1
|
Al-Abdallah A, Jahanbani I, Ali RH, Al-Brahim N, Prasanth J, Al-Shammary B, Al-Bader M. A new paradigm for epidermal growth factor receptor expression exists in PTC and NIFTP regulated by microRNAs. Front Oncol 2023; 13:1080008. [PMID: 37114127 PMCID: PMC10126268 DOI: 10.3389/fonc.2023.1080008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 03/27/2023] [Indexed: 04/29/2023] Open
Abstract
Intoduction Identification of molecular alterations associated with tumor behavior is necessary to guide clinical management. The 2022 WHO classification has organized the thyroid follicular cell-derived neoplasms into benign, low-risk and high-risk neoplasms, and emphasized the value of biomarkers that may provide differential diagnostic and prognostic information to avoid overtreatment of low risk neoplasms. This work aims to study the epidermal growth factor receptor (EGFR) expression, functional and spatial dynamics in relation to specific miRNAs alterations in papillary thyroid cancer (PTC) and in non-invasive follicular thyroid neoplasm with papillary-like nuclear features (NIFTP) considered as models of high-risk and low-risk thyroid tumors respectively. Methods Primary thyroid cultured cells were used for miRNA gain/loss of function and luciferase reporter assays. Paraffin embedded tissues were used for real time PCR, immuno-fluorescence stain and confocal microscopy experiments. Results Our results showed that in PTC, EGFR mRNA is reduced as an effect of miR-146b-5p upregulation. The EGF expression is low and the ERK pathway is inhibited. The EGFR protein high cytoplasmic expression and colocalization with the endosomal/exosomal markers, ALIX and CD63, suggest the occurrence of stress-induced EGFR internalization, accumulation in endosomal vesicles and secretion via exosomes. In NIFTP EGFR transcription is increased in association with downregulation of miR-7-5p and the EGFR/ERK pathway is active indicating dependence on the canonical EGFR pathway for growth. Conclusion Downregulation of transcript level along with cytoplasmic accumulation of undegraded protein is a new pattern of EGFR regulation associated with malignancy in thyroid. Further research is needed to elucidate the intracellular trafficking defects responsible for this specific EGFR dynamic in PTC.
Collapse
Affiliation(s)
- Abeer Al-Abdallah
- Pathology Department, Kuwait University, Faculty of Medicine, Kuwait City, Kuwait
- *Correspondence: Abeer Al-Abdallah,
| | - Iman Jahanbani
- Pathology Department, Kuwait University, Faculty of Medicine, Kuwait City, Kuwait
| | - Rola H. Ali
- Pathology Department, Kuwait University, Faculty of Medicine, Kuwait City, Kuwait
| | | | - Jeena Prasanth
- Pathology Department, Kuwait University, Faculty of Medicine, Kuwait City, Kuwait
| | - Bashayer Al-Shammary
- Pathology Department, Kuwait University, Faculty of Medicine, Kuwait City, Kuwait
| | - Maie Al-Bader
- Physiology Department, Kuwait University, Faculty of Medicine, Kuwait City, Kuwait
| |
Collapse
|
2
|
Extracellular vesicles produced by mouse breast adenocarcinoma 4T1 cells with up- or down-regulation of adaptor protein Ruk/CIN85 differentially modulate the biological properties of 4T1 WT cells. UKRAINIAN BIOCHEMICAL JOURNAL 2021. [DOI: 10.15407/ubj93.06.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
3
|
Pashkova N, Yu L, Schnicker NJ, Tseng CC, Gakhar L, Katzmann DJ, Piper RC. Interactions of ubiquitin and CHMP5 with the V domain of HD-PTP reveals role for regulation of Vps4 ATPase. Mol Biol Cell 2021; 32:ar42. [PMID: 34586919 PMCID: PMC8694081 DOI: 10.1091/mbc.e21-04-0219] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The family of Bro1 proteins coordinates the activity of the Endosomal Sorting Complexes Required for Transport (ESCRTs) to mediate a number of membrane remodeling events. These events culminate in membrane scission catalyzed by ESCRT-III, whose polymerization and disassembly is controlled by the AAA-ATPase, Vps4. Bro1-family members Alix and HD-PTP as well as yeast Bro1 have central “V” domains that noncovalently bind Ub and connect ubiquitinated proteins to ESCRT-driven functions such as the incorporation of ubiquitinated membrane proteins into intralumenal vesicles of multivesicular bodies. Recently, it was discovered that the V domain of yeast Bro1 binds the MIT domain of Vps4 to stimulate its ATPase activity. Here we determine the structural basis for how the V domain of human HD-PTP binds ubiquitin. The HD-PTP V domain also binds the MIT domain of Vps4, and ubiquitin binding to the HD-PTP V domain enhances its ability to stimulate Vps4 ATPase activity. Additionally, we found that V domains of both HD-PTP and Bro1 bind CHMP5 and Vps60, respectively, providing another potential molecular mechanism to alter Vps4 activity. These data support a model whereby contacts between ubiquitin, ESCRT-III, and Vps4 by V domains of the Bro1 family may coordinate late events in ESCRT-driven membrane remodeling events.
Collapse
Affiliation(s)
- Natalya Pashkova
- Department of Molecular Physiology and Biophysics, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242
| | - Liping Yu
- NMR facility, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242.,Department of Biochemistry, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242
| | | | - Chun-Che Tseng
- Biochemistry and Molecular Biology Graduate Program, Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN, 55905.,Protein Crystallography Facility, University of Iowa, Iowa City, IA, 52242
| | - Lokesh Gakhar
- Protein Crystallography Facility, University of Iowa, Iowa City, IA, 52242
| | - David J Katzmann
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, 55905
| | - Robert C Piper
- Department of Molecular Physiology and Biophysics, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242
| |
Collapse
|
4
|
Cooperation and Interplay between EGFR Signalling and Extracellular Vesicle Biogenesis in Cancer. Cells 2020; 9:cells9122639. [PMID: 33302515 PMCID: PMC7764760 DOI: 10.3390/cells9122639] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 11/30/2020] [Accepted: 12/02/2020] [Indexed: 12/13/2022] Open
Abstract
Epidermal growth factor receptor (EGFR) takes centre stage in carcinogenesis throughout its entire cellular trafficking odyssey. When loaded in extracellular vesicles (EVs), EGFR is one of the key proteins involved in the transfer of information between parental cancer and bystander cells in the tumour microenvironment. To hijack EVs, EGFR needs to play multiple signalling roles in the life cycle of EVs. The receptor is involved in the biogenesis of specific EV subpopulations, it signals as an active cargo, and it can influence the uptake of EVs by recipient cells. EGFR regulates its own inclusion in EVs through feedback loops during disease progression and in response to challenges such as hypoxia, epithelial-to-mesenchymal transition and drugs. Here, we highlight how the spatiotemporal rules that regulate EGFR intracellular function intersect with and influence different EV biogenesis pathways and discuss key regulatory features and interactions of this interplay. We also elaborate on outstanding questions relating to EGFR-driven EV biogenesis and available methods to explore them. This mechanistic understanding will be key to unravelling the functional consequences of direct anti-EGFR targeted and indirect EGFR-impacting cancer therapies on the secretion of pro-tumoural EVs and on their effects on drug resistance and microenvironment subversion.
Collapse
|
5
|
Larios J, Mercier V, Roux A, Gruenberg J. ALIX- and ESCRT-III-dependent sorting of tetraspanins to exosomes. J Cell Biol 2020; 219:e201904113. [PMID: 32049272 PMCID: PMC7054990 DOI: 10.1083/jcb.201904113] [Citation(s) in RCA: 259] [Impact Index Per Article: 51.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 10/31/2019] [Accepted: 12/18/2019] [Indexed: 12/12/2022] Open
Abstract
The intraluminal vesicles (ILVs) of endosomes mediate the delivery of activated signaling receptors and other proteins to lysosomes for degradation, but they also modulate intercellular communication when secreted as exosomes. The formation of ILVs requires four complexes, ESCRT-0, -I, -II, and -III, with ESCRT-0, -I, and -II presumably involved in cargo sorting and ESCRT-III in membrane deformation and fission. Here, we report that an active form of the ESCRT-associated protein ALIX efficiently recruits ESCRT-III proteins to endosomes. This recruitment occurs independently of other ESCRTs but requires lysobisphosphatidic acid (LBPA) in vivo, and can be reconstituted on supported bilayers in vitro. Our data indicate that this ALIX- and ESCRT-III-dependent pathway promotes the sorting and delivery of tetraspanins to exosomes. We conclude that ALIX provides an additional pathway of ILV formation, secondary to the canonical pathway, and that this pathway controls the targeting of exosomal proteins.
Collapse
|
6
|
Zeng X, Carlin CR. Adenovirus early region 3 RIDα protein limits NFκB signaling through stress-activated EGF receptors. PLoS Pathog 2019; 15:e1008017. [PMID: 31425554 PMCID: PMC6715251 DOI: 10.1371/journal.ppat.1008017] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 08/29/2019] [Accepted: 08/02/2019] [Indexed: 12/18/2022] Open
Abstract
The host limits adenovirus infections by mobilizing immune systems directed against infected cells that also represent major barriers to clinical use of adenoviral vectors. Adenovirus early transcription units encode a number of products capable of thwarting antiviral immune responses by co-opting host cell pathways. Although the EGF receptor (EGFR) was a known target for the early region 3 (E3) RIDα protein encoded by nonpathogenic group C adenoviruses, the functional role of this host-pathogen interaction was unknown. Here we report that incoming viral particles triggered a robust, stress-induced pathway of EGFR trafficking and signaling prior to viral gene expression in epithelial target cells. EGFRs activated by stress of adenoviral infection regulated signaling by the NFκB family of transcription factors, which is known to have a critical role in the host innate immune response to infectious adenoviruses and adenovirus vectors. We found that the NFκB p65 subunit was phosphorylated at Thr254, shown previously by other investigators to be associated with enhanced nuclear stability and gene transcription, by a mechanism that was attributable to ligand-independent EGFR tyrosine kinase activity. Our results indicated that the adenoviral RIDα protein terminated this pathway by co-opting the host adaptor protein Alix required for sorting stress-exposed EGFRs in multivesicular endosomes, and promoting endosome-lysosome fusion independent of the small GTPase Rab7, in infected cells. Furthermore RIDα expression was sufficient to down-regulate the same EGFR/NFκB signaling axis in a previously characterized stress-activated EGFR trafficking pathway induced by treatment with the pro-inflammatory cytokine TNF-α. We also found that cell stress activated additional EGFR signaling cascades through the Gab1 adaptor protein that may have unappreciated roles in the adenoviral life cycle. Similar to other E3 proteins, RIDα is not conserved in adenovirus serotypes associated with potentially severe disease, suggesting stress-activated EGFR signaling may contribute to adenovirus virulence.
Collapse
Affiliation(s)
- Xuehuo Zeng
- Department of Molecular Biology and Microbiology, School of Medicine, Case Western Reserve University, Cleveland, United States of America
| | - Cathleen R. Carlin
- Department of Molecular Biology and Microbiology, School of Medicine, Case Western Reserve University, Cleveland, United States of America
- Case Comprehensive Cancer Center, School of Medicine, Case Western Reserve University, Cleveland, United States of America
| |
Collapse
|
7
|
D'Acunzo P, Hargash T, Pawlik M, Goulbourne CN, Pérez-González R, Levy E. Enhanced generation of intraluminal vesicles in neuronal late endosomes in the brain of a Down syndrome mouse model with endosomal dysfunction. Dev Neurobiol 2019; 79:656-663. [PMID: 31278881 DOI: 10.1002/dneu.22708] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 07/01/2019] [Accepted: 07/02/2019] [Indexed: 12/22/2022]
Abstract
Down syndrome (DS) is a human genetic disease caused by trisomy of chromosome 21 and characterized by early developmental brain abnormalities. Dysfunctional endosomal pathway in neurons is an early event of DS and Alzheimer's disease. Recently, we have demonstrated that exosome secretion is upregulated in human DS postmortem brains, in the brain of the trisomic mouse model Ts[Rb(12.1716 )]2Cje (Ts2) and by DS fibroblasts as compared with disomic controls. High levels of the tetraspanin CD63, a regulator of exosome biogenesis, were observed in DS brains. Partially blocking exosome secretion by DS fibroblasts exacerbated a pre-existing early endosomal pathology. We thus hypothesized that enhanced CD63 expression induces generation of intraluminal vesicles (ILVs) in late endosomes/multivesicular bodies (MVBs), increasing exosome release as an endogenous mechanism to mitigate endosomal abnormalities in DS. Herein, we show a high-resolution electron microscopy analysis of MVBs in neurons of the frontal cortex of 12-month-old Ts2 mice and littermate diploid controls. Our quantitative analysis revealed that Ts2 MVBs are larger, more abundant, and contain a higher number of ILVs per neuron compared to controls. These findings were further corroborated biochemically by Western blot analysis of purified endosomal fractions showing higher levels of ILVs proteins in the same fractions containing endosomal markers in the brain of Ts2 mice compared to controls. These data suggest that upregulation of ILVs production may be a key homeostatic mechanism to alleviate endosomal dysregulation via the endosomal-exosomal pathway.
