1
|
Lee S, Jang Y, Seok H, Moon Y. A Novel Mechanism of the p53 Isoform Δ40p53α in Regulating Collagen III Expression in TGFβ1-Induced LX-2 Human Hepatic Stellate Cells. FASEB J 2025; 39:e70541. [PMID: 40232888 PMCID: PMC11999059 DOI: 10.1096/fj.202403146rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 03/31/2025] [Accepted: 04/04/2025] [Indexed: 04/17/2025]
Abstract
Injured liver cells undergoing chronic wound healing produce excessive amounts of extracellular matrix (ECM) components, such as collagen and fibronectin, leading to fibrosis. This process is largely mediated by transforming growth factor-β (TGFβ) signaling, which intersects with the tumor suppressor p53 pathway. However, the roles of specific p53 isoforms in this interaction remain unclear. In this study, we report the involvement of the Δ40p53α isoform, an N-terminal truncated variant of p53, in regulating ECM gene expression in TGFβ1-activated LX-2 human hepatic stellate cells. RT-PCR analysis of cirrhotic liver tissues revealed clinically relevant increases in Δ40p53 expression. Knockdown of Δ40p53 using antisense oligonucleotides in LX-2 cells attenuated TGFβ1-induced activation and significantly reduced collagen production and deposition, particularly fibrillar collagen III. Conversely, overexpression of Δ40p53α upregulated collagen III expression in concert with full-length p53 (FLp53). Co-immunoprecipitation analysis demonstrated that Δ40p53α forms a complex with FLp53, which associates with phosphorylated Smad3 following TGFβ1 stimulation. These findings suggest that Δ40p53 enhances collagen III expression by interacting with FLp53 and Smads, highlighting its role in profibrogenic ECM expression.
Collapse
Affiliation(s)
- Sun‐Young Lee
- Institute of Systems BiologyPusan National UniversityBusanKorea
| | - Yunseong Jang
- Department of Integrated Biological SciencePusan National UniversityBusanKorea
| | - Hye‐Yeon Seok
- Institute of Systems BiologyPusan National UniversityBusanKorea
| | - Yong‐Hwan Moon
- Institute of Systems BiologyPusan National UniversityBusanKorea
- Department of Integrated Biological SciencePusan National UniversityBusanKorea
- Department of Molecular BiologyPusan National UniversityBusanKorea
| |
Collapse
|
2
|
Su Y, Huo T, Wang Y, Li J. Construction and clinical significance of prognostic risk markers based on cancer driver genes in lung adenocarcinoma. Clin Transl Oncol 2025; 27:1539-1557. [PMID: 39292390 DOI: 10.1007/s12094-024-03703-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 08/28/2024] [Indexed: 09/19/2024]
Abstract
BACKGROUND Cancer driver genes (CDGs) have been reported as key factors influencing the progression of lung adenocarcinoma (LUAD). However, the role of CDGs in LUAD prognosis has not been fully elucidated. METHODS LUAD transcriptome data and CDG-related data were obtained from public databases and literature. Differentially expressed CDGs (DE-CDGs) greatly associated with LUAD survival (P < 0.05) were identified to establish a prognostic model. In addition, immune analysis of high-risk (HR) and low-risk (LR) groups was conducted by utilizing the CIBERSORT and single sample gene set enrichment analysis (ssGSEA) algorithms to assess immune differences. Subsequently, mutation analysis was conducted using maftools. Finally, candidate drugs were identified using the CellMiner database. RESULTS 40 DE-CDGs significantly associated with LUAD survival and 11 DE-CDGs associated with prognosis were identified through screening. Regression analysis revealed that risk score can independently predict LUAD prognosis (P < 0.05). Immune landscape analysis revealed that compared to the HR group, the LR group had higher immune scores and high infiltration of various immune cells such as follicular helper B cells and T cells. Mutation landscape analysis demonstrated that missense mutation was the most common mutation type in both risk groups. Drug prediction analysis revealed strong correlations of fulvestrant, S-63845, sapacitabine, lomustine, BLU-667, SR16157, motesanib, AZD-9496, XK-469, dimethylfasudil, P-529, and imatinib with the model genes, suggesting their potential as candidate drugs targeting the model genes. CONCLUSION This study identified 11 effective biomarkers, DE-CDGs, which can predict LUAD prognosis and explored the biological significance of CDGs in LUAD prognosis, immunotherapy, and treatment.
Collapse
Affiliation(s)
- Yazhou Su
- Department of Thoracic Surgery, The First Affiliated Hospital of Xinxiang Medical University, 88 Jiankang Road, Weihui, 453100, Henan province, China.
| | - Tingting Huo
- Department of Oncology, The First Affiliated Hospital of Xinxiang Medical University, Weihui, 453100, Henan province, China
| | - Yanan Wang
- Department of Oncology, The First Affiliated Hospital of Xinxiang Medical University, Weihui, 453100, Henan province, China
| | - Jingyan Li
- Department of Oncology, The First Affiliated Hospital of Xinxiang Medical University, Weihui, 453100, Henan province, China
| |
Collapse
|
3
|
López I, Valdivia IL, Vojtesek B, Fåhraeus R, Coates P. Re-appraising the evidence for the source, regulation and function of p53-family isoforms. Nucleic Acids Res 2024; 52:12112-12129. [PMID: 39404067 PMCID: PMC11551734 DOI: 10.1093/nar/gkae855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 09/12/2024] [Accepted: 09/19/2024] [Indexed: 11/12/2024] Open
Abstract
The p53 family of proteins evolved from a common ancestor into three separate genes encoding proteins that act as transcription factors with distinct cellular roles. Isoforms of each member that lack specific regions or domains are suggested to result from alternative transcription start sites, alternative splicing or alternative translation initiation, and have the potential to exponentially increase the functional repertoire of each gene. However, evidence supporting the presence of individual protein variants at functional levels is often limited and is inferred by mRNA detection using highly sensitive amplification techniques. We provide a critical appraisal of the current evidence for the origins, expression, functions and regulation of p53-family isoforms. We conclude that despite the wealth of publications, several putative isoforms remain poorly established. Future research with improved technical approaches and the generation of isoform-specific protein detection reagents is required to establish the physiological relevance of p53-family isoforms in health and disease. In addition, our analyses suggest that p53-family variants evolved partly through convergent rather than divergent evolution from the ancestral gene.
Collapse
Affiliation(s)
- Ignacio López
- Biochemistry, Faculty of Science, Universidad de la República, Iguá 4225, Montevideo 11400, Uruguay
- Cell Biology Unit, Institut Pasteur de Montevideo, Mataojo 2020, Montevideo 11400, Uruguay
| | - Irene Larghero Valdivia
- Biochemistry, Faculty of Science, Universidad de la República, Iguá 4225, Montevideo 11400, Uruguay
| | - Borivoj Vojtesek
- RECAMO, Masaryk Memorial Cancer Institute, Zluty kopec 7, Brno 65653, Czech Republic
| | - Robin Fåhraeus
- RECAMO, Masaryk Memorial Cancer Institute, Zluty kopec 7, Brno 65653, Czech Republic
- Inserm UMRS 1131, Institut de Génétique Moléculaire, Université de Paris Cité, 27 rue Juliette Dodu, Hôpital St. Louis, Paris F-75010, France
- Department of Medical Biosciences, Building 6M, Umeå University, Umeå 90185, Sweden
| | - Philip J Coates
- RECAMO, Masaryk Memorial Cancer Institute, Zluty kopec 7, Brno 65653, Czech Republic
| |
Collapse
|
4
|
Guo Y, Wu H, Wiesmüller L, Chen M. Canonical and non-canonical functions of p53 isoforms: potentiating the complexity of tumor development and therapy resistance. Cell Death Dis 2024; 15:412. [PMID: 38866752 PMCID: PMC11169513 DOI: 10.1038/s41419-024-06783-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 05/26/2024] [Accepted: 05/28/2024] [Indexed: 06/14/2024]
Abstract
Full-length p53 (p53α) plays a pivotal role in maintaining genomic integrity and preventing tumor development. Over the years, p53 was found to exist in various isoforms, which are generated through alternative splicing, alternative initiation of translation, and internal ribosome entry site. p53 isoforms, either C-terminally altered or N-terminally truncated, exhibit distinct biological roles compared to p53α, and have significant implications for tumor development and therapy resistance. Due to a lack of part and/or complete C- or N-terminal domains, ectopic expression of some p53 isoforms failed to induce expression of canonical transcriptional targets of p53α like CDKN1A or MDM2, even though they may bind their promoters. Yet, p53 isoforms like Δ40p53α still activate subsets of targets including MDM2 and BAX. Furthermore, certain p53 isoforms transactivate even novel targets compared to p53α. More recently, non-canonical functions of p53α in DNA repair and of different isoforms in DNA replication unrelated to transcriptional activities were discovered, amplifying the potential of p53 as a master regulator of physiological and tumor suppressor functions in human cells. Both regarding canonical and non-canonical functions, alternative p53 isoforms frequently exert dominant negative effects on p53α and its partners, which is modified by the relative isoform levels. Underlying mechanisms include hetero-oligomerization, changes in subcellular localization, and aggregation. These processes ultimately influence the net activities of p53α and give rise to diverse cellular outcomes. Biological roles of p53 isoforms have implications for tumor development and cancer therapy resistance. Dysregulated expression of isoforms has been observed in various cancer types and is associated with different clinical outcomes. In conclusion, p53 isoforms have expanded our understanding of the complex regulatory network involving p53 in tumors. Unraveling the mechanisms underlying the biological roles of p53 isoforms provides new avenues for studies aiming at a better understanding of tumor development and developing therapeutic interventions to overcome resistance.
Collapse
Affiliation(s)
- Yitian Guo
- Department of Urology, Zhongda Hospital Southeast University, Nanjing, China.
| | - Hang Wu
- Department of Rehabilitation Medicine, Zhongda Hospital Southeast University, Nanjing, China
| | - Lisa Wiesmüller
- Department of Obstetrics and Gynecology, Ulm University, Ulm, Germany
| | - Ming Chen
- Department of Urology, Zhongda Hospital Southeast University, Nanjing, China.
| |
Collapse
|
5
|
Pintado-Grima C, Bárcenas O, Ventura S. Expanding the Landscape of Amyloid Sequences with CARs-DB: A Database of Polar Amyloidogenic Peptides from Disordered Proteins. Methods Mol Biol 2024; 2714:171-185. [PMID: 37676599 DOI: 10.1007/978-1-0716-3441-7_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
Abstract
Several databases collecting amyloidogenic regions have been released to provide information on protein sequences able to form amyloid fibrils. However, most of these resources are built with data from experiments that detect highly hydrophobic stretches located within transiently exposed protein segments. We recently demonstrated that cryptic amyloidogenic regions (CARs) of polar nature have the potential to form amyloid fibrils in vitro. Given the underrepresentation of these types of sequences in current amyloid databases, we developed CARs-DB, the first repository that collects thousands of predicted CARs from intrinsically disordered regions. This protocol chapter describes how to use CARs-DB to search for sequences of interest that might be connected to disease or functional protein-protein interactions. In addition, we provide study cases to illustrate the database's features to users. The CARs-DB is readily accessible at http://carsdb.ppmclab.com/ .
Collapse
Affiliation(s)
- Carlos Pintado-Grima
- Institut de Biotecnologia i de Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Oriol Bárcenas
- Institut de Biotecnologia i de Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Salvador Ventura
- Institut de Biotecnologia i de Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Barcelona, Spain.
| |
Collapse
|
6
|
Sheng M, Zhang Y, Wang Y, Liu W, Wang X, Ke T, Liu P, Wang S, Shao W. Decoding the role of aberrant RNA alternative splicing in hepatocellular carcinoma: a comprehensive review. J Cancer Res Clin Oncol 2023; 149:17691-17708. [PMID: 37898981 DOI: 10.1007/s00432-023-05474-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 10/10/2023] [Indexed: 10/31/2023]
Abstract
During eukaryotic gene expression, alternative splicing of messenger RNA precursors is critical in increasing protein diversity and regulatory complexity. Multiple transcript isoforms could be produced by alternative splicing from a single gene; they could eventually be translated into protein isoforms with deleted, added, or altered domains or produce transcripts containing premature termination codons that could be targeted by nonsense-mediated mRNA decay. Alternative splicing can generate proteins with similar, different, or even opposite functions. Increasingly strong evidence indicates that abnormal RNA splicing is a prevalent and crucial occurrence in cellular differentiation, tissue advancement, and the development and progression of cancer. Aberrant alternative splicing could affect cancer cell activities such as growth, apoptosis, invasiveness, drug resistance, angiogenesis, and metabolism. This systematic review provides a comprehensive overview of the impact of abnormal RNA alternative splicing on the development and progression of hepatocellular carcinoma.
Collapse
Affiliation(s)
- Mengfei Sheng
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Yuanyuan Zhang
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Yaoyun Wang
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Weiyi Liu
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Xingyu Wang
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Tiaoying Ke
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Pingyang Liu
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA, USA
| | - Sihan Wang
- Department of Clinical Medicine, Bengbu Medical College, Bengbu, China
| | - Wei Shao
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China.
| |
Collapse
|
7
|
Groen K, Steffens Reinhardt L, Bourdon JC, Avery-Kiejda KA. It is not all about the alpha: elevated expression of p53β variants is associated with lower probability of survival in a retrospective melanoma cohort. Cancer Cell Int 2023; 23:228. [PMID: 37794430 PMCID: PMC10548590 DOI: 10.1186/s12935-023-03083-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 09/23/2023] [Indexed: 10/06/2023] Open
Abstract
BACKGROUND Melanoma is the deadliest type of skin cancer and despite improvements in treatment outcomes, melanoma claimed 57,043 lives in 2020. In most malignancies, p53 mutation rates are above 50% and provide prognostic indications. However, in melanoma where less than a quarter of cases harbour a p53 mutation, the significance of the tumour suppressor may be questioned. Instead, p53 isoforms, which modulate p53's canonical function, may be of greater clinical importance. METHODS The expression of p53 isoforms was evaluated in 123 melanoma specimens by immunohistochemistry using p53 isoform-specific antibodies (DO-1, KJC8, KJC40, and KJC133). To determine whether TP53 mutations may be driving p53 isoform expression, TP53 was sequenced in 30 FFPE melanoma samples. RESULTS The C-terminally truncated p53β isoforms (KJC8) were found to be the most highly expressed p53 isoforms compared to all other isoforms. Further, elevated KJC8 staining was found to correlate with reduced probability of melanoma-specific survival, while KJC40 staining (Δ40p53) positively correlated with reduced melanoma thickness. TAp53 isoforms (p53 retaining both transactivation domains, DO-1), were the second highest p53 isoforms expressed across all samples. Elevated DO-1 staining was also associated with worse survival outcomes and more advanced stages of cancer. Given that the isoforms are likely to work in concert, composite isoform profiles were generated. Composite biomarker profiles revealed that elevated TAp53 (DO-1) and p53β (KJC8) expression, accompanied by low Δ40p53 (KJC40) and Δ133p53 (KJC133) expression was associated with the worst survival outcomes. Supporting the lack of predictive biomarker potential of TP53 in melanoma, no clinicopathological or p53 isoform expression associations could be linked to TP53 status. CONCLUSIONS Given the lack of prognostic biomarker potential derived from TP53 status, this study highlights how p53 isoform expression might progress this field and, pending further validation, may provide additional information to treating oncologists that might be factored into treatment decisions.
