1
|
Zhang F, Tang Y, Zhou H, Li K, West JA, Griffin JL, Lilley KS, Zhang N. The Yeast Gsk-3 Kinase Mck1 Is Necessary for Cell Wall Remodeling in Glucose-Starved and Cell Wall-Stressed Cells. Int J Mol Sci 2025; 26:3534. [PMID: 40332024 PMCID: PMC12027387 DOI: 10.3390/ijms26083534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2025] [Revised: 04/05/2025] [Accepted: 04/07/2025] [Indexed: 05/08/2025] Open
Abstract
The cell wall integrity (CWI) pathway is responsible for transcriptional regulation of cell wall remodeling in response to cell wall stress. How cell wall remodeling mediated by the CWI pathway is effected by inputs from other signaling pathways is not well understood. Here, we demonstrate that the Mck1 kinase cooperates with Slt2, the MAP kinase of the CWI pathway, to promote cell wall thickening in glucose-starved cells. Integrative analyses of the transcriptome, proteome and metabolic profiling indicate that Mck1 is required for the accumulation of UDP-glucose (UDPG), the substrate for β-glucan synthesis, through the activation of two regulons: the Msn2/4-dependent stress response and the Cat8-/Adr1-mediated metabolic reprogram dependent on the SNF1 complex. Analysis of the phosphoproteome suggests that similar to mammalian Gsk-3 kinases, Mck1 is involved in the regulation of cytoskeleton-dependent cellular processes, metabolism, signaling and transcription. Specifically, Mck1 may be implicated in the Snf1-dependent metabolic reprogram through PKA inhibition and SAGA (Spt-Ada-Gcn5 acetyltransferase)-mediated transcription activation, a hypothesis further underscored by the significant overlap between the Mck1- and Gcn5-activated transcriptomes. Phenotypic analysis also supports the roles of Mck1 in actin cytoskeleton-mediated exocytosis to ensure plasma membrane homeostasis and cell wall remodeling in cell wall-stressed cells. Together, these findings not only reveal the novel functions of Mck1 in metabolic reprogramming and polarized growth but also provide valuable omics resources for future studies to uncover the underlying mechanisms of Mck1 and other Gsk-3 kinases in cell growth and stress response.
Collapse
Affiliation(s)
- Fan Zhang
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK; (F.Z.); (K.L.)
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yingzhi Tang
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK; (F.Z.); (K.L.)
| | - Houjiang Zhou
- MRC Protein Phosphorylation and Ubiquitylation Unit, Sir James Black Centre, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Kaiqiang Li
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK; (F.Z.); (K.L.)
| | - James A. West
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK; (F.Z.); (K.L.)
| | - Julian L. Griffin
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK; (F.Z.); (K.L.)
| | - Kathryn S. Lilley
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK; (F.Z.); (K.L.)
| | - Nianshu Zhang
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK; (F.Z.); (K.L.)
| |
Collapse
|
2
|
Zhao S, Wu X, Liang J, Wang Z, Fan S, Du H, Yu H, Xiao Y, Peng F. Genetic Analysis of the Peach SnRK1β3 Subunit and Its Function in Transgenic Tomato Plants. Genes (Basel) 2024; 15:1574. [PMID: 39766841 PMCID: PMC11675834 DOI: 10.3390/genes15121574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 11/29/2024] [Accepted: 12/03/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND/OBJECTIVES The sucrose non-fermentation-related kinase 1 (SnRK1) protein complex in plants plays an important role in energy metabolism, anabolism, growth, and stress resistance. SnRK1 is a heterotrimeric complex. The SnRK1 complex is mainly composed of α, β, βγ, and γ subunits. Studies on plant SnRK1 have primarily focused on the functional α subunit, with the β regulatory subunit remaining relatively unexplored. The present study aimed to elucidate the evolutionary relationship, structural prediction, and interaction with the core α subunit of peach SnRK1β3 (PpSnRK1) subunit. METHODS Bioinformatics analysis of PpSnRK1 was performed through software and website. We produced transgenic tomato plants overexpressing PpSnRK1 (OEPpSnRK1). Transcriptome analysis was performed on OEPpSnRK1 tomatoes. We mainly tested the growth index and drought resistance of transgenic tomato plants. RESULTS The results showed that PpSnRK1 has a 354 bp encoded protein sequence (cds), which is mainly located in the nucleus and cell membrane. Phylogenetic tree analysis showed that PpSnRK1β3 has similar domains to other woody plants. Transcriptome analysis of OEPpSnRK1β3 showed that PpSnRK1β3 is widely involved in biosynthetic and metabolic processes. Functional analyses of these transgenic plants revealed prolonged growth periods, enhanced growth potential, improved photosynthetic activity, and superior drought stress tolerance. CONCLUSIONS The study findings provide insight into the function of the PpSnRK1 subunit and its potential role in regulating plant growth and drought responses. This comprehensive analysis of PpSnRK1 will contribute to further enhancing our understanding of the plant SnRK1 protein complex.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Futian Peng
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an 271018, China; (S.Z.)
| |
Collapse
|
3
|
Wagner ER, Gasch AP. Advances in S. cerevisiae Engineering for Xylose Fermentation and Biofuel Production: Balancing Growth, Metabolism, and Defense. J Fungi (Basel) 2023; 9:786. [PMID: 37623557 PMCID: PMC10455348 DOI: 10.3390/jof9080786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/19/2023] [Accepted: 07/24/2023] [Indexed: 08/26/2023] Open
Abstract
Genetically engineering microorganisms to produce chemicals has changed the industrialized world. The budding yeast Saccharomyces cerevisiae is frequently used in industry due to its genetic tractability and unique metabolic capabilities. S. cerevisiae has been engineered to produce novel compounds from diverse sugars found in lignocellulosic biomass, including pentose sugars, like xylose, not recognized by the organism. Engineering high flux toward novel compounds has proved to be more challenging than anticipated since simply introducing pathway components is often not enough. Several studies show that the rewiring of upstream signaling is required to direct products toward pathways of interest, but doing so can diminish stress tolerance, which is important in industrial conditions. As an example of these challenges, we reviewed S. cerevisiae engineering efforts, enabling anaerobic xylose fermentation as a model system and showcasing the regulatory interplay's controlling growth, metabolism, and stress defense. Enabling xylose fermentation in S. cerevisiae requires the introduction of several key metabolic enzymes but also regulatory rewiring of three signaling pathways at the intersection of the growth and stress defense responses: the RAS/PKA, Snf1, and high osmolarity glycerol (HOG) pathways. The current studies reviewed here suggest the modulation of global signaling pathways should be adopted into biorefinery microbial engineering pipelines to increase efficient product yields.
Collapse
Affiliation(s)
- Ellen R. Wagner
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI 53706, USA
- Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI 53706, USA
- Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Audrey P. Gasch
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI 53706, USA
- Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI 53706, USA
- Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
4
|
Simpson-Lavy K, Kupiec M. Glucose Inhibits Yeast AMPK (Snf1) by Three Independent Mechanisms. BIOLOGY 2023; 12:1007. [PMID: 37508436 PMCID: PMC10376661 DOI: 10.3390/biology12071007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/13/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023]
Abstract
Snf1, the fungal homologue of mammalian AMP-dependent kinase (AMPK), is a key protein kinase coordinating the response of cells to a shortage of glucose. In fungi, the response is to activate respiratory gene expression and metabolism. The major regulation of Snf1 activity has been extensively investigated: In the absence of glucose, it becomes activated by phosphorylation of its threonine at position 210. This modification can be erased by phosphatases when glucose is restored. In the past decade, two additional independent mechanisms of Snf1 regulation have been elucidated. In response to glucose (or, surprisingly, also to DNA damage), Snf1 is SUMOylated by Mms21 at lysine 549. This inactivates Snf1 and leads to Snf1 degradation. More recently, glucose-induced proton export has been found to result in Snf1 inhibition via a polyhistidine tract (13 consecutive histidine residues) at the N-terminus of the Snf1 protein. Interestingly, the polyhistidine tract plays also a central role in the response to iron scarcity. This review will present some of the glucose-sensing mechanisms of S. cerevisiae, how they interact, and how their interplay results in Snf1 inhibition by three different, and independent, mechanisms.
Collapse
Affiliation(s)
- Kobi Simpson-Lavy
- The Shmunis School of Biomedicine & Cancer Research, Tel Aviv University, Ramat Aviv, Tel Aviv 69978, Israel
| | - Martin Kupiec
- The Shmunis School of Biomedicine & Cancer Research, Tel Aviv University, Ramat Aviv, Tel Aviv 69978, Israel
| |
Collapse
|
5
|
Caligaris M, Nicastro R, Hu Z, Tripodi F, Hummel JE, Pillet B, Deprez MA, Winderickx J, Rospert S, Coccetti P, Dengjel J, De Virgilio C. Snf1/AMPK fine-tunes TORC1 signaling in response to glucose starvation. eLife 2023; 12:84319. [PMID: 36749016 PMCID: PMC9937656 DOI: 10.7554/elife.84319] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 02/06/2023] [Indexed: 02/08/2023] Open
Abstract
The AMP-activated protein kinase (AMPK) and the target of rapamycin complex 1 (TORC1) are central kinase modules of two opposing signaling pathways that control eukaryotic cell growth and metabolism in response to the availability of energy and nutrients. Accordingly, energy depletion activates AMPK to inhibit growth, while nutrients and high energy levels activate TORC1 to promote growth. Both in mammals and lower eukaryotes such as yeast, the AMPK and TORC1 pathways are wired to each other at different levels, which ensures homeostatic control of growth and metabolism. In this context, a previous study (Hughes Hallett et al., 2015) reported that AMPK in yeast, that is Snf1, prevents the transient TORC1 reactivation during the early phase following acute glucose starvation, but the underlying mechanism has remained elusive. Using a combination of unbiased mass spectrometry (MS)-based phosphoproteomics, genetic, biochemical, and physiological experiments, we show here that Snf1 temporally maintains TORC1 inactive in glucose-starved cells primarily through the TORC1-regulatory protein Pib2. Our data, therefore, extend the function of Pib2 to a hub that integrates both glucose and, as reported earlier, glutamine signals to control TORC1. We further demonstrate that Snf1 phosphorylates the TORC1 effector kinase Sch9 within its N-terminal region and thereby antagonizes the phosphorylation of a C-terminal TORC1-target residue within Sch9 itself that is critical for its activity. The consequences of Snf1-mediated phosphorylation of Pib2 and Sch9 are physiologically additive and sufficient to explain the role of Snf1 in short-term inhibition of TORC1 in acutely glucose-starved cells.
Collapse
Affiliation(s)
- Marco Caligaris
- Department of Biology, University of FribourgFribourgSwitzerland
| | | | - Zehan Hu
- Department of Biology, University of FribourgFribourgSwitzerland
| | - Farida Tripodi
- Department of Biotechnology and Biosciences, University of Milano-BicoccaMilanoItaly
| | - Johannes Erwin Hummel
- Institute of Biochemistry and Molecular Biology, Faculty of Medicine, University of FreiburgFreiburgGermany
| | - Benjamin Pillet
- Department of Biology, University of FribourgFribourgSwitzerland
| | | | | | - Sabine Rospert
- Institute of Biochemistry and Molecular Biology, Faculty of Medicine, University of FreiburgFreiburgGermany,Signalling Research Centres BIOSS and CIBSS, University of FreiburgFreiburgGermany
| | - Paola Coccetti
- Department of Biotechnology and Biosciences, University of Milano-BicoccaMilanoItaly
| | - Jörn Dengjel
- Department of Biology, University of FribourgFribourgSwitzerland
| | | |
Collapse
|
6
|
Regulation of yeast Snf1 (AMPK) by a polyhistidine containing pH sensing module. iScience 2022; 25:105083. [PMID: 36147951 PMCID: PMC9486060 DOI: 10.1016/j.isci.2022.105083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 08/12/2022] [Accepted: 09/01/2022] [Indexed: 11/23/2022] Open
Abstract
Cellular regulation of pH is crucial for internal biological processes and for the import and export of ions and nutrients. In the yeast Saccharomyces cerevisiae, the major proton pump (Pma1) is regulated by glucose. Glucose is also an inhibitor of the energy sensor Snf1/AMPK, which is conserved in all eukaryotes. Here, we demonstrate that a poly-histidine (polyHIS) tract in the pre-kinase region (PKR) of Snf1 functions as a pH-sensing module (PSM) and regulates Snf1 activity. This regulation is independent from, and unaffected by, phosphorylation at T210, the major regulatory control of Snf1, but is controlled by the Pma1 plasma-membrane proton pump. By examining the PKR from additional yeast species, and by varying the number of histidines in the PKR, we determined that the polyHIS functions progressively. This regulation mechanism links the activity of a key enzyme with the metabolic status of the cell at any given moment.