Collapse
Affiliation(s)
- Pasquale D'Acunzo
- Center for Dementia Research, Nathan S. Kline Institute, Orangeburg, New York.,Department of Psychiatry, New York University Langone Health, New York, New York
| | - Tal Hargash
- Center for Dementia Research, Nathan S. Kline Institute, Orangeburg, New York
| | - Monika Pawlik
- Center for Dementia Research, Nathan S. Kline Institute, Orangeburg, New York
| | - Chris N Goulbourne
- Center for Dementia Research, Nathan S. Kline Institute, Orangeburg, New York
| | - Rocío Pérez-González
- Center for Dementia Research, Nathan S. Kline Institute, Orangeburg, New York.,Department of Psychiatry, New York University Langone Health, New York, New York
| | - Efrat Levy
- Center for Dementia Research, Nathan S. Kline Institute, Orangeburg, New York.,Department of Psychiatry, New York University Langone Health, New York, New York.,Department of Biochemistry & Molecular Pharmacology, New York University Langone Health, New York, New York.,Neuroscience Institute, New York University Langone Health, New York, New York
| |
Collapse
|
8
|
Rak MA, Buehler J, Zeltzer S, Reitsma J, Molina B, Terhune S, Goodrum F. Human Cytomegalovirus UL135 Interacts with Host Adaptor Proteins To Regulate Epidermal Growth Factor Receptor and Reactivation from Latency. J Virol 2018; 92:e00919-18. [PMID: 30089695 PMCID: PMC6158428 DOI: 10.1128/jvi.00919-18] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 07/27/2018] [Indexed: 01/03/2023] Open
Abstract
Human cytomegalovirus, HCMV, is a betaherpesvirus that establishes a lifelong latent infection in its host that is marked by recurrent episodes of reactivation. The molecular mechanisms by which the virus and host regulate entry into and exit from latency remain poorly understood. We have previously reported that UL135 is critical for reactivation, functioning in part by overcoming suppressive effects of the latency determinant UL138 We have demonstrated a role for UL135 in diminishing cell surface levels and targeting epidermal growth factor receptor (EGFR) for turnover. The attenuation of EGFR signaling promotes HCMV reactivation in combination with cellular differentiation. In this study, we sought to define the mechanisms by which UL135 functions in regulating EGFR turnover and viral reactivation. Screens to identify proteins interacting with pUL135 identified two host adaptor proteins, CIN85 and Abi-1, with overlapping activities in regulating EGFR levels in the cell. We mapped the amino acids in pUL135 necessary for interaction with Abi-1 and CIN85 and generated recombinant viruses expressing variants of pUL135 that do not interact with CIN85 or Abi-1. These recombinant viruses replicate in fibroblasts but are defective for reactivation in an experimental model for latency using primary CD34+ hematopoietic progenitor cells (HPCs). These UL135 variants have altered trafficking of EGFR and are defective in targeting EGFR for turnover. These studies demonstrate a requirement for pUL135 interactions with Abi-1 and CIN85 for regulation of EGFR and mechanistically link the regulation of EGFR to reactivation.IMPORTANCE Human cytomegalovirus (HCMV) establishes a lifelong latent infection in the human host. While the infection is typically asymptomatic in healthy individuals, HCMV infection poses life-threatening disease risk in immunocompromised individuals and is the leading cause of birth defects. Understanding how HCMV controls the lifelong latent infection and reactivation of replication from latency is critical to developing strategies to control HCMV disease. Here, we identify the host factors targeted by a viral protein that is required for reactivation. We define the importance of this virus-host interaction in reactivation from latency, providing new insights into the molecular underpinnings of HCMV latency and reactivation.
Collapse
Affiliation(s)
- Michael A Rak
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, Arizona, USA
| | - Jason Buehler
- BIO5 Institute, University of Arizona, Tucson, Arizona, USA
| | - Sebastian Zeltzer
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, Arizona, USA
| | - Justin Reitsma
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
- Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Belen Molina
- Department of Immunobiology, University of Arizona, Tucson, Arizona, USA
| | - Scott Terhune
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
- Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Felicia Goodrum
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, Arizona, USA
- BIO5 Institute, University of Arizona, Tucson, Arizona, USA
- Department of Immunobiology, University of Arizona, Tucson, Arizona, USA
- University of Arizona Center on Aging, Tucson, Arizona, USA
| |
Collapse
|
9
|
Gahloth D, Levy C, Heaven G, Stefani F, Wunderley L, Mould P, Cliff MJ, Bella J, Fielding AJ, Woodman P, Tabernero L. Structural Basis for Selective Interaction between the ESCRT Regulator HD-PTP and UBAP1. Structure 2016; 24:2115-2126. [PMID: 27839950 PMCID: PMC5145805 DOI: 10.1016/j.str.2016.10.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 09/27/2016] [Accepted: 10/12/2016] [Indexed: 01/21/2023]
Abstract
Endosomal sorting complexes required for transport (ESCRTs) are essential for ubiquitin-dependent degradation of mitogenic receptors, a process often compromised in cancer pathologies. Sorting of ubiquinated receptors via ESCRTs is controlled by the tumor suppressor phosphatase HD-PTP. The specific interaction between HD-PTP and the ESCRT-I subunit UBAP1 is critical for degradation of growth factor receptors and integrins. Here, we present the structural characterization by X-ray crystallography and double electron-electron resonance spectroscopy of the coiled-coil domain of HD-PTP and its complex with UBAP1. The coiled-coil domain adopts an unexpected open and rigid conformation that contrasts with the closed and flexible coiled-coil domain of the related ESCRT regulator Alix. The HD-PTP:UBAP1 structure identifies the molecular determinants of the interaction and provides a molecular basis for the specific functional cooperation between HD-PTP and UBAP1. Our findings provide insights into the molecular mechanisms of regulation of ESCRT pathways that could be relevant to anticancer therapies.
Collapse
Affiliation(s)
- Deepankar Gahloth
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| | - Colin Levy
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| | - Graham Heaven
- School of Chemistry and Photon Science Institute, University of Manchester, Manchester M13 9PT, UK
| | - Flavia Stefani
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| | - Lydia Wunderley
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| | - Paul Mould
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| | - Matthew J Cliff
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| | - Jordi Bella
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| | - Alistair J Fielding
- School of Chemistry and Photon Science Institute, University of Manchester, Manchester M13 9PT, UK
| | - Philip Woodman
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK.
| | - Lydia Tabernero
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK.
| |
Collapse
|
10
|
Mercier V, Laporte MH, Destaing O, Blot B, Blouin CM, Pernet-Gallay K, Chatellard C, Saoudi Y, Albiges-Rizo C, Lamaze C, Fraboulet S, Petiot A, Sadoul R. ALG-2 interacting protein-X (Alix) is essential for clathrin-independent endocytosis and signaling. Sci Rep 2016; 6:26986. [PMID: 27244115 PMCID: PMC4886688 DOI: 10.1038/srep26986] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 05/09/2016] [Indexed: 12/22/2022] Open
Abstract
The molecular mechanisms and the biological functions of clathrin independent endocytosis (CIE) remain largely elusive. Alix (ALG-2 interacting protein X), has been assigned roles in membrane deformation and fission both in endosomes and at the plasma membrane. Using Alix ko cells, we show for the first time that Alix regulates fluid phase endocytosis and internalization of cargoes entering cells via CIE, but has no apparent effect on clathrin mediated endocytosis or downstream endosomal trafficking. We show that Alix acts with endophilin-A to promote CIE of cholera toxin and to regulate cell migration. We also found that Alix is required for fast endocytosis and downstream signaling of the interleukin-2 receptor giving a first indication that CIE is necessary for activation of at least some surface receptors. In addition to characterizing a new function for Alix, our results highlight Alix ko cells as a unique tool to unravel the biological consequences of CIE.
Collapse
Affiliation(s)
- Vincent Mercier
- Institut National de la Santé et de la Recherche Médicale (INSERM), Unité 1216, F-38042 Grenoble, France.,Université Grenoble Alpes, Institut des Neurosciences, F-38042 Grenoble, France
| | - Marine H Laporte
- Institut National de la Santé et de la Recherche Médicale (INSERM), Unité 1216, F-38042 Grenoble, France.,Université Grenoble Alpes, Institut des Neurosciences, F-38042 Grenoble, France
| | - Olivier Destaing
- INSERM U1209, Grenoble, F-38042, France.,Université Grenoble Alpes, Institut Albert Bonniot, F-38000 Grenoble, France.,CNRS UMR 5309, F-38000 Grenoble, France
| | - Béatrice Blot
- Institut National de la Santé et de la Recherche Médicale (INSERM), Unité 1216, F-38042 Grenoble, France.,Université Grenoble Alpes, Institut des Neurosciences, F-38042 Grenoble, France
| | - Cédric M Blouin
- Institut Curie, PSL Research University, Membrane Dynamics and Mechanics of Intracellular Signaling Laboratory, Paris, France.,INSERM, U1143, Paris, France.,CNRS, UMR 3666, Paris, France
| | - Karin Pernet-Gallay
- Institut National de la Santé et de la Recherche Médicale (INSERM), Unité 1216, F-38042 Grenoble, France.,Université Grenoble Alpes, Institut des Neurosciences, F-38042 Grenoble, France
| | - Christine Chatellard
- Institut National de la Santé et de la Recherche Médicale (INSERM), Unité 1216, F-38042 Grenoble, France.,Université Grenoble Alpes, Institut des Neurosciences, F-38042 Grenoble, France
| | - Yasmina Saoudi
- Institut National de la Santé et de la Recherche Médicale (INSERM), Unité 1216, F-38042 Grenoble, France.,Université Grenoble Alpes, Institut des Neurosciences, F-38042 Grenoble, France
| | - Corinne Albiges-Rizo
- INSERM U1209, Grenoble, F-38042, France.,Université Grenoble Alpes, Institut Albert Bonniot, F-38000 Grenoble, France.,CNRS UMR 5309, F-38000 Grenoble, France
| | - Christophe Lamaze
- Institut Curie, PSL Research University, Membrane Dynamics and Mechanics of Intracellular Signaling Laboratory, Paris, France.,INSERM, U1143, Paris, France.,CNRS, UMR 3666, Paris, France
| | - Sandrine Fraboulet
- Institut National de la Santé et de la Recherche Médicale (INSERM), Unité 1216, F-38042 Grenoble, France.,Université Grenoble Alpes, Institut des Neurosciences, F-38042 Grenoble, France
| | - Anne Petiot
- Institut National de la Santé et de la Recherche Médicale (INSERM), Unité 1216, F-38042 Grenoble, France.,Université Grenoble Alpes, Institut des Neurosciences, F-38042 Grenoble, France
| | - Rémy Sadoul
- Institut National de la Santé et de la Recherche Médicale (INSERM), Unité 1216, F-38042 Grenoble, France.,Université Grenoble Alpes, Institut des Neurosciences, F-38042 Grenoble, France
| |
Collapse
|
11
|
Abstract
The multivesicular body (MVB) pathway sorts ubiquitinated membrane cargo to intraluminal vesicles (ILVs) within the endosome, en route to the lysosomal lumen. The pathway involves the sequential action of conserved protein complexes [endosomal sorting complexes required for transport (ESCRTs)], culminating in the activation by ESCRT-II of ESCRT-III, a membrane-sculpting complex. Although this linear pathway of ESCRT activation is widely accepted, a study by Luzio and colleagues in a recent issue of the Biochemical Journal suggests that there is greater complexity in ESCRT-III activation, at least for some MVB cargoes. They show that ubiquitin-dependent sorting of major histocompatibility complex (MHC) class I to the MVB requires the central ESCRT-III complex but does not involve either ESCRT-II or functional links between ESCRT-II and ESCRT-III. Instead, they propose that MHC class I utilizes histidine-domain protein tyrosine phosphatase (HD-PTP), a non-canonical ESCRT interactor, to promote ESCRT-III activation.
