of Copenhagen, Copenhagen, Denmark
| | | | - Henrik Flyger
- Department of Breast Surgery, Herlev Hospital, Copenhagen University Hospital, Copenhagen, Denmark
| | - Xianshu Wang
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, USA
| | | | | | - Anna Marie Mulligan
- Department of Laboratory Medicine and Pathobiology, Laboratory Medicine Program, University Health Network, Toronto, Canada
| | - Julia A Knight
- Prosserman Centre for Health Research, Division of Epidemiology, Dalla Lana School of Public Health, University of Toronto, Toronto, Canada
| | - Sandrine Tchatchou
- Lunenfeld-Tanenbaum Research Institute of Mount Sinai Hospital, Toronto, Canada
| | - Malcolm W R Reed
- CRUK/YCR Sheffield Cancer Research Centre, Department of Oncology
| | - Simon S Cross
- Academic Unit of Pathology, Department of Neuroscience, University of Sheffield, Sheffield, UK
| | - Jianjun Liu
- Human Genetics Division, Genome Institute of Singapore, Singapore, Singapore
| | - Jingmei Li
- Human Genetics Division, Genome Institute of Singapore, Singapore, Singapore
| | | | - Christine Clarke
- Westmead Institute for Cancer Research, Sydney Medical School Westmead, University of Sydney at the Westmead Millennium Institute, Westmead, Australia
| | - Rodney Scott
- Division of Genetics, Hunter Area Pathology Service and University of Newcastle, Newcastle, Australia
| | | | - Florentia Fostira
- Molecular Diagnostics Laboratory INRASTES, National Centre for Scientific Research 'Demokritos', Athens, Greece
| | - George Fountzilas
- Department of Medical Oncology, "Papageorgiou" Hospital, Aristotle University of Thessaloniki School of Medicine, Thessaloniki, Greece
| | - Irene Konstantopoulou
- Molecular Diagnostics Laboratory INRASTES, National Centre for Scientific Research 'Demokritos', Athens, Greece
| | - Brian E Henderson
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, USA
| | - Fredrick Schumacher
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, USA
| | - Loic Le Marchand
- Epidemiology Program, Cancer Research Center, University of Hawaii, Honolulu, USA
| | | | - Arndt Hartmann
- Institute of Pathology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Comprehensive Cancer Center Erlangen-EMN, Erlangen, Germany
| | | | - Jaana M Hartikainen
- School of Medicine, Institute of Clinical Medicine, Oncology, Cancer Center of Eastern Finland, University of Eastern Finland, Kuopio, Finland, Imaging Center, Department of Clinical Pathology
| | - Veli-Matti Kosma
- School of Medicine, Institute of Clinical Medicine, Oncology, Cancer Center of Eastern Finland, University of Eastern Finland, Kuopio, Finland, Imaging Center, Department of Clinical Pathology
| | - Vesa Kataja
- School of Medicine, Institute of Clinical Medicine, Oncology, Cancer Center of Eastern Finland, University of Eastern Finland, Kuopio, Finland, Cancer Center, Kuopio University Hospital, Kuopio, Finland
| | | | - Katri Pylkäs
- Laboratory of Cancer Genetics and Tumor Biology, Department of Clinical Chemistry and Biocenter Oulu, University of Oulu, Oulu University Hospital/NordLab Oulu, Oulu, Finland
| | - Saila Kauppila
- Department of Pathology, Oulu University Hospital, University of Oulu, Oulu, Finland
| | - Aida Karina Dieffenbach
- Division of Clinical Epidemiology and Aging Research, German Cancer Consortium (DKTK), Heidelberg, Germany
| | | | - Volker Arndt
- Division of Clinical Epidemiology and Aging Research
| | - Sara Margolin
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | | | | | - Rosemary Balleine
- Westmead Millenium Institute for Medical Research, Sydney, Australia
| | | | - M Pilar Zamora
- Servicio de Oncología Médica, Hospital Universitario La Paz, Madrid, Spain
| | | | - Alan Ashworth
- Breakthrough Breast Cancer Research Centre and Division of Breast Cancer Research
| | | | - Nick Orr
- Breakthrough Breast Cancer Research Centre and Division of Breast Cancer Research
| | - Patrick Arveux
- Center Georges-Francois Leclerc, Registry of Gynecologic Tumors, Dijon, France
| | - Pierre Kerbrat
- Centre Eugène Marquis, Department of Medical Oncology, Rennes, France
| | - Thérèse Truong
- Inserm (National Institute of Health and Medical Research), CESP (Center for Research in Epidemiology and Population Health), U1018, Environmental Epidemiology of Cancer, Villejuif, France, University Paris-Sud, UMRS 1018, Villejuif, France
| | - Peter Bugert
- German Red Cross Blood Service of Baden-Württemberg-Hessen, Mannheim, Germany, Medical Faculty Mannheim, Institute of Transfusion Medicine and Immunology, Heidelberg University, Heidelberg, Germany
| | - Amanda E Toland
- Department of Molecular Virology, Immunology and Medical Genetics, Comprehensive Cancer Center, The Ohio State University, Columbus, USA
| | | | - France Labrèche
- Department of Environmental & Occupational Health and of Social & Preventive Medicine, School of Public Health, Université de Montréal, Montreal, Canada
| | - Mark S Goldberg
- Department of Medicine, McGill University, Montreal, Canada, Division of Clinical Epidemiology, McGill University Health Centre, Royal Victoria Hospital, Montreal, Canada
| | - Martine Dumont
- Cancer Genomics Laboratory, Centre Hospitalier Universitaire de Québec Research Center and Laval University, Quebec City, Canada
| | - Argyrios Ziogas
- Department of Epidemiology, University of California Irvine, Irvine, USA
| | - Eunjung Lee
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, USA
| | - Gillian S Dite
- Centre for Molecular, Environmental, Genetic and Analytic Epidemiology, Melbourne School of Population Health
| | - Carmel Apicella
- Centre for Molecular, Environmental, Genetic and Analytic Epidemiology, Melbourne School of Population Health
| | | | - Jirong Long
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, USA