Collapse
Affiliation(s)
- Kira Groen
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, The University of Newcastle, Callaghan, NSW, Australia
- Hunter Medical Research Institute, Level 3 West, Lot 1 Kookaburra Circuit, New Lambton Heights, NSW, Australia
| | - Luiza Steffens Reinhardt
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, The University of Newcastle, Callaghan, NSW, Australia
- Hunter Medical Research Institute, Level 3 West, Lot 1 Kookaburra Circuit, New Lambton Heights, NSW, Australia
- Cancer Detection & Therapy Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Jean-Christophe Bourdon
- School of Medicine, Ninewells Hospital and Medical School, The University of Dundee, Dundee, UK
| | - Kelly A Avery-Kiejda
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, The University of Newcastle, Callaghan, NSW, Australia.
- Hunter Medical Research Institute, Level 3 West, Lot 1 Kookaburra Circuit, New Lambton Heights, NSW, Australia.
- Cancer Detection & Therapy Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia.
| |
Collapse
|
8
|
Porter LL. Fluid protein fold space and its implications. Bioessays 2023; 45:e2300057. [PMID: 37431685 PMCID: PMC10529699 DOI: 10.1002/bies.202300057] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 06/21/2023] [Accepted: 06/23/2023] [Indexed: 07/12/2023]
Abstract
Fold-switching proteins, which remodel their secondary and tertiary structures in response to cellular stimuli, suggest a new view of protein fold space. For decades, experimental evidence has indicated that protein fold space is discrete: dissimilar folds are encoded by dissimilar amino acid sequences. Challenging this assumption, fold-switching proteins interconnect discrete groups of dissimilar protein folds, making protein fold space fluid. Three recent observations support the concept of fluid fold space: (1) some amino acid sequences interconvert between folds with distinct secondary structures, (2) some naturally occurring sequences have switched folds by stepwise mutation, and (3) fold switching is evolutionarily selected and likely confers advantage. These observations indicate that minor amino acid sequence modifications can transform protein structure and function. Consequently, proteomic structural and functional diversity may be expanded by alternative splicing, small nucleotide polymorphisms, post-translational modifications, and modified translation rates.
Collapse
Affiliation(s)
- Lauren L. Porter
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| |
Collapse
|
9
|
Steffens Reinhardt L, Groen K, Xavier A, Avery-Kiejda KA. p53 Dysregulation in Breast Cancer: Insights on Mutations in the TP53 Network and p53 Isoform Expression. Int J Mol Sci 2023; 24:10078. [PMID: 37373225 DOI: 10.3390/ijms241210078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/07/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
In breast cancer, p53 expression levels are better predictors of outcome and chemotherapy response than TP53 mutation. Several molecular mechanisms that modulate p53 levels and functions, including p53 isoform expression, have been described, and may contribute to deregulated p53 activities and worse cancer outcomes. In this study, TP53 and regulators of the p53 pathway were sequenced by targeted next-generation sequencing in a cohort of 137 invasive ductal carcinomas and associations between the identified sequence variants, and p53 and p53 isoform expression were explored. The results demonstrate significant variability in levels of p53 isoform expression and TP53 variant types among tumours. We have shown that TP53 truncating and missense mutations modulate p53 levels. Further, intronic mutations, particularly polymorphisms in intron 4, which can affect the translation from the internal TP53 promoter, were associated with increased Δ133p53 levels. Differential expression of p53 and p53 isoforms was associated with the enrichment of sequence variants in p53 interactors BRCA1, PALB2, and CHEK2. Taken together, these results underpin the complexity of p53 and p53 isoform regulation. Furthermore, given the growing evidence associating dysregulated levels of p53 isoforms with cancer progression, certain TP53 sequence variants that show strong links to p53 isoform expression may advance the field of prognostic biomarker study in breast cancer.
Collapse
Affiliation(s)
- Luiza Steffens Reinhardt
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, The University of Newcastle, Callaghan, NSW 2308, Australia
- Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
- Cancer Detection & Therapy Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
| | - Kira Groen
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, The University of Newcastle, Callaghan, NSW 2308, Australia
- Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
| | - Alexandre Xavier
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, The University of Newcastle, Callaghan, NSW 2308, Australia
- Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
| | - Kelly A Avery-Kiejda
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, The University of Newcastle, Callaghan, NSW 2308, Australia
- Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
- Cancer Detection & Therapy Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
| |
Collapse
|
10
|
Pal A, Ghosh PK, Das S. The "LINC" between Δ40p53-miRNA Axis in the Regulation of Cellular Homeostasis. Mol Cell Biol 2023; 43:335-353. [PMID: 37283188 PMCID: PMC10348045 DOI: 10.1080/10985549.2023.2213147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 04/25/2023] [Indexed: 06/08/2023] Open
Abstract
Previous research has shown that Δ40p53, the translational isoform of p53, can inhibit cell growth independently of p53 by regulating microRNAs. Here, we explored the role of Δ40p53 in regulating the long noncoding RNA-micro-RNA-cellular process axis, specifically focusing on LINC00176. Interestingly, LINC00176 levels were predominantly affected by the overexpression/stress-mediated induction and knockdown of Δ40p53 rather than p53 levels. Additional assays revealed that Δ40p53 transactivates LINC00176 transcriptionally and could also regulate its stability. RNA immunoprecipitation experiments revealed that LINC00176 sequesters several putative microRNA targets, which could further titrate several mRNA targets involved in different cellular processes. To understand the downstream effects of this regulation, we ectopically overexpressed and knocked down LINC00176 in HCT116 p53-/- (harboring only Δ40p53) cells, which affected their proliferation, cell viability, and expression of epithelial markers. Our results provide essential insights into the pivotal role of Δ40p53 in regulating the novel LINC00176 RNA-microRNA-mRNA axis independent of FL-p53 and in maintaining cellular homeostasis.
Collapse
Affiliation(s)
- Apala Pal
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Pritam Kumar Ghosh
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Saumitra Das
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| |
Collapse
|
11
|
Steffens Reinhardt L, Groen K, Newton C, Avery-Kiejda KA. The role of truncated p53 isoforms in the DNA damage response. Biochim Biophys Acta Rev Cancer 2023; 1878:188882. [PMID: 36977456 DOI: 10.1016/j.bbcan.2023.188882] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 02/23/2023] [Accepted: 02/25/2023] [Indexed: 03/28/2023]
Abstract
The tumour suppressor p53 is activated following genotoxic stress and regulates the expression of target genes involved in the DNA damage response (DDR). The discovery that p53 isoforms alter the transcription of p53 target genes or p53 protein interactions unveiled an alternative DDR. This review will focus on the role p53 isoforms play in response to DNA damage. The expression of the C-terminally truncated p53 isoforms may be modulated via DNA damage-induced alternative splicing, whereas alternative translation plays an important role in modulating the expression of N-terminally truncated isoforms. The DDR induced by p53 isoforms may enhance the canonical p53 DDR or block cell death mechanisms in a DNA damage- and cell-specific manner, which could contribute to chemoresistance in a cancer context. Thus, a better understanding of the involvement of p53 isoforms in the cell fate decisions could uncover potential therapeutic targets in cancer and other diseases.
Collapse
Affiliation(s)
- Luiza Steffens Reinhardt
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, The University of Newcastle, Newcastle, NSW, Australia; Hunter Medical Research Institute, Newcastle, NSW, Australia
| | - Kira Groen
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, The University of Newcastle, Newcastle, NSW, Australia; Hunter Medical Research Institute, Newcastle, NSW, Australia
| | - Cheryl Newton
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, The University of Newcastle, Newcastle, NSW, Australia; Hunter Medical Research Institute, Newcastle, NSW, Australia
| | - Kelly A Avery-Kiejda
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, The University of Newcastle, Newcastle, NSW, Australia; Hunter Medical Research Institute, Newcastle, NSW, Australia.
| |
Collapse
|
12
|
Jacksi M, Schad E, Buday L, Tantos A. Absence of Scaffold Protein Tks4 Disrupts Several Signaling Pathways in Colon Cancer Cells. Int J Mol Sci 2023; 24:ijms24021310. [PMID: 36674824 PMCID: PMC9861885 DOI: 10.3390/ijms24021310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 01/05/2023] [Accepted: 01/06/2023] [Indexed: 01/12/2023] Open
Abstract
Tks4 is a large scaffold protein in the EGFR signal transduction pathway that is involved in several cellular processes, such as cellular motility, reactive oxygen species-dependent processes, and embryonic development. It is also implicated in a rare developmental disorder, Frank-ter Haar syndrome. Loss of Tks4 resulted in the induction of an EMT-like process, with increased motility and overexpression of EMT markers in colorectal carcinoma cells. In this work, we explored the broader effects of deletion of Tks4 on the gene expression pattern of HCT116 colorectal carcinoma cells by transcriptome sequencing of wild-type and Tks4 knockout (KO) cells. We identified several protein coding genes with altered mRNA levels in the Tks4 KO cell line, as well as a set of long non-coding RNAs, and confirmed these changes with quantitative PCR on a selected set of genes. Our results show a significant perturbation of gene expression upon the deletion of Tks4, suggesting the involvement of different signal transduction pathways over the well-known EGFR signaling.
Collapse
Affiliation(s)
- Mevan Jacksi
- Institute of Enzymology, Research Centre for Natural Sciences, 1117 Budapest, Hungary
- Doctoral School of Biology, Institute of Biology, ELTE Eötvös Loránd University, 1117 Budapest, Hungary
| | - Eva Schad
- Institute of Enzymology, Research Centre for Natural Sciences, 1117 Budapest, Hungary
| | - László Buday
- Institute of Enzymology, Research Centre for Natural Sciences, 1117 Budapest, Hungary
- Department of Molecular Biology, Semmelweis University Medical School, 1094 Budapest, Hungary
| | - Agnes Tantos
- Institute of Enzymology, Research Centre for Natural Sciences, 1117 Budapest, Hungary
- Correspondence:
| |
Collapse
|
13
|
Alterations in the p53 isoform ratio govern breast cancer cell fate in response to DNA damage. Cell Death Dis 2022; 13:907. [PMID: 36307393 PMCID: PMC9616954 DOI: 10.1038/s41419-022-05349-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 10/13/2022] [Accepted: 10/14/2022] [Indexed: 11/07/2022]
Abstract
Our previous studies have shown that p53 isoform expression is altered in breast cancer and related to prognosis. In particular, a high ∆40p53:p53α ratio is associated with worse disease-free survival. In this manuscript, the influence of altered Δ40p53 and p53α levels on the response to standard of care DNA-damaging agents used in breast cancer treatment was investigated in vitro. Our results revealed that a high Δ40p53:p53α ratio causes cells to respond differently to doxorubicin and cisplatin treatments. Δ40p53 overexpression significantly impairs the cells' sensitivity to doxorubicin through reducing apoptosis and DNA damage, whereas Δ40p53 knockdown has the opposite effect. Further, a high Δ40p53:p53α ratio inhibited the differential expression of several genes following doxorubicin and promoted DNA repair, impairing the cells' canonical response. Overall, our results suggest that the response of breast cancer cells to standard of care DNA-damaging therapies is dependent on the expression of p53 isoforms, which may contribute to outcomes in breast cancer.
Collapse
|
14
|
Structural Characteristics of the 5′-Terminal Region of Mouse p53 mRNA and Identification of Proteins That Bind to This mRNA Region. Int J Mol Sci 2022; 23:ijms23179709. [PMID: 36077109 PMCID: PMC9456389 DOI: 10.3390/ijms23179709] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 08/19/2022] [Accepted: 08/23/2022] [Indexed: 12/15/2022] Open
Abstract
A mouse model has often been used in studies of p53 gene expression. Detailed interpretation of functional studies is, however, hampered by insufficient knowledge of the impact of mouse p53 mRNA’s structure and its interactions with proteins in the translation process. In particular, the 5′-terminal region of mouse p53 mRNA is an important region which takes part in the regulation of the synthesis of p53 protein and its N-truncated isoform Δ41p53. In this work, the spatial folding of the 5′-terminal region of mouse p53 mRNA and its selected sub-fragments was proposed based on the results of the SAXS method and the RNAComposer program. Subsequently, RNA-assisted affinity chromatography was used to identify proteins present in mouse fibroblast cell lysates that are able to bind the RNA oligomer, which corresponds to the 5′-terminal region of mouse p53 mRNA. Possible sites to which the selected, identified proteins can bind were proposed. Interestingly, most of these binding sites coincide with the sites determined as accessible to hybridization of complementary oligonucleotides. Finally, the high binding affinity of hnRNP K and PCBP2 to the 5′-terminal region of mouse p53 mRNA was confirmed and their possible binding sites were proposed.