Collapse
|
12
|
Iavello A, Frech VSL, Gai C, Deregibus MC, Quesenberry PJ, Camussi G. Role of Alix in miRNA packaging during extracellular vesicle biogenesis. Int J Mol Med 2016; 37:958-66. [PMID: 26935291 PMCID: PMC4790646 DOI: 10.3892/ijmm.2016.2488] [Citation(s) in RCA: 111] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 01/21/2016] [Indexed: 02/07/2023] Open
Abstract
Evidence indicates that Alix, an accessory protein of the endosomal sorting complex required for transport (ESCRT), is involved in the biogenesis of extracellular vesicles (EVs). EVs contain selected patterns of microRNAs (miRNAs or miRs); however, little is known about the mechanisms of miRNA enrichment in EVs. The aim of the present study was to evaluate whether Alix is involved in the packaging of miRNAs within EVs released by human liver stem-like cells (HLSCs). EVs released from HLSCs were enriched with miRNAs and expressed Alix and several RNA-binding proteins, including Argonaute 2 (Ago2), a member of the Argonaute family known to be involved in the transport and the processing of miRNAs. Co-immunoprecipitation experiments revealed an association between Alix and Ago2. The results from RT-qPCR indicated that in the Alix/Ago2 immunoprecipitates, miRNAs were detectable. EVs were instrumental in transferring selected miRNAs from HLSCs to human endothelial cells absent in the latter cells. Alix knockdown did not influence the number of EVs released by HLSCs, but it significantly decreased miRNA expression levels in the EVs and consequently their transfer to the endothelium. Our findings indicate that Alix binds to Ago2 and miRNAs, suggesting that it plays a key role in miRNA enrichment during EV biogenesis. These results may represent a novel function of Alix, demonstrating its involvement in the EV-mediated transfer of miRNAs.
Collapse
Affiliation(s)
- Alessandra Iavello
- Department of Medical Sciences and Molecular Biotechnology Center, University of Torino, 10126 Torino, Italy
| | - Valeska S L Frech
- Department of Medical Sciences and Molecular Biotechnology Center, University of Torino, 10126 Torino, Italy
| | - Chiara Gai
- Department of Medical Sciences and Molecular Biotechnology Center, University of Torino, 10126 Torino, Italy
| | - Maria Chiara Deregibus
- Department of Medical Sciences and Molecular Biotechnology Center, University of Torino, 10126 Torino, Italy
| | - Peter J Quesenberry
- Department of Medicine, The Warren Alpert Medical School of Brown University, Providence, RI 02903, USA
| | - Giovanni Camussi
- Department of Medical Sciences and Molecular Biotechnology Center, University of Torino, 10126 Torino, Italy
| |
Collapse
|
13
|
Smith G, Tomlinson D, Harrison M, Ponnambalam S. Chapter Eight - Ubiquitin-Mediated Regulation of Cellular Responses to Vascular Endothelial Growth Factors. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2016; 141:313-38. [DOI: 10.1016/bs.pmbts.2016.02.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
14
|
Ma H, Wardega P, Mazaud D, Klosowska-Wardega A, Jurek A, Engström U, Lennartsson J, Heldin CH. Histidine-domain-containing protein tyrosine phosphatase regulates platelet-derived growth factor receptor intracellular sorting and degradation. Cell Signal 2015; 27:2209-19. [DOI: 10.1016/j.cellsig.2015.07.020] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 07/24/2015] [Indexed: 11/17/2022]
|
15
|
Sun S, Zhou X, Corvera J, Gallick GE, Lin SH, Kuang J. ALG-2 activates the MVB sorting function of ALIX through relieving its intramolecular interaction. Cell Discov 2015; 1:15018. [PMID: 27462417 PMCID: PMC4860835 DOI: 10.1038/celldisc.2015.18] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Accepted: 05/14/2015] [Indexed: 12/31/2022] Open
Abstract
The modular adaptor protein ALIX is critically involved in endosomal sorting complexes required for transport (ESCRT)-mediated multivesicular body (MVB) sorting of activated epidermal growth factor receptor (EGFR); however, ALIX contains a default intramolecular interaction that renders ALIX unable to perform this ESCRT function. The ALIX partner protein ALG-2 is a calcium-binding protein that belongs to the calmodulin superfamily. Prompted by a defined biological function of calmodulin, we determined the role of ALG-2 in regulating ALIX involvement in MVB sorting of activated EGFR. Our results show that calcium-dependent ALG-2 interaction with ALIX completely relieves the intramolecular interaction of ALIX and promotes CHMP4-dependent ALIX association with the membrane. EGFR activation induces increased ALG-2 interaction with ALIX, and this increased interaction is responsible for increased ALIX association with the membrane. Functionally, inhibition of ALIX activation by ALG-2 inhibits MVB sorting of activated EGFR as effectively as inhibition of ALIX interaction with CHMP4 does; however, inhibition of ALIX activation by ALG-2 does not affect cytokinetic abscission or equine infectious anemia virus (EIAV) budding. These findings indicate that calcium-dependent ALG-2 interaction with ALIX is specifically responsible for generating functional ALIX that supports MVB sorting of ubiquitinated membrane receptors.
Collapse
Affiliation(s)
- Sheng Sun
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; The University of Texas Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Xi Zhou
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center , Houston, TX, USA
| | - Joe Corvera
- A&G Pharmaceuticals, Inc. , Baltimore, MD, USA
| | - Gary E Gallick
- The University of Texas Graduate School of Biomedical Sciences, Houston, TX, USA; Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sue-Hwa Lin
- The University of Texas Graduate School of Biomedical Sciences, Houston, TX, USA; Department of Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jian Kuang
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; The University of Texas Graduate School of Biomedical Sciences, Houston, TX, USA
| |
Collapse
|
16
|
Gioia R, Trégoat C, Dumas PY, Lagarde V, Prouzet-Mauléon V, Desplat V, Sirvent A, Praloran V, Lippert E, Villacreces A, Leconet W, Robert B, Vigon I, Roche S, Mahon FX, Pasquet JM. CBL controls a tyrosine kinase network involving AXL, SYK and LYN in nilotinib-resistant chronic myeloid leukaemia. J Pathol 2015; 237:14-24. [PMID: 25965880 DOI: 10.1002/path.4561] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Revised: 04/20/2015] [Accepted: 04/29/2015] [Indexed: 12/23/2022]
Abstract
A tyrosine kinase network composed of the TAM receptor AXL and the cytoplasmic kinases LYN and SYK is involved in nilotinib-resistance of chronic myeloid leukaemia (CML) cells. Here, we show that the E3-ubiquitin ligase CBL down-regulation occurring during prolonged drug treatment plays a critical role in this process. Depletion of CBL in K562 cells increases AXL and LYN protein levels, promoting cell resistance to nilotinib. Conversely, forced expression of CBL in nilotinib-resistant K562 cells (K562-rn) dramatically reduces AXL and LYN expression and resensitizes K562-rn cells to nilotinib. A similar mechanism was found to operate in primary CML CD34(+) cells. Mechanistically, the E3-ligase CBL counteracts AXL/SYK signalling, promoting LYN transcription by controlling AXL protein stability. Surprisingly, the role of AXL in resistance was independent of its ligand GAS6 binding and its TK activity, in accordance with a scaffold activity for this receptor being involved in this cellular process. Collectively, our results demonstrate a pivotal role for CBL in the control of a tyrosine kinase network mediating resistance to nilotinib treatment in CML cells.
Collapse
Affiliation(s)
- Romain Gioia
- Hématopoïèse Leucémique et Cibles Thérapeutiques, INSERM U1035, Université de Bordeaux, France
| | - Claire Trégoat
- Hématopoïèse Leucémique et Cibles Thérapeutiques, INSERM U1035, Université de Bordeaux, France
| | - Pierre-Yves Dumas
- Hématopoïèse Leucémique et Cibles Thérapeutiques, INSERM U1035, Université de Bordeaux, France
| | - Valérie Lagarde
- Hématopoïèse Leucémique et Cibles Thérapeutiques, INSERM U1035, Université de Bordeaux, France
| | - Valérie Prouzet-Mauléon
- Hématopoïèse Leucémique et Cibles Thérapeutiques, INSERM U1035, Université de Bordeaux, France
| | - Vanessa Desplat
- Hématopoïèse Leucémique et Cibles Thérapeutiques, INSERM U1035, Université de Bordeaux, France
| | - Audrey Sirvent
- CNRS UMR5237, Centre de Recherche de Biochimie Macromoléculaire, Montpellier, France
| | - Vincent Praloran
- Hématopoïèse Leucémique et Cibles Thérapeutiques, INSERM U1035, Université de Bordeaux, France
| | - Eric Lippert
- Hématopoïèse Leucémique et Cibles Thérapeutiques, INSERM U1035, Université de Bordeaux, France
| | - Arnaud Villacreces
- Hématopoïèse Leucémique et Cibles Thérapeutiques, INSERM U1035, Université de Bordeaux, France
| | - Wilhem Leconet
- Equipe Immunociblage et Radiobiologie en Oncologie, IRCM Institut de Recherche en Cancérologie de Montpellier, INSERM U896-Université Montpellier1-ICM, Montpellier, France
| | - Bruno Robert
- Equipe Immunociblage et Radiobiologie en Oncologie, IRCM Institut de Recherche en Cancérologie de Montpellier, INSERM U896-Université Montpellier1-ICM, Montpellier, France
| | - Isabelle Vigon
- Hématopoïèse Leucémique et Cibles Thérapeutiques, INSERM U1035, Université de Bordeaux, France
| | - Serge Roche
- CNRS UMR5237, Centre de Recherche de Biochimie Macromoléculaire, Montpellier, France
| | - François-Xavier Mahon
- Hématopoïèse Leucémique et Cibles Thérapeutiques, INSERM U1035, Université de Bordeaux, France
| | - Jean-Max Pasquet
- Hématopoïèse Leucémique et Cibles Thérapeutiques, INSERM U1035, Université de Bordeaux, France
| |
Collapse
|
17
|
Unravelling the pivotal role of Alix in MVB sorting and silencing of the activated EGFR. Biochem J 2015; 466:475-87. [PMID: 25510652 DOI: 10.1042/bj20141156] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Endosomal sorting complex required for transport (ESCRT)-III-mediated membrane invagination and scission are a critical step in multivesicular body (MVB) sorting of ubiquitinated membrane receptors, and generally thought to be required for degradation of these receptors in lysosomes. The adaptor protein Alix is critically involved in multiple ESCRT-III-mediated, membrane-remodelling processes in mammalian cells. However, Alix knockdown does not inhibit degradation of the activated epidermal growth factor receptor (EGFR) in mammalian cell lines, leading to a widely held notion that Alix is not critically involved in MVB sorting of ubiquitinated membrane receptors in mammalian cells. In the present study, we demonstrate that, despite its non-essential role in degradation of the activated EGFR, Alix plays a critical role in its MVB sorting and silencing Epidermal growth factor (EGF) stimulation of mammalian cell lines induces Alix's interaction with the ubiquitinated EGFR via the Alix V domain, and increases Alix's association with membrane-bound charged multivesicular body protein 4 (CHMP4) via the Alix Bro1 domain. Under both continuous and pulse-chase EGF stimulation conditions, inhibition of Alix's interaction with membrane-bound CHMP4, inhibition of Alix dimerization through the V domain or Alix knockdown dramatically inhibits MVB sorting of the activated EGFR and promotes sustained activation of extracellular-signal regulated kinase (ERK)1/2. Under the continuous EGF stimulation conditions, these cell treatments also retard degradation of the activated EGFR. These findings indicate that Alix is critically involved in MVB sorting of ubiquitinated membrane receptors in mammalian cells.
Collapse
|
18
|
Noble M, Mayer-Pröschel M, Li Z, Dong T, Cui W, Pröschel C, Ambeskovic I, Dietrich J, Han R, Yang YM, Folts C, Stripay J, Chen HY, Stevens BM. Redox biology in normal cells and cancer: restoring function of the redox/Fyn/c-Cbl pathway in cancer cells offers new approaches to cancer treatment. Free Radic Biol Med 2015; 79:300-23. [PMID: 25481740 PMCID: PMC10173888 DOI: 10.1016/j.freeradbiomed.2014.10.860] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Revised: 10/29/2014] [Accepted: 10/30/2014] [Indexed: 12/12/2022]
Abstract
This review discusses a unique discovery path starting with novel findings on redox regulation of precursor cell and signaling pathway function and identification of a new mechanism by which relatively small changes in redox status can control entire signaling networks that regulate self-renewal, differentiation, and survival. The pathway central to this work, the redox/Fyn/c-Cbl (RFC) pathway, converts small increases in oxidative status to pan-activation of the c-Cbl ubiquitin ligase, which controls multiple receptors and other proteins of central importance in precursor cell and cancer cell function. Integration of work on the RFC pathway with attempts to understand how treatment with systemic chemotherapy causes neurological problems led to the discovery that glioblastomas (GBMs) and basal-like breast cancers (BLBCs) inhibit c-Cbl function through altered utilization of the cytoskeletal regulators Cool-1/βpix and Cdc42, respectively. Inhibition of these proteins to restore normal c-Cbl function suppresses cancer cell division, increases sensitivity to chemotherapy, disrupts tumor-initiating cell (TIC) activity in GBMs and BLBCs, controls multiple critical TIC regulators, and also allows targeting of non-TICs. Moreover, these manipulations do not increase chemosensitivity or suppress division of nontransformed cells. Restoration of normal c-Cbl function also allows more effective harnessing of estrogen receptor-α (ERα)-independent activities of tamoxifen to activate the RFC pathway and target ERα-negative cancer cells. Our work thus provides a discovery strategy that reveals mechanisms and therapeutic targets that cannot be deduced by standard genetics analyses, which fail to reveal the metabolic information, isoform shifts, protein activation, protein complexes, and protein degradation critical to our discoveries.
