1
|
Aboreden NG, Zhao H, Shan F, Liu F, Zhang H, Blobel GA. Cis-regulatory chromatin contacts form de novo in the absence of loop extrusion. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.12.632634. [PMID: 39975341 PMCID: PMC11838467 DOI: 10.1101/2025.01.12.632634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
NIPBL promotes chromatin loop extrusion by the cohesin complex until it stalls at convergently oriented CTCF sites, leading to the formation of structural loops. However, to what extent loop extrusion contributes to the establishment vs maintenance of cis-regulatory element (CRE) connectivity is poorly understood. Here, we explored the de novo establishment of chromatin folding patterns at the mitosis-to-G1-phase transition upon acute NIPBL loss. NIPBL depletion primarily impaired the formation of cohesion-mediated structural loops with NIPBL dependence being proportional to loop length. In contrast, the majority of CRE loops were established independently of loop extrusion regardless of length. However, NIPBL depletion slowed the re-formation of CRE loops with weak enhancers. Transcription of genes at NIPBL-independent loop anchors was activated normally in the absence of NIPBL. In sum, establishment of most regulatory contacts and gene transcription following mitotic exit is independent of loop extrusion.
Collapse
Affiliation(s)
- Nicholas G. Aboreden
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Division of Hematology, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Han Zhao
- Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen, China
| | - Fengnian Shan
- Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen, China
- South China University of Technology, Guangzhou, China
| | - Fuhai Liu
- Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen, China
| | - Haoyue Zhang
- Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen, China
| | - Gerd A. Blobel
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Division of Hematology, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| |
Collapse
|
2
|
Dashti NK, Matcuk G, Agaimy A, Saoud C, Antonescu CR. Malignant Bone-Forming Neoplasm With NIPBL::BEND2 Fusion. Genes Chromosomes Cancer 2024; 63:e70015. [PMID: 39604143 PMCID: PMC11977784 DOI: 10.1002/gcc.70015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 11/02/2024] [Accepted: 11/09/2024] [Indexed: 11/29/2024] Open
Abstract
Conventional high-grade osteosarcomas are characterized by aggressive radiologic features, cytologic pleomorphism, and complex genomics. However, rare examples of osteosarcomas remain challenging due to unusual histology, such as sclerosing or osteoblastoma-like features, which may require molecular confirmation of their complex genetic alterations. We have encountered such a case in a 17-year-old man, who presented with a third metatarsal sclerotic bone lesion, found incidentally in the work-up of a foot trauma. The initial imaging revealed a lesion with sclerotic/blastic features proximally and lucent/lytic portion distally, findings interpreted consistent with osteoblastoma. The lesion was managed intra-lesionally with curettings and cryoablation; however, the microscopic findings were non-specific, showing a bland osteoblastic proliferation embedded in a densely sclerotic matrix. Subsequently, the patient developed two rapid recurrences; the first recurrence was treated similarly despite its associated soft tissue extension radiographically, and the histologic findings remained non-specific. The 2nd recurrence showed a large mass, with bone destruction and soft tissue extension and an open biopsy revealed features of osteosarcoma with lace-like osteoid deposition, albeit with uniform cytomorphology. The subsequent below knee amputation showed features compatible with high-grade osteosarcoma, including solid growth of uniform epithelioid cells, with vesicular nuclei and scant cytoplasm, set in a lace-like meshwork of osteoid matrix. There was significant mitotic activity and tumor necrosis. Tumor cells were positive for SATB2. Further molecular work-up was performed showing an unexpected NIPBL::BEND2 fusion, which has been previously reported in two cases of phosphaturic mesenchymal tumor (PMT). FGF23 (ISH) was performed and was negative. By DNA methylation profiling, unsupervised clustering and UMAP dimensionality reduction revealed grouping with high-grade osteosarcomas and not with the PMT group. The patient received chemotherapy post-amputation and is alive without evidence of disease, with 10-month follow-up. We report an aggressive, overtly malignant acral bone-forming tumor, harboring a NIPBL::BEND2 fusion. Further studies are needed to evaluate the recurrent potential of this fusion in osteosarcomas and its relationship with PMT.
Collapse
Affiliation(s)
- Nooshin K. Dashti
- Department of Pathology and Laboratory Medicine, Dartmouth Health Medical Center, Lebanon, NH
- Geisel School of Medicine at Dartmouth, Lebanon, NH
| | - George Matcuk
- Department of Musculoskeletal Radiology, Cedars-Sinai Medical Center, Los Angeles, CA
| | - Abbas Agaimy
- Institute of Pathology, University Hospital of Erlangen, Erlangen, Germany
| | - Carla Saoud
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY
| | | |
Collapse
|
3
|
Chen J, Floyd EN, Dawson DS, Rankin S. Cornelia de Lange Syndrome mutations in SMC1A cause cohesion defects in yeast. Genetics 2023; 225:iyad159. [PMID: 37650609 PMCID: PMC10550314 DOI: 10.1093/genetics/iyad159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 08/07/2023] [Accepted: 08/11/2023] [Indexed: 09/01/2023] Open
Abstract
Cornelia de Lange Syndrome (CdLS) is a developmental disorder characterized by limb truncations, craniofacial abnormalities, and cognitive delays. CdLS is caused mainly by mutations in genes encoding subunits or regulators of the cohesin complex. Cohesin plays 2 distinct roles in chromosome dynamics as follows: it promotes looping, organization, and compaction of individual chromosomes, and it holds newly replicated sister chromatids together until cell division. CdLS-associated mutations result in altered gene expression likely by affecting chromosome architecture. Whether CdLS mutations cause phenotypes through impact on sister chromatid cohesion is less clear. Here, we show that CdLS-associated mutations introduced into the SMC1A gene of budding yeast had measurable impacts on sister chromatid cohesion, mitotic progression, and DNA damage sensitivity. These data suggest that sister chromatid cohesion-related defects may contribute to phenotypes seen in CdLS affected individuals.
Collapse
Affiliation(s)
- Jingrong Chen
- Program in Cell Cycle and Cancer Biology, Oklahoma Medical Research Foundation, 825 NE 13th St. Oklahoma City, OK 73104, USA
| | - Erin N Floyd
- Program in Cell Cycle and Cancer Biology, Oklahoma Medical Research Foundation, 825 NE 13th St. Oklahoma City, OK 73104, USA
| | - Dean S Dawson
- Program in Cell Cycle and Cancer Biology, Oklahoma Medical Research Foundation, 825 NE 13th St. Oklahoma City, OK 73104, USA
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Susannah Rankin
- Program in Cell Cycle and Cancer Biology, Oklahoma Medical Research Foundation, 825 NE 13th St. Oklahoma City, OK 73104, USA
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| |
Collapse
|
4
|
Alonso-Gil D, Losada A. NIPBL and cohesin: new take on a classic tale. Trends Cell Biol 2023; 33:860-871. [PMID: 37062615 DOI: 10.1016/j.tcb.2023.03.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 03/10/2023] [Accepted: 03/13/2023] [Indexed: 04/18/2023]
Abstract
Cohesin folds the genome in dynamic chromatin loops and holds the sister chromatids together. NIPBLScc2 is currently considered the cohesin loader, a role that may need reevaluation. NIPBL activates the cohesin ATPase, which is required for topological entrapment of sister DNAs and to fuel DNA loop extrusion, but is not required for chromatin association. Mechanistic dissection of these processes suggests that both NIPBL and the cohesin STAG subunit bind DNA. NIPBL also regulates conformational switches of the complex. Interactions of NIPBL with chromatin factors, including remodelers, replication proteins, and the transcriptional machinery, affect cohesin loading and distribution. Here, we discuss recent research addressing how NIPBL modulates cohesin activities and how its mutation causes a developmental disorder, Cornelia de Lange Syndrome (CdLS).
Collapse
Affiliation(s)
- Dácil Alonso-Gil
- Chromosome Dynamics Group, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Ana Losada
- Chromosome Dynamics Group, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain.
| |
Collapse
|
5
|
Kaur M, Blair J, Devkota B, Fortunato S, Clark D, Lawrence A, Kim J, Do W, Semeo B, Katz O, Mehta D, Yamamoto N, Schindler E, Al Rawi Z, Wallace N, Wilde JJ, McCallum J, Liu J, Xu D, Jackson M, Rentas S, Tayoun AA, Zhe Z, Abdul-Rahman O, Allen B, Angula MA, Anyane-Yeboa K, Argente J, Arn PH, Armstrong L, Basel-Salmon L, Baynam G, Bird LM, Bruegger D, Ch'ng GS, Chitayat D, Clark R, Cox GF, Dave U, DeBaere E, Field M, Graham JM, Gripp KW, Greenstein R, Gupta N, Heidenreich R, Hoffman J, Hopkin RJ, Jones KL, Jones MC, Kariminejad A, Kogan J, Lace B, Leroy J, Lynch SA, McDonald M, Meagher K, Mendelsohn N, Micule I, Moeschler J, Nampoothiri S, Ohashi K, Powell CM, Ramanathan S, Raskin S, Roeder E, Rio M, Rope AF, Sangha K, Scheuerle AE, Schneider A, Shalev S, Siu V, Smith R, Stevens C, Tkemaladze T, Toimie J, Toriello H, Turner A, Wheeler PG, White SM, Young T, Loomes KM, Pipan M, Harrington AT, Zackai E, Rajagopalan R, Conlin L, Deardorff MA, McEldrew D, Pie J, Ramos F, Musio A, Kline AD, Izumi K, Raible SE, Krantz ID. Genomic analyses in Cornelia de Lange Syndrome and related diagnoses: Novel candidate genes, genotype-phenotype correlations and common mechanisms. Am J Med Genet A 2023; 191:2113-2131. [PMID: 37377026 PMCID: PMC10524367 DOI: 10.1002/ajmg.a.63247] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/02/2023] [Accepted: 05/03/2023] [Indexed: 06/29/2023]
Abstract
Cornelia de Lange Syndrome (CdLS) is a rare, dominantly inherited multisystem developmental disorder characterized by highly variable manifestations of growth and developmental delays, upper limb involvement, hypertrichosis, cardiac, gastrointestinal, craniofacial, and other systemic features. Pathogenic variants in genes encoding cohesin complex structural subunits and regulatory proteins (NIPBL, SMC1A, SMC3, HDAC8, and RAD21) are the major pathogenic contributors to CdLS. Heterozygous or hemizygous variants in the genes encoding these five proteins have been found to be contributory to CdLS, with variants in NIPBL accounting for the majority (>60%) of cases, and the only gene identified to date that results in the severe or classic form of CdLS when mutated. Pathogenic variants in cohesin genes other than NIPBL tend to result in a less severe phenotype. Causative variants in additional genes, such as ANKRD11, EP300, AFF4, TAF1, and BRD4, can cause a CdLS-like phenotype. The common role that these genes, and others, play as critical regulators of developmental transcriptional control has led to the conditions they cause being referred to as disorders of transcriptional regulation (or "DTRs"). Here, we report the results of a comprehensive molecular analysis in a cohort of 716 probands with typical and atypical CdLS in order to delineate the genetic contribution of causative variants in cohesin complex genes as well as novel candidate genes, genotype-phenotype correlations, and the utility of genome sequencing in understanding the mutational landscape in this population.
