1
|
Xiao J, You K, Lu D, Guan S, Wu H, Gao J, Tang Y, Yu S, Gao B. Cell-Derived Basal Membrane-Like Extracellular Matrix Promotes Endothelial Cell Expansion and Functionalization. J Biomed Mater Res A 2025; 113:e37893. [PMID: 40059713 DOI: 10.1002/jbm.a.37893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 02/17/2025] [Accepted: 02/24/2025] [Indexed: 05/13/2025]
Abstract
Engineering cellular microenvironments with biomaterials is an effective strategy for endothelial cell expansion and functionality in vascular tissue engineering. The basement membrane (BM) is a natural vascular endothelium microenvironment that plays an important role in promoting rapid expansion and function of endothelial cells. However, mimicking the crucial function of BM with an ideal biomaterial remains challenging. In this study, we developed a cell-derived decellularized extracellular matrix (c-dECM) paper to mimic the role of BM in endothelial cell expansion and function. The results showed that c-dECM paper was a stable, biocompatible, and biodegradable scaffold that significantly promoted endothelial cell expansion by modulating cell migration, adhesion, and proliferation both in vivo and in vitro. Moreover, the biomimetic c-dECM paper can profoundly promote endothelial cell function by increasing the synthesis and release of nitric oxide (NO) and prostaglandin I2 (PGI2) and upregulating the expression of anticoagulant and vascularized genes, including thrombomodulin (THBD), tissue factor pathway inhibitor (TFPI), endothelial growth factor (VEGF) and endoglin (CD105). These data indicate that the c-dECM is a potential biomaterial for constructing vascular tissue engineering scaffolds or developing in vitro models to study the functional mechanisms of endothelial cells.
Collapse
Affiliation(s)
- Jiangwei Xiao
- Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou, China
- National Engineering Research Center for Healthcare Devices, Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Medical Electronic Instruments and Materials, Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou, China
| | - Kai You
- Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou, China
- National Engineering Research Center for Healthcare Devices, Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Medical Electronic Instruments and Materials, Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou, China
| | - Daohuan Lu
- Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou, China
- National Engineering Research Center for Healthcare Devices, Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Medical Electronic Instruments and Materials, Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou, China
| | - Shuwen Guan
- Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou, China
- National Engineering Research Center for Healthcare Devices, Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Medical Electronic Instruments and Materials, Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou, China
| | - Hengpeng Wu
- Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou, China
- National Engineering Research Center for Healthcare Devices, Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Medical Electronic Instruments and Materials, Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou, China
| | - Jing Gao
- Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou, China
- National Engineering Research Center for Healthcare Devices, Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Medical Electronic Instruments and Materials, Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou, China
| | - Yadong Tang
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, China
| | - Shan Yu
- Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou, China
- National Engineering Research Center for Healthcare Devices, Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Medical Electronic Instruments and Materials, Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou, China
- Chemical Engineering Department, Ningbo Key Laboratory of High Performance Petroleum Resin Preparation Engineering and Technology, Ningbo, China
| | - Botao Gao
- Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou, China
- National Engineering Research Center for Healthcare Devices, Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Medical Electronic Instruments and Materials, Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou, China
| |
Collapse
|
2
|
Perera M, Brickman JM. In vitro models of human hypoblast and mouse primitive endoderm. Curr Opin Genet Dev 2023; 83:102115. [PMID: 37783145 DOI: 10.1016/j.gde.2023.102115] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 07/28/2023] [Accepted: 08/24/2023] [Indexed: 10/04/2023]
Abstract
The primitive endoderm (PrE, also named hypoblast), a predominantly extraembryonic epithelium that arises from the inner cell mass (ICM) of the mammalian pre-implantation blastocyst, plays a fundamental role in embryonic development, giving rise to the yolk sac, establishing the anterior-posterior axis and contributing to the gut. PrE is specified from the ICM at the same time as the epiblast (Epi) that will form the embryo proper. While in vitro cell lines resembling the pluripotent Epi have been derived from a variety of conditions, only one model system currently exists for the PrE, naïve extraembryonic endoderm (nEnd). As a result, considerably more is known about the gene regulatory networks and signalling requirements of pluripotent stem cells than nEnd. In this review, we describe the ontogeny and differentiation of the PrE or hypoblast in mouse and primate and then discuss in vitro cell culture models for different extraembryonic endodermal cell types.
Collapse
Affiliation(s)
- Marta Perera
- reNEW UCPH - The Novo Nordisk Foundation Center for Stem Cell Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark. https://twitter.com/@MartaPrera
| | - Joshua M Brickman
- reNEW UCPH - The Novo Nordisk Foundation Center for Stem Cell Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark.
| |
Collapse
|
3
|
Rahimian N, Sheida A, Rajabi M, Heidari MM, Tobeiha M, Esfahani PV, Ahmadi Asouri S, Hamblin MR, Mohamadzadeh O, Motamedzadeh A, Khaksary Mahabady M. Non-coding RNAs and exosomal non-coding RNAs in pituitary adenoma. Pathol Res Pract 2023; 248:154649. [PMID: 37453360 DOI: 10.1016/j.prp.2023.154649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/25/2023] [Accepted: 06/25/2023] [Indexed: 07/18/2023]
Abstract
Pituitary adenoma (PA) is the third most common primary intracranial tumor in terms of overall disease incidence. Although they are benign tumors, they can have a variety of clinical symptoms, but are mostly asymptomatic, which often leads to diagnosis at an advanced stage when surgical intervention is ineffective. Earlier identification of PA could reduce morbidity and allow better clinical management of the affected patients. Non-coding RNAs (ncRNAs) do not generally code for proteins, but can modulate biological processes at the post-transcriptional level through a variety of molecular mechanisms. An increased number of ncRNA expression profiles have been found in PAs. Therefore, understanding the expression patterns of different ncRNAs could be a promising method for developing non-invasive biomarkers. This review summarizes the expression patterns of dysregulated ncRNAs (microRNAs, long non-coding RNAs, and circular RNAs) involved in PA, which could one day serve as innovative biomarkers or therapeutic targets for the treatment of this neoplasia. We also discuss the potential molecular pathways by which the dysregulated ncRNAs could cause PA and affect its progression.
Collapse
Affiliation(s)
- Neda Rahimian
- Endocrine Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences (IUMS), Tehran, Iran; Department of Internal Medicine, School of Medicine, Firoozgar Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Amirhossein Sheida
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran; School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Mohammadreza Rajabi
- Department of Pathology, Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Mahdi Heidari
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran; Department of Pediatric, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Mohammad Tobeiha
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran; School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Pegah Veradi Esfahani
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran; School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Sahar Ahmadi Asouri
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, South Africa
| | - Omid Mohamadzadeh
- Department of Neurological Surgery, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran.
| | - Alireza Motamedzadeh
- Department of Internal Medicine, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran.
| | - Mahmood Khaksary Mahabady
- Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
4
|
Chiang IKN, Graus MS, Kirschnick N, Davidson T, Luu W, Harwood R, Jiang K, Li B, Wong YY, Moustaqil M, Lesieur E, Skoczylas R, Kouskoff V, Kazenwadel J, Arriola‐Martinez L, Sierecki E, Gambin Y, Alitalo K, Kiefer F, Harvey NL, Francois M. The blood vasculature instructs lymphatic patterning in a SOX7-dependent manner. EMBO J 2023; 42:e109032. [PMID: 36715213 PMCID: PMC9975944 DOI: 10.15252/embj.2021109032] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 12/15/2022] [Accepted: 12/22/2022] [Indexed: 01/31/2023] Open
Abstract
Despite a growing catalog of secreted factors critical for lymphatic network assembly, little is known about the mechanisms that modulate the expression level of these molecular cues in blood vascular endothelial cells (BECs). Here, we show that a BEC-specific transcription factor, SOX7, plays a crucial role in a non-cell-autonomous manner by modulating the transcription of angiocrine signals to pattern lymphatic vessels. While SOX7 is not expressed in lymphatic endothelial cells (LECs), the conditional loss of SOX7 function in mouse embryos causes a dysmorphic dermal lymphatic phenotype. We identify novel distant regulatory regions in mice and humans that contribute to directly repressing the transcription of a major lymphangiogenic growth factor (Vegfc) in a SOX7-dependent manner. Further, we show that SOX7 directly binds HEY1, a canonical repressor of the Notch pathway, suggesting that transcriptional repression may also be modulated by the recruitment of this protein partner at Vegfc genomic regulatory regions. Our work unveils a role for SOX7 in modulating downstream signaling events crucial for lymphatic patterning, at least in part via the transcriptional repression of VEGFC levels in the blood vascular endothelium.
Collapse
Affiliation(s)
- Ivy K N Chiang
- The Centenary Institute, David Richmond Program for Cardio‐Vascular Research: Gene Regulation and Editing, Sydney Medical SchoolUniversity of SydneySydneyNSWAustralia
| | - Matthew S Graus
- The Centenary Institute, David Richmond Program for Cardio‐Vascular Research: Gene Regulation and Editing, Sydney Medical SchoolUniversity of SydneySydneyNSWAustralia
| | - Nils Kirschnick
- European Institute for Molecular Imaging (EIMI)University of MünsterMünsterGermany
| | - Tara Davidson
- The Centenary Institute, David Richmond Program for Cardio‐Vascular Research: Gene Regulation and Editing, Sydney Medical SchoolUniversity of SydneySydneyNSWAustralia
| | - Winnie Luu
- The Centenary Institute, David Richmond Program for Cardio‐Vascular Research: Gene Regulation and Editing, Sydney Medical SchoolUniversity of SydneySydneyNSWAustralia
| | - Richard Harwood
- Sydney Microscopy and MicroanalysisUniversity of SydneySydneyNSWAustralia
| | - Keyi Jiang
- The Centenary Institute, David Richmond Program for Cardio‐Vascular Research: Gene Regulation and Editing, Sydney Medical SchoolUniversity of SydneySydneyNSWAustralia
| | - Bitong Li
- The Centenary Institute, David Richmond Program for Cardio‐Vascular Research: Gene Regulation and Editing, Sydney Medical SchoolUniversity of SydneySydneyNSWAustralia
| | - Yew Yan Wong
- The Genome Imaging CenterThe Centenary InstituteSydneyNSWAustralia
| | - Mehdi Moustaqil
- EMBL Australia Node in Single Molecule Science, and School of Medical SciencesUniversity of New South WalesSydneyNSWAustralia
| | - Emmanuelle Lesieur
- Institute for Molecular BioscienceThe University of QueenslandSt. LuciaQLDAustralia
| | - Renae Skoczylas
- Institute for Molecular BioscienceThe University of QueenslandSt. LuciaQLDAustralia
| | - Valerie Kouskoff
- Division of Developmental Biology & MedicineThe University of ManchesterManchesterUK
| | - Jan Kazenwadel
- Centre for Cancer BiologyUniversity of South Australia and SA PathologyAdelaideSAAustralia
| | - Luis Arriola‐Martinez
- Centre for Cancer BiologyUniversity of South Australia and SA PathologyAdelaideSAAustralia
| | - Emma Sierecki
- EMBL Australia Node in Single Molecule Science, and School of Medical SciencesUniversity of New South WalesSydneyNSWAustralia
| | - Yann Gambin
- EMBL Australia Node in Single Molecule Science, and School of Medical SciencesUniversity of New South WalesSydneyNSWAustralia
| | - Kari Alitalo
- Wihuri Research Institute and Translational Cancer Medicine Program, Faculty of MedicineUniversity of HelsinkiHelsinkiFinland
| | - Friedmann Kiefer
- European Institute for Molecular Imaging (EIMI)University of MünsterMünsterGermany
| | - Natasha L Harvey
- Centre for Cancer BiologyUniversity of South Australia and SA PathologyAdelaideSAAustralia
| | - Mathias Francois
- The Centenary Institute, David Richmond Program for Cardio‐Vascular Research: Gene Regulation and Editing, Sydney Medical SchoolUniversity of SydneySydneyNSWAustralia
- The Genome Imaging CenterThe Centenary InstituteSydneyNSWAustralia
| |
Collapse
|
5
|
Chowdhary S, Hadjantonakis AK. Journey of the mouse primitive endoderm: from specification to maturation. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210252. [PMID: 36252215 PMCID: PMC9574636 DOI: 10.1098/rstb.2021.0252] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 05/25/2022] [Indexed: 12/22/2022] Open
Abstract
The blastocyst is a conserved stage and distinct milestone in the development of the mammalian embryo. Blastocyst stage embryos comprise three cell lineages which arise through two sequential binary cell fate specification steps. In the first, extra-embryonic trophectoderm (TE) cells segregate from inner cell mass (ICM) cells. Subsequently, ICM cells acquire a pluripotent epiblast (Epi) or extra-embryonic primitive endoderm (PrE, also referred to as hypoblast) identity. In the mouse, nascent Epi and PrE cells emerge in a salt-and-pepper distribution in the early blastocyst and are subsequently sorted into adjacent tissue layers by the late blastocyst stage. Epi cells cluster at the interior of the ICM, while PrE cells are positioned on its surface interfacing the blastocyst cavity, where they display apicobasal polarity. As the embryo implants into the maternal uterus, cells at the periphery of the PrE epithelium, at the intersection with the TE, break away and migrate along the TE as they mature into parietal endoderm (ParE). PrE cells remaining in association with the Epi mature into visceral endoderm. In this review, we discuss our current understanding of the PrE from its specification to its maturation. This article is part of the theme issue 'Extraembryonic tissues: exploring concepts, definitions and functions across the animal kingdom'.