Collapse
|
7
|
Zacharaki V, Ponnu J, Crepin N, Langenecker T, Hagmann J, Skorzinski N, Musialak‐Lange M, Wahl V, Rolland F, Schmid M. Impaired KIN10 function restores developmental defects in the Arabidopsis trehalose 6-phosphate synthase1 (tps1) mutant. THE NEW PHYTOLOGIST 2022; 235:220-233. [PMID: 35306666 PMCID: PMC9320823 DOI: 10.1111/nph.18104] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 03/09/2022] [Indexed: 05/19/2023]
Abstract
Sensing carbohydrate availability is essential for plants to coordinate their growth and development. In Arabidopsis thaliana, TREHALOSE 6-PHOSPHATE SYNTHASE 1 (TPS1) and its product, trehalose 6-phosphate (T6P), are important for the metabolic control of development. tps1 mutants are embryo-lethal and unable to flower when embryogenesis is rescued. T6P regulates development in part through inhibition of SUCROSE NON-FERMENTING1 RELATED KINASE1 (SnRK1). Here, we explored the role of SnRK1 in T6P-mediated plant growth and development using a combination of a mutant suppressor screen and genetic, cellular and transcriptomic approaches. We report nonsynonymous amino acid substitutions in the catalytic KIN10 and regulatory SNF4 subunits of SnRK1 that can restore both embryogenesis and flowering of tps1 mutant plants. The identified SNF4 point mutations disrupt the interaction with the catalytic subunit KIN10. Contrary to the common view that the two A. thaliana SnRK1 catalytic subunits act redundantly, we found that loss-of-function mutations in KIN11 are unable to restore embryogenesis and flowering, highlighting the important role of KIN10 in T6P signalling.
Collapse
Affiliation(s)
- Vasiliki Zacharaki
- Department of Plant PhysiologyUmeå Plant Science CentreUmeå UniversitySE‐901 87UmeåSweden
| | - Jathish Ponnu
- Department of Molecular BiologyMax Planck Institute for Developmental BiologySpemannstr. 3572076TübingenGermany
- Institute for Plant SciencesCologne BiocenterUniversität zu KölnZülpicher Straße 47b50674KölnGermany
| | - Nathalie Crepin
- Laboratory for Molecular Plant BiologyBiology DepartmentUniversity of Leuven–KU LeuvenKasteelpark Arenberg 313001Heverlee‐LeuvenBelgium
- KU Leuven Plant Institute (LPI)3001Heverlee‐LeuvenBelgium
| | - Tobias Langenecker
- Department of Molecular BiologyMax Planck Institute for Developmental BiologySpemannstr. 3572076TübingenGermany
| | - Jörg Hagmann
- Department of Molecular BiologyMax Planck Institute for Developmental BiologySpemannstr. 3572076TübingenGermany
| | - Noemi Skorzinski
- Department of Plant PhysiologyUmeå Plant Science CentreUmeå UniversitySE‐901 87UmeåSweden
- Department of Molecular BiologyMax Planck Institute for Developmental BiologySpemannstr. 3572076TübingenGermany
| | - Magdalena Musialak‐Lange
- Department of Plant Reproductive Biology and EpigeneticsMax Planck Institute of Molecular Plant PhysiologyAm Mühlenberg 114476PotsdamGermany
| | - Vanessa Wahl
- Department of Plant Reproductive Biology and EpigeneticsMax Planck Institute of Molecular Plant PhysiologyAm Mühlenberg 114476PotsdamGermany
| | - Filip Rolland
- Laboratory for Molecular Plant BiologyBiology DepartmentUniversity of Leuven–KU LeuvenKasteelpark Arenberg 313001Heverlee‐LeuvenBelgium
- KU Leuven Plant Institute (LPI)3001Heverlee‐LeuvenBelgium
| | - Markus Schmid
- Department of Plant PhysiologyUmeå Plant Science CentreUmeå UniversitySE‐901 87UmeåSweden
- Department of Molecular BiologyMax Planck Institute for Developmental BiologySpemannstr. 3572076TübingenGermany
| |
Collapse
|
8
|
Li J, Liu Q, Li J, Lin L, Li X, Zhang Y, Tian C. RCO-3 and COL-26 form an external-to-internal module that regulates the dual-affinity glucose transport system in Neurospora crassa. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:33. [PMID: 33509260 PMCID: PMC7841889 DOI: 10.1186/s13068-021-01877-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Accepted: 01/07/2021] [Indexed: 05/13/2023]
Abstract
BACKGROUND Low- and high-affinity glucose transport system is a conserved strategy of microorganism to cope with environmental glucose fluctuation for their growth and competitiveness. In Neurospora crassa, the dual-affinity glucose transport system consists of a low-affinity glucose transporter GLT-1 and two high-affinity glucose transporters HGT-1/HGT-2, which play diverse roles in glucose transport, carbon metabolism, and cellulase expression regulation. However, the regulation of this dual-transporter system in response to environmental glucose fluctuation is not yet clear. RESULTS In this study, we report that a regulation module consisting of a downstream transcription factor COL-26 and an upstream non-transporting glucose sensor RCO-3 regulates the dual-affinity glucose transport system in N. crassa. COL-26 directly binds to the promoter regions of glt-1, hgt-1, and hgt-2, whereas RCO-3 is an upstream factor of the module whose deletion mutant resembles the Δcol-26 mutant phenotypically. Transcriptional profiling analysis revealed that Δcol-26 and Δrco-3 mutants had similar transcriptional profiles, and both mutants had impaired response to a glucose gradient. We also showed that the AMP-activated protein kinase (AMPK) complex is involved in regulation of the glucose transporters. AMPK is required for repression of glt-1 expression in starvation conditions by inhibiting the activity of RCO-3. CONCLUSIONS RCO-3 and COL-26 form an external-to-internal module that regulates the glucose dual-affinity transport system. Transcription factor COL-26 was identified as the key regulator. AMPK was also involved in the regulation of the dual-transporter system. Our findings provide novel insight into the molecular basis of glucose uptake and signaling in filamentous fungi, which may aid in the rational design of fungal strains for industrial purposes.
Collapse
Affiliation(s)
- Jinyang Li
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Qian Liu
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308 China
| | - Jingen Li
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308 China
| | - Liangcai Lin
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308 China
| | - Xiaolin Li
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308 China
- State Key Laboratory of Agrobiotechnology and MOA Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, 100193 China
| | - Yongli Zhang
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Chaoguang Tian
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
- National Technology Innovation Center of Synthetic Biology, Tianjin, 300308 China
| |
Collapse
|
9
|
Rezinciuc S, Bezavada L, Bahadoran A, Duan S, Wang R, Lopez-Ferrer D, Finkelstein D, McGargill MA, Green DR, Pasa-Tolic L, Smallwood HS. Dynamic metabolic reprogramming in dendritic cells: An early response to influenza infection that is essential for effector function. PLoS Pathog 2020; 16:e1008957. [PMID: 33104753 PMCID: PMC7707590 DOI: 10.1371/journal.ppat.1008957] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 12/01/2020] [Accepted: 09/03/2020] [Indexed: 01/19/2023] Open
Abstract
Infection with the influenza virus triggers an innate immune response that initiates the adaptive response to halt viral replication and spread. However, the metabolic response fueling the molecular mechanisms underlying changes in innate immune cell homeostasis remain undefined. Although influenza increases parasitized cell metabolism, it does not productively replicate in dendritic cells. To dissect these mechanisms, we compared the metabolism of dendritic cells to that of those infected with active and inactive influenza A virus and those treated with toll-like receptor agonists. Using quantitative mass spectrometry, pulse chase substrate utilization assays and metabolic flux measurements, we found global metabolic changes in dendritic cells 17 hours post infection, including significant changes in carbon commitment via glycolysis and glutaminolysis, as well as mitochondrial respiration. Influenza infection of dendritic cells led to a metabolic phenotype distinct from that induced by TLR agonists, with significant resilience in terms of metabolic plasticity. We identified c-Myc as one transcription factor modulating this response. Restriction of c-Myc activity or mitochondrial substrates significantly changed the immune functions of dendritic cells, such as reducing motility and T cell activation. Transcriptome analysis of inflammatory dendritic cells isolated following influenza infection showed similar metabolic reprogramming occurs in vivo. Thus, early in the infection process, dendritic cells respond with global metabolic restructuring, that is present in inflammatory lung dendritic cells after infection, and this is important for effector function. These findings suggest metabolic switching in dendritic cells plays a vital role in initiating the immune response to influenza infection. Dendritic cells are critical in mounting an effective immune response to influenza infection by initiating the immune response to influenza and activating the adaptive response to mediate viral clearance and manifest immune memory for protection against subsequent infections. We found dendritic cells undergo a profound metabolic shift after infection. They alter the concentration and location of hundreds of proteins, including c-Myc, facilitating a shift to a highly glycolytic phenotype that is also flexible in terms of fueling respiration. Nonetheless, we found limiting access to specific metabolic pathways or substrates diminished key immune functions. We previously described an immediate, fixed hypermetabolic state in infected respiratory epithelial cells. Here we present data indicating the metabolic response of dendritic cells is increased yet flexible, distinct from what we previously showed for epithelial cells. Additionally, we demonstrate dendritic cells tailor their metabolic response to the pathogen or TLR stimulus. This metabolic reprogramming occurs rapidly in vitro and is sustained in inflammatory dendritic cells in vivo for at least 9 days following influenza infection. These studies introduce the possibility of modulating the immune response to viral infection using customized metabolic therapy to enhance or diminish the function of specific cells.
Collapse
Affiliation(s)
- Svetlana Rezinciuc
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
| | - Lavanya Bezavada
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
| | - Azadeh Bahadoran
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
| | - Susu Duan
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Ruoning Wang
- Center for Childhood Cancer and Blood Disease, The Research Institute at Nationwide Children's Hospital, The Ohio State University School of Medicine, Columbus, Ohio, United States of America
| | - Daniel Lopez-Ferrer
- Chromatography and Mass Spectrometry Division, Thermo Fisher Scientific, CA, United States of America
| | - David Finkelstein
- Department of Computational Biology, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Maureen A. McGargill
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Douglas R. Green
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Ljiljana Pasa-Tolic
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington, United States of America
| | - Heather S. Smallwood
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
- * E-mail:
| |
Collapse
|
10
|
Ramon M, Dang TVT, Broeckx T, Hulsmans S, Crepin N, Sheen J, Rolland F. Default Activation and Nuclear Translocation of the Plant Cellular Energy Sensor SnRK1 Regulate Metabolic Stress Responses and Development. THE PLANT CELL 2019; 31:1614-1632. [PMID: 31123051 PMCID: PMC6635846 DOI: 10.1105/tpc.18.00500] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 04/12/2019] [Accepted: 05/06/2019] [Indexed: 05/18/2023]
Abstract
Energy homeostasis is vital to all living organisms. In eukaryotes, this process is controlled by fuel gauging protein kinases: AMP-activated kinase in mammals, Sucrose Non-Fermenting1 (SNF1) in yeast (Saccharomyces cerevisiae), and SNF1-related kinase1 (SnRK1) in plants. These kinases are highly conserved in structure and function and (according to this paradigm) operate as heterotrimeric complexes of catalytic-α and regulatory β- and γ-subunits, responding to low cellular nucleotide charge. Here, we determined that the Arabidopsis (Arabidopsis thaliana) SnRK1 catalytic α-subunit has regulatory subunit-independent activity, which is consistent with default activation (and thus controlled repression), a strategy more generally used by plants. Low energy stress (caused by darkness, inhibited photosynthesis, or hypoxia) also triggers SnRK1α nuclear translocation, thereby controlling induced but not repressed target gene expression to replenish cellular energy for plant survival. The myristoylated and membrane-associated regulatory β-subunits restrict nuclear localization and inhibit target gene induction. Transgenic plants with forced SnRK1α-subunit localization consistently were affected in metabolic stress responses, but their analysis also revealed key roles for nuclear SnRK1 in leaf and root growth and development. Our findings suggest that plants have modified the ancient, highly conserved eukaryotic energy sensor to better fit their unique lifestyle and to more effectively cope with changing environmental conditions.
Collapse
Affiliation(s)
- Matthew Ramon
- Laboratory for Molecular Plant Biology, Biology Department, Katholieke Universiteit Leuven, 3001 Heverlee-Leuven, Belgium
- Department of Molecular Biology and Centre for Computational and Integrative Biology, Massachusetts General Hospital, and Department of Genetics, Harvard Medical School, Boston, Massachusetts 02114
| | - Tuong Vi T Dang
- Laboratory for Molecular Plant Biology, Biology Department, Katholieke Universiteit Leuven, 3001 Heverlee-Leuven, Belgium
| | - Tom Broeckx
- Laboratory for Molecular Plant Biology, Biology Department, Katholieke Universiteit Leuven, 3001 Heverlee-Leuven, Belgium
| | - Sander Hulsmans
- Laboratory for Molecular Plant Biology, Biology Department, Katholieke Universiteit Leuven, 3001 Heverlee-Leuven, Belgium
| | - Nathalie Crepin
- Laboratory for Molecular Plant Biology, Biology Department, Katholieke Universiteit Leuven, 3001 Heverlee-Leuven, Belgium
| | - Jen Sheen
- Department of Molecular Biology and Centre for Computational and Integrative Biology, Massachusetts General Hospital, and Department of Genetics, Harvard Medical School, Boston, Massachusetts 02114
| | - Filip Rolland
- Laboratory for Molecular Plant Biology, Biology Department, Katholieke Universiteit Leuven, 3001 Heverlee-Leuven, Belgium
| |
Collapse
|
11
|
Comprehensive Analysis of Aspergillus nidulans PKA Phosphorylome Identifies a Novel Mode of CreA Regulation. mBio 2019; 10:mBio.02825-18. [PMID: 31040248 PMCID: PMC6495382 DOI: 10.1128/mbio.02825-18] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The cyclic AMP (cAMP)-dependent protein kinase A (PKA) signaling pathway is well conserved across eukaryotes, and previous work has shown that it plays an important role in regulating development, growth, and virulence in a number of fungi. PKA is activated in response to extracellular nutrients and acts to regulate metabolism and growth. While a number of components in the PKA pathway have been defined in filamentous fungi, current understanding does not provide a global perspective on PKA function. Thus, this work is significant in that it comprehensively identifies proteins and functional pathways regulated by PKA in a model filamentous fungus. This information enhances our understanding of PKA action and may provide information on how to manipulate it for specific purposes. In filamentous fungi, an important kinase responsible for adaptation to changes in available nutrients is cyclic AMP (cAMP)-dependent protein kinase (protein kinase A [PKA]). This kinase has been well characterized at a molecular level, but its systemic action and direct/indirect targets are generally not well understood in filamentous fungi. In this work, we used a pkaA deletion strain (ΔpkaA) to identify Aspergillus nidulans proteins for which phosphorylation is dependent (either directly or indirectly) on PKA. A combination of phosphoproteomic and transcriptomic analyses revealed both direct and indirect targets of PKA and provided a global perspective on its function. One of these targets was the transcription factor CreA, the main repressor responsible for carbon catabolite repression (CCR). In the ΔpkaA strain, we identified a previously unreported phosphosite in CreA, S319, which (based on motif analysis) appears to be a direct target of Stk22 kinase (AN5728). Upon replacement of CreA S319 with an alanine (i.e., phosphonull mutant), the dynamics of CreA import to the nucleus are affected. Collectively, this work provides a global overview of PKA function while also providing novel insight regarding significance of a specific PKA-mediated phosphorylation event.