Collapse
Affiliation(s)
- Maninder Kaur
- Division of Genetics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Justin Blair
- Division of Genetics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | | | - Sierra Fortunato
- Division of Genetics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | | | - Audrey Lawrence
- Division of Genetics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Jiwoo Kim
- Division of Genetics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Wonwook Do
- Division of Genetics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Benjamin Semeo
- Division of Genetics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Olivia Katz
- Division of Genetics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Devanshi Mehta
- Division of Genetics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Nobuko Yamamoto
- Division of Otolaryngology, National Center for Child Health and Development, Tokyo, Japan
| | - Emma Schindler
- Division of Genetics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Zayd Al Rawi
- Division of Genetics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Nina Wallace
- Division of Genetics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | | | - Jennifer McCallum
- Department of Cancer Biology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Jinglan Liu
- Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Dongbin Xu
- Hematologics Inc, Seattle, Washington, USA
| | - Marie Jackson
- Division of Genetics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Stefan Rentas
- Department of Pathology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Ahmad Abou Tayoun
- Al Jalila Genomics Center, Al Jalila Children's Hospital, Dubai, United Arab Emirates
- Center for Genomic Discovery, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| | - Zhang Zhe
- Department of Biomedical and Health Informatics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Omar Abdul-Rahman
- Department of Genetic Medicine, Munroe-Meyer Institute, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Bill Allen
- Fullerton Genetics Center, Mission Health, Asheville, North Carolina, USA
| | - Moris A Angula
- Department of Pediatrics, NYU Langone Hospital-Long Island, Mineola, New York, USA
| | - Kwame Anyane-Yeboa
- Pediatrics, Columbia University Irving Medical Center, New York, New York, USA
| | - Jesús Argente
- Hospital Infantil Universitario Niño Jesús & Universidad Autónoma de Madrid, Madrid, Spain
- CIBER Fisiopatología de la obesidad y nutrición (CIBEROBN) and IMDEA Food Institute, Madrid, Spain
| | - Pamela H Arn
- Department of Pediatrics, Nemours Children's Specialty Care, Jacksonville, Florida, USA
| | - Linlea Armstrong
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Medical Genetics, BC Women's Hospital, Vancouver, British Columbia, Canada
| | - Lina Basel-Salmon
- Rabin Medical Center-Beilinson Hospital, Raphael Recanati Genetics Institute, Petach Tikva, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Felsenstein Medical Research Center, Petach Tikva, Israel
| | - Gareth Baynam
- Western Australian Register of Developmental Anomalies and Genetic Services of Western Australia, King Edward Memorial Hospital, Perth, Western Australia, Australia
- Faculty of Health and Medical Sciences, Division of Pediatrics and Telethon Kids Institute, University of Western Australia, Perth, Western Australia, Australia
- Rare Care Centre, Perth Children's Hospital, Perth, Western Australia, Australia
| | - Lynne M Bird
- Department of Pediatrics, University of California San Diego, San Diego, California, USA
- Division of Genetics & Dysmophology, Rady Children's Hospital San Diego, San Diego, California, USA
| | - Daniel Bruegger
- Department of Otolaryngology-Head and Neck Surgery, University of Kansas School of Medicine, Kansas City, Kansas, USA
| | - Gaik-Siew Ch'ng
- Department of Genetics, Kuala Lumpur Hospital, Kuala Lumpur, Malaysia
| | - David Chitayat
- The Prenatal Diagnosis and Medical Genetics Program, Department of Obstetrics and Gynecology, Mount Sinai Hospital, University of Toronto, Toronto, Ontario, Canada
- Division of Clinical and Metabolic Genetics, Department of Pediatrics, The Hospital for SickKids, University of Toronto, Toronto, Ontario, Canada
| | - Robin Clark
- Department of Pediatrics, Division of Medical Genetics, Loma Linda University School of Medicine, Loma Linda, California, USA
| | - Gerald F Cox
- Division of Genetics and Genomics, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Usha Dave
- R & D MILS International India, Mumbai, India
| | - Elfrede DeBaere
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
| | - Michael Field
- Genetics of Learning Disability Service, Hunter Genetics, Waratah, New South Wales, Australia
| | - John M Graham
- Division of Medical Genetics, Department of Pediatrics, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Karen W Gripp
- Nemours Children's Health, Wilmington, Delaware, USA
| | - Robert Greenstein
- University of Connecticut Health Center, Farmington, Connecticut, USA
| | - Neerja Gupta
- Division of Genetics, Department of Paediatrics, All India Institute of Medical Sciences, New Delhi, India
| | - Randy Heidenreich
- Department of Pediatrics, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| | - Jodi Hoffman
- Department of Pediatrics, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Robert J Hopkin
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, and Department of Pediatrics University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Kenneth L Jones
- Division of Dysmorphology & Teratology, Department of Pediatrics, University of California San Diego School of Medicine, San Diego, California, USA
| | - Marilyn C Jones
- Department of Pediatrics, University of California San Diego, San Diego, California, USA
- Division of Genetics & Dysmophology, Rady Children's Hospital San Diego, San Diego, California, USA
| | | | - Jillene Kogan
- Division of Genetics, Advocate Children's Hospital, Park Ridge, Illinois, USA
| | - Baiba Lace
- Children's Clinical University Hospital, Riga, Latvia
| | - Julian Leroy
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
| | - Sally Ann Lynch
- Department of Clinical Genetics, Children's Health Ireland, Dublin, Ireland
| | - Marie McDonald
- Duke University Medical Center, Durham, North Carolina, USA
| | - Kirsten Meagher
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Nancy Mendelsohn
- Complex Health Solutions, United Healthcare, Minneapolis, Minnesota, USA
| | - Ieva Micule
- Children's Clinical University Hospital, Riga, Latvia
| | - John Moeschler
- Department of Pediatrics, Geisel School of Medicine, Dartmouth College, Hanover, New Hampshire, USA
| | - Sheela Nampoothiri
- Department of Pediatric Genetics, Amrita Institute of Medical Sciences & Research Centre, Cochin, India
| | - Kaoru Ohashi
- Department of Medical Genetics, BC Women's Hospital, Vancouver, British Columbia, Canada
| | - Cynthia M Powell
- Division of Genetics and Metabolism, Department of Pediatrics, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Subhadra Ramanathan
- Department of Pediatrics, Division of Medical Genetics, Loma Linda University School of Medicine, Loma Linda, California, USA
| | - Salmo Raskin
- Genetika-Centro de aconselhamento e laboratório de genética, Curitiba, Brazil
| | - Elizabeth Roeder
- Department of Pediatrics and Molecular and Human Genetics, Baylor College of Medicine, San Antonio, Texas, USA
| | - Marlene Rio
- Department of Genetics, Hôpital Necker-Enfants Malades, Paris, France
| | - Alan F Rope
- Genome Medical, South San Francisco, California, USA
| | - Karan Sangha
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Angela E Scheuerle
- Division of Genetics and Metabolism, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Adele Schneider
- Department of Pediatrics and Oculogenetics, Wills Eye Hospital, Philadelphia, Pennsylvania, USA
| | - Stavit Shalev
- Rappaport Faculty of Medicine, Technion, The Genetics Institute, Emek Medical Center, Afula, Haifa, Israel
| | - Victoria Siu
- London Health Sciences Centre, London, Ontario, Canada
- Division of Medical Genetics, Department of Pediatrics, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Rosemarie Smith
- Division of Genetics, Department of Pediatrics, Maine Medical Center, Portland, Maine, USA
| | - Cathy Stevens
- Department of Pediatrics, University of Tennessee College of Medicine, T.C. Thompson Children's Hospital, Chattanooga, Tennessee, USA
| | - Tinatin Tkemaladze
- Department of Molecular and Medical Genetics, Tbilisi State Medical University, Tbilisi, Georgia
| | - John Toimie
- Clinical Genetics Service, Laboratory Medicine Building, Southern General Hospital, Glasgow, UK
| | - Helga Toriello
- Department of Pediatrics and Human Development, Michigan State University, East Lansing, Michigan, USA
| | - Anne Turner
- Centre for Clinical Genetics, Sydney Children's Hospital, Randwick, New South Wales, Australia
- Division of Genetics, Arnold Palmer Hospital, Orlando, Florida, USA
| | | | - Susan M White
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Parkville, Australia
- Department of Paediatrics, University of Melbourne, Parkville, Australia
| | - Terri Young
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Research to Prevent Blindness Inc, New York, New York, USA
| | - Kathleen M Loomes
- Division of Pediatric Gastroenterology, Hepatology and Nutrition, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Mary Pipan
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Behavioral Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Ann Tokay Harrington
- Center for Rehabilitation, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Elaine Zackai
- Division of Genetics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Ramakrishnan Rajagopalan
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Pathology and Laboratory Medicine, Division of Genomic Diagnostics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Laura Conlin
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Pathology and Laboratory Medicine, Division of Genomic Diagnostics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Matthew A Deardorff
- Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, Keck School of Medicine of the University of Southern California, Los Angeles, California, USA
- Department of Pediatrics, Children's Hospital Los Angeles, Keck School of Medicine of the University of Southern California, Los Angeles, California, USA
| | - Deborah McEldrew
- Division of Genetics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Juan Pie
- Laboratorio de Genética Clínica y Genómica Funcional, Facultad de Medicina, Universidad de Zaragoza, Zaragoza, Spain
| | - Feliciano Ramos
- Unidad de Genética Clínica, Servicio de Pediatría, Hospital Clínico Universitario "Lozano Blesa", Zaragoza, Spain
- Departamento de Pediatría, Facultad de Medicina, Universidad de Zaragoza, Zaragoza, Spain
| | - Antonio Musio
- Istituto di Tecnologie Biomediche, Consiglio Nazionale delle Ricerche, Pisa
| | - Antonie D Kline
- Greater Baltimore Medical Centre, Harvey Institute of Human Genetics, Baltimore, Maryland, USA
| | - Kosuke Izumi
- Division of Genetics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Sarah E Raible
- Division of Genetics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Ian D Krantz
- Division of Genetics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
6
|
Mfarej MG, Hyland CA, Sanchez AC, Falk MM, Iovine MK, Skibbens RV. Cohesin: an emerging master regulator at the heart of cardiac development. Mol Biol Cell 2023; 34:rs2. [PMID: 36947206 PMCID: PMC10162415 DOI: 10.1091/mbc.e22-12-0557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 03/10/2023] [Accepted: 03/17/2023] [Indexed: 03/23/2023] Open
Abstract
Cohesins are ATPase complexes that play central roles in cellular processes such as chromosome division, DNA repair, and gene expression. Cohesinopathies arise from mutations in cohesin proteins or cohesin complex regulators and encompass a family of related developmental disorders that present with a range of severe birth defects, affect many different physiological systems, and often lead to embryonic fatality. Treatments for cohesinopathies are limited, in large part due to the lack of understanding of cohesin biology. Thus, characterizing the signaling networks that lie upstream and downstream of cohesin-dependent pathways remains clinically relevant. Here, we highlight alterations in cohesins and cohesin regulators that result in cohesinopathies, with a focus on cardiac defects. In addition, we suggest a novel and more unifying view regarding the mechanisms through which cohesinopathy-based heart defects may arise.
Collapse
Affiliation(s)
- Michael G. Mfarej
- Department of Biological Sciences, Lehigh University, Bethlehem, PA 18015
| | - Caitlin A. Hyland
- Department of Biological Sciences, Lehigh University, Bethlehem, PA 18015
| | - Annie C. Sanchez
- Department of Biological Sciences, Lehigh University, Bethlehem, PA 18015
| | - Matthias M. Falk
- Department of Biological Sciences, Lehigh University, Bethlehem, PA 18015
| | - M. Kathryn Iovine
- Department of Biological Sciences, Lehigh University, Bethlehem, PA 18015
| | - Robert V. Skibbens
- Department of Biological Sciences, Lehigh University, Bethlehem, PA 18015
| |
Collapse
|
7
|
Horsfield JA. Full circle: a brief history of cohesin and the regulation of gene expression. FEBS J 2023; 290:1670-1687. [PMID: 35048511 DOI: 10.1111/febs.16362] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 12/21/2021] [Accepted: 01/18/2022] [Indexed: 12/17/2022]
Abstract
The cohesin complex has a range of crucial functions in the cell. Cohesin is essential for mediating chromatid cohesion during mitosis, for repair of double-strand DNA breaks, and for control of gene transcription. This last function has been the subject of intense research ever since the discovery of cohesin's role in the long-range regulation of the cut gene in Drosophila. Subsequent research showed that the expression of some genes is exquisitely sensitive to cohesin depletion, while others remain relatively unperturbed. Sensitivity to cohesin depletion is also remarkably cell type- and/or condition-specific. The relatively recent discovery that cohesin is integral to forming chromatin loops via loop extrusion should explain much of cohesin's gene regulatory properties, but surprisingly, loop extrusion has failed to identify a 'one size fits all' mechanism for how cohesin controls gene expression. This review will illustrate how early examples of cohesin-dependent gene expression integrate with later work on cohesin's role in genome organization to explain mechanisms by which cohesin regulates gene expression.
Collapse
Affiliation(s)
- Julia A Horsfield
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
- Genetics Otago Research Centre, University of Otago, Dunedin, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, New Zealand
| |
Collapse
|
8
|
Shin H, Kim Y. Regulation of loop extrusion on the interphase genome. Crit Rev Biochem Mol Biol 2023; 58:1-18. [PMID: 36921088 DOI: 10.1080/10409238.2023.2182273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
Abstract
In the human cell nucleus, dynamically organized chromatin is the substrate for gene regulation, DNA replication, and repair. A central mechanism of DNA loop formation is an ATPase motor cohesin-mediated loop extrusion. The cohesin complexes load and unload onto the chromosome under the control of other regulators that physically interact and affect motor activity. Regulation of the dynamic loading cycle of cohesin influences not only the chromatin structure but also genome-associated human disorders and aging. This review focuses on the recently spotlighted genome organizing factors and the mechanism by which their dynamic interactions shape the genome architecture in interphase.
Collapse
Affiliation(s)
- Hyogyung Shin
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, South Korea
| | - Yoori Kim
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, South Korea.,New Biology Research Center, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, South Korea
| |
Collapse
|
9
|
Muñoz S, Jones A, Bouchoux C, Gilmore T, Patel H, Uhlmann F. Functional crosstalk between the cohesin loader and chromatin remodelers. Nat Commun 2022; 13:7698. [PMID: 36509793 PMCID: PMC9744909 DOI: 10.1038/s41467-022-35444-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 12/02/2022] [Indexed: 12/14/2022] Open
Abstract
The cohesin complex participates in many structural and functional aspects of genome organization. Cohesin recruitment onto chromosomes requires nucleosome-free DNA and the Scc2-Scc4 cohesin loader complex that catalyzes topological cohesin loading. Additionally, the cohesin loader facilitates promoter nucleosome clearance in a yet unknown way, and it recognizes chromatin receptors such as the RSC chromatin remodeler. Here, we explore the cohesin loader-RSC interaction. Amongst multi-pronged contacts by Scc2 and Scc4, we find that Scc4 contacts a conserved patch on the RSC ATPase motor module. The cohesin loader directly stimulates in vitro nucleosome sliding by RSC, providing an explanation how it facilitates promoter nucleosome clearance. Furthermore, we observe cohesin loader interactions with a wide range of chromatin remodelers. Our results provide mechanistic insight into how the cohesin loader recognizes, as well as influences, the chromatin landscape, with implications for our understanding of human developmental disorders including Cornelia de Lange and Coffin-Siris syndromes.
Collapse
Affiliation(s)
- Sofía Muñoz
- Chromosome Segregation Laboratory, The Francis Crick Institute, London, UK.
- Cell Cycle Control and the Maintenance of Genomic Stability Laboratory, Cancer Research Center (CIC), University of Salamanca, Salamanca, Spain.
| | - Andrew Jones
- Proteomics Science Technology Platform, The Francis Crick Institute, London, UK
| | - Céline Bouchoux
- Chromosome Segregation Laboratory, The Francis Crick Institute, London, UK
| | - Tegan Gilmore
- Bioinformatics & Biostatistics Science Technology Platform, The Francis Crick Institute, London, UK
| | - Harshil Patel
- Bioinformatics & Biostatistics Science Technology Platform, The Francis Crick Institute, London, UK
| | - Frank Uhlmann
- Chromosome Segregation Laboratory, The Francis Crick Institute, London, UK.
| |
Collapse
|
10
|
The Green Valley of Drosophila melanogaster Constitutive Heterochromatin: Protein-Coding Genes Involved in Cell Division Control. Cells 2022; 11:cells11193058. [PMID: 36231024 PMCID: PMC9563267 DOI: 10.3390/cells11193058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/22/2022] [Accepted: 09/23/2022] [Indexed: 11/25/2022] Open
Abstract
Constitutive heterochromatin represents a significant fraction of eukaryotic genomes (10% in Arabidopsis, 20% in humans, 30% in D. melanogaster, and up to 85% in certain nematodes) and shares similar genetic and molecular properties in animal and plant species. Studies conducted over the last few years on D. melanogaster and other organisms led to the discovery of several functions associated with constitutive heterochromatin. This made it possible to revise the concept that this ubiquitous genomic territory is incompatible with gene expression. The aim of this review is to focus the attention on a group of protein-coding genes resident in D. melanogaster constitutive of heterochromatin, which are implicated in different steps of cell division.
Collapse
|
11
|
Popay TM, Dixon JR. Coming full circle: On the origin and evolution of the looping model for enhancer-promoter communication. J Biol Chem 2022; 298:102117. [PMID: 35691341 PMCID: PMC9283939 DOI: 10.1016/j.jbc.2022.102117] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 05/26/2022] [Accepted: 05/27/2022] [Indexed: 11/05/2022] Open
Abstract
In mammalian organisms, enhancers can regulate transcription from great genomic distances. How enhancers affect distal gene expression has been a major question in the field of gene regulation. One model to explain how enhancers communicate with their target promoters, the chromatin looping model, posits that enhancers and promoters come in close spatial proximity to mediate communication. Chromatin looping has been broadly accepted as a means for enhancer-promoter communication, driven by accumulating in vitro and in vivo evidence. The genome is now known to be folded into a complex 3D arrangement, created and maintained in part by the interplay of the Cohesin complex and the DNA-binding protein CTCF. In the last few years, however, doubt over the relationship between looping and transcriptional activation has emerged, driven by studies finding that only a modest number of genes are perturbed with acute degradation of looping machinery components. In parallel, newer models describing distal enhancer action have also come to prominence. In this article, we explore the emergence and development of the looping model as a means for enhancer-promoter communication and review the contrasting evidence between historical gene-specific and current global data for the role of chromatin looping in transcriptional regulation. We also discuss evidence for alternative models to chromatin looping and their support in the literature. We suggest that, while there is abundant evidence for chromatin looping as a major mechanism for enhancer function, enhancer-promoter communication is likely mediated by more than one mechanism in an enhancer- and context-dependent manner.
