1
|
Thomas LL, Highland CM, Fromme JC. Arf1 orchestrates Rab GTPase conversion at the trans-Golgi network. Mol Biol Cell 2021; 32:1104-1120. [PMID: 33788577 PMCID: PMC8351538 DOI: 10.1091/mbc.e20-10-0664] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Rab family GTPases are key organizers of membrane trafficking and function as markers of organelle identity. Accordingly, Rab GTPases often occupy specific membrane domains, and mechanisms exist to prevent the inappropriate mixing of distinct Rab domains. The yeast Golgi complex can be divided into two broad Rab domains: Ypt1 (Rab1) and Ypt6 (Rab6) are present at the early/medial Golgi and sharply transition to Ypt31/32 (Rab11) at the late Golgi/trans-Golgi network (TGN). This Rab conversion has been attributed to GTPase-activating protein (GAP) cascades in which Ypt31/32 recruits the Rab-GAPs Gyp1 and Gyp6 to inactivate Ypt1 and Ypt6, respectively. Here we report that Rab transition at the TGN involves additional layers of regulation. We provide new evidence confirming the TRAPPII complex as an important regulator of Ypt6 inactivation and uncover an unexpected role of the Arf1 GTPase in recruiting Gyp1 to drive Ypt1 inactivation at the TGN. Given its established role in directly recruiting TRAPPII to the TGN, Arf1 is therefore a master regulator of Rab conversion on maturing Golgi compartments.
Collapse
Affiliation(s)
- Laura L Thomas
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853
| | - Carolyn M Highland
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853
| | - J Christopher Fromme
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853
| |
Collapse
|
2
|
Verdín J, Sánchez-León E, Rico-Ramírez AM, Martínez-Núñez L, Fajardo-Somera RA, Riquelme M. Off the wall: The rhyme and reason of Neurospora crassa hyphal morphogenesis. ACTA ACUST UNITED AC 2019; 5:100020. [PMID: 32743136 PMCID: PMC7389182 DOI: 10.1016/j.tcsw.2019.100020] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 02/07/2019] [Accepted: 02/10/2019] [Indexed: 12/11/2022]
Abstract
Chitin and β-1,3-glucan synthases are transported separately in chitosomes and macrovesicles. Chitin synthases occupy the core of the SPK; β-1,3-glucan synthases the outer layer. CHS-4 arrival to the SPK and septa is CSE-7 dependent. Rabs YPT-1 and YPT-31 localization at the SPK mimics that of chitosomes and macrovesicles. The exocyst acts as a tether between the SPK outer layer vesicles and the apical PM.
The fungal cell wall building processes are the ultimate determinants of hyphal shape. In Neurospora crassa the main cell wall components, β-1,3-glucan and chitin, are synthesized by enzymes conveyed by specialized vesicles to the hyphal tip. These vesicles follow different secretory routes, which are delicately coordinated by cargo-specific Rab GTPases until their accumulation at the Spitzenkörper. From there, the exocyst mediates the docking of secretory vesicles to the plasma membrane, where they ultimately get fused. Although significant progress has been done on the cellular mechanisms that carry cell wall synthesizing enzymes from the endoplasmic reticulum to hyphal tips, a lot of information is still missing. Here, the current knowledge on N. crassa cell wall composition and biosynthesis is presented with an emphasis on the underlying molecular and cellular secretory processes.
