1
|
Prabhakar AT, James CD, Youssef AH, Hossain RA, Hill RD, Bristol ML, Wang X, Dubey A, Karimi E, Morgan IM. A human papillomavirus 16 E2-TopBP1 dependent SIRT1-p300 acetylation switch regulates mitotic viral and human protein levels and activates the DNA damage response. mBio 2024; 15:e0067624. [PMID: 38722185 PMCID: PMC11237546 DOI: 10.1128/mbio.00676-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 03/27/2024] [Indexed: 05/21/2024] Open
Abstract
An interaction between human papillomavirus 16 (HPV16) E2 and the cellular proteins TopBP1 and BRD4 is required for E2 plasmid segregation function. The E2-TopBP1 interaction promotes increased mitotic E2 protein levels in U2OS and N/Tert-1 cells, as well as in human foreskin keratinocytes immortalized by HPV16 (HFK + HPV16). SIRT1 deacetylation reduces E2 protein stability and here we demonstrate that increased E2 acetylation occurs during mitosis in a TopBP1 interacting-dependent manner, promoting E2 mitotic stabilization. p300 mediates E2 acetylation and acetylation is increased due to E2 switching off SIRT1 function during mitosis in a TopBP1 interacting-dependent manner, confirmed by increased p53 stability and acetylation on lysine 382, a known target for SIRT1 deacetylation. SIRT1 can complex with E2 in growing cells but is unable to do so during mitosis due to the E2-TopBP1 interaction; SIRT1 is also unable to complex with p53 in mitotic E2 wild-type cells but can complex with p53 outside of mitosis. E2 lysines 111 and 112 are highly conserved residues across all E2 proteins and we demonstrate that K111 hyper-acetylation occurs during mitosis, promoting E2 interaction with Topoisomerase 1 (Top1). We demonstrate that K112 ubiquitination promotes E2 proteasomal degradation during mitosis. E2-TopBP1 interaction promotes mitotic acetylation of CHK2, promoting phosphorylation and activation of the DNA damage response (DDR). The results present a new model in which the E2-TopBP1 complex inactivates SIRT1 during mitosis, and activates the DDR. This is a novel mechanism of HPV16 activation of the DDR, a requirement for the viral life cycle. IMPORTANCE Human papillomaviruses (HPVs) are causative agents in around 5% of all human cancers. While there are prophylactic vaccines that will significantly alleviate HPV disease burden on future generations, there are currently no anti-viral strategies available for the treatment of HPV cancers. To generate such reagents, we must understand more about the HPV life cycle, and in particular about viral-host interactions. Here, we describe a novel mitotic complex generated by the HPV16 E2 protein interacting with the host protein TopBP1 that controls the function of the deacetylase SIRT1. The E2-TopBP1 interaction disrupts SIRT1 function during mitosis in order to enhance acetylation and stability of viral and host proteins. We also demonstrate that the E2-TopBP1 interaction activates the DDR. This novel complex is essential for the HPV16 life cycle and represents a novel anti-viral therapeutic target.
Collapse
Affiliation(s)
- Apurva T. Prabhakar
- Virginia Commonwealth University (VCU), Philips Institute for Oral Health Research, School of Dentistry, Richmond, Virginia, USA
| | - Claire D. James
- Virginia Commonwealth University (VCU), Philips Institute for Oral Health Research, School of Dentistry, Richmond, Virginia, USA
| | - Aya H. Youssef
- Virginia Commonwealth University (VCU), Philips Institute for Oral Health Research, School of Dentistry, Richmond, Virginia, USA
| | - Reafa A. Hossain
- Virginia Commonwealth University (VCU), Philips Institute for Oral Health Research, School of Dentistry, Richmond, Virginia, USA
| | - Ronald D. Hill
- Virginia Commonwealth University (VCU), Philips Institute for Oral Health Research, School of Dentistry, Richmond, Virginia, USA
| | - Molly L. Bristol
- Virginia Commonwealth University (VCU), Philips Institute for Oral Health Research, School of Dentistry, Richmond, Virginia, USA
- VCU Massey Cancer Center, Richmond, Viginia, USA
| | - Xu Wang
- Virginia Commonwealth University (VCU), Philips Institute for Oral Health Research, School of Dentistry, Richmond, Virginia, USA
| | - Aanchal Dubey
- Virginia Commonwealth University (VCU), Philips Institute for Oral Health Research, School of Dentistry, Richmond, Virginia, USA
| | - Elmira Karimi
- Virginia Commonwealth University (VCU), Philips Institute for Oral Health Research, School of Dentistry, Richmond, Virginia, USA
| | - Iain M. Morgan
- Virginia Commonwealth University (VCU), Philips Institute for Oral Health Research, School of Dentistry, Richmond, Virginia, USA
- VCU Massey Cancer Center, Richmond, Viginia, USA
| |
Collapse
|
2
|
Prabhakar AT, James CD, Youssef AH, Hossain RA, Hill RD, Bristol ML, Wang X, Dubey A, Morgan IM. A human papillomavirus 16 E2-TopBP1 dependent SIRT1-p300 acetylation switch regulates mitotic viral and human protein levels. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.15.575713. [PMID: 38293041 PMCID: PMC10827094 DOI: 10.1101/2024.01.15.575713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
An interaction between human papillomavirus 16 (HPV16) E2 and the cellular proteins TopBP1 and BRD4 is required for E2 plasmid segregation function. The E2-TopBP1 interaction promotes increased mitotic E2 protein levels in U2OS and N/Tert-1 cells, as well as in human foreskin keratinocytes immortalized by HPV16 (HFK+HPV16). SIRT1 deacetylation reduces E2 protein stability and here we demonstrate that increased E2 acetylation occurs during mitosis in a TopBP1 interacting dependent manner, promoting E2 mitotic stabilization. p300 mediates E2 acetylation and acetylation is increased due to E2 switching off SIRT1 function during mitosis in a TopBP1 interacting dependent manner, confirmed by increased p53 stability and acetylation on lysine 382, a known target for SIRT1 deacetylation. SIRT1 can complex with E2 in growing cells but is unable to do so during mitosis due to the E2-TopBP1 interaction; SIRT1 is also unable to complex with p53 in mitotic E2 wild type cells but can complex with p53 outside of mitosis. E2 lysines 111 and 112 are highly conserved residues across all E2 proteins and we demonstrate that K111 hyper-acetylation occurs during mitosis, promoting E2 interaction with Topoisomerase 1 (Top1). We also demonstrate that K112 ubiquitination promotes E2 proteasomal degradation during mitosis. The results present a model in which the E2-TopBP1 complex inactivates SIRT1 during mitosis and E2 acetylation on K111 by p300 increases, promoting interaction with Top1 that protects K112 from ubiquitination and therefore E2 proteasomal degradation. Importance Human papillomaviruses are causative agents in around 5% of all human cancers. While there are prophylactic vaccines that will significantly alleviate HPV disease burden on future generations, there are currently no anti-viral strategies available for the treatment of HPV cancers. To generate such reagents, we must understand more about the HPV life cycle, and in particular about viral-host interactions. Here we describe a novel mitotic complex generated by the HPV16 E2 protein interacting with the host protein TopBP1 that controls the function of the deacetylase SIRT1. The E2-TopBP1 interaction disrupts SIRT1 function during mitosis in order to enhance acetylation and stability of viral and host proteins. This novel complex is essential for the HPV16 life cycle and represents a novel anti-viral therapeutic target.
Collapse
|
3
|
Tanaka T, Hozumi Y, Martelli AM, Iino M, Goto K. Nucleosome assembly proteins NAP1L1 and NAP1L4 modulate p53 acetylation to regulate cell fate. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2019; 1866:118560. [DOI: 10.1016/j.bbamcr.2019.118560] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 08/27/2019] [Accepted: 09/12/2019] [Indexed: 02/08/2023]
|
4
|
Langan RA, Boyken SE, Ng AH, Samson JA, Dods G, Westbrook AM, Nguyen TH, Lajoie MJ, Chen Z, Berger S, Mulligan VK, Dueber JE, Novak WRP, El-Samad H, Baker D. De novo design of bioactive protein switches. Nature 2019; 572:205-210. [PMID: 31341284 PMCID: PMC6733528 DOI: 10.1038/s41586-019-1432-8] [Citation(s) in RCA: 174] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 06/19/2019] [Indexed: 02/06/2023]
Abstract
Allosteric regulation of protein function is widespread in biology, but is challenging for de novo protein design as it requires the explicit design of multiple states with comparable free energies. Here we explore the possibility of designing switchable protein systems de novo, through the modulation of competing inter- and intramolecular interactions. We design a static, five-helix 'cage' with a single interface that can interact either intramolecularly with a terminal 'latch' helix or intermolecularly with a peptide 'key'. Encoded on the latch are functional motifs for binding, degradation or nuclear export that function only when the key displaces the latch from the cage. We describe orthogonal cage-key systems that function in vitro, in yeast and in mammalian cells with up to 40-fold activation of function by key. The ability to design switchable protein functions that are controlled by induced conformational change is a milestone for de novo protein design, and opens up new avenues for synthetic biology and cell engineering.
Collapse
Affiliation(s)
- Robert A Langan
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Graduate Program in Biological Physics, Structure, and Design, University of Washington, Seattle, WA, USA
| | - Scott E Boyken
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Andrew H Ng
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA, USA
- The UC Berkeley-UCSF Graduate Program in Bioengineering, UCSF, San Francisco, CA, USA
- The UC Berkeley-UCSF Graduate Program in Bioengineering, UC Berkeley, Berkeley, CA, USA
| | - Jennifer A Samson
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA, USA
| | - Galen Dods
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
| | - Alexandra M Westbrook
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
| | - Taylor H Nguyen
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
| | - Marc J Lajoie
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Zibo Chen
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Graduate Program in Biological Physics, Structure, and Design, University of Washington, Seattle, WA, USA
| | - Stephanie Berger
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Vikram Khipple Mulligan
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - John E Dueber
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA, USA
| | - Walter R P Novak
- Department of Chemistry, Wabash College, Crawfordsville, IN, USA
| | - Hana El-Samad
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
- Chan-Zuckerberg Biohub, San Francisco, CA, USA
| | - David Baker
- Department of Biochemistry, University of Washington, Seattle, WA, USA.
- Institute for Protein Design, University of Washington, Seattle, WA, USA.