Collapse
Affiliation(s)
- Sayali Chowdhary
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Anna-Katerina Hadjantonakis
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| |
Collapse
|
6
|
Zhou X, Luo H, Zeng D, Hu Y, Wang P, Xiong G, Wang X. Sex-relevant genes in the embryo stage of Chinese soft-shelled turtles as revealed by RNA-Seq analysis. ANIM BIOL 2022. [DOI: 10.1163/15707563-bja10073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Abstract
The Chinese soft-shelled turtle (Pelodiscus sinensis) is an economically important and rare freshwater aquaculture species in China. The male turtles have better economic benefits than females due to their faster growth speed. In order to explore the mechanism of sex differentiation and determination of P. sinensis, transcriptome analysis was carried out using embryo samples from the sex determination, sex differentiation and shelling stages, respectively. The gender types of embryos were identified by genotyping and histological analysis. In all, 277,230 and 273,859 genes were identified from embryos of male and female turtles, respectively. Cluster analysis of gene expression patterns exhibited trends for all differentially expressed genes (DEGs), which can be classified into three subclusters. In the sex determination, sex differentiation, and shelling stages 975, 43, and 300 DEGs, respectively, were identified by comparing the male and female groups. KEGG analysis was used to explore the function of the DEGs. Fgf9, foxl2, mex3b, sox7,tgfβ-3, wnt4, wnt7a, and wt1 were upregulated in ovary development stages and chfr, ampk, aldh2, dao, glt1d1, hvcn1, psmd9, srsf9 and ubc were upregulated in testis development stages, indicating that these genes play important roles in the sex development of P. sinensis. The results of this study provide preliminary insights into the sex determination and differentiation of Chinese soft-shelled turtles.
Collapse
Affiliation(s)
- Xianwen Zhou
- College of Animal Science & Technology, Hunan Agricultural University, Changsha 410128, Hunan, China
- Affair Center of Animal Husbandry and Aquaculture in XiangXi Autonomous Prefecture, Jishou 416000, Hunan, China
| | - Hui Luo
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Southwest University College of Animal Science, Chongqing 400715, China
| | - Dan Zeng
- College of Animal Science & Technology, Hunan Agricultural University, Changsha 410128, Hunan, China
| | - Yazhou Hu
- College of Animal Science & Technology, Hunan Agricultural University, Changsha 410128, Hunan, China
| | - Pei Wang
- College of Animal Science & Technology, Hunan Agricultural University, Changsha 410128, Hunan, China
| | - Gang Xiong
- Department of Animal Science and Technology, Hunan Biological Electromechanical Vocational and Technical College, Changsha 410126, Hunan, China
| | - Xiaoqing Wang
- College of Animal Science & Technology, Hunan Agricultural University, Changsha 410128, Hunan, China
| |
Collapse
|
7
|
Huang RT, Guo YH, Yang CX, Gu JN, Qiu XB, Shi HY, Xu YJ, Xue S, Yang YQ. SOX7 loss-of-function variation as a cause of familial congenital heart disease. Am J Transl Res 2022; 14:1672-1684. [PMID: 35422912 PMCID: PMC8991148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 02/08/2022] [Indexed: 06/14/2023]
Abstract
INTRODUCTION As the most frequent type of birth defect in humans, congenital heart disease (CHD) leads to a large amount of morbidity and mortality as well as a tremendous socioeconomic burden. Accumulating studies have convincingly substantiated the pivotal roles of genetic defects in the occurrence of familial CHD, and deleterious variations in a great number of genes have been reported to cause various types of CHD. However, owing to pronounced genetic heterogeneity, the hereditary components underpinning CHD remain obscure in most cases. This investigation aimed to identify novel genetic determinants underlying CHD. METHODS AND RESULTS A four-generation pedigree with high incidence of autosomal-dominant CHD was enrolled from the Chinese Han race population. Using whole-exome sequencing and Sanger sequencing assays of the family members available, a novel SOX7 variation in heterozygous status, NM_031439.4: c.310C>T; p.(Gln104*), was discovered to be in co-segregation with the CHD phenotype in the whole family. The truncating variant was absent in 500 unrelated healthy subjects utilized as control individuals. Functional measurements by dual-luciferase reporter analysis revealed that Gln104*-mutant SOX7 failed to transactivate its two important target genes, GATA4 and BMP2, which are both responsible for CHD. In addition, the nonsense variation invalidated the cooperative transactivation between SOX7 and NKX2.5, which is another recognized CHD-causative gene. CONCLUSION The present study demonstrates for the first time that genetically defective SOX7 predisposes to CHD, which sheds light on the novel molecular mechanism underpinning CHD, and implies significance for precise prevention and personalized treatment in a subset of CHD patients.
Collapse
Affiliation(s)
- Ri-Tai Huang
- Department of Cardiovascular Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong UniversityShanghai 200127, China
| | - Yu-Han Guo
- Department of Cardiology, Shanghai Fifth People’s Hospital, Fudan UniversityShanghai 200240, China
| | - Chen-Xi Yang
- Department of Cardiology, Shanghai Fifth People’s Hospital, Fudan UniversityShanghai 200240, China
| | - Jia-Ning Gu
- Department of Cardiology, Shanghai Fifth People’s Hospital, Fudan UniversityShanghai 200240, China
| | - Xing-Biao Qiu
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong UniversityShanghai 200030, China
| | - Hong-Yu Shi
- Department of Cardiology, Zhongshan Hospital Wusong Branch, Fudan UniversityShanghai 200940, China
| | - Ying-Jia Xu
- Department of Cardiology, Shanghai Fifth People’s Hospital, Fudan UniversityShanghai 200240, China
| | - Song Xue
- Department of Cardiovascular Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong UniversityShanghai 200127, China
| | - Yi-Qing Yang
- Department of Cardiology, Shanghai Fifth People’s Hospital, Fudan UniversityShanghai 200240, China
- Department of Cardiovascular Research Laboratory, Shanghai Fifth People’s Hospital, Fudan UniversityShanghai 200240, China
- Department of Central Laboratory, Shanghai Fifth People’s Hospital, Fudan UniversityShanghai 200240, China
| |
Collapse
|
8
|
Predisposition to atrioventricular septal defects may be caused by SOX7 variants that impair interaction with GATA4. Mol Genet Genomics 2022; 297:671-687. [PMID: 35260939 DOI: 10.1007/s00438-022-01859-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 01/12/2022] [Indexed: 10/18/2022]
Abstract
Atrioventricular septal defects (AVSD) are a complicated subtype of congenital heart defects for which the genetic basis is poorly understood. Many studies have demonstrated that the transcription factor SOX7 plays a pivotal role in cardiovascular development. However, whether SOX7 single nucleotide variants are involved in AVSD pathogenesis is unclear. To explore the potential pathogenic role of SOX7 variants, we recruited a total of 100 sporadic non-syndromic AVSD Chinese Han patients and screened SOX7 variants in the patient cohort by targeted sequencing. Functional assays were performed to evaluate pathogenicity of nonsynonymous variants of SOX7. We identified three rare SOX7 variants, c.40C > G, c.542G > A, and c.743C > T, in the patient cohort, all of which were found to be highly conserved in mammals. Compared to the wild type, these SOX7 variants had increased mRNA expression and decreased protein expression. In developing hearts, SOX7 and GATA4 were highly expressed in the region of atrioventricular cushions. Moreover, SOX7 overexpression promoted the expression of GATA4 in human umbilical vein endothelial cells. A chromatin immunoprecipitation assay revealed that SOX7 could directly bind to the GATA4 promoter and luciferase assays demonstrated that SOX7 activated the GATA4 promoter. The SOX7 variants had impaired transcriptional activity relative to wild-type SOX7. Furthermore, the SOX7 variants altered the ability of GATA4 to regulate its target genes. In conclusion, our findings showed that deleterious SOX7 variants potentially contribute to human AVSD by impairing its interaction with GATA4. This study provides novel insights into the etiology of AVSD and contributes new strategies to the prenatal diagnosis of AVSD.
Collapse
|
9
|
Filimonow K, de la Fuente R. Specification and role of extraembryonic endoderm lineages in the periimplantation mouse embryo. Theriogenology 2021; 180:189-206. [PMID: 34998083 DOI: 10.1016/j.theriogenology.2021.12.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 12/13/2021] [Accepted: 12/16/2021] [Indexed: 12/12/2022]
Abstract
During mammalian embryo development, the correct formation of the first extraembryonic endoderm lineages is fundamental for successful development. In the periimplantation blastocyst, the primitive endoderm (PrE) is formed, which gives rise to the parietal endoderm (PE) and visceral endoderm (VE) during further developmental stages. These PrE-derived lineages show significant differences in both their formation and roles. Whereas differentiation of the PE as a migratory lineage has been suggested to represent the first epithelial-to-mesenchymal transition (EMT) in development, organisation of the epithelial VE is of utmost importance for the correct axis definition and patterning of the embryo. Despite sharing a common origin, the striking differences between the VE and PE are indicative of their distinct roles in early development. However, there is a significant disparity in the current knowledge of each lineage, which reflects the need for a deeper understanding of their respective specification processes. In this review, we will discuss the origin and maturation of the PrE, PE, and VE during the periimplantation period using the mouse model as an example. Additionally, we consider the latest findings regarding the role of the PrE-derived lineages and early embryo morphogenesis, as obtained from the most recent in vitro models.
Collapse
Affiliation(s)
- Katarzyna Filimonow
- Department of Experimental Embryology, Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, Jastrzębiec, Poland.
| | - Roberto de la Fuente
- Department of Experimental Embryology, Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, Jastrzębiec, Poland.
| |
Collapse
|
10
|
Genetics of diaphragmatic hernia. Eur J Hum Genet 2021; 29:1729-1733. [PMID: 34621023 PMCID: PMC8632982 DOI: 10.1038/s41431-021-00972-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 09/09/2021] [Accepted: 09/21/2021] [Indexed: 01/14/2023] Open
Abstract
Congenital diaphragmatic hernia (CDH) is a life-threatening malformation characterised by failure of diaphragmatic development with lung hypoplasia and persistent pulmonary hypertension of the newborn (PPHN). The incidence is 1:2000 corresponding to 8% of all major congenital malformations. Morbidity and mortality in affected newborns are very high and at present, there is no precise prenatal or early postnatal prognostication parameter to predict clinical outcome in CDH patients. Most cases occur sporadically, however, genetic causes have long been discussed to explain a proportion of cases. These range from aneuploidy to complex chromosomal aberrations and specific mutations often causing a complex phenotype exhibiting multiple malformations along with CDH. This review summarises the genetic variations which have been observed in syndromic and isolated cases of congenital diaphragmatic hernia.