Collapse
Key Words
- BGT, β-1,3-glucan transferases
- CHS, chitin synthase
- CLSM, confocal laser scanning microscopy
- CWI, cell wall integrity
- CWP, cell wall proteins
- Cell wall
- ER, endoplasmic reticulum
- FRAP, fluorescence recovery after photobleaching
- GEF, guanine nucleotide exchange factor
- GFP, green fluorescent protein
- GH, glycosyl hydrolases
- GPI, glycosylphosphatidylinositol
- GSC, β-1,3-glucan synthase complex
- MMD, myosin-like motor domain
- MS, mass spectrometry
- MT, microtubule
- NEC, network of elongated cisternae
- PM, plasma membrane
- SPK, Spitzenkörper
- Spitzenkörper
- TIRFM, total internal reflection fluorescence microscopy
- TM, transmembrane
- Tip growth
- Vesicles
Collapse
Affiliation(s)
- Jorge Verdín
- Industrial Biotechnology, CIATEJ-Jalisco State Scientific Research and Technology Assistance Center, Mexico National Council for Science and Technology, Zapopan, Jalisco, Mexico
| | - Eddy Sánchez-León
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
| | - Adriana M Rico-Ramírez
- Department of Microbiology, Centro de Investigación Científica y de Educación Superior de Ensenada, CICESE Ensenada, Baja California, Mexico
| | - Leonora Martínez-Núñez
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Rosa A Fajardo-Somera
- Karlsruhe Institute of Technology (KIT) South Campus, Institute for Applied Biosciences, Department of Microbiology, Karlsruhe, Germany
| | - Meritxell Riquelme
- Department of Microbiology, Centro de Investigación Científica y de Educación Superior de Ensenada, CICESE Ensenada, Baja California, Mexico
| |
Collapse
|
3
|
Mitter AL, Schlotterhose P, Krick R. Gyp1 has a dual function as Ypt1 GAP and interaction partner of Atg8 in selective autophagy. Autophagy 2019; 15:1031-1050. [PMID: 30686108 DOI: 10.1080/15548627.2019.1569929] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Macroautophagy/autophagy is a highly conserved intracellular vesicle transport pathway that prevents accumulation of harmful materials within cells. The dynamic assembly and disassembly of the different autophagic protein complexes at the so-called phagophore assembly site (PAS) is strictly regulated. Rab GTPases are major regulators of cellular vesicle trafficking, and the Rab GTPase Ypt1 and its GEF TRAPPIII have been implicated in autophagy. We show that Gyp1 acts as a Ypt1 GTPase-activating protein (GAP) for selective autophagic variants, such as the Cvt pathway or the selective autophagic degradation of mitochondria (mitophagy). Gyp1 regulates the dynamic disassembly of the conserved Ypt1-Atg1 complex. Thereby, Gyp1 sets the stage for efficient Atg14 recruitment, and facilitates the critical step from nucleation to elongation of the phagophore. In addition, we identified Gyp1 as a new Atg8-interacting motif (AIM)-dependent Atg8 interaction partner. The Gyp1 AIM is required for efficient formation of the cargo receptor-Atg8 complexes. Our findings elucidate the molecular mechanisms of complex disassembly during phagophore formation and suggest potential dual functions of GAPs in cellular vesicle trafficking. Abbreviations AIM, Atg8-interacting motif; Atg, autophagy related; Cvt, cytoplasm-to-vacuole targeting; GAP, GTPase-activating protein; GEF, guanine-nucleotide exchange factor; GFP, green fluorescent protein; log phase, logarithmic growth phase; NHD, N-terminal helical domain; PAS, phagophore assembly site; PE, phosphatidylethanolamine; PtdIns3P, phosphatidylinositol-3-phosphate; WT, wild-type.
Collapse
Affiliation(s)
- Anne Lisa Mitter
- a Department of Cellular Biochemistry, University Medicine , Georg-August University , Goettingen , Germany
| | - Petra Schlotterhose
- a Department of Cellular Biochemistry, University Medicine , Georg-August University , Goettingen , Germany
| | - Roswitha Krick
- a Department of Cellular Biochemistry, University Medicine , Georg-August University , Goettingen , Germany
| |
Collapse
|
4
|
Autophagy in the context of the cellular membrane-trafficking system: the enigma of Atg9 vesicles. Biochem Soc Trans 2017; 45:1323-1331. [PMID: 29150528 PMCID: PMC5730941 DOI: 10.1042/bst20170128] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2017] [Revised: 10/11/2017] [Accepted: 10/16/2017] [Indexed: 12/15/2022]
Abstract
Macroautophagy is an intracellular degradation system that involves the de novo formation of membrane structures called autophagosomes, although the detailed process by which membrane lipids are supplied during autophagosome formation is yet to be elucidated. Macroautophagy is thought to be associated with canonical membrane trafficking, but several mechanistic details are still missing. In this review, the current understanding and potential mechanisms by which membrane trafficking participates in macroautophagy are described, with a focus on the enigma of the membrane protein Atg9, for which the proximal mechanisms determining its movement are disputable, despite its key role in autophagosome formation.