- Howard Hughes Medical Institute, University of Washington, Seattle, WA, USA.
| |
Collapse
|
5
|
The Protein Tyrosine Phosphatase H1 PTPH1 Supports Proliferation of Keratinocytes and is a Target of the Human Papillomavirus Type 8 E6 Oncogene. Cells 2019; 8:cells8030244. [PMID: 30875834 PMCID: PMC6468676 DOI: 10.3390/cells8030244] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 03/07/2019] [Accepted: 03/09/2019] [Indexed: 12/15/2022] Open
Abstract
Human papillomaviruses (HPV) replicate their DNA in the suprabasal layer of the infected mucosa or skin. In order to create a suitable environment for vegetative viral DNA replication HPV delay differentiation and sustain keratinocyte proliferation that can lead to hyperplasia. The mechanism underlying cell growth stimulation is not well characterized. Here, we show that the E6 oncoprotein of the βHPV type 8 (HPV8), which infects the cutaneous skin and is associated with skin cancer in Epidermodysplasia verruciformis patients and immunosuppressed organ transplant recipients, binds to the protein tyrosine phosphatase H1 (PTPH1), which resulted in increased protein expression and phosphatase activity of PTPH1. Suppression of PTPH1 in immortalized keratinocytes reduced cell proliferation as well as the level of epidermal growth factor receptor (EGFR). Furthermore, we report that HPV8E6 expressing keratinocytes have increased level of active, GTP-bound Ras. This effect was independent of PTPH1. Therefore, HPV8E6-mediated targeting of PTPH1 might result in higher level of EGFR and enhanced keratinocyte proliferation. The HPV8E6-mediated stimulation of Ras may be an additional step to induce cell growth. Our results provide novel insights into the mechanism how βHPVE6 proteins support proliferation of infected keratinocytes, thus creating an environment with increased risk of development of skin cancer particularly upon UV-induced DNA mutations.
Collapse
|
6
|
Yin P, Li Y, Zhou L, Zhang L. NAP1L1 Regulates Hepatitis C Virus Entry and Interacts with NS3. Virol Sin 2018; 33:205-208. [PMID: 29541944 PMCID: PMC6178115 DOI: 10.1007/s12250-018-0006-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 11/28/2017] [Indexed: 12/11/2022] Open
Affiliation(s)
- Peiqi Yin
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100176, China
| | - Ye Li
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100176, China
| | - Liya Zhou
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100176, China
| | - Leiliang Zhang
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100176, China.
| |
Collapse
|
7
|
Hepatitis C Virus NS5A Targets Nucleosome Assembly Protein NAP1L1 To Control the Innate Cellular Response. J Virol 2017; 91:JVI.00880-17. [PMID: 28659470 DOI: 10.1128/jvi.00880-17] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Accepted: 06/19/2017] [Indexed: 12/14/2022] Open
Abstract
Hepatitis C virus (HCV) is a single-stranded positive-sense RNA hepatotropic virus. Despite cellular defenses, HCV is able to replicate in hepatocytes and to establish a chronic infection that could lead to severe complications and hepatocellular carcinoma. An important player in subverting the host response to HCV infection is the viral nonstructural protein NS5A, which, in addition to its role in replication and assembly, targets several pathways involved in the cellular response to viral infection. Several unbiased screens identified nucleosome assembly protein 1-like 1 (NAP1L1) as an interaction partner of HCV NS5A. Here we confirmed this interaction and mapped it to the C terminus of NS5A of both genotype 1 and 2. NS5A sequesters NAP1L1 in the cytoplasm, blocking its nuclear translocation. However, only NS5A from genotype 2 HCV, and not that from genotype 1, targets NAP1L1 for proteosome-mediated degradation. NAP1L1 is a nuclear chaperone involved in chromatin remodeling, and we demonstrated the NAP1L1-dependent regulation of specific pathways involved in cellular responses to viral infection and cell survival. Among those, we showed that lack of NAP1L1 leads to a decrease of RELA protein levels and a strong defect of IRF3 TBK1/IKKε-mediated phosphorylation, leading to inefficient RIG-I and Toll-like receptor 3 (TLR3) responses. Hence, HCV is able to modulate the host cell environment by targeting NAP1L1 through NS5A.IMPORTANCE Viruses have evolved to replicate and to overcome antiviral countermeasures of the infected cell. Hepatitis C virus is capable of establishing a lifelong chronic infection in the liver, which could develop into cirrhosis and cancer. Chronic viruses are particularly able to interfere with the cellular antiviral pathways by several different mechanisms. In this study, we identified a novel cellular target of the viral nonstructural protein NS5A and demonstrated its role in antiviral signaling. This factor, called nucleosome assembly protein 1-like 1 (NAP1L1), is a nuclear chaperone involved in the remodeling of chromatin during transcription. When it is depleted, specific signaling pathways leading to antiviral effectors are affected. Therefore, we provide evidence for both a novel strategy of virus evasion from cellular immunity and a novel role for a cellular protein, which has not been described to date.
Collapse
|
8
|
Phosphorylation of Serine 225 in Hepatitis C Virus NS5A Regulates Protein-Protein Interactions. J Virol 2017; 91:JVI.00805-17. [PMID: 28615203 PMCID: PMC5553161 DOI: 10.1128/jvi.00805-17] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 06/03/2017] [Indexed: 12/31/2022] Open
Abstract
Hepatitis C virus (HCV) nonstructural protein 5A (NS5A) is a phosphoprotein that plays key, yet poorly defined, roles in both virus genome replication and virion assembly/release. It has been proposed that differential phosphorylation could act as a switch to regulate the various functions of NS5A; however, the mechanistic details of the role of this posttranslational modification in the virus life cycle remain obscure. We previously reported (D. Ross-Thriepland, J. Mankouri, and M. Harris, J Virol 89:3123–3135, 2015, doi:10.1128/JVI.02995-14) a role for phosphorylation at serine 225 (S225) of NS5A in the regulation of JFH-1 (genotype 2a) genome replication. A phosphoablatant (S225A) mutation resulted in a 10-fold reduction in replication and a perinuclear restricted distribution of NS5A, whereas the corresponding phosphomimetic mutation (S225D) had no phenotype. To determine the molecular mechanisms underpinning this phenotype we conducted a label-free proteomics approach to identify cellular NS5A interaction partners. This analysis revealed that the S225A mutation disrupted the interactions of NS5A with a number of cellular proteins, in particular the nucleosome assembly protein 1-like protein 1 (NAP1L1), bridging integrator 1 (Bin1, also known as amphiphysin II), and vesicle-associated membrane protein-associated protein A (VAP-A). These interactions were validated by immunoprecipitation/Western blotting, immunofluorescence, and proximity ligation assay. Importantly, small interfering RNA (siRNA)-mediated knockdown of NAP1L1, Bin1 or VAP-A impaired viral genome replication and recapitulated the perinuclear redistribution of NS5A seen in the S225A mutant. These results demonstrate that S225 phosphorylation regulates the interactions of NS5A with a defined subset of cellular proteins. Furthermore, these interactions regulate both HCV genome replication and the subcellular localization of replication complexes. IMPORTANCE Hepatitis C virus is an important human pathogen. The viral nonstructural 5A protein (NS5A) is the target for new antiviral drugs. NS5A has multiple functions during the virus life cycle, but the biochemical details of these roles remain obscure. NS5A is known to be phosphorylated by cellular protein kinases, and in this study, we set out to determine whether this modification is required for the binding of NS5A to other cellular proteins. We identified 3 such proteins and show that they interacted only with NS5A that was phosphorylated on a specific residue. Furthermore, these proteins were required for efficient virus replication and the ability of NS5A to spread throughout the cytoplasm of the cell. Our results help to define the function of NS5A and may contribute to an understanding of the mode of action of the highly potent antiviral drugs that are targeted to NS5A.
Collapse
|
9
|
Shu LP, Zhou ZW, Zi D, He ZX, Zhou SF. A SILAC-based proteomics elicits the molecular interactome of alisertib (MLN8237) in human erythroleukemia K562 cells. Am J Transl Res 2015; 7:2442-2461. [PMID: 26807190 PMCID: PMC4697722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 11/04/2015] [Indexed: 06/05/2023]
Abstract
Alisertib (MLN8237, ALS), an Aurora kinase A (AURKA) inhibitor, exerts potent anti-tumor effects in the treatment of solid tumor and hematologic malignancies in preclinical and clinical studies. However, the fully spectrum of molecular targets of ALS and its anticancer effect in the treatment of chronic myeloid leukemia (CML) are not clear. This study aimed to examine the proteomic responses to ALS treatment and unveil the molecular interactome and possible mechanisms for its anticancer effect in K562 cells using stable-isotope labeling by amino acids in cell culture (SILAC) approach. The proteomic data identified that ALS treatment modulated the expression of 1541 protein molecules (570 up; 971 down). The pathway analysis showed that 299 signaling pathways and 459 cellular functional proteins directly responded to ALS treatment in K562 cells. These targeted molecules and signaling pathways were mainly involved in cell growth and proliferation, cell metabolism, and cell survival and death. Subsequently, the effects of ALS on cell cycle distribution, apoptosis, and autophagy were verified. The flow cytometric analysis showed that ALS significantly induced G2/M phase arrest and the Western blotting assays showed that ALS induced apoptosis via mitochondria-dependent pathway and promoted autophagy with the involvement of PI3K/Akt/mTOR, p38 MAPK, and AMPK signaling pathways in K562 cells. Collectively, this study provides a clue to quantitatively evaluate the proteomic responses to ALS and assists in globally identifying the potential molecular targets and elucidating the underlying mechanisms of ALS for CML treatment, which may help develop new efficacious and safe therapies for CML treatment.