Collapse
|
12
|
Coccetti P, Nicastro R, Tripodi F. Conventional and emerging roles of the energy sensor Snf1/AMPK in Saccharomyces cerevisiae. MICROBIAL CELL 2018; 5:482-494. [PMID: 30483520 PMCID: PMC6244292 DOI: 10.15698/mic2018.11.655] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
All proliferating cells need to match metabolism, growth and cell cycle progression with nutrient availability to guarantee cell viability in spite of a changing environment. In yeast, a signaling pathway centered on the effector kinase Snf1 is required to adapt to nutrient limitation and to utilize alternative carbon sources, such as sucrose and ethanol. Snf1 shares evolutionary conserved functions with the AMP-activated Kinase (AMPK) in higher eukaryotes which, activated by energy depletion, stimulates catabolic processes and, at the same time, inhibits anabolism. Although the yeast Snf1 is best known for its role in responding to a number of stress factors, in addition to glucose limitation, new unconventional roles of Snf1 have recently emerged, even in glucose repressing and unstressed conditions. Here, we review and integrate available data on conventional and non-conventional functions of Snf1 to better understand the complexity of cellular physiology which controls energy homeostasis.
Collapse
Affiliation(s)
- Paola Coccetti
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy.,SYSBIO, Centre of Systems Biology, Milan, Italy
| | - Raffaele Nicastro
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy.,Present address: Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Farida Tripodi
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy.,SYSBIO, Centre of Systems Biology, Milan, Italy
| |
Collapse
|
13
|
Willis SD, Stieg DC, Ong KL, Shah R, Strich AK, Grose JH, Cooper KF. Snf1 cooperates with the CWI MAPK pathway to mediate the degradation of Med13 following oxidative stress. MICROBIAL CELL 2018; 5:357-370. [PMID: 30175106 PMCID: PMC6116281 DOI: 10.15698/mic2018.08.641] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Eukaryotic cells, when faced with unfavorable environmental conditions, mount either pro-survival or pro-death programs. The conserved cyclin C-Cdk8 kinase plays a key role in this decision. Both are members of the Cdk8 kinase module that, along with Med12 and Med13, associate with the core Mediator complex of RNA polymerase II. In Saccharomyces cerevisiae, oxidative stress triggers Med13 destruction, which releases cyclin C into the cytoplasm to promote mitochondrial fission and programmed cell death. The SCFGrr1 ubiquitin ligase mediates Med13 degradation dependent on the cell wall integrity pathway, MAPK Slt2. Here we show that the AMP kinase Snf1 activates a second SCFGrr1 responsive degron in Med13. Deletion of Snf1 resulted in nuclear retention of cyclin C and failure to induce mitochondrial fragmentation. This degron was able to confer oxidative-stress-induced destruction when fused to a heterologous protein in a Snf1 dependent manner. Although snf1∆ mutants failed to destroy Med13, deleting the degron did not prevent destruction. These results indicate that the control of Med13 degradation following H2O2 stress is complex, being controlled simultaneously by CWI and MAPK pathways.
Collapse
Affiliation(s)
- Stephen D Willis
- Department of Molecular Biology, Graduate School of Biomedical Sciences, Rowan University, Stratford, NJ, 08084, USA
| | - David C Stieg
- Department of Molecular Biology, Graduate School of Biomedical Sciences, Rowan University, Stratford, NJ, 08084, USA
| | - Kai Li Ong
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT 84602, USA
| | - Ravina Shah
- Department of Molecular Biology, Graduate School of Biomedical Sciences, Rowan University, Stratford, NJ, 08084, USA.,Current address: Department of Biological Sciences, Rowan University, 201 Mullica Hill Rd, Glassboro, NJ 08028. USA
| | - Alexandra K Strich
- Department of Molecular Biology, Graduate School of Biomedical Sciences, Rowan University, Stratford, NJ, 08084, USA.,Current address: Shawnee High School, Medford, New Jersey 08055, USA
| | - Julianne H Grose
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT 84602, USA
| | - Katrina F Cooper
- Department of Molecular Biology, Graduate School of Biomedical Sciences, Rowan University, Stratford, NJ, 08084, USA
| |
Collapse
|
14
|
Baroni MD, Colombo S, Martegani E. Antagonism between salicylate and the cAMP signal controls yeast cell survival and growth recovery from quiescence. MICROBIAL CELL (GRAZ, AUSTRIA) 2018; 5:344-356. [PMID: 29992130 PMCID: PMC6035838 DOI: 10.15698/mic2018.07.640] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 03/14/2018] [Indexed: 12/18/2022]
Abstract
Aspirin and its main metabolite salicylate are promising molecules in preventing cancer and metabolic diseases. S. cerevisiae cells have been used to study some of their effects: (i) salicylate induces the reversible inhibition of both glucose transport and the biosyntheses of glucose-derived sugar phosphates, (ii) Aspirin/salicylate causes apoptosis associated with superoxide radical accumulation or early cell necrosis in MnSOD-deficient cells growing in ethanol or in glucose, respectively. So, treatment with (acetyl)-salicylic acid can alter the yeast metabolism and is associated with cell death. We describe here the dramatic effects of salicylate on cellular control of the exit from a quiescence state. The growth recovery of long-term stationary phase cells was strongly inhibited in the presence of salicylate, to a degree proportional to the drug concentration. At high salicylate concentration, growth reactivation was completely repressed and associated with a dramatic loss of cell viability. Strikingly, both of these phenotypes were fully suppressed by increasing the cAMP signal without any variation of the exponential growth rate. Upon nutrient exhaustion, salicylate induced a premature lethal cell cycle arrest in the budded-G2/M phase that cannot be suppressed by PKA activation. We discuss how the dramatic antagonism between cAMP and salicylate could be conserved and impinge common targets in yeast and humans. Targeting quiescence of cancer cells with stem-like properties and their growth recovery from dormancy are major challenges in cancer therapy. If mechanisms underlying cAMP-salicylate antagonism will be defined in our model, this might have significant therapeutic implications.
Collapse
Affiliation(s)
| | - Sonia Colombo
- Dipartimento di Biotecnologie e Bioscienze, Università Milano Bicocca, 20126 Milano, Italy
| | - Enzo Martegani
- Dipartimento di Biotecnologie e Bioscienze, Università Milano Bicocca, 20126 Milano, Italy
| |
Collapse
|
15
|
A reversible liquid drop aggregation controls glucose response in yeast. Curr Genet 2018; 64:785-788. [DOI: 10.1007/s00294-018-0805-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Accepted: 01/05/2018] [Indexed: 12/18/2022]
|
16
|
Mitochondrial Voltage-Dependent Anion Channel Protein Por1 Positively Regulates the Nuclear Localization of Saccharomyces cerevisiae AMP-Activated Protein Kinase. mSphere 2018; 3:mSphere00482-17. [PMID: 29359182 PMCID: PMC5760747 DOI: 10.1128/msphere.00482-17] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 12/03/2017] [Indexed: 01/06/2023] Open
Abstract
AMP-activated protein kinases (AMPKs) sense energy limitation and regulate transcription and metabolism in eukaryotes from yeast to humans. In mammals, AMPK responds to increased AMP-to-ATP or ADP-to-ATP ratios and is implicated in diabetes, heart disease, and cancer. Mitochondria produce ATP and are generally thought to downregulate AMPK. Indeed, some antidiabetic drugs activate AMPK by affecting mitochondrial respiration. ATP release from mitochondria is mediated by evolutionarily conserved proteins known as voltage-dependent anion channels (VDACs). One would therefore expect VDACs to serve as negative regulators of AMPK. However, our experiments in yeast reveal the existence of an opposite relationship. We previously showed that Saccharomyces cerevisiae VDACs Por1 and Por2 positively regulate AMPK/Snf1 catalytic activation. Here, we show that Por1 also plays an important role in promoting AMPK/Snf1 nuclear localization. Our counterintuitive findings could inform research in areas ranging from diabetes to cancer to fungal pathogenesis. Snf1 protein kinase of the yeast Saccharomyces cerevisiae is a member of the highly conserved eukaryotic AMP-activated protein kinase (AMPK) family, which is involved in regulating responses to energy limitation. Under conditions of carbon/energy stress, such as during glucose depletion, Snf1 is catalytically activated and enriched in the nucleus to regulate transcription. Snf1 catalytic activation requires phosphorylation of its conserved activation loop threonine (Thr210) by upstream kinases. Catalytic activation is also a prerequisite for Snf1’s subsequent nuclear enrichment, a process that is mediated by Gal83, one of three alternate β-subunits of the Snf1 kinase complex. We previously reported that the mitochondrial voltage-dependent anion channel (VDAC) proteins Por1 and Por2 play redundant roles in promoting Snf1 catalytic activation by Thr210 phosphorylation. Here, we show that the por1Δ mutation alone, which by itself does not affect Snf1 Thr210 phosphorylation, causes defects in Snf1 and Gal83 nuclear enrichment and Snf1’s ability to stimulate transcription. We present evidence that Por1 promotes Snf1 nuclear enrichment by promoting the nuclear enrichment of Gal83. Overexpression of Por2, which is not believed to have channel activity, can suppress the localization and transcription activation defects of the por1Δ mutant, suggesting that the regulatory role played by Por1 is separable from its channel function. Thus, our findings expand the positive roles of the yeast VDACs in carbon/energy stress signaling upstream of Snf1. Since AMPK/Snf1 and VDAC proteins are conserved in evolution, our findings in yeast may have implications for AMPK regulation in other eukaryotes, including humans. IMPORTANCE AMP-activated protein kinases (AMPKs) sense energy limitation and regulate transcription and metabolism in eukaryotes from yeast to humans. In mammals, AMPK responds to increased AMP-to-ATP or ADP-to-ATP ratios and is implicated in diabetes, heart disease, and cancer. Mitochondria produce ATP and are generally thought to downregulate AMPK. Indeed, some antidiabetic drugs activate AMPK by affecting mitochondrial respiration. ATP release from mitochondria is mediated by evolutionarily conserved proteins known as voltage-dependent anion channels (VDACs). One would therefore expect VDACs to serve as negative regulators of AMPK. However, our experiments in yeast reveal the existence of an opposite relationship. We previously showed that Saccharomyces cerevisiae VDACs Por1 and Por2 positively regulate AMPK/Snf1 catalytic activation. Here, we show that Por1 also plays an important role in promoting AMPK/Snf1 nuclear localization. Our counterintuitive findings could inform research in areas ranging from diabetes to cancer to fungal pathogenesis.
Collapse
|
17
|
Zhang P, Li H, Cheng J, Sun AY, Wang L, Mirchevska G, Calderone R, Li D. Respiratory stress in mitochondrial electron transport chain complex mutants of Candida albicans activates Snf1 kinase response. Fungal Genet Biol 2017; 111:73-84. [PMID: 29146491 DOI: 10.1016/j.fgb.2017.11.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 11/02/2017] [Accepted: 11/12/2017] [Indexed: 01/23/2023]
Abstract
We have previously established that mitochondrial Complex I (CI) mutants of Candida albicans display reduced oxygen consumption, decreased ATP production, and increased reactive oxidant species (ROS) during cell growth. Using the Seahorse XF96 analyzer, the energetic phenotypes of Electron Transport Chain (ETC) complex mutants are further characterized in the current study. The underlying regulation of energetic changes in these mutants is determined in glucose and non-glucose conditions when compared to wild type (WT) cells. In parental cells, the rate of oxygen consumption remains constant for 2.5 h following the addition of glucose, oligomycin, and 2-DG, but glycolysis is highly active upon the addition of glucose. In comparison, over the same time period, electron transport complex mutants (CI, CIII and CIV) have heightened activities in both oxygen consumption and glycolysis upon glucose uptake. We refer to the response in these mutants as an "explosive respiration," which we believe is caused by low energy levels and increased production of reactive oxygen species (ROS). Accompanying this phenotype in mutants is a hyperphosphorylation of Snf1p which in Saccharomyces cerevisiae serves as an energetic stress response protein kinase for maintaining energy homeostasis. Compared to wild type cells, a 2.9- to 4.4-fold hyperphosphorylation of Snf1p is observed in all ETC mutants in the presence of glucose. However, the explosive respiration and hyperphosphorylation of Snf1 can be partially reduced by the replacement of glucose with either glycerol or oleic acid in a mutant-specific manner. Furthermore, Inhibitors of glutathione synthesis (BSO) or anti-oxidants (mito-TEMPO) likewise confirmed an increase of Sfn1 phosphorylation in WT or mutant due to increased levels of ROS. Our data establish the role of the C. albicans Snf1 as a surveyor of cell energy and ROS levels. We interpret the "explosive respiration" as a failed attempt by ETC mutants to restore energy and ROS homeostasis via Snf1 activation. An inherently high OCR baseline in WT C. albicans with a background level of Snf1 activation is a prerequisite for success in quickly fermenting glucose.