Collapse
|
5
|
Yang S, Rosenwald AG. Autophagy in Saccharomyces cerevisiae requires the monomeric GTP-binding proteins, Arl1 and Ypt6. Autophagy 2016; 12:1721-1737. [PMID: 27462928 PMCID: PMC5079543 DOI: 10.1080/15548627.2016.1196316] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Macroautophagy/autophagy is a cellular degradation process that sequesters organelles or proteins into a double-membrane structure called the phagophore; this transient compartment matures into an autophagosome, which then fuses with the lysosome or vacuole to allow hydrolysis of the cargo. Factors that control membrane traffic are also essential for each step of autophagy. Here we demonstrate that 2 monomeric GTP-binding proteins in Saccharomyces cerevisiae, Arl1 and Ypt6, which belong to the Arf/Arl/Sar protein family and the Rab family, respectively, and control endosome-trans-Golgi traffic, are also necessary for starvation-induced autophagy under high temperature stress. Using established autophagy-specific assays we found that cells lacking either ARL1 or YPT6, which exhibit synthetic lethality with one another, were unable to undergo autophagy at an elevated temperature, although autophagy proceeds normally at normal growth temperature; specifically, strains lacking one or the other of these genes are unable to construct the autophagosome because these 2 proteins are required for proper traffic of Atg9 to the phagophore assembly site (PAS) at the restrictive temperature. Using degron technology to construct an inducible arl1Δ ypt6Δ double mutant, we demonstrated that cells lacking both genes show defects in starvation-inducted autophagy at the permissive temperature. We also found Arl1 and Ypt6 participate in autophagy by targeting the Golgi-associated retrograde protein (GARP) complex to the PAS to regulate the anterograde trafficking of Atg9. Our data show that these 2 membrane traffic regulators have novel roles in autophagy.
Collapse
Affiliation(s)
- Shu Yang
- a Department of Biology , Georgetown University , Washington DC , USA
| | - Anne G Rosenwald
- a Department of Biology , Georgetown University , Washington DC , USA
| |
Collapse
|
6
|
Sánchez-León E, Bowman B, Seidel C, Fischer R, Novick P, Riquelme M. The Rab GTPase YPT-1 associates with Golgi cisternae and Spitzenkörper microvesicles inNeurospora crassa. Mol Microbiol 2014; 95:472-90. [DOI: 10.1111/mmi.12878] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/18/2014] [Indexed: 02/02/2023]
Affiliation(s)
- Eddy Sánchez-León
- Department of Microbiology; Center for Scientific Research and Higher Education of Ensenada (CICESE); Ensenada Baja California Mexico
| | - Barry Bowman
- Department of Molecular, Cell and Developmental Biology; University of California; Santa Cruz CA USA
| | - Constanze Seidel
- Department of Applied Microbiology; Karlsruhe Institute of Technology; Karlsruhe Germany
| | - Reinhard Fischer
- Department of Applied Microbiology; Karlsruhe Institute of Technology; Karlsruhe Germany
| | - Peter Novick
- Department of Cellular and Molecular Medicine; University of California; San Diego CA USA
| | - Meritxell Riquelme
- Department of Microbiology; Center for Scientific Research and Higher Education of Ensenada (CICESE); Ensenada Baja California Mexico
| |
Collapse
|
7
|
Kawamura S, Nagano M, Toshima JY, Toshima J. Analysis of subcellular localization and function of the yeast Rab6 homologue, Ypt6p, using a novel amino-terminal tagging strategy. Biochem Biophys Res Commun 2014; 450:519-25. [PMID: 24924636 DOI: 10.1016/j.bbrc.2014.06.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Accepted: 06/01/2014] [Indexed: 11/25/2022]
Abstract
Ypt6p, the yeast homologue of mammalian Rab6, is involved in the multiple processes regulated by membrane trafficking such as vacuole maturation and membrane protein recycling. Although several lines of evidence suggest that Ypt6p is possibly localized to multiple membrane compartments, the precise localization of endogenous Ypt6p remains to be elucidated. In this study, we developed a novel method for N-terminal tagging of endogenous protein based on homologous recombination and investigated the subcellular localization and function of Ypt6p. Ypt6p and its GTP-bound form were predominantly localized to the cis- to medial-Golgi compartments whereas the GDP-bound form of Ypt6p was localized to the cytosol. Ric1p, a component of the specific GEF complex for Ypt6p, largely colocalized with Ypt6p in the early Golgi, and localization of Ypt6p changed to the cytosol in ric1Δ cells. On the other hand, Gyp6p, a putative GAP for Ypt6p, was localized to the trans-Golgi compartment and deletion of GYP6 increased the localization of Ypt6p at the trans-Golgi, suggesting that Gyp6p promotes the dissociation of Ypt6p from the Golgi when arriving at the trans-Golgi compartment. Additionally, we demonstrated that overexpression of the GDP-bound form of Ypt6p caused defective vacuole formation and recycling of Snc1p to the plasma membrane. These results suggest that the GTP-binding activity of Ypt6p is necessary for intra-Golgi trafficking and protein recycling in the early Golgi compartment.