Collapse
Affiliation(s)
- Li-Ping Shu
- Guizhou Provincial Key Laboratory for Regenerative Medicine, Tissue Engineering and Stem Cell Research Center, Laboratory Animal Center, Department of Immunology, Guiyang Medical UniversityGuiyang, Guizhou 550004, People’s Republic of China
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South FloridaTampa, FL 33612, USA
| | - Zhi-Wei Zhou
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South FloridaTampa, FL 33612, USA
| | - Dan Zi
- Guizhou Provincial Key Laboratory for Regenerative Medicine, Tissue Engineering and Stem Cell Research Center, Laboratory Animal Center, Department of Immunology, Guiyang Medical UniversityGuiyang, Guizhou 550004, People’s Republic of China
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South FloridaTampa, FL 33612, USA
| | - Zhi-Xu He
- Guizhou Provincial Key Laboratory for Regenerative Medicine, Tissue Engineering and Stem Cell Research Center, Laboratory Animal Center, Department of Immunology, Guiyang Medical UniversityGuiyang, Guizhou 550004, People’s Republic of China
| | - Shu-Feng Zhou
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South FloridaTampa, FL 33612, USA
| |
Collapse
|
10
|
Zhang Q, Giebler HA, Isaacson MK, Nyborg JK. Eviction of linker histone H1 by NAP-family histone chaperones enhances activated transcription. Epigenetics Chromatin 2015; 8:30. [PMID: 26339295 PMCID: PMC4558729 DOI: 10.1186/s13072-015-0022-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Accepted: 08/13/2015] [Indexed: 12/31/2022] Open
Abstract
Background In the Metazoan nucleus, core histones assemble the genomic DNA to form nucleosome arrays, which are further compacted into dense chromatin structures by the linker histone H1. The extraordinary density of chromatin creates an obstacle for accessing the genetic information. Regulation of chromatin dynamics is therefore critical to cellular homeostasis, and histone chaperones serve as prominent players in these processes. In the current study, we examined the role of specific histone chaperones in negotiating the inherently repressive chromatin structure during transcriptional activation. Results Using a model promoter, we demonstrate that the human nucleosome assembly protein family members hNap1 and SET/Taf1β stimulate transcription in vitro during pre-initiation complex formation, prior to elongation. This stimulatory effect is dependent upon the presence of activators, p300, and Acetyl-CoA. We show that transcription from our chromatin template is strongly repressed by H1, and that both histone chaperones enhance RNA synthesis by overcoming H1-induced repression. Importantly, both hNap1 and SET/Taf1β directly bind H1, and function to enhance transcription by evicting the linker histone from chromatin reconstituted with H1. In vivo studies demonstrate that SET/Taf1β, but not hNap1, strongly stimulates activated transcription from the chromosomally-integrated model promoter, consistent with the observation that SET/Taf1β is nuclear, whereas hNap1 is primarily cytoplasmic. Together, these observations indicate that SET/Taf1β may serve as a critical regulator of H1 dynamics and gene activation in vivo. Conclusions These studies uncover a novel function for SET that mechanistically couples transcriptional derepression with H1 dynamics. Furthermore, they underscore the significance of chaperone-dependent H1 displacement as an essential early step in the transition of a promoter from a dense chromatin state into one that is permissive to transcription factor binding and robust activation.
Collapse
Affiliation(s)
- Qian Zhang
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523-1870 USA
| | - Holli A Giebler
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523-1870 USA
| | - Marisa K Isaacson
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523-1870 USA ; Pace University, 1 Pace Plaza, New York, NY 10038 USA
| | - Jennifer K Nyborg
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523-1870 USA
| |
Collapse
|
11
|
Jang MK, Anderson DE, van Doorslaer K, McBride AA. A proteomic approach to discover and compare interacting partners of papillomavirus E2 proteins from diverse phylogenetic groups. Proteomics 2015; 15:2038-50. [PMID: 25758368 DOI: 10.1002/pmic.201400613] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 02/02/2015] [Accepted: 03/07/2015] [Indexed: 12/20/2022]
Abstract
Papillomaviruses are a very successful group of viruses that replicate persistently in localized regions of the stratified epithelium of their specific host. Infection results in pathologies ranging from asymptomatic infection, benign warts, to malignant carcinomas. Despite this diversity, papillomavirus genomes are small (7-8 kbp) and contain at most eight genes. To sustain the complex papillomaviral life cycle, each viral protein has multiple functions and interacts with and manipulates a plethora of cellular proteins. In this study, we use tandem affinity purification and MS to identify host factors that interact with 11 different papillomavirus E2 proteins from diverse phylogenetic groups. The E2 proteins function in viral transcription and replication and correspondingly interact with host proteins involved in transcription, chromatin remodeling and modification, replication, and RNA processing.
Collapse
Affiliation(s)
- Moon Kyoo Jang
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA
| | - D Eric Anderson
- Advanced Mass Spectrometry Core, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Koenraad van Doorslaer
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA
| | - Alison A McBride
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA
| |
Collapse
|
12
|
Chang SW, Liu WC, Liao KY, Tsao YP, Hsu PH, Chen SL. Phosphorylation of HPV-16 E2 at serine 243 enables binding to Brd4 and mitotic chromosomes. PLoS One 2014; 9:e110882. [PMID: 25340539 PMCID: PMC4207782 DOI: 10.1371/journal.pone.0110882] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Accepted: 09/25/2014] [Indexed: 01/16/2023] Open
Abstract
The papillomavirus E2 protein is involved in the maintenance of persistent infection and known to bind either to cellular factors or directly to mitotic chromosomes in order to partition the viral genome into the daughter cells. However, how the HPV-16 E2 protein acts to facilitate partitioning of the viral genome remains unclear. In this study, we found that serine 243 of HPV-16 E2, located in the hinge region, is crucial for chromosome binding during mitosis. Bromodomain protein 4 (Brd4) has been identified as a cellular binding target through which the E2 protein of bovine papillomavirus type 1 (BPV-1) tethers the viral genome to mitotic chromosomes. Mutation analysis showed that, when the residue serine 243 was substituted by glutamic acid or aspartic acid, whose negative charges mimic the effect of constitutive phosphorylation, the protein still can interact with Brd4 and colocalize with Brd4 in condensed metaphase and anaphase chromosomes. However, substitution by the polar uncharged residues asparagine or glutamine abrogated Brd4 and mitotic chromosome binding. Moreover, following treatment with the inhibitor JQ1 to release Brd4 from the chromosomes, Brd4 and E2 formed punctate foci separate from the chromosomes, further supporting the hypothesis that the association of the HPV-16 E2 protein with the chromosomes is Brd4-dependent. In addition, the S243A E2 protein has a shorter half-life than the wild type, indicating that phosphorylation of the HPV-16 E2 protein at serine 243 also increases its half-life. Thus, phosphorylation of serine 243 in the hinge region of HPV-16 E2 is essential for interaction with Brd4 and required for host chromosome binding.
Collapse
Affiliation(s)
- Szu-Wei Chang
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Wei-Chen Liu
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Kuan-Yu Liao
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yeou-Ping Tsao
- Department of Ophthalmology, Mackay Memorial Hospital, Taipei, Taiwan
| | - Pang-Hung Hsu
- Department of Bioscience and Biotechnology, College of Life Sciences, National Taiwan Ocean University, Keelung, Taiwan
| | - Show-Li Chen
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan
- * E-mail:
| |
Collapse
|
13
|
Cellular expression and localization of DGKζ-interacting NAP1-like proteins in the brain and functional implications under hypoxic stress. Histochem Cell Biol 2014; 142:461-71. [DOI: 10.1007/s00418-014-1226-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/15/2014] [Indexed: 11/27/2022]
|
14
|
Tsang KH, Lai SK, Li Q, Yung WH, Liu H, Mak PHS, Ng CCP, McAlonan G, Chan YS, Chan SY. The nucleosome assembly protein TSPYL2 regulates the expression of NMDA receptor subunits GluN2A and GluN2B. Sci Rep 2014; 4:3654. [PMID: 24413569 PMCID: PMC3888966 DOI: 10.1038/srep03654] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Accepted: 12/16/2013] [Indexed: 12/31/2022] Open
Abstract
TSPYL2 is an X-linked gene encoding a nucleosome assembly protein. TSPYL2 interacts with calmodulin-associated serine/threonine kinase, which is implicated in X-linked mental retardation. As nucleosome assembly and chromatin remodeling are important in transcriptional regulation and neuronal function, we addressed the importance of TSPYL2 through analyzing Tspyl2 loss-of-function mice. We detected down-regulation of N-methyl-D-aspartate receptor subunits 2A and 2B (GluN2A and GluN2B) in the mutant hippocampus. Evidence from luciferase reporter assays and chromatin immunoprecipitation supported that TSPYL2 regulated the expression of Grin2a and Grin2b, the genes encoding GluN2A and GluN2B. We also detected an interaction between TSPYL2 and CBP, indicating that TSPYL2 may activate gene expression through binding CBP. In terms of functional outcome, Tspyl2 loss-of-function impaired long-term potentiation at hippocampal Schaffer collateral-CA1 synapses. Moreover, mutant mice showed a deficit in fear learning and memory. We conclude that TSPYL2 contributes to cognitive variability through regulating the expression of Grin2a and Grin2b.
Collapse
Affiliation(s)
- Ka Hing Tsang
- 1] Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Hong Kong, China [2] Centre for Reproduction, Development and Growth, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Hong Kong, China
| | - Suk King Lai
- 1] Department of Physiology, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Hong Kong, China [2] Research Centre of Heart, Brain, Hormone and Healthy Aging, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Hong Kong, China
| | - Qi Li
- 1] Centre for Reproduction, Development and Growth, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Hong Kong, China [2] Department of Psychiatry, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Hong Kong, China
| | - Wing Ho Yung
- School of Biomedical Sciences, the Chinese University of Hong Kong, Hong Kong, China
| | - Hang Liu
- 1] Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Hong Kong, China [2] Centre for Reproduction, Development and Growth, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Hong Kong, China
| | - Priscilla Hoi Shan Mak
- 1] Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Hong Kong, China [2] Centre for Reproduction, Development and Growth, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Hong Kong, China
| | - Cypress Chun Pong Ng
- 1] Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Hong Kong, China [2] Centre for Reproduction, Development and Growth, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Hong Kong, China
| | - Grainne McAlonan
- 1] Centre for Reproduction, Development and Growth, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Hong Kong, China [2] Department of Psychiatry, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Hong Kong, China [3] Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, King's College London, United Kingdom
| | - Ying Shing Chan
- 1] Department of Physiology, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Hong Kong, China [2] Research Centre of Heart, Brain, Hormone and Healthy Aging, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Hong Kong, China
| | - Siu Yuen Chan
- 1] Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Hong Kong, China [2] Centre for Reproduction, Development and Growth, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Hong Kong, China
| |
Collapse
|
15
|
Abstract
The papillomavirus E2 proteins are pivotal to the viral life cycle and have well characterized functions in transcriptional regulation, initiation of DNA replication and partitioning the viral genome. The E2 proteins also function in vegetative DNA replication, post-transcriptional processes and possibly packaging. This review describes structural and functional aspects of the E2 proteins and their binding sites on the viral genome. It is intended to be a reference guide to this viral protein.