Collapse
Affiliation(s)
- Mark Noble
- Department of Biomedical Genetics and University of Rochester Stem Cell and Regenerative Medicine Institute, University of Rochester Medical Center, Rochester, NY 14642, USA.
| | - Margot Mayer-Pröschel
- Department of Biomedical Genetics and University of Rochester Stem Cell and Regenerative Medicine Institute, University of Rochester Medical Center, Rochester, NY 14642, USA.
| | - Zaibo Li
- Department of Pathology, Ohio State University Wexner Medical Center, 410W 10th Avenue, E403 Doan Hall, Columbus, OH 43210-1240, USA.
| | - Tiefei Dong
- University of Michigan Tech Transfer, 1600 Huron Pkwy, 2nd Floor, Building 520, Ann Arbor, MI 48109-2590, USA.
| | - Wanchang Cui
- Department of Radiation Oncology, University of Maryland School of Medicine,10 South Pine Street, MSTF Room 600, Baltimore, MD 21201, USA.
| | - Christoph Pröschel
- Department of Biomedical Genetics and University of Rochester Stem Cell and Regenerative Medicine Institute, University of Rochester Medical Center, Rochester, NY 14642, USA.
| | - Ibro Ambeskovic
- Department of Biomedical Genetics and University of Rochester Stem Cell and Regenerative Medicine Institute, University of Rochester Medical Center, Rochester, NY 14642, USA.
| | - Joerg Dietrich
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, Yawkey 9E, Boston, MA 02114, USA.
| | - Ruolan Han
- Department of Biomedical Genetics and University of Rochester Stem Cell and Regenerative Medicine Institute, University of Rochester Medical Center, Rochester, NY 14642, USA.
| | - Yin Miranda Yang
- Department of Biomedical Genetics and University of Rochester Stem Cell and Regenerative Medicine Institute, University of Rochester Medical Center, Rochester, NY 14642, USA.
| | - Christopher Folts
- Department of Biomedical Genetics and University of Rochester Stem Cell and Regenerative Medicine Institute, University of Rochester Medical Center, Rochester, NY 14642, USA.
| | - Jennifer Stripay
- Department of Biomedical Genetics and University of Rochester Stem Cell and Regenerative Medicine Institute, University of Rochester Medical Center, Rochester, NY 14642, USA.
| | - Hsing-Yu Chen
- Harvard Medical School, Department of Cell Biology 240 Longwood Avenue Building C1, Room 513B Boston, MA 02115, USA.
| | - Brett M Stevens
- University of Colorado School of Medicine, Division of Hematology, 12700 E. 19th Avenue, Campus Box F754-AMCA, Aurora, CO 80045, USA.
| |
Collapse
|
19
|
Panjwani N. Role of galectins in re-epithelialization of wounds. ANNALS OF TRANSLATIONAL MEDICINE 2014; 2:89. [PMID: 25405164 DOI: 10.3978/j.issn.2305-5839.2014.09.09] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Accepted: 09/09/2014] [Indexed: 12/18/2022]
Abstract
Re-epithelialization is a critical contributing process in wound healing in the human body. When this process is compromised, impaired or delayed, serious disorders of wound healing may result that are painful, difficult to treat, and affect a variety of human tissues. Recent studies have demonstrated that members of the galectin class of β-galactoside-binding proteins modulate re-epithelialization of wounds by novel carbohydrate-based recognition systems. Galectins constitute a family of widely distributed carbohydrate-binding proteins with the affinity for the β-galactoside-containing glycans found on many cell surface and extracellular matrix (ECM) glycoproteins. There are 15 members of the mammalian galectin family that so far have been identified. Studies of the role of galectins in wound healing have revealed that galectin-3 promotes re-epithelialization of corneal, intestinal and skin wounds; galectin-7 promotes re-epithelialization of corneal, skin, kidney and uterine wounds; and galectins-2 and -4 promote re-epithelialization of intestinal wounds. Promising prospects for developing novel therapeutic strategies for the treatment of problematic, slow- or non-healing wounds are implicit in the findings that galectins stimulate the re-epithelialization of wounds of the cornea, skin, intestinal tract and kidney. Molecular mechanisms by which galectins modulate the process of wound healing are beginning to emerge and are described in this review.
Collapse
Affiliation(s)
- Noorjahan Panjwani
- New England Eye Center, Departments of Ophthalmology and Developmental, Molecular, and Chemical Biology, Tufts University School of Medicine, Boston, MA 02111, USA
| |
Collapse
|
20
|
Ahmad G, Mohapatra BC, Schulte NA, Nadeau SA, Luan H, Zutshi N, Tom E, Ortega-Cava C, Tu C, Sanada M, Ogawa S, Toews ML, Band V, Band H. Cbl-family ubiquitin ligases and their recruitment of CIN85 are largely dispensable for epidermal growth factor receptor endocytosis. Int J Biochem Cell Biol 2014; 57:123-34. [PMID: 25449262 DOI: 10.1016/j.biocel.2014.10.019] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Revised: 10/03/2014] [Accepted: 10/16/2014] [Indexed: 11/15/2022]
Abstract
Members of the casitas B-lineage lymphoma (Cbl) family (Cbl, Cbl-b and Cbl-c) of ubiquitin ligases serve as negative regulators of receptor tyrosine kinases (RTKs). An essential role of Cbl-family protein-dependent ubiquitination for efficient ligand-induced lysosomal targeting and degradation is now well-accepted. However, a more proximal role of Cbl and Cbl-b as adapters for CIN85-endophilin recruitment to mediate ligand-induced initial internalization of RTKs is supported by some studies but refuted by others. Overexpression and/or incomplete depletion of Cbl proteins in these studies is likely to have contributed to this dichotomy. To address the role of endogenous Cbl and Cbl-b in the internalization step of RTK endocytic traffic, we established Cbl/Cbl-b double-knockout (DKO) mouse embryonic fibroblasts (MEFs) and demonstrated that these cells lack the expression of both Cbl-family members as well as endophilin A, while they express CIN85. We show that ligand-induced ubiquitination of EGFR, as a prototype RTK, was abolished in DKO MEFs, and EGFR degradation was delayed. These traits were reversed by ectopic human Cbl expression. EGFR endocytosis, assessed using the internalization of (125)I-labeled or fluorescent EGF, or of EGFR itself, was largely retained in Cbl/Cbl-b DKO compared to wild type MEFs. EGFR internalization was also largely intact in Cbl/Cbl-b depleted MCF-10A human mammary epithelial cell line. Inducible shRNA-mediated knockdown of CIN85 in wild type or Cbl/Cbl-b DKO MEFs had no impact on EGFR internalization. Our findings, establish that, at physiological expression levels, Cbl, Cbl-b and CIN85 are largely dispensable for EGFR internalization. Our results support the model that Cbl-CIN85-endophilin complex is not required for efficient internalization of EGFR, a prototype RTK.
Collapse
Affiliation(s)
- Gulzar Ahmad
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, 985950 Nebraska Medical Center, Omaha, NE 68198-5950, USA
| | - Bhopal C Mohapatra
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, 985950 Nebraska Medical Center, Omaha, NE 68198-5950, USA; Department of Biochemistry & Molecular Biology, University of Nebraska Medical Center, 985950 Nebraska Medical Center, Omaha, NE 68198-5950, USA
| | - Nancy A Schulte
- Department of Pharmacology & Experimental Neuroscience, University of Nebraska Medical Center, 985950 Nebraska Medical Center, Omaha, NE 68198-5950, USA
| | - Scott A Nadeau
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, 985950 Nebraska Medical Center, Omaha, NE 68198-5950, USA; Department of Genetics, Cell Biology & Anatomy, University of Nebraska Medical Center, 985950 Nebraska Medical Center, Omaha, NE 68198-5950, USA
| | - Haitao Luan
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, 985950 Nebraska Medical Center, Omaha, NE 68198-5950, USA; Department of Genetics, Cell Biology & Anatomy, University of Nebraska Medical Center, 985950 Nebraska Medical Center, Omaha, NE 68198-5950, USA
| | - Neha Zutshi
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, 985950 Nebraska Medical Center, Omaha, NE 68198-5950, USA; Department of Pathology & Microbiology, College of Medicine, University of Nebraska Medical Center, 985950 Nebraska Medical Center, Omaha, NE 68198-5950, USA
| | - Eric Tom
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, 985950 Nebraska Medical Center, Omaha, NE 68198-5950, USA; Department of Biochemistry & Molecular Biology, University of Nebraska Medical Center, 985950 Nebraska Medical Center, Omaha, NE 68198-5950, USA
| | - Cesar Ortega-Cava
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, 985950 Nebraska Medical Center, Omaha, NE 68198-5950, USA
| | - Chun Tu
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, 985950 Nebraska Medical Center, Omaha, NE 68198-5950, USA
| | - Masashi Sanada
- Department of Pathology and Tumor Biology, Kyoto University, Yoshida-Konoe-Cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Seishi Ogawa
- Department of Pathology and Tumor Biology, Kyoto University, Yoshida-Konoe-Cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Myron L Toews
- Department of Pharmacology & Experimental Neuroscience, University of Nebraska Medical Center, 985950 Nebraska Medical Center, Omaha, NE 68198-5950, USA
| | - Vimla Band
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, 985950 Nebraska Medical Center, Omaha, NE 68198-5950, USA; Department of Genetics, Cell Biology & Anatomy, University of Nebraska Medical Center, 985950 Nebraska Medical Center, Omaha, NE 68198-5950, USA; Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, 985950 Nebraska Medical Center, Omaha, NE 68198-5950, USA
| | - Hamid Band
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, 985950 Nebraska Medical Center, Omaha, NE 68198-5950, USA; Department of Biochemistry & Molecular Biology, University of Nebraska Medical Center, 985950 Nebraska Medical Center, Omaha, NE 68198-5950, USA; Department of Genetics, Cell Biology & Anatomy, University of Nebraska Medical Center, 985950 Nebraska Medical Center, Omaha, NE 68198-5950, USA; Department of Pathology & Microbiology, College of Medicine, University of Nebraska Medical Center, 985950 Nebraska Medical Center, Omaha, NE 68198-5950, USA; Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, 985950 Nebraska Medical Center, Omaha, NE 68198-5950, USA.
| |
Collapse
|
21
|
Franco IS, Shuman HA. A pathogen's journey in the host cell: Bridges between actin and traffic. BIOARCHITECTURE 2014; 2:38-42. [PMID: 22754628 PMCID: PMC3383720 DOI: 10.4161/bioa.20422] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Manipulation of the actin cytoskeleton is a commonly used process by which bacterial pathogens and viruses are able to neutralize host defense mechanisms and subvert them in order to replicate in a hostile environment. Diverse bacteria display a wide array of mechanisms of regulation of microfilaments to enter, move within or exit the host cell. A less studied subject is how pathogens may co-opt the actin cytoskeleton to disturb vesicle trafficking pathways, namely phagolysosomal fusion, and avoid degradation. In fact, although actin plays a role in endosomal trafficking and phagosome maturation, the knowledge on the exact mechanisms and additional players is still scarce. Recently, we found that the Legionella pneumophila virulence factor VipA is an actin nucleator, associates with actin filaments and early endosomes during infection, and interferes in yeast organelle trafficking pathways, suggesting it may be linking actin dynamics to endosome biogenesis. Further studies on this protein, together with work on other bacterial effectors, may help shed light in the role of actin in endosomal maturation.