Collapse
Affiliation(s)
- Pengyi Zhang
- Department of Microbiology & Immunology, Georgetown University Medical Center, Washington, DC 20057, USA; Sport Science Research Center, Shandong Sport University, Jinan 250102, China
| | - Hongbin Li
- Department of Microbiology & Immunology, Georgetown University Medical Center, Washington, DC 20057, USA; Department of Dermatology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650031, China
| | - Jie Cheng
- Department of Microbiology & Immunology, Georgetown University Medical Center, Washington, DC 20057, USA
| | - April Y Sun
- Department of Microbiology & Immunology, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Liqing Wang
- Department of Microbiology & Immunology, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Gordana Mirchevska
- Department of Microbiology & Immunology, Georgetown University Medical Center, Washington, DC 20057, USA; Institute of Microbiology and Parasitology, Medical Faculty University Sts Cyril and Methodius, 50 Divizija. No. 6, 1000 Skopje, Macedonia
| | - Richard Calderone
- Department of Microbiology & Immunology, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Dongmei Li
- Department of Microbiology & Immunology, Georgetown University Medical Center, Washington, DC 20057, USA.
| |
Collapse
|
18
|
Chronological Lifespan in Yeast Is Dependent on the Accumulation of Storage Carbohydrates Mediated by Yak1, Mck1 and Rim15 Kinases. PLoS Genet 2016; 12:e1006458. [PMID: 27923067 PMCID: PMC5140051 DOI: 10.1371/journal.pgen.1006458] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 11/03/2016] [Indexed: 12/19/2022] Open
Abstract
Upon starvation for glucose or any other macronutrient, yeast cells exit from the mitotic cell cycle and acquire a set of characteristics that are specific to quiescent cells to ensure longevity. Little is known about the molecular determinants that orchestrate quiescence entry and lifespan extension. Using starvation-specific gene reporters, we screened a subset of the yeast deletion library representing the genes encoding 'signaling' proteins. Apart from the previously characterised Rim15, Mck1 and Yak1 kinases, the SNF1/AMPK complex, the cell wall integrity pathway and a number of cell cycle regulators were shown to be necessary for proper quiescence establishment and for extension of chronological lifespan (CLS), suggesting that entry into quiescence requires the integration of starvation signals transmitted via multiple signaling pathways. The CLS of these signaling mutants, and those of the single, double and triple mutants of RIM15, YAK1 and MCK1 correlates well with the amount of storage carbohydrates but poorly with transition-phase cell cycle status. Combined removal of the glycogen and trehalose biosynthetic genes, especially GSY2 and TPS1, nearly abolishes the accumulation of storage carbohydrates and severely reduces CLS. Concurrent overexpression of GSY2 and TSL1 or supplementation of trehalose to the growth medium ameliorates the severe CLS defects displayed by the signaling mutants (rim15Δyak1Δ or rim15Δmck1Δ). Furthermore, we reveal that the levels of intracellular reactive oxygen species are cooperatively controlled by Yak1, Rim15 and Mck1, and the three kinases mediate the TOR1-regulated accumulation of storage carbohydrates and CLS extension. Our data support the hypothesis that metabolic reprogramming to accumulate energy stores and the activation of anti-oxidant defence systems are coordinated by Yak1, Rim15 and Mck1 kinases to ensure quiescence entry and lifespan extension in yeast.
Collapse
|
19
|
Hegedus DD, Gerbrandt K, Coutu C. The eukaryotic protein kinase superfamily of the necrotrophic fungal plant pathogen, Sclerotinia sclerotiorum. MOLECULAR PLANT PATHOLOGY 2016; 17:634-647. [PMID: 26395470 PMCID: PMC6638376 DOI: 10.1111/mpp.12321] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Protein kinases have been implicated in the regulation of many processes that guide pathogen development throughout the course of infection. A survey of the Sclerotinia sclerotiorum genome for genes encoding proteins containing the highly conserved eukaryotic protein kinase (ePK) domain, the largest protein kinase superfamily, revealed 92 S. sclerotiorum ePKs. This review examines the composition of the S. sclerotiorum ePKs based on conserved motifs within the ePK domain family, and relates this to orthologues found in other filamentous fungi and yeasts. The ePKs are also discussed in terms of their proposed role(s) in aspects of host pathogenesis, including the coordination of mycelial growth/development and deployment of pathogenicity determinants in response to environmental stimuli, nutrients and stress.
Collapse
Affiliation(s)
- Dwayne D Hegedus
- Agriculture and Agri-Food Canada, Saskatoon, SK, Canada, S7N 0X2
- Department of Food and Bioproduct Sciences, University of Saskatchewan, Saskatoon, SK, Canada, S7N 5A9
| | - Kelsey Gerbrandt
- Agriculture and Agri-Food Canada, Saskatoon, SK, Canada, S7N 0X2
| | - Cathy Coutu
- Agriculture and Agri-Food Canada, Saskatoon, SK, Canada, S7N 0X2
| |
Collapse
|
20
|
Deroover S, Ghillebert R, Broeckx T, Winderickx J, Rolland F. Trehalose-6-phosphate synthesis controls yeast gluconeogenesis downstream and independent of SNF1. FEMS Yeast Res 2016; 16:fow036. [PMID: 27189362 DOI: 10.1093/femsyr/fow036] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/08/2016] [Indexed: 11/12/2022] Open
Abstract
Trehalose-6-P (T6P), an intermediate of trehalose biosynthesis, was identified as an important regulator of yeast sugar metabolism and signaling. tps1Δ mutants, deficient in T6P synthesis (TPS), are unable to grow on rapidly fermentable medium with uncontrolled influx in glycolysis, depletion of ATP and accumulation of sugar phosphates. However, the exact molecular mechanisms involved are not fully understood. We show that SNF1 deletion restores the tps1Δ growth defect on glucose, suggesting that lack of TPS hampers inactivation of SNF1 or SNF1-regulated processes. In addition to alternative, non-fermentable carbon metabolism, SNF1 controls two major processes: respiration and gluconeogenesis. The tps1Δ defect appears to be specifically associated with deficient inhibition of gluconeogenesis, indicating more downstream effects. Consistently, Snf1 dephosphorylation and inactivation on glucose medium are not affected, as confirmed with an in vivo Snf1 activity reporter. Detailed analysis shows that gluconeogenic Pck1 and Fbp1 expression, protein levels and activity are not repressed upon glucose addition to tps1Δ cells, suggesting a link between the metabolic defect and persistent gluconeogenesis. While SNF1 is essential for induction of gluconeogenesis, T6P/TPS is required for inactivation of gluconeogenesis in the presence of glucose, downstream and independent of SNF1 activity and the Cat8 and Sip4 transcription factors.
Collapse
Affiliation(s)
- Sofie Deroover
- Laboratory of Molecular Plant Biology, Department of Biology, KU Leuven, Kasteelpark Arenberg 31, B-3001 Leuven, Belgium
| | - Ruben Ghillebert
- Laboratory of Functional Biology, Department of Biology, KU Leuven, B-3001 Leuven, Belgium
| | - Tom Broeckx
- Laboratory of Molecular Plant Biology, Department of Biology, KU Leuven, Kasteelpark Arenberg 31, B-3001 Leuven, Belgium
| | - Joris Winderickx
- Laboratory of Functional Biology, Department of Biology, KU Leuven, B-3001 Leuven, Belgium
| | - Filip Rolland
- Laboratory of Molecular Plant Biology, Department of Biology, KU Leuven, Kasteelpark Arenberg 31, B-3001 Leuven, Belgium
| |
Collapse
|
21
|
Akdoğan E, Tardu M, Garipler G, Baytek G, Kavakli İH, Dunn CD. Reduced Glucose Sensation Can Increase the Fitness of Saccharomyces cerevisiae Lacking Mitochondrial DNA. PLoS One 2016; 11:e0146511. [PMID: 26751567 PMCID: PMC4709096 DOI: 10.1371/journal.pone.0146511] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 12/19/2015] [Indexed: 12/12/2022] Open
Abstract
Damage to the mitochondrial genome (mtDNA) can lead to diseases for which there are no clearly effective treatments. Since mitochondrial function and biogenesis are controlled by the nutrient environment of the cell, it is possible that perturbation of conserved, nutrient-sensing pathways may successfully treat mitochondrial disease. We found that restricting glucose or otherwise reducing the activity of the protein kinase A (PKA) pathway can lead to improved proliferation of Saccharomyces cerevisiae cells lacking mtDNA and that the transcriptional response to mtDNA loss is reduced in cells with diminished PKA activity. We have excluded many pathways and proteins from being individually responsible for the benefits provided to cells lacking mtDNA by PKA inhibition, and we found that robust import of mitochondrial polytopic membrane proteins may be required in order for cells without mtDNA to receive the full benefits of PKA reduction. Finally, we have discovered that the transcription of genes involved in arginine biosynthesis and aromatic amino acid catabolism is altered after mtDNA damage. Our results highlight the potential importance of nutrient detection and availability on the outcome of mitochondrial dysfunction.
Collapse
Affiliation(s)
- Emel Akdoğan
- Department of Molecular Biology and Genetics, Koç University, Sarıyer, İstanbul, 34450, Turkey
| | - Mehmet Tardu
- Department of Chemical and Biological Engineering, Koç University, Sarıyer, İstanbul, 34450, Turkey
| | - Görkem Garipler
- Department of Molecular Biology and Genetics, Koç University, Sarıyer, İstanbul, 34450, Turkey
| | - Gülkız Baytek
- Department of Molecular Biology and Genetics, Koç University, Sarıyer, İstanbul, 34450, Turkey
| | - İ. Halil Kavakli
- Department of Molecular Biology and Genetics, Koç University, Sarıyer, İstanbul, 34450, Turkey
- Department of Chemical and Biological Engineering, Koç University, Sarıyer, İstanbul, 34450, Turkey
| | - Cory D. Dunn
- Department of Molecular Biology and Genetics, Koç University, Sarıyer, İstanbul, 34450, Turkey
| |
Collapse
|
22
|
Sanz P, Viana R, Garcia-Gimeno MA. AMPK in Yeast: The SNF1 (Sucrose Non-fermenting 1) Protein Kinase Complex. EXPERIENTIA SUPPLEMENTUM (2012) 2016; 107:353-374. [PMID: 27812987 DOI: 10.1007/978-3-319-43589-3_14] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
In yeast, SNF1 protein kinase is the orthologue of mammalian AMPK complex. It is a trimeric complex composed of Snf1 protein kinase (orthologue of AMPKα catalytic subunit), Snf4 (orthologue of AMPKγ regulatory subunit), and a member of the Gal83/Sip1/Sip2 family of proteins (orthologues of AMPKβ subunit) that act as scaffolds and also regulate the subcellular localization of the complex. In this chapter, we review the recent literature on the characteristics of SNF1 complex subunits, the structure and regulation of the activity of the SNF1 complex, its role at the level of transcriptional regulation of relevant target genes and also at the level of posttranslational modification of targeted substrates. We also review the crosstalk of SNF1 complex activity with other key protein kinase pathways such as cAMP-PKA, TORC1, and PAS kinase.
Collapse
Affiliation(s)
- Pascual Sanz
- Instituto de Biomedicina de Valencia, CSIC and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER-ISCiii), Jaime Roig 11, 46010, Valencia, Spain.
| | - Rosa Viana
- Instituto de Biomedicina de Valencia, CSIC and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER-ISCiii), Jaime Roig 11, 46010, Valencia, Spain
| | - Maria Adelaida Garcia-Gimeno
- Department of Biotecnología, Escuela Técnica Superior de Ingeniería Agronómica y del Medio Natural (ETSIAMN), Universitat Politécnica de Valencia, Valencia, Spain
| |
Collapse
|
23
|
Plant SnRK1 Kinases: Structure, Regulation, and Function. EXPERIENTIA SUPPLEMENTUM 2016; 107:403-438. [DOI: 10.1007/978-3-319-43589-3_17] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
24
|
Lubitz T, Welkenhuysen N, Shashkova S, Bendrioua L, Hohmann S, Klipp E, Krantz M. Network reconstruction and validation of the Snf1/AMPK pathway in baker's yeast based on a comprehensive literature review. NPJ Syst Biol Appl 2015; 1:15007. [PMID: 28725459 PMCID: PMC5516868 DOI: 10.1038/npjsba.2015.7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2015] [Revised: 06/19/2015] [Accepted: 07/14/2015] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND/OBJECTIVES The SNF1/AMPK protein kinase has a central role in energy homeostasis in eukaryotic cells. It is activated by energy depletion and stimulates processes leading to the production of ATP while it downregulates ATP-consuming processes. The yeast SNF1 complex is best known for its role in glucose derepression. METHODS We performed a network reconstruction of the Snf1 pathway based on a comprehensive literature review. The network was formalised in the rxncon language, and we used the rxncon toolbox for model validation and gap filling. RESULTS We present a machine-readable network definition that summarises the mechanistic knowledge of the Snf1 pathway. Furthermore, we used the known input/output relationships in the network to identify and fill gaps in the information transfer through the pathway, to produce a functional network model. Finally, we convert the functional network model into a rule-based model as a proof-of-principle. CONCLUSIONS The workflow presented here enables large scale reconstruction, validation and gap filling of signal transduction networks. It is analogous to but distinct from that established for metabolic networks. We demonstrate the workflow capabilities, and the direct link between the reconstruction and dynamic modelling, with the Snf1 network. This network is a distillation of the knowledge from all previous publications on the Snf1/AMPK pathway. The network is a knowledge resource for modellers and experimentalists alike, and a template for similar efforts in higher eukaryotes. Finally, we envisage the workflow as an instrumental tool for reconstruction of large signalling networks across Eukaryota.