Collapse
|
11
|
Olbromski M, Podhorska-Okołów M, Dzięgiel P. Role of SOX Protein Groups F and H in Lung Cancer Progression. Cancers (Basel) 2020; 12:cancers12113235. [PMID: 33152990 PMCID: PMC7692225 DOI: 10.3390/cancers12113235] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 10/24/2020] [Accepted: 10/27/2020] [Indexed: 12/15/2022] Open
Abstract
Simple Summary The expression of SOX proteins has been demonstrated in many tissues at various stages of embryogenesis, where they play the role of transcription factors. The SOX18 protein (along with SOX7 and SOX17) belongs to the SOXF group and is mainly involved in the development of the cardiovascular system, where its expression was found in the endothelium. SOX18 expression was also demonstrated in neoplastic lines of gastric, pancreatic and colon adenocarcinomas. The prognostic role of SOX30 expression has only been studied in lung adenocarcinomas, where a low expression of this factor in the stromal tumor was associated with a worse prognosis for patients. Because of the complexity of non-small-cell lung cancer (NSCLC) development, the role of the SOX proteins in this malignancy is still not fully understood. Many recently published papers show that SOX family protein members play a crucial role in the progression of NSCLC. Abstract The SOX family proteins are proved to play a crucial role in the development of the lymphatic ducts and the cardiovascular system. Moreover, an increased expression level of the SOX18 protein has been found in many malignances, such as melanoma, stomach, pancreatic breast and lung cancers. Another SOX family protein, the SOX30 transcription factor, is responsible for the development of male germ cells. Additionally, recent studies have shown its proapoptotic character in non-small cell lung cancer cells. Our preliminary studies showed a disparity in the amount of mRNA of the SOX18 gene relative to the amount of protein. This is why our attention has been focused on microRNA (miRNA) molecules, which could regulate the SOX18 gene transcript level. Recent data point to the fact that, in practically all types of cancer, hundreds of genes exhibit an abnormal methylation, covering around 5–10% of the thousands of CpG islands present in the promoter sequences, which in normal cells should not be methylated from the moment the embryo finishes its development. It has been demonstrated that in non-small-cell lung cancer (NSCLC) cases there is a large heterogeneity of the methylation process. The role of the SOX18 and SOX30 expression in non-small-cell lung cancers (NSCLCs) is not yet fully understood. However, if we take into account previous reports, these proteins may be important factors in the development and progression of these malignancies.
Collapse
Affiliation(s)
- Mateusz Olbromski
- Department of Histology and Embryology, Department of Human Morphology and Embryology, Medical University, 50-368 Wroclaw, Poland;
- Correspondence: ; Tel.: +48-717-841-354; Fax: +48-717-840-082
| | - Marzenna Podhorska-Okołów
- Department of Ultrastructural Research, Department of Human Morphology and Embryology, Medical University, 50-368 Wroclaw, Poland;
| | - Piotr Dzięgiel
- Department of Histology and Embryology, Department of Human Morphology and Embryology, Medical University, 50-368 Wroclaw, Poland;
- Department of Physiotherapy, University School of Physical Education, 51-612 Wroclaw, Poland
| |
Collapse
|
12
|
Serpent/dGATAb regulates Laminin B1 and Laminin B2 expression during Drosophila embryogenesis. Sci Rep 2019; 9:15910. [PMID: 31685844 PMCID: PMC6828711 DOI: 10.1038/s41598-019-52210-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 10/15/2019] [Indexed: 12/15/2022] Open
Abstract
Transcriptional regulation of Laminin expression during embryogenesis is a key step required for proper ECM assembly. We show, that in Drosophila the Laminin B1 and Laminin B2 genes share expression patterns in mesodermal cells as well as in endodermal and ectodermal gut primordia, yolk and amnioserosa. In the absence of the GATA transcription factor Serpent, the spatial extend of Laminin reporter gene expression was strongly limited, indicating that Laminin expression in many tissues depends on Serpent activity. We demonstrate a direct binding of Serpent to the intronic enhancers of Laminin B1 and Laminin B2. In addition, ectopically expressed Serpent activated enhancer elements of Laminin B1 and Laminin B2. Our results reveal Serpent as an important regulator of Laminin expression across tissues.
Collapse
|
13
|
Novel role of sex-determining region Y-box 7 (SOX7) in tumor biology and cardiovascular developmental biology. Semin Cancer Biol 2019; 67:49-56. [PMID: 31473269 DOI: 10.1016/j.semcancer.2019.08.032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 08/19/2019] [Accepted: 08/28/2019] [Indexed: 02/06/2023]
Abstract
The sex-determining region Y-box 7 (Sox7) is an important member of the SOX F family, which is characterized by a high-mobility-group DNA-binding domain. Previous studies have demonstrated the role of SOX7 in cardiovascular development. SOX7 expression could be detected in normal adult tissues. Furthermore, the expression levels of SOX7 were different in different tumors. Most studies showed the downregulation of SOX7 in tumors, while some studies reported its upregulation in tumors. In this review, we first summarized the upstream regulators (including transcription factors, microRNAs (miRNAs), long noncoding RNAs (lncRNAs) and some exogenous regulators) and downstream molecules (including factors in the Wnt/β-catenin signaling pathway and some other signaling pathways) of SOX7. Then, the roles of SOX7 in multiple tumors were presented. Finally, the significance of divergent SOX7 expression during cardiovascular development was briefly discussed. The information compiled in this study characterized SOX7 during tumorigenesis and cardiovascular development, which should facilitate the design of future research and promote SOX7 as a therapeutic target.
Collapse
|
14
|
Gatie MI, Kelly GM. Metabolic profile and differentiation potential of extraembryonic endoderm-like cells. Cell Death Discov 2018; 4:42. [PMID: 30302276 PMCID: PMC6158286 DOI: 10.1038/s41420-018-0102-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 08/20/2018] [Accepted: 08/28/2018] [Indexed: 02/08/2023] Open
Abstract
Glucose metabolism has a crucial role for providing substrates required to generate ATP and regulate the epigenetic landscape. We reported that F9 embryonal carcinoma stem-like cells require cytosolic reactive oxygen species to differentiate into extraembryonic endoderm; however, mitochondrial sources were not examined. To extend these studies, we examined the metabolic profile of early and late-passage F9 cells, and show that their ability to differentiate is similar, even though each population has dramatically different metabolic profiles. Differentiated early-passage cells relied on glycolysis, while differentiated late-passage cells transitioned towards oxidative phosphorylation (OXPHOS). Unexpectedly, electron transport chain protein stoichiometry was disrupted in differentiated late-passage cells, whereas genes encoding mitofusion 1 and 2, which promote mitochondrial fusion and favor OXPHOS, were upregulated in differentiated early-passage cells. Despite this, early-passage cells cultured under conditions to promote glycolysis showed enhanced differentiation, whereas promoting OXPHOS in late-passage cells showed a similar trend. Further analysis revealed that the distinct metabolic profiles seen between the two populations is largely associated with changes in genomic integrity, linking metabolism to passage number. Together, these results indicate that passaging has no effect on the potential for F9 cells to differentiate into extraembryonic endoderm; however, it does impact their metabolic profile. Thus, it is imperative to determine the molecular and metabolic status of a stem cell population before considering its utility as a therapeutic tool for regenerative medicine.
Collapse
Affiliation(s)
- Mohamed I Gatie
- 1Department of Biology, Collaborative Graduate Specialization in Developmental Biology, The University of Western Ontario, London, ON Canada
| | - Gregory M Kelly
- 1Department of Biology, Collaborative Graduate Specialization in Developmental Biology, The University of Western Ontario, London, ON Canada.,2Department of Paediatrics, The University of Western Ontario, London, ON Canada.,3Department of Physiology and Pharmacology, The University of Western Ontario, London, ON Canada.,Child Health Research Institute, London, ON Canada.,5Ontario Institute for Regenerative Medicine, Toronto, ON Canada
| |
Collapse
|
15
|
Yang Z, Zhang T, Wang Q, Gao H. Overexpression of microRNA-34a Attenuates Proliferation and Induces Apoptosis in Pituitary Adenoma Cells via SOX7. MOLECULAR THERAPY-ONCOLYTICS 2018; 10:40-47. [PMID: 30109259 PMCID: PMC6083820 DOI: 10.1016/j.omto.2018.07.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 07/05/2018] [Indexed: 12/31/2022]
Abstract
Pituitary adenomas constitute one of the most common intracranial tumors and are typically benign. However, the role of the tumor suppressor microRNA-34a (miR-34a), which is implicated in other cancers, in pituitary adenoma pathogenesis remains largely unknown. miR-34a expression was compared between GH4C1 cancer cells and normal cells derived from the pituitary gland of Rattus norvegicus, and the effects of miR-34a on GH4C1 cell proliferation and apoptosis were examined. miR-34a target genes were identified and analyzed computationally. The mRNA levels of the miR-34a target genes were measured using qRT-PCR, and the protein levels of the differentially expressed targets were assessed by western blotting. miR-34a expression was significantly lower in GH4C1 cells, whereas miR-34a overexpression significantly inhibited GH4C1 cell proliferation and promoted cell apoptosis though SRY-box 7 (SOX7). Our data facilitate the development of a better understanding of the pathogenesis and treatment of pituitary adenomas by elucidating the crucial role of miR-34a in the development of pituitary adenomas.
Collapse
Affiliation(s)
- Zijiang Yang
- Jiangyin People's Hospital Affiliated to Nantong University, Shoushanlu No. 163, Jiangyin, Wuxi 214400, China.,Neurosurgery, The First People's Hospital of Kunshan, Qianjinxilu No. 91, Kunshan, Suzhou 215300, China
| | - Ting Zhang
- Central Laboratory, Jiangyin People's Hospital Affiliated to Nantong University, Shoushanlu No. 163, Jiangyin, Wuxi 214400, China
| | - Qiping Wang
- Neurosurgery, Jiangyin People's Hospital Affiliated to Nantong University, Shoushanlu No. 163, Jiangyin, Wuxi 214400, China
| | - Heng Gao
- Neurosurgery, Jiangyin People's Hospital Affiliated to Nantong University, Shoushanlu No. 163, Jiangyin, Wuxi 214400, China
| |
Collapse
|
16
|
SOX7 Target Genes and Their Contribution to Its Tumor Suppressive Function. Int J Mol Sci 2018; 19:ijms19051451. [PMID: 29757932 PMCID: PMC5983648 DOI: 10.3390/ijms19051451] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 05/07/2018] [Accepted: 05/10/2018] [Indexed: 12/11/2022] Open
Abstract
SOX7 is a transcription factor and acts as a tumor suppressor, but its target genes in cancers are poorly explored. We revealed SOX7-mediated gene expression profile in breast cancer cells using microarray chips and discovered multiple altered signaling pathways. When combinatorially analyzing the microarray data with a gene array dataset from 759 breast cancer patients, we identified four genes as potential targets of SOX7 and validated them by quantitative PCR and chromatin immunoprecipitation assays. Among these four genes, we determined that SOX7-activated SPRY1 and SLIT2, and SOX7-repressed TRIB3 and MTHFD2 could all differentially contribute to SOX7-mediated tumor suppression. Overall, we identified multiple cancer-related pathways mediated by SOX7 and for the first time revealed SOX7-regulated target genes in a cancer-relevant context.
Collapse
|
17
|
Butler AM, Owens DA, Wang L, King ML. A novel role for sox7 in Xenopus early primordial germ cell development: mining the PGC transcriptome. Development 2018; 145:dev.155978. [PMID: 29158442 DOI: 10.1242/dev.155978] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 11/06/2017] [Indexed: 12/26/2022]
Abstract
Xenopus primordial germ cells (PGCs) are determined by the presence of maternally derived germ plasm. Germ plasm components both protect PGCs from somatic differentiation and begin a unique gene expression program. Segregation of the germline from the endodermal lineage occurs during gastrulation, and PGCs subsequently initiate zygotic transcription. However, the gene network(s) that operate to both preserve and promote germline differentiation are poorly understood. Here, we utilized RNA-sequencing analysis to comprehensively interrogate PGC and neighboring endoderm cell mRNAs after lineage segregation. We identified 1865 transcripts enriched in PGCs compared with endoderm cells. We next compared the PGC-enriched transcripts with previously identified maternal, vegetally enriched transcripts and found that ∼38% of maternal transcripts were enriched in PGCs, including sox7 PGC-directed sox7 knockdown and overexpression studies revealed an early requirement for sox7 in germ plasm localization, zygotic transcription and PGC number. We identified pou5f3.3 as the most highly expressed and enriched POU5F1 homolog in PGCs. We compared the Xenopus PGC transcriptome with human PGC transcripts and showed that 80% of genes are conserved, underscoring the potential usefulness of Xenopus for understanding human germline specification.