Collapse
|
15
|
A Novel Role of SMG1 in Cholesterol Homeostasis That Depends Partially on p53 Alternative Splicing. Cancers (Basel) 2022; 14:cancers14133255. [PMID: 35805027 PMCID: PMC9265556 DOI: 10.3390/cancers14133255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/26/2022] [Accepted: 06/29/2022] [Indexed: 12/10/2022] Open
Abstract
Simple Summary p53 isoforms have been reported in various tumor types. Both p53β and p53γ were recently reported to retain functionalities of full-length p53α. A role for p53 and p53 loss in cholesterol metabolism has also emerged. We show that SMG1, a phosphatidylinositol 3-kinase-related kinase, when inhibited in p53 wild-type MCF7 and HepG2 cells, significantly alters the expression of cholesterol pathway genes, with a net increase in intracellular cholesterol and an increased sensitivity to Fatostatin in MCF7. We confirm a prior report that SMG1 inhibition in MCF7 cells promotes expression of p53β and show the first evidence for increases in p53γ. Further, induced p53β expression, confirmed with antibody, explained the loss of SMG1 upregulation of the ABCA1 cholesterol exporter where p53γ had no effect on ABCA1. Additionally, upregulation of ABCA1 upon SMG1 knockdown was independent of upregulation of nonsense-mediated decay target RASSF1C, previously suggested to regulate ABCA1 via a “RASSF1C-miR33a-ABCA1” axis. Abstract SMG1, a phosphatidylinositol 3-kinase-related kinase (PIKK), essential in nonsense-mediated RNA decay (NMD), also regulates p53, including the alternative splicing of p53 isoforms reported to retain p53 functions. We confirm that SMG1 inhibition in MCF7 tumor cells induces p53β and show p53γ increase. Inhibiting SMG1, but not UPF1 (a core factor in NMD), upregulated several cholesterol pathway genes. SMG1 knockdown significantly increased ABCA1, a cholesterol efflux pump shown to be positively regulated by full-length p53 (p53α). An investigation of RASSF1C, an NMD target, increased following SMG1 inhibition and reported to inhibit miR-33a-5p, a canonical ABCA1-inhibiting miRNA, did not explain the ABCA1 results. ABCA1 upregulation following SMG1 knockdown was inhibited by p53β siRNA with greatest inhibition when p53α and p53β were jointly suppressed, while p53γ siRNA had no effect. In contrast, increased expression of MVD, a cholesterol synthesis gene upregulated in p53 deficient backgrounds, was sensitive to combined targeting of p53α and p53γ. Phenotypically, we observed increased intracellular cholesterol and enhanced sensitivity of MCF7 to growth inhibitory effects of cholesterol-lowering Fatostatin following SMG1 inhibition. Our results suggest deregulation of cholesterol pathway genes following SMG1 knockdown may involve alternative p53 programming, possibly resulting from differential effects of p53 isoforms on cholesterol gene expression.
Collapse
|
16
|
p53 Isoforms as Cancer Biomarkers and Therapeutic Targets. Cancers (Basel) 2022; 14:cancers14133145. [PMID: 35804915 PMCID: PMC9264937 DOI: 10.3390/cancers14133145] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 06/22/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary The well-known tumor suppressor protein p53 plays important roles in tumor prevention through transcriptional regulation of its target genes. Reactivation of p53 activity has been a potent strategy for cancer treatment. Accumulating evidences indicate that p53 isoforms truncated/modified in the N- or C-terminus can modulate the p53 pathway in a p53-dependent or p53-independent manner. It is thus imperative to characterize the roles of the p53 isoforms in cancer development. This review illustrates how p53 isoforms participate in tumor development and/or suppression. It also summarizes the knowledge about the p53 isoforms as promising cancer biomarkers and therapeutic targets. Abstract This review aims to summarize the implications of the major isoforms of the tumor suppressor protein p53 in aggressive cancer development. The current knowledge of p53 isoforms, their involvement in cell-signaling pathways, and their interactions with other cellular proteins or factors suggests the existence of an intricate molecular network that regulates their oncogenic function. Moreover, existing literature about the involvement of the p53 isoforms in various cancers leads to the proposition of therapeutic solutions by altering the cellular levels of the p53 isoforms. This review thus summarizes how the major p53 isoforms Δ40p53α/β/γ, Δ133p53α/β/γ, and Δ160p53α/β/γ might have clinical relevance in the diagnosis and effective treatments of cancer.
Collapse
|
17
|
Cytoplasmic p53β Isoforms Are Associated with Worse Disease-Free Survival in Breast Cancer. Int J Mol Sci 2022; 23:ijms23126670. [PMID: 35743117 PMCID: PMC9223648 DOI: 10.3390/ijms23126670] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/10/2022] [Accepted: 06/12/2022] [Indexed: 12/02/2022] Open
Abstract
TP53 mutations are associated with tumour progression, resistance to therapy and poor prognosis. However, in breast cancer, TP53′s overall mutation frequency is lower than expected (~25%), suggesting that other mechanisms may be responsible for the disruption of this critical tumour suppressor. p53 isoforms are known to enhance or disrupt p53 pathway activity in cell- and context-specific manners. Our previous study revealed that p53 isoform mRNA expression correlates with clinicopathological features and survival in breast cancer and may account for the dysregulation of the p53 pathway in the absence of TP53 mutations. Hence, in this study, the protein expression of p53 isoforms, transactivation domain p53 (TAp53), p53β, Δ40p53, Δ133p53 and Δ160p53 was analysed using immunohistochemistry in a cohort of invasive ductal carcinomas (n = 108). p53 isoforms presented distinct cellular localisation, with some isoforms being expressed in tumour cells and others in infiltrating immune cells. Moreover, high levels of p53β, most likely to be N-terminally truncated β variants, were significantly associated with worse disease-free survival, especially in tumours with wild-type TP53. To the best of our knowledge, this is the first study that analysed the endogenous protein levels of p53 isoforms in a breast cancer cohort. Our findings suggest that p53β may be a useful prognostic marker.
Collapse
|
18
|
Antonio-Véjar V, Ortiz-Sánchez E, Rosendo-Chalma P, Patiño-Morales CC, Guido-Jiménez MC, Alvarado-Ortiz E, Hernández G, García-Carrancá A. New insights into the interactions of HPV-16 E6*I and E6*II with p53 isoforms and induction of apoptosis in cancer-derived cell lines. Pathol Res Pract 2022; 234:153890. [PMID: 35487028 DOI: 10.1016/j.prp.2022.153890] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 04/04/2022] [Accepted: 04/06/2022] [Indexed: 02/07/2023]
Abstract
An important characteristic of cancers associated with high-risk human papillomaviruses (HR-HPV) is the inability of p53 to activate apoptosis due to the effect of the oncoprotein E6. However, the effect of HPV-16 E6 splice variant isoforms (namely E6*I and E6*II), their interaction with the existing p53 isoforms, and their influence on apoptosis is unclear. Here, we report the outcome of ectopic expression of HPV-16 E6, E6*I, and E6*II on the relative levels of p53 and p53 isoforms Δ40p53 and Δ133p53 and their interactions with these proteins. Additionally, we evaluated the effect of ectopic expression of p53, Δ40p53, and Δ133p53 on apoptosis in a p53 null pulmonary cell line (H1299) co-transfected with E6 isoforms and p53+/+ cell lines with HR-HPV (SiHa and HeLa), transfected with p53 isoforms and treated with cisplatin, a conventional drug used to treat cervical cancer. Our results show that E6 and E6*II induced a significant decrease in p53, but only E6 triggered a Δ40p53 decrease and that E6*II interacts with p53 but not with Δ40p53 and Δ133p53. On the other hand, E6*I did not show any effect or interaction with the p53 isoforms. We found that apoptosis was elevated in H1299 cells transfected with p53 (p = 0.0001) and Δ40p53 (p = 0.0001). A weak apoptotic effect was observed when Δ133p53 was ectopically expressed (p = 0.0195). We observed that both p53 (p = 0.0006) and Δ40p53 (p = 0.0014) induced apoptosis in cisplatin-treated SiHa cells; however in cisplatin-treated HeLa cells, only p53 induced apoptosis (p = 0.0029). No significant differences in apoptosis were observed upon ectopic expression of p53, Δ40p53, and Δ133p53 in SiHa and HeLa cells. Our findings suggest a possible therapeutic application for the combining of p53 or Δ40p53 with cisplatin to induce an increased apoptosis of cancer cells expressing E6 isoforms from HPV-16.
Collapse
Affiliation(s)
- Verónica Antonio-Véjar
- Programa de Doctorado en Ciencias Biomédicas, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, 10450, Mexico; Laboratorio de Biomedicina Molecular, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo, 39090, Guerrero, Mexico; Unidad de Investigación Biomédica en Cáncer, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México and Instituto Nacional de Cancerología, Ciudad de México, 14080, Mexico.
| | - Elizabeth Ortiz-Sánchez
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología, Ciudad de México, 14080, Mexico.
| | - Pedro Rosendo-Chalma
- Programa de Doctorado en Ciencias Biomédicas, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, 10450, Mexico; Unidad de Investigación Biomédica en Cáncer, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México and Instituto Nacional de Cancerología, Ciudad de México, 14080, Mexico.
| | - Carlos C Patiño-Morales
- Unidad de Investigación Biomédica en Cáncer, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México and Instituto Nacional de Cancerología, Ciudad de México, 14080, Mexico.
| | - Miriam C Guido-Jiménez
- Unidad de Investigación Biomédica en Cáncer, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México and Instituto Nacional de Cancerología, Ciudad de México, 14080, Mexico.
| | - Eduardo Alvarado-Ortiz
- Programa de Posgrado en Ciencias Biológicas. Universidad Nacional Autónoma de México (UNAM), Ciudad de México, 04510, Mexico; Unidad de Investigación Biomédica en Cáncer, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México and Instituto Nacional de Cancerología, Ciudad de México, 14080, Mexico.
| | - Greco Hernández
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología, Ciudad de México, 14080, Mexico.
| | - Alejandro García-Carrancá
- Unidad de Investigación Biomédica en Cáncer, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México and Instituto Nacional de Cancerología, Ciudad de México, 14080, Mexico.
| |
Collapse
|
19
|
Liu Y, Ma G, Gao Z, Li J, Wang J, Zhu X, Ma R, Yang J, Zhou Y, Hu K, Zhang Y, Guo Y. Global chromosome rearrangement induced by CRISPR-Cas9 reshapes the genome and transcriptome of human cells. Nucleic Acids Res 2022; 50:3456-3474. [PMID: 35244719 PMCID: PMC8989517 DOI: 10.1093/nar/gkac153] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 01/29/2022] [Accepted: 02/19/2022] [Indexed: 11/25/2022] Open
Abstract
Chromosome rearrangement plays important roles in development, carcinogenesis and evolution. However, its mechanism and subsequent effects are not fully understood. Large-scale chromosome rearrangement has been performed in the simple eukaryote, wine yeast, but the relative research in mammalian cells remains at the level of individual chromosome rearrangement due to technical limitations. In this study, we used CRISPR-Cas9 to target the highly repetitive human endogenous retrotransposons, LINE-1 and Alu, resulting in a large number of DNA double-strand breaks in the chromosomes. While this operation killed the majority of the cells, we eventually obtained live cell groups. Karyotype analysis and genome re-sequencing proved that we have achieved global chromosome rearrangement (GCR) in human cells. The copy number variations of the GCR genomes showed typical patterns observed in tumor genomes. The ATAC-seq and RNA-seq further revealed that the epigenetic and transcriptomic landscapes were deeply reshaped by GCR. Gene expressions related to p53 pathway, DNA repair, cell cycle and apoptosis were greatly altered to facilitate the cell survival. Our study provided a new application of CRISPR-Cas9 and a practical approach for GCR in complex mammalian genomes.
Collapse
Affiliation(s)
- Ying Liu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Guangwei Ma
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou 571158, China
| | - Zenghong Gao
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Jian Li
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Jin Wang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Xiangping Zhu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Ruowu Ma
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Jiawen Yang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Yiting Zhou
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Kaishun Hu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Yin Zhang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Yabin Guo
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| |
Collapse
|
20
|
Jaiswal SK, Raj S, DePamphilis ML. Developmental Acquisition of p53 Functions. Genes (Basel) 2021; 12:genes12111675. [PMID: 34828285 PMCID: PMC8622856 DOI: 10.3390/genes12111675] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 10/14/2021] [Accepted: 10/21/2021] [Indexed: 12/12/2022] Open
Abstract
Remarkably, the p53 transcription factor, referred to as “the guardian of the genome”, is not essential for mammalian development. Moreover, efforts to identify p53-dependent developmental events have produced contradictory conclusions. Given the importance of pluripotent stem cells as models of mammalian development, and their applications in regenerative medicine and disease, resolving these conflicts is essential. Here we attempt to reconcile disparate data into justifiable conclusions predicated on reports that p53-dependent transcription is first detected in late mouse blastocysts, that p53 activity first becomes potentially lethal during gastrulation, and that apoptosis does not depend on p53. Furthermore, p53 does not regulate expression of genes required for pluripotency in embryonic stem cells (ESCs); it contributes to ESC genomic stability and differentiation. Depending on conditions, p53 accelerates initiation of apoptosis in ESCs in response to DNA damage, but cell cycle arrest as well as the rate and extent of apoptosis in ESCs are p53-independent. In embryonic fibroblasts, p53 induces cell cycle arrest to allow repair of DNA damage, and cell senescence to prevent proliferation of cells with extensive damage.