Collapse
|
22
|
Amorim NA, da Silva EML, de Castro RO, da Silva-Januário ME, Mendonça LM, Bonifacino JS, da Costa LJ, daSilva LLP. Interaction of HIV-1 Nef protein with the host protein Alix promotes lysosomal targeting of CD4 receptor. J Biol Chem 2014; 289:27744-56. [PMID: 25118280 DOI: 10.1074/jbc.m114.560193] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Nef is an accessory protein of human immunodeficiency viruses that promotes viral replication and progression to AIDS through interference with various host trafficking and signaling pathways. A key function of Nef is the down-regulation of the coreceptor CD4 from the surface of the host cells. Nef-induced CD4 down-regulation involves at least two independent steps as follows: acceleration of CD4 endocytosis by a clathrin/AP-2-dependent pathway and targeting of internalized CD4 to multivesicular bodies (MVBs) for eventual degradation in lysosomes. In a previous work, we found that CD4 targeting to the MVB pathway was independent of CD4 ubiquitination. Here, we report that this targeting depends on a direct interaction of Nef with Alix/AIP1, a protein associated with the endosomal sorting complexes required for transport (ESCRT) machinery that assists with cargo recruitment and intraluminal vesicle formation in MVBs. We show that Nef interacts with both the Bro1 and V domains of Alix. Depletion of Alix or overexpression of the Alix V domain impairs lysosomal degradation of CD4 induced by Nef. In contrast, the V domain overexpression does not prevent cell surface removal of CD4 by Nef or protein targeting to the canonical ubiquitination-dependent MVB pathway. We also show that the Nef-Alix interaction occurs in late endosomes that are enriched in internalized CD4. Together, our results indicate that Alix functions as an adaptor for the ESCRT-dependent, ubiquitin-independent targeting of CD4 to the MVB pathway induced by Nef.
Collapse
Affiliation(s)
- Nathaly A Amorim
- From the Department of Cell and Molecular Biology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP 14049-900, Brazil
| | - Eulália M L da Silva
- From the Department of Cell and Molecular Biology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP 14049-900, Brazil
| | - Rodrigo O de Castro
- From the Department of Cell and Molecular Biology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP 14049-900, Brazil
| | - Mara E da Silva-Januário
- From the Department of Cell and Molecular Biology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP 14049-900, Brazil
| | - Luiza M Mendonça
- the Department of Virology, Institute of Microbiology Paulo de Góes, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21941-590, Brazil, and
| | - Juan S Bonifacino
- the Cell Biology and Metabolism Program, Eunice Kennedy Shriver NICHD, National Institutes of Health, Bethesda, Maryland 20892
| | - Luciana J da Costa
- the Department of Virology, Institute of Microbiology Paulo de Góes, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21941-590, Brazil, and
| | - Luis L P daSilva
- From the Department of Cell and Molecular Biology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP 14049-900, Brazil,
| |
Collapse
|
23
|
Zheng X, Zhang J, Liao K. The basic amino acids in the coiled-coil domain of CIN85 regulate its interaction with c-Cbl and phosphatidic acid during epidermal growth factor receptor (EGFR) endocytosis. BMC BIOCHEMISTRY 2014; 15:13. [PMID: 25005938 PMCID: PMC4096430 DOI: 10.1186/1471-2091-15-13] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Accepted: 07/03/2014] [Indexed: 01/01/2023]
Abstract
Background During EGFR internalization CIN85 bridges EGFR-Cbl complex, endocytic machinery and fusible membrane through the interactions of CIN85 with c-Cbl, endophilins and phosphatidic acid. These protein-protein and protein-lipid interactions are mediated or regulated by the positively charged C-terminal coiled-coil domain of CIN85. However, the details of CIN85-lipid interaction remain unknown. The present study suggested a possible electric interaction between the negative charge of phosphatidic acid and the positive charge of basic amino acids in coiled-coil domain. Results Mutations of the basic amino acids in the coiled-coil domain, especially K645, K646, R648 and R650, into neutral amino acid alanine completely blocked the interaction of CIN85 with c-Cbl or phosphatidic acid. However, they did not affect CIN85-endophilin interaction. In addition, CIN85 was found to associate with the internalized EGFR endosomes. It interacted with several ESCRT (Endosomal Sorting Complex Required for Transport) component proteins for ESCRT assembly on endosomal membrane. Mutations in the coiled-coil domain (deletion of the coiled-coil domain or point mutations of the basic amino acids) dissociated CIN85 from endosomes. These mutants bound the ESCRT components in cytoplasm to prevent them from assembly on endosomal membrane and inhibited EGFR sorting for degradation. Conclusions As an adaptor protein, CIN85 interacts with variety of partners through several domains. The positive charges of basic amino acids in the coiled-coil domain are not only involved in the interaction with phosphatidic acid, but also regulate the interaction of CIN85 with c-Cbl. CIN85 also interacts with ESCRT components for protein sorting in endosomes. These CIN85-protein and CIN85-lipid interactions enable CIN85 to link EGFR-Cbl endocytic complex with fusible membrane during EGFR endocytosis and subsequently to facilitate ESCRT formation on endosomal membrane for EGFR sorting and degradation.
Collapse
Affiliation(s)
| | | | - Kan Liao
- From State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China.
| |
Collapse
|
24
|
Bissig C, Gruenberg J. ALIX and the multivesicular endosome: ALIX in Wonderland. Trends Cell Biol 2014; 24:19-25. [DOI: 10.1016/j.tcb.2013.10.009] [Citation(s) in RCA: 216] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Revised: 10/29/2013] [Accepted: 10/30/2013] [Indexed: 01/19/2023]
|
25
|
Abstract
Intracellular organelles, including endosomes, show differences not only in protein but also in lipid composition. It is becoming clear from the work of many laboratories that the mechanisms necessary to achieve such lipid segregation can operate at very different levels, including the membrane biophysical properties, the interactions with other lipids and proteins, and the turnover rates or distribution of metabolic enzymes. In turn, lipids can directly influence the organelle membrane properties by changing biophysical parameters and by recruiting partner effector proteins involved in protein sorting and membrane dynamics. In this review, we will discuss how lipids are sorted in endosomal membranes and how they impact on endosome functions.
Collapse
Affiliation(s)
- Christin Bissig
- Biochemistry Department, University of Geneva, 1211 Geneva 4, Switzerland
| | | |
Collapse
|
26
|
Drost J, Nonis D, Eich F, Leske O, Damrath E, Brunt ER, Lastres-Becker I, Heumann R, Nowock J, Auburger G. Ataxin-2 modulates the levels of Grb2 and SRC but not ras signaling. J Mol Neurosci 2013; 51:68-81. [PMID: 23335000 PMCID: PMC3739869 DOI: 10.1007/s12031-012-9949-4] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Accepted: 12/28/2012] [Indexed: 12/13/2022]
Abstract
Ataxin-2 (ATXN2) is implicated mainly in mRNA processing. Some ATXN2 associates with receptor tyrosine kinases (RTK), inhibiting their endocytic internalization through interaction of proline-rich domains (PRD) in ATXN2 with SH3 motifs in Src. Gain of function of ATXN2 leads to neuronal atrophy in the diseases spinocerebellar ataxia type 2 (SCA2) and amyotrophic lateral sclerosis (ALS). Conversely, ATXN2 knockout (KO) mice show hypertrophy and insulin resistance. To elucidate the influence of ATXN2 on trophic regulation, we surveyed interactions of ATXN2 with SH3 motifs from numerous proteins and observed a novel interaction with Grb2. Direct binding in glutathione S-transferase (GST) pull-down assays and coimmunoprecipitation of the endogenous proteins indicated a physiologically relevant association. In SCA2 patient fibroblasts, Grb2 more than Src protein levels were diminished, with an upregulation of both transcripts suggesting enhanced protein turnover. In KO mouse embryonal fibroblasts (MEF), the protein levels of Grb2 and Src were decreased. ATXN2 absence by itself was insufficient to significantly change Grb2-dependent signaling for endogenous Ras levels, Ras-GTP levels, and kinetics as well as MEK1 phosphorylation, suggesting that other factors compensate for proliferation control. In KO tissue with postmitotic neurons, a significant decrease of Src protein levels is prominent rather than Grb2. ATXN2 mutations modulate the levels of several components of the RTK endocytosis complex and may thus contribute to alter cell proliferation as well as translation and growth.
Collapse
Affiliation(s)
- Jessica Drost
- Section Experimental Neurology, Department of Neurology, Goethe University Medical School, Building 89, 3rd Floor, Theodor Stern Kai 7, 60590 Frankfurt am Main, Germany
| | - David Nonis
- Section Experimental Neurology, Department of Neurology, Goethe University Medical School, Building 89, 3rd Floor, Theodor Stern Kai 7, 60590 Frankfurt am Main, Germany
- Present Address: Department of Reproductive Medicine, University of California at San Diego, School of Medicine, 9500 Gilman Dr., La Jolla, CA 92093-0633 USA
| | - Florian Eich
- Section Experimental Neurology, Department of Neurology, Goethe University Medical School, Building 89, 3rd Floor, Theodor Stern Kai 7, 60590 Frankfurt am Main, Germany
| | - Oliver Leske
- Department Molecular Neurobiochemistry, Faculty for Chemistry and Biochemistry, Ruhr-University Bochum, Universitätsstraβe 150, 44780 Bochum, Germany
| | - Ewa Damrath
- Section Experimental Neurology, Department of Neurology, Goethe University Medical School, Building 89, 3rd Floor, Theodor Stern Kai 7, 60590 Frankfurt am Main, Germany
| | - Ewout R. Brunt
- Department of Neurology, University Medical Centre Groningen, University of Groningen, Hanzeplein 1, 9713 RB Groningen, The Netherlands
| | - Isabel Lastres-Becker
- Section Experimental Neurology, Department of Neurology, Goethe University Medical School, Building 89, 3rd Floor, Theodor Stern Kai 7, 60590 Frankfurt am Main, Germany
- Present Address: Departamento de Bioquímica, Instituto de Investigaciones Biomédicas “Alberto Sols”, and Centro de Investigación en Red en Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Rolf Heumann
- Department Molecular Neurobiochemistry, Faculty for Chemistry and Biochemistry, Ruhr-University Bochum, Universitätsstraβe 150, 44780 Bochum, Germany
| | - Joachim Nowock
- Section Experimental Neurology, Department of Neurology, Goethe University Medical School, Building 89, 3rd Floor, Theodor Stern Kai 7, 60590 Frankfurt am Main, Germany
| | - Georg Auburger
- Section Experimental Neurology, Department of Neurology, Goethe University Medical School, Building 89, 3rd Floor, Theodor Stern Kai 7, 60590 Frankfurt am Main, Germany
| |
Collapse
|
27
|
Bissig C, Lenoir M, Velluz MC, Kufareva I, Abagyan R, Overduin M, Gruenberg J. Viral infection controlled by a calcium-dependent lipid-binding module in ALIX. Dev Cell 2013; 25:364-73. [PMID: 23664863 DOI: 10.1016/j.devcel.2013.04.003] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Revised: 02/13/2013] [Accepted: 03/29/2013] [Indexed: 11/25/2022]
Abstract
ALIX plays a role in nucleocapsid release during viral infection, as does lysobisphosphatidic acid (LBPA). However, the mechanism remains unclear. Here we report that LBPA is recognized within an exposed site in ALIX Bro1 domain predicted by MODA, an algorithm for discovering membrane-docking areas in proteins. LBPA interactions revealed a strict requirement for a structural calcium tightly bound near the lipid interaction site. Unlike other calcium- and phospholipid-binding proteins, the all-helical triangle-shaped fold of the Bro1 domain confers selectivity for LBPA via a pair of hydrophobic residues in a flexible loop, which undergoes a conformational change upon membrane association. Both LBPA and calcium binding are necessary for endosome association and virus infection, as are ALIX ESCRT binding and dimerization capacity. We conclude that LBPA recruits ALIX onto late endosomes via the calcium-bound Bro1 domain, triggering a conformational change in ALIX to mediate the delivery of viral nucleocapsids to the cytosol during infection.
Collapse
Affiliation(s)
- Christin Bissig
- Biochemistry Department, University of Geneva, 30 quai Ernest Ansermet, 1211 Geneva 4, Switzerland
| | | | | | | | | | | | | |
Collapse
|
28
|
Abstract
Endocytosis is the major regulator of signaling from receptor tyrosine kinases (RTKs). The canonical model of RTK endocytosis involves rapid internalization of an RTK activated by ligand binding at the cell surface and subsequent sorting of internalized ligand-RTK complexes to lysosomes for degradation. Activation of the intrinsic tyrosine kinase activity of RTKs results in autophosphorylation, which is mechanistically coupled to the recruitment of adaptor proteins and conjugation of ubiquitin to RTKs. Ubiquitination serves to mediate interactions of RTKs with sorting machineries both at the cell surface and on endosomes. The pathways and kinetics of RTK endocytic trafficking, molecular mechanisms underlying sorting processes, and examples of deviations from the standard trafficking itinerary in the RTK family are discussed in this work.