Collapse
Affiliation(s)
- Alison A McBride
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
16
|
Jordanovski D, Herwartz C, Pawlowski A, Taute S, Frommolt P, Steger G. The hypoxia-inducible transcription factor ZNF395 is controlled by IĸB kinase-signaling and activates genes involved in the innate immune response and cancer. PLoS One 2013; 8:e74911. [PMID: 24086395 PMCID: PMC3781154 DOI: 10.1371/journal.pone.0074911] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Accepted: 08/07/2013] [Indexed: 02/06/2023] Open
Abstract
Activation of the hypoxia inducible transcription factor HIF and the NF-ĸB pathway promotes inflammation-mediated tumor progression. The cellular transcription factor ZNF395 has repeatedly been found overexpressed in various human cancers, particularly in response to hypoxia, implying a functional relevance. To understand the biological activity of ZNF395, we identified target genes of ZNF395 through a genome-wide expression screen. Induced ZNF395 expression led to the upregulation of genes known to play a role in cancer as well as a subset of interferon (IFN)-stimulated genes (ISG) involved in antiviral responses such as IFIT1/ISG56, IFI44 and IFI16. In cells that lack ZNF395, the IFN-α-mediated stimulation of these factors was impaired, demonstrating that ZNF395 is required for the full induction of these antiviral genes. Transient transfections revealed that ZNF395-mediated activation of the IFIT1/ISG56 promoter depends on the two IFN-stimulated response elements within the promoter and on the DNA-binding domain of ZNF395, a so-called C-clamp. We also show that IĸBα kinase (IKK)-signaling is necessary to allow ZNF395 to activate transcription and simultaneously enhances its proteolytic degradation. Thus, ZNF395 becomes activated at the level of protein modification by IKK. Moreover, we confirm that the expression of ZNF395 is induced by hypoxia. Our results characterize ZNF395 as a novel factor that contributes to the maximal stimulation of a subset of ISGs. This transcriptional activity depends on IKK signaling further supporting a role of ZNF395 in the innate immune response. Given these results it is possible that under hypoxic conditions, elevated levels of ZNF395 may support inflammation and cancer progression by activating the target genes involved in the innate immune response and cancer.
Collapse
Affiliation(s)
| | | | - Anna Pawlowski
- Institute of Virology, University of Cologne, Cologne, Germany
| | - Stefanie Taute
- Institute of Virology, University of Cologne, Cologne, Germany
| | - Peter Frommolt
- Bioinformatics Core Facility, CECAD Cologne, Cologne, Germany
- Cologne Center for Genomics, University of Cologne, Cologne, Germany
| | - Gertrud Steger
- Institute of Virology, University of Cologne, Cologne, Germany
- * E-mail:
| |
Collapse
|
17
|
Tanaka T, Okada M, Hozumi Y, Tachibana K, Kitanaka C, Hamamoto Y, Martelli AM, Topham MK, Iino M, Goto K. Cytoplasmic localization of DGKζ exerts a protective effect against p53-mediated cytotoxicity. J Cell Sci 2013; 126:2785-97. [DOI: 10.1242/jcs.118711] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The transcription factor p53 plays a crucial role in coordinating the cellular response to various stresses. Therefore, p53 protein levels and activity need to be kept under tight control. We report here that diacylglycerol kinase ζ (DGKζ) binds to p53 and modulates its function both in the cytoplasm and nucleus. DGKζ, one of the DGK family that metabolizes a lipid second messenger diacylglycerol, localizes primarily to the nucleus in various cell types. Recently, reports have described that excitotoxic stress induces DGKζ nucleocytoplasmic translocation in hippocampal neurons. In this study, we found that cytoplasmic DGKζ attenuates p53-mediated cytotoxicity against doxorubicin-induced DNA damage by facilitating cytoplasmic anchoring and degradation of p53 through a ubiquitin–proteasome system. Concomitantly, decreased levels of nuclear DGKζ engender down-regulation of p53 transcriptional activity. Consistent with these in vitro cellular experiments, DGKζ-deficient brain exhibits high levels of p53 protein after kainate-induced seizures and even under normal conditions. These findings provide novel insights into the regulation of p53 function and suggest that DGKζ serves as a sentinel to control p53 function both during normal homeostasis and in stress responses.
Collapse
|
18
|
Muller M, Demeret C. The HPV E2-Host Protein-Protein Interactions: A Complex Hijacking of the Cellular Network. Open Virol J 2012; 6:173-89. [PMID: 23341853 PMCID: PMC3547520 DOI: 10.2174/1874357901206010173] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Revised: 07/20/2012] [Accepted: 07/30/2012] [Indexed: 11/22/2022] Open
Abstract
Over 100 genotypes of human papillomaviruses (HPVs) have been identified as being responsible for unapparent infections or for lesions ranging from benign skin or genital warts to cancer. The pathogenesis of HPV results from complex relationships between viral and host factors, driven in particular by the interplay between the host proteome and the early viral proteins. The E2 protein regulates the transcription, the replication as well as the mitotic segregation of the viral genome through the recruitment of host cell factors to the HPV regulatory region. It is thereby a pivotal factor for the productive viral life cycle and for viral persistence, a major risk factor for cancer development. In addition, the E2 proteins have been shown to engage numerous interactions through which they play important roles in modulating the host cell. Such E2 activities are probably contributing to create cell conditions appropriate for the successive stages of the viral life cycle, and some of these activities have been demonstrated only for the oncogenic high-risk HPV. The recent mapping of E2-host protein-protein interactions with 12 genotypes representative of HPV diversity has shed some light on the large complexity of the host cell hijacking and on its diversity according to viral genotypes. This article reviews the functions of E2 as they emerge from the E2/host proteome interplay, taking into account the large-scale comparative interactomic study.
Collapse
Affiliation(s)
- Mandy Muller
- Unité de Génétique, Papillomavirus et Cancer Humain (GPCH), Institut Pasteur, 25 rue du Docteur Roux, 75015 Paris, France ; Univ. Paris Diderot, Sorbonne Paris cite, Cellule Pasteur, rue du Docteur Roux, 75015 Paris, France
| | | |
Collapse
|
19
|
Human papillomavirus type 8 E6 oncoprotein inhibits transcription of the PDZ protein syntenin-2. J Virol 2012; 86:7943-52. [PMID: 22623796 DOI: 10.1128/jvi.00132-12] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The E6 proteins from high-risk alpha human papillomavirus (HPV) types (e.g., HPV16) are characterized by the presence of a PDZ-binding motif through which they interact with a number of cellular PDZ domain-containing substrates and cooperate in their degradation. The ability of these E6 proteins to bind to PDZ domain proteins correlates with the oncogenic potential of the virus. The E6 proteins of oncogenic HPV from the genus Betapapillomavirus (betaPV, e.g., HPV8) do not encode a PDZ-binding motif. We found that the PDZ domain protein syntenin-2 is transcriptionally downregulated in primary human epidermal keratinocytes (PHEK) by HPV8 E6. The mRNA levels of the known HPV16 E6 PDZ protein targets Dlg, Scribble, Magi-1, Magi-3, PSD95, and Mupp1 were not changed by HPV8 E6. Decreased protein levels of syntenin-2 were observed in cell extracts from PHEK expressing HPV5, -8, -16, -20, and -38 E6 but not in HPV1 and -4 E6-positive keratinocytes. Surprisingly, HPV16 E6 also repressed transcription of syntenin-2 but with a much lower efficiency than HPV8 E6. In healthy human skin, syntenin-2 expression is localized in suprabasal epidermal layers. In organotypic skin cultures, the differentiation-dependent expression of syntenin-2 was absent in HPV8 E6- and E6E7-expressing cells. In basal cell carcinomas of the skin, syntenin-2 was not detectable, whereas in squamous cell carcinomas, expression was located in differentiated areas. Short hairpin RNA-mediated knockdown of syntenin-2 led to an inhibition of differentiation and an increase in the proliferation capacity in PHEK. These results identified syntenin-2 as the first PDZ domain protein controlled by HPV8 and HPV16 at the mRNA level.
Collapse
|
20
|
Maaty WS, Selvig K, Ryder S, Tarlykov P, Hilmer JK, Heinemann J, Steffens J, Snyder JC, Ortmann AC, Movahed N, Spicka K, Chetia L, Grieco PA, Dratz EA, Douglas T, Young MJ, Bothner B. Proteomic analysis of Sulfolobus solfataricus during Sulfolobus Turreted Icosahedral Virus infection. J Proteome Res 2012; 11:1420-32. [PMID: 22217245 DOI: 10.1021/pr201087v] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Where there is life, there are viruses. The impact of viruses on evolution, global nutrient cycling, and disease has driven research on their cellular and molecular biology. Knowledge exists for a wide range of viruses; however, a major exception are viruses with archaeal hosts. Archaeal virus-host systems are of great interest because they have similarities to both eukaryotic and bacterial systems and often live in extreme environments. Here we report the first proteomics-based experiments on archaeal host response to viral infection. Sulfolobus Turreted Icosahedral Virus (STIV) infection of Sulfolobus solfataricus P2 was studied using 1D and 2D differential gel electrophoresis (DIGE) to measure abundance and redox changes. Cysteine reactivity was measured using novel fluorescent zwitterionic chemical probes that, together with abundance changes, suggest that virus and host are both vying for control of redox status in the cells. Proteins from nearly 50% of the predicted viral open reading frames were found along with a new STIV protein with a homologue in STIV2. This study provides insight to features of viral replication novel to the archaea, makes strong connections to well-described mechanisms used by eukaryotic viruses such as ESCRT-III mediated transport, and emphasizes the complementary nature of different omics approaches.
Collapse
Affiliation(s)
- Walid S Maaty
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana, United States
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Frappier L. The Epstein-Barr Virus EBNA1 Protein. SCIENTIFICA 2012; 2012:438204. [PMID: 24278697 PMCID: PMC3820569 DOI: 10.6064/2012/438204] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2012] [Accepted: 11/28/2012] [Indexed: 05/06/2023]
Abstract
Epstein-Barr virus (EBV) is a widespread human herpes virus that immortalizes cells as part of its latent infection and is a causative agent in the development of several types of lymphomas and carcinomas. Replication and stable persistence of the EBV genomes in latent infection require the viral EBNA1 protein, which binds specific DNA sequences in the viral DNA. While the roles of EBNA1 were initially thought to be limited to effects on the viral genomes, more recently EBNA1 has been found to have multiple effects on cellular proteins and pathways that may also be important for viral persistence. In addition, a role for EBNA1 in lytic infection has been recently identified. The multiple roles of EBNA1 in EBV infection are the subject of this paper.
Collapse
Affiliation(s)
- Lori Frappier
- Department of Molecular Genetics, University of Toronto, 1 Kings College Circle, Toronto, ON, Canada M5S 1A8
- *Lori Frappier:
| |
Collapse
|
22
|
Role of EBNA1 in NPC tumourigenesis. Semin Cancer Biol 2011; 22:154-61. [PMID: 22206863 DOI: 10.1016/j.semcancer.2011.12.002] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2011] [Revised: 11/29/2011] [Accepted: 12/09/2011] [Indexed: 12/12/2022]
Abstract
EBNA1 is expressed in all NPC tumours and is the only Epstein-Barr virus protein needed for the stable persistence of EBV episomes. EBNA1 binds to specific sequences in the EBV genome to facilitate the initiation of DNA synthesis, ensure the even distribution of the viral episomes to daughter cells during mitosis and to activate the transcription of other viral latency genes important for cell immortalization. In addition, EBNA1 has been found to alter cellular pathways in multiple ways that likely contribute to cell immortalization and malignant transformation. This chapter discusses the known functions and cellular effects of EBNA1, especially as pertains to NPC.