Collapse
Affiliation(s)
- Sushil K. Jaiswal
- National Institute of Child Health and Human Development, Bethesda, MD 20892, USA;
- National Human Genome Research Institute, Bethesda, MD 20892, USA
| | - Sonam Raj
- National Cancer Institute, Bethesda, MD 20892, USA;
| | - Melvin L. DePamphilis
- National Institute of Child Health and Human Development, Bethesda, MD 20892, USA;
- Correspondence:
| |
Collapse
|
21
|
Zhang X, Groen K, Morten BC, Steffens Reinhardt L, Campbell HG, Braithwaite AW, Bourdon JC, Avery-Kiejda KA. Effect of p53 and its N-terminally truncated isoform, Δ40p53, on breast cancer migration and invasion. Mol Oncol 2021; 16:447-465. [PMID: 34657382 PMCID: PMC8763661 DOI: 10.1002/1878-0261.13118] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/27/2021] [Accepted: 10/14/2021] [Indexed: 01/07/2023] Open
Abstract
Breast cancer is the most diagnosed malignancy in women, with over half a million women dying from this disease each year. In our previous studies, ∆40p53, an N‐terminally truncated p53 isoform, was found to be upregulated in breast cancers, and a high ∆40p53 : p53α ratio was linked with worse disease‐free survival. Although p53α inhibits cancer migration and invasion, little is known about the role of ∆40p53 in regulating these metastasis‐related processes and its role in contributing to worse prognosis. The aim of this study was to assess the role of ∆40p53 in breast cancer migration and invasion. A relationship between Δ40p53 and gene expression profiles was identified in oestrogen‐receptor‐positive breast cancer specimens. To further evaluate the role of Δ40p53 in oestrogen‐receptor‐positive breast cancer, MCF‐7 and ZR75‐1 cell lines were transduced to knockdown p53α or Δ40p53 and overexpress Δ40p53. Proliferation, migration and invasion were assessed in the transduced sublines, and gene expression was assessed through RNA‐sequencing and validated by reverse‐transcription quantitative PCR. Knockdown of both p53α and ∆40p53 resulted in increased proliferation, whereas overexpression of ∆40p53 reduced proliferation rates. p53α knockdown was also associated with increased cell mobility. ∆40p53 overexpression reduced both migratory and invasive properties of the transduced cells. Phenotypic findings are supported by gene expression data, including differential expression of LRG1, HYOU1, UBE2QL1, SERPINA5 and PCDH7. Taken together, these results suggest that, at the basal level, ∆40p53 works similarly to p53α in suppressing cellular mobility and proliferation, although the role of Δ40p53 may be cell context‐specific.
Collapse
Affiliation(s)
- Xiajie Zhang
- Hunter Medical Research Institute, New Lambton Heights, NSW, Australia.,School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, The University of Newcastle, NSW, Australia
| | - Kira Groen
- Hunter Medical Research Institute, New Lambton Heights, NSW, Australia.,School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, The University of Newcastle, NSW, Australia
| | - Brianna C Morten
- Hunter Medical Research Institute, New Lambton Heights, NSW, Australia.,School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, The University of Newcastle, NSW, Australia
| | - Luiza Steffens Reinhardt
- Hunter Medical Research Institute, New Lambton Heights, NSW, Australia.,School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, The University of Newcastle, NSW, Australia
| | - Hamish G Campbell
- Children's Medical Research Institute, University of Sydney, NSW, Australia
| | - Antony W Braithwaite
- Children's Medical Research Institute, University of Sydney, NSW, Australia.,Department of Pathology, School of Medicine, University of Otago, Dunedin, New Zealand
| | | | - Kelly A Avery-Kiejda
- Hunter Medical Research Institute, New Lambton Heights, NSW, Australia.,School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, The University of Newcastle, NSW, Australia
| |
Collapse
|
22
|
James SA, Ong HS, Hari R, Khan AM. A systematic bioinformatics approach for large-scale identification and characterization of host-pathogen shared sequences. BMC Genomics 2021; 22:700. [PMID: 34583643 PMCID: PMC8477458 DOI: 10.1186/s12864-021-07657-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 04/28/2021] [Indexed: 11/10/2022] Open
Abstract
Background Biology has entered the era of big data with the advent of high-throughput omics technologies. Biological databases provide public access to petabytes of data and information facilitating knowledge discovery. Over the years, sequence data of pathogens has seen a large increase in the number of records, given the relatively small genome size and their important role as infectious and symbiotic agents. Humans are host to numerous pathogenic diseases, such as that by viruses, many of which are responsible for high mortality and morbidity. The interaction between pathogens and humans over the evolutionary history has resulted in sharing of sequences, with important biological and evolutionary implications. Results This study describes a large-scale, systematic bioinformatics approach for identification and characterization of shared sequences between the host and pathogen. An application of the approach is demonstrated through identification and characterization of the Flaviviridae-human share-ome. A total of 2430 nonamers represented the Flaviviridae-human share-ome with 100% identity. Although the share-ome represented a small fraction of the repertoire of Flaviviridae (~ 0.12%) and human (~ 0.013%) non-redundant nonamers, the 2430 shared nonamers mapped to 16,946 Flaviviridae and 7506 human non-redundant protein sequences. The shared nonamer sequences mapped to 125 species of Flaviviridae, including several with unclassified genus. The majority (~ 68%) of the shared sequences mapped to Hepacivirus C species; West Nile, dengue and Zika viruses of the Flavivirus genus accounted for ~ 11%, ~ 7%, and ~ 3%, respectively, of the Flaviviridae protein sequences (16,946) mapped by the share-ome. Further characterization of the share-ome provided important structural-functional insights to Flaviviridae-human interactions. Conclusion Mapping of the host-pathogen share-ome has important implications for the design of vaccines and drugs, diagnostics, disease surveillance and the discovery of unknown, potential host-pathogen interactions. The generic workflow presented herein is potentially applicable to a variety of pathogens, such as of viral, bacterial or parasitic origin. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07657-4.
Collapse
Affiliation(s)
- Stephen Among James
- Centre for Bioinformatics, School of Data Sciences, Perdana University, Damansara Heights, Kuala Lumpur, 50490, Malaysia.,Department of Biochemistry, Faculty of Science, Kaduna State University, Kaduna, 800211, Nigeria
| | - Hui San Ong
- Centre for Bioinformatics, School of Data Sciences, Perdana University, Damansara Heights, Kuala Lumpur, 50490, Malaysia
| | - Ranjeev Hari
- Centre for Bioinformatics, School of Data Sciences, Perdana University, Damansara Heights, Kuala Lumpur, 50490, Malaysia
| | - Asif M Khan
- Centre for Bioinformatics, School of Data Sciences, Perdana University, Damansara Heights, Kuala Lumpur, 50490, Malaysia. .,Beykoz Institute of Life Sciences and Biotechnology, Bezmialem Vakif University, Beykoz, Istanbul, 34820, Turkey.
| |
Collapse
|
23
|
Δ40p53 isoform up-regulates netrin-1/UNC5B expression and potentiates netrin-1 pro-oncogenic activity. Proc Natl Acad Sci U S A 2021; 118:2103319118. [PMID: 34470826 DOI: 10.1073/pnas.2103319118] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Netrin-1, a secreted protein recently characterized as a relevant cancer therapeutic target, is the antiapoptotic ligand of the dependence receptors deleted in colorectal carcinoma and members of the UNC5H family. Netrin-1 is overexpressed in several aggressive cancers where it promotes cancer progression by inhibiting cell death induced by its receptors. Interference of its binding to its receptors has been shown, through the development of a monoclonal neutralizing antinetrin-1 antibody (currently in phase II of clinical trial), to actively induce apoptosis and tumor growth inhibition. The transcription factor p53 was shown to positively regulate netrin-1 gene expression. We show here that netrin-1 could be a target gene of the N-terminal p53 isoform Δ40p53, independent of full-length p53 activity. Using stable cell lines, harboring wild-type or null-p53, in which Δ40p53 expression could be finely tuned, we prove that Δ40p53 binds to and activates the netrin-1 promoter. In addition, we show that forcing immortalized human skeletal myoblasts to produce the Δ40p53 isoform, instead of full-length p53, leads to the up-regulation of netrin-1 and its receptor UNC5B and promotes cell survival. Indeed, we demonstrate that netrin-1 interference, in the presence of Δ40p53, triggers apoptosis in cancer and primary cells, leading to tumor growth inhibition in preclinical in vivo models. Finally, we show a positive correlation between netrin-1 and Δ40p53 gene expression in human melanoma and colorectal cancer biopsies. Hence, we propose that inhibition of netrin-1 binding to its receptors should be a promising therapeutic strategy in human tumors expressing high levels of Δ40p53.
Collapse
|
24
|
p53/p73 Protein Network in Colorectal Cancer and Other Human Malignancies. Cancers (Basel) 2021; 13:cancers13122885. [PMID: 34207603 PMCID: PMC8227208 DOI: 10.3390/cancers13122885] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 06/02/2021] [Accepted: 06/03/2021] [Indexed: 12/16/2022] Open
Abstract
Simple Summary The p53 family of proteins comprises p53, p63, and p73, which share high structural and functional similarity. The two distinct promoters of each locus, the alternative splicing, and the alternative translation initiation sites enable the generation of numerous isoforms with different protein-interacting domains and distinct activities. The co-expressed p53/p73 isoforms have significant but distinct roles in carcinogenesis. Their activity is frequently impaired in human tumors including colorectal carcinoma due to dysregulated expression and a dominant-negative effect accomplished by some isoforms and p53 mutants. The interactions between isoforms are particularly important to understand the onset of tumor formation, progression, and therapeutic response. The understanding of the p53/p73 network can contribute to the development of new targeted therapies. Abstract The p53 tumor suppressor protein is crucial for cell growth control and the maintenance of genomic stability. Later discovered, p63 and p73 share structural and functional similarity with p53. To understand the p53 pathways more profoundly, all family members should be considered. Each family member possesses two promoters and alternative translation initiation sites, and they undergo alternative splicing, generating multiple isoforms. The resulting isoforms have important roles in carcinogenesis, while their expression is dysregulated in several human tumors including colorectal carcinoma, which makes them potential targets in cancer treatment. Their activities arise, at least in part, from the ability to form tetramers that bind to specific DNA sequences and activate the transcription of target genes. In this review, we summarize the current understanding of the biological activities and regulation of the p53/p73 isoforms, highlighting their role in colorectal tumorigenesis. The analysis of the expression patterns of the p53/p73 isoforms in human cancers provides an important step in the improvement of cancer therapy. Furthermore, the interactions among the p53 family members which could modulate normal functions of the canonical p53 in tumor tissue are described. Lastly, we emphasize the importance of clinical studies to assess the significance of combining the deregulation of different members of the p53 family to define the outcome of the disease.
Collapse
|
25
|
Lasham A, Knowlton N, Mehta SY, Braithwaite AW, Print CG. Breast Cancer Patient Prognosis Is Determined by the Interplay between TP53 Mutation and Alternative Transcript Expression: Insights from TP53 Long Amplicon Digital PCR Assays. Cancers (Basel) 2021; 13:cancers13071531. [PMID: 33810361 PMCID: PMC8036703 DOI: 10.3390/cancers13071531] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/19/2021] [Accepted: 03/22/2021] [Indexed: 11/30/2022] Open
Abstract
Simple Summary The TP53 gene, the most commonly mutated gene in human cancers, is capable of producing multiple RNAs (transcripts). The aim of our study was to measure the abundance of each TP53 transcript, combined with TP53 gene mutation information, to determine the interplay between these in a cohort of breast tumors from New Zealand patients. To do this, we devised a new assay which then enabled the measurement of all known TP53 transcripts. We showed how TP53 gene mutations influenced the levels of specific TP53 transcripts in breast tumors. We evaluated whether a combination of TP53 tumor information, including TP53 mutation status and the levels of certain TP53 transcripts, with standard clinical and pathological information, was associated with breast cancer patient outcome. We recommend that a truly comprehensive analysis of TP53 needs to incorporate data about both TP53 DNA mutations and the expression of the alternative TP53 transcripts. Abstract The TP53 gene locus is capable of producing multiple RNA transcripts encoding the different p53 protein isoforms. We recently described multiplex long amplicon droplet digital PCR (ddPCR) assays to quantify seven of eight TP53 reference transcripts in human tumors. Here, we describe a new long amplicon ddPCR assay to quantify expression of the eighth TP53 reference transcript encoding ∆40p53α. We then applied these assays, alongside DNA sequencing of the TP53 gene locus, to tumors from a cohort of New Zealand (NZ) breast cancer patients. We found a high prevalence of mutations at TP53 splice sites in the NZ breast cancer cohort. Mutations at TP53 intron 4 splice sites were associated with overexpression of ∆133TP53 transcripts. Cox proportional hazards survival analysis showed that interplay between TP53 mutation status and expression of TP53 transcript variants was significantly associated with patient outcome, over and above standard clinical and pathological information. In particular, patients with no TP53 mutation and a low ratio of TP53 transcripts t2 to t1, which derive from alternative intron 1 acceptor splice sites, had a remarkably good outcome. We suggest that this type of analysis, integrating mutation and transcript expression, provides a step-change in our understanding of TP53 in cancer.
Collapse
Affiliation(s)
- Annette Lasham
- Department of Molecular Medicine and Pathology, School of Medical Sciences, University of Auckland, Auckland 1142, New Zealand; (N.K.); (C.G.P.)
- Maurice Wilkins Centre, University of Auckland, Auckland 1010, New Zealand; (S.Y.M.); (A.W.B.)
- Correspondence:
| | - Nicholas Knowlton
- Department of Molecular Medicine and Pathology, School of Medical Sciences, University of Auckland, Auckland 1142, New Zealand; (N.K.); (C.G.P.)
- Maurice Wilkins Centre, University of Auckland, Auckland 1010, New Zealand; (S.Y.M.); (A.W.B.)
| | - Sunali Y. Mehta
- Maurice Wilkins Centre, University of Auckland, Auckland 1010, New Zealand; (S.Y.M.); (A.W.B.)
- Department of Pathology, University of Otago, Dunedin 9016, New Zealand
| | - Antony W. Braithwaite
- Maurice Wilkins Centre, University of Auckland, Auckland 1010, New Zealand; (S.Y.M.); (A.W.B.)
- Department of Pathology, University of Otago, Dunedin 9016, New Zealand
- Malaghan Institute of Medical Research, Wellington 6242, New Zealand
| | - Cristin G. Print
- Department of Molecular Medicine and Pathology, School of Medical Sciences, University of Auckland, Auckland 1142, New Zealand; (N.K.); (C.G.P.)
- Maurice Wilkins Centre, University of Auckland, Auckland 1010, New Zealand; (S.Y.M.); (A.W.B.)
| |
Collapse
|
26
|
Katoch A, Tripathi SK, Pal A, Das S. Regulation of miR-186-YY1 axis by the p53 translational isoform ∆40p53: implications in cell proliferation. Cell Cycle 2021; 20:561-574. [PMID: 33629930 DOI: 10.1080/15384101.2021.1875670] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
We have earlier shown that p53-FL and its translational isoform ∆40p53 are differentially regulated. In this study, we have investigated the cellular effect of ∆40p53 regulation on downstream gene expression, specifically miRNAs. Interestingly, ∆40p53 showed antagonistic regulation of miR-186-5p as compared to either p53 alone or a combination of both the isoforms. We have elucidated the miR-186-5p mediated effect of ∆40p53 in cell proliferation. Upon expression of ∆40p53, we observed a significant decrease in YY1 levels, an established target of miR-186-5p, which is involved in cell proliferation. Further assays with anti-miR-186 established the interdependence of ∆40p53- miR-186-5p-YY1- cell proliferation. The results unravel a new dimension toward the understanding of ∆40p53 functions, which seems to regulate cellular fate independent of p53FL.