Collapse
Affiliation(s)
- Timo Lubitz
- Theoretical Biophysics, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Niek Welkenhuysen
- Department of Chemistry and Molecular Biology, University of Gothenburg, Göteborg, Sweden
| | - Sviatlana Shashkova
- Department of Chemistry and Molecular Biology, University of Gothenburg, Göteborg, Sweden
| | - Loubna Bendrioua
- Department of Chemistry and Molecular Biology, University of Gothenburg, Göteborg, Sweden
| | - Stefan Hohmann
- Department of Chemistry and Molecular Biology, University of Gothenburg, Göteborg, Sweden
| | - Edda Klipp
- Theoretical Biophysics, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Marcus Krantz
- Theoretical Biophysics, Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
25
|
Nicastro R, Tripodi F, Gaggini M, Castoldi A, Reghellin V, Nonnis S, Tedeschi G, Coccetti P. Snf1 Phosphorylates Adenylate Cyclase and Negatively Regulates Protein Kinase A-dependent Transcription in Saccharomyces cerevisiae. J Biol Chem 2015; 290:24715-26. [PMID: 26309257 DOI: 10.1074/jbc.m115.658005] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Indexed: 11/06/2022] Open
Abstract
In eukaryotes, nutrient availability and metabolism are coordinated by sensing mechanisms and signaling pathways, which influence a broad set of cellular functions such as transcription and metabolic pathways to match environmental conditions. In yeast, PKA is activated in the presence of high glucose concentrations, favoring fast nutrient utilization, shutting down stress responses, and boosting growth. On the contrary, Snf1/AMPK is activated in the presence of low glucose or alternative carbon sources, thus promoting an energy saving program through transcriptional activation and phosphorylation of metabolic enzymes. The PKA and Snf1/AMPK pathways share common downstream targets. Moreover, PKA has been reported to negatively influence the activation of Snf1/AMPK. We report a new cross-talk mechanism with a Snf1-dependent regulation of the PKA pathway. We show that Snf1 and adenylate cyclase (Cyr1) interact in a nutrient-independent manner. Moreover, we identify Cyr1 as a Snf1 substrate and show that Snf1 activation state influences Cyr1 phosphorylation pattern, cAMP intracellular levels, and PKA-dependent transcription.
Collapse
Affiliation(s)
- Raffaele Nicastro
- From the Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126 Milan, Italy, SYSBIO, Centre of Systems Biology, 20126 Milan, Italy
| | - Farida Tripodi
- From the Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126 Milan, Italy, SYSBIO, Centre of Systems Biology, 20126 Milan, Italy
| | - Marco Gaggini
- From the Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126 Milan, Italy, SYSBIO, Centre of Systems Biology, 20126 Milan, Italy
| | - Andrea Castoldi
- From the Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126 Milan, Italy, SYSBIO, Centre of Systems Biology, 20126 Milan, Italy
| | - Veronica Reghellin
- From the Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126 Milan, Italy, SYSBIO, Centre of Systems Biology, 20126 Milan, Italy
| | - Simona Nonnis
- Dipartimento di Patologia Animale, Igiene e Sanità Pubblica Veterinaria-Biochemistry, University of Milano, 20133 Milan, Italy, and the Filarete Foundation, 20139 Milan, Italy
| | - Gabriella Tedeschi
- Dipartimento di Patologia Animale, Igiene e Sanità Pubblica Veterinaria-Biochemistry, University of Milano, 20133 Milan, Italy, and the Filarete Foundation, 20139 Milan, Italy
| | - Paola Coccetti
- From the Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126 Milan, Italy, SYSBIO, Centre of Systems Biology, 20126 Milan, Italy,
| |
Collapse
|
26
|
Liang J, Xu ZX, Ding Z, Lu Y, Yu Q, Werle KD, Zhou G, Park YY, Peng G, Gambello MJ, Mills GB. Myristoylation confers noncanonical AMPK functions in autophagy selectivity and mitochondrial surveillance. Nat Commun 2015; 6:7926. [PMID: 26272043 DOI: 10.1038/ncomms8926] [Citation(s) in RCA: 106] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 06/25/2015] [Indexed: 01/04/2023] Open
Abstract
AMP-activated protein kinase (AMPK) plays a central role in cellular energy sensing and bioenergetics. However, the role of AMPK in surveillance of mitochondrial damage and induction of mitophagy remains unclear. We demonstrate herein that AMPK is required for efficient mitophagy. Mitochondrial damage induces a physical association of AMPK with ATG16-ATG5-12 and an AMPK-dependent recruitment of the VPS34 and ATG16 complexes with the mitochondria. Targeting AMPK to the mitochondria is both sufficient to induce mitophagy and to promote cell survival. Recruitment of AMPK to the mitochondria requires N-myristoylation of AMPKβ by the type-I N-myristoyltransferase 1 (NMT1). Our data support a spatiotemporal model wherein recruitment of AMPK in association with components of the VPS34 and ATG16 complex to damaged mitochondria regulates selective mitophagy to maintain cancer cell viability.
Collapse
Affiliation(s)
- Jiyong Liang
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, Texas 77030, USA
| | - Zhi-Xiang Xu
- 1] Department of Medicine, Division of Hematology and Oncology, Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA [2] Department of Pathology, Key Laboratory of Pathobiology, Ministry of Education, Norman Bethune College of Medicine, Jilin University, Changchun 130021, China
| | - Zhiyong Ding
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, Texas 77030, USA
| | - Yiling Lu
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, Texas 77030, USA
| | - Qinghua Yu
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, Texas 77030, USA
| | - Kaitlin D Werle
- Department of Medicine, Division of Hematology and Oncology, Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| | - Ge Zhou
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, Texas 77030, USA
| | - Yun-Yong Park
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, Texas 77030, USA
| | - Guang Peng
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, Texas 77030, USA
| | - Michael J Gambello
- Division of Medical Genetics, Department of Pediatrics, University of Texas Health Science Center at Houston, Houston, Texas 77030, USA
| | - Gordon B Mills
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, Texas 77030, USA
| |
Collapse
|
27
|
Shashkova S, Welkenhuysen N, Hohmann S. Molecular communication: crosstalk between the Snf1 and other signaling pathways. FEMS Yeast Res 2015; 15:fov026. [DOI: 10.1093/femsyr/fov026] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/15/2015] [Indexed: 02/02/2023] Open
|
28
|
Conrad M, Schothorst J, Kankipati HN, Van Zeebroeck G, Rubio-Texeira M, Thevelein JM. Nutrient sensing and signaling in the yeast Saccharomyces cerevisiae. FEMS Microbiol Rev 2014; 38:254-99. [PMID: 24483210 PMCID: PMC4238866 DOI: 10.1111/1574-6976.12065] [Citation(s) in RCA: 453] [Impact Index Per Article: 41.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Revised: 12/23/2013] [Accepted: 01/22/2014] [Indexed: 02/04/2023] Open
Abstract
The yeast Saccharomyces cerevisiae has been a favorite organism for pioneering studies on nutrient-sensing and signaling mechanisms. Many specific nutrient responses have been elucidated in great detail. This has led to important new concepts and insight into nutrient-controlled cellular regulation. Major highlights include the central role of the Snf1 protein kinase in the glucose repression pathway, galactose induction, the discovery of a G-protein-coupled receptor system, and role of Ras in glucose-induced cAMP signaling, the role of the protein synthesis initiation machinery in general control of nitrogen metabolism, the cyclin-controlled protein kinase Pho85 in phosphate regulation, nitrogen catabolite repression and the nitrogen-sensing target of rapamycin pathway, and the discovery of transporter-like proteins acting as nutrient sensors. In addition, a number of cellular targets, like carbohydrate stores, stress tolerance, and ribosomal gene expression, are controlled by the presence of multiple nutrients. The protein kinase A signaling pathway plays a major role in this general nutrient response. It has led to the discovery of nutrient transceptors (transporter receptors) as nutrient sensors. Major shortcomings in our knowledge are the relationship between rapid and steady-state nutrient signaling, the role of metabolic intermediates in intracellular nutrient sensing, and the identity of the nutrient sensors controlling cellular growth.
Collapse
Affiliation(s)
- Michaela Conrad
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU LeuvenLeuven-Heverlee, Flanders, Belgium
- Department of Molecular Microbiology, VIBLeuven-Heverlee, Flanders, Belgium
| | - Joep Schothorst
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU LeuvenLeuven-Heverlee, Flanders, Belgium
- Department of Molecular Microbiology, VIBLeuven-Heverlee, Flanders, Belgium
| | - Harish Nag Kankipati
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU LeuvenLeuven-Heverlee, Flanders, Belgium
- Department of Molecular Microbiology, VIBLeuven-Heverlee, Flanders, Belgium
| | - Griet Van Zeebroeck
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU LeuvenLeuven-Heverlee, Flanders, Belgium
- Department of Molecular Microbiology, VIBLeuven-Heverlee, Flanders, Belgium
| | - Marta Rubio-Texeira
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU LeuvenLeuven-Heverlee, Flanders, Belgium
- Department of Molecular Microbiology, VIBLeuven-Heverlee, Flanders, Belgium
| | - Johan M Thevelein
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU LeuvenLeuven-Heverlee, Flanders, Belgium
- Department of Molecular Microbiology, VIBLeuven-Heverlee, Flanders, Belgium
| |
Collapse
|
29
|
Crozet P, Margalha L, Confraria A, Rodrigues A, Martinho C, Adamo M, Elias CA, Baena-González E. Mechanisms of regulation of SNF1/AMPK/SnRK1 protein kinases. FRONTIERS IN PLANT SCIENCE 2014; 5:190. [PMID: 24904600 PMCID: PMC4033248 DOI: 10.3389/fpls.2014.00190] [Citation(s) in RCA: 164] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Accepted: 04/22/2014] [Indexed: 05/17/2023]
Abstract
The SNF1 (sucrose non-fermenting 1)-related protein kinases 1 (SnRKs1) are the plant orthologs of the budding yeast SNF1 and mammalian AMPK (AMP-activated protein kinase). These evolutionarily conserved kinases are metabolic sensors that undergo activation in response to declining energy levels. Upon activation, SNF1/AMPK/SnRK1 kinases trigger a vast transcriptional and metabolic reprograming that restores energy homeostasis and promotes tolerance to adverse conditions, partly through an induction of catabolic processes and a general repression of anabolism. These kinases typically function as a heterotrimeric complex composed of two regulatory subunits, β and γ, and an α-catalytic subunit, which requires phosphorylation of a conserved activation loop residue for activity. Additionally, SNF1/AMPK/SnRK1 kinases are controlled by multiple mechanisms that have an impact on kinase activity, stability, and/or subcellular localization. Here we will review current knowledge on the regulation of SNF1/AMPK/SnRK1 by upstream components, post-translational modifications, various metabolites, hormones, and others, in an attempt to highlight both the commonalities of these essential eukaryotic kinases and the divergences that have evolved to cope with the particularities of each one of these systems.
Collapse
Affiliation(s)
| | | | | | - Américo Rodrigues
- Instituto Gulbenkian de CiênciaOeiras, Portugal
- Escola Superior de Turismo e Tecnologia do Mar de Peniche, Instituto Politécnico de LeiriaPeniche, Portugal
| | | | | | | | - Elena Baena-González
- Instituto Gulbenkian de CiênciaOeiras, Portugal
- *Correspondence: Elena Baena-González, Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, 2780-156 Oeiras, Portugal e-mail:
| |
Collapse
|
30
|
Abstract
For centuries yeast species have been popular hosts for classical biotechnology processes, such as baking, brewing, and wine making, and more recently for recombinant proteins production, thanks to the advantages of unicellular organisms (i.e., ease of genetic manipulation and rapid growth) together with the ability to perform eukaryotic posttranslational modifications. Moreover, yeast cells have been used for few decades as a tool for identifying the genes and pathways involved in basic cellular processes such as the cell cycle, aging, and stress response. In the budding yeast S. cerevisiae the Ras/cAMP/PKA pathway is directly involved in the regulation of metabolism, cell growth, stress resistance, and proliferation in response to the availability of nutrients and in the adaptation to glucose, controlling cytosolic cAMP levels and consequently the cAMP-dependent protein kinase (PKA) activity. Moreover, Ras signalling has been identified in several pathogenic yeasts as a key controller for virulence, due to its involvement in yeast morphogenesis. Nowadays, yeasts are still useful for Ras-like proteins investigation, both as model organisms and as a test tube to study variants of heterologous Ras-like proteins.