Collapse
Affiliation(s)
- Tessa M Popay
- Gene Expression Laboratory, The Salk Institute for Biological Studies, La Jolla, California, USA
| | - Jesse R Dixon
- Gene Expression Laboratory, The Salk Institute for Biological Studies, La Jolla, California, USA.
| |
Collapse
|
12
|
Justice M, Bryan AF, Limas JC, Cook JG, Dowen JM. Chromosomal localization of cohesin is differentially regulated by WIZ, WAPL, and G9a. BMC Genomics 2022; 23:337. [PMID: 35501690 PMCID: PMC9063240 DOI: 10.1186/s12864-022-08574-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 04/18/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The cohesin complex is essential for proper chromosome structure and gene expression. Defects in cohesin subunits and regulators cause changes in cohesin complex dynamics and thereby alter three-dimensional genome organization. However, the molecular mechanisms that drive cohesin localization and function remain poorly understood. RESULTS In this study, we observe that loss of WIZ causes changes to cohesin localization that are distinct from loss of the known WIZ binding partner G9a. Whereas loss of WIZ uniformly increases cohesin levels on chromatin at known binding sites and leads to new, ectopic cohesin binding sites, loss of G9a does not. Ectopic cohesin binding on chromatin after the loss of WIZ occurs at regions that are enriched for activating histone modifications and transcription factors motifs. Furthermore, loss of WIZ causes changes in cohesin localization that are distinct from those observed by loss of WAPL, the canonical cohesin unloading factor. CONCLUSIONS The evidence presented here suggests that WIZ can function independently from its previously identified role with G9a and GLP in heterochromatin formation. Furthermore, while WIZ limits the levels and localization pattern of cohesin across the genome, it appears to function independently of WAPL-mediated cohesin unloading.
Collapse
Affiliation(s)
- Megan Justice
- Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC, USA
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC, USA
| | - Audra F Bryan
- Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC, USA
| | - Juanita C Limas
- Department of Pharmacology, University of North Carolina, Chapel Hill, NC, USA
| | - Jeanette Gowen Cook
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC, USA
- Department of Pharmacology, University of North Carolina, Chapel Hill, NC, USA
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jill M Dowen
- Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC, USA.
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC, USA.
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC, USA.
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Department of Biology, University of North Carolina, Chapel Hill, NC, USA.
| |
Collapse
|
13
|
Zuilkoski CM, Skibbens RV. Integrating Sister Chromatid Cohesion Establishment to DNA Replication. Genes (Basel) 2022; 13:genes13040625. [PMID: 35456431 PMCID: PMC9032331 DOI: 10.3390/genes13040625] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 03/25/2022] [Accepted: 03/28/2022] [Indexed: 02/01/2023] Open
Abstract
The intersection through which two fundamental processes meet provides a unique vantage point from which to view cellular regulation. On the one hand, DNA replication is at the heart of cell division, generating duplicate chromosomes that allow each daughter cell to inherit a complete copy of the parental genome. Among other factors, the PCNA (proliferating cell nuclear antigen) sliding clamp ensures processive DNA replication during S phase and is essential for cell viability. On the other hand, the process of chromosome segregation during M phase—an act that occurs long after DNA replication—is equally fundamental to a successful cell division. Eco1/Ctf7 ensures that chromosomes faithfully segregate during mitosis, but functions during DNA replication to activate cohesins and thereby establish cohesion between sister chromatids. To achieve this, Eco1 binds PCNA and numerous other DNA replication fork factors that include MCM helicase, Chl1 helicase, and the Rtt101-Mms1-Mms22 E3 ubiquitin ligase. Here, we review the multi-faceted coordination between cohesion establishment and DNA replication. SUMMARY STATEMENT: New findings provide important insights into the mechanisms through which DNA replication and the establishment of sister chromatid cohesion are coupled.
Collapse
Affiliation(s)
- Caitlin M. Zuilkoski
- Department of Biological Sciences, Lehigh University, 111 Research Drive, Bethlehem, PA 18015, USA;
- Department of Biology, Indiana University, 1001 E. Third Street, Bloomington, IN 47401, USA
| | - Robert V. Skibbens
- Department of Biological Sciences, Lehigh University, 111 Research Drive, Bethlehem, PA 18015, USA;
- Correspondence: ; Tel.: +610-758-6162
| |
Collapse
|
14
|
Sanchez AC, Thren ED, Iovine MK, Skibbens RV. Esco2 and cohesin regulate CRL4 ubiquitin ligase ddb1 expression and thalidomide teratogenicity. Cell Cycle 2022; 21:501-513. [PMID: 34989322 PMCID: PMC8942496 DOI: 10.1080/15384101.2021.2023304] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 12/13/2021] [Accepted: 12/20/2021] [Indexed: 11/03/2022] Open
Abstract
Cornelia de Lange syndrome (CdLS) and Roberts syndrome (RBS) are severe developmental maladies that arise from mutation of cohesin (including SMC3, CdLS) and ESCO2 (RBS). Though ESCO2 activates cohesin, CdLS and RBS etiologies are currently considered non-synonymous and for which pharmacological treatments are unavailable. Here, we identify a unifying mechanism that integrates these genetic maladies to pharmacologically-induced teratogenicity via thalidomide. Our results reveal that Esco2 and cohesin co-regulate the transcription of a component of CRL4 ubiquitin ligase through which thalidomide exerts teratogenic effects. These findings are the first to link RBS and CdLS to thalidomide teratogenicity and offer new insights into treatments.
Collapse
Affiliation(s)
- Annie C. Sanchez
- Department of Biological Sciences, Lehigh University, Bethlehem, PA, USA
| | - Elise D. Thren
- Department of Biological Sciences, Lehigh University, Bethlehem, PA, USA
| | - M. Kathryn Iovine
- Department of Biological Sciences, Lehigh University, Bethlehem, PA, USA
| | - Robert V. Skibbens
- Department of Biological Sciences, Lehigh University, Bethlehem, PA, USA
| |
Collapse
|
15
|
Bailey ML, Tieu D, Habsid A, Tong AHY, Chan K, Moffat J, Hieter P. Paralogous synthetic lethality underlies genetic dependencies of the cancer-mutated gene STAG2. Life Sci Alliance 2021; 4:e202101083. [PMID: 34462321 PMCID: PMC8408347 DOI: 10.26508/lsa.202101083] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 08/14/2021] [Accepted: 08/16/2021] [Indexed: 12/14/2022] Open
Abstract
STAG2, a component of the mitotically essential cohesin complex, is highly mutated in several different tumour types, including glioblastoma and bladder cancer. Whereas cohesin has roles in many cancer-related pathways, such as chromosome instability, DNA repair and gene expression, the complex nature of cohesin function has made it difficult to determine how STAG2 loss might either promote tumorigenesis or be leveraged therapeutically across divergent cancer types. Here, we have performed whole-genome CRISPR-Cas9 screens for STAG2-dependent genetic interactions in three distinct cellular backgrounds. Surprisingly, STAG1, the paralog of STAG2, was the only negative genetic interaction that was shared across all three backgrounds. We also uncovered a paralogous synthetic lethal mechanism behind a genetic interaction between STAG2 and the iron regulatory gene IREB2 Finally, investigation of an unusually strong context-dependent genetic interaction in HAP1 cells revealed factors that could be important for alleviating cohesin loading stress. Together, our results reveal new facets of STAG2 and cohesin function across a variety of genetic contexts.
Collapse
Affiliation(s)
- Melanie L Bailey
- Michael Smith Laboratories, University of British Columbia, Vancouver, Canada
| | - David Tieu
- Donnelly Centre, University of Toronto, Toronto, Canada
| | - Andrea Habsid
- Donnelly Centre, University of Toronto, Toronto, Canada
| | | | | | - Jason Moffat
- Donnelly Centre, University of Toronto, Toronto, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, Canada
| | - Philip Hieter
- Michael Smith Laboratories, University of British Columbia, Vancouver, Canada
| |
Collapse
|
16
|
García-Gutiérrez P, García-Domínguez M. BETting on a Transcriptional Deficit as the Main Cause for Cornelia de Lange Syndrome. Front Mol Biosci 2021; 8:709232. [PMID: 34386522 PMCID: PMC8353280 DOI: 10.3389/fmolb.2021.709232] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 07/16/2021] [Indexed: 12/12/2022] Open
Abstract
Cornelia de Lange Syndrome (CdLS) is a human developmental syndrome with complex multisystem phenotypic features. It has been traditionally considered a cohesinopathy together with other phenotypically related diseases because of their association with mutations in subunits of the cohesin complex. Despite some overlap, the clinical manifestations of cohesinopathies vary considerably and, although their precise molecular mechanisms are not well defined yet, the potential pathomechanisms underlying these diverse developmental defects have been theoretically linked to alterations of the cohesin complex function. The cohesin complex plays a critical role in sister chromatid cohesion, but this function is not affected in CdLS. In the last decades, a non-cohesion-related function of this complex on transcriptional regulation has been well established and CdLS pathoetiology has been recently associated to gene expression deregulation. Up to 70% of CdLS cases are linked to mutations in the cohesin-loading factor NIPBL, which has been shown to play a prominent function on chromatin architecture and transcriptional regulation. Therefore, it has been suggested that CdLS can be considered a transcriptomopathy. Actually, CdLS-like phenotypes have been associated to mutations in chromatin-associated proteins, as KMT2A, AFF4, EP300, TAF6, SETD5, SMARCB1, MAU2, ZMYND11, MED13L, PHIP, ARID1B, NAA10, BRD4 or ANKRD11, most of which have no known direct association with cohesin. In the case of BRD4, a critical highly investigated transcriptional coregulator, an interaction with NIPBL has been recently revealed, providing evidence on their cooperation in transcriptional regulation of developmentally important genes. This new finding reinforces the notion of an altered gene expression program during development as the major etiological basis for CdLS. In this review, we intend to integrate the recent available evidence on the molecular mechanisms underlying the clinical manifestations of CdLS, highlighting data that favors a transcription-centered framework, which support the idea that CdLS could be conceptualized as a transcriptomopathy.
Collapse
Affiliation(s)
- Pablo García-Gutiérrez
- Andalusian Centre for Molecular Biology and Regenerative Medicine-CABIMER, CSIC-Universidad de Sevilla-Universidad Pablo de Olavide, Seville, Spain
| | - Mario García-Domínguez
- Andalusian Centre for Molecular Biology and Regenerative Medicine-CABIMER, CSIC-Universidad de Sevilla-Universidad Pablo de Olavide, Seville, Spain
| |
Collapse
|
17
|
Weiss FD, Calderon L, Wang YF, Georgieva R, Guo Y, Cvetesic N, Kaur M, Dharmalingam G, Krantz ID, Lenhard B, Fisher AG, Merkenschlager M. Neuronal genes deregulated in Cornelia de Lange Syndrome respond to removal and re-expression of cohesin. Nat Commun 2021; 12:2919. [PMID: 34006846 PMCID: PMC8131595 DOI: 10.1038/s41467-021-23141-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 04/07/2021] [Indexed: 12/12/2022] Open
Abstract
Cornelia de Lange Syndrome (CdLS) is a human developmental disorder caused by mutations that compromise the function of cohesin, a major regulator of 3D genome organization. Cognitive impairment is a universal and as yet unexplained feature of CdLS. We characterize the transcriptional profile of cortical neurons from CdLS patients and find deregulation of hundreds of genes enriched for neuronal functions related to synaptic transmission, signalling processes, learning and behaviour. Inducible proteolytic cleavage of cohesin disrupts 3D genome organization and transcriptional control in post-mitotic cortical mouse neurons, demonstrating that cohesin is continuously required for neuronal gene expression. The genes affected by acute depletion of cohesin belong to similar gene ontology classes and show significant numerical overlap with genes deregulated in CdLS. Interestingly, reconstitution of cohesin function largely rescues altered gene expression, including the expression of genes deregulated in CdLS.
Collapse
Affiliation(s)
- Felix D Weiss
- Lymphocyte Development Group, Epigenetics Section, MRC London Institute of Medical Sciences, Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK
- Institute of Innate Immunity, University of Bonn, Bonn, Germany
| | - Lesly Calderon
- Lymphocyte Development Group, Epigenetics Section, MRC London Institute of Medical Sciences, Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK
- Research Institute of Molecular Pathology, Vienna, Austria
| | - Yi-Fang Wang
- MRC London Institute of Medical Sciences, Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK
| | - Radina Georgieva
- Lymphocyte Development Group, Epigenetics Section, MRC London Institute of Medical Sciences, Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK
- Computational Regulatory Genomics Group, Epigenetics Section, MRC London Institute of Medical Sciences, Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK
| | - Ya Guo
- Lymphocyte Development Group, Epigenetics Section, MRC London Institute of Medical Sciences, Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Nevena Cvetesic
- Computational Regulatory Genomics Group, Epigenetics Section, MRC London Institute of Medical Sciences, Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK
| | - Maninder Kaur
- Division of Human Genetics, The Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Gopuraja Dharmalingam
- MRC London Institute of Medical Sciences, Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK
| | - Ian D Krantz
- Division of Human Genetics, The Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
- The Perelman School of Medicine at The University of Pennsylvania, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Boris Lenhard
- Computational Regulatory Genomics Group, Epigenetics Section, MRC London Institute of Medical Sciences, Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK
- Sars International Centre for Marine Molecular Biology, University of Bergen, Bergen, Norway
| | - Amanda G Fisher
- Lymphocyte Development Group, Epigenetics Section, MRC London Institute of Medical Sciences, Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK
| | - Matthias Merkenschlager
- Lymphocyte Development Group, Epigenetics Section, MRC London Institute of Medical Sciences, Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK.
| |
Collapse
|
18
|
Spreafico M, Mangano E, Mazzola M, Consolandi C, Bordoni R, Battaglia C, Bicciato S, Marozzi A, Pistocchi A. The Genome-Wide Impact of Nipblb Loss-of-Function on Zebrafish Gene Expression. Int J Mol Sci 2020; 21:E9719. [PMID: 33352756 PMCID: PMC7766774 DOI: 10.3390/ijms21249719] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 12/15/2020] [Accepted: 12/17/2020] [Indexed: 12/31/2022] Open
Abstract
Transcriptional changes normally occur during development but also underlie differences between healthy and pathological conditions. Transcription factors or chromatin modifiers are involved in orchestrating gene activity, such as the cohesin genes and their regulator NIPBL. In our previous studies, using a zebrafish model for nipblb knockdown, we described the effect of nipblb loss-of-function in specific contexts, such as central nervous system development and hematopoiesis. However, the genome-wide transcriptional impact of nipblb loss-of-function in zebrafish embryos at diverse developmental stages remains under investigation. By RNA-seq analyses in zebrafish embryos at 24 h post-fertilization, we examined genome-wide effects of nipblb knockdown on transcriptional programs. Differential gene expression analysis revealed that nipblb loss-of-function has an impact on gene expression at 24 h post fertilization, mainly resulting in gene inactivation. A similar transcriptional effect has also been reported in other organisms, supporting the use of zebrafish as a model to understand the role of Nipbl in gene regulation during early vertebrate development. Moreover, we unraveled a connection between nipblb-dependent differential expression and gene expression patterns of hematological cell populations and AML subtypes, enforcing our previous evidence on the involvement of NIPBL-related transcriptional dysregulation in hematological malignancies.