Collapse
Affiliation(s)
- Amanda M Butler
- Department of Cell Biology, University of Miami Miller School of Medicine, 1011 NW 15th St, Miami, FL 33136, USA
| | - Dawn A Owens
- Department of Cell Biology, University of Miami Miller School of Medicine, 1011 NW 15th St, Miami, FL 33136, USA
| | - Lingyu Wang
- Department of Biology, University of Miami, Coral Gables, FL 33124, USA
| | - Mary Lou King
- Department of Cell Biology, University of Miami Miller School of Medicine, 1011 NW 15th St, Miami, FL 33136, USA
| |
Collapse
|
18
|
Lilly AJ, Mazan A, Scott DA, Lacaud G, Kouskoff V. SOX7 expression is critically required in FLK1-expressing cells for vasculogenesis and angiogenesis during mouse embryonic development. Mech Dev 2017; 146:31-41. [PMID: 28577909 PMCID: PMC5496588 DOI: 10.1016/j.mod.2017.05.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 04/27/2017] [Accepted: 05/31/2017] [Indexed: 01/01/2023]
Abstract
The transcriptional program that regulates the differentiation of endothelial precursor cells into a highly organized vascular network is still poorly understood. Here we explore the role of SOX7 during this process, performing a detailed analysis of the vascular defects resulting from either a complete deficiency in Sox7 expression or from the conditional deletion of Sox7 in FLK1-expressing cells. We analysed the consequence of Sox7 deficiency from E7.5 onward to determine from which stage of development the effect of Sox7 deficiency can be observed. We show that while Sox7 is expressed at the onset of endothelial specification from mesoderm, Sox7 deficiency does not impact the emergence of the first endothelial progenitors. However, by E8.5, clear signs of defective vascular development are already observed with the presence of highly unorganised endothelial cords rather than distinct paired dorsal aorta. By E10.5, both Sox7 complete knockout and FLK1-specific deletion of Sox7 lead to widespread vascular defects. In contrast, while SOX7 is expressed in the earliest specified blood progenitors, the VAV-specific deletion of Sox7 does not affect the hematopoietic system. Together, our data reveal the unique role of SOX7 in vasculogenesis and angiogenesis during embryonic development.
Collapse
Affiliation(s)
- Andrew J Lilly
- Cancer Research UK Manchester Institute, The University of Manchester, Wilmslow road, M20 4BX, UK
| | - Andrzej Mazan
- Cancer Research UK Manchester Institute, The University of Manchester, Wilmslow road, M20 4BX, UK
| | - Daryl A Scott
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, BCM227, Houston, TX 77030, USA
| | - Georges Lacaud
- Cancer Research UK Manchester Institute, The University of Manchester, Wilmslow road, M20 4BX, UK.
| | - Valerie Kouskoff
- Cancer Research UK Manchester Institute, The University of Manchester, Wilmslow road, M20 4BX, UK; Division of Developmental Biology and Medicine, The University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK.
| |
Collapse
|
19
|
Charney RM, Forouzmand E, Cho JS, Cheung J, Paraiso KD, Yasuoka Y, Takahashi S, Taira M, Blitz IL, Xie X, Cho KWY. Foxh1 Occupies cis-Regulatory Modules Prior to Dynamic Transcription Factor Interactions Controlling the Mesendoderm Gene Program. Dev Cell 2017; 40:595-607.e4. [PMID: 28325473 PMCID: PMC5434453 DOI: 10.1016/j.devcel.2017.02.017] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 12/24/2016] [Accepted: 02/16/2017] [Indexed: 12/14/2022]
Abstract
The interplay between transcription factors and chromatin dictates gene regulatory network activity. Germ layer specification is tightly coupled with zygotic gene activation and, in most metazoans, is dependent upon maternal factors. We explore the dynamic genome-wide interactions of Foxh1, a maternal transcription factor that mediates Nodal/TGF-β signaling, with cis-regulatory modules (CRMs) during mesendodermal specification. Foxh1 marks CRMs during cleavage stages and recruits the co-repressor Tle/Groucho in the early blastula. We highlight a population of CRMs that are continuously occupied by Foxh1 and show that they are marked by H3K4me1, Ep300, and Fox/Sox/Smad motifs, suggesting interplay between these factors in gene regulation. We also propose a molecular "hand-off" between maternal Foxh1 and zygotic Foxa at these CRMs to maintain enhancer activation. Our findings suggest that Foxh1 functions at the top of a hierarchy of interactions by marking developmental genes for activation, beginning with the onset of zygotic gene expression.
Collapse
Affiliation(s)
- Rebekah M Charney
- Department of Developmental and Cell Biology, Ayala School of Biological Sciences, University of California, Irvine, CA 92697, USA
| | - Elmira Forouzmand
- Department of Computer Science, Donald Bren School of Information & Computer Sciences, University of California, Irvine, CA 92697, USA
| | - Jin Sun Cho
- Department of Developmental and Cell Biology, Ayala School of Biological Sciences, University of California, Irvine, CA 92697, USA
| | - Jessica Cheung
- Department of Developmental and Cell Biology, Ayala School of Biological Sciences, University of California, Irvine, CA 92697, USA
| | - Kitt D Paraiso
- Department of Developmental and Cell Biology, Ayala School of Biological Sciences, University of California, Irvine, CA 92697, USA
| | - Yuuri Yasuoka
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa 904-0495, Japan
| | - Shuji Takahashi
- Institute for Amphibian Biology, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashihiroshima, Hiroshima 739-8526, Japan
| | - Masanori Taira
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Ira L Blitz
- Department of Developmental and Cell Biology, Ayala School of Biological Sciences, University of California, Irvine, CA 92697, USA
| | - Xiaohui Xie
- Department of Computer Science, Donald Bren School of Information & Computer Sciences, University of California, Irvine, CA 92697, USA
| | - Ken W Y Cho
- Department of Developmental and Cell Biology, Ayala School of Biological Sciences, University of California, Irvine, CA 92697, USA.
| |
Collapse
|
20
|
Wamaitha SE, del Valle I, Cho LTY, Wei Y, Fogarty NME, Blakeley P, Sherwood RI, Ji H, Niakan KK. Gata6 potently initiates reprograming of pluripotent and differentiated cells to extraembryonic endoderm stem cells. Genes Dev 2015; 29:1239-55. [PMID: 26109048 PMCID: PMC4495396 DOI: 10.1101/gad.257071.114] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Wamaitha et al. demonstrate that the transcription factor Gata6 can initiate reprograming of multiple cell types to induced extraembryonic endoderm cells. Profiling transcriptional changes following Gata6 induction in mES cells reveals step-wise pluripotency factor disengagement, with initial repression of Nanog and Esrrb, then Sox2, and finally Oct4, alongside step-wise activation of extraembryonic endoderm genes. Transcription factor-mediated reprograming is a powerful method to study cell fate changes. In this study, we demonstrate that the transcription factor Gata6 can initiate reprograming of multiple cell types to induced extraembryonic endoderm stem (iXEN) cells. Intriguingly, Gata6 is sufficient to drive iXEN cells from mouse pluripotent cells and differentiated neural cells. Furthermore, GATA6 induction in human embryonic stem (hES) cells also down-regulates pluripotency gene expression and up-regulates extraembryonic endoderm (ExEn) genes, revealing a conserved function in mediating this cell fate switch. Profiling transcriptional changes following Gata6 induction in mES cells reveals step-wise pluripotency factor disengagement, with initial repression of Nanog and Esrrb, then Sox2, and finally Oct4, alongside step-wise activation of ExEn genes. Chromatin immunoprecipitation and subsequent high-throughput sequencing analysis shows Gata6 enrichment near pluripotency and endoderm genes, suggesting that Gata6 functions as both a direct repressor and activator. Together, this demonstrates that Gata6 is a versatile and potent reprograming factor that can act alone to drive a cell fate switch from diverse cell types.
Collapse
Affiliation(s)
- Sissy E Wamaitha
- Mill Hill Laboratory, The Francis Crick Institute, London NW7 1AA, United Kingdom
| | - Ignacio del Valle
- Mill Hill Laboratory, The Francis Crick Institute, London NW7 1AA, United Kingdom
| | - Lily T Y Cho
- Mill Hill Laboratory, The Francis Crick Institute, London NW7 1AA, United Kingdom
| | - Yingying Wei
- Department of Biostatistics, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland 21205, USA
| | - Norah M E Fogarty
- Mill Hill Laboratory, The Francis Crick Institute, London NW7 1AA, United Kingdom
| | - Paul Blakeley
- Mill Hill Laboratory, The Francis Crick Institute, London NW7 1AA, United Kingdom
| | - Richard I Sherwood
- Brigham and Women's Department of Medicine, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Hongkai Ji
- Department of Biostatistics, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland 21205, USA
| | - Kathy K Niakan
- Mill Hill Laboratory, The Francis Crick Institute, London NW7 1AA, United Kingdom
| |
Collapse
|
21
|
|
22
|
Endogenous molecular-cellular hierarchical modeling of prostate carcinogenesis uncovers robust structure. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2015; 117:30-42. [PMID: 25657097 DOI: 10.1016/j.pbiomolbio.2015.01.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Accepted: 01/12/2015] [Indexed: 01/30/2023]
Abstract
We explored endogenous molecular-cellular network hypothesis for prostate cancer by constructing relevant endogenous interaction network model and analyzing its dynamical properties. Molecular regulations involved in cell proliferation, apoptosis, differentiation and metabolism are included in a hierarchical mathematical modeling scheme. This dynamical network organizes into multiple robust functional states, including physiological and pathological ones. Some states have characteristics of cancer: elevated metabolic and immune activities, high concentration of growth factors and different proliferative, apoptotic and adhesive behaviors. The molecular profile of calculated cancer state agrees with existing experiments. The modeling results have additional predictions which may be validated by further experiment: 1) Prostate supports both stem cell like and liver style proliferation; 2) While prostate supports multiple cell types, including basal, luminal and endocrine cell type differentiated from its stem cell, luminal cell is most likely to be transformed malignantly into androgen independent type cancer; 3) Retinoic acid pathway and C/EBPα are possible therapeutic targets.
Collapse
|
23
|
Abdelalim EM, Emara MM, Kolatkar PR. The SOX Transcription Factors as Key Players in Pluripotent Stem Cells. Stem Cells Dev 2014; 23:2687-99. [DOI: 10.1089/scd.2014.0297] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Affiliation(s)
- Essam M. Abdelalim
- Qatar Biomedical Research Institute, Qatar Foundation, Education City, Doha, Qatar
| | - Mohamed M. Emara
- Qatar Biomedical Research Institute, Qatar Foundation, Education City, Doha, Qatar
| | - Prasanna R. Kolatkar
- Qatar Biomedical Research Institute, Qatar Foundation, Education City, Doha, Qatar
| |
Collapse
|
24
|
McDonald A, Biechele S, Rossant J, Stanford W. Sox17-Mediated XEN Cell Conversion Identifies Dynamic Networks Controlling Cell-Fate Decisions in Embryo-Derived Stem Cells. Cell Rep 2014; 9:780-93. [DOI: 10.1016/j.celrep.2014.09.026] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Revised: 08/08/2014] [Accepted: 09/14/2014] [Indexed: 12/31/2022] Open
|
25
|
Aksoy I, Giudice V, Delahaye E, Wianny F, Aubry M, Mure M, Chen J, Jauch R, Bogu GK, Nolden T, Himmelbauer H, Xavier Doss M, Sachinidis A, Schulz H, Hummel O, Martinelli P, Hübner N, Stanton LW, Real FX, Bourillot PY, Savatier P. Klf4 and Klf5 differentially inhibit mesoderm and endoderm differentiation in embryonic stem cells. Nat Commun 2014; 5:3719. [PMID: 24770696 DOI: 10.1038/ncomms4719] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Accepted: 03/24/2014] [Indexed: 01/04/2023] Open
Abstract
Krüppel-like factors (Klf) 4 and 5 are two closely related members of the Klf family, known to play key roles in cell cycle regulation, somatic cell reprogramming and pluripotency. Here we focus on the functional divergence between Klf4 and Klf5 in the inhibition of mouse embryonic stem (ES) cell differentiation. Using microarrays and chromatin immunoprecipitation coupled to ultra-high-throughput DNA sequencing, we show that Klf4 negatively regulates the expression of endodermal markers in the undifferentiated ES cells, including transcription factors involved in the commitment of pluripotent stem cells to endoderm differentiation. Knockdown of Klf4 enhances differentiation towards visceral and definitive endoderm. In contrast, Klf5 negatively regulates the expression of mesodermal markers, some of which control commitment to the mesoderm lineage, and knockdown of Klf5 specifically enhances differentiation towards mesoderm. We conclude that Klf4 and Klf5 differentially inhibit mesoderm and endoderm differentiation in murine ES cells.