| | - Martha Shrubsole
- Department of Molecular Virology, Immunology and Medical Genetics, Comprehensive Cancer Center, The Ohio State University, Columbus, USA
| | - Sandra Deming-Halverson
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, USA
| | - Filomena Ficarazzi
- Cogentech Cancer Genetic Test Laboratory, Milan, Italy, IFOM, Fondazione Istituto FIRC di Oncologia Molecolare, Milan, Italy
| | - Monica Barile
- Division of Cancer Prevention and Genetics, Istituto Europeo di Oncologia (IEO), Milan, Italy
| | - Paolo Peterlongo
- IFOM, Fondazione Istituto FIRC di Oncologia Molecolare, Milan, Italy
| | - Katarzyna Durda
- Department of Genetics and Pathology, Pomeranian Medical University, Szczecin, Poland
| | | | | | - Caroline Seynaeve
- Family Cancer Clinic, Department of Medical Oncology, Erasmus MC-Daniel den Hoed Cancer Centrer, Rotterdam, The Netherlands
| | | | - Thomas Brüning
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance (IPA), Bochum, Germany
| | - Yon-Dschun Ko
- Department of Internal Medicine, Evangelische Kliniken Bonn gGmbH, Johanniter Krankenhaus, Bonn, Germany
| | | | - John W M Martens
- Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Mieke Kriege
- Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Jonine D Figueroa
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, USA
| | - Stephen J Chanock
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, USA
| | - Jolanta Lissowska
- Department of Cancer Epidemiology and Prevention, M. Sklodowska-Curie Memorial Cancer Center & Institute of Oncology, Warsaw, Poland
| | - Ian Tomlinson
- Wellcome Trust Centre for Human Genetics and Oxford Biomedical Research Centre, University of Oxford, Oxford, UK
| | - Michael J Kerin
- Clinical Science Institute, University Hospital Galway, Galway, Ireland
| | - Nicola Miller
- Clinical Science Institute, University Hospital Galway, Galway, Ireland
| | - Andreas Schneeweiss
- Department of Obstetrics and Gynecology, National Center for Tumor Diseases, University of Heidelberg, Heidelberg, Germany
| | | | - Susan M Gerty
- Faculty of Medicine, University of Southampton, Southampton, UK
| | - Lorraine Durcan
- Faculty of Medicine, University of Southampton, Southampton, UK
| | - Catriona Mclean
- Anatomical Pathology, The Alfred Hospital, Melbourne, Australia
| | - Roger L Milne
- Centre for Molecular, Environmental, Genetic, and Analytic Epidemiology, The University of Melbourne, Melbourne, Australia, Cancer Epidemiology Centre, The Cancer Council Victoria, Melbourne, Australia
| | - Laura Baglietto
- Centre for Molecular, Environmental, Genetic, and Analytic Epidemiology, The University of Melbourne, Melbourne, Australia, Cancer Epidemiology Centre, The Cancer Council Victoria, Melbourne, Australia
| | - Isabel dos Santos Silva
- Non-communicable Disease Epidemiology Department, London School of Hygiene and Tropical Medicine, London, UK
| | - Olivia Fletcher
- Breakthrough Breast Cancer Research Centre, The Institute of Cancer Research, London, UK
| | - Nichola Johnson
- Breakthrough Breast Cancer Research Centre, The Institute of Cancer Research, London, UK
| | - Laura J Van'T Veer
- Netherlands Cancer Institute, Antoni van Leeuwenhoek Hospital, Amsterdam, The Netherlands
| | - Sten Cornelissen
- Netherlands Cancer Institute, Antoni van Leeuwenhoek Hospital, Amsterdam, The Netherlands
| | - Asta Försti
- Division of Molecular Genetic Epidemiology, Center for Primary Health Care Research, University of Lund, Malmö, Sweden
| | - Diana Torres
- Molecular Genetics of Breast Cancer, Institute of Human Genetics, Pontificia University Javeriana, Bogota, Colombia
| | - Thomas Rüdiger
- Institute of Pathology, Städtisches Klinikum Karlsruhe, Karlsruhe, Germany
| | | | - Dieter Flesch-Janys
- Department of Cancer Epidemiology/Clinical Cancer Registry and Institute for Medical Biometrics and Epidemiology, University Clinic Hamburg-Eppendorf, Hamburg, Germany
| | | | | | | | - Matthieu Moisse
- Laboratory for Translational Genetics, Department of Oncology, University of Leuven, Leuven, Belgium, Vesalius Research Center (VRC), VIB, Leuven, Belgium
| | - Joe Dennis
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care
| | - Qin Wang
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care
| | - Alison M Dunning
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, UK
| | - Mitul Shah
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, UK
| | - Judith Brown
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care
| | - Jacques Simard
- Cancer Genomics Laboratory, Centre Hospitalier Universitaire de Québec Research Center and Laval University, Quebec City, Canada
| | - Hoda Anton-Culver
- Department of Epidemiology, University of California Irvine, Irvine, USA
| | | | - John L Hopper
- Centre for Molecular, Environmental, Genetic and Analytic Epidemiology, Melbourne School of Population Health
| | | | - Thilo Dörk
- Department of Obstetrics and Gynaecology, Hannover Medical School, Hannover, Germany
| | - Wei Zheng
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, USA
| | - Paolo Radice
- Unit of Molecular Bases of Genetic Risk and Genetic Testing, Department of Preventive and Predictive Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori (INT), Milan, Italy and
| | - Anna Jakubowska
- Department of Genetics and Pathology, Pomeranian Medical University, Szczecin, Poland
| | - Jan Lubinski
- Department of Genetics and Pathology, Pomeranian Medical University, Szczecin, Poland
| | - Peter Devillee
- Department of Human Genetics & Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
| | - Hiltrud Brauch
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart, Germany, University of Tübingen, Tübingen, Germany
| | - Maartje Hooning
- Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | | | - Elinor Sawyer