Collapse
Affiliation(s)
- Lai Kuan Goh
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | | |
Collapse
|
29
|
Romancino DP, Anello L, Morici G, d'Azzo A, Bongiovanni A, Di Bernardo M. Identification and characterization of PlAlix, the Alix homologue from the Mediterranean sea urchin Paracentrotus lividus. Dev Growth Differ 2013; 55:237-46. [PMID: 23302023 DOI: 10.1111/dgd.12023] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Revised: 10/11/2012] [Accepted: 10/31/2012] [Indexed: 12/13/2022]
Abstract
The sea urchin provides a relatively simple and tractable system for analyzing the early stages of embryo development. Here, we use the sea urchin species, Paracentrotus lividus, to investigate the role of Alix in key stages of embryogenesis, namely the egg fertilization and the first cleavage division. Alix is a multifunctional protein involved in different cellular processes including endocytic membrane trafficking, filamentous (F)-actin remodeling, and cytokinesis. Alix homologues have been identified in different metazoans; in these organisms, Alix is involved in oogenesis and in determination/differentiation events during embryo development. Herein, we describe the identification of the sea urchin homologue of Alix, PlAlix. The deduced amino acid sequence shows that Alix is highly conserved in sea urchins. Accordingly, we detect the PlAlix protein cross-reacting with monoclonal Alix antibodies in extracts from P. lividus, at different developmental stages. Focusing on the role of PlAlix during early embryogenesis we found that PlAlix is a maternal protein that is expressed at increasingly higher levels from fertilization to the 2-cell stage embryo. In sea urchin eggs, PlAlix localizes throughout the cytoplasm with a punctuated pattern and, soon after fertilization, accumulates in larger puncta in the cytosol, and in microvilli-like protrusions. Together our data show that PlAlix is structurally conserved from sea urchin to mammals and may open new lines of inquiry into the role of Alix during the early stages of embryo development.
Collapse
Affiliation(s)
- Daniele P Romancino
- Institute of Biomedicine and Molecular Immunology, National Research Council, via Ugo La Malfa, 153-90100, Palermo, Italy
| | | | | | | | | | | |
Collapse
|
30
|
Liu W, Hsu DK, Chen HY, Yang RY, Carraway KL, Isseroff RR, Liu FT. Galectin-3 regulates intracellular trafficking of EGFR through Alix and promotes keratinocyte migration. J Invest Dermatol 2012; 132:2828-37. [PMID: 22785133 PMCID: PMC3496033 DOI: 10.1038/jid.2012.211] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The EGFR-mediated signaling pathways are important in a variety of cellular processes, including cell migration and wound re-epithelialization. Intracellular trafficking of EGFR is critical for maintaining EGFR surface expression. Galectin-3, a member of an animal lectin family, has been implicated in a number of physiological and pathological processes. Through studies of galectin-3-deficient mice and cells isolated from these mice, we demonstrated that the absence of galectin-3 impairs keratinocyte migration and skin wound re-epithelialization. We have linked this pro-migratory function to a crucial role of cytosolic galectin-3 in controlling intracellular trafficking and cell surface expression of EGFR after EGF stimulation. Without galectin-3, the surface levels of EGFR are markedly reduced, and the receptor accumulates diffusely in the cytoplasm. This is associated with reduced rates of both endocytosis and recycling of the receptor. We have provided evidence that this previously unreported function of galectin-3 may be mediated through interaction with its binding partner Alix, which is a protein component of the ESCRT (endosomal sorting complex required for transport) machinery. Our results suggest that galectin-3 is potentially a critical regulator of a number of important cellular responses through its intracellular control of trafficking of cell surface receptors.
Collapse
Affiliation(s)
- Wei Liu
- Department of Dermatology, University of California, Davis. California 95817, USA
| | - Daniel K. Hsu
- Department of Dermatology, University of California, Davis. California 95817, USA
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan, R.O.C
| | - Huan-Yuan Chen
- Department of Dermatology, University of California, Davis. California 95817, USA
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan, R.O.C
| | - Ri-Yao Yang
- Department of Dermatology, University of California, Davis. California 95817, USA
| | | | - Roslyn R. Isseroff
- Department of Dermatology, University of California, Davis. California 95817, USA
| | - Fu-Tong Liu
- Department of Dermatology, University of California, Davis. California 95817, USA
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan, R.O.C
| |
Collapse
|
31
|
de Kreuk BJ, Anthony EC, Geerts D, Hordijk PL. The F-BAR protein PACSIN2 regulates epidermal growth factor receptor internalization. J Biol Chem 2012; 287:43438-53. [PMID: 23129763 DOI: 10.1074/jbc.m112.391078] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Signaling via growth factor receptors, including the epidermal growth factor (EGF) receptor, is key to various cellular processes, such as proliferation, cell survival, and cell migration. In a variety of human diseases such as cancer, aberrant expression and activation of growth factor receptors can lead to disturbed signaling. Intracellular trafficking is crucial for proper signaling of growth factor receptors. As a result, the level of cell surface expression of growth factor receptors is an important determinant for the outcome of downstream signaling. BAR domain-containing proteins represent an important family of proteins that regulate membrane dynamics. In this study, we identify a novel role for the F-BAR protein PACSIN2 in the regulation of EGF receptor signaling. We show that internalized EGF as well as the (activated) EGF receptor translocated to PACSIN2-positive endosomes. Furthermore, loss of PACSIN2 increased plasma membrane expression of the EGF receptor in resting cells and increased EGF-induced phosphorylation of the EGF receptor. As a consequence, EGF-induced activation of Erk and Akt as well as cell proliferation were enhanced in PACSIN2-depleted cells. In conclusion, this study identifies a novel role for the F-BAR-domain protein PACSIN2 in regulating EGF receptor surface levels and EGF-induced downstream signaling.
Collapse
Affiliation(s)
- Bart-Jan de Kreuk
- Department of Molecular Cell Biology, Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Plesmanlaan 125, 1066CX Amsterdam, The Netherlands
| | | | | | | |
Collapse
|
32
|
Lambert B, Vandeputte J, Remacle S, Bergiers I, Simonis N, Twizere JC, Vidal M, Rezsohazy R. Protein interactions of the transcription factor Hoxa1. BMC DEVELOPMENTAL BIOLOGY 2012; 12:29. [PMID: 23088713 PMCID: PMC3514159 DOI: 10.1186/1471-213x-12-29] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Accepted: 10/16/2012] [Indexed: 11/10/2022]
Abstract
Background Hox proteins are transcription factors involved in crucial processes during animal development. Their mode of action remains scantily documented. While other families of transcription factors, like Smad or Stat, are known cell signaling transducers, such a function has never been squarely addressed for Hox proteins. Results To investigate the mode of action of mammalian Hoxa1, we characterized its interactome by a systematic yeast two-hybrid screening against ~12,200 ORF-derived polypeptides. Fifty nine interactors were identified of which 45 could be confirmed by affinity co-purification in animal cell lines. Many Hoxa1 interactors are proteins involved in cell-signaling transduction, cell adhesion and vesicular trafficking. Forty-one interactions were detectable in live cells by Bimolecular Fluorescence Complementation which revealed distinctive intracellular patterns for these interactions consistent with the selective recruitment of Hoxa1 by subgroups of partner proteins at vesicular, cytoplasmic or nuclear compartments. Conclusions The characterization of the Hoxa1 interactome presented here suggests unexplored roles for Hox proteins in cell-to-cell communication and cell physiology.
Collapse
Affiliation(s)
- Barbara Lambert
- Molecular and Cellular Animal Embryology group, Life Sciences Institute (ISV), Université Catholique de Louvain, Louvain-la-Neuve, 1348, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Schroeder B, Srivatsan S, Shaw A, Billadeau D, McNiven MA. CIN85 phosphorylation is essential for EGFR ubiquitination and sorting into multivesicular bodies. Mol Biol Cell 2012; 23:3602-11. [PMID: 22833562 PMCID: PMC3442408 DOI: 10.1091/mbc.e11-08-0666] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
This study provides new insights into the mechanisms by which CIN85 regulates targeting of the EGF receptor for degradation. It is the first to demonstrate that CIN85 is phosphorylated by src, phosphorylation of CIN85 is essential for ubiquitinylation of the EGFR, and CIN85 mediates EGFR sequestration into intraluminal vesicles. Ubiquitination of the epidermal growth factor receptor (EGFR) by cbl and its cognate adaptor cbl-interacting protein of 85 kDa (CIN85) is known to play an essential role in directing this receptor to the lysosome for degradation. The mechanisms by which this ubiquitin modification is regulated are not fully defined, nor is it clear where this process occurs. In this study we show that EGFR activation leads to a pronounced src-mediated tyrosine phosphorylation of CIN85 that subsequently influences EGFR ubiquitination. Of importance, phospho-CIN85 interacts with the Rab5-positive endosome, where it mediates the sequestration of the ubiquitinated receptor into multivesicular bodies (MVBs) for subsequent degradation. These findings provide novel insights into how src- kinase–based regulation of a cbl adaptor regulates the fate of the EGFR.
Collapse
Affiliation(s)
- Barbara Schroeder
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| | | | | | | | | |
Collapse
|
34
|
Shi X, Betzi S, Lugari A, Opi S, Restouin A, Parrot I, Martinez J, Zimmermann P, Lecine P, Huang M, Arold ST, Collette Y, Morelli X. Structural recognition mechanisms between human Src homology domain 3 (SH3) and ALG-2-interacting protein X (Alix). FEBS Lett 2012; 586:1759-64. [PMID: 22641034 DOI: 10.1016/j.febslet.2012.05.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Revised: 04/23/2012] [Accepted: 05/09/2012] [Indexed: 02/05/2023]
Abstract
The functions of Src family kinases are tightly regulated through Src homology (SH) domain-mediated protein-protein interactions. We previously reported the biophysical characteristics of the apoptosis-linked gene 2-interacting protein X (Alix) in complex with the haemopoietic cell kinase (Hck) SH3 domain. In the current study, we have combined ITC, NMR, SAXS and molecular modeling to determine a 3D model of the complex. We demonstrate that Hck SH3 recognizes an extended linear proline-rich region of Alix. This particular binding mode enables Hck SH3 to sense a specific non-canonical residue situated in the SH3 RT-loop of the kinase. The resulting model helps clarify the mechanistic insights of Alix-Hck interaction.
Collapse
Affiliation(s)
- Xiaoli Shi
- CNRS UMR 7258, INSERM U 1068, Centre de Recherche en Cancérologie de Marseille, Marseille F-13009, France
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Brankatschk B, Wichert SP, Johnson SD, Schaad O, Rossner MJ, Gruenberg J. Regulation of the EGF transcriptional response by endocytic sorting. Sci Signal 2012; 5:ra21. [PMID: 22416276 DOI: 10.1126/scisignal.2002351] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Ligand binding to the epidermal growth factor receptor (EGFR) on the cell surface activates the extracellular signal-regulated kinase (ERK) cascade. Activated, ligand-bound receptors are internalized, and this process may contribute to termination of signaling or enable signaling from intracellular sites. ESCRT (endosomal sorting complex required for transport) complexes may contribute to termination of signaling by sorting receptors into intraluminal vesicles of multivesicular endosomes from which the receptors continue into lysosomes for degradation. We showed that depletion of ESCRTs, which causes the retention of the EGFR in endosomes, increased the activation of the EGFR and its downstream kinases but had little effect on the overall profile and amplitude of the EGF-induced transcriptional response. In contrast, interfering with receptor endocytosis or ubiquitination to keep the EGFR at the cell surface stimulated increases in the abundance of many EGF-induced transcripts, similar to those induced by EGFR overexpression. We also found that the complete EGF transcriptional program was rapidly activated after ligand binding to the receptor. We conclude that the transcriptional response is elicited primarily by receptor molecules at the cell surface.
Collapse
Affiliation(s)
- Ben Brankatschk
- Department of Biochemistry, University of Geneva, 30 Quai E. Ansermet, 1211 Geneva 4, Switzerland
| | | | | | | | | | | |
Collapse
|
36
|
EhADH112 is a Bro1 domain-containing protein involved in the Entamoeba histolytica multivesicular bodies pathway. J Biomed Biotechnol 2012; 2012:657942. [PMID: 22500103 PMCID: PMC3303925 DOI: 10.1155/2012/657942] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2011] [Accepted: 10/03/2011] [Indexed: 12/21/2022] Open
Abstract
EhADH112 is an Entamoeba histolytica Bro1 domain-containing protein, structurally related to mammalian ALIX and yeast BRO1, both involved in the Endosomal Sorting Complexes Required for Transport (ESCRT)-mediated multivesicular bodies (MVB) biogenesis. Here, we investigated an alternative role for EhADH112 in the MVB protein trafficking pathway by overexpressing 166 amino acids of its N-terminal Bro1 domain in trophozoites. Trophozoites displayed diminished phagocytosis rates and accumulated exogenous Bro1 at cytoplasmic vesicles which aggregated into aberrant complexes at late stages of phagocytosis, probably preventing EhADH112 function. Additionally, the existence of a putative E. histolytica ESCRT-III subunit (EhVps32) presumably interacting with EhADH112, led us to perform pull-down experiments with GST-EhVps32 and [35S]-labeled EhADH112 or EhADH112 derivatives, confirming EhVps32 binding to EhADH112 through its Bro1 domain. Our overall results define EhADH112 as a novel member of ESCRT-accessory proteins transiently present at cellular surface and endosomal compartments, probably contributing to MVB formation during phagocytosis.