Collapse
Affiliation(s)
- Aanchal Katoch
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Sachin Kumar Tripathi
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Apala Pal
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Saumitra Das
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India.,National Institute of Biomedical Genomics, Kalyani, India
| |
Collapse
|
27
|
Angarola BL, Anczuków O. Splicing alterations in healthy aging and disease. WILEY INTERDISCIPLINARY REVIEWS. RNA 2021. [PMID: 33565261 DOI: 10.1002/wrna.1643.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Alternative RNA splicing is a key step in gene expression that allows generation of numerous messenger RNA transcripts encoding proteins of varied functions from the same gene. It is thus a rich source of proteomic and functional diversity. Alterations in alternative RNA splicing are observed both during healthy aging and in a number of human diseases, several of which display premature aging phenotypes or increased incidence with age. Age-associated splicing alterations include differential splicing of genes associated with hallmarks of aging, as well as changes in the levels of core spliceosomal genes and regulatory splicing factors. Here, we review the current known links between alternative RNA splicing, its regulators, healthy biological aging, and diseases associated with aging or aging-like phenotypes. This article is categorized under: RNA in Disease and Development > RNA in Disease RNA Processing > Splicing Regulation/Alternative Splicing.
Collapse
Affiliation(s)
| | - Olga Anczuków
- The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut, USA.,Department of Genetics and Genome Sciences, UConn Health, Farmington, Connecticut, USA.,Institute for Systems Genomics, UConn Health, Farmington, Connecticut, USA
| |
Collapse
|
28
|
Angarola BL, Anczuków O. Splicing alterations in healthy aging and disease. WILEY INTERDISCIPLINARY REVIEWS-RNA 2021; 12:e1643. [PMID: 33565261 DOI: 10.1002/wrna.1643] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 01/05/2021] [Accepted: 01/07/2021] [Indexed: 12/19/2022]
Abstract
Alternative RNA splicing is a key step in gene expression that allows generation of numerous messenger RNA transcripts encoding proteins of varied functions from the same gene. It is thus a rich source of proteomic and functional diversity. Alterations in alternative RNA splicing are observed both during healthy aging and in a number of human diseases, several of which display premature aging phenotypes or increased incidence with age. Age-associated splicing alterations include differential splicing of genes associated with hallmarks of aging, as well as changes in the levels of core spliceosomal genes and regulatory splicing factors. Here, we review the current known links between alternative RNA splicing, its regulators, healthy biological aging, and diseases associated with aging or aging-like phenotypes. This article is categorized under: RNA in Disease and Development > RNA in Disease RNA Processing > Splicing Regulation/Alternative Splicing.
Collapse
Affiliation(s)
| | - Olga Anczuków
- The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut, USA.,Department of Genetics and Genome Sciences, UConn Health, Farmington, Connecticut, USA.,Institute for Systems Genomics, UConn Health, Farmington, Connecticut, USA
| |
Collapse
|
29
|
Magri J, Gasparetto A, Conti L, Calautti E, Cossu C, Ruiu R, Barutello G, Cavallo F. Tumor-Associated Antigen xCT and Mutant-p53 as Molecular Targets for New Combinatorial Antitumor Strategies. Cells 2021; 10:108. [PMID: 33430127 PMCID: PMC7827209 DOI: 10.3390/cells10010108] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 12/24/2020] [Accepted: 01/05/2021] [Indexed: 12/13/2022] Open
Abstract
The cystine/glutamate antiporter xCT is a tumor-associated antigen that has been newly identified in many cancer types. By participating in glutathione biosynthesis, xCT protects cancer cells from oxidative stress conditions and ferroptosis, and contributes to metabolic reprogramming, thus promoting tumor progression and chemoresistance. Moreover, xCT is overexpressed in cancer stem cells. These features render xCT a promising target for cancer therapy, as has been widely reported in the literature and in our work on its immunotargeting. Interestingly, studies on the TP53 gene have revealed that both wild-type and mutant p53 induce the post-transcriptional down modulation of xCT, contributing to ferroptosis. Moreover, APR-246, a small molecule drug that can restore wild-type p53 function in cancer cells, has been described as an indirect modulator of xCT expression in tumors with mutant p53 accumulation, and is thus a promising drug to use in combination with xCT inhibition. This review summarizes the current knowledge of xCT and its regulation by p53, with a focus on the crosstalk of these two molecules in ferroptosis, and also considers some possible combinatorial strategies that can make use of APR-246 treatment in combination with anti-xCT immunotargeting.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Giuseppina Barutello
- Correspondence: (G.B.); (F.C.); Tel.: +39-011-670-6458 (G.B.); +39-011-670-6457 (F.C.)
| | - Federica Cavallo
- Correspondence: (G.B.); (F.C.); Tel.: +39-011-670-6458 (G.B.); +39-011-670-6457 (F.C.)
| |
Collapse
|
30
|
Integrative p53, micro-RNA and Cathepsin Protease Co-Regulatory Expression Networks in Cancer. Cancers (Basel) 2020; 12:cancers12113454. [PMID: 33233599 PMCID: PMC7699684 DOI: 10.3390/cancers12113454] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/05/2020] [Accepted: 11/18/2020] [Indexed: 12/12/2022] Open
Abstract
Simple Summary This article describes an emerging area of significant interest in cancer and cell death and the relationships shared by these through the transcriptional regulation of cathepsin protease genes by micro-RNAs that are connected to p53 activation. While it has been demonstrated that the p53 protein can directly regulate some cathepsin genes and the expression of their upstream regulatory micro-RNAs, very little is known about what input the p53 isoform proteins may have in regulating this relationship. Herein, we draw attention to this important regulatory aspect in the context of describing mechanisms that are being established for the micro-RNA regulation of cathepsin protease genes and their collective use in diagnostic or prognostic assays. Abstract As the direct regulatory role of p53 and some of its isoform proteins are becoming established in modulating gene expression in cancer research, another aspect of this mode of gene regulation that has captured significant interest over the years is the mechanistic interplay between p53 and micro-RNA transcriptional regulation. The input of this into modulating gene expression for some of the cathepsin family members has been viewed as carrying noticeable importance based on their biological effects during normal cellular homeostasis and cancer progression. While this area is still in its infancy in relation to general cathepsin gene regulation, we review the current p53-regulated micro-RNAs that are generating significant interest through their regulation of cathepsin proteases, thereby strengthening the link between activated p53 forms and cathepsin gene regulation. Additionally, we extend our understanding of this developing relationship to how such micro-RNAs are being utilized as diagnostic or prognostic tools and highlight their future uses in conjunction with cathepsin gene expression as potential biomarkers within a clinical setting.
Collapse
|
31
|
Moxley AH, Reisman D. Context is key: Understanding the regulation, functional control, and activities of the p53 tumour suppressor. Cell Biochem Funct 2020; 39:235-247. [PMID: 32996618 DOI: 10.1002/cbf.3590] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/27/2020] [Accepted: 09/01/2020] [Indexed: 12/12/2022]
Abstract
The p53 tumour suppressor is considered one of the most critical genes in cancer biology. By upregulating apoptosis, cell cycle arrest, and DNA damage repair in normal cells, p53 prevents the propagation of cells with tumorigenic potential; therefore, mutations in p53 are associated with carcinogenic transformation and can be accompanied by the accumulation of a novel gain-of-function oncogenic protein, mutant p53. Although p53 is most often understood to utilize context-dependent post-translational modifications to achieve regulation of its many target genes, recent research has also sought to define other mechanisms of regulating p53 gene expression prior to translation and to understand how this alternative regulation of p53 may influence target gene expression and cellular outcome. This review attempts to summarize what is known about p53 regulation at the transcriptional, post-transcriptional, and post-translational levels while paying special attention to the ways in which context may influence p53 regulation and subsequent regulation of its target genes.
Collapse
Affiliation(s)
- Anne H Moxley
- Department of Biological Sciences, University of South Carolina, Columbia, South Carolina, USA
| | - David Reisman
- Department of Biological Sciences, University of South Carolina, Columbia, South Carolina, USA
| |
Collapse
|
32
|
Diakite B, Kassogue Y, Dolo G, Kassogue O, Keita ML, Joyce B, Neuschler E, Wang J, Musa J, Traore CB, Kamate B, Dembele E, Nadifi S, Isichei M, Holl JL, Murphy R, Doumbia S, Hou L, Maiga M. Association of PIN3 16-bp duplication polymorphism of TP53 with breast cancer risk in Mali and a meta-analysis. BMC MEDICAL GENETICS 2020; 21:142. [PMID: 32620097 PMCID: PMC7333399 DOI: 10.1186/s12881-020-01072-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 06/18/2020] [Indexed: 12/25/2022]
Abstract
Background Breast cancer, the most common tumor in women in Mali and worldwide has been linked to several risk factors, including genetic factors, such as the PIN3 16-bp duplication polymorphism of TP53. The aim of our study was to evaluate the role of the PIN3 16-bp duplication polymorphism in the susceptibility to breast cancer in the Malian population and to perform a meta-analysis to better understand the correlation with data from other populations. Methods We analyzed the PIN3 16-bp duplication polymorphism in blood samples of 60 Malian women with breast cancer and 60 healthy Malian women using PCR. In addition, we performed a meta-analysis of case-control study data from international databases, including Pubmed, Harvard University Library, Genetics Medical Literature Database, Genesis Library and Web of Science. Overall, odds ratio (OR) with 95% CI from fixed and random effects models were determined. Inconsistency was used to assess heterogeneity between studies and publication bias was estimated using the funnel plot. Results In the studied Malian patients, a significant association of PIN3 16-bp duplication polymorphism with breast cancer risk was observed in dominant (A1A2 + A2A2 vs. A1A1: OR = 2.26, CI 95% = 1.08–4.73; P = 0.02) and additive (A2 vs. A1: OR = 1.87, CI 95% = 1.05–3.33; P = 0.03) models, but not in the recessive model (P = 0.38). In the meta-analysis, nineteen (19) articles were included with a total of 6018 disease cases and 4456 controls. Except for the dominant model (P = 0.15), an increased risk of breast cancer was detected with the recessive (OR = 1.46, 95% CI = 1.15–1.85; P = 0.002) and additive (OR = 1.11, 95% CI = 1.02–1.19; P = 0.01) models. Conclusion The case-control study showed that PIN3 16-bp duplication polymorphism of TP53 is a significant risk factor for breast cancer in Malian women. These findings are supported by data from the meta-analysis carried out on different ethnic groups around the world.
Collapse
Affiliation(s)
- Brehima Diakite
- Faculty of Medicine and Odontostomatology, University of Technical and Technological Sciences of Bamako (USTTB), 1805, Point G, Bamako, Mali.
| | - Yaya Kassogue
- Faculty of Medicine and Odontostomatology, University of Technical and Technological Sciences of Bamako (USTTB), 1805, Point G, Bamako, Mali
| | - Guimogo Dolo
- Faculty of Medicine and Odontostomatology, University of Technical and Technological Sciences of Bamako (USTTB), 1805, Point G, Bamako, Mali
| | - Oumar Kassogue
- Faculty of Medicine and Odontostomatology, University of Technical and Technological Sciences of Bamako (USTTB), 1805, Point G, Bamako, Mali
| | | | - Brian Joyce
- Preventive Medicine Department, Cancer Epidemiology and Prevention, Northwestern University, Chicago, IL, 60611, USA.,Institute for Global Health, Northwestern University, Chicago, IL, 60611, USA
| | - Erin Neuschler
- Department of Radiology, College of Medicine, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Jun Wang
- Preventive Medicine Department, Cancer Epidemiology and Prevention, Northwestern University, Chicago, IL, 60611, USA.,Institute for Global Health, Northwestern University, Chicago, IL, 60611, USA
| | - Jonah Musa
- Preventive Medicine Department, Cancer Epidemiology and Prevention, Northwestern University, Chicago, IL, 60611, USA.,Institute for Global Health, Northwestern University, Chicago, IL, 60611, USA.,Department of Obstetrics and Gynecology, Faculty of Medical Sciences, University of Jos, Jos, Plateau State, Nigeria
| | - Cheick Bougari Traore
- Faculty of Medicine and Odontostomatology, University of Technical and Technological Sciences of Bamako (USTTB), 1805, Point G, Bamako, Mali.,University Teaching Hospital Point G, Bamako, Mali
| | - Bakarou Kamate
- Faculty of Medicine and Odontostomatology, University of Technical and Technological Sciences of Bamako (USTTB), 1805, Point G, Bamako, Mali.,University Teaching Hospital Point G, Bamako, Mali
| | - Etienne Dembele
- Institute for Global Health, Northwestern University, Chicago, IL, 60611, USA
| | | | - Mercy Isichei
- Department of Obstetrics and Gynecology, Faculty of Medical Sciences, University of Jos, Jos, Plateau State, Nigeria
| | - Jane L Holl
- Department of Neurology, The University of Chicago, Chicago, IL, 60637, USA
| | - Robert Murphy
- Institute for Global Health, Northwestern University, Chicago, IL, 60611, USA
| | - Seydou Doumbia
- Faculty of Medicine and Odontostomatology, University of Technical and Technological Sciences of Bamako (USTTB), 1805, Point G, Bamako, Mali
| | - Lifang Hou
- Preventive Medicine Department, Cancer Epidemiology and Prevention, Northwestern University, Chicago, IL, 60611, USA.,Institute for Global Health, Northwestern University, Chicago, IL, 60611, USA
| | - Mamoudou Maiga
- Faculty of Medicine and Odontostomatology, University of Technical and Technological Sciences of Bamako (USTTB), 1805, Point G, Bamako, Mali.,Preventive Medicine Department, Cancer Epidemiology and Prevention, Northwestern University, Chicago, IL, 60611, USA.,Institute for Global Health, Northwestern University, Chicago, IL, 60611, USA
| |
Collapse
|
33
|
Good Cop, Bad Cop: Defining the Roles of Δ40p53 in Cancer and Aging. Cancers (Basel) 2020; 12:cancers12061659. [PMID: 32585821 PMCID: PMC7352174 DOI: 10.3390/cancers12061659] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 06/11/2020] [Accepted: 06/18/2020] [Indexed: 01/10/2023] Open
Abstract
The tumour suppressor p53 is essential for maintaining DNA integrity, and plays a major role in cellular senescence and aging. Understanding the mechanisms that contribute to p53 dysfunction can uncover novel possibilities for improving cancer therapies and diagnosis, as well as cognitive decline associated with aging. In recent years, the complexity of p53 signalling has become increasingly apparent owing to the discovery of the p53 isoforms. These isoforms play important roles in regulating cell growth and turnover in response to different stressors, depending on the cellular context. In this review, we focus on Δ40p53, an N-terminally truncated p53 isoform. Δ40p53 can alter p53 target gene expression in both a positive and negative manner, modulating the biological outcome of p53 activation; it also functions independently of p53. Therefore, proper control of the Δ40p53: p53 ratio is essential for normal cell growth, aging, and responses to cancer therapy. Defining the contexts and the mechanisms by which Δ40p53 behaves as a "good cop or bad cop" is critical if we are to target this isoform therapeutically.