- Division of Cancer Studies, Kings College London, Guy's Hospital, London, UK
| | - Barbara Burwinkel
- Department of Obstetrics and Gynecology, Molecular Epidemiology Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Frederick Marmee
- Department of Obstetrics and Gynecology, National Center for Tumor Diseases, University of Heidelberg, Heidelberg, Germany
| | - Diana M Eccles
- Faculty of Medicine, University of Southampton, Southampton, UK
| | - Graham G Giles
- Centre for Molecular, Environmental, Genetic, and Analytic Epidemiology, The University of Melbourne, Melbourne, Australia, Cancer Epidemiology Centre, The Cancer Council Victoria, Melbourne, Australia
| | - Julian Peto
- Non-communicable Disease Epidemiology Department, London School of Hygiene and Tropical Medicine, London, UK
| | - Marjanka Schmidt
- Netherlands Cancer Institute, Antoni van Leeuwenhoek Hospital, Amsterdam, The Netherlands
| | - Annegien Broeks
- Netherlands Cancer Institute, Antoni van Leeuwenhoek Hospital, Amsterdam, The Netherlands
| | | | | | - Diether Lambrechts
- Laboratory for Translational Genetics, Department of Oncology, University of Leuven, Leuven, Belgium, Vesalius Research Center (VRC), VIB, Leuven, Belgium
| | - Paul D P Pharoah
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, UK
| | - Douglas Easton
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, UK
| | | | | | | | - Fergus J Couch
- Department of Health Sciences Research, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, USA,
| |
Collapse
|
15
|
TACC3 deregulates the DNA damage response and confers sensitivity to radiation and PARP inhibition. Oncogene 2014; 34:1667-78. [PMID: 24769898 DOI: 10.1038/onc.2014.105] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Revised: 02/28/2014] [Accepted: 03/12/2014] [Indexed: 12/21/2022]
Abstract
Deregulation of the transforming acidic coiled-coil protein 3 (TACC3), an important factor in the centrosome-microtubule system, has been linked to a variety of human cancer types. We have recently reported on the oncogenic potential of TACC3; however, the molecular mechanisms by which TACC3 mediates oncogenic function remain to be elucidated. In this study, we show that high levels of TACC3 lead to the accumulation of DNA double-strand breaks (DSBs) and disrupt the normal cellular response to DNA damage, at least in part, by negatively regulating the expression of ataxia telangiectasia mutated (ATM) and the subsequent DNA damage response (DDR) signaling cascade. Cells expressing high levels of TACC3 display defective checkpoints and DSB-mediated homologous recombination (HR) and non-homologous end joining (NHEJ) repair systems, leading to genomic instability. Importantly, high levels of TACC3 confer cellular sensitization to radiation and poly(ADP-ribose) polymerase (PARP) inhibition. Overall, our findings provide critical information regarding the mechanisms by which TACC3 contributes to genomic instability, potentially leading to cancer development, and suggest a novel prognostic, diagnostic and therapeutic strategy for the treatment of cancer types expressing high levels of TACC3.
Collapse
|
16
|
Padhi BK, Zigler JS, Padhi P, Hose S, Sinha D. Expression pattern of an evolutionarily conserved splice variant in the ratTacc2gene. Genesis 2014; 52:378-86. [DOI: 10.1002/dvg.22776] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Revised: 03/06/2014] [Accepted: 03/31/2014] [Indexed: 01/25/2023]
Affiliation(s)
- Bhaja K. Padhi
- Ophthalmology; Wilmer Eye Institute, The Johns Hopkins University School of Medicine; Baltimore Maryland
- Hazard Identification Division, Environmental Health Science and Research Bureau; Health Canada; Ottawa Ontario Canada
| | - J. Samuel Zigler
- Ophthalmology; Wilmer Eye Institute, The Johns Hopkins University School of Medicine; Baltimore Maryland
| | - Piyush Padhi
- Ophthalmology; Wilmer Eye Institute, The Johns Hopkins University School of Medicine; Baltimore Maryland
| | - Stacey Hose
- Ophthalmology; Wilmer Eye Institute, The Johns Hopkins University School of Medicine; Baltimore Maryland
| | - Debasish Sinha
- Ophthalmology; Wilmer Eye Institute, The Johns Hopkins University School of Medicine; Baltimore Maryland
| |
Collapse
|
17
|
Thakur HC, Singh M, Nagel-Steger L, Prumbaum D, Fansa EK, Gremer L, Ezzahoini H, Abts A, Schmitt L, Raunser S, Ahmadian MR, Piekorz RP. Role of centrosomal adaptor proteins of the TACC family in the regulation of microtubule dynamics during mitotic cell division. Biol Chem 2014; 394:1411-23. [PMID: 23787465 DOI: 10.1515/hsz-2013-0184] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Accepted: 06/18/2013] [Indexed: 02/04/2023]
Abstract
During the mitotic division cycle, cells pass through an extensive microtubule rearrangement process where microtubules forming the mitotic spindle apparatus are dynamically instable. Several centrosomal- and microtubule-associated proteins are involved in the regulation of microtubule dynamics and stability during mitosis. Here, we focus on members of the transforming acidic coiled coil (TACC) family of centrosomal adaptor proteins, in particular TACC3, in which their subcellular localization at the mitotic spindle apparatus is controlled by Aurora-A kinase-mediated phosphorylation. At the effector level, several TACC-binding partners have been identified and characterized in greater detail, in particular, the microtubule polymerase XMAP215/ch-TOG/CKAP5 and clathrin heavy chain (CHC). We summarize the recent progress in the molecular understanding of these TACC3 protein complexes, which are crucial for proper mitotic spindle assembly and dynamics to prevent faulty cell division and aneuploidy. In this regard, the (patho)biological role of TACC3 in development and cancer will be discussed.