Collapse
|
37
|
Bongiovanni A, Romancino DP, Campos Y, Paterniti G, Qiu X, Moshiach S, Di Felice V, Vergani N, Ustek D, d'Azzo A. Alix protein is substrate of Ozz-E3 ligase and modulates actin remodeling in skeletal muscle. J Biol Chem 2012; 287:12159-71. [PMID: 22334701 DOI: 10.1074/jbc.m111.297036] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Alix/AIP1 is a multifunctional adaptor protein that participates in basic cellular processes, including membrane trafficking and actin cytoskeleton assembly, by binding selectively to a variety of partner proteins. However, the mechanisms regulating Alix turnover, subcellular distribution, and function in muscle cells are unknown. We now report that Alix is expressed in skeletal muscle throughout myogenic differentiation. In myotubes, a specific pool of Alix colocalizes with Ozz, the substrate-binding component of the muscle-specific ubiquitin ligase complex Ozz-E3. We found that interaction of the two endogenous proteins in the differentiated muscle fibers changes Alix conformation and promotes its ubiquitination. This in turn regulates the levels of the protein in specific subcompartments, in particular the one containing the actin polymerization factor cortactin. In Ozz(-/-) myotubes, the levels of filamentous (F)-actin is perturbed, and Alix accumulates in large puncta positive for cortactin. In line with this observation, we show that the knockdown of Alix expression in C2C12 muscle cells affects the amount and distribution of F-actin, which consequently leads to changes in cell morphology, impaired formation of sarcolemmal protrusions, and defective cell motility. These findings suggest that the Ozz-E3 ligase regulates Alix at sites where the actin cytoskeleton undergoes remodeling.
Collapse
Affiliation(s)
- Antonella Bongiovanni
- Institute of Biomedicine and Molecular Immunology, National Research Council, 90146 Palermo, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Abstract
Endosomes along the degradation pathway exhibit a multivesicular appearance and differ in their lipid compositions. Association of proteins to specific membrane lipids and presumably also lipid-lipid interactions contribute to the formation of functional membrane platforms that regulate endosome biogenesis and function. This chapter provides a brief review of the functions of endosomal lipids in the degradation pathway, a discussion of techniques that allow studying lipid-based mechanisms and a selection of step-by-step protocols for in vivo and in vitro methods commonly used to study lipid roles in endocytosis. The techniques described here have been used to elucidate the function of the late endosomal lipid lysobisphosphatidic acid and allow the monitoring of lipid distribution, levels and dynamics, as well as the characterization of lipid-binding partners.
Collapse
|
39
|
Old world arenaviruses enter the host cell via the multivesicular body and depend on the endosomal sorting complex required for transport. PLoS Pathog 2011; 7:e1002232. [PMID: 21931550 PMCID: PMC3169553 DOI: 10.1371/journal.ppat.1002232] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2010] [Accepted: 07/07/2011] [Indexed: 11/30/2022] Open
Abstract
The highly pathogenic Old World arenavirus Lassa virus (LASV) and the prototypic arenavirus lymphocytic choriomeningitis virus (LCMV) use α-dystroglycan as a cellular receptor and enter the host cell by an unusual endocytotic pathway independent of clathrin, caveolin, dynamin, and actin. Upon internalization, the viruses are delivered to acidified endosomes in a Rab5-independent manner bypassing classical routes of incoming vesicular trafficking. Here we sought to identify cellular factors involved in the unusual and largely unknown entry pathway of LASV and LCMV. Cell entry of LASV and LCMV required microtubular transport to late endosomes, consistent with the low fusion pH of the viral envelope glycoproteins. Productive infection with recombinant LCMV expressing LASV envelope glycoprotein (rLCMV-LASVGP) and LCMV depended on phosphatidyl inositol 3-kinase (PI3K) as well as lysobisphosphatidic acid (LBPA), an unusual phospholipid that is involved in the formation of intraluminal vesicles (ILV) of the multivesicular body (MVB) of the late endosome. We provide evidence for a role of the endosomal sorting complex required for transport (ESCRT) in LASV and LCMV cell entry, in particular the ESCRT components Hrs, Tsg101, Vps22, and Vps24, as well as the ESCRT-associated ATPase Vps4 involved in fission of ILV. Productive infection with rLCMV-LASVGP and LCMV also critically depended on the ESCRT-associated protein Alix, which is implicated in membrane dynamics of the MVB/late endosomes. Our study identifies crucial cellular factors implicated in Old World arenavirus cell entry and indicates that LASV and LCMV invade the host cell passing via the MVB/late endosome. Our data further suggest that the virus-receptor complexes undergo sorting into ILV of the MVB mediated by the ESCRT, possibly using a pathway that may be linked to the cellular trafficking and degradation of the cellular receptor. Old World arenaviruses include the prototypic lymphocytic choriomeningitis virus (LCMV) and the highly pathogenic Lassa virus (LASV) that causes a severe hemorrhagic fever in humans and infects several thousand individuals per year in Western Africa. Cell entry of a virus is the first step of every virus infection and represents a promising target for therapeutic intervention. We and others had shown that LCMV and LASV attach to a cellular receptor, α-dystroglycan, followed by internalization by endocytosis via a novel and unusual pathway. Here we investigated the largely unknown molecular mechanisms of cell entry of LASV and LCMV with the goal to identify host cell factors involved. We discovered that during cell entry LASV and LCMV pass through a particular intracellular compartment, the multivesicular body (MVB)/late endosome, which is implicated in the internalization and degradation of cellular membrane receptors. Productive infection of LASV and LCMV critically depended on cellular factors involved in the membrane dynamics and sorting processes in the MVB. Based on our studies, we propose a model for Old World arenavirus entry in which the viruses hijack a pathway that may be linked to the cellular trafficking and degradation of their cellular receptor.
Collapse
|
40
|
Hwang Y, Chumbalkar V, Latha K, Bogler O. Forced dimerization increases the activity of ΔEGFR/EGFRvIII and enhances its oncogenicity. Mol Cancer Res 2011; 9:1199-208. [PMID: 21775422 DOI: 10.1158/1541-7786.mcr-11-0229] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Delta epidermal growth factor receptor (ΔEGFR), an in-frame deletion mutant of the extracellular ligand-binding domain, which occurs in about 30% of glioblastoma, is a potent oncogene that promotes tumor growth and progression. The signaling of ΔEGFR is ligand-independent and low intensity, allowing it to evade the normal mechanisms of internalization and degradation by the endocytic machinery and hence is persistent. The basis of the oncogenic potential of ΔEGFR remains incompletely understood, including whether dimerization plays an important role in its signal and whether its oncogenic potential is dependent on its relatively low intensity, when compared with the acutely activated wild-type receptor. To examine these two important questions, we have generated a chimeric ΔEGFR that allows forced dimerization via domains derived from variants of the FKBP12 protein that are brought together by FK506 derivatives. Forced dimerization of chimeric ΔEGFR significantly increased the intensity of its signal, as measured by receptor phosphorylation levels, suggesting that the naturally occurring ΔEGFR does not form strong or stable dimers as part of its low level signal. Interestingly, the increased activity of dimerized, chimeric ΔEGFR did not promote receptor internalization, implying that reduced rate of endocytic downregulation of ΔEGFR is an inherent characteristic. Significantly, forced dimerization enhanced the oncogenic signal of the receptor, implying that the ΔEGFR is a potent oncogene despite, not because of its low intensity.
Collapse
Affiliation(s)
- Yeohyeon Hwang
- Department of Neurosurgery, University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA
| | | | | | | |
Collapse
|
41
|
Abstract
The four ESCRT (endocytic sorting complexes required for transport) complexes (ESCRT-0, -I, -II, and -III) normally operate sequentially in the trafficking of cellular cargo. HIV-1 Gag trafficking and release as virus-like particles (VLPs) require the participation of ESCRTs; however, its use of ESCRTs is selective and nonsequential. Specifically, Gag trafficking to release sites on the plasma membrane does not require ESCRT-0 or -II. It is known that a bypass of ESCRT-0 is achieved by the direct linkage of the ESCRT-I component, Tsg101, to the primary L domain motif (PTAP) in Gag and that bypass of ESCRT-II is achieved by the linkage of Gag to ESCRT-III through the adaptor protein Alix. However, the mechanism by which Gag suppresses the interaction of bound ESCRT-I with ESCRT-II is unknown. Here we show (i) that VLP release requires the steady-state level of Sprouty 2 (Spry2) in COS-1 cells, (ii) that Spry2 binds the ESCRT-II component Eap20, (iii) that binding Eap20 permits Spry2 to disrupt ESCRT-I interaction with ESCRT-II, and (iv) that coexpression of Gag with a Spry2 fragment that binds Eap20 increases VLP release. Spry2 also facilitated release of P7L-Gag (i.e., release in the absence of Tsg101 binding). In this case, rescue required the secondary L domain (YPX(n)L) in HIV-1 Gag that binds Alix and the region in Spry2 that binds Eap20. The results identify Spry2 as a novel cellular factor that facilitates release driven by the primary and secondary HIV-1 Gag L domains.
Collapse
|
42
|
Starr TK, Scott PM, Marsh BM, Zhao L, Than BLN, O'Sullivan MG, Sarver AL, Dupuy AJ, Largaespada DA, Cormier RT. A Sleeping Beauty transposon-mediated screen identifies murine susceptibility genes for adenomatous polyposis coli (Apc)-dependent intestinal tumorigenesis. Proc Natl Acad Sci U S A 2011; 108:5765-5770. [PMID: 21436051 PMCID: PMC3078351 DOI: 10.1073/pnas.1018012108] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
It is proposed that a progressive series of mutations and epigenetic events leads to human colorectal cancer (CRC) and metastasis. Furthermore, data from resequencing of the coding regions of human CRC suggests that a relatively large number of mutations occur in individual human CRC, most at low frequency. The functional role of these low-frequency mutations in CRC, and specifically how they may cooperate with high-frequency mutations, is not well understood. One of the most common rate-limiting mutations in human CRC occurs in the adenomatous polyposis coli (APC) gene. To identify mutations that cooperate with mutant APC, we performed a forward genetic screen in mice carrying a mutant allele of Apc (Apc(Min)) using Sleeping Beauty (SB) transposon-mediated mutagenesis. Apc(Min) SB-mutagenized mice developed three times as many polyps as mice with the Apc(Min) allele alone. Analysis of transposon common insertion sites (CIS) identified the Apc locus as a major target of SB-induced mutagenesis, suggesting that SB insertions provide an efficient route to biallelic Apc inactivation. We also identified an additional 32 CIS genes/loci that may represent modifiers of the Apc(Min) phenotype. Five CIS genes tested for their role in proliferation caused a significant change in cell viability when message levels were reduced in human CRC cells. These findings demonstrate the utility of using transposon mutagenesis to identify low-frequency and cooperating cancer genes; this approach will aid in the development of combinatorial therapies targeting this deadly disease.