Collapse
Affiliation(s)
- Marco Spreafico
- Department of Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, LITA, Via Fratelli Cervi 93, Segrate, 20090 Milano, Italy; (M.S.); (M.M.); (C.B.); (A.M.)
| | - Eleonora Mangano
- Institute of Biomedical Technologies, Italian National Research Council (ITB-CNR), Via Fratelli Cervi 93, Segrate, 20090 Milano, Italy; (E.M.); (C.C.); (R.B.)
| | - Mara Mazzola
- Department of Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, LITA, Via Fratelli Cervi 93, Segrate, 20090 Milano, Italy; (M.S.); (M.M.); (C.B.); (A.M.)
| | - Clarissa Consolandi
- Institute of Biomedical Technologies, Italian National Research Council (ITB-CNR), Via Fratelli Cervi 93, Segrate, 20090 Milano, Italy; (E.M.); (C.C.); (R.B.)
| | - Roberta Bordoni
- Institute of Biomedical Technologies, Italian National Research Council (ITB-CNR), Via Fratelli Cervi 93, Segrate, 20090 Milano, Italy; (E.M.); (C.C.); (R.B.)
| | - Cristina Battaglia
- Department of Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, LITA, Via Fratelli Cervi 93, Segrate, 20090 Milano, Italy; (M.S.); (M.M.); (C.B.); (A.M.)
| | - Silvio Bicciato
- Department of Life Sciences, University of Modena and Reggio-Emilia, Via G. Campi 287, 41125 Modena, Italy;
| | - Anna Marozzi
- Department of Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, LITA, Via Fratelli Cervi 93, Segrate, 20090 Milano, Italy; (M.S.); (M.M.); (C.B.); (A.M.)
| | - Anna Pistocchi
- Department of Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, LITA, Via Fratelli Cervi 93, Segrate, 20090 Milano, Italy; (M.S.); (M.M.); (C.B.); (A.M.)
| |
Collapse
|
19
|
Zuilkoski CM, Skibbens RV. PCNA promotes context-specific sister chromatid cohesion establishment separate from that of chromatin condensation. Cell Cycle 2020; 19:2436-2450. [PMID: 32926661 PMCID: PMC7553509 DOI: 10.1080/15384101.2020.1804221] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 07/08/2020] [Accepted: 07/24/2020] [Indexed: 10/23/2022] Open
Abstract
Cellular genomes undergo various structural changes that include cis tethering (the tethering together of two loci within a single DNA molecule), which promotes chromosome condensation and transcriptional activation, and trans tethering (the tethering together of two DNA molecules), which promotes sister chromatid cohesion and DNA repair. The protein complex termed cohesin promotes both cis and trans forms of DNA tethering, but the extent to which these cohesin functions occur in temporally or spatially defined contexts remains largely unknown. Prior studies indicate that DNA polymerase sliding clamp PCNA recruits cohesin acetyltransferase Eco1, suggesting that sister chromatid cohesion is established in the context of the DNA replication fork. In support of this model, elevated levels of PCNA rescue the temperature growth and cohesion defects exhibited by eco1 mutant cells. Here, we test whether Eco1-dependent chromatin condensation is also promoted in the context of this DNA replication fork component. Our results reveal that overexpressed PCNA does not promote DNA condensation in eco1 mutant cells, even though Smc3 acetylation levels are increased. We further provide evidence that replication fork-associated E3 ligase impacts on Eco1 are more complex that previously described. In combination, the data suggests that Eco1 acetylates Smc3 and thus promotes sister chromatid cohesion in context of the DNA replication fork, whereas a distinct cohesin population participates in chromatin condensation outside the context of the DNA replication fork.
Collapse
Affiliation(s)
- Caitlin M. Zuilkoski
- Department of Biological Sciences, Lehigh University, 18015, Bethlehem, Pennsylvania, USA
| | - Robert V. Skibbens
- Department of Biological Sciences, Lehigh University, 18015, Bethlehem, Pennsylvania, USA
| |
Collapse
|
20
|
Piché J, Van Vliet PP, Pucéat M, Andelfinger G. The expanding phenotypes of cohesinopathies: one ring to rule them all! Cell Cycle 2019; 18:2828-2848. [PMID: 31516082 PMCID: PMC6791706 DOI: 10.1080/15384101.2019.1658476] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 08/13/2019] [Accepted: 08/17/2019] [Indexed: 12/13/2022] Open
Abstract
Preservation and development of life depend on the adequate segregation of sister chromatids during mitosis and meiosis. This process is ensured by the cohesin multi-subunit complex. Mutations in this complex have been associated with an increasing number of diseases, termed cohesinopathies. The best characterized cohesinopathy is Cornelia de Lange syndrome (CdLS), in which intellectual and growth retardations are the main phenotypic manifestations. Despite some overlap, the clinical manifestations of cohesinopathies vary considerably. Novel roles of the cohesin complex have emerged during the past decades, suggesting that important cell cycle regulators exert important biological effects through non-cohesion-related functions and broadening the potential pathomechanisms involved in cohesinopathies. This review focuses on non-cohesion-related functions of the cohesin complex, gene dosage effect, epigenetic regulation and TGF-β in cohesinopathy context, especially in comparison to Chronic Atrial and Intestinal Dysrhythmia (CAID) syndrome, a very distinct cohesinopathy caused by a homozygous Shugoshin-1 (SGO1) mutation (K23E) and characterized by pacemaker failure in both heart (sick sinus syndrome followed by atrial flutter) and gut (chronic intestinal pseudo-obstruction) with no intellectual or growth delay. We discuss the possible impact of SGO1 alterations in human pathologies and the potential impact of the SGO1 K23E mutation in the sinus node and gut development and functions. We suggest that the human phenotypes observed in CdLS, CAID syndrome and other cohesinopathies can inform future studies into the less well-known non-cohesion-related functions of cohesin complex genes. Abbreviations: AD: Alzheimer Disease; AFF4: AF4/FMR2 Family Member 4; ANKRD11: Ankyrin Repeat Domain 11; APC: Anaphase Promoter Complex; ASD: Atrial Septal Defect; ATRX: ATRX Chromatin Remodeler; ATRX: Alpha Thalassemia X-linked intellectual disability syndrome; BIRC5: Baculoviral IAP Repeat Containing 5; BMP: Bone Morphogenetic Protein; BRD4: Bromodomain Containing 4; BUB1: BUB1 Mitotic Checkpoint Serine/Threonine Kinase; CAID: Chronic Atrial and Intestinal Dysrhythmia; CDK1: Cyclin Dependent Kinase 1; CdLS: Cornelia de Lange Syndrome; CHD: Congenital Heart Disease; CHOPS: Cognitive impairment, coarse facies, Heart defects, Obesity, Pulmonary involvement, Short stature, and skeletal dysplasia; CIPO: Chronic Intestinal Pseudo-Obstruction; c-kit: KIT Proto-Oncogene Receptor Tyrosine Kinase; CoATs: Cohesin Acetyltransferases; CTCF: CCCTC-Binding Factor; DDX11: DEAD/H-Box Helicase 11; ERG: Transcriptional Regulator ERG; ESCO2: Establishment of Sister Chromatid Cohesion N-Acetyltransferase 2; GJC1: Gap Junction Protein Gamma 1; H2A: Histone H2A; H3K4: Histone H3 Lysine 4; H3K9: Histone H3 Lysine 9; HCN4: Hyperpolarization Activated Cyclic Nucleotide Gated Potassium and Sodium Channel 4;p HDAC8: Histone deacetylases 8; HP1: Heterochromatin Protein 1; ICC: Interstitial Cells of Cajal; ICC-MP: Myenteric Plexus Interstitial cells of Cajal; ICC-DMP: Deep Muscular Plexus Interstitial cells of Cajal; If: Pacemaker Funny Current; IP3: Inositol trisphosphate; JNK: C-Jun N-Terminal Kinase; LDS: Loeys-Dietz Syndrome; LOAD: Late-Onset Alzheimer Disease; MAPK: Mitogen-Activated Protein Kinase; MAU: MAU Sister Chromatid Cohesion Factor; MFS: Marfan Syndrome; NIPBL: NIPBL, Cohesin Loading Factor; OCT4: Octamer-Binding Protein 4; P38: P38 MAP Kinase; PDA: Patent Ductus Arteriosus; PDS5: PDS5 Cohesin Associated Factor; P-H3: Phospho Histone H3; PLK1: Polo Like Kinase 1; POPDC1: Popeye Domain Containing 1; POPDC2: Popeye Domain Containing 2; PP2A: Protein Phosphatase 2; RAD21: RAD21 Cohesin Complex Component; RBS: Roberts Syndrome; REC8: REC8 Meiotic Recombination Protein; RNAP2: RNA polymerase II; SAN: Sinoatrial node; SCN5A: Sodium Voltage-Gated Channel Alpha Subunit 5; SEC: Super Elongation Complex; SGO1: Shogoshin-1; SMAD: SMAD Family Member; SMC1A: Structural Maintenance of Chromosomes 1A; SMC3: Structural Maintenance of Chromosomes 3; SNV: Single Nucleotide Variant; SOX2: SRY-Box 2; SOX17: SRY-Box 17; SSS: Sick Sinus Syndrome; STAG2: Cohesin Subunit SA-2; TADs: Topology Associated Domains; TBX: T-box transcription factors; TGF-β: Transforming Growth Factor β; TGFBR: Transforming Growth Factor β receptor; TOF: Tetralogy of Fallot; TREK1: TREK-1 K(+) Channel Subunit; VSD: Ventricular Septal Defect; WABS: Warsaw Breakage Syndrome; WAPL: WAPL Cohesin Release Factor.
Collapse
Affiliation(s)
- Jessica Piché
- Cardiovascular Genetics, Department of Pediatrics, CHU Sainte-Justine, Montréal, QC, Canada
| | - Patrick Piet Van Vliet
- Cardiovascular Genetics, Department of Pediatrics, CHU Sainte-Justine, Montréal, QC, Canada
- LIA (International Associated Laboratory), CHU Sainte-Justine, Montréal, QC, Canada
- LIA (International Associated Laboratory), INSERM, Marseille, U1251-13885, France
| | - Michel Pucéat
- LIA (International Associated Laboratory), CHU Sainte-Justine, Montréal, QC, Canada
- LIA (International Associated Laboratory), INSERM, Marseille, U1251-13885, France
- INSERM U-1251, MMG,Aix-Marseille University, Marseille, 13885, France
| | - Gregor Andelfinger
- Cardiovascular Genetics, Department of Pediatrics, CHU Sainte-Justine, Montréal, QC, Canada
| |
Collapse
|
21
|
Chen FX, Smith ER, Shilatifard A. Born to run: control of transcription elongation by RNA polymerase II. Nat Rev Mol Cell Biol 2019; 19:464-478. [PMID: 29740129 DOI: 10.1038/s41580-018-0010-5] [Citation(s) in RCA: 285] [Impact Index Per Article: 47.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The dynamic regulation of transcription elongation by RNA polymerase II (Pol II) is an integral part of the implementation of gene expression programmes during development. In most metazoans, the majority of transcribed genes exhibit transient pausing of Pol II at promoter-proximal regions, and the release of Pol II into gene bodies is controlled by many regulatory factors that respond to environmental and developmental cues. Misregulation of the elongation stage of transcription is implicated in cancer and other human diseases, suggesting that mechanistic understanding of transcription elongation control is therapeutically relevant. In this Review, we discuss the features, establishment and maintenance of Pol II pausing, the transition into productive elongation, the control of transcription elongation by enhancers and by factors of other cellular processes, such as topoisomerases and poly(ADP-ribose) polymerases (PARPs), and the potential of therapeutic targeting of the elongation stage of transcription by Pol II.
Collapse
Affiliation(s)
- Fei Xavier Chen
- Simpson Querrey Center for Epigenetics and the Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Edwin R Smith
- Simpson Querrey Center for Epigenetics and the Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Ali Shilatifard
- Simpson Querrey Center for Epigenetics and the Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
| |
Collapse
|
22
|
Guacci V, Chatterjee F, Robison B, Koshland DE. Communication between distinct subunit interfaces of the cohesin complex promotes its topological entrapment of DNA. eLife 2019; 8:e46347. [PMID: 31162048 PMCID: PMC6579514 DOI: 10.7554/elife.46347] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 06/04/2019] [Indexed: 12/21/2022] Open
Abstract
Cohesin mediates higher order chromosome structure. Its biological activities require topological entrapment of DNA within a lumen(s) formed by cohesin subunits. The reversible dissociation of cohesin's Smc3p and Mcd1p subunits is postulated to form a regulated gate that allows DNA entry and exit into the lumen. We assessed gate-independent functions of this interface in yeast using a fusion protein that joins Smc3p to Mcd1p. We show that in vivo all the regulators of cohesin promote DNA binding of cohesin by mechanisms independent of opening this gate. Furthermore, we show that this interface has a gate-independent activity essential for cohesin to bind chromosomes. We propose that this interface regulates DNA entrapment by controlling the opening and closing of one or more distal interfaces formed by cohesin subunits, likely by inducing a conformation change in cohesin. Furthermore, cohesin regulators modulate the interface to control both DNA entrapment and cohesin functions after DNA binding.
Collapse
Affiliation(s)
- Vincent Guacci
- Department of Molecular and Cell BiologyUniversity of California, BerkeleyBerkeleyUnited States
| | - Fiona Chatterjee
- Department of Molecular and Cell BiologyUniversity of California, BerkeleyBerkeleyUnited States
| | - Brett Robison
- Department of Molecular and Cell BiologyUniversity of California, BerkeleyBerkeleyUnited States
| | - Douglas E Koshland
- Department of Molecular and Cell BiologyUniversity of California, BerkeleyBerkeleyUnited States
| |
Collapse
|
23
|
Kim LH, Hong ST, Choi KW. Protein phosphatase 2A interacts with Verthandi/Rad21 to regulate mitosis and organ development in Drosophila. Sci Rep 2019; 9:7624. [PMID: 31110215 PMCID: PMC6527568 DOI: 10.1038/s41598-019-44027-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 05/07/2019] [Indexed: 12/20/2022] Open
Abstract
Rad21/Scc1 is a subunit of the cohesin complex implicated in gene regulation as well as sister chromatid cohesion. The level of Rad21/Scc1 must be controlled for proper mitosis and gene expression during development. Here, we identify the PP2A catalytic subunit encoded by microtubule star (mts) as a regulator of Drosophila Rad21/Verthandi (Vtd). Mutations in mts and vtd cause synergistic mitotic defects, including abnormal spindles and loss of nuclei during nuclear division in early embryo. Depletion of Mts and Vtd in developing wing synergistically reduces the Cut protein level, causing severe defects in wing growth. Mts and PP2A subunit Twins (Tws) interact with Vtd protein. Loss of Mts or Tws reduces Vtd protein level. Reduced proteasome function suppresses mitotic defects caused by mutations in mts and vtd. Taken together, this work provides evidence that PP2A is required for mitosis and wing growth by regulating the Vtd level through the proteasomal pathway.
Collapse
Affiliation(s)
- Lee-Hyang Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Sung-Tae Hong
- Department of Anatomy & Cell Biology, College of Medicine, Chungnam National University, Daejeon, Republic of Korea.,Department of Medical Science, College of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Kwang-Wook Choi
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea.
| |
Collapse
|
24
|
Arya R, Gyonjyan S, Harding K, Sarkissian T, Li Y, Zhou L, White K. A Cut/cohesin axis alters the chromatin landscape to facilitate neuroblast death. Development 2019; 146:dev166603. [PMID: 30952666 PMCID: PMC6526717 DOI: 10.1242/dev.166603] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 03/25/2019] [Indexed: 12/24/2022]
Abstract
Precise control of cell death in the nervous system is essential for development. Spatial and temporal factors activate the death of Drosophila neural stem cells (neuroblasts) by controlling the transcription of multiple cell death genes through a shared enhancer. The activity of this enhancer is controlled by abdominal A and Notch, but additional inputs are needed for proper specificity. Here, we show that the Cut DNA binding protein is required for neuroblast death, regulating reaper and grim downstream of the shared enhancer and of abdominal A expression. The loss of cut accelerates the temporal progression of neuroblasts from a state of low overall levels of H3K27me3 to a higher H3K27me3 state. This is reflected in an increase in H3K27me3 modifications in the cell death gene locus in the CNS on Cut knockdown. We also show that cut regulates the expression of the cohesin subunit Stromalin. Stromalin and the cohesin regulatory subunit Nipped-B are required for neuroblast death, and knockdown of Stromalin increases H3K27me3 levels in neuroblasts. Thus, Cut and cohesin regulate apoptosis in the developing nervous system by altering the chromatin landscape.