Collapse
|
18
|
Thakur HC, Singh M, Nagel-Steger L, Kremer J, Prumbaum D, Fansa EK, Ezzahoini H, Nouri K, Gremer L, Abts A, Schmitt L, Raunser S, Ahmadian MR, Piekorz RP. The centrosomal adaptor TACC3 and the microtubule polymerase chTOG interact via defined C-terminal subdomains in an Aurora-A kinase-independent manner. J Biol Chem 2013; 289:74-88. [PMID: 24273164 DOI: 10.1074/jbc.m113.532333] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The cancer-associated, centrosomal adaptor protein TACC3 (transforming acidic coiled-coil 3) and its direct effector, the microtubule polymerase chTOG (colonic and hepatic tumor overexpressed gene), play a crucial function in centrosome-driven mitotic spindle assembly. It is unclear how TACC3 interacts with chTOG. Here, we show that the C-terminal TACC domain of TACC3 and a C-terminal fragment adjacent to the TOG domains of chTOG mediate the interaction between these two proteins. Interestingly, the TACC domain consists of two functionally distinct subdomains, CC1 (amino acids (aa) 414-530) and CC2 (aa 530-630). Whereas CC1 is responsible for the interaction with chTOG, CC2 performs an intradomain interaction with the central repeat region of TACC3, thereby masking the TACC domain before effector binding. Contrary to previous findings, our data clearly demonstrate that Aurora-A kinase does not regulate TACC3-chTOG complex formation, indicating that Aurora-A solely functions as a recruitment factor for the TACC3-chTOG complex to centrosomes and proximal mitotic spindles. We identified with CC1 and CC2, two functionally diverse modules within the TACC domain of TACC3 that modulate and mediate, respectively, TACC3 interaction with chTOG required for spindle assembly and microtubule dynamics during mitotic cell division.
Collapse
Affiliation(s)
- Harish C Thakur
- From the Institut für Biochemie und Molekularbiologie II, Medizinische Fakultät der Heinrich-Heine-Universität, D-40225 Düsseldorf, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Ha GH, Kim JL, Breuer EKY. Transforming acidic coiled-coil proteins (TACCs) in human cancer. Cancer Lett 2013; 336:24-33. [PMID: 23624299 DOI: 10.1016/j.canlet.2013.04.022] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Revised: 04/11/2013] [Accepted: 04/16/2013] [Indexed: 10/26/2022]
Abstract
Fine-tuned regulation of the centrosome/microtubule dynamics during mitosis is essential for faithful cell division. Thus, it is not surprising that deregulations in this dynamic network can contribute to genomic instability and tumorigenesis. Indeed, centrosome loss or amplification, spindle multipolarity and aneuploidy are often found in a majority of human malignancies, suggesting that defects in centrosome and associated microtubules may be directly or indirectly linked to cancer. Therefore, future research to identify and characterize genes required for the normal centrosome function and microtubule dynamics may help us gain insight into the complexity of cancer, and further provide new avenues for prognostic, diagnostics and therapeutic interventions. Members of the transforming acidic coiled-coil proteins (TACCs) family are emerging as important players of centrosome and microtubule-associated functions. Growing evidence indicates that TACCs are involved in the progression of certain solid tumors. Here, we will discuss our current understanding of the biological function of TACCs, their relevance to human cancer and possible implications for cancer management.
Collapse
Affiliation(s)
- Geun-Hyoung Ha
- Oncology Institute, Cardinal Bernardin Cancer Center, Loyola University Medical Center, Maywood, IL 60153, USA
| | | | | |
Collapse
|
20
|
Ha GH, Park JS, Breuer EKY. TACC3 promotes epithelial-mesenchymal transition (EMT) through the activation of PI3K/Akt and ERK signaling pathways. Cancer Lett 2013; 332:63-73. [PMID: 23348690 DOI: 10.1016/j.canlet.2013.01.013] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Revised: 01/04/2013] [Accepted: 01/08/2013] [Indexed: 12/16/2022]
Abstract
Transforming acidic coiled-coil protein 3 (TACC3) is a member of the TACC family, essential for mitotic spindle dynamics and centrosome integrity during mitosis. Mounting evidence suggests that deregulation of TACC3 is associated with various types of human cancer. However, the molecular mechanisms by which TACC3 contributes to the development of cancer remain largely unknown. Here, we propose a novel mechanism by which TACC3 regulates epithelial-mesenchymal transition (EMT). By modulating the expression of TACC3, we found that overexpression of TACC3 leads to changes in cell morphology, proliferation, transforming capability, migratory/invasive behavior as well as the expression of EMT-related markers. Moreover, phosphatidylinositol 3-kinase (PI3K)/Akt and extracellular signal-regulated protein kinases (ERKs) signaling pathways are critical for TACC3-mediated EMT process. Notably, depletion of TACC3 is sufficient to suppress EMT phenotype. Collectively, our findings identify TACC3 as a driver of tumorigenesis as well as an inducer of oncogenic EMT and highlight its overexpression as a potential therapeutic target for preventing EMT-associated tumor progression and invasion.