Collapse
|
23
|
Okada M, Hozumi Y, Ichimura T, Tanaka T, Hasegawa H, Yamamoto M, Takahashi N, Iseki K, Yagisawa H, Shinkawa T, Isobe T, Goto K. Interaction of nucleosome assembly proteins abolishes nuclear localization of DGKζ by attenuating its association with importins. Exp Cell Res 2011; 317:2853-63. [DOI: 10.1016/j.yexcr.2011.09.014] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2011] [Revised: 09/27/2011] [Accepted: 09/27/2011] [Indexed: 01/11/2023]
|
24
|
Kim JY, Lee KS, Seol JE, Yu K, Chakravarti D, Seo SB. Inhibition of p53 acetylation by INHAT subunit SET/TAF-Iβ represses p53 activity. Nucleic Acids Res 2011; 40:75-87. [PMID: 21911363 PMCID: PMC3245910 DOI: 10.1093/nar/gkr614] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The tumor suppressor p53 responds to a wide variety of cellular stress signals. Among potential regulatory pathways, post-translational modifications such as acetylation by CBP/p300 and PCAF have been suggested for modulation of p53 activity. However, exactly how p53 acetylation is modulated remains poorly understood. Here, we found that SET/TAF-Iβ inhibited p300- and PCAF-mediated p53 acetylation in an INHAT (inhibitor of histone acetyltransferase) domain-dependent manner. SET/TAF-Iβ interacted with p53 and repressed transcription of p53 target genes. Consequently, SET/TAF-Iβ blocked both p53-mediated cell cycle arrest and apoptosis in response to cellular stress. Using different apoptosis analyses, including FACS, TUNEL and BrdU incorporation assays, we also found that SET/TAF-Iβ induced cellular proliferation via inhibition of p53 acetylation. Furthermore, we observed that apoptotic Drosophila eye phenotype induced by either dp53 overexpression or UV irradiation was rescued by expression of dSet. Inhibition of dp53 acetylation by dSet was observed in both cases. Our findings provide new insights into the regulation of stress-induced p53 activation by HAT-inhibiting histone chaperone SET/TAF-Iβ.
Collapse
Affiliation(s)
- Ji-Young Kim
- Department of Life Science, College of Natural Sciences, Chung-Ang University, Seoul 156-756, Korea
| | | | | | | | | | | |
Collapse
|
25
|
D'Abramo CM, Archambault J. Small molecule inhibitors of human papillomavirus protein - protein interactions. Open Virol J 2011; 5:80-95. [PMID: 21769307 PMCID: PMC3137155 DOI: 10.2174/1874357901105010080] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2011] [Revised: 05/23/2011] [Accepted: 06/13/2011] [Indexed: 02/06/2023] Open
Abstract
Human papillomaviruses (HPV) have now been identified as a necessary cause of benign and malignant lesions of the differentiating epithelium, particularly cervical cancer, the second most prevalent cancer in women worldwide. While two prophylactic HPV vaccines and screening programs are available, there is currently no antiviral drug for the treatment of HPV infections and associated diseases. The recent progress toward the identification and characterization of specific molecular targets for small molecule-based approaches provides prospect for the development of effective HPV antiviral compounds. Traditionally, antiviral therapies target viral enzymes. HPV encode for few proteins, however, and rely extensively on the infected cell for completion of their life cycle. This article will review the functions of the viral E1 helicase, which encodes the only enzymatic function of the virus, of the E2 regulatory protein, and of the viral E6 and E7 oncogenes in viral replication and pathogenesis. Particular emphasis will be placed on the recent progress made towards the development of novel small molecule inhibitors that specifically target and inhibit the functions of these viral proteins, as well as their interactions with other viral and/or cellular proteins.
Collapse
Affiliation(s)
- C M D'Abramo
- Laboratory of Molecular Virology, Institut de Recherches Cliniques de Montréal and Department of Biochemistry, Université de Montréal, Montreal, Quebec, Canada
| | | |
Collapse
|
26
|
Chang SW, Tsao YP, Lin CY, Chen SL. NRIP, a novel calmodulin binding protein, activates calcineurin to dephosphorylate human papillomavirus E2 protein. J Virol 2011; 85:6750-63. [PMID: 21543494 PMCID: PMC3126500 DOI: 10.1128/jvi.02453-10] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2010] [Accepted: 04/25/2011] [Indexed: 11/20/2022] Open
Abstract
Previously, we found a gene named nuclear receptor interaction protein (NRIP) (or DCAF6 or IQWD1). We demonstrate that NRIP is a novel binding protein for human papillomavirus 16 (HPV-16) E2 protein. HPV-16 E2 and NRIP can directly associate into a complex in vivo and in vitro, and the N-terminal domain of NRIP interacts with the transactivation domain of HPV-16 E2. Only full-length NRIP can stabilize E2 protein and induce HPV gene expression, and NRIP silenced by two designed small interfering RNAs (siRNAs) decreases E2 protein levels and E2-driven gene expression. We found that NRIP can directly bind with calmodulin in the presence of calcium through its IQ domain, resulting in decreased E2 ubiquitination and increased E2 protein stability. Complex formation between NRIP and calcium/calmodulin activates the phosphatase calcineurin to dephosphorylate E2 and increase E2 protein stability. We present evidences for E2 phosphorylation in vivo and show that NRIP acts as a scaffold to recruit E2 and calcium/calmodulin to prevent polyubiquitination and degradation of E2, enhancing E2 stability and E2-driven gene expression.
Collapse
Affiliation(s)
- Szu-Wei Chang
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Yeou-Ping Tsao
- Department of Ophthalmology, Mackay Memorial Hospital, Taipei 104, Taiwan
| | - Chia-Yi Lin
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Show-Li Chen
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| |
Collapse
|
27
|
Bellanger S, Tan CL, Xue YZ, Teissier S, Thierry F. Tumor suppressor or oncogene? A critical role of the human papillomavirus (HPV) E2 protein in cervical cancer progression. Am J Cancer Res 2011; 1:373-389. [PMID: 21968515 PMCID: PMC3180061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2011] [Accepted: 01/23/2011] [Indexed: 05/31/2023] Open
Abstract
The papillomavirus (PV) E2 proteins have been shown to exert many functions in the viral cycle including pivotal roles in transcriptional regulation and in viral DNA replication. Besides these historical roles, which rely on their aptitude to bind to specific DNA sequences, E2 has also been shown to modulate the host cells through direct protein interactions mainly through its amino terminal transactivation domain. We will describe here some of these new functions of E2 and their potential implication in the HPV-induced carcinogenesis. More particularly we will focus on E2-mediated modulation of the host cell cycle and consequences to cell transformation. In all, the HPV E2 proteins exhibit complex functions independent of transcription that can modulate the host cells in concert with the viral vegetative cycle and which could be involved in early carcinogenesis.
Collapse
Affiliation(s)
- Sophie Bellanger
- Institute of Medical Biology 8A Biochemical Grove, #06-06 Immunos, 138648, Singapore
| | | | | | | | | |
Collapse
|
28
|
Nucleosome eviction and activated transcription require p300 acetylation of histone H3 lysine 14. Proc Natl Acad Sci U S A 2010; 107:19254-9. [PMID: 20974913 DOI: 10.1073/pnas.1009650107] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Histone posttranslational modifications and chromatin dynamics are inextricably linked to eukaryotic gene expression. Among the many modifications that have been characterized, histone tail acetylation is most strongly correlated with transcriptional activation. In Metazoa, promoters of transcriptionally active genes are generally devoid of physically repressive nucleosomes, consistent with the contemporaneous binding of the large RNA polymerase II transcription machinery. The histone acetyltransferase p300 is also detected at active gene promoters, flanked by regions of histone hyperacetylation. Although the correlation between histone tail acetylation and gene activation is firmly established, the mechanisms by which acetylation facilitates this fundamental biological process remain poorly understood. To explore the role of acetylation in nucleosome dynamics, we utilized an immobilized template carrying a natural promoter reconstituted with various combinations of wild-type and mutant histones. We find that the histone H3 N-terminal tail is indispensable for activator, p300, and acetyl-CoA-dependent nucleosome eviction mediated by the histone chaperone Nap1. Significantly, we identify H3 lysine 14 as the essential p300 acetylation substrate required for dissociation of the histone octamer from the promoter DNA. Together, a total of 11 unique mutant octamer sets corroborated these observations and revealed a striking correlation between nucleosome eviction and strong activator and acetyl-CoA-dependent transcriptional activation. These novel findings uncover an exclusive role for H3 lysine 14 acetylation in facilitating the ATP-independent and transcription-independent disassembly of promoter nucleosomes by Nap1. Furthermore, these studies directly couple nucleosome disassembly with strong, activator-dependent transcription.
Collapse
|
29
|
Interaction of the papillomavirus E8--E2C protein with the cellular CHD6 protein contributes to transcriptional repression. J Virol 2010; 84:9505-15. [PMID: 20631145 DOI: 10.1128/jvi.00678-10] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Expression of the E6 and E7 oncogenes of high-risk human papillomaviruses (HPV) is controlled by cellular transcription factors and by viral E2 and E8--E2C proteins, which are both derived from the HPV E2 gene. Both proteins bind to and repress the HPV E6/E7 promoter. Promoter inhibition has been suggested to be due to binding site competition with cellular transcription factors and to interactions of different cellular transcription modulators with the different amino termini of E2 and E8--E2C. We have now identified the cellular chromodomain helicase DNA binding domain 6 protein (CHD6) as a novel interactor with HPV31 E8--E2C by using yeast two-hybrid screening. Pull-down and coimmunoprecipitation assays indicate that CHD6 interacts with the HPV31 E8--E2C protein via the E2C domain. This interaction is conserved, as it occurs also with the E8--E2C proteins expressed by HPV16 and -18 and with the HPV31 E2 protein. Both RNA knockdown experiments and mutational analyses of the E2C domain suggest that binding of CHD6 to E8--E2C contributes to the transcriptional repression of the HPV E6/E7 oncogene promoter. We provide evidence that CHD6 is also involved in transcriptional repression but not activation by E2. Taken together our results indicate that the E2C domain not only mediates specific DNA binding but also has an additional role in transcriptional repression by recruitment of the CHD6 protein. This suggests that repression of the E6/E7 promoter by E2 and E8--E2C involves multiple interactions with host cell proteins through different protein domains.