Collapse
|
34
|
Li X, Lei Y, Yu Y, Zhang Y, Zhang W, Shen H, Tao C, Wu F, Huang S, Shao H. Discovery and characterization of a novel splice variant of the p53 tumor suppressor gene in a human T cell leukemia cellline. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2020; 13:1121-1135. [PMID: 32509087 PMCID: PMC7270667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 04/14/2020] [Indexed: 06/11/2023]
Abstract
Alternative splicing produces multiple mRNA variants of TP53 which have diverse biologic functions. In this study, we identified a novel splice variant of TP53 lacking a 200 nt portion of exon 4 (p53ΔE4p) from a human leukemia T cell line. No protein product of p53ΔE4p was identifiable by western blot; however, forced expression of the variant in HEK-293T cells expressing wild-type p53 could inhibit cell proliferation and promote cell death. Interestingly, this novel variant also significantly enhances the expression of reporter genes. Moreover, transcriptome analysis showed that genes related to DNA binding and regulation of transcription by RNA polymerase II function were significantly upregulated following p53ΔE4p transfection, suggesting a role for this variant in the regulation of gene expression.
Collapse
Affiliation(s)
- Xiaomei Li
- School of Life Science and Biopharmaceutics, Guangdong Pharmaceutical UniversityGuangzhou, Guangdong Province, China
- Guangdong Province Key Laboratory for Biotechnology Drug CandidateGuangzhou, Guangdong Province, China
| | - Yingshou Lei
- School of Life Science and Biopharmaceutics, Guangdong Pharmaceutical UniversityGuangzhou, Guangdong Province, China
- Guangdong Province Key Laboratory for Biotechnology Drug CandidateGuangzhou, Guangdong Province, China
| | - Yang Yu
- School of Life Science and Biopharmaceutics, Guangdong Pharmaceutical UniversityGuangzhou, Guangdong Province, China
- Guangdong Province Key Laboratory for Biotechnology Drug CandidateGuangzhou, Guangdong Province, China
| | - Yaqian Zhang
- School of Life Science and Biopharmaceutics, Guangdong Pharmaceutical UniversityGuangzhou, Guangdong Province, China
- Guangdong Province Key Laboratory for Biotechnology Drug CandidateGuangzhou, Guangdong Province, China
| | - Wenfeng Zhang
- School of Life Science and Biopharmaceutics, Guangdong Pharmaceutical UniversityGuangzhou, Guangdong Province, China
- Guangdong Province Key Laboratory for Biotechnology Drug CandidateGuangzhou, Guangdong Province, China
| | - Han Shen
- School of Life Science and Biopharmaceutics, Guangdong Pharmaceutical UniversityGuangzhou, Guangdong Province, China
- Guangdong Province Key Laboratory for Biotechnology Drug CandidateGuangzhou, Guangdong Province, China
| | - Changli Tao
- School of Life Science and Biopharmaceutics, Guangdong Pharmaceutical UniversityGuangzhou, Guangdong Province, China
- Guangdong Province Key Laboratory for Biotechnology Drug CandidateGuangzhou, Guangdong Province, China
| | - Fenglin Wu
- School of Life Science and Biopharmaceutics, Guangdong Pharmaceutical UniversityGuangzhou, Guangdong Province, China
- Guangdong Province Key Laboratory for Biotechnology Drug CandidateGuangzhou, Guangdong Province, China
| | - Shulin Huang
- School of Life Science and Biopharmaceutics, Guangdong Pharmaceutical UniversityGuangzhou, Guangdong Province, China
- Guangdong Province Key Laboratory for Biotechnology Drug CandidateGuangzhou, Guangdong Province, China
- Central Laboratory, Affiliated Dongguan People’s Hospital, Southern Medical UniversityDongguan, Guangdong Province, China
| | - Hongwei Shao
- School of Life Science and Biopharmaceutics, Guangdong Pharmaceutical UniversityGuangzhou, Guangdong Province, China
- Guangdong Province Key Laboratory for Biotechnology Drug CandidateGuangzhou, Guangdong Province, China
| |
Collapse
|
35
|
Yeh SJ, Chen SW, Chen BS. Investigation of the Genome-Wide Genetic and Epigenetic Networks for Drug Discovery Based on Systems Biology Approaches in Colorectal Cancer. Front Genet 2020; 11:117. [PMID: 32211020 PMCID: PMC7068214 DOI: 10.3389/fgene.2020.00117] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 01/31/2020] [Indexed: 12/29/2022] Open
Abstract
Colorectal cancer (CRC) is the third most commonly diagnosed type of cancer worldwide. The mechanisms leading to the progression of CRC are involved in both genetic and epigenetic regulations. In this study, we applied systems biology methods to identify potential biomarkers and conduct drug discovery in a computational approach. Using big database mining, we constructed a candidate protein-protein interaction network and a candidate gene regulatory network, combining them into a genome-wide genetic and epigenetic network (GWGEN). With the assistance of system identification and model selection approaches, we obtain real GWGENs for early-stage, mid-stage, and late-stage CRC. Subsequently, we extracted core GWGENs for each stage of CRC from their real GWGENs through a principal network projection method, and projected them to the Kyoto Encyclopedia of Genes and Genomes pathways for further analysis. Finally, we compared these core pathways resulting in different molecular mechanisms in each stage of CRC and identified carcinogenic biomarkers for the design of multiple-molecule drugs to prevent the progression of CRC. Based on the identified gene expression signatures, we suggested potential compounds combined with known CRC drugs to prevent the progression of CRC with querying Connectivity Map (CMap).
Collapse
Affiliation(s)
- Shan-Ju Yeh
- Laboratory of Automatic Control, Signaling Processing and Systems Biology, Department of Electrical Engineering, National Tsing Hua University, Hsinchu, Taiwan.,Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, MI, United States
| | - Shuo-Wei Chen
- Laboratory of Automatic Control, Signaling Processing and Systems Biology, Department of Electrical Engineering, National Tsing Hua University, Hsinchu, Taiwan
| | - Bor-Sen Chen
- Laboratory of Automatic Control, Signaling Processing and Systems Biology, Department of Electrical Engineering, National Tsing Hua University, Hsinchu, Taiwan
| |
Collapse
|
36
|
Campbell A, Mohl JE, Gutierrez DA, Varela-Ramirez A, Boland T. Thermal Bioprinting Causes Ample Alterations of Expression of LUCAT1, IL6, CCL26, and NRN1L Genes and Massive Phosphorylation of Critical Oncogenic Drug Resistance Pathways in Breast Cancer Cells. Front Bioeng Biotechnol 2020; 8:82. [PMID: 32154227 PMCID: PMC7047130 DOI: 10.3389/fbioe.2020.00082] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 01/29/2020] [Indexed: 12/19/2022] Open
Abstract
Bioprinting technology merges engineering and biological fields and together, they possess a great translational potential, which can tremendously impact the future of regenerative medicine and drug discovery. However, the molecular effects elicited by thermal inkjet bioprinting in breast cancer cells remains elusive. Previous studies have suggested that bioprinting can be used to model tissues for drug discovery and pharmacology. We report viability, apoptosis, phosphorylation, and RNA sequence analysis of bioprinted MCF7 breast cancer cells at separate timepoints post-bioprinting. An Annexin A5-FITC apoptosis stain was used in combination with flow cytometry at 2 and 24 h post-bioprinting. Antibody arrays using a Human phospho-MAPK array kit was performed 24 h post-bioprinting. RNA sequence analysis was conducted in samples collected at 2, 7, and 24 h post-bioprinting. The post-bioprinting cell viability averages were 77 and 76% at 24 h and 48 h, with 31 and 64% apoptotic cells at 2 and 24 h after bioprinting. A total of 21 kinases were phosphorylated in the bioprinted cells and 9 were phosphorylated in the manually seeded controls. The RNA seq analysis in the bioprinted cells identified a total of 12,235 genes, of which 9.7% were significantly differentially expressed. Using a ±2-fold change as the cutoff, 266 upregulated and 206 downregulated genes were observed in the bioprinted cells, with the following 5 genes uniquely expressed NRN1L, LUCAT1, IL6, CCL26, and LOC401585. This suggests that thermal inkjet bioprinting is stimulating large scale gene alterations that could potentially be utilized for drug discovery. Moreover, bioprinting activates key pathways implicated in drug resistance, cell motility, proliferation, survival, and differentiation.
Collapse
Affiliation(s)
- Aleli Campbell
- Metallurgical, Materials and Biomedical Engineering, University of Texas at El Paso, El Paso, TX, United States
| | - Jonathon E Mohl
- Department of Mathematical Sciences and Border Biomedical Research Center, University of Texas at El Paso, El Paso, TX, United States
| | - Denisse A Gutierrez
- Department of Biological Sciences, Border Biomedical Research Center, University of Texas at El Paso, El Paso, TX, United States
| | - Armando Varela-Ramirez
- Department of Biological Sciences, Border Biomedical Research Center, University of Texas at El Paso, El Paso, TX, United States
| | - Thomas Boland
- Metallurgical, Materials and Biomedical Engineering, University of Texas at El Paso, El Paso, TX, United States
| |
Collapse
|
37
|
Fusée LTS, Marín M, Fåhraeus R, López I. Alternative Mechanisms of p53 Action During the Unfolded Protein Response. Cancers (Basel) 2020; 12:cancers12020401. [PMID: 32050651 PMCID: PMC7072472 DOI: 10.3390/cancers12020401] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 02/06/2020] [Accepted: 02/07/2020] [Indexed: 12/17/2022] Open
Abstract
The tumor suppressor protein p53 orchestrates cellular responses to a vast number of stresses, with DNA damage and oncogenic activation being some of the best described. The capacity of p53 to control cellular events such as cell cycle progression, DNA repair, and apoptosis, to mention some, has been mostly linked to its role as a transcription factor. However, how p53 integrates different signaling cascades to promote a particular pathway remains an open question. One way to broaden its capacity to respond to different stimuli is by the expression of isoforms that can modulate the activities of the full-length protein. One of these isoforms is p47 (p53/47, Δ40p53, p53ΔN40), an alternative translation initiation variant whose expression is specifically induced by the PERK kinase during the Unfolded Protein Response (UPR) following Endoplasmic Reticulum stress. Despite the increasing knowledge on the p53 pathway, its activity when the translation machinery is globally suppressed during the UPR remains poorly understood. Here, we focus on the expression of p47 and we propose that the alternative initiation of p53 mRNA translation offers a unique condition-dependent mechanism to differentiate p53 activity to control cell homeostasis during the UPR. We also discuss how the manipulation of these processes may influence cancer cell physiology in light of therapeutic approaches.
Collapse
Affiliation(s)
| | - Mónica Marín
- Biochemistry-Molecular Biology, Faculty of Science, Universidad de la República, Iguá 4225, 11400 Montevideo, Uruguay
| | - Robin Fåhraeus
- INSERM U1162, 27 rue Juliette Dodu, 75010 Paris, France
- RECAMO, Masaryk Memorial Cancer Institute, Zluty kopec 7, 656 53 Brno, Czech Republic
- Department of Medical Biosciences, Umeå University, 90185 Umeå, Sweden
- ICCVS, University of Gdańsk, Science, ul. Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Ignacio López
- Biochemistry-Molecular Biology, Faculty of Science, Universidad de la República, Iguá 4225, 11400 Montevideo, Uruguay
- Correspondence: ; Tel.: +598-25252095
| |
Collapse
|
38
|
Suzuki S, Tsutsumi S, Chen Y, Ozeki C, Okabe A, Kawase T, Aburatani H, Ohki R. Identification and characterization of the binding sequences and target genes of p53 lacking the 1st transactivation domain. Cancer Sci 2020; 111:451-466. [PMID: 31834974 PMCID: PMC7004532 DOI: 10.1111/cas.14279] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 11/27/2019] [Accepted: 12/02/2019] [Indexed: 02/06/2023] Open
Abstract
The tumor suppressor gene p53 encodes a transcriptional activator that has two transactivation domains (TAD) located in its amino terminus. These two TAD can transactivate genes independently, and at least one TAD is required for p53 transactivation function. The 1st TAD (a.a. 1‐40) is essential for the induction of numerous classical p53 target genes, while the second TAD (a.a. 41‐61) suffices for tumor suppression, although its precise molecular function remains unclear. In this study, we comprehensively identified the sites to which p53 lacking the 1st TAD (Δ1stTAD‐p53) binds, as well as its potential target genes. We found that the binding sequences for Δ1stTAD‐p53 are divergent and include not only the canonical p53 consensus binding sequences but also sequences similar to those recognized by a number of other known transcription factors. We identified and analyzed the functions of three Δ1stTAD‐p53 target genes, PTP4A1, PLK2 and RPS27L. All three genes were induced by both full‐length p53 and Δ1stTAD‐p53, and were dependent on the transactivation activity of the 2nd TAD. We also found that two of these, PTP4A1 and PLK2, are endoplasmic reticulum (ER) stress‐inducible genes. We found that upon ER stress, PTP4A1 suppresses apoptosis while PLK2 induces apoptosis. These results reveal a novel Δ1stTAD‐p53 downstream pathway that is dependent on the transcription activation activity of the 2nd TAD.