Collapse
Affiliation(s)
- Renata Tisi
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | | | | |
Collapse
|
31
|
Breker M, Gymrek M, Moldavski O, Schuldiner M. LoQAtE--Localization and Quantitation ATlas of the yeast proteomE. A new tool for multiparametric dissection of single-protein behavior in response to biological perturbations in yeast. Nucleic Acids Res 2013; 42:D726-30. [PMID: 24150937 PMCID: PMC3965041 DOI: 10.1093/nar/gkt933] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Living organisms change their proteome dramatically to sustain a stable internal milieu in fluctuating environments. To study the dynamics of proteins during stress, we measured the localization and abundance of the Saccharomyces cerevisiae proteome under various growth conditions and genetic backgrounds using the GFP collection. We created a database (DB) called ‘LoQAtE’ (Localizaiton and Quantitation Atlas of the yeast proteomE), available online at http://www.weizmann.ac.il/molgen/loqate/, to provide easy access to these data. Using LoQAtE DB, users can get a profile of changes for proteins of interest as well as querying advanced intersections by either abundance changes, primary localization or localization shifts over the tested conditions. Currently, the DB hosts information on 5330 yeast proteins under three external perturbations (DTT, H2O2 and nitrogen starvation) and two genetic mutations [in the chaperonin containing TCP1 (CCT) complex and in the proteasome]. Additional conditions will be uploaded regularly. The data demonstrate hundreds of localization and abundance changes, many of which were not detected at the level of mRNA. LoQAtE is designed to allow easy navigation for non-experts in high-content microscopy and data are available for download. These data should open up new perspectives on the significant role of proteins while combating external and internal fluctuations.
Collapse
Affiliation(s)
- Michal Breker
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel and Whitehead Institute for Biomedical Research, Nine Cambridge Center, Cambridge, MA 02142, USA
| | | | | | | |
Collapse
|
32
|
Yu J, Son H, Park AR, Lee SH, Choi GJ, Kim JC, Lee YW. Functional characterization of sucrose non-fermenting 1 protein kinase complex genes in the Ascomycete Fusarium graminearum. Curr Genet 2013; 60:35-47. [PMID: 24057127 DOI: 10.1007/s00294-013-0409-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Revised: 09/10/2013] [Accepted: 09/13/2013] [Indexed: 11/29/2022]
Abstract
Sucrose non-fermenting 1 (SNF1) protein kinase complex is a heterotrimer that functions in energy homeostasis in eukaryotes by regulating transcription of glucose-repressible genes. Our previous study revealed that SNF1 of the homothallic ascomycete fungus Fusarium graminearum plays important roles in vegetative growth, sexual development, and virulence. In this study, we further identified the components of the SNF1 complex in F. graminearum and characterized their functions. We found that the SNF1 complex in F. graminearum consists of one alpha subunit (FgSNF1), one beta subunit (FgGAL83), and one gamma subunit (FgSNF4). Deletion of Fggal83 and Fgsnf4 resulted in alleviated phenotype changes in vegetative growth and sexual development as compared to those of the Fgsnf1 deletion mutant. However, all of the single, double, and triple deletion mutants among Fgsnf1, Fggal83, and Fgsnf4 had similar levels of decreased virulence. In addition, there was no synergistic effect of the mutant (single, double, or triple deletions of SNF1 complex component genes) phenotypes except for sucrose utilization. In this study, we revealed that FgSNF1 is mainly required for SNF1 complex functions, and the other two SNF1 complex components have adjunctive roles with FgSNF1 in sexual development and vegetative growth but have a major role in virulence in F. graminearum.
Collapse
Affiliation(s)
- Jungheon Yu
- Department of Agricultural Biotechnology and Center for Fungal Pathogenesis, Seoul National University, Seoul, 151-921, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
33
|
Breker M, Gymrek M, Schuldiner M. A novel single-cell screening platform reveals proteome plasticity during yeast stress responses. ACTA ACUST UNITED AC 2013; 200:839-50. [PMID: 23509072 PMCID: PMC3601363 DOI: 10.1083/jcb.201301120] [Citation(s) in RCA: 169] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Unprecedented proteome plasticity in response to stress in yeast is revealed using a novel screening platform that allows tracking of protein localization and abundance at single-cell resolution. Uncovering the mechanisms underlying robust responses of cells to stress is crucial for our understanding of cellular physiology. Indeed, vast amounts of data have been collected on transcriptional responses in Saccharomyces cerevisiae. However, only a handful of pioneering studies describe the dynamics of proteins in response to external stimuli, despite the fact that regulation of protein levels and localization is an essential part of such responses. Here we characterized unprecedented proteome plasticity by systematically tracking the localization and abundance of 5,330 yeast proteins at single-cell resolution under three different stress conditions (DTT, H2O2, and nitrogen starvation) using the GFP-tagged yeast library. We uncovered a unique “fingerprint” of changes for each stress and elucidated a new response arsenal for adapting to radical environments. These include bet-hedging strategies, organelle rearrangement, and redistribution of protein localizations. All data are available for download through our online database, LOQATE (localization and quantitation atlas of yeast proteome).
Collapse
Affiliation(s)
- Michal Breker
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | | | | |
Collapse
|
34
|
Avila J, Gregory OG, Su D, Deeter TA, Chen S, Silva-Sanchez C, Xu S, Martin GB, Devarenne TP. The β-subunit of the SnRK1 complex is phosphorylated by the plant cell death suppressor Adi3. PLANT PHYSIOLOGY 2012; 159:1277-90. [PMID: 22573803 PMCID: PMC3387709 DOI: 10.1104/pp.112.198432] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2012] [Accepted: 05/08/2012] [Indexed: 05/17/2023]
Abstract
The protein kinase AvrPto-dependent Pto-interacting protein3 (Adi3) is a known suppressor of cell death, and loss of its function has been correlated with cell death induction during the tomato (Solanum lycopersicum) resistance response to its pathogen Pseudomonas syringae pv tomato. However, Adi3 downstream interactors that may play a role in cell death regulation have not been identified. We used a yeast two-hybrid screen to identify the plant SnRK1 (for Sucrose non-Fermenting-1-Related Protein Kinase1) protein as an Adi3-interacting protein. SnRK1 functions as a regulator of carbon metabolism and responses to biotic and abiotic stresses. SnRK1 exists in a heterotrimeric complex with a catalytic α-subunit (SnRK1), a substrate-interacting β-subunit, and a regulatory γ-subunit. Here, we show that Adi3 interacts with, but does not phosphorylate, the SnRK1 α-subunit. The ability of Adi3 to phosphorylate the four identified tomato β-subunits was also examined, and it was found that only the Galactose Metabolism83 (Gal83) β-subunit was phosphorylated by Adi3. This phosphorylation site on Gal83 was identified as serine-26 using a mutational approach and mass spectrometry. In vivo expression of Gal83 indicates that it contains multiple phosphorylation sites, one of which is serine-26. An active SnRK1 complex containing Gal83 as the β-subunit and sucrose nonfermenting4 as the γ-subunit was constructed to examine functional aspects of the Adi3 interaction with SnRK1 and Gal83. These assays revealed that Adi3 is capable of suppressing the kinase activity of the SnRK1 complex through Gal83 phosphorylation plus the interaction with SnRK1 and suggested that this function may be related to the cell death suppression activity of Adi3.
Collapse
Affiliation(s)
- Julian Avila
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843 (J.A., D.S., T.A.D., T.P.D.); Department of Biology, Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, Florida 32610 (S.C., C.S.-S.); Department of Plant Biology, Carnegie Institution for Science, Stanford, California 94305 (S.X.); Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, New York 14853 (G.B.M.); and Boyce Thompson Institute for Plant Research, Ithaca, New York 14853 (O.G.G., G.B.M.)
| | - Oliver G. Gregory
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843 (J.A., D.S., T.A.D., T.P.D.); Department of Biology, Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, Florida 32610 (S.C., C.S.-S.); Department of Plant Biology, Carnegie Institution for Science, Stanford, California 94305 (S.X.); Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, New York 14853 (G.B.M.); and Boyce Thompson Institute for Plant Research, Ithaca, New York 14853 (O.G.G., G.B.M.)
| | - Dongyin Su
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843 (J.A., D.S., T.A.D., T.P.D.); Department of Biology, Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, Florida 32610 (S.C., C.S.-S.); Department of Plant Biology, Carnegie Institution for Science, Stanford, California 94305 (S.X.); Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, New York 14853 (G.B.M.); and Boyce Thompson Institute for Plant Research, Ithaca, New York 14853 (O.G.G., G.B.M.)
| | - Taunya A. Deeter
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843 (J.A., D.S., T.A.D., T.P.D.); Department of Biology, Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, Florida 32610 (S.C., C.S.-S.); Department of Plant Biology, Carnegie Institution for Science, Stanford, California 94305 (S.X.); Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, New York 14853 (G.B.M.); and Boyce Thompson Institute for Plant Research, Ithaca, New York 14853 (O.G.G., G.B.M.)
| | - Sixue Chen
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843 (J.A., D.S., T.A.D., T.P.D.); Department of Biology, Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, Florida 32610 (S.C., C.S.-S.); Department of Plant Biology, Carnegie Institution for Science, Stanford, California 94305 (S.X.); Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, New York 14853 (G.B.M.); and Boyce Thompson Institute for Plant Research, Ithaca, New York 14853 (O.G.G., G.B.M.)
| | - Cecilia Silva-Sanchez
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843 (J.A., D.S., T.A.D., T.P.D.); Department of Biology, Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, Florida 32610 (S.C., C.S.-S.); Department of Plant Biology, Carnegie Institution for Science, Stanford, California 94305 (S.X.); Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, New York 14853 (G.B.M.); and Boyce Thompson Institute for Plant Research, Ithaca, New York 14853 (O.G.G., G.B.M.)
| | - Shouling Xu
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843 (J.A., D.S., T.A.D., T.P.D.); Department of Biology, Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, Florida 32610 (S.C., C.S.-S.); Department of Plant Biology, Carnegie Institution for Science, Stanford, California 94305 (S.X.); Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, New York 14853 (G.B.M.); and Boyce Thompson Institute for Plant Research, Ithaca, New York 14853 (O.G.G., G.B.M.)
| | - Gregory B. Martin
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843 (J.A., D.S., T.A.D., T.P.D.); Department of Biology, Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, Florida 32610 (S.C., C.S.-S.); Department of Plant Biology, Carnegie Institution for Science, Stanford, California 94305 (S.X.); Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, New York 14853 (G.B.M.); and Boyce Thompson Institute for Plant Research, Ithaca, New York 14853 (O.G.G., G.B.M.)
| | - Timothy P. Devarenne
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843 (J.A., D.S., T.A.D., T.P.D.); Department of Biology, Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, Florida 32610 (S.C., C.S.-S.); Department of Plant Biology, Carnegie Institution for Science, Stanford, California 94305 (S.X.); Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, New York 14853 (G.B.M.); and Boyce Thompson Institute for Plant Research, Ithaca, New York 14853 (O.G.G., G.B.M.)
| |
Collapse
|
35
|
Acetate regulation of spore formation is under the control of the Ras/cyclic AMP/protein kinase A pathway and carbon dioxide in Saccharomyces cerevisiae. EUKARYOTIC CELL 2012; 11:1021-32. [PMID: 22660623 DOI: 10.1128/ec.05240-11] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
In Saccharomyces cerevisiae, the Ras/cyclic AMP (cAMP)/protein kinase A (PKA) pathway is a nutrient-sensitive signaling cascade that regulates vegetative growth, carbohydrate metabolism, and entry into meiosis. How this pathway controls later steps of meiotic development is largely unknown. Here, we have analyzed the role of the Ras/cAMP/PKA pathway in spore formation by the meiosis-specific manipulation of Ras and PKA or by the disturbance of cAMP production. We found that the regulation of spore formation by acetate takes place after commitment to meiosis and depends on PKA and appropriate A kinase activation by Ras/Cyr1 adenylyl cyclase but not by activation through the Gpa2/Gpr1 branch. We further discovered that spore formation is regulated by carbon dioxide/bicarbonate, and an analysis of mutants defective in acetate transport (ady2Δ) or carbonic anhydrase (nce103Δ) provided evidence that these metabolites are involved in connecting the nutritional state of the meiotic cell to spore number control. Finally, we observed that the potential PKA target Ady1 is required for the proper localization of the meiotic plaque proteins Mpc70 and Spo74 at spindle pole bodies and for the ability of these proteins to initiate spore formation. Overall, our investigation suggests that the Ras/cAMP/PKA pathway plays a crucial role in the regulation of spore formation by acetate and indicates that the control of meiotic development by this signaling cascade takes places at several steps and is more complex than previously anticipated.