Collapse
|
30
|
Hansen JC, Nyborg JK, Luger K, Stargell LA. Histone chaperones, histone acetylation, and the fluidity of the chromogenome. J Cell Physiol 2010; 224:289-99. [PMID: 20432449 DOI: 10.1002/jcp.22150] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The "chromogenome" is defined as the structural and functional status of the genome at any given moment within a eukaryotic cell. This article focuses on recently uncovered relationships between histone chaperones, post-translational acetylation of histones, and modulation of the chromogenome. We emphasize those chaperones that function in a replication-independent manner, and for which three-dimensional structural information has been obtained. The emerging links between histone acetylation and chaperone function in both yeast and higher metazoans are discussed, including the importance of nucleosome-free regions. We close by posing many questions pertaining to how the coupled action of histone chaperones and acetylation influences chromogenome structure and function.
Collapse
Affiliation(s)
- Jeffrey C Hansen
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, Colorado 80523, USA.
| | | | | | | |
Collapse
|
31
|
Subcellular localization of the interaction between the human immunodeficiency virus transactivator Tat and the nucleosome assembly protein 1. Amino Acids 2009; 38:1583-93. [DOI: 10.1007/s00726-009-0378-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2009] [Accepted: 10/14/2009] [Indexed: 10/20/2022]
|
32
|
Nucleosome assembly proteins bind to Epstein-Barr virus nuclear antigen 1 and affect its functions in DNA replication and transcriptional activation. J Virol 2009; 83:11704-14. [PMID: 19726498 DOI: 10.1128/jvi.00931-09] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The EBNA1 protein of Epstein-Barr virus (EBV) plays several important roles in EBV latent infection, including activating DNA replication from the latent origin of replication (oriP) and activating the transcription of other latency genes within the EBV chromatin. These functions require EBNA1 binding to the DS and FR elements within oriP, respectively, although how these interactions activate these processes is not clear. We previously identified interactions of EBNA1 with the related nucleosome assembly proteins NAP1 and TAF-I, known to affect the replication and transcription of other chromatinized templates. We have further investigated these interactions, showing that EBNA1 binds directly to NAP1 and to the beta isoform of TAF-I (also called SET) and that these interactions greatly increase the solubility of EBNA1 in vitro. These interactions were confirmed in EBV-infected cells, and chromatin immunoprecipitation with these cells showed that NAP1 and TAF-I both localized with EBNA1 to the FR element, while only TAF-I was detected with EBNA1 at the DS element. In keeping with these observations, alteration of the NAP1 or TAF-Ibeta level by RNA interference and overexpression inhibited transcriptional activation by EBNA1 in FR reporter assays. In addition, EBNA1-mediated DNA replication was stimulated when TAF-I (but not NAP1) was downregulated and was inhibited by TAF-Ibeta overexpression. The results indicate that the interaction of EBNA1 with NAP1 and TAF-I is important for transcriptional activation and that EBNA1 recruits TAF-I to the DS element, where it negatively regulates DNA replication.
Collapse
|
33
|
Stable complex formation between HIV Rev and the nucleosome assembly protein, NAP1, affects Rev function. Virology 2009; 388:103-11. [PMID: 19339032 DOI: 10.1016/j.virol.2009.03.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2008] [Revised: 01/10/2009] [Accepted: 03/06/2009] [Indexed: 11/23/2022]
Abstract
The Rev protein of HIV-1 is essential for HIV-1 proliferation due to its role in exporting viral RNA from the nucleus. We used a modified version of tandem affinity purification (TAP) tagging to identify proteins interacting with HIV-1 Rev in human cells and discovered a prominent interaction between Rev and nucleosome assembly protein 1 (Nap1). This interaction was also observed by specific retention of Nap1 from human cell lysates on a Rev affinity column. Nap1 was found to bind Rev through the Rev arginine-rich domain and altered the oligomerization state of Rev in vitro. Overexpression of Nap1 stimulated the ability of Rev to export RNA, reduced the nucleolar localization of Rev, and affected Rev nuclear import rates. The results suggest that Nap-1 may influence Rev function by increasing the availability of Rev.
Collapse
|
34
|
Interaction of the replication proteins and the capsid protein of porcine circovirus type 1 and 2 with host proteins. Virology 2009; 386:122-31. [DOI: 10.1016/j.virol.2008.12.039] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2008] [Revised: 12/02/2008] [Accepted: 12/26/2008] [Indexed: 01/08/2023]
|
35
|
Chromatin-specific remodeling by HMGB1 and linker histone H1 silences proinflammatory genes during endotoxin tolerance. Mol Cell Biol 2009; 29:1959-71. [PMID: 19158276 DOI: 10.1128/mcb.01862-08] [Citation(s) in RCA: 114] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Epigenetic silencing of tumor necrosis factor alpha (TNF-alpha) and interleukin 1beta (IL-1beta) transcription occurs in blood leukocytes of animals and humans after the initiation of severe systemic inflammation (SSI). We previously reported that the epigenetic signature requires induction of NF-kappaB factor RelB, which directs histone H3K9 dimethylation, disrupts assembly of transcription activator NF-kappaB p65, and induces a sustained switch from the euchromatin to heterochromatin. Here, we report the novel findings that intracellular high mobility group box 1 protein (HMGB1) and nucleosome linker histone H1 protein are necessary components of endotoxin-mediated silencing of TNF-alpha in THP-1 human promonocytes. HMGB1 binds the TNF-alpha promoter during transcription silencing and promotes assembly of the repressor RelB. Depletion of HMGB1 by small interfering RNA results in dissociation of RelB from the promoter and partially restores TNF-alpha transcription. Histone H1, which typically displaces HMGB1 from nucleosomal DNA, also binds concomitantly with HMGB1 to the heterochromatin of the silenced TNF-alpha promoter. Combined knockdown of HMGB1 and H1 restores binding of the transcriptionally active NF-kappaB p65 and reestablishes TNF-alpha mRNA levels. Chromatin reimmunoprecipitation experiments demonstrate that HMGB1 and H1 are likely recruited to TNF-alpha sequences independently and that their binding correlates with histone H3K9 dimethylation, as inhibition of histone methylation blocks HMGB1 and H1 binding. Moreover, HMGB1- and H1-mediated chromatin modifications are gene specific during endotoxin silencing in that they also bind and repress acute proinflammatory IL-1beta, while no binding nor repression of antiinflammatory IkappaBalpha is observed. Finally, we find that H1 and HMGB1 bind to the TNF-alpha a promoter in human leukocytes obtained from patients with SSI. We conclude proinflammatory HMGB1 and structural nucleosome linker H1 couple as a component of the epigenetic complex that silences acute proinflammatory TNF-alpha during the assembly of heterochromatin in the SSI phenotype.
Collapse
|
36
|
Tax1BP1 interacts with papillomavirus E2 and regulates E2-dependent transcription and stability. J Virol 2008; 83:2274-84. [PMID: 19109394 DOI: 10.1128/jvi.01791-08] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The papillomavirus E2 proteins regulate viral replication, gene transcription, and genome maintenance by interacting with other viral and host proteins. From a yeast two-hybrid screen, we identified the cellular protein Tax1BP1 as a novel binding partner of human papillomavirus type 18 (HPV18) E2. Tax1BP1 also interacts with the HPV16 and bovine papillomavirus type 1 (BPV1) E2 proteins, with the C-terminal region of Tax1BP1 interacting with the N-terminal transactivation domain of BPV1 E2. Tax1BP1 complexes with p300 and acts synergistically as a coactivator with p300 to enhance E2-dependent transcription. Using chromatin immunoprecipitation assays, we show that Tax1BP1 and E2 localize to the long control region on the BPV1 genome. Tax1BP1 was recently reported to bind ubiquitin and to function as an essential component of an A20 ubiquitin-editing complex. We demonstrate that Tax1BP1 plays a role in the regulation of the steady-state level of E2 by preventing its proteasomal degradation. These studies provide new insights into the regulation of E2 functions.
Collapse
|
37
|
Wang T, Gong N, Liu J, Kadiu I, Kraft-Terry SD, Schlautman JD, Ciborowski P, Volsky DJ, Gendelman HE. HIV-1-infected astrocytes and the microglial proteome. J Neuroimmune Pharmacol 2008; 3:173-86. [PMID: 18587649 PMCID: PMC2579774 DOI: 10.1007/s11481-008-9110-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2008] [Accepted: 05/07/2008] [Indexed: 12/22/2022]
Abstract
The human immunodeficiency virus (HIV) invades the central nervous system early after viral exposure but causes progressive cognitive, behavior, and motor impairments years later with the onset of immune deficiency. Although in the brain, HIV preferentially replicates productively in cells of mononuclear phagocyte (MP; blood borne macrophage and microglia), astrocytes also can be infected, at low and variable frequency, particularly in patients with encephalitis. Among their many functions, astrocytes network with microglia to provide the first line of defense against microbial infection; however, very little is known about astrocytes' consequences on MP. Here, we addressed this question using co-culture systems of HIV-infected mouse astrocytes and microglia. Pseudotyped vesicular stomatis virus/HIV was used to circumvent the absence of viral receptors and ensure cell genotypic uniformity for studies of intercellular communication. The study demonstrated that infected astrocytes show modest changes in protein elements compared to uninfected cells. In contrast, infected astrocytes induce robust changes in the proteome of HIV-1-infected microglia. Accelerated cell death and redox proteins, among others, were produced in abundance. The observations confirmed the potential of astrocytes to influence the neuropathogenesis of HIV-1 infection by specifically altering the neurotoxic potential of infected microglia and regulating viral maturation.
Collapse
Affiliation(s)
- Tong Wang
- Center for Neurovirology and Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, NE 68198-5880
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5880
- Institute for Tissue Transplantation and Immunology, Jinan University, Guangzhou, Guangdong, China 510630
| | - Nan Gong
- Center for Neurovirology and Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, NE 68198-5880
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5880
| | - Jianuo Liu
- Center for Neurovirology and Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, NE 68198-5880
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5880
| | - Irena Kadiu
- Center for Neurovirology and Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, NE 68198-5880
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5880
| | - Stephanie D Kraft-Terry
- Center for Neurovirology and Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, NE 68198-5880
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5880
| | - Joshua D Schlautman
- Center for Neurovirology and Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, NE 68198-5880
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5880
| | - Pawel Ciborowski
- Center for Neurovirology and Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, NE 68198-5880
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5880
| | - David J Volsky
- Molecular Virology Division, Columbia University Medical Center, New York, NY 10063
| | - Howard E Gendelman
- Center for Neurovirology and Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, NE 68198-5880
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5880
- Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198-5880
| |
Collapse
|
38
|
Inhibition of transcription and DNA replication by the papillomavirus E8-E2C protein is mediated by interaction with corepressor molecules. J Virol 2008; 82:5127-36. [PMID: 18353941 DOI: 10.1128/jvi.02647-07] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Papillomavirus genomes replicate as nuclear plasmids at a low copy number in undifferentiated keratinocytes. Papillomaviruses encode the E1 and E2 proteins that bind to the origin of replication and are required for the activation of replication. In addition to E2, several papillomaviruses express an E8-E2C protein, which is generated by alternative splicing and functions as a transcriptional repressor and inhibitor of the E1/E2-dependent replication of the viral origin. Previous analyses suggested that the E8 domain functions as a transferable repression domain. In this report we present evidence that the E8 domain is responsible for the interaction with cellular corepressor molecules such as histone deacetylases, the histone methyltransferase SETDB1, and the TRIM28/KAP-1/TIF1beta/KRIP-1 protein. Whereas the interaction with histone deacetylases is involved only in transcriptional repression, the interaction with TRIM28/KAP-1/TIF1beta/KRIP-1 contributes to the inhibition of E1/E2-dependent replication. The corepressor TRIM28/KAP-1/TIF1beta/KRIP-1 has been described to be part of multicomponent complexes involved in transcriptional regulation and functions as a scaffold protein. Since neither histone deacetylases nor the histone methyltransferase SETDB1 appears to be involved in the inhibition of E1/E2-dependent replication, most likely the modification of non-histone proteins contributes to the replication repression activity of E8-E2C.