Collapse
Affiliation(s)
- Richa Arya
- Cutaneous Biology Research Center, Massachusetts General Hospital Research Institute/Harvard Medical School, Boston, MA 02129, USA
| | - Seda Gyonjyan
- Cutaneous Biology Research Center, Massachusetts General Hospital Research Institute/Harvard Medical School, Boston, MA 02129, USA
| | - Katherine Harding
- Cutaneous Biology Research Center, Massachusetts General Hospital Research Institute/Harvard Medical School, Boston, MA 02129, USA
| | - Tatevik Sarkissian
- Cutaneous Biology Research Center, Massachusetts General Hospital Research Institute/Harvard Medical School, Boston, MA 02129, USA
| | - Ying Li
- Department of Molecular Genetics and Microbiology, College of Medicine/UF Health Cancer Center/UF Genetics Institute, University of Florida, Gainesville, FL 32610, USA
| | - Lei Zhou
- Department of Molecular Genetics and Microbiology, College of Medicine/UF Health Cancer Center/UF Genetics Institute, University of Florida, Gainesville, FL 32610, USA
| | - Kristin White
- Cutaneous Biology Research Center, Massachusetts General Hospital Research Institute/Harvard Medical School, Boston, MA 02129, USA
| |
Collapse
|
25
|
Tang H, Guo J, Linpeng S, Wu L. Next generation sequencing identified two novel mutations in NIPBL and a frame shift mutation in CREBBP in three Chinese children. Orphanet J Rare Dis 2019; 14:45. [PMID: 30770747 PMCID: PMC6377774 DOI: 10.1186/s13023-019-1022-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 02/04/2019] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND Cornelia de Lange syndrome (CdLS) and Rubinstein-Taybi syndrome (RSTS) are both rare congenital multiple malformation disorders caused by genes associated with transcription. They share a number of similar features clinically. In addition, it is difficult to make a molecular diagnosis rapidly and detect the mosaic mutation when only sanger sequencing is taken. This study aims to report three novel mutations in three Chinese children identified by next generation sequencing. RESULTS We describe patient 1 and patient 2 presenting with characteristics of CdLS with mutations in NIPBL and patient 3 with a frame shift mutation in CREBBP who can be diagnosed as RSTS clinically and also have similar symptoms with CdLS to some extent. The splicing site c.4321-1G > A transversion in NIPBL is a mosaic mutation and produces an abnormal transcript bearing the loss of exon 20. The nonsense mutation c.218C > A in NIPBL and the frame shift c.1715delC mutation in CREBBP generate stop codon and yield the premature termination of proteins. CONCLUSIONS In general, we detect three novel heterozygous mutations including a splicing mutation and a nonsense mutation in NIPBL and a frame shift in CREBBP. And several similar features observed in patients indicate the clinical complexity and clinically overlapping of CdLS and RSTS termed "transcriptomopathies", suggest the underlying molecular mechanism and emphasize the utilization of next generation sequencing technologies.
Collapse
Affiliation(s)
- Hui Tang
- Center for Medical Genetics, School of life sciences, Central South University, 110 Xiangya Road, Changsha, Hunan 410078 People’s Republic of China
| | - Jing Guo
- Center for Medical Genetics, School of life sciences, Central South University, 110 Xiangya Road, Changsha, Hunan 410078 People’s Republic of China
| | - Siyuan Linpeng
- Center for Medical Genetics, School of life sciences, Central South University, 110 Xiangya Road, Changsha, Hunan 410078 People’s Republic of China
| | - Lingqian Wu
- Center for Medical Genetics, School of life sciences, Central South University, 110 Xiangya Road, Changsha, Hunan 410078 People’s Republic of China
| |
Collapse
|
26
|
Abstract
Condensins and cohesins are highly conserved complexes that tether together DNA loci within a single DNA molecule to produce DNA loops. Condensin and cohesin structures, however, are different, and the DNA loops produced by each underlie distinct cell processes. Condensin rods compact chromosomes during mitosis, with condensin I and II complexes producing spatially defined and nested looping in metazoan cells. Structurally adaptive cohesin rings produce loops, which organize the genome during interphase. Cohesin-mediated loops, termed topologically associating domains or TADs, antagonize the formation of epigenetically defined but untethered DNA volumes, termed compartments. While condensin complexes formed through cis-interactions must maintain chromatin compaction throughout mitosis, cohesins remain highly dynamic during interphase to allow for transcription-mediated responses to external cues and the execution of developmental programs. Here, I review differences in condensin and cohesin structures, and highlight recent advances regarding the intramolecular or cis-based tetherings through which condensins compact DNA during mitosis and cohesins organize the genome during interphase.
Collapse
Affiliation(s)
- Robert V Skibbens
- Department of Biological Sciences, 111 Research Drive, Lehigh University, Bethlehem, PA 18015, USA
| |
Collapse
|
27
|
Rickels R, Shilatifard A. Enhancer Logic and Mechanics in Development and Disease. Trends Cell Biol 2018; 28:608-630. [PMID: 29759817 DOI: 10.1016/j.tcb.2018.04.003] [Citation(s) in RCA: 125] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 04/11/2018] [Accepted: 04/13/2018] [Indexed: 12/31/2022]
Abstract
Enhancers are distally located genomic cis-regulatory elements that integrate spatiotemporal cues to coordinate gene expression in a tissue-specific manner during metazoan development. Enhancer function depends on a combination of bound transcription factors and cofactors that regulate local chromatin structure, as well as on the topological interactions that are necessary for their activity. Numerous genome-wide studies concur that the vast majority of disease-associated variations occur within non-coding genomic sequences, in other words the 'cis-regulome', and this underscores their relevance for human health. Advances in DNA sequencing and genome-editing technologies have dramatically expanded our ability to identify enhancers and investigate their properties in vivo, revealing an extraordinary level of interconnectivity underlying cis-regulatory networks. We discuss here these recently developed methodologies, as well as emerging trends and remaining questions in the field of enhancer biology, and how perturbation of enhancer activities/functions results in enhanceropathies.
Collapse
Affiliation(s)
- Ryan Rickels
- Simpson Querrey Center for Epigenetics, and the Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, 320 East Superior Street, Chicago, IL 60611, USA
| | - Ali Shilatifard
- Simpson Querrey Center for Epigenetics, and the Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, 320 East Superior Street, Chicago, IL 60611, USA.
| |
Collapse
|
28
|
Litwin I, Wysocki R. New insights into cohesin loading. Curr Genet 2018; 64:53-61. [PMID: 28631016 DOI: 10.1007/s00294-017-0723-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 06/12/2017] [Accepted: 06/13/2017] [Indexed: 01/13/2023]
Abstract
Cohesin is a conserved, ring-shaped protein complex that encircles sister chromatids and ensures correct chromosome segregation during mitosis and meiosis. It also plays a crucial role in the regulation of gene expression, DNA condensation, and DNA repair through both non-homologous end joining and homologous recombination. Cohesins are spatiotemporally regulated by the Scc2-Scc4 complex which facilitates cohesin loading onto chromatin at specific chromosomal sites. Over the last few years, much attention has been paid to cohesin and cohesin loader as it became clear that even minor disruptions of these complexes may lead to developmental disorders and cancers. Here we summarize recent developments in the structure of Scc2-Scc4 complex, cohesin loading process, and mediators that determine the Scc2-Scc4 binding patterns to chromatin.
Collapse
Affiliation(s)
- Ireneusz Litwin
- Institute of Experimental Biology, University of Wroclaw, 50-328, Wroclaw, Poland.
| | - Robert Wysocki
- Institute of Experimental Biology, University of Wroclaw, 50-328, Wroclaw, Poland
| |
Collapse
|
29
|
Countryman P, Fan Y, Gorthi A, Pan H, Strickland E, Kaur P, Wang X, Lin J, Lei X, White C, You C, Wirth N, Tessmer I, Piehler J, Riehn R, Bishop AJR, Tao YJ, Wang H. Cohesin SA2 is a sequence-independent DNA-binding protein that recognizes DNA replication and repair intermediates. J Biol Chem 2018; 293:1054-1069. [PMID: 29175904 PMCID: PMC5777247 DOI: 10.1074/jbc.m117.806406] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 11/22/2017] [Indexed: 11/06/2022] Open
Abstract
Proper chromosome alignment and segregation during mitosis depend on cohesion between sister chromatids, mediated by the cohesin protein complex, which also plays crucial roles in diverse genome maintenance pathways. Current models attribute DNA binding by cohesin to entrapment of dsDNA by the cohesin ring subunits (SMC1, SMC3, and RAD21 in humans). However, the biophysical properties and activities of the fourth core cohesin subunit SA2 (STAG2) are largely unknown. Here, using single-molecule atomic force and fluorescence microscopy imaging as well as fluorescence anisotropy measurements, we established that SA2 binds to both dsDNA and ssDNA, albeit with a higher binding affinity for ssDNA. We observed that SA2 can switch between the 1D diffusing (search) mode on dsDNA and stable binding (recognition) mode at ssDNA gaps. Although SA2 does not specifically bind to centromeric or telomeric sequences, it does recognize DNA structures often associated with DNA replication and double-strand break repair, such as a double-stranded end, single-stranded overhang, flap, fork, and ssDNA gap. SA2 loss leads to a defect in homologous recombination-mediated DNA double-strand break repair. These results suggest that SA2 functions at intermediate DNA structures during DNA transactions in genome maintenance pathways. These findings have important implications for understanding the function of cohesin in these pathways.
Collapse
Affiliation(s)
| | - Yanlin Fan
- the Department of BioSciences, Rice University, Houston, Texas 77251
| | - Aparna Gorthi
- the Greehey Children's Cancer Research Institute and
- Department of Cell Systems and Anatomy, University of Texas Health, San Antonio, Texas 78229
| | | | | | | | | | - Jiangguo Lin
- From the Physics Department
- the Institute of Biomechanics, School of Bioscience and Bioengineering, South China University of Technology, Guangzhou, Guangdong 510006, China
| | - Xiaoying Lei
- the Department of BioSciences, Rice University, Houston, Texas 77251
- the School of Public Health, Shandong University, Jinan 250012, China
| | | | - Changjiang You
- the Division of Biophysics, Universität Osnabrück, Barbarstrasse 11, 49076 Osnabrück, Germany, and
| | - Nicolas Wirth
- the Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, Josef-Schneider-Strasse 2, 97080 Würzburg, Germany
| | - Ingrid Tessmer
- the Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, Josef-Schneider-Strasse 2, 97080 Würzburg, Germany
| | - Jacob Piehler
- the Division of Biophysics, Universität Osnabrück, Barbarstrasse 11, 49076 Osnabrück, Germany, and
| | | | - Alexander J R Bishop
- the Greehey Children's Cancer Research Institute and
- Department of Cell Systems and Anatomy, University of Texas Health, San Antonio, Texas 78229
| | - Yizhi Jane Tao
- the Department of BioSciences, Rice University, Houston, Texas 77251
| | - Hong Wang
- From the Physics Department,
- Center for Human Health and the Environment, North Carolina State University, Raleigh, North Carolina 27695
| |
Collapse
|
30
|
Zuin J, Casa V, Pozojevic J, Kolovos P, van den Hout MCGN, van Ijcken WFJ, Parenti I, Braunholz D, Baron Y, Watrin E, Kaiser FJ, Wendt KS. Regulation of the cohesin-loading factor NIPBL: Role of the lncRNA NIPBL-AS1 and identification of a distal enhancer element. PLoS Genet 2017; 13:e1007137. [PMID: 29261648 PMCID: PMC5754091 DOI: 10.1371/journal.pgen.1007137] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 01/04/2018] [Accepted: 11/28/2017] [Indexed: 12/13/2022] Open
Abstract
Cohesin is crucial for genome stability, cell division, transcription and chromatin organization. Its functions critically depend on NIPBL, the cohesin-loader protein that is found to be mutated in >60% of the cases of Cornelia de Lange syndrome (CdLS). Other mutations are described in the cohesin subunits SMC1A, RAD21, SMC3 and the HDAC8 protein. In 25-30% of CdLS cases no mutation in the known CdLS genes is detected. Until now, functional elements in the noncoding genome were not characterized in the molecular etiology of CdLS and therefore are excluded from mutation screening, although the impact of such mutations has now been recognized for a wide range of diseases. We have identified different elements of the noncoding genome involved in regulation of the NIPBL gene. NIPBL-AS1 is a long non-coding RNA transcribed upstream and antisense to NIPBL. By knockdown and transcription blocking experiments, we could show that not the NIPBL-AS1 gene product, but its actual transcription is important to regulate NIPBL expression levels. This reveals a possibility to boost the transcriptional activity of the NIPBL gene by interfering with the NIPBL-AS1 lncRNA. Further, we have identified a novel distal enhancer regulating both NIPBL and NIPBL-AS1. Deletion of the enhancer using CRISPR genome editing in HEK293T cells reduces expression of NIPBL, NIPBL-AS1 as well as genes found to be dysregulated in CdLS.