Collapse
Affiliation(s)
- Geun-Hyoung Ha
- Oncology Institute, Cardinal Bernardin Cancer Center, Loyola University Medical Center, Maywood, IL 60153, USA
| | | | | |
Collapse
|
21
|
Yao R, Natsume Y, Saiki Y, Shioya H, Takeuchi K, Yamori T, Toki H, Aoki I, Saga T, Noda T. Disruption of Tacc3 function leads to in vivo tumor regression. Oncogene 2011; 31:135-48. [PMID: 21685933 DOI: 10.1038/onc.2011.235] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The formation of the bipolar spindle is responsible for accurate chromosomal segregation during mitosis. The dynamic instability of microtubules has an important role in this process, and has been shown to be an effective target for cancer chemotherapy. Several agents that target non-microtubule mitotic proteins, including the motor protein Eg5, Aurora kinases and Polo-like kinases, are currently being developed as chemotherapeutic drugs. However, because the efficacies of these drugs remain elusive, new molecular targets that have essential roles in tumor cells are desired. Here, we provide in vivo evidence that transforming acidic coiled-coil-3 (Tacc3) is a potential target for cancer chemotherapy. Using MRI, we showed that Tacc3 loss led to the regression of mouse thymic lymphoma in vivo, which was accompanied by massive apoptosis. By contrast, normal tissues, including the thymus, showed no overt abnormalities, despite high Tacc3 expression. in vitro analysis indicated that Tacc3 depletion induced multi-polar spindle formation, which led to mitotic arrest, followed by apoptosis. Similar responses have been observed in Burkitt's lymphoma and T-ALL. These results show that Tacc3 is a vulnerable component of the spindle assembly in lymphoma cells and is a promising cancer chemotherapy target.
Collapse
Affiliation(s)
- R Yao
- Department of Cell Biology, Cancer Institute, The Japanese Foundation for Cancer Research, Tokyo, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
The centrosomal protein TACC3 controls paclitaxel sensitivity by modulating a premature senescence program. Oncogene 2010; 29:6184-92. [PMID: 20729911 DOI: 10.1038/onc.2010.354] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Microtubule-interfering cancer drugs such as paclitaxel (PTX) often cause chemoresistance and severe side effects, including neurotoxicity. To explore potentially novel antineoplastic molecular targets, we investigated the cellular response of breast carcinoma cells to short hairpin(sh)RNA-mediated depletion of the centrosomal protein transforming acidic coiled coil (TACC) 3, an Aurora A kinase target expressed during mitosis. Unlike PTX, knockdown of TACC3 did not trigger a cell death response, but instead resulted in a progressive loss of the pro-apoptotic Bcl-2 protein Bim that links microtubule integrity to spindle poison-induced cell death. Interestingly, TACC3-depleted cells arrested in G₁ through a cellular senescence program characterized by the upregulation of nuclear p21(WAF), downregulation of the retinoblastoma protein and extracellular signal-regulated kinase 1/2, formation of HP1γ (phospho-Ser83)-positive senescence-associated heterochromatic foci and increased senescence-associated β-galactosidase activity. Remarkably, the onset of senescence following TACC3 knockdown was strongly accelerated in the presence of non-toxic PTX concentrations. Thus, we conclude that mitotic spindle stress is a major trigger of premature senescence and propose that the combined targeting of the centrosomal Aurora A-TACC3 axis together with drugs interfering with microtubule dynamics may efficiently improve the chemosensitivity of cancer cells.
Collapse
|
23
|
Walsh S, Pontén A, Fleischmann BK, Jovinge S. Cardiomyocyte cell cycle control and growth estimation in vivo--an analysis based on cardiomyocyte nuclei. Cardiovasc Res 2010; 86:365-73. [PMID: 20071355 DOI: 10.1093/cvr/cvq005] [Citation(s) in RCA: 225] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
AIMS Adult mammalian cardiomyocytes are traditionally viewed as being permanently withdrawn from the cell cycle. Whereas some groups have reported none, others have reported extensive mitosis in adult myocardium under steady-state conditions. Recently, a highly specific assay of 14C dating in humans has suggested a continuous generation of cardiomyocytes in the adult, albeit at a very low rate. Mice represent the most commonly used animal model for these studies, but their short lifespan makes them unsuitable for 14C studies. Herein, we investigate the cellular growth pattern for murine cardiomyocyte growth under steady-state conditions, addressed with new analytical and technical strategies, and we furthermore relate this to gene expression patterns. METHODS AND RESULTS The observed levels of DNA synthesis in early life were associated with cardiomyocyte proliferation. Mitosis was prolonged into early life, longer than the most conservative previous estimates. DNA synthesis in neonatal life was attributable to bi-nucleation, therefore suggesting that cardiomyocytes withdraw from the cell cycle shortly after birth. No cell cycle activity was observed in adult cardiomyocytes and significant polyploidy was observed in cardiomyocyte nuclei. CONCLUSION Gene analyses identified 32 genes whose expression was predicted to be particular to day 3-4 neonatal myocytes, compared with embryonic or adult cells. These cell cycle-associated genes are crucial to the understanding of the mechanisms of bi-nucleation and physiological cellular growth in the neonatal period.