Collapse
Affiliation(s)
- Shiori Suzuki
- Laboratory of Fundamental Oncology, National Cancer Center Research Institute, Tokyo, Japan.,Department of Electrical Engineering and Bioscience, Graduate School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | - Shuichi Tsutsumi
- Genome Science Division, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Yu Chen
- Laboratory of Fundamental Oncology, National Cancer Center Research Institute, Tokyo, Japan
| | - Chikako Ozeki
- Laboratory of Fundamental Oncology, National Cancer Center Research Institute, Tokyo, Japan
| | - Atsushi Okabe
- Genome Science Division, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan.,Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Tatsuya Kawase
- Laboratory of Fundamental Oncology, National Cancer Center Research Institute, Tokyo, Japan
| | - Hiroyuki Aburatani
- Genome Science Division, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Rieko Ohki
- Laboratory of Fundamental Oncology, National Cancer Center Research Institute, Tokyo, Japan
| |
Collapse
|
39
|
The Influence of Quadruplex Structure in Proximity to P53 Target Sequences on the Transactivation Potential of P53 Alpha Isoforms. Int J Mol Sci 2019; 21:ijms21010127. [PMID: 31878115 PMCID: PMC6982142 DOI: 10.3390/ijms21010127] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 12/22/2019] [Accepted: 12/23/2019] [Indexed: 12/24/2022] Open
Abstract
p53 is one of the most studied tumor suppressor proteins that plays an important role in basic biological processes including cell cycle, DNA damage response, apoptosis, and senescence. The human TP53 gene contains alternative promoters that produce N-terminally truncated proteins and can produce several isoforms due to alternative splicing. p53 function is realized by binding to a specific DNA response element (RE), resulting in the transactivation of target genes. Here, we evaluated the influence of quadruplex DNA structure on the transactivation potential of full-length and N-terminal truncated p53α isoforms in a panel of S. cerevisiae luciferase reporter strains. Our results show that a G-quadruplex prone sequence is not sufficient for transcription activation by p53α isoforms, but the presence of this feature in proximity to a p53 RE leads to a significant reduction of transcriptional activity and changes the dynamics between co-expressed p53α isoforms.
Collapse
|
40
|
Fujita K. p53 Isoforms in Cellular Senescence- and Ageing-Associated Biological and Physiological Functions. Int J Mol Sci 2019; 20:ijms20236023. [PMID: 31795382 PMCID: PMC6928910 DOI: 10.3390/ijms20236023] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 11/22/2019] [Accepted: 11/27/2019] [Indexed: 12/12/2022] Open
Abstract
Cellular senescence, a term originally used to define the characteristics of normal human fibroblasts that reached their replicative limit, is an important factor for ageing, age-related diseases including cancer, and cell reprogramming. These outcomes are mediated by senescence-associated changes in gene expressions, which sometimes lead to the secretion of pro-inflammatory factors, or senescence-associated secretory phenotype (SASP) that contribute to paradoxical pro-tumorigenic effects. p53 functions as a transcription factor in cell-autonomous responses such as cell-cycle control, DNA repair, apoptosis, and cellular senescence, and also non-cell-autonomous responses to DNA damage by mediating the SASP function of immune system activation. The human TP53 gene encodes twelve protein isoforms, which provides an explanation for the pleiotropic p53 function on cellular senescence. Recent reports suggest that some short isoforms of p53 may modulate gene expressions in a full-length p53-dependent and -independent manner, in other words, some p53 isoforms cooperate with full-length p53, whereas others operate independently. This review summarizes our current knowledge about the biological activities and functions of p53 isoforms, especially Δ40p53, Δ133p53α, and p53β, on cellular senescence, ageing, age-related disorder, reprogramming, and cancer. Numerous cellular and animal model studies indicate that an unbalance in p53 isoform expression in specific cell types causes age-related disorders such as cancer, premature ageing, and degenerative diseases.
Collapse
Affiliation(s)
- Kaori Fujita
- Cell Induction and Regulation Field, Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| |
Collapse
|
41
|
Knezović Florijan M, Ozretić P, Bujak M, Pezzè L, Ciribilli Y, Kaštelan Ž, Slade N, Hudolin T. The role of p53 isoforms' expression and p53 mutation status in renal cell cancer prognosis. Urol Oncol 2019; 37:578.e1-578.e10. [PMID: 30948335 DOI: 10.1016/j.urolonc.2019.03.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 02/13/2019] [Accepted: 03/10/2019] [Indexed: 02/08/2023]
Abstract
OBJECTIVES To analyze p53 mutations and gene expression of p53, ∆40p53, and ∆133p53 isoforms in renal cell cancer (RCC) tissues and normal adjacent tissue (NAT) and to associate them to clinical features and outcome. PATIENTS AND METHODS Forty-one randomly selected patients, with primary, previously untreated RCC, with complete clinicopathohistological data were analyzed. NAT samples were available for 37 cases. Expression of p53, ∆40p53 and ∆133p53 was determined using RT-qPCR. A functional yeast-based assay was performed to analyze p53 mutations. RESULTS More than half (56.1%) of patients harbored functional p53 mutations, and they were significantly younger than those with wild type (WT) p53 (P = 0.032). Expression of p53, ∆40p53, and ∆133p53 was upregulated in mutant (MT) p53 RCC compared to WT p53 RCC tissues. However, there was no difference in expression of these isoforms between MT p53 RCC tissues and NAT. Expression of ∆133p53 was significantly downregulated in WT p53 tissues compared to NAT (P = 0.006). Patients that harbored functional p53 mutation had better overall survival (hazard ratio 4.32, 95% confidence interval 1.46-18.82, P = 0.006). Multivariate analysis demonstrated that tumor stage and p53 mutation might be used as independent prognostic marker for overall survival in RCC patients. CONCLUSIONS Our findings support the specific events in the carcinogenesis of RCC. p53 isoforms can be differentially expressed depending on p53 mutational status.
Collapse
Affiliation(s)
| | - Petar Ozretić
- Division of Molecular Medicine, Ruđer Bošković Institute, Zagreb, Croatia
| | - Maro Bujak
- Division of Materials Chemistry, Ruđer Bošković Institute, Zagreb, Croatia
| | - Laura Pezzè
- Laboratory of Molecular Cancer Genetics, Centre for Integrative Biology (CIBIO), University of Trento, Povo (TN), Italy
| | - Yari Ciribilli
- Laboratory of Molecular Cancer Genetics, Centre for Integrative Biology (CIBIO), University of Trento, Povo (TN), Italy
| | - Željko Kaštelan
- Department of Urology, University Hospital Centre Zagreb, Zagreb, Croatia
| | - Neda Slade
- Division of Molecular Medicine, Ruđer Bošković Institute, Zagreb, Croatia.
| | - Tvrtko Hudolin
- Department of Urology, University Hospital Centre Zagreb, Zagreb, Croatia
| |
Collapse
|
42
|
Bartys N, Kierzek R, Lisowiec-Wachnicka J. The regulation properties of RNA secondary structure in alternative splicing. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2019; 1862:194401. [PMID: 31323437 DOI: 10.1016/j.bbagrm.2019.07.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 07/09/2019] [Indexed: 11/30/2022]
Abstract
The RNA secondary structure is important for many functional processes in the cell. The secondary and tertiary structures of cellular RNAs are essential for the activity of these molecules in processes such as transcription, splicing, translation, and localization. New high-throughput analytical methods, including next generation sequencing, have allowed for the in-depth characterization of the 'RNA structurome': a new term describing how the RNA structure controls the activity of RNA by itself and how it regulates the expression of genes. In this review, we present many examples of the influence of structural motifs of RNA, long range interactions and global RNA structure on the alternative splicing processes. This article is part of a Special Issue entitled: RNA structure and splicing regulation edited by Francisco Baralle, Ravindra Singh and Stefan Stamm.
Collapse
Affiliation(s)
- Natalia Bartys
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Z. Noskowskiego 12/14, 61-704 Poznań, Poland
| | - Ryszard Kierzek
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Z. Noskowskiego 12/14, 61-704 Poznań, Poland
| | - Jolanta Lisowiec-Wachnicka
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Z. Noskowskiego 12/14, 61-704 Poznań, Poland.
| |
Collapse
|
43
|
Coomer AO, Black F, Greystoke A, Munkley J, Elliott DJ. Alternative splicing in lung cancer. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2019; 1862:194388. [PMID: 31152916 DOI: 10.1016/j.bbagrm.2019.05.006] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 05/20/2019] [Indexed: 12/21/2022]
Abstract
Lung cancer has the highest mortality rate of all cancers worldwide. Lung cancer is a very heterogeneous disease that is often diagnosed at later stages which have a poor prognosis. Aberrant alternative splicing patterns found in lung cancer contribute to important cell functions. These include changes in splicing for the BCL2L1, MDM2, MDM4, NUMB and MET genes during lung tumourigenesis, to affect pathways involved in apoptosis, cell proliferation and cellular cohesion. Global analyses of RNASeq datasets suggest there may be many more potentially influential aberrant splicing events that need to be investigated in lung cancer. Changes in expression of the splicing factors that regulate alternative splicing events have also been identified in lung cancer. Of these, changes in expression of QKI, RBM4, RBM5, RBM6, RBM10 and SRSF1 proteins regulate many of the most frequently referenced aberrant splicing events in lung cancer. The expanding list of genes known to be aberrantly spliced in lung cancer along with the altered expression of splicing factors that regulate them are providing new clues as to how lung cancer develops, and how these events can be exploited for better treatment. This article is part of a Special Issue entitled: RNA structure and splicing regulation edited by Francisco Baralle, Ravindra Singh and Stefan Stamm.
Collapse
Affiliation(s)
- Alice O Coomer
- Institute of Genetic Medicine, Newcastle University, Central Parkway, Newcastle upon Tyne NE1 3BZ, United Kingdom of Great Britain and Northern Ireland.
| | - Fiona Black
- Cellular Pathology Department, Royal Victoria Infirmary, Newcastle upon Tyne NE1 4LP, United Kingdom of Great Britain and Northern Ireland
| | - Alastair Greystoke
- Northern Institute for Cancer Research, Paul O'Gorman Building, Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, United Kingdom of Great Britain and Northern Ireland
| | - Jennifer Munkley
- Institute of Genetic Medicine, Newcastle University, Central Parkway, Newcastle upon Tyne NE1 3BZ, United Kingdom of Great Britain and Northern Ireland
| | - David J Elliott
- Institute of Genetic Medicine, Newcastle University, Central Parkway, Newcastle upon Tyne NE1 3BZ, United Kingdom of Great Britain and Northern Ireland.
| |
Collapse
|
44
|
Chen Z, Boor PJ, Finnerty CC, Herndon DN, Albrecht T. Calpain-mediated cleavage of p53 in human cytomegalovirus-infected lung fibroblasts. FASEB Bioadv 2019; 1:151-166. [PMID: 32123827 PMCID: PMC6996331 DOI: 10.1096/fba.1028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 10/23/2018] [Accepted: 10/26/2018] [Indexed: 12/14/2022] Open
Abstract
Endogenous fragments of p53 protein were identified in human cytomegalovirus (HCMV)-infected human lung fibroblasts, particularly a 44-kDa N-terminal fragment [hereafter referred to as p53(ΔCp44)], generated via calpain cleavage. The fragment abundance increased in a biphasic manner, peaking at 6-9 hours and 48 hours post infection. Treatment of LU cells with calpain inhibitors eliminated most detectable p53 fragments. In cell-free experiments, exogenous m-calpain cleavage generated p53(ΔCp44). Attempts to preserve p53 proteins by treating cells with the calpain inhibitor E64d for 6 hours before harvesting increased the sensitivity of p53 to calpain cleavage. p53 in mock-infected cell lysates was much more sensitive to cleavage and degradation by exogenous calpain than that in HCMV-infected cells. The proteasome inhibitor MG132 stabilized p53(ΔCp44), particularly in mock-infected cells. p53(ΔCp44) appeared to be tightly associated with a chromatin-rich fraction. The abundance of p53β was unchanged over a 96-h time course and very similar in mock- and HCMV-infected cells, making it unlikely that p53(ΔCp44) was p53β. The biological activities of this and other fragments lacking C-terminal sequences are unknown, but deserve further investigation, given the association of p53(ΔCp44) with the chromatin-rich (or buffer C insoluble) fraction in HCMV-infected cells.