Collapse
MESH Headings
- Cell Cycle Proteins/genetics
- Cell Cycle Proteins/metabolism
- Chromosomal Proteins, Non-Histone/genetics
- Chromosomal Proteins, Non-Histone/metabolism
- Chromosome Segregation
- De Lange Syndrome/genetics
- Enhancer Elements, Genetic
- Gene Expression Regulation
- Genome, Human
- HEK293 Cells
- Humans
- Mutation
- Oligonucleotides, Antisense/genetics
- Oligonucleotides, Antisense/metabolism
- Phenotype
- Promoter Regions, Genetic
- Proteins/genetics
- Proteins/metabolism
- RNA, Long Noncoding/genetics
- RNA, Long Noncoding/metabolism
- Sequence Analysis, DNA
- Cohesins
Collapse
Affiliation(s)
- Jessica Zuin
- Department of Cell Biology, Erasmus MC, Rotterdam, The Netherlands
| | - Valentina Casa
- Department of Cell Biology, Erasmus MC, Rotterdam, The Netherlands
| | - Jelena Pozojevic
- Section for Functional Genetics at the Institute of Human Genetics, University of Lübeck, Lübeck, Germany
| | - Petros Kolovos
- Department of Cell Biology, Erasmus MC, Rotterdam, The Netherlands
| | | | | | - Ilaria Parenti
- Section for Functional Genetics at the Institute of Human Genetics, University of Lübeck, Lübeck, Germany
| | | | - Yorann Baron
- Centre National de la Recherche Scientifique, UMR 6290, Rennes, France
- Institut de Génétique et Développement de Rennes, Faculté de Médecine, Rennes, France
| | - Erwan Watrin
- Centre National de la Recherche Scientifique, UMR 6290, Rennes, France
- Institut de Génétique et Développement de Rennes, Faculté de Médecine, Rennes, France
| | - Frank J. Kaiser
- Section for Functional Genetics at the Institute of Human Genetics, University of Lübeck, Lübeck, Germany
| | - Kerstin S. Wendt
- Department of Cell Biology, Erasmus MC, Rotterdam, The Netherlands
| |
Collapse
|
31
|
Banerji R, Skibbens RV, Iovine MK. How many roads lead to cohesinopathies? Dev Dyn 2017; 246:881-888. [PMID: 28422453 DOI: 10.1002/dvdy.24510] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 03/10/2017] [Accepted: 04/11/2017] [Indexed: 12/16/2023] Open
Abstract
Genetic mapping studies reveal that mutations in cohesion pathways are responsible for multispectrum developmental abnormalities termed cohesinopathies. These include Roberts syndrome (RBS), Cornelia de Lange Syndrome (CdLS), and Warsaw Breakage Syndrome (WABS). The cohesinopathies are characterized by overlapping phenotypes ranging from craniofacial deformities, limb defects, and mental retardation. Though these syndromes share a similar suite of phenotypes and arise due to mutations in a common cohesion pathway, the underlying mechanisms are currently believed to be distinct. Defects in mitotic failure and apoptosis i.e. trans DNA tethering events are believed to be the underlying cause of RBS, whereas the underlying cause of CdLS is largely modeled as occurring through defects in transcriptional processes i.e. cis DNA tethering events. Here, we review recent findings described primarily in zebrafish, paired with additional studies in other model systems, including human patient cells, which challenge the notion that cohesinopathies represent separate syndromes. We highlight numerous studies that illustrate the utility of zebrafish to provide novel insights into the phenotypes, genes affected and the possible mechanisms underlying cohesinopathies. We propose that transcriptional deregulation is the predominant mechanism through which cohesinopathies arise. Developmental Dynamics 246:881-888, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Rajeswari Banerji
- Department of Biological Science, Lehigh University, Bethlehem, Pennsylvania
| | - Robert V Skibbens
- Department of Biological Science, Lehigh University, Bethlehem, Pennsylvania
| | - M Kathryn Iovine
- Department of Biological Science, Lehigh University, Bethlehem, Pennsylvania
| |
Collapse
|
32
|
Rickels R, Herz HM, Sze CC, Cao K, Morgan MA, Collings CK, Gause M, Takahashi YH, Wang L, Rendleman EJ, Marshall SA, Krueger A, Bartom ET, Piunti A, Smith ER, Abshiru NA, Kelleher NL, Dorsett D, Shilatifard A. Histone H3K4 monomethylation catalyzed by Trr and mammalian COMPASS-like proteins at enhancers is dispensable for development and viability. Nat Genet 2017; 49:1647-1653. [PMID: 28967912 DOI: 10.1038/ng.3965] [Citation(s) in RCA: 153] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2017] [Accepted: 09/01/2017] [Indexed: 12/21/2022]
Abstract
Histone H3 lysine 4 monomethylation (H3K4me1) is an evolutionarily conserved feature of enhancer chromatin catalyzed by the COMPASS-like methyltransferase family, which includes Trr in Drosophila melanogaster and MLL3 (encoded by KMT2C) and MLL4 (encoded by KMT2D) in mammals. Here we demonstrate that Drosophila embryos expressing catalytically deficient Trr eclose and develop to productive adulthood. Parallel experiments with a trr allele that augments enzyme product specificity show that conversion of H3K4me1 at enhancers to H3K4me2 and H3K4me3 is also compatible with life and results in minimal changes in gene expression. Similarly, loss of the catalytic SET domains of MLL3 and MLL4 in mouse embryonic stem cells (mESCs) does not disrupt self-renewal. Drosophila embryos with trr alleles encoding catalytic mutants manifest subtle developmental abnormalities when subjected to temperature stress or altered cohesin levels. Collectively, our findings suggest that animal development can occur in the context of Trr or mammalian COMPASS-like proteins deficient in H3K4 monomethylation activity and point to a possible role for H3K4me1 on cis-regulatory elements in specific settings to fine-tune transcriptional regulation in response to environmental stress.
Collapse
Affiliation(s)
- Ryan Rickels
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Hans-Martin Herz
- Stowers Institute for Medical Research, Kansas City, Missouri, USA
| | - Christie C Sze
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Kaixiang Cao
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Marc A Morgan
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Clayton K Collings
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Maria Gause
- Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, Missouri, USA
| | - Yoh-Hei Takahashi
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Lu Wang
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Emily J Rendleman
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Stacy A Marshall
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Annika Krueger
- Stowers Institute for Medical Research, Kansas City, Missouri, USA
| | - Elizabeth T Bartom
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Andrea Piunti
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Edwin R Smith
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Nebiyu A Abshiru
- Department of Chemistry, Northwestern University, Evanston, Illinois, USA
| | - Neil L Kelleher
- Department of Chemistry, Northwestern University, Evanston, Illinois, USA
| | - Dale Dorsett
- Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, Missouri, USA
| | - Ali Shilatifard
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA.,Robert H. Lurie NCI Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| |
Collapse
|
33
|
Fazio G, Bettini LR, Rigamonti S, Meta D, Biondi A, Cazzaniga G, Selicorni A, Massa V. Impairment of Retinoic Acid Signaling in Cornelia de Lange Syndrome Fibroblasts. Birth Defects Res 2017; 109:1268-1276. [PMID: 28752682 DOI: 10.1002/bdr2.1070] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 05/12/2017] [Accepted: 05/24/2017] [Indexed: 12/16/2023]
Abstract
BACKGROUND Cornelia de Lange syndrome (CdLS) is a rare genetic disorder affecting the neurodevelopment, gastrointestinal, musculoskeletal systems. CdLS is caused by mutations within NIPBL, SMC1A, SMC3, RAD21, and HDAC8 genes. These genes codify for the "cohesin complex" playing a role in chromatid adhesion, DNA repair and gene expression regulation. The aim of this study was to investigate retinoic acid (RA) signaling pathway, a master developmental regulator, in CdLS cells. METHODS Skin biopsies from CdLS patients and healthy controls were cultured and derived primary fibroblast cells were treated with RA or dimethyl sulfoxide (vehicle). After RA treatment, cells were harvested and RNA was isolated for quantitative real-time polymerase chain reaction experiments. RESULTS We analyzed several components of RA metabolism in a human cell line of kidney fibroblasts (293T), in addition to fibroblasts collected from both NIPBL-mutated patients and healthy donors, with or without RA treatment. In all cases, ADH and RALDH1 gene expression was not affected by RA treatment, while CRABP1 was induced. CRABP2 was dramatically upregulated upon RA treatment in healthy donors but not in CdLS patients cells. CONCLUSION We investigated if CdLS alterations are associated to perturbation of RA signaling. Cells derived from CdLS patients do not respond to RA signaling as efficiently as healthy controls. RA pathway alterations suggest a possible underlying mechanism for several cellular and developmental abnormalities associated with cohesin function. Birth Defects Research 109:1268-1276, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Grazia Fazio
- Centro Ricerca M. Tettamanti, Clinica Pediatrica, Università di Milano-Bicocca, Ospedale San Gerardo/Fondazione MBBM, Monza, Italy
| | - Laura Rachele Bettini
- Clinica Pediatrica, Università di Milano-Bicocca, Ospedale San Gerardo/Fondazione MBBM, Monza, Italy
| | - Silvia Rigamonti
- Università degli Studi di Milano, Dipartimento di Scienze della Salute, Milan, Italy
| | - Dorela Meta
- Centro Ricerca M. Tettamanti, Clinica Pediatrica, Università di Milano-Bicocca, Ospedale San Gerardo/Fondazione MBBM, Monza, Italy
- Istituto Auxologico Italiano, Cusano Milanino, Italy
| | - Andrea Biondi
- Centro Ricerca M. Tettamanti, Clinica Pediatrica, Università di Milano-Bicocca, Ospedale San Gerardo/Fondazione MBBM, Monza, Italy
- Clinica Pediatrica, Università di Milano-Bicocca, Ospedale San Gerardo/Fondazione MBBM, Monza, Italy
| | - Giovanni Cazzaniga
- Centro Ricerca M. Tettamanti, Clinica Pediatrica, Università di Milano-Bicocca, Ospedale San Gerardo/Fondazione MBBM, Monza, Italy
| | - Angelo Selicorni
- Clinica Pediatrica, Università di Milano-Bicocca, Ospedale San Gerardo/Fondazione MBBM, Monza, Italy
- Department of Pediatrics, Presidio S. Fermo, ASST Lariana, Como, Italy
| | - Valentina Massa
- Università degli Studi di Milano, Dipartimento di Scienze della Salute, Milan, Italy
| |
Collapse
|
34
|
Abstract
The kollerin complex, consisting of Scc2/Scc4 in yeast and Nipbl/Mau2 in vertebrates, is crucial for the chromatin-association of the cohesin complex and therefore for the critical functions of cohesin in cell division, transcriptional regulation and chromatin organisation. Despite the recent efforts to determine the genomic localization of the kollerin complex in different cell lines, major questions still remain unresolved, for instance where cohesin is actually loaded onto chromatin. Further, Nipbl seems to have also additional roles, for instance as transcription factor.This chapter summarizes our current knowledge on kollerin function and the recent studies on the genomic localization of Scc2, highlighting and critically discussing controversial data.
Collapse
Affiliation(s)
- Kerstin S Wendt
- Department of Cell Biology, Erasmus MC, Faculty Building, Room Ee1020, Wytemaweg 80, 3015 CN, Rotterdam, The Netherlands.
| |
Collapse
|
35
|
Abstract
The cohesin protein complex regulates multiple cellular events including sister chromatid cohesion and gene expression. Several distinct human diseases called cohesinopathies have been associated with genetic mutations in cohesin subunit genes or genes encoding regulators of cohesin function. Studies in different model systems, from yeast to mouse have provided insights into the molecular mechanisms of action of cohesin/cohesin regulators and their implications in the pathogenesis of cohesinopathies. The zebrafish has unique advantages for embryonic analyses and quantitative gene knockdown with morpholinos during the first few days of development, in contrast to knockouts of cohesin regulators in flies or mammals, which are either lethal as homozygotes or dramatically compensated for in heterozygotes. This has been particularly informative for Rad21, where a role in gene expression was first shown in zebrafish, and Nipbl, where the fish work revealed tissue-specific functions in heart, gut, and limbs, and long-range enhancer-promoter interactions that control Hox gene expression in vivo. Here we discuss the utility of the zebrafish in studying the developmental and pathogenic roles of cohesin.
Collapse
Affiliation(s)
- Akihiko Muto
- Department of Biological Science, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8526, Japan.
| | - Thomas F Schilling
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA, 92697, USA
| |
Collapse
|
36
|
Swain A, Misulovin Z, Pherson M, Gause M, Mihindukulasuriya K, Rickels RA, Shilatifard A, Dorsett D. Drosophila TDP-43 RNA-Binding Protein Facilitates Association of Sister Chromatid Cohesion Proteins with Genes, Enhancers and Polycomb Response Elements. PLoS Genet 2016; 12:e1006331. [PMID: 27662615 PMCID: PMC5035082 DOI: 10.1371/journal.pgen.1006331] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Accepted: 08/30/2016] [Indexed: 12/22/2022] Open
Abstract
The cohesin protein complex mediates sister chromatid cohesion and participates in transcriptional control of genes that regulate growth and development. Substantial reduction of cohesin activity alters transcription of many genes without disrupting chromosome segregation. Drosophila Nipped-B protein loads cohesin onto chromosomes, and together Nipped-B and cohesin occupy essentially all active transcriptional enhancers and a large fraction of active genes. It is unknown why some active genes bind high levels of cohesin and some do not. Here we show that the TBPH and Lark RNA-binding proteins influence association of Nipped-B and cohesin with genes and gene regulatory sequences. In vitro, TBPH and Lark proteins specifically bind RNAs produced by genes occupied by Nipped-B and cohesin. By genomic chromatin immunoprecipitation these RNA-binding proteins also bind to chromosomes at cohesin-binding genes, enhancers, and Polycomb response elements (PREs). RNAi depletion reveals that TBPH facilitates association of Nipped-B and cohesin with genes and regulatory sequences. Lark reduces binding of Nipped-B and cohesin at many promoters and aids their association with several large enhancers. Conversely, Nipped-B facilitates TBPH and Lark association with genes and regulatory sequences, and interacts with TBPH and Lark in affinity chromatography and immunoprecipitation experiments. Blocking transcription does not ablate binding of Nipped-B and the RNA-binding proteins to chromosomes, indicating transcription is not required to maintain binding once established. These findings demonstrate that RNA-binding proteins help govern association of sister chromatid cohesion proteins with genes and enhancers.
Collapse
Affiliation(s)
- Amanda Swain
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, Saint Louis, Missouri, United States of America
| | - Ziva Misulovin
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, Saint Louis, Missouri, United States of America
| | - Michelle Pherson
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, Saint Louis, Missouri, United States of America
| | - Maria Gause
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, Saint Louis, Missouri, United States of America
| | - Kathie Mihindukulasuriya
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, Saint Louis, Missouri, United States of America
| | - Ryan A Rickels
- Department of Biochemistry and Molecular Genetics, Northwestern Feinberg School of Medicine, Chicago, Illinois, United States of America
| | - Ali Shilatifard
- Department of Biochemistry and Molecular Genetics, Northwestern Feinberg School of Medicine, Chicago, Illinois, United States of America
| | - Dale Dorsett
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, Saint Louis, Missouri, United States of America
| |
Collapse
|
37
|
Ma Z, Li M, Roy S, Liu KJ, Romine ML, Lane DC, Patel SK, Cai HN. Chromatin boundary elements organize genomic architecture and developmental gene regulation in Drosophila Hox clusters. World J Biol Chem 2016; 7:223-230. [PMID: 27621770 PMCID: PMC4997523 DOI: 10.4331/wjbc.v7.i3.223] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2016] [Revised: 04/14/2016] [Accepted: 07/13/2016] [Indexed: 02/05/2023] Open
Abstract
The three-dimensional (3D) organization of the eukaryotic genome is critical for its proper function. Evidence suggests that extensive chromatin loops form the building blocks of the genomic architecture, separating genes and gene clusters into distinct functional domains. These loops are anchored in part by a special type of DNA elements called chromatin boundary elements (CBEs). CBEs were originally found to insulate neighboring genes by blocking influences of transcriptional enhancers or the spread of silent chromatin. However, recent results show that chromatin loops can also play a positive role in gene regulation by looping out intervening DNA and “delivering” remote enhancers to gene promoters. In addition, studies from human and model organisms indicate that the configuration of chromatin loops, many of which are tethered by CBEs, is dynamically regulated during cell differentiation. In particular, a recent work by Li et al has shown that the SF1 boundary, located in the Drosophila Hox cluster, regulates local genes by tethering different subsets of chromatin loops: One subset enclose a neighboring gene ftz, limiting its access by the surrounding Scr enhancers and restrict the spread of repressive histones during early embryogenesis; and the other loops subdivide the Scr regulatory region into independent domains of enhancer accessibility. The enhancer-blocking activity of these CBE elements varies greatly in strength and tissue distribution. Further, tandem pairing of SF1 and SF2 facilitate the bypass of distal enhancers in transgenic flies, providing a mechanism for endogenous enhancers to circumvent genomic interruptions resulting from chromosomal rearrangement. This study demonstrates how a network of chromatin boundaries, centrally organized by SF1, can remodel the 3D genome to facilitate gene regulation during development.