Collapse
Affiliation(s)
- Stuart Walsh
- Lund Strategic Research Center for Stem Cell Biology and Cell Therapy, Lund University, Lund SE-22184, Sweden
| | | | | | | |
Collapse
|
24
|
Tei S, Saitoh N, Funahara T, Iida SI, Nakatsu Y, Kinoshita K, Kinoshita Y, Saya H, Nakao M. Simian virus 40 large T antigen targets the microtubule-stabilizing protein TACC2. J Cell Sci 2009; 122:3190-8. [PMID: 19671663 DOI: 10.1242/jcs.049627] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The large T antigens of polyomaviruses target cellular proteins that control fundamental processes, including p53 and the RB family of tumor suppressors. Mechanisms that underlie T-antigen-induced cell transformation need to be fully addressed, because as-yet unidentified target proteins might be involved in the process. In addition, recently identified polyomaviruses are associated with particular human diseases such as aggressive skin cancers. Here, we report that simian virus 40 (SV40) large T antigen interacts with the transforming acidic coiled-coil-containing protein TACC2, which is involved in stabilizing microtubules in mitosis. T antigen directly binds TACC2 and induces microtubule dysfunction, leading to disorganized mitotic spindles, slow progression of mitosis and chromosome missegregation. These mitotic defects are caused by N-terminal-deleted T antigen, which minimally interacts with TACC2, whereas T-antigen-induced microtubule destabilization is suppressed by overexpressing TACC2. Thus, TACC2 might be a key target of T antigen to disrupt microtubule regulation and chromosomal inheritance in the initiation of cell transformation.
Collapse
Affiliation(s)
- Shuchin Tei
- Department of Medical Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, Honjo, Kumamoto, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Peset I, Vernos I. The TACC proteins: TACC-ling microtubule dynamics and centrosome function. Trends Cell Biol 2008; 18:379-88. [PMID: 18656360 DOI: 10.1016/j.tcb.2008.06.005] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2008] [Revised: 06/04/2008] [Accepted: 06/04/2008] [Indexed: 12/28/2022]
Abstract
A major quest in cell biology is to understand the molecular mechanisms underlying the high plasticity of the microtubule network at different stages of the cell cycle, and during and after differentiation. Initial reports described the centrosomal localization of proteins possessing transforming acidic coiled-coil (TACC) domains. This discovery prompted several groups to examine the role of TACC proteins during cell division, leading to indications that they are important players in this complex process in different organisms. Here, we review the current understanding of the role of TACC proteins in the regulation of microtubule dynamics, and we highlight the complexity of centrosome function.
Collapse
Affiliation(s)
- Isabel Peset
- Cell and Developmental Biology Program, Centre for Genomic Regulation (CRG), University Pompeu Fabra (UPF), Dr Aiguader 88, Barcelona 08003, Spain.
| | | |
Collapse
|
26
|
Lauffart B, Dimatteo A, Vaughan MM, Cincotta MA, Black JD, Still IH. Temporal and spatial expression of TACC1 in the mouse and human. Dev Dyn 2007; 235:1638-47. [PMID: 16496324 DOI: 10.1002/dvdy.20724] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
TACC1 is the founding member of the evolutionarily conserved transforming acidic coiled coil genes. These genes play a role in normal development and tumorigenesis through interactions with multiple complexes involved in transcription, translation, and centrosomal dynamics. Despite its importance, detailed examination of the expression of TACC1 and splice variants has not previously been performed. In this study, the spatiotemporal distribution of the Tacc1 protein was examined immunohistochemically in cross-sections of mouse embryonic tissues. We also report the distribution of currently known/predicted TACC1 splice variants in adult humans. These results indicate that Tacc1 is regulated in a dynamic manner during embryogenesis. In adult humans, ubiquitous expression of at least one TACC1 splice variant is noted, although specific combinations of variants are evident in individual differentiated tissues. An important observation is that in the in vivo three-dimensional tissue architecture of the growing organism, both the human and mouse TACC1 protein can be localized to different subcellular compartments in a cell- and tissue-specific manner. This indicates that exploration of TACC1 function must take into account the temporal expression of specific splice variants that may perform different cell-type and tissue-specific functions. Furthermore, this analysis will provide the groundwork from which future Tacc1 knockout strategies can be designed and properly interpreted.
Collapse
Affiliation(s)
- Brenda Lauffart
- Department of Cancer Genetics, Roswell Park Cancer Institute, Buffalo, New York 14263, USA
| | | | | | | | | | | |
Collapse
|
27
|
Xie Z, Moy LY, Sanada K, Zhou Y, Buchman JJ, Tsai LH. Cep120 and TACCs control interkinetic nuclear migration and the neural progenitor pool. Neuron 2007; 56:79-93. [PMID: 17920017 PMCID: PMC2642594 DOI: 10.1016/j.neuron.2007.08.026] [Citation(s) in RCA: 142] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2007] [Revised: 07/23/2007] [Accepted: 08/31/2007] [Indexed: 12/13/2022]
Abstract
Centrosome- and microtubule-associated proteins have been shown to be important for maintaining the neural progenitor pool during neocortical development by regulating the mitotic spindle. It remains unclear whether these proteins may control neurogenesis by regulating other microtubule-dependent processes such as nuclear migration. Here, we identify Cep120, a centrosomal protein preferentially expressed in neural progenitors during neocortical development. We demonstrate that silencing Cep120 in the developing neocortex impairs both interkinetic nuclear migration (INM), a characteristic pattern of nuclear movement in neural progenitors, and neural progenitor self-renewal. Furthermore, we show that Cep120 interacts with transforming acidic coiled-coil proteins (TACCs) and that silencing TACCs also causes defects in INM and neural progenitor self-renewal. Our data suggest a critical role for Cep120 and TACCs in both INM and neurogenesis. We propose that sustaining INM may be a mechanism by which microtubule-regulating proteins maintain the neural progenitor pool during neocortical development.