Collapse
Affiliation(s)
- Irène Aksoy
- 1] Inserm, U846, 18 Avenue Doyen Lepine, Bron 69500, France [2] Stem Cell and Brain Research Institute, Bron 69500, France [3] Université de Lyon, Université Lyon 1, Lyon 69003, France [4] Genome Institute of Singapore, 60 Biopolis street, Singapore 138672, Singapore [5]
| | - Vincent Giudice
- 1] Inserm, U846, 18 Avenue Doyen Lepine, Bron 69500, France [2] Stem Cell and Brain Research Institute, Bron 69500, France [3] Université de Lyon, Université Lyon 1, Lyon 69003, France [4]
| | - Edwige Delahaye
- 1] Inserm, U846, 18 Avenue Doyen Lepine, Bron 69500, France [2] Stem Cell and Brain Research Institute, Bron 69500, France [3] Université de Lyon, Université Lyon 1, Lyon 69003, France
| | - Florence Wianny
- 1] Inserm, U846, 18 Avenue Doyen Lepine, Bron 69500, France [2] Stem Cell and Brain Research Institute, Bron 69500, France [3] Université de Lyon, Université Lyon 1, Lyon 69003, France
| | - Maxime Aubry
- 1] Inserm, U846, 18 Avenue Doyen Lepine, Bron 69500, France [2] Stem Cell and Brain Research Institute, Bron 69500, France [3] Université de Lyon, Université Lyon 1, Lyon 69003, France
| | - Magali Mure
- 1] Inserm, U846, 18 Avenue Doyen Lepine, Bron 69500, France [2] Stem Cell and Brain Research Institute, Bron 69500, France [3] Université de Lyon, Université Lyon 1, Lyon 69003, France
| | - Jiaxuan Chen
- Genome Institute of Singapore, 60 Biopolis street, Singapore 138672, Singapore
| | - Ralf Jauch
- 1] Genome Institute of Singapore, 60 Biopolis street, Singapore 138672, Singapore [2] Genome Regulation Laboratory, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Gireesh K Bogu
- Genome Institute of Singapore, 60 Biopolis street, Singapore 138672, Singapore
| | - Tobias Nolden
- Max Planck Institute for Molecular Genetics, Ihnestrasse 63-73, 14195 Berlin, Germany
| | - Heinz Himmelbauer
- 1] Max Planck Institute for Molecular Genetics, Ihnestrasse 63-73, 14195 Berlin, Germany [2] Center for Genomic Regulation (CRG), C. Dr. Aiguader 88, Barcelona 08003, Spain [3] Universitat Pompeu Fabra (UPF), C. Dr. Aiguader 88, Barcelona 08003, Spain
| | - Michael Xavier Doss
- 1] Universitat Pompeu Fabra (UPF), C. Dr. Aiguader 88, Barcelona 08003, Spain [2]
| | - Agapios Sachinidis
- Center of Physiology and Pathophysiology, Institute of Neurophysiology, Robert-Koch-Strasse. 39, Cologne 50931, Germany
| | - Herbert Schulz
- Max Delbrück Center for Molecular Medicine, Robert-Rössle-Strasse 10, Berlin 13125, Germany
| | - Oliver Hummel
- Max Delbrück Center for Molecular Medicine, Robert-Rössle-Strasse 10, Berlin 13125, Germany
| | - Paola Martinelli
- Centro Nacional de Investigaciones Oncológicas, Melchor Fernández Almagro 3, Madrid 28029, Spain
| | - Norbert Hübner
- Max Delbrück Center for Molecular Medicine, Robert-Rössle-Strasse 10, Berlin 13125, Germany
| | - Lawrence W Stanton
- Genome Institute of Singapore, 60 Biopolis street, Singapore 138672, Singapore
| | - Francisco X Real
- 1] Centro Nacional de Investigaciones Oncológicas, Melchor Fernández Almagro 3, Madrid 28029, Spain [2] Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Barcelona 08002, Spain
| | - Pierre-Yves Bourillot
- 1] Inserm, U846, 18 Avenue Doyen Lepine, Bron 69500, France [2] Stem Cell and Brain Research Institute, Bron 69500, France [3] Université de Lyon, Université Lyon 1, Lyon 69003, France
| | - Pierre Savatier
- 1] Inserm, U846, 18 Avenue Doyen Lepine, Bron 69500, France [2] Stem Cell and Brain Research Institute, Bron 69500, France [3] Université de Lyon, Université Lyon 1, Lyon 69003, France
| |
Collapse
|
26
|
Cui J, Xi H, Cai A, Bian S, Wei B, Chen L. Decreased expression of Sox7 correlates with the upregulation of the Wnt/β-catenin signaling pathway and the poor survival of gastric cancer patients. Int J Mol Med 2014; 34:197-204. [PMID: 24788044 DOI: 10.3892/ijmm.2014.1759] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2013] [Accepted: 04/15/2014] [Indexed: 01/12/2023] Open
Abstract
Sox7 is a tumor suppressor gene that plays an important role in the inhibition and progression of cancer. In the present study, we sought to investigate Sox7 expression in gastric cancer (GC) and its association with the Wnt/β-catenin signaling pathway. We also wished to determine its clinicopathological significance and prognostic implications. Sox7 expression and its effects on the Wnt/β-catenin signaling in vitro were assessed by reverse transcription-polymerase chain reaction using the AGS, MKN-45 and GES-1 gastric cell lines. We also used immunohistochemistry on paraffin-embedded tissue samples and western blot analysis on fresh tissue samples from patients with GC. The results revealed that Sox7 expression was significantly lower in the GC samples than in distal normal tissues, which was in accordance with our results obtained from our in vitro experiments on the cell lines. However, the expression levels of β-catenin were significantly higher. Sox7 and β-catenin expression significantly correlated with the depth of invasion, lymph node metastasis, distant metastasis and the TNM stage. Patient samples that were Sox7-negative correlated with a significantly shorter survival time. Multivariate survival analysis revealed that Sox7 and β-catenin had an independent effect on the survival of GC patients. Sox7 and β-catenin expression in GC had a negative liner correlation with each other. Our findings suggest that Sox7 plays an important role in inhibiting tumorigenesis and progression, and may be a potential marker for predicting the prognosis of patients with GC.
Collapse
Affiliation(s)
- Jianxin Cui
- Department of General Surgery, Chinese People's Liberation Army General Hospital, Beijing 100853, P.R. China
| | - Hongqing Xi
- Department of General Surgery, Chinese People's Liberation Army General Hospital, Beijing 100853, P.R. China
| | - Aizhen Cai
- Department of General Surgery, Chinese People's Liberation Army General Hospital, Beijing 100853, P.R. China
| | - Shibo Bian
- Department of General Surgery, Chinese People's Liberation Army General Hospital, Beijing 100853, P.R. China
| | - Bo Wei
- Department of General Surgery, Chinese People's Liberation Army General Hospital, Beijing 100853, P.R. China
| | - Lin Chen
- Department of General Surgery, Chinese People's Liberation Army General Hospital, Beijing 100853, P.R. China
| |
Collapse
|
27
|
Aronson BE, Stapleton KA, Krasinski SD. Role of GATA factors in development, differentiation, and homeostasis of the small intestinal epithelium. Am J Physiol Gastrointest Liver Physiol 2014; 306:G474-90. [PMID: 24436352 PMCID: PMC3949026 DOI: 10.1152/ajpgi.00119.2013] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Accepted: 01/07/2014] [Indexed: 01/31/2023]
Abstract
The small intestinal epithelium develops from embryonic endoderm into a highly specialized layer of cells perfectly suited for the digestion and absorption of nutrients. The development, differentiation, and regeneration of the small intestinal epithelium require complex gene regulatory networks involving multiple context-specific transcription factors. The evolutionarily conserved GATA family of transcription factors, well known for its role in hematopoiesis, is essential for the development of endoderm during embryogenesis and the renewal of the differentiated epithelium in the mature gut. We review the role of GATA factors in the evolution and development of endoderm and summarize our current understanding of the function of GATA factors in the mature small intestine. We offer perspective on the application of epigenetics approaches to define the mechanisms underlying context-specific GATA gene regulation during intestinal development.
Collapse
Affiliation(s)
- Boaz E Aronson
- Division of Gastroenterology and Nutrition, Department of Medicine, Children's Hospital Boston, and Harvard Medical School, Boston, Massachusetts
| | | | | |
Collapse
|
28
|
Stovall DB, Cao P, Sui G. SOX7: from a developmental regulator to an emerging tumor suppressor. Histol Histopathol 2013; 29:439-45. [PMID: 24288056 DOI: 10.14670/hh-29.10.439] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
SOX7 belongs to the SOX (SRY-related HMG-box) family of transcription factors that have been shown to regulate multiple biological processes, such as hematopoiesis, vasculogenesis and cardiogenesis during embryonic development. Recent studies indicate that several SOX family members play important roles in tumorigenesis. In this review, we introduce SOX7 gene and protein structures, and discuss its expression and functional role in cancer development and progression. SOX7 is frequently downregulated in many human cancers and its reduced expression correlates with poor prognoses of several cancers. Functional studies reveal many tumor suppressive properties of SOX7 in prostate, colon, lung, and breast cancers. To date, although a few target genes of SOX7 have been identified, SOX7-mediated gene expression has not been investigated in a cancer-relevant context. Our recent studies not only for the first time demonstrate a tumor suppressive role of SOX7 in a xenograft mouse model, but also unravel that many genes regulating cell death, growth and apoptosis are affected by SOX7, strongly supporting a pivotal role of SOX7 in tumorigenesis. Thus, currently available data clearly indicate a tumor suppressive role of SOX7, but the mechanisms underlying its gene expression and tumor suppressive activity remain undetermined. The research of SOX7 in cancers remains a fertile area to be explored.
Collapse
Affiliation(s)
- Daniel B Stovall
- Department of Cancer Biology and Comprehensive Cancer Center, and Center for Cancer Genomics, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Paul Cao
- Department of Cancer Biology and Comprehensive Cancer Center, and Center for Cancer Genomics, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Guangchao Sui
- Department of Cancer Biology and Comprehensive Cancer Center, and Center for Cancer Genomics, Wake Forest University School of Medicine, Winston-Salem, NC, USA.
| |
Collapse
|
29
|
Long F, Wang X, Fang S, Xu Y, Sun K, Chen S, Xu R. A potential relationship among beta-defensins haplotype, SOX7 duplication and cardiac defects. PLoS One 2013; 8:e72515. [PMID: 24009689 PMCID: PMC3757027 DOI: 10.1371/journal.pone.0072515] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2013] [Accepted: 07/11/2013] [Indexed: 01/30/2023] Open
Abstract
OBJECTIVE To determine the pathogenesis of a patient born with congenital heart defects, who had appeared normal in prenatal screening. METHODS In routine prenatal screening, G-banding was performed to analyse the karyotypes of the family and fluorescence in situ hybridization was used to investigate the 22q11.2 deletion in the fetus. After birth, the child was found to be suffering from heart defects by transthoracic echocardiography. In the following study, sequencing was used to search for potential mutations in pivotal genes. SNP-array was employed for fine mapping of the aberrant region and quantitative real-time PCR was used to confirm the results. Furthermore, other patients with a similar phenotype were screened for the same genetic variations. To compare with a control, these variations were also assessed in the general population. RESULTS The child and his mother each had a region that was deleted in the beta-defensin repeats, which are usually duplicated in the general population. Besides, the child carried a SOX7-gene duplication. While this duplication was not detected in his mother, it was found in two other patients with cardiac defects who also had the similar deletion in the beta-defensin repeats. CONCLUSION The congenital heart defects of the child were probably caused by a SOX7-gene duplication, which may be a consequence of the partial haplotype of beta-defensin regions at 8p23.1. To our knowledge, this is the first congenital heart defect case found to have the haplotype of beta-defensin and the duplication of SOX7.