Collapse
|
38
|
Kaur M, Mehta D, Noon SE, Deardorff MA, Zhang Z, Krantz ID. NIPBL expression levels in CdLS probands as a predictor of mutation type and phenotypic severity. AMERICAN JOURNAL OF MEDICAL GENETICS PART C-SEMINARS IN MEDICAL GENETICS 2016; 172:163-70. [PMID: 27125329 DOI: 10.1002/ajmg.c.31495] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Cornelia de Lange syndrome (CdLS) is a rare, genetically heterogeneous multisystem developmental disorder with a high degree of variability in its clinical presentation. Approximately 65% of probands harbor mutations in genes that encode core components (SMC1A, SMC3, and RAD21) or regulators (NIPBL, HDAC8) of the cohesin complex, of which mutations in NIPBL are the most common. Cohesin plays a canonical role in sister chromatid cohesion during cell division and non-canonical roles in DNA repair, stem cell maintenance and differentiation, and regulation of gene expression. Disruption of the latter role seems to be the major contributor to the underlying molecular pathogenesis of CdLS. NIPBL is required for loading and unloading the cohesin complex onto chromosomes. The expression levels of NIPBL itself appear to be tightly regulated and highly evolutionarily conserved. Droplet digital PCR was used to quantify NIPBL mRNA expression levels with high precision from a cohort of 37 samples (NIPBL, SMC1A, SMC3, and HDAC8 mutation positive probands and negative control). Probands with severe forms of CdLS or severe mutation types were found to have lower levels of NIPBL in comparison to phenotypically milder patients and controls. Levels of NIPBL also correlated with the presence of mutations in different CdLS-causing genes. The data suggests that NIPBL levels are closely correlated with the severity of CdLS and with specific causative genes and types of mutations. ddPCR may provide a tool to assist in diagnostic approaches to CdLS, for genetic counseling and prognosis, and for monitoring potential therapeutic modalities in the future. © 2016 Wiley Periodicals, Inc.
Collapse
|
39
|
Dorsett D. The Drosophila melanogaster model for Cornelia de Lange syndrome: Implications for etiology and therapeutics. AMERICAN JOURNAL OF MEDICAL GENETICS PART C-SEMINARS IN MEDICAL GENETICS 2016; 172:129-37. [PMID: 27097273 DOI: 10.1002/ajmg.c.31490] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Discovery of genetic alterations that cause human birth defects provide key opportunities to improve the diagnosis, treatment, and family counseling. Frequently, however, these opportunities are limited by the lack of knowledge about the normal functions of the affected genes. In many cases, there is more information about the gene's orthologs in model organisms, including Drosophila melanogaster. Despite almost a billion years of evolutionary divergence, over three-quarters of genes linked to human diseases have Drosophila homologs. With a short generation time, a twenty-fold smaller genome, and unique genetic tools, the conserved functions of genes are often more easily elucidated in Drosophila than in other organisms. Here we present how this applies to Cornelia de Lange syndrome, as a model for how Drosophila can be used to increase understanding of genetic syndromes caused by mutations with broad effects on gene transcription and exploited to develop novel therapies. © 2016 Wiley Periodicals, Inc.
Collapse
|
40
|
Galeev R, Baudet A, Kumar P, Rundberg Nilsson A, Nilsson B, Soneji S, Törngren T, Borg Å, Kvist A, Larsson J. Genome-wide RNAi Screen Identifies Cohesin Genes as Modifiers of Renewal and Differentiation in Human HSCs. Cell Rep 2016; 14:2988-3000. [PMID: 26997282 PMCID: PMC7616965 DOI: 10.1016/j.celrep.2016.02.082] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Revised: 02/04/2016] [Accepted: 02/22/2016] [Indexed: 12/21/2022] Open
Abstract
To gain insights into the regulatory mechanisms of hematopoietic stem cells (HSCs), we employed a genome-wide RNAi screen in human cord-blood derived cells and identified candidate genes whose knockdown maintained the HSC phenotype during culture. A striking finding was the identification of members of the cohesin complex (STAG2, RAD21, STAG1, and SMC3) among the top 20 genes from the screen. Upon individual validation of these cohesin genes, we found that their knockdown led to an immediate expansion of cells with an HSC phenotype in vitro. A similar expansion was observed in vivo following transplantation to immunodeficient mice. Transcriptome analysis of cohesin-deficient CD34(+) cells showed an upregulation of HSC-specific genes, demonstrating an immediate shift toward a more stem-cell-like gene expression signature upon cohesin deficiency. Our findings implicate cohesin as a major regulator of HSCs and illustrate the power of global RNAi screens to identify modifiers of cell fate.
Collapse
Affiliation(s)
- Roman Galeev
- Division of Molecular Medicine and Gene Therapy, Lund Stem Cell Center, Lund University, 221 84 Lund, Sweden
| | - Aurélie Baudet
- Division of Molecular Medicine and Gene Therapy, Lund Stem Cell Center, Lund University, 221 84 Lund, Sweden
| | - Praveen Kumar
- Division of Molecular Medicine and Gene Therapy, Lund Stem Cell Center, Lund University, 221 84 Lund, Sweden
| | | | - Björn Nilsson
- Division of Hematology and Transfusion Medicine, Lund University, 221 84 Lund, Sweden
| | - Shamit Soneji
- Division of Molecular Hematology, Lund Stem Cell Center, Lund University, 221 84 Lund, Sweden
| | - Therese Törngren
- Division of Oncology and Pathology, Lund University, 223 63 Lund, Sweden
| | - Åke Borg
- Division of Oncology and Pathology, Lund University, 223 63 Lund, Sweden
| | - Anders Kvist
- Division of Oncology and Pathology, Lund University, 223 63 Lund, Sweden
| | - Jonas Larsson
- Division of Molecular Medicine and Gene Therapy, Lund Stem Cell Center, Lund University, 221 84 Lund, Sweden.
| |
Collapse
|
41
|
Fazio G, Gaston-Massuet C, Bettini LR, Graziola F, Scagliotti V, Cereda A, Ferrari L, Mazzola M, Cazzaniga G, Giordano A, Cotelli F, Bellipanni G, Biondi A, Selicorni A, Pistocchi A, Massa V. CyclinD1 Down-Regulation and Increased Apoptosis Are Common Features of Cohesinopathies. J Cell Physiol 2016. [PMID: 26206533 DOI: 10.1002/jcp.25106] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Genetic variants within components of the cohesin complex (NIPBL, SMC1A, SMC3, RAD21, PDS5, ESCO2, HDAC8) are believed to be responsible for a spectrum of human syndromes known as "cohesinopathies" that includes Cornelia de Lange Syndrome (CdLS). CdLS is a multiple malformation syndrome affecting almost any organ and causing severe developmental delay. Cohesinopathies seem to be caused by dysregulation of specific developmental pathways downstream of mutations in cohesin components. However, it is still unclear how mutations in different components of the cohesin complex affect the output of gene regulation. In this study, zebrafish embryos and SMC1A-mutated patient-derived fibroblasts were used to analyze abnormalities induced by SMC1A loss of function. We show that the knockdown of smc1a in zebrafish impairs neural development, increases apoptosis, and specifically down-regulates Ccnd1 levels. The same down-regulation of cohesin targets is observed in SMC1A-mutated patient fibroblasts. Previously, we have demonstrated that haploinsufficiency of NIPBL produces similar effects in zebrafish and in patients fibroblasts indicating a possible common feature for neurological defects and mental retardation in cohesinopathies. Interestingly, expression analysis of Smc1a and Nipbl in developing mouse embryos reveals a specific pattern in the hindbrain, suggesting a role for cohesins in neural development in vertebrates.
Collapse
Affiliation(s)
- Grazia Fazio
- Centro Ricerca Tettamanti, Clinica Pediatrica, Università di Milano-Bicocca, Ospedale San Gerardo/Fondazione MBBM, Monza, Italy
| | - Carles Gaston-Massuet
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London Medical School, Queen Mary University of London, London, UK
| | - Laura Rachele Bettini
- Clinica Pediatrica, Università di Milano-Bicocca, Ospedale San Gerardo/Fondazione MBBM, Monza, Italy
| | - Federica Graziola
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London Medical School, Queen Mary University of London, London, UK.,Dipartimento di Scienze della Salute, Università degli Studi di Milano, Milano, Italy
| | - Valeria Scagliotti
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London Medical School, Queen Mary University of London, London, UK
| | - Anna Cereda
- Clinica Pediatrica, Università di Milano-Bicocca, Ospedale San Gerardo/Fondazione MBBM, Monza, Italy
| | - Luca Ferrari
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, Milano, Italy
| | - Mara Mazzola
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milano, Italy
| | - Gianni Cazzaniga
- Centro Ricerca Tettamanti, Clinica Pediatrica, Università di Milano-Bicocca, Ospedale San Gerardo/Fondazione MBBM, Monza, Italy
| | - Antonio Giordano
- Department of Biology, College of Science and Technology, Temple University, Philadelphia, Pennsylvania.,Sbarro Institute for Cancer Research and Molecular Medicine, College of Science and Technology, Temple University, Philadelphia, Pennsylvania
| | - Franco Cotelli
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milano, Italy
| | - Gianfranco Bellipanni
- Department of Biology, College of Science and Technology, Temple University, Philadelphia, Pennsylvania.,Sbarro Institute for Cancer Research and Molecular Medicine, College of Science and Technology, Temple University, Philadelphia, Pennsylvania
| | - Andrea Biondi
- Centro Ricerca Tettamanti, Clinica Pediatrica, Università di Milano-Bicocca, Ospedale San Gerardo/Fondazione MBBM, Monza, Italy.,Clinica Pediatrica, Università di Milano-Bicocca, Ospedale San Gerardo/Fondazione MBBM, Monza, Italy
| | - Angelo Selicorni
- Clinica Pediatrica, Università di Milano-Bicocca, Ospedale San Gerardo/Fondazione MBBM, Monza, Italy
| | - Anna Pistocchi
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, Milano, Italy.,Dipartimento di Bioscienze, Università degli Studi di Milano, Milano, Italy
| | - Valentina Massa
- Dipartimento di Scienze della Salute, Università degli Studi di Milano, Milano, Italy
| |
Collapse
|
42
|
Li J, Feng W, Chen L, He J. Downregulation of SMC1A inhibits growth and increases apoptosis and chemosensitivity of colorectal cancer cells. J Int Med Res 2015; 44:67-74. [PMID: 26637483 PMCID: PMC5536575 DOI: 10.1177/0300060515600188] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Accepted: 07/20/2015] [Indexed: 12/29/2022] Open
Abstract
Objective The structural maintenance of chromosomes (SMC) 1A protein is a component of the cohesin multiprotein complex that is essential for sister chromatid cohesion. SMC1A gene mutations have been reported in colorectal cancer. This study aimed to investigate the role of SMC1A gene expression in colorectal cancer in vitro. Methods SMC1A gene expression was silenced by lentivirus-mediated infection with small interfering RNA (siRNA) in the human colorectal cancer cell line HT-29. Cell proliferation rates, SMC1A mRNA and protein levels, apoptosis and chemosensitivity to oxaliplatin were evaluated using routine in vitro assays, real-time polymerase chain reaction, Western blotting and flow cytometry. Results Knockdown of SMC1A protein and mRNA levels resulted in the inhibition of cell proliferation, an increased rate of apoptosis and enhanced chemosensitivity to oxaliplatin in HT-29 cells. Conclusions The findings of this study suggest that SMC1A plays an oncogenic role in colorectal cancer and that it might be a promising target for colorectal cancer therapy.
Collapse
Affiliation(s)
- Jin Li
- Department of Oncology, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, Jiangsu Province, China
| | - Wanting Feng
- Department of Oncology, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, Jiangsu Province, China
| | - Longbang Chen
- Department of Oncology, Jinling Hospital, Nanjing University, Nanjing, Jiangsu Province, China
| | - Jingdong He
- Department of Oncology, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, Jiangsu Province, China
| |
Collapse
|
43
|
Mannini L, C Lamaze F, Cucco F, Amato C, Quarantotti V, Rizzo IM, Krantz ID, Bilodeau S, Musio A. Mutant cohesin affects RNA polymerase II regulation in Cornelia de Lange syndrome. Sci Rep 2015; 5:16803. [PMID: 26581180 PMCID: PMC4652179 DOI: 10.1038/srep16803] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 10/20/2015] [Indexed: 01/10/2023] Open
Abstract
In addition to its role in sister chromatid cohesion, genome stability and integrity, the cohesin complex is involved in gene transcription. Mutations in core cohesin subunits SMC1A, SMC3 and RAD21, or their regulators NIPBL and HDAC8, cause Cornelia de Lange syndrome (CdLS). Recent evidence reveals that gene expression dysregulation could be the underlying mechanism for CdLS. These findings raise intriguing questions regarding the potential role of cohesin-mediated transcriptional control and pathogenesis. Here, we identified numerous dysregulated genes occupied by cohesin by combining the transcriptome of CdLS cell lines carrying mutations in SMC1A gene and ChIP-Seq data. Genome-wide analyses show that genes changing in expression are enriched for cohesin-binding. In addition, our results indicate that mutant cohesin impairs both RNA polymerase II (Pol II) transcription initiation at promoters and elongation in the gene body. These findings highlight the pivotal role of cohesin in transcriptional regulation and provide an explanation for the typical gene dysregulation observed in CdLS patients.
Collapse
Affiliation(s)
- Linda Mannini
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche, Pisa, Italy
| | - Fabien C Lamaze
- Centre de recherche sur le cancer de l'Université Laval, Québec, Canada.,Centre de recherche du CHU de Québec (Hôtel-Dieu de Québec), Québec, Canada
| | - Francesco Cucco
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche, Pisa, Italy
| | - Clelia Amato
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche, Pisa, Italy
| | - Valentina Quarantotti
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche, Pisa, Italy
| | - Ilaria M Rizzo
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche, Pisa, Italy
| | - Ian D Krantz
- Division of Human Genetics, The Children's Hospital of Philadelphia and the Perelman School of Medicine at the University of Pennsylvania, Philadelphia, USA
| | - Steve Bilodeau
- Centre de recherche sur le cancer de l'Université Laval, Québec, Canada.,Centre de recherche du CHU de Québec (Hôtel-Dieu de Québec), Québec, Canada.,Département de biologie moléculaire, biochimie médicale et pathologie, Faculté de Médecine, Université Laval, Québec, Canada
| | - Antonio Musio
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche, Pisa, Italy
| |
Collapse
|
44
|
Eng T, Guacci V, Koshland D. Interallelic complementation provides functional evidence for cohesin-cohesin interactions on DNA. Mol Biol Cell 2015; 26:4224-35. [PMID: 26378250 PMCID: PMC4642856 DOI: 10.1091/mbc.e15-06-0331] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Revised: 09/03/2015] [Accepted: 09/09/2015] [Indexed: 11/11/2022] Open
Abstract
The cohesin complex (Mcd1p, Smc1p, Smc3p, and Scc3p) has multiple roles in chromosome architecture, such as promoting sister chromatid cohesion, chromosome condensation, DNA repair, and transcriptional regulation. The prevailing embrace model for sister chromatid cohesion posits that a single cohesin complex entraps both sister chromatids. We report interallelic complementation between pairs of nonfunctional mcd1 alleles (mcd1-1 and mcd1-Q266) or smc3 alleles (smc3-42 and smc3-K113R). Cells bearing individual mcd1 or smc3 mutant alleles are inviable and defective for both sister chromatid cohesion and condensation. However, cells coexpressing two defective mcd1 or two defective smc3 alleles are viable and have cohesion and condensation. Because cohesin contains only a single copy of Smc3p or Mcd1p, these examples of interallelic complementation must result from interplay or communication between the two defective cohesin complexes, each harboring one of the mutant allele products. Neither mcd1-1p nor smc3-42p is bound to chromosomes when expressed individually at its restrictive temperature. However, their chromosome binding is restored when they are coexpressed with their chromosome-bound interallelic complementing partner. Our results support a mechanism by which multiple cohesin complexes interact on DNA to mediate cohesion and condensation.