Collapse
Affiliation(s)
- Zhigang Xie
- Department of Brain and Cognitive Sciences, Picower Institute for Learning and Memory, RIKEN-MIT Neuroscience Research Center, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Building 46, Room 4235A, Cambridge, MA 02139, USA
- Howard Hughes Medical Institute, 77 Massachusetts Avenue, Building 46, Room 4235A, Cambridge, MA 02139, USA
| | - Lily Y. Moy
- Department of Brain and Cognitive Sciences, Picower Institute for Learning and Memory, RIKEN-MIT Neuroscience Research Center, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Building 46, Room 4235A, Cambridge, MA 02139, USA
| | - Kamon Sanada
- Department of Brain and Cognitive Sciences, Picower Institute for Learning and Memory, RIKEN-MIT Neuroscience Research Center, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Building 46, Room 4235A, Cambridge, MA 02139, USA
| | - Ying Zhou
- Department of Brain and Cognitive Sciences, Picower Institute for Learning and Memory, RIKEN-MIT Neuroscience Research Center, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Building 46, Room 4235A, Cambridge, MA 02139, USA
- Howard Hughes Medical Institute, 77 Massachusetts Avenue, Building 46, Room 4235A, Cambridge, MA 02139, USA
| | - Joshua J. Buchman
- Department of Brain and Cognitive Sciences, Picower Institute for Learning and Memory, RIKEN-MIT Neuroscience Research Center, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Building 46, Room 4235A, Cambridge, MA 02139, USA
- Howard Hughes Medical Institute, 77 Massachusetts Avenue, Building 46, Room 4235A, Cambridge, MA 02139, USA
- Program in Neuroscience, Harvard Medical School, Boston, MA 02115, USA
| | - Li-Huei Tsai
- Department of Brain and Cognitive Sciences, Picower Institute for Learning and Memory, RIKEN-MIT Neuroscience Research Center, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Building 46, Room 4235A, Cambridge, MA 02139, USA
- Howard Hughes Medical Institute, 77 Massachusetts Avenue, Building 46, Room 4235A, Cambridge, MA 02139, USA
| |
Collapse
|
28
|
Schneider L, Essmann F, Kletke A, Rio P, Hanenberg H, Wetzel W, Schulze-Osthoff K, Nürnberg B, Piekorz RP. The transforming acidic coiled coil 3 protein is essential for spindle-dependent chromosome alignment and mitotic survival. J Biol Chem 2007; 282:29273-83. [PMID: 17675670 DOI: 10.1074/jbc.m704151200] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Cancer-associated centrosomal transforming acidic coiled coil (TACC) proteins are involved in mitotic spindle function. By employing gene targeting, we have recently described a nonredundant and essential role of TACC3 in regulating cell proliferation. In this study, we used an inducible RNA interference approach to characterize the molecular function of TACC3 and its role in mitotic progression and cell survival. Our data demonstrate that a TACC3 knockdown arrests G(1) checkpoint-compromised HeLa cells prior to anaphase with aberrant spindle morphology and severely misaligned chromosomes. Interestingly, TACC3-depleted cells fail to accumulate the mitotic kinase Aurora B and the checkpoint protein BubR1 to normal levels at kinetochores. Moreover, localization of the structural protein Ndc80 at outer kinetochores is reduced, indicating a defective kinetochore-microtubule attachment in TACC3-deficient cells. As a consequence of prolonged TACC3 depletion, cells undergo caspase-dependent cell death that relies on a spindle checkpoint-dependent mitotic arrest. TACC3 knockdown cells that escape from this arrest by mitotic slippage become highly polyploid and accumulate supernumerary centrosomes. Similarly, deficiency of the post-mitotic cell cycle inhibitor p21(WAF) exacerbates the effects of TACC3 depletion. Our findings therefore point to an essential role of TACC3 in spindle assembly and cellular survival and identify TACC3 as a potential therapeutic target in cancer cells.
Collapse
Affiliation(s)
- Leonid Schneider
- Institut für Biochemie und Molekularbiologie II, Universitätsklinikum der Heinrich-Heine-Universität, 40225 Düsseldorf, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Yao R, Natsume Y, Noda T. TACC3 is required for the proper mitosis of sclerotome mesenchymal cells during formation of the axial skeleton. Cancer Sci 2007; 98:555-62. [PMID: 17359303 PMCID: PMC11158658 DOI: 10.1111/j.1349-7006.2007.00433.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Transforming acidic coiled-coil-containing (TACC) family members regulate mitotic spindles and have essential roles in embryogenesis. However, the functions of TACC3 in mitosis during mammalian development are not known. We have generated and characterized three mutant alleles of mouse Tacc3 including a conditional allele. Homozygous mutants of a hypomorphic allele exhibited malformations of the axial skeleton. The primary cause of this defect was the failure of mitosis in mesenchymal sclerotome cells. In vitro, 36% of primary mouse embryo fibroblasts (MEF) obtained from mutants homozygous for the hypomorphic allele and 67% of MEF from Tacc3 null mutants failed mitosis. In cloned immortalized MEF, Tacc3 depletion destabilized spindles and prevented chromosomes from aligning properly. Furthermore, chromosome separation and cytokinesis were also severely impaired. Chromosomes were moved randomly and cytokinesis initiated but the cleavage furrow eventually regressed, resulting in binucleate cells that then yielded aneuploid cells in the next cell division. Thus, in addition to spindle assembly, Tacc3 has critical roles in chromosome separation and cytokinesis, and is essential for the mitosis of sclerotome mesenchymal cells during axial formation in mammals.