Collapse
Affiliation(s)
- Timothy K. Starr
- Department of Genetics, Cell Biology and Development, Center for Genome Engineering, Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455
| | - Patricia M. Scott
- Department of Biochemistry and Molecular Biology, University of Minnesota Medical School, Duluth, MN 55812
| | - Benjamin M. Marsh
- Department of Biochemistry and Molecular Biology, University of Minnesota Medical School, Duluth, MN 55812
| | - Lei Zhao
- Department of Biochemistry and Molecular Biology, University of Minnesota Medical School, Duluth, MN 55812
| | - Bich L. N. Than
- Department of Biochemistry and Molecular Biology, University of Minnesota Medical School, Duluth, MN 55812
| | - M. Gerard O'Sullivan
- Department of Genetics, Cell Biology and Development, Center for Genome Engineering, Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, St. Paul, MN 55108
| | - Aaron L. Sarver
- Department of Biostatistics and Informatics, Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455; and
| | - Adam J. Dupuy
- Department of Anatomy and Cell Biology, University of Iowa, Iowa City, IA 52242
| | - David A. Largaespada
- Department of Genetics, Cell Biology and Development, Center for Genome Engineering, Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455
| | - Robert T. Cormier
- Department of Biochemistry and Molecular Biology, University of Minnesota Medical School, Duluth, MN 55812
| |
Collapse
|
43
|
de Bie P, Ciechanover A. Ubiquitination of E3 ligases: self-regulation of the ubiquitin system via proteolytic and non-proteolytic mechanisms. Cell Death Differ 2011; 18:1393-402. [PMID: 21372847 DOI: 10.1038/cdd.2011.16] [Citation(s) in RCA: 217] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Ubiquitin modification of many cellular proteins targets them for proteasomal degradation, but in addition can also serve non-proteolytic functions. Over the last years, a significant progress has been made in our understanding of how modification of the substrates of the ubiquitin system is regulated. However, little is known on how the ubiquitin system that is comprised of ∼1500 components is regulated. Here, we discuss how the biggest subfamily within the system, that of the E3 ubiquitin ligases that endow the system with its high specificity towards the numerous substrates, is regulated and in particular via self-regulation mediated by ubiquitin modification. Ligases can be targeted for degradation in a self-catalyzed manner, or through modification mediated by an external ligase(s). In addition, non-proteolytic functions of self-ubiquitination, for example activation of the ligase, of E3s are discussed.
Collapse
Affiliation(s)
- P de Bie
- Cancer and Vascular Biology Research Center, The Rappaport Faculty of Medicine and Research Institute, Technion-Israel Institute of Technology, Haifa, Israel.
| | | |
Collapse
|
44
|
Conserved genes act as modifiers of invertebrate SMN loss of function defects. PLoS Genet 2010; 6:e1001172. [PMID: 21124729 PMCID: PMC2965752 DOI: 10.1371/journal.pgen.1001172] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2010] [Accepted: 09/21/2010] [Indexed: 01/27/2023] Open
Abstract
Spinal Muscular Atrophy (SMA) is caused by diminished function of the Survival of Motor Neuron (SMN) protein, but the molecular pathways critical for SMA pathology remain elusive. We have used genetic approaches in invertebrate models to identify conserved SMN loss of function modifier genes. Drosophila melanogaster and Caenorhabditis elegans each have a single gene encoding a protein orthologous to human SMN; diminished function of these invertebrate genes causes lethality and neuromuscular defects. To find genes that modulate SMN function defects across species, two approaches were used. First, a genome-wide RNAi screen for C. elegans SMN modifier genes was undertaken, yielding four genes. Second, we tested the conservation of modifier gene function across species; genes identified in one invertebrate model were tested for function in the other invertebrate model. Drosophila orthologs of two genes, which were identified originally in C. elegans, modified Drosophila SMN loss of function defects. C. elegans orthologs of twelve genes, which were originally identified in a previous Drosophila screen, modified C. elegans SMN loss of function defects. Bioinformatic analysis of the conserved, cross-species, modifier genes suggests that conserved cellular pathways, specifically endocytosis and mRNA regulation, act as critical genetic modifiers of SMN loss of function defects across species.
Collapse
|
45
|
A Dyn2-CIN85 complex mediates degradative traffic of the EGFR by regulation of late endosomal budding. EMBO J 2010; 29:3039-53. [PMID: 20711168 DOI: 10.1038/emboj.2010.190] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2009] [Accepted: 07/14/2010] [Indexed: 11/09/2022] Open
Abstract
The epidermal growth factor receptor (EGFR) is over-expressed in a variety of human cancers. Downstream signalling of this receptor is tightly regulated both spatially and temporally by controlling its internalization and subsequent degradation. Internalization of the EGFR requires dynamin 2 (Dyn2), a large GTPase that deforms lipid bilayers, leading to vesicle scission. The adaptor protein CIN85 (cbl-interacting protein of 85 kDa), which has been proposed to indirectly link the EGFR to the endocytic machinery at the plasma membrane, is also thought to be involved in receptor internalization. Here, we report a novel and direct interaction between Dyn2 and CIN85 that is induced by EGFR stimulation and, most surprisingly, occurs late in the endocytic process. Importantly, disruption of the CIN85-Dyn2 interaction results in accumulation of internalized EGFR in late endosomes that become aberrantly elongated into distended tubules. Consistent with the accumulation of this receptor is a sustention of downstream signalling cascades. These findings provide novel insights into a previously unknown protein complex that can regulate EGFR traffic at very late stages of the endocytic pathway.
Collapse
|
46
|
Inuzuka T, Suzuki H, Kawasaki M, Shibata H, Wakatsuki S, Maki M. Molecular basis for defect in Alix-binding by alternatively spliced isoform of ALG-2 (ALG-2DeltaGF122) and structural roles of F122 in target recognition. BMC STRUCTURAL BIOLOGY 2010; 10:25. [PMID: 20691033 PMCID: PMC2927601 DOI: 10.1186/1472-6807-10-25] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2010] [Accepted: 08/06/2010] [Indexed: 11/10/2022]
Abstract
Background ALG-2 (a gene product of PDCD6) belongs to the penta-EF-hand (PEF) protein family and Ca2+-dependently interacts with various intracellular proteins including mammalian Alix, an adaptor protein in the ESCRT system. Our previous X-ray crystal structural analyses revealed that binding of Ca2+ to EF3 enables the side chain of R125 to move enough to make a primary hydrophobic pocket (Pocket 1) accessible to a short fragment of Alix. The side chain of F122, facing a secondary hydrophobic pocket (Pocket 2), interacts with the Alix peptide. An alternatively spliced shorter isoform, designated ALG-2ΔGF122, lacks Gly121Phe122 and does not bind Alix, but the structural basis of the incompetence has remained to be elucidated. Results We solved the X-ray crystal structure of the PEF domain of ALG-2ΔGF122 in the Ca2+-bound form and compared it with that of ALG-2. Deletion of the two residues shortened α-helix 5 (α5) and changed the configuration of the R125 side chain so that it partially blocked Pocket 1. A wall created by the main chain of 121-GFG-123 and facing the two pockets was destroyed. Surprisingly, however, substitution of F122 with Ala or Gly, but not with Trp, increased the Alix-binding capacity in binding assays. The F122 substitutions exhibited different effects on binding of ALG-2 to other known interacting proteins, including TSG101 (Tumor susceptibility gene 101) and annexin A11. The X-ray crystal structure of the F122A mutant revealed that removal of the bulky F122 side chain not only created an additional open space in Pocket 2 but also abolished inter-helix interactions with W95 and V98 (present in α4) and that α5 inclined away from α4 to expand Pocket 2, suggesting acquirement of more appropriate positioning of the interacting residues to accept Alix. Conclusions We found that the inability of the two-residue shorter ALG-2 isoform to bind Alix is not due to the absence of bulky side chain of F122 but due to deformation of a main-chain wall facing pockets 1 and 2. Moreover, a residue at the position of F122 contributes to target specificity and a smaller side chain is preferable for Alix binding but not favored to bind annexin A11.
Collapse
Affiliation(s)
- Tatsutoshi Inuzuka
- Department of Applied Molecular Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| | | | | | | | | | | |
Collapse
|
47
|
Quantitative proteome profiling of respiratory virus-infected lung epithelial cells. J Proteomics 2010; 73:1680-93. [PMID: 20470912 DOI: 10.1016/j.jprot.2010.04.008] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2009] [Revised: 04/22/2010] [Accepted: 04/26/2010] [Indexed: 11/20/2022]
Abstract
Respiratory virus infections are among the primary causes of morbidity and mortality in humans. Influenza virus, respiratory syncytial virus (RSV), parainfluenza (PIV) and human metapneumovirus (hMPV) are major causes of respiratory illness in humans. Especially young children and the elderly are susceptible to infections with these viruses. In this study we aim to gain detailed insight into the molecular pathogenesis of respiratory virus infections by studying the protein expression profiles of infected lung epithelial cells. A549 cells were exposed to a set of respiratory viruses [RSV, hMPV, PIV and Measles virus (MV)] using both live and UV-inactivated virus preparations. Cells were harvested at different time points after infection and processed for proteomics analysis by 2-dimensional difference gel electrophoresis. Samples derived from infected cells were compared to mock-infected cells to identify proteins that are differentially expressed due to infection. We show that RSV, hMPV, PIV3, and MV induced similar core host responses and that mainly proteins involved in defense against ER stress and apoptosis were affected which points towards an induction of apoptosis upon infection. By 2-D DIGE analyses we have gathered information on the induction of apoptosis by respiratory viruses in A549 cells.
Collapse
|
48
|
Havrylov S, Redowicz MJ, Buchman VL. Emerging roles of Ruk/CIN85 in vesicle-mediated transport, adhesion, migration and malignancy. Traffic 2010; 11:721-31. [PMID: 20331533 DOI: 10.1111/j.1600-0854.2010.01061.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Ruk/CIN85 is an adaptor protein. Similar to many other proteins of this type, Ruk/CIN85 is known to take part in multiple cellular processes including signal transduction, vesicle-mediated transport, cytoskeleton remodelling, programmed cell death and viral infection. Recent studies have also revealed the potential importance of Ruk/CIN85 in cancer cell invasiveness. In this review we summarize the various roles of this protein as well as the potential contribution of Ruk/CIN85 to malignancy and the invasiveness of cancer cells. In the last section of the paper we also speculate on the utility of Ruk/CIN85 as a target for novel anti-cancer therapies.
Collapse
Affiliation(s)
- Serhiy Havrylov
- Nencki Institute of Experimental Biology, Pasteura 3 Street, 02-093 Warsaw, Poland
| | | | | |
Collapse
|
49
|
McDonald B, Martin-Serrano J. No strings attached: the ESCRT machinery in viral budding and cytokinesis. J Cell Sci 2009; 122:2167-77. [PMID: 19535732 DOI: 10.1242/jcs.028308] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Since the initial discovery of the endosomal sorting complex required for transport (ESCRT) pathway, research in this field has exploded. ESCRT proteins are part of the endosomal trafficking system and play a crucial role in the biogenesis of multivesicular bodies by functioning in the formation of vesicles that bud away from the cytoplasm. Subsequently, a surprising role for ESCRT proteins was defined in the budding step of some enveloped retroviruses, including HIV-1. ESCRT proteins are also employed in this outward budding process, which results in the resolution of a membranous tether between the host cell and the budding virus particle. Remarkably, it has recently been described that ESCRT proteins also have a role in the topologically equivalent process of cell division. In the same way that viral particles recruit the ESCRT proteins to the site of viral budding, ESCRT proteins are also recruited to the midbody - the site of release of daughter cell from mother cell during cytokinesis. In this Commentary, we describe recent advances in the understanding of ESCRT proteins and how they act to mediate these diverse processes.
Collapse
Affiliation(s)
- Bethan McDonald
- Department of Infectious Diseases, King's College London School of Medicine, Guy's Hospital, London, SE1 9RT, UK
| | | |
Collapse
|
50
|
Pires R, Hartlieb B, Signor L, Schoehn G, Lata S, Roessle M, Moriscot C, Popov S, Hinz A, Jamin M, Boyer V, Sadoul R, Forest E, Svergun DI, Göttlinger HG, Weissenhorn W. A crescent-shaped ALIX dimer targets ESCRT-III CHMP4 filaments. Structure 2009; 17:843-56. [PMID: 19523902 DOI: 10.1016/j.str.2009.04.007] [Citation(s) in RCA: 107] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2009] [Revised: 03/27/2009] [Accepted: 04/15/2009] [Indexed: 12/20/2022]
Abstract
ALIX recruits ESCRT-III CHMP4 and is involved in membrane remodeling during endosomal receptor sorting, budding of some enveloped viruses, and cytokinesis. We show that ALIX dimerizes via the middle domain (ALIX(-V)) in solution. Structural modeling based on small angle X-ray scattering (SAXS) data reveals an elongated crescent-shaped conformation for dimeric ALIX lacking the proline-rich domain (ALIX(BRO1-V)). Mutations at the dimerization interface prevent dimerization and induce an open elongated monomeric conformation of ALIX(-V) as determined by SAXS modeling. ALIX dimerizes in vivo and dimeric ALIX colocalizes with CHMP4B upon coexpression. We show further that ALIX dimerization affects HIV-1 budding. C-terminally truncated activated CHMP4B retaining the ALIX binding site forms linear, circular, and helical filaments in vitro, which can be bridged by ALIX. Our data suggest that dimeric ALIX represents the active form that interacts with ESCRT-III CHMP4 polymers and functions as a scaffolding protein during membrane remodeling processes.
Collapse
Affiliation(s)
- Ricardo Pires
- Unit of Virus Host Cell Interactions (UVHCI) UMI 3265, Université Joseph Fourier-EMBL-CNRS, 6 rue Jules Horowitz, 38042 Grenoble, Cedex 9, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|