Collapse
|
39
|
Vardabasso C, Manganaro L, Lusic M, Marcello A, Giacca M. The histone chaperone protein Nucleosome Assembly Protein-1 (hNAP-1) binds HIV-1 Tat and promotes viral transcription. Retrovirology 2008; 5:8. [PMID: 18226242 PMCID: PMC2266780 DOI: 10.1186/1742-4690-5-8] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2007] [Accepted: 01/28/2008] [Indexed: 12/22/2022] Open
Abstract
Background Despite the large amount of data available on the molecular mechanisms that regulate HIV-1 transcription, crucial information is still lacking about the interplay between chromatin conformation and the events that regulate initiation and elongation of viral transcription. During transcriptional activation, histone acetyltransferases and ATP-dependent chromatin remodeling complexes cooperate with histone chaperones in altering chromatin structure. In particular, human Nucleosome Assembly Protein-1 (hNAP-1) is known to act as a histone chaperone that shuttles histones H2A/H2B into the nucleus, assembles nucleosomes and promotes chromatin fluidity, thereby affecting transcription of several cellular genes. Results Using a proteomic screening, we identified hNAP-1 as a novel cellular protein interacting with HIV-1 Tat. We observed that Tat specifically binds hNAP1, but not other members of the same family of factors. Binding between the two proteins required the integrity of the basic domain of Tat and of two separable domains of hNAP-1 (aa 162–290 and 290–391). Overexpression of hNAP-1 significantly enhanced Tat-mediated activation of the LTR. Conversely, silencing of the protein decreased viral promoter activity. To explore the effects of hNAP-1 on viral infection, a reporter HIV-1 virus was used to infect cells in which hNAP-1 had been either overexpressed or knocked-down. Consistent with the gene expression results, these two treatments were found to increase and inhibit viral infection, respectively. Finally, we also observed that the overexpression of p300, a known co-activator of both Tat and hNAP-1, enhanced hNAP-1-mediated transcriptional activation as well as its interaction with Tat. Conclusion Our study reveals that HIV-1 Tat binds the histone chaperone hNAP-1 both in vitro and in vivo and shows that this interaction participates in the regulation of Tat-mediated activation of viral gene expression.
Collapse
Affiliation(s)
- Chiara Vardabasso
- Molecular Medicine Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), Padriciano 99, 34012 Trieste, Italy.
| | | | | | | | | |
Collapse
|
40
|
Sichtig N, Körfer N, Steger G. Papillomavirus binding factor binds to SAP30 and represses transcription via recruitment of the HDAC1 co-repressor complex. Arch Biochem Biophys 2007; 467:67-75. [PMID: 17897615 DOI: 10.1016/j.abb.2007.08.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2007] [Revised: 08/09/2007] [Accepted: 08/09/2007] [Indexed: 10/22/2022]
Abstract
Papillomavirus binding factor, PBF, identical to the Huntington's disease binding protein 2, HDBP2, is a nuclear-cytoplasmic shuttling factor with the ability to inhibit cell growth. It has been identified by its ability to bind to GC-rich sequence elements within upstream promoter regions of certain human papillomavirus (HPV) types and of the Huntingtin protein, respectively. Here, we show that PBF acts as a repressor of HPV transcription. This repression requires the DNA-binding activity of PBF, which we mapped to two C-terminal four-amino acids motifs conserved to the so-called e-tail of certain T-cell factors. Moreover, we show that PBF directly binds to SAP30 (Sin3-associated polypeptide of 30kDa) a component of the mSIN3A-HDAC1 complex, via amino acids 263-312. The addition of Trichostatin A, an inhibitor of HDACs, alleviated PBF-mediated repression. Thus, PBF-mediated repression of transcription involves specific DNA-binding and the recruitment of the SIN3A-HDAC1 complex.
Collapse
Affiliation(s)
- Nadine Sichtig
- Institute of Virology, University of Cologne, Fürst-Pückler-Strasse 56, 50935 Cologne, Germany
| | | | | |
Collapse
|
41
|
Töpffer S, Müller-Schiffmann A, Matentzoglu K, Scheffner M, Steger G. Protein tyrosine phosphatase H1 is a target of the E6 oncoprotein of high-risk genital human papillomaviruses. J Gen Virol 2007; 88:2956-2965. [DOI: 10.1099/vir.0.83123-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The E6 proteins of high-risk genital human papillomaviruses (HPV), such as HPV types 16 and 18, possess a conserved C-terminal PDZ-binding motif, which mediates interaction with some cellular PDZ domain proteins. The binding of E6 usually results in their ubiquitin-mediated degradation. The ability of E6 to bind to PDZ domain proteins correlates with the oncogenic potential. Using a yeast two-hybrid system, GST pull-down experiments and coimmunoprecipitations, we identified the protein tyrosine phosphatase H1 (PTPH1/PTPN3) as a novel target of the PDZ-binding motif of E6 of HPV16 and 18. PTPH1 has been suggested to function as tumour suppressor protein, since mutational analysis revealed somatic mutations in PTPH1 in a minor fraction of various human tumours. We show here that HPV16 E6 accelerated the proteasome-mediated degradation of PTPH1, which required the binding of E6 to the cellular ubiquitin ligase E6-AP and to PTPH1. The endogenous levels of PTPH1 were particularly low in HPV-positive cervical carcinoma cell lines. The reintroduction of the E2 protein into the HPV16-positive cervical carcinoma cell line SiHa, known to lead to a sharp repression of E6 expression and to induce growth suppression, resulted in an increase of the amount of PTPH1. Our data suggest that reducing the level of PTPH1 may contribute to the oncogenic activity of high-risk genital E6 proteins.
Collapse
Affiliation(s)
- Stephanie Töpffer
- Institute of Virology, University of Cologne, Fürst-Pückler-Strasse 56, 50935 Cologne, Germany
| | | | | | - Martin Scheffner
- Department of Biology, University of Konstanz, Konstanz, Germany
| | - Gertrud Steger
- Institute of Virology, University of Cologne, Fürst-Pückler-Strasse 56, 50935 Cologne, Germany
| |
Collapse
|
42
|
Schweiger MR, Ottinger M, You J, Howley PM. Brd4-independent transcriptional repression function of the papillomavirus e2 proteins. J Virol 2007; 81:9612-22. [PMID: 17626100 PMCID: PMC2045424 DOI: 10.1128/jvi.00447-07] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The papillomavirus E2 protein is a critical viral regulatory protein with transcription, DNA replication, and genome maintenance functions. We have previously identified the cellular bromodomain protein Brd4 as a major E2-interacting protein and established that it participates in tethering bovine papillomavirus type 1 E2 and viral genomes to host cell mitotic chromosomes. We have also shown that Brd4 mediates E2-dependent transcriptional activation, which is strongly inhibited by the disruption of E2/Brd4 binding as well as by short hairpin RNA (shRNA) knockdown of Brd4 expression levels. Since several mutants harboring single amino acid substitutions within the E2 transactivation domain that are defective for both transcriptional transactivation and Brd4 binding are also defective for transcriptional repression, we examined the role of Brd4 in E2 repression of the human papillomavirus E6/E7 promoter. Surprisingly, in a variety of in vivo assays, including transcription reporter assays, HeLa cell proliferation and colony reduction assays, and Northern blot analyses, neither blocking of the binding of E2 to Brd4 nor shRNA knockdown of Brd4 affected the E2 repression function. Our study provides evidence for a Brd4-independent mechanism of E2-mediated repression and suggests that different cellular factors must be involved in E2-mediated transcriptional activation and repression functions.
Collapse
MESH Headings
- Amino Acid Substitution
- Cell Cycle Proteins
- Chromosomes, Human/metabolism
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- Gene Expression Regulation, Viral/physiology
- Genome, Viral/physiology
- HeLa Cells
- Humans
- Mitosis/physiology
- Mutation, Missense
- Nuclear Proteins/antagonists & inhibitors
- Nuclear Proteins/genetics
- Nuclear Proteins/metabolism
- Oncogene Proteins, Viral/biosynthesis
- Oncogene Proteins, Viral/genetics
- Promoter Regions, Genetic/physiology
- RNA, Small Interfering/genetics
- RNA, Small Interfering/pharmacology
- Repressor Proteins/antagonists & inhibitors
- Repressor Proteins/genetics
- Repressor Proteins/metabolism
- Trans-Activators/genetics
- Trans-Activators/metabolism
- Transcription Factors/antagonists & inhibitors
- Transcription Factors/genetics
- Transcription Factors/metabolism
- Transcription, Genetic/physiology
- Transcriptional Activation/physiology
- Virus Replication/physiology
Collapse
Affiliation(s)
- Michal-Ruth Schweiger
- Harvard Medical School, Department of Pathology, 77 Avenue Louis Pasteur, Room 950, Boston, MA 02115, USA
| | | | | | | |
Collapse
|
43
|
Sichtig N, Silling S, Steger G. Papillomavirus binding factor (PBF)-mediated inhibition of cell growth is regulated by 14-3-3beta. Arch Biochem Biophys 2007; 464:90-9. [PMID: 17531190 DOI: 10.1016/j.abb.2007.04.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2007] [Accepted: 04/07/2007] [Indexed: 10/23/2022]
Abstract
The cellular factor, papillomavirus (PV)-binding factor (PBF)/Huntington's disease binding protein 2 (HDBP2), was identified by its ability to bind regulatory sequences of certain papillomavirus types as well as the Huntington's disease gene. PBF is thought to be a novel nuclear-shuttling transcription factor with unknown function. To further characterize PBF, we identified 14-3-3beta as an interaction partner. We demonstrated that PBF binds to 14-3-3beta using two motifs. Akt-kinase and an unidentified kinase that are activated by the PI3K-signaling pathway were able to phosphorylate these motifs, allowing PBF to associate with 14-3-3beta. This interaction may contribute to the control of the subcellular localization of PBF, which migrated into the nucleus in the absence of growth factors. Over-expression of PBF resulted in the inhibition of cell growth, which was enhanced using a 14-3-3 binding-deficient PBF mutant. Thus, our experiments characterized PBF as a new cellular factor mediating the effects of PI3K/Akt signaling and 14-3-3 on cell growth.