Collapse
Affiliation(s)
- Ryoji Yao
- Department of Cell Biology, The JFCR-Cancer Institute, 3-10-6 Ariake, Koto-ku, Tokyo 135-8550, Japan
| | | | | |
Collapse
|
30
|
Jung CK, Jung JH, Park GS, Lee A, Kang CS, Lee KY. Expression of transforming acidic coiled-coil containing protein 3 is a novel independent prognostic marker in non-small cell lung cancer. Pathol Int 2006; 56:503-9. [PMID: 16930330 DOI: 10.1111/j.1440-1827.2006.01998.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Transforming acidic coiled-coil containing protein 3 (TACC3) is known to be involved in the control of normal cell growth and differentiation and in mechanisms of unregulated growth leading to tumorigenesis. The aim of the present paper was to determine the rate of TACC3 expression in a non-small cell lung cancer (NSCLC) collection and to clarify its correlation with clinicopathological parameters. A total of 163 NSCLC were analyzed immunohistochemically using a polyclonal TACC3 antibody and monoclonal p53 and Ki-67 antibodies on NSCLC tissue microarrays. A high level of TACC3 expression was observed in 14.8% of cases, preferentially squamous cell carcinomas. Patients whose tumors had a high TACC3 expression had a significantly shorter median survival time. In the Cox regression-based multivariate analysis, TACC3 expression proved to be an independent prognostic parameter (P = 0.031). TACC3 expression was correlated with p53 expression, and patient whose tumors highly expressed TACC3 and p53 had a significantly poorer prognosis than patients whose tumors had low-level expression for both immunostainings (P = 0.006). It is suggested that increase in TACC3 may impart a proliferative advantage to NSCLC and contribute to tumor progression, and that TACC3 expression is a strong prognostic indicator of clinical outcome in NSCLC.
Collapse
Affiliation(s)
- Chan Kwon Jung
- Department of Hospital Pathology, College of Medicine, The Catholic University of Korea, Seocho-gu, Seoul, Korea
| | | | | | | | | | | |
Collapse
|
31
|
Li JJ, Li SA. Mitotic kinases: the key to duplication, segregation, and cytokinesis errors, chromosomal instability, and oncogenesis. Pharmacol Ther 2006; 111:974-84. [PMID: 16603252 DOI: 10.1016/j.pharmthera.2006.02.006] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2006] [Accepted: 02/28/2006] [Indexed: 12/13/2022]
Abstract
Chromosomal instability (CIN) and aneuploidy are commonly observed in the vast majority of human solid tumors and in many hematological malignancies. These features are considered defining characteristics of human breast, bladder and kidney cancers since they markedly exceed a 50% aneuploidy frequency. The detection of persistent mitotic kinase over-expression, particularly the Aurora family, and centrosome amplification in precursor/pre-malignant stages, strongly implicate these molecular changes in precipitating the aneuploidy seen in many human neoplasms. Mitotic spindle checkpoint defects may also lead to aneuploid tumors. However, the sustained over-expression and activity of various members of the mitotic kinase families, including Aurora (Aur) (A, B, C), Polo-like (Plk1-4), and Nek (NIMA1-11) in diverse human tumors strongly indicate that these entities are intimately involved in the development of errors in centrosome duplication, chromosome segregation, and cytokinesis. Mitotic kinases have also been implicated in regulating the centrosome cycle, spindle checkpoint and microtubule-kinetochore attachment, spindle assembly, and chromosome condensation. These mitotic kinases are modulated by de-novo synthesis, stability factors, phosphorylation, and ubiquitin-dependent proteolysis. They, in turn, phosphorylate a myriad of centrosomal/mitotic protein substrates, and have the ability to behave as oncogenes (i.e. Aur-A, Plk-1), providing a compelling link between errors in mitosis and oncogenic processes. The recent development of selective small molecule inhibitors of Aurora kinases, in particular, will provide useful tools to ascertain more precisely their role in cancer development. Potent inhibitors of mitotic kinases, when fully developed, have the promise to be effective agents against tumor growth, and possibly, tumor prevention as well.
Collapse
Affiliation(s)
- Jonathan J Li
- Hormonal Carcinogenesis Laboratory, Department of Pharmacology, Toxicology and Therapeutics, Mail Stop 1018, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS 66160, USA.
| | | |
Collapse
|
32
|
Cully M, Shiu J, Piekorz RP, Muller WJ, Done SJ, Mak TW. Transforming Acidic Coiled Coil 1 Promotes Transformation and Mammary Tumorigenesis. Cancer Res 2005; 65:10363-70. [PMID: 16288026 DOI: 10.1158/0008-5472.can-05-1633] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Transforming acidic coiled coil 1 (TACC1) is a putative oncogene located within a breast cancer amplicon found on human chromosome 8p11. Although TACC1 has been reported to transform fibroblasts, it is also down-regulated in a subset of mammary tumors treated with anthracyclin. Here, we show that ectopic TACC1 overexpression can cooperate with Ras to induce focus formation in murine fibroblast cultures and prevent death caused by overexpression of Pten or a dominant-negative form of protein kinase B (PKB)/Akt. In transgenic mice carrying TACC1 under the control of the mouse mammary tumor virus promoter, TACC1 expression reduced apoptosis during mammary gland involution, increased the penetrance of mammary tumors in a pten+/- background, and decreased the average age of mammary tumor onset in a mouse model based on a phosphatidylinositol 3'-kinase (PI3K)-decoupled mutant of polyoma middle T. Elevated levels of both phospho-PKB and phospho-extracellular signal-regulated kinase were found in mammary tissue containing the TACC1 transgene. Thus, TACC1 positively regulates the Ras and PI3K pathways, promotes Ras-mediated transformation, and prevents apoptosis induced by PI3K pathway inhibition. TACC1 also cooperates with tumorigenic mutations in the PI3K pathway and thereby plays an oncogenic role in tumor formation in the murine mammary gland.
Collapse
Affiliation(s)
- Megan Cully
- Campbell Family Institute for Breast Cancer Research, University of Toronto, Toronto, Ontario, Canada
| | | | | | | | | | | |
Collapse
|