Collapse
Affiliation(s)
- Fei Long
- Scientific Research Center, Xinhua Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, P.R. China
| | - Xike Wang
- Department of Pediatric Cardiology, Xinhua Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, P.R. China
| | - Shaohai Fang
- Department of Pediatric Cardiology, Xinhua Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, P.R. China
| | - Yuejuan Xu
- Department of Pediatric Cardiology, Xinhua Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, P.R. China
| | - Kun Sun
- Department of Pediatric Cardiology, Xinhua Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, P.R. China
| | - Sun Chen
- Department of Pediatric Cardiology, Xinhua Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, P.R. China
- * E-mail: (SC); (RX)
| | - Rang Xu
- Scientific Research Center, Xinhua Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, P.R. China
- * E-mail: (SC); (RX)
| |
Collapse
|
30
|
Extracellular syntaxin4 triggers the differentiation program in teratocarcinoma F9 cells that impacts cell adhesion properties. Cell Tissue Res 2013; 354:581-91. [DOI: 10.1007/s00441-013-1680-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Accepted: 06/13/2013] [Indexed: 12/24/2022]
|
31
|
Yu L, Wynn J, Ma L, Guha S, Mychaliska GB, Crombleholme TM, Azarow KS, Lim FY, Chung DH, Potoka D, Warner BW, Bucher B, LeDuc CA, Costa K, Stolar C, Aspelund G, Arkovitz MS, Chung WK. De novo copy number variants are associated with congenital diaphragmatic hernia. J Med Genet 2013; 49:650-9. [PMID: 23054247 DOI: 10.1136/jmedgenet-2012-101135] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
BACKGROUND Congenital diaphragmatic hernia (CDH) is a common birth defect with significant morbidity and mortality. Although the aetiology of CDH remains poorly understood, studies from animal models and patients with CDH suggest that genetic factors play an important role in the development of CDH. Chromosomal anomalies have been reported in CDH. METHODS In this study, the authors investigated the frequency of chromosomal anomalies and copy number variants (CNVs) in 256 parent-child trios of CDH using clinical conventional cytogenetic and microarray analysis. The authors also selected a set of CDH related training genes to prioritise the genes in those segmental aneuploidies and identified the genes and gene sets that may contribute to the aetiology of CDH. RESULTS The authors identified chromosomal anomalies in 16 patients (6.3%) of the series including three aneuploidies, two unbalanced translocation, and 11 patients with de novo CNVs ranging in size from 95 kb to 104.6 Mb. The authors prioritised the genes in the CNV segments and identified KCNA2, LMNA, CACNA1S, MYOG, HLX, LBR, AGT, GATA4, SOX7, HYLS1, FOXC1, FOXF2, PDGFA, FGF6, COL4A1, COL4A2, HOMER2, BNC1, BID, and TBX1 as genes that may be involved in diaphragm development. Gene enrichment analysis identified the most relevant gene ontology categories as those involved in tissue development (p=4.4×10(-11)) or regulation of multicellular organismal processes (p=2.8×10(-10)) and 'receptor binding' (p=8.7×10(-14)) and 'DNA binding transcription factor activity' (p=4.4×10(-10)). CONCLUSIONS The present findings support the role of chromosomal anomalies in CDH and provide a set of candidate genes including FOXC1, FOXF2, PDGFA, FGF6, COL4A1, COL4A2, SOX7, BNC1, BID, and TBX1 for further analysis in CDH.
Collapse
Affiliation(s)
- Lan Yu
- Department of Pediatrics, Columbia University Medical Center, New York, New York 10032, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Longoni M, Lage K, Russell MK, Loscertales M, Abdul-Rahman OA, Baynam G, Bleyl SB, Brady PD, Breckpot J, Chen CP, Devriendt K, Gillessen-Kaesbach G, Grix AW, Rope AF, Shimokawa O, Strauss B, Wieczorek D, Zackai EH, Coletti CM, Maalouf FI, Noonan KM, Park JH, Tracy AA, Lee C, Donahoe PK, Pober BR. Congenital diaphragmatic hernia interval on chromosome 8p23.1 characterized by genetics and protein interaction networks. Am J Med Genet A 2012; 158A:3148-58. [PMID: 23165946 DOI: 10.1002/ajmg.a.35665] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2012] [Accepted: 08/20/2012] [Indexed: 01/09/2023]
Abstract
Chromosome 8p23.1 is a common hotspot associated with major congenital malformations, including congenital diaphragmatic hernia (CDH) and cardiac defects. We present findings from high-resolution arrays in patients who carry a loss (n = 18) or a gain (n = 1) of sub-band 8p23.1. We confirm a region involved in both diaphragmatic and heart malformations. Results from a novel CNVConnect algorithm, prioritizing protein-protein interactions between products of genes in the 8p23.1 hotspot and products of previously known CDH causing genes, implicated GATA4, NEIL2, and SOX7 in diaphragmatic defects. Sequence analysis of these genes in 226 chromosomally normal CDH patients, as well as in a small number of deletion 8p23.1 patients, showed rare unreported variants in the coding region; these may be contributing to the diaphragmatic phenotype. We also demonstrated that two of these three genes were expressed in the E11.5-12.5 primordial mouse diaphragm, the developmental stage at which CDH is thought to occur. This combination of bioinformatics and expression studies can be applied to other chromosomal hotspots, as well as private microdeletions or microduplications, to identify causative genes and their interaction networks.
Collapse
Affiliation(s)
- Mauro Longoni
- Pediatric Surgical Research Laboratories, Massachusetts General Hospital, Boston, Massachusetts 02114, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Hwang JTK, Kelly GM. GATA6 and FOXA2 regulate Wnt6 expression during extraembryonic endoderm formation. Stem Cells Dev 2012; 21:3220-32. [PMID: 22607194 DOI: 10.1089/scd.2011.0492] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
One of the earliest epithelial-to-mesenchymal transitions in mouse embryogenesis involves the differentiation of inner cell mass cells into primitive and then into parietal endoderm. These processes can be recapitulated in vitro using F9 teratocarcinoma cells, which differentiate into primitive endoderm when treated with retinoic acid (RA) and into parietal endoderm with subsequent treatment with dibutyryl cyclic adenosine monophosphate (db-cAMP). Our previous work on how primitive endoderm develops revealed that the Wnt6 gene is upregulated by RA, leading to the activation of the canonical WNT-β-catenin pathway. The mechanism by which Wnt6 is regulated was not determined, but in silico analysis of the human WNT6 promoter region had suggested that the GATA6 and FOXA2 transcription factors might be involved [1]. Subsequent analysis determined that both Gata6 and Foxa2 mRNA are upregulated in F9 cells treated with RA or RA and db-cAMP. More specifically, overexpression of Gata6 or Foxa2 alone induced molecular and morphological markers of primitive endoderm, which occurred concomitantly with the upregulation of the Wnt6 gene. Gata6- or Foxa2-overexpressing cells were also found to have increased levels in T-cell factor (TCF)-dependent transcription, and when these cells were treated with db-cAMP, they developed into parietal endoderm. Chromatin immunoprecipitation analysis revealed that GATA6 and FOXA2 were bound to the Wnt6 promoter, and overexpression studies showed that these transcription factors were sufficient to switch on the gene expression of a Wnt6 reporter construct. Together, these results provide evidence for the direct regulation of Wnt6 that leads to the activation of the canonical WNT-β-catenin pathway and subsequent induction of primitive extraembryonic endoderm.
Collapse
Affiliation(s)
- Jason T K Hwang
- Molecular Genetics Unit, Department of Biology, Child Health Research Institute, Western University, London, Ontario, Canada
| | | |
Collapse
|
34
|
Wat MJ, Beck TF, Hernández-García A, Yu Z, Veenma D, Garcia M, Holder AM, Wat JJ, Chen Y, Mohila CA, Lally KP, Dickinson M, Tibboel D, de Klein A, Lee B, Scott DA. Mouse model reveals the role of SOX7 in the development of congenital diaphragmatic hernia associated with recurrent deletions of 8p23.1. Hum Mol Genet 2012; 21:4115-25. [PMID: 22723016 DOI: 10.1093/hmg/dds241] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Recurrent microdeletions of 8p23.1 that include GATA4 and SOX7 confer a high risk of both congenital diaphragmatic hernia (CDH) and cardiac defects. Although GATA4-deficient mice have both CDH and cardiac defects, no humans with cardiac defects attributed to GATA4 mutations have been reported to have CDH. We were also unable to identify deleterious GATA4 sequence changes in a CDH cohort. This suggested that haploinsufficiency of another 8p23.1 gene may contribute, along with GATA4, to the development of CDH. To determine if haploinsufficiency of SOX7-another transcription factor encoding gene-contributes to the development of CDH, we generated mice with a deletion of the second exon of Sox7. A portion of these Sox7(Δex2/+) mice developed retrosternal diaphragmatic hernias located in the anterior muscular portion of the diaphragm. Anterior CDH is also seen in Gata4(+/-) mice and has been described in association with 8p23.1 deletions in humans. Immunohistochemistry revealed that SOX7 is expressed in the vascular endothelial cells of the developing diaphragm and may be weakly expressed in some diaphragmatic muscle cells. Sox7(Δex2/Δex2) embryos die prior to diaphragm development with dilated pericardial sacs and failure of yolk sac remodeling suggestive of cardiovascular failure. Similar to our experience screening GATA4, no clearly deleterious SOX7 sequence changes were identified in our CDH cohort. We conclude that haploinsufficiency of Sox7 or Gata4 is sufficient to produce anterior CDH in mice and that haploinsufficiency of SOX7 and GATA4 may each contribute to the development of CDH in individuals with 8p23.1 deletions.
Collapse
Affiliation(s)
- Margaret J Wat
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Paca A, Séguin CA, Clements M, Ryczko M, Rossant J, Rodriguez TA, Kunath T. BMP signaling induces visceral endoderm differentiation of XEN cells and parietal endoderm. Dev Biol 2012; 361:90-102. [DOI: 10.1016/j.ydbio.2011.10.013] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2011] [Revised: 09/18/2011] [Accepted: 10/08/2011] [Indexed: 12/22/2022]
|
36
|
Kim PTW, Ong CJ. Differentiation of definitive endoderm from mouse embryonic stem cells. Results Probl Cell Differ 2012; 55:303-19. [PMID: 22918814 DOI: 10.1007/978-3-642-30406-4_17] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Efficient production of definitive endoderm from embryonic stem (ES) cells opens doors to the possibilities of differentiation of endoderm-derived tissues such as the intestines, pancreas, and liver that could address the needs of people with chronic diseases involving these organs. The lessons learned from developmental biology have contributed significantly to in vitro differentiation of definitive endoderm. Gastrulation, a process that results in the production of all three embryonic germ cell layers, definitive endoderm, mesoderm, and ectoderm, is an important step in embryonic development. Gastrulation occurs as a result of the events that are orchestrated by the signaling pathways involving Nodal, FGF, Wnt, and BMP. Understanding these signaling pathways has led to the introduction of key ingredients such as Activin A, FGF, Wnt, and BMP to the differentiation protocols that have been able to produce definitive endoderm from ES cells. Efficient production of definitive endoderm needs to meet the specific criteria that include (a) increase in the production of markers of definitive endoderm such as Sox 17, FOXA2, GSC, and Mixl1; (b) decrease in the production of markers of primitive/visceral/parietal endoderm, Sox 7 and OCT4; and (c) decrease in the mesoderm markers (Brachyury, MEOX) and ectoderm markers (Sox1 and ZIC1).
Collapse
Affiliation(s)
- Peter T W Kim
- Department of Surgery, University of British Columbia, Vancouver, BC, Canada
| | | |
Collapse
|
37
|
Abstract
In vitro methods used to study the modes of action of developmental toxicants range in biological complexity from cell monocultures to the culture of intact viable conceptuses. Primitive methods were static in nature and generally failed to provide for the adequate transfer of oxygen and nutrients to the cells and tissues being cultured. Modern methods have improved on these deficits to allow growth of cells, tissues, and whole conceptuses at rates that mirror those seen in vivo. The experimental challenges encountered with in vitro studies are also not unlike those seen in vivo where scale, accessibility, and developmental timing continue to persist as significant challenges. In vitro models have advantages in the ability to control environmental conditions and the direct exposure to toxicants so that specific effects on cell growth, differentiation, and morphology can be assessed directly in cells that have retained a sufficient degree of pluripotency. In vitro methods range in biological complexity from primary and immortalized cell cultures, organ and tissue cultures, and whole embryo cultures using intact, viable conceptuses explanted from a variety of species. Different experimental approaches are used for the various stages of development and cover the spectrum from preimplantation, periimplantation, and on to postimplantation periods of development.