Collapse
Affiliation(s)
- Zhenping Chen
- Department of Microbiology and ImmunologyUniversity of Texas Medical BranchGalvestonTexas
- Department of PathologyUniversity of Texas Medical BranchGalvestonTexas
- Department of SurgeryUniversity of Texas Medical BranchGalvestonTexas
| | - Paul J. Boor
- Department of PathologyUniversity of Texas Medical BranchGalvestonTexas
- Shriners Hospitals for Children—GalvestonGalvestonTexas
| | - Celeste C. Finnerty
- Department of SurgeryUniversity of Texas Medical BranchGalvestonTexas
- Shriners Hospitals for Children—GalvestonGalvestonTexas
| | - David N. Herndon
- Department of SurgeryUniversity of Texas Medical BranchGalvestonTexas
- Shriners Hospitals for Children—GalvestonGalvestonTexas
| | - Thomas Albrecht
- Department of Microbiology and ImmunologyUniversity of Texas Medical BranchGalvestonTexas
- Infectious Disease and Toxicology Optical Imaging CoreUniversity of Texas Medical BranchGalvestonTexas
| |
Collapse
|
45
|
Hayman L, Chaudhry WR, Revin VV, Zhelev N, Bourdon JC. What is the potential of p53 isoforms as a predictive biomarker in the treatment of cancer? Expert Rev Mol Diagn 2019; 19:149-159. [DOI: 10.1080/14737159.2019.1563484] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Liam Hayman
- School of Science, Engineering and Technology, Abertay University, Dundee, Scotland
| | - Wajeeh Raza Chaudhry
- School of Medicine, University of Dundee, Dundee Cancer Centre, Dundee, Scotland
| | - Victor V. Revin
- Department of Biotechnology, Bioengineering and Biochemistry, Faculty of Biotechnology and Biology, Federal state-financed academic institution of higher education, National Research Ogarev Mordovia State University, Saransk, Republic of Mordovia, Russia
| | - Nikolai Zhelev
- School of Science, Engineering and Technology, Abertay University, Dundee, Scotland
| | | |
Collapse
|
46
|
Zhang H, Zhao Y, Sun P, Zhao M, Su Z, Jin X, Song W. p53β: a new prognostic marker for patients with clear-cell renal cell carcinoma from 5.3 years of median follow-up. Carcinogenesis 2018; 39:368-374. [PMID: 29346503 DOI: 10.1093/carcin/bgy001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 01/10/2018] [Indexed: 12/19/2022] Open
Abstract
We previously reported six different p53 isoforms in renal cell carcinoma (RCC). In the present study, influences of p53β on recurrence-free survival (RFS) and overall survival (OS) were evaluated. Patients diagnosed with RCC in our center were into this study. mRNA expressions of p53 isoforms (p53α, p53β, p53γ) in tumors were determined by RT-PCR and real-time PCR. Functional yeast-based assay was performed to analyze p53 mutational status. p53β transfected 786-O and CAKi-1 cells were cultured to examine expressions of B-cell lymphoma 2-associated X protein (bax) and caspase-3, and ratios of apoptosis. After surgeries, all patients were followed up at programmed intervals. 266 patients were analyzed in this study. Median follow-up time was 5.3 years. RT-PCR (r = -0.72, P = 0.016) and real-time PCR (r = -0.65, P = 0.033) both showed only p53β expressed higher level in lower tumor stage versus higher stage. p53 wild-type and p53 mutation had comparable RFS (P = 0.361) and OS (P = 0.218), respectively. Kaplan-Meier analysis showed high p53β expression was associated with significantly improved RFS and OS, regardless of p53 mutational status. High p53β expression indicated better RFS [hazard ratio (HR) 2.599, 95% confidence interval (CI) 1.472-4.551, P = 0.038] and OS (HR 2.604, 95% CI 1.453-4.824, P = 0.031). p53β transfected 786-O and CAKi-1 cells expressed significantly higher level of bax and caspase-3, and had higher ratios of apoptosis than untransfected cells. Taken together, higher level of p53β predict better prognosis in patients with RCC through enhancing apoptosis in tumors.
Collapse
Affiliation(s)
- Haiyang Zhang
- Minimally Invasive Urology Center, Shandong Provincial Hospital affiliated to Shandong University, Jinan, China.,School of Basic Medical Sciences, Shandong University, Jinan, China.,Knuppe Molecular Urology Laboratory, Department of Urology, School of Medicine, University of California, San Francisco, CA, USA
| | - Yong Zhao
- Minimally Invasive Urology Center, Shandong Provincial Hospital affiliated to Shandong University, Jinan, China
| | - Peng Sun
- Minimally Invasive Urology Center, Shandong Provincial Hospital affiliated to Shandong University, Jinan, China
| | - Miaoqing Zhao
- Department of Pathology, Shandong Provincial Hospital affiliated to Shandong University, Jinan, China
| | - Zhenhui Su
- Department of Pathology, Shandong Provincial Hospital affiliated to Shandong University, Jinan, China
| | - Xunbo Jin
- Minimally Invasive Urology Center, Shandong Provincial Hospital affiliated to Shandong University, Jinan, China
| | - Wei Song
- Minimally Invasive Urology Center, Shandong Provincial Hospital affiliated to Shandong University, Jinan, China
| |
Collapse
|
47
|
Wang Y, Han Y, Xu P, Ding S, Li G, Jin H, Meng Y, Meng A, Jia S. prpf4 is essential for cell survival and posterior lateral line primordium migration in zebrafish. J Genet Genomics 2018; 45:443-453. [DOI: 10.1016/j.jgg.2018.05.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 04/20/2018] [Accepted: 05/17/2018] [Indexed: 11/16/2022]
|
48
|
Brachtendorf S, Wanger RA, Birod K, Thomas D, Trautmann S, Wegner MS, Fuhrmann DC, Brüne B, Geisslinger G, Grösch S. Chemosensitivity of human colon cancer cells is influenced by a p53-dependent enhancement of ceramide synthase 5 and induction of autophagy. Biochim Biophys Acta Mol Cell Biol Lipids 2018; 1863:1214-1227. [PMID: 30059758 DOI: 10.1016/j.bbalip.2018.07.011] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 07/03/2018] [Accepted: 07/24/2018] [Indexed: 12/21/2022]
Abstract
Resistance against chemotherapy is a life-threatening complication in colon cancer therapy. To increase response rate, new additional targets that contribute to chemoresistance are still needed to be explored. Ceramides, which belong to the group of sphingolipids, are well-known regulators of cell death and survival, respectively. Here, we show that in human wild-type (wt) p53 HCT-116 colon cancer cells treatment with oxaliplatin or 5-fluorouracil (5-FU) leads to a strong increase in ceramide synthase 5 (CerS5) expression and C16:0-ceramide levels, which was not shown in HCT-116 lacking p53 expression (HCT-116 p53-/-). The increase in CerS5 expression occurs by stabilizing CerS5 mRNA at the 3'-UTR. By contrast, in the p53-deficient cells CerS2 expression and CerS2-related C24:0- and C24:1-ceramide levels were elevated which is possibly related to enhanced polyadenylation of the CerS2 transcript in these cells. Stable knockdown of CerS5 expression using CerS5-targeting shRNA led to an increased sensitivity of HCT-116 p53wt cells, but not of p53-/- cells, to oxaliplatin and 5-FU. Enhanced sensitivity was accompanied by an inhibition of autophagy and inhibition of mitochondrial respiration in these cells. However, knockdown of CerS2 had no significant effects on chemosensitivity of both cell lines. In conclusion, in p53wt colon cancer cells chemosensitivity against oxaliplatin or 5-FU could be enhanced by downregulation of CerS5 expression leading to reduced autophagy and mitochondrial respiration.
Collapse
Affiliation(s)
- Sebastian Brachtendorf
- Institute of Clinical Pharmacology, Faculty of Medicine, Goethe-University Frankfurt, Germany
| | - Ruth Anna Wanger
- Institute of Clinical Pharmacology, Faculty of Medicine, Goethe-University Frankfurt, Germany
| | - Kerstin Birod
- Institute of Clinical Pharmacology, Faculty of Medicine, Goethe-University Frankfurt, Germany
| | - Dominique Thomas
- Institute of Clinical Pharmacology, Faculty of Medicine, Goethe-University Frankfurt, Germany
| | - Sandra Trautmann
- Institute of Clinical Pharmacology, Faculty of Medicine, Goethe-University Frankfurt, Germany
| | - Marthe-Susanna Wegner
- Institute of Clinical Pharmacology, Faculty of Medicine, Goethe-University Frankfurt, Germany
| | - Dominik C Fuhrmann
- Faculty of Medicine, Institute of Biochemistry I, Goethe-University Frankfurt, Frankfurt, Germany
| | - Bernhard Brüne
- Faculty of Medicine, Institute of Biochemistry I, Goethe-University Frankfurt, Frankfurt, Germany
| | - Gerd Geisslinger
- Institute of Clinical Pharmacology, Faculty of Medicine, Goethe-University Frankfurt, Germany; Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Project Group Translational Medicine and Pharmacology (TMP), Frankfurt, Germany
| | - Sabine Grösch
- Institute of Clinical Pharmacology, Faculty of Medicine, Goethe-University Frankfurt, Germany.
| |
Collapse
|
49
|
Zhu B, Zhang W, Lu Y, Hu S, Gao R, Sun Z, Chen X, Ma J, Guo S, Du S, Li P. Network pharmacology-based identification of protective mechanism of Panax Notoginseng Saponins on aspirin induced gastrointestinal injury. Biomed Pharmacother 2018; 105:159-166. [PMID: 29857294 DOI: 10.1016/j.biopha.2018.04.054] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Revised: 04/07/2018] [Accepted: 04/09/2018] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND & AIMS Aspirin is the first line therapy for cardiovascular and cerebrovascular diseases and is widely used. However aspirin-induced gastrointestinal injury is one of its most common side effect which limits long-term use. Panax Notoginseng Saponins(PNS) which is also used to prevent thrombus may alleviate this side effect according to previous clinical evidences. Owing to the complexity of drug combination, the protective mechanism of PNS on aspirin-induced gastrointestinal injury remains unclear. Therefore, a network pharmacology-based strategy was proposed in this study to address this problem. METHODS A network pharmacology approach comprising multiple components, candidate targets of each component, known therapeutic targets, network analysis has been used in this study. Also, we establish aspirin-induced gastrointestinal injury model by the oral administration of aspirin (0.5 g/kg body weight) to verify the predicted targets from network pharmacology. All rats was randomly allocated to control groups (n = 6),aspirin groups (n = 6)and aspirin + PNS groups (n = 6) and conducted H&E staining and ELISA for VEGFA. RESULTS The comprehensive systematic approach was successfully to identify 5 compounds and 154 candidate targets in PNS and 479 candidate targets in aspirin. After network establishment and analysis, 27 potential targets hit by PNS, aspirin and 6 kind of gastrointestinal diseases were found. The experiments results indicated that aspirin group has visible inflammation and lesions while aspirin + PNS group have not. The higher expression of VEGFA in aspirin + PNS group verified the predicted potential protective targets of PNS. CONCLUSIONS PNS may have protective function for aspirin-induced gastrointestinal injury through increasing VEGFA expression. Network pharmacology strategy may provide a forceful tool for exploring the mechanism of herb medicine and discovering novel bioactive ingredients.
Collapse
Affiliation(s)
- Baochen Zhu
- Beijing University of Chinese Medicine, 100029, China
| | - Wantong Zhang
- China Academy of Chinese Medicine Sciences, Xiyuan Hospital, 100091, China
| | - Yang Lu
- Beijing University of Chinese Medicine, 100029, China
| | - Shaonan Hu
- Beijing University of Chinese Medicine, 100029, China
| | - Rui Gao
- China Academy of Chinese Medicine Sciences, Xiyuan Hospital, 100091, China
| | - Zongxi Sun
- Beijing University of Chinese Medicine, 100029, China
| | - Xiaonan Chen
- Beijing University of Chinese Medicine, 100029, China
| | - Junming Ma
- Beijing University of Chinese Medicine, 100029, China
| | - Shuang Guo
- Beijing University of Chinese Medicine, 100029, China
| | - Shouying Du
- Beijing University of Chinese Medicine, 100029, China.
| | - Pengyue Li
- Beijing University of Chinese Medicine, 100029, China.
| |
Collapse
|
50
|
Guo H, Fu X, Lin Q, Liu L, Liang H, Huang Z, Li N, Su J. Mandarin fish p53: Genomic structure, alternatively spliced variant and its mRNA expression after virus challenge. FISH & SHELLFISH IMMUNOLOGY 2017; 70:536-544. [PMID: 28923524 DOI: 10.1016/j.fsi.2017.09.039] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 09/08/2017] [Accepted: 09/14/2017] [Indexed: 06/07/2023]
Abstract
A number of size variants of the p53 protein have been described in mammal, but little is known about alternative splicing of p53 expression and function in the fish. In our previous study, the immune defense and antiviral responses of p53 had been determined in mandarin fish (Siniperca chuatsi). However, the role of its splicing variants remains unknown. In the present study, the organization of mandarin fish p53 (Sc-p53) genome sequence was determined and a novel splice variant was characterized. The Sc-p53 genomic sequence was composed of 5543 bp, containing 11 exons and 10 introns, which was similar to other species. Then, a 1106 bp full-length cDNA of a novel splice variant p53 from mandarin fish (designed as Sc-p53I6) was cloned and characterized. Quantitative real-time PCR assays revealed that Sc-p53I6 was expressed in all tissues examined, and it was most abundant in the gill, hemocyte and hind kidney. Western blotting analysis revealed that Sc-p53I6 protein was abundant in liver, trunk kidney, hind kidney, stomach and heart. In addition, the regulation of Sc-p53I6 gene expression after virus infection was determined and characterized. The results showed twice rise expression pattern of Sc-p53I6 in CPB cells and spleen of mandarin fish in response to infectious kidney and spleen necrosis virus (ISKNV). However, a different expression pattern, once rise, of Sc-p53I6 in response to Siniperca chuatsi rhabdovirus (SCRV) infection was found. The mRNA expression of Sc-p53I6 was significantly up-regulated in CPB at 4 h and spleen of mandarin fish at 12 h post-infection. These results will shed a new light on antiviral response mechanisms of p53 in mandarin fish.
Collapse
Affiliation(s)
- Huizhi Guo
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, 430070, China; Pearl River Fishery Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Fishery Drug Development, Ministry of Agriculture, Key Laboratory of Aquatic Animal Immune Technology, Guangdong Provinces, Guangzhou 510380, China
| | - Xiaozhe Fu
- Pearl River Fishery Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Fishery Drug Development, Ministry of Agriculture, Key Laboratory of Aquatic Animal Immune Technology, Guangdong Provinces, Guangzhou 510380, China
| | - Qiang Lin
- Pearl River Fishery Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Fishery Drug Development, Ministry of Agriculture, Key Laboratory of Aquatic Animal Immune Technology, Guangdong Provinces, Guangzhou 510380, China
| | - Lihui Liu
- Pearl River Fishery Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Fishery Drug Development, Ministry of Agriculture, Key Laboratory of Aquatic Animal Immune Technology, Guangdong Provinces, Guangzhou 510380, China
| | - Hongru Liang
- Pearl River Fishery Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Fishery Drug Development, Ministry of Agriculture, Key Laboratory of Aquatic Animal Immune Technology, Guangdong Provinces, Guangzhou 510380, China
| | - Zhibin Huang
- Pearl River Fishery Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Fishery Drug Development, Ministry of Agriculture, Key Laboratory of Aquatic Animal Immune Technology, Guangdong Provinces, Guangzhou 510380, China
| | - Ningqiu Li
- Pearl River Fishery Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Fishery Drug Development, Ministry of Agriculture, Key Laboratory of Aquatic Animal Immune Technology, Guangdong Provinces, Guangzhou 510380, China.
| | - Jianguo Su
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, 430070, China.
| |
Collapse
|