Collapse
Affiliation(s)
- Thomas Eng
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720
| | - Vincent Guacci
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720
| | - Douglas Koshland
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720
| |
Collapse
|
45
|
Wu Y, Gause M, Xu D, Misulovin Z, Schaaf CA, Mosarla RC, Mannino E, Shannon M, Jones E, Shi M, Chen WF, Katz OL, Sehgal A, Jongens TA, Krantz ID, Dorsett D. Drosophila Nipped-B Mutants Model Cornelia de Lange Syndrome in Growth and Behavior. PLoS Genet 2015; 11:e1005655. [PMID: 26544867 PMCID: PMC4636142 DOI: 10.1371/journal.pgen.1005655] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 10/16/2015] [Indexed: 11/18/2022] Open
Abstract
Individuals with Cornelia de Lange Syndrome (CdLS) display diverse developmental deficits, including slow growth, multiple limb and organ abnormalities, and intellectual disabilities. Severely-affected individuals most often have dominant loss-of-function mutations in the Nipped-B-Like (NIPBL) gene, and milder cases often have missense or in-frame deletion mutations in genes encoding subunits of the cohesin complex. Cohesin mediates sister chromatid cohesion to facilitate accurate chromosome segregation, and NIPBL is required for cohesin to bind to chromosomes. Individuals with CdLS, however, do not display overt cohesion or segregation defects. Rather, studies in human cells and model organisms indicate that modest decreases in NIPBL and cohesin activity alter the transcription of many genes that regulate growth and development. Sister chromatid cohesion factors, including the Nipped-B ortholog of NIPBL, are also critical for gene expression and development in Drosophila melanogaster. Here we describe how a modest reduction in Nipped-B activity alters growth and neurological function in Drosophila. These studies reveal that Nipped-B heterozygous mutant Drosophila show reduced growth, learning, and memory, and altered circadian rhythms. Importantly, the growth deficits are not caused by changes in systemic growth controls, but reductions in cell number and size attributable in part to reduced expression of myc (diminutive) and other growth control genes. The learning, memory and circadian deficits are accompanied by morphological abnormalities in brain structure. These studies confirm that Drosophila Nipped-B mutants provide a useful model for understanding CdLS, and provide new insights into the origins of birth defects. Cornelia de Lange Syndrome (CdLS) alters many aspects of growth and development. CdLS is caused by mutations in genes encoding proteins that ensure that chromosomes are distributed equally when a cell divides. These include genes that encode components of the cohesin complex, and Nipped-B-Like (NIPBL) that puts cohesin onto chromosomes. Individuals with CdLS have only modest reductions in the activities of these genes and do not show changes in chromosome distribution. Instead, they show differences in the expression many genes that control development. Animal models of CdLS will be useful for studies aimed at understanding how development is altered, and testing methods for treating CdLS. We find that Drosophila with one mutant copy of the Nipped-B gene, which is equivalent to the NIPBL gene, show characteristics similar to individuals with CdLS. These include reduced growth, learning, memory, and altered circadian rhythms. These studies thus indicate that Drosophila Nipped-B mutants are a valuable system for investigating the causes of the CdLS birth defects, and developing potential treatments. They also reveal that the slow growth in Drosophila Nipped-B mutants is not caused by disruption of systemic hormonal growth controls, and that the learning and memory deficits may reflect changes in brain structure.
Collapse
Affiliation(s)
- Yaning Wu
- Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
| | - Maria Gause
- Edward A Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, Saint Louis, Missouri, United States of America
| | - Dongbin Xu
- Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
| | - Ziva Misulovin
- Edward A Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, Saint Louis, Missouri, United States of America
| | - Cheri A. Schaaf
- Edward A Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, Saint Louis, Missouri, United States of America
| | - Ramya C. Mosarla
- Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
| | - Elizabeth Mannino
- Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
| | - Megan Shannon
- Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
| | - Emily Jones
- Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
| | - Mi Shi
- Howard Hughes Medical Institute and Department of Neuroscience, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Department of Genetics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Wen-Feng Chen
- Howard Hughes Medical Institute and Department of Neuroscience, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Department of Genetics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Olivia L. Katz
- Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
| | - Amita Sehgal
- Howard Hughes Medical Institute and Department of Neuroscience, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Department of Genetics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Thomas A. Jongens
- Department of Genetics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Ian D. Krantz
- Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
- Department of Genetics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- * E-mail: (IDK); (DD)
| | - Dale Dorsett
- Edward A Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, Saint Louis, Missouri, United States of America
- * E-mail: (IDK); (DD)
| |
Collapse
|
46
|
Zakari M, Trimble Ross R, Peak A, Blanchette M, Seidel C, Gerton JL. The SMC Loader Scc2 Promotes ncRNA Biogenesis and Translational Fidelity. PLoS Genet 2015; 11:e1005308. [PMID: 26176819 PMCID: PMC4503661 DOI: 10.1371/journal.pgen.1005308] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 05/28/2015] [Indexed: 11/18/2022] Open
Abstract
The Scc2-Scc4 complex is essential for loading the cohesin complex onto DNA. Cohesin has important roles in chromosome segregation, DSB repair, and chromosome condensation. Here we report that Scc2 is important for gene expression in budding yeast. Scc2 and the transcriptional regulator Paf1 collaborate to promote the production of Box H/ACA snoRNAs which guide pseudouridylation of RNAs including ribosomal RNA. Mutation of SCC2 was associated with defects in the production of ribosomal RNA, ribosome assembly, and splicing. While the scc2 mutant does not have a general defect in protein synthesis, it shows increased frameshifting and reduced cap-independent translation. These findings suggest Scc2 normally promotes a gene expression program that supports translational fidelity. We hypothesize that translational dysfunction may contribute to the human disorder Cornelia de Lange syndrome, which is caused by mutations in NIPBL, the human ortholog of SCC2.
Collapse
Affiliation(s)
- Musinu Zakari
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
- Universite Pierre et Marie Curie (Paris VI), Paris, France
| | - Rhonda Trimble Ross
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - Allison Peak
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - Marco Blanchette
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - Chris Seidel
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - Jennifer L. Gerton
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
- Department of Biochemistry and Molecular Biology, University of Kansas School of Medicine, Kansas City, Kansas, United States of America
| |
Collapse
|
47
|
Xu W, Ying Y, Shan L, Feng J, Zhang S, Gao Y, Xu X, Yao Y, Zhu C, Mao W. Enhanced expression of cohesin loading factor NIPBL confers poor prognosis and chemotherapy resistance in non-small cell lung cancer. J Transl Med 2015; 13:153. [PMID: 25963978 PMCID: PMC4438579 DOI: 10.1186/s12967-015-0503-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Accepted: 04/22/2015] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND NIPBL, the sister chromatid cohesion 2 (SCC2) human homolog, is a cohesin loading factor which is essential for deposition of cohesin onto the sister chromatid. Recent studies have shown that NIPBL contribute to sister chromatid cohesion and plays a critical role in development, DNA repair, and gene regulation. In this study, we measured the expression of NIPBL in clinical non-small cell lung cancer specimens, and determined its effects on cellular processes and chemosensitivity in vitro. METHODS NIPBL immunohistochemistry was performed on 123 lung adenocarcinoma samples. Through knockdown of NIPBL protein expression, non-small cell lung cancer cell lines were used to test the potential involvement of NIPBL silencing on cell proliferation, migration, invasion, and apoptosis. Chemosensitivity was assessed with clonogenic assays, and chromatin immunoprecipitation assays were performed to analyze the relationship between NIPBL and signal transducers and activators of transcription 3 (STAT3). RESULTS Immunohistochemical analysis showed that high expression of NIPBL was strongly correlated with poor prognosis, tumor differentiation, and lymph node metastasis. Survival analysis further indicated that NIPBL expression was a potential prognostic factor for non-small cell lung cancer. Knockdown of NIPBL in non-small cell lung cancer cell lines significantly reduced cellular proliferation, migration, and invasion, and enhanced cellular apoptosis and sensitivity to cisplatin, paclitaxel, and gemcitabine hydrochloride. NIPBL bound to the promoter region of the STAT3 gene, directly regulating the expression of STAT3. CONCLUSIONS These data suggested that NIPBL played a significant role in lung carcinogenesis. NIPBL expression conferred poor prognosis and resistance to chemotherapy in non-small cell lung cancer, suggesting that NIPBL may be a novel therapeutic target.
Collapse
Affiliation(s)
- Weizhen Xu
- Zhejiang Key Laboratory of Diagnosis and Treatment Technology on Thoracic Oncology (Lung and Esophagus), 38, Guangji Load, Hangzhou, Zhejiang, 310022, China.
- Cancer Research Institute, Zhejiang Cancer Hospital, 38, Guangji Load, Hangzhou, Zhejiang, 310022, China.
| | - Yinyin Ying
- Zhejiang Key Laboratory of Diagnosis and Treatment Technology on Thoracic Oncology (Lung and Esophagus), 38, Guangji Load, Hangzhou, Zhejiang, 310022, China.
| | - Lihong Shan
- Zhejiang Key Laboratory of Diagnosis and Treatment Technology on Thoracic Oncology (Lung and Esophagus), 38, Guangji Load, Hangzhou, Zhejiang, 310022, China.
| | - Jianguo Feng
- Zhejiang Key Laboratory of Diagnosis and Treatment Technology on Thoracic Oncology (Lung and Esophagus), 38, Guangji Load, Hangzhou, Zhejiang, 310022, China.
- Cancer Research Institute, Zhejiang Cancer Hospital, 38, Guangji Load, Hangzhou, Zhejiang, 310022, China.
| | - Shengjie Zhang
- Zhejiang Key Laboratory of Diagnosis and Treatment Technology on Thoracic Oncology (Lung and Esophagus), 38, Guangji Load, Hangzhou, Zhejiang, 310022, China.
- Cancer Research Institute, Zhejiang Cancer Hospital, 38, Guangji Load, Hangzhou, Zhejiang, 310022, China.
| | - Yun Gao
- Zhejiang Key Laboratory of Diagnosis and Treatment Technology on Thoracic Oncology (Lung and Esophagus), 38, Guangji Load, Hangzhou, Zhejiang, 310022, China.
- Cancer Research Institute, Zhejiang Cancer Hospital, 38, Guangji Load, Hangzhou, Zhejiang, 310022, China.
| | - Xiaoling Xu
- Zhejiang Key Laboratory of Diagnosis and Treatment Technology on Thoracic Oncology (Lung and Esophagus), 38, Guangji Load, Hangzhou, Zhejiang, 310022, China.
- Department of Thoracic Surgery, Zhejiang Cancer Hospital, 38, Guangji Load, Hangzhou, Zhejiang, 310022, China.
| | - Yinli Yao
- Zhejiang Key Laboratory of Diagnosis and Treatment Technology on Thoracic Oncology (Lung and Esophagus), 38, Guangji Load, Hangzhou, Zhejiang, 310022, China.
- Department of Thoracic Surgery, Zhejiang Cancer Hospital, 38, Guangji Load, Hangzhou, Zhejiang, 310022, China.
| | - Chihong Zhu
- Zhejiang Key Laboratory of Diagnosis and Treatment Technology on Thoracic Oncology (Lung and Esophagus), 38, Guangji Load, Hangzhou, Zhejiang, 310022, China.
- Cancer Research Institute, Zhejiang Cancer Hospital, 38, Guangji Load, Hangzhou, Zhejiang, 310022, China.
| | - Weimin Mao
- Zhejiang Key Laboratory of Diagnosis and Treatment Technology on Thoracic Oncology (Lung and Esophagus), 38, Guangji Load, Hangzhou, Zhejiang, 310022, China.
- Cancer Research Institute, Zhejiang Cancer Hospital, 38, Guangji Load, Hangzhou, Zhejiang, 310022, China.
- Department of Thoracic Surgery, Zhejiang Cancer Hospital, 38, Guangji Load, Hangzhou, Zhejiang, 310022, China.
| |
Collapse
|
48
|
Cornelia de Lange Syndrome: A Variable Disorder of Cohesin Pathology. CURRENT GENETIC MEDICINE REPORTS 2015. [DOI: 10.1007/s40142-015-0065-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
49
|
Cuadrado A, Remeseiro S, Graña O, Pisano DG, Losada A. The contribution of cohesin-SA1 to gene expression and chromatin architecture in two murine tissues. Nucleic Acids Res 2015; 43:3056-67. [PMID: 25735743 PMCID: PMC4381060 DOI: 10.1093/nar/gkv144] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Revised: 01/30/2015] [Accepted: 02/13/2015] [Indexed: 12/22/2022] Open
Abstract
Cohesin, which in somatic vertebrate cells consists of SMC1, SMC3, RAD21 and either SA1 or SA2, mediates higher-order chromatin organization. To determine how cohesin contributes to the establishment of tissue-specific transcriptional programs, we compared genome-wide cohesin distribution, gene expression and chromatin architecture in cerebral cortex and pancreas from adult mice. More than one third of cohesin binding sites differ between the two tissues and these show reduced overlap with CCCTC-binding factor (CTCF) and are enriched at the regulatory regions of tissue-specific genes. Cohesin/CTCF sites at active enhancers and promoters contain, at least, cohesin-SA1. Analyses of chromatin contacts at the Protocadherin (Pcdh) and Regenerating islet-derived (Reg) gene clusters, mostly expressed in brain and pancreas, respectively, revealed remarkable differences that correlate with the presence of cohesin. We could not detect significant changes in the chromatin contacts at the Pcdh locus when comparing brains from wild-type and SA1 null embryos. In contrast, reduced dosage of SA1 altered the architecture of the Reg locus and decreased the expression of Reg genes in the pancreas of SA1 heterozygous mice. Given the role of Reg proteins in inflammation, such reduction may contribute to the increased incidence of pancreatic cancer observed in these animals.
Collapse
Affiliation(s)
- Ana Cuadrado
- Chromosome Dynamics Group, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Melchor Fernández Almagro 3, 28029 Madrid, Spain
| | - Silvia Remeseiro
- Chromosome Dynamics Group, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Melchor Fernández Almagro 3, 28029 Madrid, Spain
| | - Osvaldo Graña
- Bioinformatics Unit, Structural Biology and Biocomputing Programme, Spanish National Cancer Research Centre (CNIO), Melchor Fernández Almagro 3, 28029 Madrid, Spain
| | - David G Pisano
- Bioinformatics Unit, Structural Biology and Biocomputing Programme, Spanish National Cancer Research Centre (CNIO), Melchor Fernández Almagro 3, 28029 Madrid, Spain
| | - Ana Losada
- Chromosome Dynamics Group, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Melchor Fernández Almagro 3, 28029 Madrid, Spain
| |
Collapse
|
50
|
Affiliation(s)
- Musinu Zakari
- a Stowers Institute for Medical Research ; Kansas City , MO USA
| | | |
Collapse
|