Collapse
Affiliation(s)
- Nadine Sichtig
- Institute of Virology, University of Cologne, Fürst-Pückler-Strasse 56, 50935 Cologne, Germany
| | | | | |
Collapse
|
44
|
Zlatanova J, Seebart C, Tomschik M. Nap1: taking a closer look at a juggler protein of extraordinary skills. FASEB J 2007; 21:1294-310. [PMID: 17317729 DOI: 10.1096/fj.06-7199rev] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The nucleosome assembly protein Nap1 is used extensively in the chromatin field to reconstitute nucleosomal templates for structural and functional studies. Beyond its role in facilitating experimental investigation of nucleosomes, the highly conserved Nap1 is one of the best-studied members of the histone chaperone group. Here we review its numerous functions, focusing mainly on its roles in assembly and disassembly of the nucleosome particle, and its interactions with chromatin remodeling factors. Its presumed role in transcription through chromatin is also reviewed in detail. An attempt is made to clearly discriminate between fact and fiction, and to formulate the unresolved questions that need further attention. It is beyond doubt that the numerous, seemingly unrelated functions of this juggler protein have to be precisely channeled, coordinated, and regulated. Why nature endowed this specific protein with so many functions may remain a mystery. We are aware of the enormous challenge to the scientific community that understanding the mechanisms underlying these activities presents.
Collapse
Affiliation(s)
- Jordanka Zlatanova
- Department of Molecular Biology, University of Wyoming, Laramie, WY 82071, USA.
| | | | | |
Collapse
|
45
|
Abstract
Homologues of nucleosome assembly protein 1 (NAP1) have been identified in all eukaryotes. Although initially identified as histone chaperones and chromatin-assembly factors, additional functions include roles in tissue-specific transcription regulation, apoptosis, histone shuttling, and cell-cycle regulation, and extend beyond those of a simple chaperone and assembly factor. NAP1 family members share a structurally conserved fold, the NAP domain. Here we review current knowledge of the NAP family of proteins within the context of the recently determined crystal structure of the NAP1 family's first representative, NAP1 from yeast.
Collapse
Affiliation(s)
- Young-Jun Park
- Howard Hughes Medical Institute and Department of Biochemistry and Molecular Biology, CO State University, Fort Collins, CO 80523-1870, USA.
| | | |
Collapse
|
46
|
Johung K, Goodwin EC, DiMaio D. Human papillomavirus E7 repression in cervical carcinoma cells initiates a transcriptional cascade driven by the retinoblastoma family, resulting in senescence. J Virol 2006; 81:2102-16. [PMID: 17182682 PMCID: PMC1865941 DOI: 10.1128/jvi.02348-06] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
This work demonstrates a central role for the retinoblastoma (Rb) family in driving the transcriptional program of induced and replicative senescence. HeLa cervical carcinoma cells rapidly undergo senescence when the human papillomavirus (HPV) type 18 E7 gene in these cells is repressed by the bovine papillomavirus (BPV) E2 protein. This senescence response requires the endogenous Rb pathway but not the p53 pathway. Microarray analysis 6 days after BPV E2 introduction into HeLa cells identified 224 cellular genes induced by E7 repression and 354 repressed genes. Many repressed genes were involved in cell cycle progression, and numerous induced genes encoded lysosomal proteins. These gene expression changes were blocked by constitutive expression of the wild-type HPV16 E7 or adenovirus E1A gene, but not by E7 or E1A mutants defective for Rb binding. Short hairpin RNAs targeting the Rb family also inhibited these gene expression changes and blocked senescence. Therefore, surprisingly, the transcriptional response to BPV E2 expression was entirely dependent on E7 repression and activation of the Rb family, and the BPV E2 protein did not directly affect the expression of cellular genes. Activation of the Rb family repressed E2F-responsive genes and stimulated transcriptional activators, thereby mobilizing multiple signals, such as repression of B-MYB and DEK, that were independently sufficient to induce senescence. There was extensive overlap between the transcriptional profiles of senescent, late-passage primary human fibroblasts and senescent cervical carcinoma cells, suggesting that this Rb family-mediated transcriptional cascade also plays a central role in replicative senescence.
Collapse
Affiliation(s)
- Kimberly Johung
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06510, USA
| | | | | |
Collapse
|
47
|
Kumar RA, Naidu SR, Wang X, Imbalzano AN, Androphy EJ. Interaction of papillomavirus E2 protein with the Brm chromatin remodeling complex leads to enhanced transcriptional activation. J Virol 2006; 81:2213-20. [PMID: 17151122 PMCID: PMC1865958 DOI: 10.1128/jvi.01746-06] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Papillomavirus E2 is a sequence-specific DNA binding protein that regulates transcription and replication of the viral genome. The transcriptional activities of E2 are typically evaluated by transient transfection of nonreplicating E2-dependent reporters. We sought to address whether E2 activates transcription in an episomal context and its potential interaction with the chromatin remodeling proteins. Using an Epstein-Barr virus-based episomal reporter, we demonstrate that E2 stimulates transcription from an E2-dependent promoter in a chromatin context. This activation is enhanced by the presence of proteins associated with SWI/SNF complexes, which are ATP-dependent chromatin remodeling enzymes. We show that exogenous expression of the Brm ATPase enhances E2 activity in SWI/SNF-deficient cell lines and that the amino-terminal transactivation domain of E2 mediates association with the Brm complex in vivo. Using chromatin immunoprecipitation assays, we demonstrate that Brm enhances promoter occupancy by E2 in an episomal context. Our results demonstrate that E2 activates transcription from an episomal reporter system and reveal a novel property of E2 in collaborating with the Brm chromatin remodeling complex in enhancing transcriptional activation.
Collapse
Affiliation(s)
- R Ajay Kumar
- Department of Medicine, University of Massachusetts Medical School, 364 Plantation Street, LRB 327, Worcester, MA 01605, USA
| | | | | | | | | |
Collapse
|
48
|
Galichet A, Gruissem W. Developmentally controlled farnesylation modulates AtNAP1;1 function in cell proliferation and cell expansion during Arabidopsis leaf development. PLANT PHYSIOLOGY 2006; 142:1412-26. [PMID: 17041028 PMCID: PMC1676069 DOI: 10.1104/pp.106.088344] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
In multicellular organisms, organogenesis requires tight control and coordination of cell proliferation, cell expansion, and cell differentiation. We have identified Arabidopsis (Arabidopsis thaliana) nucleosome assembly protein 1 (AtNAP1;1) as a component of a regulatory mechanism that connects cell proliferation to cell growth and expansion during Arabidopsis leaf development. Molecular, biochemical, and kinetic studies of AtNAP1;1 gain- or loss-of-function mutants indicate that AtNAP1;1 promotes cell proliferation or cell expansion in a developmental context and as a function of the farnesylation status of the protein. AtNAP1;1 was farnesylated and localized to the nucleus during the cell proliferation phase of leaf development when it promotes cell division. Later in leaf development, nonfarnesylated AtNAP1;1 accumulates in the cytoplasm when it promotes cell expansion. Ectopic expression of nonfarnesylated AtNAP1;1, which localized to the cytoplasm, disrupts this developmental program by promoting unscheduled cell expansion during the proliferation phase.
Collapse
Affiliation(s)
- Arnaud Galichet
- Institute of Plant Sciences, ETH Zürich, 8092 Zurich, Switzerland
| | | |
Collapse
|
49
|
Schweiger MR, You J, Howley PM. Bromodomain protein 4 mediates the papillomavirus E2 transcriptional activation function. J Virol 2006; 80:4276-85. [PMID: 16611886 PMCID: PMC1472042 DOI: 10.1128/jvi.80.9.4276-4285.2006] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The papillomavirus E2 regulatory protein has essential roles in viral transcription and the initiation of viral DNA replication as well as for viral genome maintenance. Brd4 has recently been identified as a major E2-interacting protein and, in the case of the bovine papillomavirus type 1, serves to tether E2 and the viral genomes to mitotic chromosomes in dividing cells, thus ensuring viral genome maintenance. We have explored the possibility that Brd4 is involved in other E2 functions. By analyzing the binding of Brd4 to a series of alanine-scanning substitution mutants of the human papillomavirus type 16 E2 N-terminal transactivation domain, we found that amino acids required for Brd4 binding were also required for transcriptional activation but not for viral DNA replication. Functional studies of cells expressing either the C-terminal domain of Brd4 that can bind E2 and compete its binding to Brd4 or short interfering RNA to knock down Brd4 protein levels revealed a role for Brd4 in the transcriptional activation function of E2 but not for its viral DNA replication function. Therefore, these studies establish a broader role for Brd4 in the papillomavirus life cycle than as the chromosome tether for E2 during mitosis.
Collapse
Affiliation(s)
- Michal-Ruth Schweiger
- Department of Pathology, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|
50
|
Clower RV, Hu Y, Melendy T. Papillomavirus E2 protein interacts with and stimulates human topoisomerase I. Virology 2006; 348:13-8. [PMID: 16537084 DOI: 10.1016/j.virol.2006.02.018] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2005] [Revised: 02/08/2006] [Accepted: 02/13/2006] [Indexed: 11/26/2022]
Abstract
The papillomavirus (PV) E2 protein plays a role in recruiting viral and cellular DNA replication factors, such as PV E1 or RPA to PV genomes. Using both purified proteins and through co-precipitation, it was determined that HPV-11 E2 binds human topoisomerase I. E2 can stimulate topoisomerase I DNA relaxation activity 3- to 4-fold. Conversely, topoisomerase I is unable to stimulate E2 DNA binding. These findings suggest that stimulation of topoisomerase I by E2 may help promote efficient relaxation of the torsional stress induced by PV DNA replication.
Collapse
Affiliation(s)
- Randolph V Clower
- University at Buffalo, Departments of Microbiology and Immunology, Biochemistry and the Witebsky Center for Microbial Pathogenesis, 210 Biomedical Research Building, School of Medicine and Biomedical Sciences, Buffalo, NY 14214, USA
| | | | | |
Collapse
|