Collapse
Affiliation(s)
- Craig Harris
- Toxicology Program, Department of Environmental Health Sciences, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
38
|
Donnard E, Barbosa-Silva A, Guedes RLM, Fernandes GR, Velloso H, Kohn MJ, Andrade-Navarro MA, Ortega JM. Preimplantation development regulatory pathway construction through a text-mining approach. BMC Genomics 2011; 12 Suppl 4:S3. [PMID: 22369103 PMCID: PMC3287586 DOI: 10.1186/1471-2164-12-s4-s3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Background The integration of sequencing and gene interaction data and subsequent generation of pathways and networks contained in databases such as KEGG Pathway is essential for the comprehension of complex biological processes. We noticed the absence of a chart or pathway describing the well-studied preimplantation development stages; furthermore, not all genes involved in the process have entries in KEGG Orthology, important information for knowledge application with relation to other organisms. Results In this work we sought to develop the regulatory pathway for the preimplantation development stage using text-mining tools such as Medline Ranker and PESCADOR to reveal biointeractions among the genes involved in this process. The genes present in the resulting pathway were also used as seeds for software developed by our group called SeedServer to create clusters of homologous genes. These homologues allowed the determination of the last common ancestor for each gene and revealed that the preimplantation development pathway consists of a conserved ancient core of genes with the addition of modern elements. Conclusions The generation of regulatory pathways through text-mining tools allows the integration of data generated by several studies for a more complete visualization of complex biological processes. Using the genes in this pathway as “seeds” for the generation of clusters of homologues, the pathway can be visualized for other organisms. The clustering of homologous genes together with determination of the ancestry leads to a better understanding of the evolution of such process.
Collapse
Affiliation(s)
- Elisa Donnard
- Laboratório Biodados, Dept. de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, 31270-901, Belo Horizonte - MG, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Mendoza-Parra MA, Walia M, Sankar M, Gronemeyer H. Dissecting the retinoid-induced differentiation of F9 embryonal stem cells by integrative genomics. Mol Syst Biol 2011; 7:538. [PMID: 21988834 PMCID: PMC3261707 DOI: 10.1038/msb.2011.73] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2011] [Accepted: 08/20/2011] [Indexed: 01/11/2023] Open
Abstract
Retinoic acid (RA) triggers physiological processes by activating heterodimeric transcription factors (TFs) comprising retinoic acid receptor (RARα, β, γ) and retinoid X receptor (RXRα, β, γ). How a single signal induces highly complex temporally controlled networks that ultimately orchestrate physiological processes is unclear. Using an RA-inducible differentiation model, we defined the temporal changes in the genome-wide binding patterns of RARγ and RXRα and correlated them with transcription regulation. Unexpectedly, both receptors displayed a highly dynamic binding, with different RXRα heterodimers targeting identical loci. Comparison of RARγ and RXRα co-binding at RA-regulated genes identified putative RXRα-RARγ target genes that were validated with subtype-selective agonists. Gene-regulatory decisions during differentiation were inferred from TF-target gene information and temporal gene expression. This analysis revealed six distinct co-expression paths of which RXRα-RARγ is associated with transcription activation, while Sox2 and Egr1 were predicted to regulate repression. Finally, RXRα-RARγ regulatory networks were reconstructed through integration of functional co-citations. Our analysis provides a dynamic view of RA signalling during cell differentiation, reveals RAR heterodimer dynamics and promiscuity, and predicts decisions that diversify the RA signal into distinct gene-regulatory programs.
Collapse
Affiliation(s)
- Marco A Mendoza-Parra
- Department of Cancer Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC)/CNRS/INSERM/Université de Strasbourg, Illkirch Cedex, France
| | - Mannu Walia
- Department of Cancer Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC)/CNRS/INSERM/Université de Strasbourg, Illkirch Cedex, France
| | - Martial Sankar
- Department of Cancer Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC)/CNRS/INSERM/Université de Strasbourg, Illkirch Cedex, France
| | - Hinrich Gronemeyer
- Department of Cancer Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC)/CNRS/INSERM/Université de Strasbourg, Illkirch Cedex, France
| |
Collapse
|
40
|
Bauwens CL, Song H, Thavandiran N, Ungrin M, Massé S, Nanthakumar K, Seguin C, Zandstra PW. Geometric control of cardiomyogenic induction in human pluripotent stem cells. Tissue Eng Part A 2011; 17:1901-9. [PMID: 21417693 DOI: 10.1089/ten.tea.2010.0563] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Although it has been observed that aggregate size affects cardiac development, an incomplete understanding of the cellular mechanisms underlying human pluripotent stem cell-derived cardiomyogenesis has limited the development of robust defined-condition cardiac cell generation protocols. Our objective was thus to elucidate cellular and molecular mechanisms underlying the endogenous control of human embryonic stem cell (hESC) cardiac tissue development, and to test the hypothesis that hESC aggregate size influences extraembryonic endoderm (ExE) commitment and cardiac inductive properties. hESC aggregates were generated with 100, 1000, or 4000 cells per aggregate using microwells. The frequency of endoderm marker (FoxA2 and GATA6)-expressing cells decreased with increasing aggregate size during early differentiation. Cardiogenesis was maximized in aggregates initiated from 1000 cells, with frequencies of 0.49±0.06 cells exhibiting a cardiac progenitor phenotype (KDR(low)/C-KIT(neg)) on day 5 and 0.24±0.06 expressing cardiac Troponin T on day 16. A direct relationship between ExE and cardiac differentiation efficiency was established by forming aggregates with varying ratios of SOX7 (a transcription factor required for ExE development) overexpressing or knockdown hESCs to unmanipulated hESCs. We demonstrate, in a defined, serum-free cardiac induction system, that robust and efficient cardiac differentiation is a function of endogenous ExE cell concentration, a parameter that can be directly modulated by controlling hESC aggregate size.
Collapse
Affiliation(s)
- Celine L Bauwens
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, Canada
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Nie J, Stewart R, Zhang H, Thomson JA, Ruan F, Cui X, Wei H. TF-Cluster: a pipeline for identifying functionally coordinated transcription factors via network decomposition of the shared coexpression connectivity matrix (SCCM). BMC SYSTEMS BIOLOGY 2011; 5:53. [PMID: 21496241 PMCID: PMC3101171 DOI: 10.1186/1752-0509-5-53] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2010] [Accepted: 04/15/2011] [Indexed: 12/24/2022]
Abstract
BACKGROUND Identifying the key transcription factors (TFs) controlling a biological process is the first step toward a better understanding of underpinning regulatory mechanisms. However, due to the involvement of a large number of genes and complex interactions in gene regulatory networks, identifying TFs involved in a biological process remains particularly difficult. The challenges include: (1) Most eukaryotic genomes encode thousands of TFs, which are organized in gene families of various sizes and in many cases with poor sequence conservation, making it difficult to recognize TFs for a biological process; (2) Transcription usually involves several hundred genes that generate a combination of intrinsic noise from upstream signaling networks and lead to fluctuations in transcription; (3) A TF can function in different cell types or developmental stages. Currently, the methods available for identifying TFs involved in biological processes are still very scarce, and the development of novel, more powerful methods is desperately needed. RESULTS We developed a computational pipeline called TF-Cluster for identifying functionally coordinated TFs in two steps: (1) Construction of a shared coexpression connectivity matrix (SCCM), in which each entry represents the number of shared coexpressed genes between two TFs. This sparse and symmetric matrix embodies a new concept of coexpression networks in which genes are associated in the context of other shared coexpressed genes; (2) Decomposition of the SCCM using a novel heuristic algorithm termed "Triple-Link", which searches the highest connectivity in the SCCM, and then uses two connected TF as a primer for growing a TF cluster with a number of linking criteria. We applied TF-Cluster to microarray data from human stem cells and Arabidopsis roots, and then demonstrated that many of the resulting TF clusters contain functionally coordinated TFs that, based on existing literature, accurately represent a biological process of interest. CONCLUSIONS TF-Cluster can be used to identify a set of TFs controlling a biological process of interest from gene expression data. Its high accuracy in recognizing true positive TFs involved in a biological process makes it extremely valuable in building core GRNs controlling a biological process. The pipeline implemented in Perl can be installed in various platforms.
Collapse
Affiliation(s)
- Jeff Nie
- Morgridge Institute for Research, 330 N. Orchard St., Madison, WI 53715, USA
| | - Ron Stewart
- Morgridge Institute for Research, 330 N. Orchard St., Madison, WI 53715, USA
| | - Hang Zhang
- Department of Computer Science, Michigan Technological University, 1400 Townsend Drive, Houghton, MI 49931, USA
| | - James A Thomson
- Morgridge Institute for Research, 330 N. Orchard St., Madison, WI 53715, USA
- Department of Biostatistics and Medical Informatics, University of Wisconsin, 600 Highland Ave., Madison, WI 53792, USA
- Department of Cell & Regenerative Biology, University of Wisconsin, 1300 University Ave., Madison, WI 53705, USA
- Department of Molecular, Cellular, & Developmental Biology, University of California Santa Barbara, Santa Barbara, CA, 93106, USA
| | - Fang Ruan
- Program of Computing Science and Engineering, Michigan Technological University, 1400 Townsend Drive, Houghton, MI 49931, USA
| | - Xiaoqi Cui
- Department of Mathematics, Michigan Technological University, 1400 Townsend Drive, Houghton, MI 49931, USA
| | - Hairong Wei
- School of Forest Resources and Environmental Science, Michigan Technological University, 1400 Townsend Drive, Houghton, MI 49931, USA
- Biotechnology Research Center, Michigan Technological University, 1400 Townsend Drive, Houghton, MI 49931, USA
| |
Collapse
|
42
|
Artus J, Piliszek A, Hadjantonakis AK. The primitive endoderm lineage of the mouse blastocyst: sequential transcription factor activation and regulation of differentiation by Sox17. Dev Biol 2010; 350:393-404. [PMID: 21146513 DOI: 10.1016/j.ydbio.2010.12.007] [Citation(s) in RCA: 172] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2010] [Revised: 11/30/2010] [Accepted: 12/02/2010] [Indexed: 01/06/2023]
Abstract
Cells of the primitive endoderm (PrE) and the pluripotent epiblast (EPI), the two lineages specified within the inner cell mass (ICM) of the mouse blastocyst stage embryo, are segregated into adjacent tissue layers by the end of the preimplantation period. The PrE layer which emerges as a polarized epithelium adjacent to the blastocoel, with a basement membrane separating it from the EPI, has two derivatives, the visceral and parietal endoderm. In this study we have investigated the localization of two transcriptional regulators of the SOX family, SOX17 and SOX7, within the PrE and its derivatives. We noted that SOX17 was first detected in a salt-and-pepper distribution within the ICM, subsequently becoming restricted to the nascent PrE epithelium. This dynamic distribution of SOX17 resembled the localization of GATA6 and GATA4, two other PrE lineage-specific transcription factors. By contrast, SOX7 was only detected in PrE cells positioned in contact with the blastocoel, raising the possibility that these cells are molecularly distinct. Our observations support a model of sequential GATA6 > SOX17 > GATA4 > SOX7 transcription factor activation within the PrE lineage, perhaps correlating with the consecutive periods of cell lineage 'naïvete', commitment and sorting. Furthermore our data suggest that co-expression of SOX17 and SOX7 within sorted PrE cells could account for the absence of a detectable phenotype of Sox17 mutant blastocysts. However, analysis of implantation-delayed blastocysts, revealed a role for SOX17 in the maintenance of PrE epithelial integrity, with the absence of SOX17 leading to premature delamination and migration of parietal endoderm.