Collapse
|
36
|
|
37
|
Castermans D, Somers I, Kriel J, Louwet W, Wera S, Versele M, Janssens V, Thevelein JM. Glucose-induced posttranslational activation of protein phosphatases PP2A and PP1 in yeast. Cell Res 2012; 22:1058-77. [PMID: 22290422 PMCID: PMC3367521 DOI: 10.1038/cr.2012.20] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The protein phosphatases PP2A and PP1 are major regulators of a variety of cellular processes in yeast and other eukaryotes. Here, we reveal that both enzymes are direct targets of glucose sensing. Addition of glucose to glucose-deprived yeast cells triggered rapid posttranslational activation of both PP2A and PP1. Glucose activation of PP2A is controlled by regulatory subunits Rts1, Cdc55, Rrd1 and Rrd2. It is associated with rapid carboxymethylation of the catalytic subunits, which is necessary but not sufficient for activation. Glucose activation of PP1 was fully dependent on regulatory subunits Reg1 and Shp1. Absence of Gac1, Glc8, Reg2 or Red1 partially reduced activation while Pig1 and Pig2 inhibited activation. Full activation of PP2A and PP1 was also dependent on subunits classically considered to belong to the other phosphatase. PP2A activation was dependent on PP1 subunits Reg1 and Shp1 while PP1 activation was dependent on PP2A subunit Rts1. Rts1 interacted with both Pph21 and Glc7 under different conditions and these interactions were Reg1 dependent. Reg1-Glc7 interaction is responsible for PP1 involvement in the main glucose repression pathway and we show that deletion of Shp1 also causes strong derepression of the invertase gene SUC2. Deletion of the PP2A subunits Pph21 and Pph22, Rrd1 and Rrd2, specifically enhanced the derepression level of SUC2, indicating that PP2A counteracts SUC2 derepression. Interestingly, the effect of the regulatory subunit Rts1 was consistent with its role as a subunit of both PP2A and PP1, affecting derepression and repression of SUC2, respectively. We also show that abolished phosphatase activation, except by reg1Δ, does not completely block Snf1 dephosphorylation after addition of glucose. Finally, we show that glucose activation of the cAMP-PKA (protein kinase A) pathway is required for glucose activation of both PP2A and PP1. Our results provide novel insight into the complex regulatory role of these two major protein phosphatases in glucose regulation.
Collapse
Affiliation(s)
- Dries Castermans
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KULeuven, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Protein kinase A contributes to the negative control of Snf1 protein kinase in Saccharomyces cerevisiae. EUKARYOTIC CELL 2011; 11:119-28. [PMID: 22140226 DOI: 10.1128/ec.05061-11] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Snf1 protein kinase regulates responses to glucose limitation and other stresses. Snf1 activation requires phosphorylation of its T-loop threonine by partially redundant upstream kinases (Sak1, Tos3, and Elm1). Under favorable conditions, Snf1 is turned off by Reg1-Glc7 protein phosphatase. The reg1 mutation causes increased Snf1 activation and slow growth. To identify new components of the Snf1 pathway, we searched for mutations that, like snf1, suppress reg1 for the slow-growth phenotype. In addition to mutations in genes encoding known pathway components (SNF1, SNF4, and SAK1), we recovered "fast" mutations, designated fst1 and fst2. Unusual morphology of the mutants in the Σ1278b strains employed here helped us identify fst1 and fst2 as mutations in the RasGAP genes IRA1 and IRA2. Cells lacking Ira1, Ira2, or Bcy1, the negative regulatory subunit of cyclic AMP (cAMP)-dependent protein kinase A (PKA), exhibited reduced Snf1 pathway activation. Conversely, Snf1 activation was elevated in cells lacking the Gpr1 sugar receptor, which contributes to PKA signaling. We show that the Snf1-activating kinase Sak1 is phosphorylated in vivo on a conserved serine (Ser1074) within an ideal PKA motif. However, this phosphorylation alone appears to play only a modest role in regulation, and Sak1 is not the only relevant target of the PKA pathway. Collectively, our results suggest that PKA, which integrates multiple regulatory inputs, could contribute to Snf1 regulation under various conditions via a complex mechanism. Our results also support the view that, like its mammalian counterpart, AMP-activated protein kinase (AMPK), yeast Snf1 participates in metabolic checkpoint control that coordinates growth with nutrient availability.
Collapse
|
39
|
Reg1 protein regulates phosphorylation of all three Snf1 isoforms but preferentially associates with the Gal83 isoform. EUKARYOTIC CELL 2011; 10:1628-36. [PMID: 22002657 DOI: 10.1128/ec.05176-11] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The phosphorylation status of the Snf1 activation loop threonine is determined by changes in the rate of its dephosphorylation, catalyzed by the yeast PP1 phosphatase Glc7 in complex with the Reg1 protein. Previous studies have shown that Reg1 can associate with both Snf1 and Glc7, suggesting substrate binding as a mechanism for Reg1-mediated targeting of Glc7. In this study, the association of Reg1 with the three Snf1 isoforms was measured by two-hybrid analysis and coimmunoprecipitation. We found that Reg1 association with Snf1 occurred almost exclusively with the Gal83 isoform of the Snf1 complex. Nonetheless, Reg1 plays an important role in determining the phosphorylation status of all three Snf1 isoforms. We found that the rate of dephosphorylation for isoforms of Snf1 did not correlate with the amount of associated Reg1 protein. Functional chimeric β subunits containing residues from Gal83 and Sip2 were used to map the residues needed to promote Reg1 association with the N-terminal 150 residues of Gal83. The Gal83 isoform of Snf1 is the only isoform capable of nuclear localization. A Gal83-Sip2 chimera containing the first 150 residues of Gal83 was able to associate with the Reg1 protein but did not localize to the nucleus. Therefore, nuclear localization is not required for Reg1 association. Taken together, these data indicate that the ability of Reg1 to promote the dephosphorylation of Snf1 is not directly related to the strength of its association with the Snf1 complex.
Collapse
|
40
|
Türkel S, Kaplan G, Farabaugh PJ. Glucose signalling pathway controls the programmed ribosomal frameshift efficiency in retroviral-like element Ty3 in Saccharomyces cerevisiae. Yeast 2011; 28:799-808. [PMID: 21989811 PMCID: PMC7169698 DOI: 10.1002/yea.1906] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2011] [Revised: 08/13/2011] [Accepted: 08/30/2011] [Indexed: 12/22/2022] Open
Abstract
Ty3 elements of S. cerevisiae contain two overlapping coding regions, GAG3 and POL3, which are functional homologues of retroviral gag and pol genes, respectively. Pol3 is translated as a Gag3‐Pol3 fusion protein dependent on a +1 programmed frameshift at a site with the overlap between the two genes. We show that the Ty3 frameshift frequency varies up to 10‐fold in S. cerevisiae cells depending on carbon source. Frameshift efficiency is significantly lower in cells growing on glucose as carbon source than in cells growing on poor alternative carbon sources (glycerol/lactate or galactose). Our results indicate that Ty3 programmed ribosomal frameshift efficiency in response to glucose signalling requires two protein kinases: Snf1p and cAMP‐dependent protein kinase A (PKA). Increased frameshifting on alternative carbon sources also appears to require cytoplasmic localization of Snf1p, mediated by the Sip2p protein. In addition to the two required protein kinases, our results implicate that Stm1p, a ribosome‐associated protein involved in nutrient sensing, is essential for the carbon source‐dependent regulation of Ty3 frameshifting. These data indicate that Ty3 programmed ribosomal frameshift is not a constitutive process but that it is regulated in response to the glucose‐signalling pathway. Copyright © 2011 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Sezai Türkel
- Uludag University, Faculty of Arts and Sciences, Department of Biology, 16059-, Bursa, Turkey.
| | | | | |
Collapse
|
41
|
Ghillebert R, Swinnen E, Wen J, Vandesteene L, Ramon M, Norga K, Rolland F, Winderickx J. The AMPK/SNF1/SnRK1 fuel gauge and energy regulator: structure, function and regulation. FEBS J 2011; 278:3978-90. [PMID: 21883929 DOI: 10.1111/j.1742-4658.2011.08315.x] [Citation(s) in RCA: 145] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
All life forms on earth require a continuous input and monitoring of carbon and energy supplies. The AMP-activated kinase (AMPK)/sucrose non-fermenting1 (SNF1)/Snf1-related kinase1 (SnRK1) protein kinases are evolutionarily conserved metabolic sensors found in all eukaryotic organisms from simple unicellular fungi (yeast SNF1) to animals (AMPK) and plants (SnRK1). Activated by starvation and energy-depleting stress conditions, they enable energy homeostasis and survival by up-regulating energy-conserving and energy-producing catabolic processes, and by limiting energy-consuming anabolic metabolism. In addition, they control normal growth and development as well as metabolic homeostasis at the organismal level. As such, the AMPK/SNF1/SnRK1 kinases act in concert with other central signaling components to control carbohydrate uptake and metabolism, fatty acid and lipid biosynthesis and the storage of carbon energy reserves. Moreover, they have a tremendous impact on developmental processes that are triggered by environmental changes such as nutrient depletion or stress. Although intensive research by many groups has partly unveiled the factors that regulate AMPK/SNF1/SnRK1 kinase activity as well as the pathways and substrates they control, several fundamental issues still await to be clarified. In this review, we will highlight these issues and focus on the structure, function and regulation of the AMPK/SNF1/SnRK1 kinases.
Collapse
Affiliation(s)
- Ruben Ghillebert
- Department of Biology, Laboratory for Functional Biology, Katholieke Universiteit Leuven, Heverlee, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Aoh QL, Graves LM, Duncan MC. Glucose regulates clathrin adaptors at the trans-Golgi network and endosomes. Mol Biol Cell 2011; 22:3671-83. [PMID: 21832155 PMCID: PMC3183021 DOI: 10.1091/mbc.e11-04-0309] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Traffic at the trans-Golgi network (TGN) and endosomes is regulated by glucose via an unknown mechanism that depends on protein kinase A (PKA). TGN–endosomal clathrin adaptors exhibit specific responses to glucose starvation that likely are coordinated with other cell behaviors regulated by PKA. Glucose is a rich source of energy and the raw material for biomass increase. Many eukaryotic cells remodel their physiology in the presence and absence of glucose. The yeast Saccharomyces cerevisiae undergoes changes in transcription, translation, metabolism, and cell polarity in response to glucose availability. Upon glucose starvation, translation initiation and cell polarity are immediately inhibited, and then gradually recover. In this paper, we provide evidence that, as in cell polarity and translation, traffic at the trans-Golgi network (TGN) and endosomes is regulated by glucose via an unknown mechanism that depends on protein kinase A (PKA). Upon glucose withdrawal, clathrin adaptors exhibit a biphasic change in localization: they initially delocalize from the membrane within minutes and later partially recover onto membranes. Additionally, the removal of glucose induces changes in posttranslational modifications of adaptors. Ras and Gpr1 signaling pathways, which converge on PKA, are required for changes in adaptor localization and changes in posttranslational modifications. Acute inhibition of PKA demonstrates that inhibition of PKA prior to glucose withdrawal prevents several adaptor responses to starvation. This study demonstrates that PKA activity prior to glucose starvation primes membrane traffic at the TGN and endosomes in response to glucose starvation.
Collapse
Affiliation(s)
- Quyen L Aoh
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | | | | |
Collapse
|
43
|
Momcilovic M, Carlson M. Alterations at dispersed sites cause phosphorylation and activation of SNF1 protein kinase during growth on high glucose. J Biol Chem 2011; 286:23544-51. [PMID: 21561858 DOI: 10.1074/jbc.m111.244111] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The SNF1/AMP-activated protein kinases are central energy regulators in eukaryotes. SNF1 of Saccharomyces cerevisiae is inhibited during growth on high levels of glucose and is activated in response to glucose depletion and other stresses. Activation entails phosphorylation of Thr(210) on the activation loop of the catalytic subunit Snf1 by Snf1-activating kinases. We have used mutational analysis to identify Snf1 residues that are important for regulation. Alteration of Tyr(106) in the αC helix or Leu(198) adjacent to the Asp-Phe-Gly motif on the activation loop relieved glucose inhibition of phosphorylation, resulting in phosphorylation of Thr(210) during growth on high levels of glucose. Substitution of Arg for Gly(53), at the N terminus of the kinase domain, increased activation on both high and low glucose. Alteration of the ubiquitin-associated domain revealed a modest autoinhibitory effect. Previous studies identified alterations of the Gal83 (β) and Snf4 (γ) subunits that relieve glucose inhibition, and we have here identified a distinct set of Gal83 residues that are required. Together, these results indicate that alterations at dispersed sites within each subunit of SNF1 cause phosphorylation of the kinase during growth on high levels of glucose. These findings suggest that the conformation of the SNF1 complex is crucial to maintenance of the inactive state during growth on high glucose and that the default state for SNF1 is one in which Thr(210) is phosphorylated and the kinase is active.
Collapse
Affiliation(s)
- Milica Momcilovic
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, New York 10032, USA
| | | |
Collapse
|
44
|
Fang L, Hou X, Lee LYC, Liu L, Yan X, Yu H. AtPV42a and AtPV42b redundantly regulate reproductive development in Arabidopsis thaliana. PLoS One 2011; 6:e19033. [PMID: 21533063 PMCID: PMC3080427 DOI: 10.1371/journal.pone.0019033] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2011] [Accepted: 03/15/2011] [Indexed: 01/20/2023] Open
Abstract
Background The conserved SNF1/AMPK/SnRK1 complexes are global regulators of metabolic responses in eukaryotes and play a key role in the control of energy balance. Although α-type subunits of the SnRK1 complex have been characterized in several plant species, the biological function of β-type and γ-type subunits remains largely unknown. Here, we characterized AtPV42a and AtPV42b, the two homologous genes in Arabidopsis, which encode cystathionine-β-synthase (CBS) domain-containing proteins that belong to the PV42 class of γ-type subunits of the plant SnRK1 complexes. Methodology/Principal Findings Real-time polymerase chain reaction was performed to examine the expression of AtPV42a and AtPV42b in various tissues. Transgenic plants that expressed artificial microRNAs targeting these two genes were created. Reproductive organ development and fertilization in these plants were examined by various approaches, including histological analysis, scanning electron microscopy, transmission electron microscopy, and phenotypic analyses of reciprocal crosses between wild-type and transgenic plants. We found that AtPV42a and AtPV42b were expressed in various tissues during different developmental stages. Transgenic plants where AtPV42a and AtPV42b were simultaneously silenced developed shorter siliques and reduced seed sets. Such low fertility phenotype resulted from deregulation of late stamen development and impairment of pollen tube attraction conferred by the female gametophyte. Conclusions Our results demonstrate that AtPV42a and AtPV42b play redundant roles in regulating male gametogenesis and pollen tube guidance, indicating that the Arabidopsis SnRK1 complexes might be involved in the control of reproductive development.