Collapse
Affiliation(s)
- Jérôme Artus
- Developmental Biology Program, Sloan-Kettering Institute, New York, NY 10065, USA
| | | | | |
Collapse
|
43
|
Differentiation of mouse embryonic stem cells into endoderm without embryoid body formation. PLoS One 2010; 5:e14146. [PMID: 21152387 PMCID: PMC2994751 DOI: 10.1371/journal.pone.0014146] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2009] [Accepted: 10/12/2010] [Indexed: 12/31/2022] Open
Abstract
Pluripotent embryonic stem cells hold a great promise as an unlimited source of tissue for treatment of chronic diseases such as Type 1 diabetes. Herein, we describe a protocol using all-trans-retinoic acid, basic fibroblast growth factor and dibutyryl cAMP (DBcAMP) in the absence of embryoid body formation, for differentiation of murine embryonic stem cells into definitive endoderm that may serve as pancreatic precursors. The produced cells were analyzed by quantitative PCR, immunohistochemistry and static insulin release assay for markers of trilaminar embryo, and pancreas. Differentiated cells displayed increased Sox17 and Foxa2 expression consistent with definitive endoderm production. There was minimal production of Sox7, an extraembryonic endoderm marker, and Oct4, a marker of pluripotency. There was minimal mesoderm or neuroectoderm formation based on expression levels of the markers brachyury and Sox1, respectively. Various assays revealed that the cell clusters generated by this protocol express markers of the pancreatic lineage including insulin I, insulin II, C-peptide, PDX-1, carboxypeptidase E, pan-cytokeratin, amylase, glucagon, PAX6, Ngn3 and Nkx6.1. This protocol using all-trans-retinoic acid, DBcAMP, in the absence of embryoid bodies, generated cells that have features of definitive endoderm that may serve as pancreatic endocrine precursors.
Collapse
|
44
|
Serrano AG, Gandillet A, Pearson S, Lacaud G, Kouskoff V. Contrasting effects of Sox17- and Sox18-sustained expression at the onset of blood specification. Blood 2010; 115:3895-8. [PMID: 20228271 DOI: 10.1182/blood-2009-10-247395] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have previously shown that Sox7 was transiently expressed at the onset of blood specification and was implicated in the regulation of cell survival, proliferation, and maturation of hematopoietic precursors. Here, we assessed, using embryonic stem cell differentiation as a model system, whether Sox17 and Sox18, 2 close homologs of Sox7, may act similarly to Sox7 at the onset of hematopoietic development. Sox18-enforced expression led to the enhanced proliferation of early hematopoietic precursors while blocking their maturation, phenotype highly reminiscent of Sox7-enforced expression. In striking contrast, Sox17-enforced expression dramatically increased the apoptosis of these early precursors. Similarly to Sox7, Sox18 was transiently expressed during early hematopoiesis, but its expression was predominantly observed in CD41(+) cells, contrasting with Sox7, mostly expressed in Flk1(+) cells. Conversely, Sox17 remained marginally expressed during blood specification. Overall, our data uncover contrasting effect and expression pattern for Sox18 and Sox17 at the onset of hematopoiesis specification.
Collapse
|
45
|
Sox7-sustained expression alters the balance between proliferation and differentiation of hematopoietic progenitors at the onset of blood specification. Blood 2009; 114:4813-22. [DOI: 10.1182/blood-2009-06-226290] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Abstract
The molecular mechanisms that regulate the balance between proliferation and differentiation of precursors at the onset of hematopoiesis specification are poorly understood. By using a global gene expression profiling approach during the course of embryonic stem cell differentiation, we identified Sox7 as a potential candidate gene involved in the regulation of blood lineage formation from the mesoderm germ layer. In the present study, we show that Sox7 is transiently expressed in mesodermal precursors as they undergo specification to the hematopoietic program. Sox7 knockdown in vitro significantly decreases the formation of both primitive erythroid and definitive hematopoietic progenitors as well as endothelial progenitors. In contrast, Sox7-sustained expression in the earliest committed hematopoietic precursors promotes the maintenance of their multipotent and self-renewing status. Removal of this differentiation block driven by Sox7-enforced expression leads to the efficient differentiation of hematopoietic progenitors to all erythroid and myeloid lineages. This study identifies Sox7 as a novel and important player in the molecular regulation of the first committed blood precursors. Furthermore, our data demonstrate that the mere sustained expression of Sox7 is sufficient to completely alter the balance between proliferation and differentiation at the onset of hematopoiesis.
Collapse
|
46
|
Rohrbeck A, Borlak J. Cancer genomics identifies regulatory gene networks associated with the transition from dysplasia to advanced lung adenocarcinomas induced by c-Raf-1. PLoS One 2009; 4:e7315. [PMID: 19812696 PMCID: PMC2754338 DOI: 10.1371/journal.pone.0007315] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2009] [Accepted: 09/13/2009] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND Lung cancer is a leading cause of cancer morbidity. To improve an understanding of molecular causes of disease a transgenic mouse model was investigated where targeted expression of the serine threonine kinase c-Raf to respiratory epithelium induced initially dysplasia and subsequently adenocarcinomas. This enables dissection of genetic events associated with precancerous and cancerous lesions. METHODOLOGY/PRINCIPAL FINDINGS By laser microdissection cancer cell populations were harvested and subjected to whole genome expression analyses. Overall 473 and 541 genes were significantly regulated, when cancer versus transgenic and non-transgenic cells were compared, giving rise to three distinct and one common regulatory gene network. At advanced stages of tumor growth predominately repression of gene expression was observed, but genes previously shown to be up-regulated in dysplasia were also up-regulated in solid tumors. Regulation of developmental programs as well as epithelial mesenchymal and mesenchymal endothelial transition was a hall mark of adenocarcinomas. Additionally, genes coding for cell adhesion, i.e. the integrins and the tight and gap junction proteins were repressed, whereas ligands for receptor tyrosine kinase such as epi- and amphiregulin were up-regulated. Notably, Vegfr- 2 and its ligand Vegfd, as well as Notch and Wnt signalling cascades were regulated as were glycosylases that influence cellular recognition. Other regulated signalling molecules included guanine exchange factors that play a role in an activation of the MAP kinases while several tumor suppressors i.e. Mcc, Hey1, Fat3, Armcx1 and Reck were significantly repressed. Finally, probable molecular switches forcing dysplastic cells into malignantly transformed cells could be identified. CONCLUSIONS/SIGNIFICANCE This study provides insight into molecular pertubations allowing dysplasia to progress further to adenocarcinoma induced by exaggerted c-Raf kinase activity.
Collapse
Affiliation(s)
- Astrid Rohrbeck
- Department of Molecular Medicine and Medical Biotechnology, Fraunhofer Institute of Toxicology and Experimental Medicine, Hannover, Germany
| | - Jürgen Borlak
- Department of Molecular Medicine and Medical Biotechnology, Fraunhofer Institute of Toxicology and Experimental Medicine, Hannover, Germany
- Center for Pharmacology and Toxicology, Hannover Medical School, Hannover, Germany
| |
Collapse
|
47
|
Wat MJ, Shchelochkov OA, Holder AM, Breman AM, Dagli A, Bacino C, Scaglia F, Zori RT, Cheung SW, Scott DA, Kang SHL. Chromosome 8p23.1 deletions as a cause of complex congenital heart defects and diaphragmatic hernia. Am J Med Genet A 2009; 149A:1661-77. [PMID: 19606479 PMCID: PMC2765374 DOI: 10.1002/ajmg.a.32896] [Citation(s) in RCA: 131] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Recurrent interstitial deletion of a region of 8p23.1 flanked by the low copy repeats 8p-OR-REPD and 8p-OR-REPP is associated with a spectrum of anomalies that can include congenital heart malformations and congenital diaphragmatic hernia (CDH). Haploinsufficiency of GATA4 is thought to play a critical role in the development of these birth defects. We describe two individuals and a monozygotic twin pair discordant for anterior CDH all of whom have complex congenital heart defects caused by this recurrent interstitial deletion as demonstrated by array comparative genomic hybridization. To better define the genotype/phenotype relationships associated with alterations of genes on 8p23.1, we review the spectrum of congenital heart and diaphragmatic defects that have been reported in individuals with isolated GATA4 mutations and interstitial, terminal, and complex chromosomal rearrangements involving the 8p23.1 region. Our findings allow us to clearly define the CDH minimal deleted region on chromosome 8p23.1 and suggest that haploinsufficiency of other genes, in addition to GATA4, may play a role in the severe cardiac and diaphragmatic defects associated with 8p23.1 deletions. These findings also underscore the importance of conducting a careful cytogenetic/molecular analysis of the 8p23.1 region in all prenatal and postnatal cases involving congenital defects of the heart and/or diaphragm.
Collapse
Affiliation(s)
- Margaret J. Wat
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Oleg A. Shchelochkov
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Ashley M. Holder
- Department of Surgery, Washington University School of Medicine, Saint Louis, MO, USA
| | - Amy M. Breman
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Aditi Dagli
- Department of Pediatrics, University of Florida, Gainesville, FL, USA
| | - Carlos Bacino
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Fernando Scaglia
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Roberto T. Zori
- Department of Pediatrics, University of Florida, Gainesville, FL, USA
| | - Sau Wai Cheung
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Daryl A. Scott
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Sung-Hae Lee Kang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
48
|
Séguin CA, Draper JS, Nagy A, Rossant J. Establishment of endoderm progenitors by SOX transcription factor expression in human embryonic stem cells. Cell Stem Cell 2009; 3:182-95. [PMID: 18682240 DOI: 10.1016/j.stem.2008.06.018] [Citation(s) in RCA: 161] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2008] [Revised: 05/06/2008] [Accepted: 06/19/2008] [Indexed: 12/25/2022]
Abstract
In this study, we explore endoderm cell fate regulation through the expression of lineage-determining transcription factors. We demonstrate that stable endoderm progenitors can be established from human ES cells by constitutive expression of SOX7 or SOX17, producing extraembryonic endoderm and definitive endoderm progenitors, respectively. In teratoma assays and growth factor-mediated differentiation, SOX7 cells appear restricted to the extraembryonic endoderm, and SOX17 cells demonstrate a mesendodermal phenotype in teratomas and the ability to undergo endoderm maturation in vitro in the absence of cytokine-mediated endoderm induction. These endoderm progenitor cells maintain a stable phenotype through many passages in culture, thereby providing new tools to explore the pathways of endoderm differentiation.
Collapse
Affiliation(s)
- Cheryle A Séguin
- The Hospital for Sick Children, Program in Developmental and Stem Cell Biology, Toronto, ON M5G 1L7, Canada.
| | | | | | | |
Collapse
|
49
|
Zhu S, Wurdak H, Wang J, Lyssiotis CA, Peters EC, Cho CY, Wu X, Schultz PG. A Small Molecule Primes Embryonic Stem Cells for Differentiation. Cell Stem Cell 2009; 4:416-26. [DOI: 10.1016/j.stem.2009.04.001] [Citation(s) in RCA: 145] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2008] [Revised: 02/24/2009] [Accepted: 04/01/2009] [Indexed: 12/25/2022]
|
50
|
Genome-wide analysis of genetic alterations in Barrett's adenocarcinoma using single nucleotide polymorphism arrays. J Transl Med 2009; 89:385-97. [PMID: 18663352 DOI: 10.1038/labinvest.2008.67] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
We performed genome-wide analysis of copy-number changes and loss of heterozygosity (LOH) in Barrett's esophageal adenocarcinoma by single nucleotide polymorphism (SNP) microarrays to identify associated genomic alterations. DNA from 27 esophageal adenocarcinomas and 14 matching normal tissues was subjected to SNP microarrays. The data were analyzed using dChipSNP software. Copy-number changes occurring in at least 25% of the cases and LOH occurring in at least 19% were regarded as relevant changes. As a validation, fluorescence in situ hybridization (FISH) of 8q24.21 (CMYC) and 8p23.1 (SOX7) was performed. Previously described genomic alterations in esophageal adenocarcinomas could be confirmed by SNP microarrays, such as amplification on 8q (CMYC, confirmed by FISH) and 20q13 or deletion/LOH on 3p (FHIT) and 9p (CDKN2A). Moreover, frequent gains were detected on 2p23.3, 7q11.22, 13q31.1, 14q32.31, 17q23.2 and 20q13.2 harboring several novel candidate genes. The highest copy numbers were seen on 8p23.1, the location of SOX7, which could be demonstrated to be involved in amplification by FISH. A nuclear overexpression of the transcription factor SOX7 could be detected by immunohistochemistry in two amplified tumors. Copy-number losses were seen on 18q21.32 and 20p11.21, harboring interesting candidate genes, such as CDH20 and CST4. Finally, a novel LOH region could be identified on 6p in at least 19% of the cases. In conclusion, SNP microarrays are a valuable tool to detect DNA copy-number changes and LOH at a high resolution. Using this technique, we identified several novel genes and DNA regions associated with esophageal adenocarcinoma.
Collapse
|