Collapse
Affiliation(s)
- Lei Fang
- Department of Biological Sciences and Temasek Life Sciences Laboratory, National University of Singapore, Singapore, Republic of Singapore
| | - Xingliang Hou
- Department of Biological Sciences and Temasek Life Sciences Laboratory, National University of Singapore, Singapore, Republic of Singapore
| | - Li Yen Candy Lee
- Department of Biological Sciences and Temasek Life Sciences Laboratory, National University of Singapore, Singapore, Republic of Singapore
| | - Lu Liu
- Department of Biological Sciences and Temasek Life Sciences Laboratory, National University of Singapore, Singapore, Republic of Singapore
| | - Xiaojing Yan
- Department of Biological Sciences and Temasek Life Sciences Laboratory, National University of Singapore, Singapore, Republic of Singapore
| | - Hao Yu
- Department of Biological Sciences and Temasek Life Sciences Laboratory, National University of Singapore, Singapore, Republic of Singapore
- * E-mail:
| |
Collapse
|
45
|
Unraveling condition-dependent networks of transcription factors that control metabolic pathway activity in yeast. Mol Syst Biol 2011; 6:432. [PMID: 21119627 PMCID: PMC3010106 DOI: 10.1038/msb.2010.91] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2010] [Accepted: 10/02/2010] [Indexed: 01/17/2023] Open
Abstract
While typically many expression levels change in transcription factor mutants, only few of these changes lead to functional changes. The predictive capability of expression and DNA binding data for such functional changes in metabolism is very limited. Large-scale 13C-flux data reveal the condition specificity of transcriptional control of metabolic function. Transcription control in yeast focuses on the switch between respiration and fermentation. Follow-up modeling on the basis of transcriptomics and proteomics data suggest the newly discovered Gcn4 control of respiration to be mediated via PKA and Snf1.
Effective control and modulation of cellular behavior is of paramount importance in medicine (Kreeger and Lauffenburger, 2010) and biotechnology (Haynes and Silver, 2009), and requires profound understanding of control mechanisms. In this study, we aim to elucidate the extent to which transcription factors control the operation of yeast metabolism. As a quantitative readout of metabolic function, we monitored the traffic of small molecules through various pathways of central metabolism by 13C-flux analysis (Sauer, 2006). The choosen growth conditions represent two different regulatory states of reduced (galactose) and maximal carbon source repression (glucose), as well as a different nitrogen metabolism and two common, permanent stress conditions. Depending on the growth condition, between 7 and 13% of the deleted transcription factors altered the determined flux ratios (Figure 3). Of the six quantified flux ratios, only the glycolysis/pentose phosphate pathway split, and the convergent ratio of anaplerosis and TCA cycle were controlled by the deleted transcription factors. Thus, we concluded that 23 transcription factors control flux distributions under at least one of the tested growth conditions, leading to 42 condition-dependent interactions of transcription factors with metabolic pathway activity (Figure 4). With two exceptions, all other identified transcription factors interactions controlled the TCA cycle flux. This condition-specific active control of metabolic function could not have been predicted from DNA binding and expression data; that is, 26.1% false negatives, 48.6% true positives. Of the 23 transcription factors that controlled TCA cycle flux distributions under the tested conditions, only Bas1, Gcn4, Gcr2 and Pho2 exerted control under more than one condition. We identified Cit1, Mdh1 and Idh1/2 with a proteomics approach as the relevant target enzyme that increase the TCA cycle flux. Next, we asked whether Bas1, Gcr2, Gcn4 and Pho2 act directly on the TCA cycle or mediate their effect indirectly. Based on the transcriptomics data, the pattern of differentially activated transcription factors inferred by the differential expression of their target genes suggested reduced glucose repression in all four mutants as the common mechanism. Starting from the currently largest set of 13C-based flux distributions, we identified networks of individual transcription factors that control metabolic pathway activity. These networks of active metabolic control have the following properties. First, they are highly condition dependent, as at most four transcription factors control the same metabolic flux distribution under more than one growth conditions. Second, they focus almost exclusively on the TCA cycle, thereby controlling the switch between respiratory and fermentative metabolism. Third, with four to 14 active transcription factors, they are small compared with gene regulation networks that were obtained from expression and DNA binding data. For the metabolic network studied here, robustness is also apparent from the fact that upregulated TCA cycle fluxes were not sufficient to achieve full respiratory metabolism; that is, absent or low ethanol formation. Several explanations could potentially explain the observed robustness. The most likely explanation is that environmental signals might be transmitted by different signaling pathways to several transcription factors, whose orchestrated action on multiple target genes is necessary to achieve a functional flux response. This hypothesis would explain why several transcription factors exert flux effects on the same pathway, but each flux effect is relatively small, as further, coordinated manipulations would be necessary to further improve the respiratory flux. Our findings demonstrate the importance of identifying and quantifying the extent to which regulatory effectors alter cellular function. Which transcription factors control the distribution of metabolic fluxes under a given condition? We address this question by systematically quantifying metabolic fluxes in 119 transcription factor deletion mutants of Saccharomyces cerevisiae under five growth conditions. While most knockouts did not affect fluxes, we identified 42 condition-dependent interactions that were mediated by a total of 23 transcription factors that control almost exclusively the cellular decision between respiration and fermentation. This relatively sparse, condition-specific network of active metabolic control contrasts with the much larger gene regulation network inferred from expression and DNA binding data. Based on protein and transcript analyses in key mutants, we identified three enzymes in the tricarboxylic acid cycle as the key targets of this transcriptional control. For the transcription factor Gcn4, we demonstrate that this control is mediated through the PKA and Snf1 signaling cascade. The discrepancy between flux response predictions, based on the known regulatory network architecture and our functional 13C-data, demonstrates the importance of identifying and quantifying the extent to which regulatory effectors alter cellular functions.
Collapse
|
46
|
Tzima AK, Paplomatas EJ, Rauyaree P, Ospina-Giraldo MD, Kang S. VdSNF1, the sucrose nonfermenting protein kinase gene of Verticillium dahliae, is required for virulence and expression of genes involved in cell-wall degradation. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2011; 24:129-142. [PMID: 20839958 DOI: 10.1094/mpmi-09-09-0217] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Verticillium dahliae is a soilborne fungus causing vascular wilt in a diverse array of plant species. Its virulence has been attributed, among other factors, to the activity of hydrolytic cell wall-degrading enzymes (CWDE). The sucrose nonfermenting 1 gene (VdSNF1), which regulates catabolic repression, was disrupted in V. dahliae tomato race 1. Expression of CWDE in the resulting mutants was not induced in inductive medium and in simulated xylem fluid medium. Growth of the mutants was significantly reduced when grown with pectin or galactose as a carbon source whereas, with glucose, sucrose, and xylose, they grew similarly to wild-type and ectopic transformants. The mutants were severely impaired in virulence on tomato and eggplant (final disease severity reduced by an average of 87%). Microscopic observation of the infection behavior of a green fluorescent protein (gfp)-labeled VdSNF1 mutant (70ΔSF-gfp1) showed that it was defective in initial colonization of roots. Cross sections of tomato stem at the cotyledonary level showed that 70ΔSF-gfp1 colonized xylem vessels considerably less than the wild-type strain. The wild-type strain heavily colonized xylem vessels and adjacent parenchyma cells. Quantification of fungal biomass in plant tissues further confirmed reduced colonization of roots, stems, and cotyledons by 70ΔSF-gfp1 relative to that by the wild-type strain.
Collapse
Affiliation(s)
- Aliki K Tzima
- Laboratory of Plant Pathology, Agricultural University of Athens, 75 Iera Odos, 11855 Athens, Greece.
| | | | | | | | | |
Collapse
|
47
|
Nadal M, Garcia-Pedrajas MD, Gold SE. The snf1 gene of Ustilago maydis acts as a dual regulator of cell wall degrading enzymes. PHYTOPATHOLOGY 2010; 100:1364-72. [PMID: 21062173 DOI: 10.1094/phyto-01-10-0011] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Many fungal plant pathogens are known to produce extracellular enzymes that degrade cell wall elements required for host penetration and infection. Due to gene redundancy, single gene deletions generally do not address the importance of these enzymes in pathogenicity. Cell wall degrading enzymes (CWDEs) in fungi are often subject to carbon catabolite repression at the transcriptional level such that, when glucose is available, CWDE-encoding genes, along with many other genes, are repressed. In Saccharomyces cerevisiae, one of the main players controlling this process is SNF1, which encodes a protein kinase. In this yeast, Snf1p is required to release glucose repression when this sugar is depleted from the growth medium. We have employed a reverse genetic approach to explore the role of the SNF1 ortholog as a potential regulator of CWDE gene expression in Ustilago maydis. We identified U. maydis snf1 and deleted it from the fungal genome. Consistent with our hypothesis, the relative expression of an endoglucanase and a pectinase was higher in the wild type than in the Δsnf1 mutant strain when glucose was depleted from the growth medium. However, when cells were grown in derepressive conditions, the relative expression of two xylanase genes was unexpectedly higher in the Δsnf1 strain than in the wild type, indicating that, in this case, snf1 negatively regulated the expression of these genes. Additionally, we found that, contrary to several other fungal species, U. maydis Snf1 was not required for utilization of alternative carbon sources. Also, unlike in ascomycete plant pathogens, deletion of snf1 did not profoundly affect virulence in U. maydis.
Collapse
Affiliation(s)
- Marina Nadal
- Department of Plant Pathology, University of Georgia, Athens 30602-7274, USA
| | | | | |
Collapse
|
48
|
Hernández-López MJ, Prieto JA, Randez-Gil F. Isolation and characterization of the carbon catabolite-derepressing protein kinase Snf1 from the stress tolerant yeast Torulaspora delbrueckii. Yeast 2010; 27:1061-9. [PMID: 20824888 DOI: 10.1002/yea.1810] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2010] [Accepted: 06/25/2010] [Indexed: 11/09/2022] Open
Abstract
We cloned a genomic DNA fragment of the yeast Torulaspora delbrueckii by complementation of a Saccharomyces cerevisiae snf1Δ mutant strain. DNA sequence analysis revealed that the fragment contained a complete open reading frame (ORF), which shares a high similarity with the S. cerevisiae energy sensor protein kinase Snf1. The cloned TdSNF1 gene was able to restore growth of the S. cerevisiae snf1Δ mutant strain on media containing nonfermentable carbon sources. Furthermore, cells of the Tdsnf1Δ mutant were unable to proliferate under nonfermenting conditions. Finally, protein domain analysis showed that TdSnf1p contains a typical catalytic protein kinase domain (positions 41-293), which is also present in other Snf1p homologues. Within this region we identified a protein kinase ATP-binding region (positions 48-71) and a consensus Ser/Thr protein kinase active site (positions 160-172).
Collapse
Affiliation(s)
- María José Hernández-López
- Department of Biotechnology, Instituto de Agroquímica y Tecnología de los Alimentos, Consejo Superior de Investigaciones Científicas, PO Box 73, E-46100-Burjassot, Valencia, Spain.
| | | | | |
Collapse
|
49
|
Zhang J, Olsson L, Nielsen J. The β-subunits of the Snf1 kinase in Saccharomyces cerevisiae, Gal83 and Sip2, but not Sip1, are redundant in glucose derepression and regulation of sterol biosynthesis. Mol Microbiol 2010; 77:371-83. [DOI: 10.1111/j.1365-2958.2010.07209.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
50
|
Kümmel A, Ewald JC, Fendt SM, Jol SJ, Picotti P, Aebersold R, Sauer U, Zamboni N, Heinemann M. Differential glucose repression in common yeast strains in response to HXK2 deletion. FEMS Yeast Res 2010; 10:322-32. [PMID: 20199578 DOI: 10.1111/j.1567-1364.2010.00609.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Under aerobic, high glucose conditions, Saccharomyces cerevisiae exhibits glucose repression and thus a predominantly fermentative metabolism. Here, we show that two commonly used prototrophic representatives of the CEN.PK and S288C strain families respond differently to deletion of the hexokinase 2 (HXK2) - a key player in glucose repression: In CEN.PK, growth rate collapses and derepression occurs on the physiological level, while the S288C descendant FY4 Deltahxk2 still grows like the parent strain and shows a fully repressed metabolism. A CEN.PK Deltahxk2 strain with a repaired adenylate cyclase gene CYR1 maintains repression but not growth rate. A comparison of the parent strain's physiology, metabolome, and proteome revealed higher metabolic rates, identical biomass, and byproduct yields, suggesting a lower Snf1 activity and a higher protein kinase A (PKA) activity in CEN.PK. This study highlights the importance of the genetic background in the processes of glucose signaling and regulation, contributes novel evidence on the overlap between the classical glucose repression pathway and the cAMP/PKA signaling pathway, and might have the potential to resolve some of the conflicting findings existing in the field.
Collapse
Affiliation(s)
- Anne Kümmel
- Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
| | | | | | | | | | | | | | | | | |
Collapse
|