Collapse
Affiliation(s)
- Sonoko Kawamura
- Department of Biological Science and Technology, Tokyo University of Science, Niijuku 6-3-1, Katsusika-ku, Tokyo 125-8585, Japan
| | - Makoto Nagano
- Research Center for RNA Science, RIST, Tokyo University of Science, Niijuku 6-3-1, Katsusika-ku, Tokyo 125-8585, Japan
| | - Junko Y Toshima
- Research Center for RNA Science, RIST, Tokyo University of Science, Niijuku 6-3-1, Katsusika-ku, Tokyo 125-8585, Japan; Faculty of Science and Engineering, Waseda University, Wakamatsu 2-2, Shinjuku-ku, Tokyo 162-8480, Japan.
| | - Jiro Toshima
- Department of Biological Science and Technology, Tokyo University of Science, Niijuku 6-3-1, Katsusika-ku, Tokyo 125-8585, Japan; Research Center for RNA Science, RIST, Tokyo University of Science, Niijuku 6-3-1, Katsusika-ku, Tokyo 125-8585, Japan.
| |
Collapse
|
8
|
Lukehart J, Highfill C, Kim K. Vps1, a recycling factor for the traffic from early endosome to the late Golgi. Biochem Cell Biol 2013; 91:455-65. [DOI: 10.1139/bcb-2013-0044] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Recycling of cellular membranes and their constituents plays a role for cell survival and growth. In the budding yeast, there are recycling traffics from early and late endosomal compartments to the late Golgi. Here, we examined a possible role for Vps1, a large GTPase, in the recycling traffic of GFP-Snc1 from early endosomes to the late Golgi. In the absence of Vps1 we observed an aberrant accumulation of GFP-Snc1 puncta in the cytoplasm that we identified as early endosomes. The N-terminal GTPase and the C-terminal GED domains of Vps1 are essential for Vps1’s function in Snc1 recycling. Our finding of genetic interactions of VPS1 with genes involved in early endosome-to-Golgi traffic further suggests Vps1 functions as a recycling factor in the membrane traffic. Finally, we provide evidence that the severe accumulation of GFP-Snc1 cytoplasmic puncta in vps1Δ cells is attributed to a mild defect in the retention of the GARP component Vps51 at the late Golgi, as well as a severe disruption of actin cables.
Collapse
Affiliation(s)
- Joshua Lukehart
- Department of Biology, Missouri State University, Springfield, MO 65897, USA
| | - Chad Highfill
- Department of molecular bioscience, University of Kansas, Lawrence, KS 66045, USA
| | - Kyoungtae Kim
- Department of Biology, Missouri State University, Springfield, MO 65897, USA
| |
Collapse
|
9
|
Mahfouz H, Ragnini-Wilson A, Venditti R, De Matteis MA, Wilson C. Mutational analysis of the yeast TRAPP subunit Trs20p identifies roles in endocytic recycling and sporulation. PLoS One 2012; 7:e41408. [PMID: 23049729 PMCID: PMC3458868 DOI: 10.1371/journal.pone.0041408] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2012] [Accepted: 06/22/2012] [Indexed: 11/20/2022] Open
Abstract
Trs20p is a subunit of the evolutionarily conserved TRAPP (TRAnsport Protein Particle) complex that mediates various aspects of membrane trafficking. Three TRAPP complexes have been identified in yeast with roles in ER-to-Golgi trafficking, post-Golgi and endosomal-to-Golgi transport and in autophagy. The role of Trs20p, which is essential for viability and a component of all three complexes, and how it might function within each TRAPP complex, has not been clarified to date. To begin to address the role of Trs20p we generated different mutants by random mutagenesis but, surprisingly, no defects were observed in diverse anterograde transport pathways or general secretion in Trs20 temperature-sensitive mutants. Instead, mutation of Trs20 led to defects in endocytic recycling and a block in sporulation/meiosis. The phenotypes of different mutants appear to be separable suggesting that the mutations affect the function of Trs20 in different TRAPP complexes.
Collapse
Affiliation(s)
- Hichem Mahfouz
- Consorzio Mario Negri Sud, Santa Maria Imbaro, Chieti, Italy
| | - Antonella Ragnini-Wilson
- Department of Biology, University of Rome “Tor Vergata”, Rome, Italy
- Consorzio Mario Negri Sud, Santa Maria Imbaro, Chieti, Italy
| | | | | | - Cathal Wilson
- Telethon Institute of Genetics and Medicine, Naples, Italy
| |
Collapse
|
10
|
Abstract
Members of the Rab or ARF/Sar branches of the Ras GTPase superfamily regulate almost every step of intracellular membrane traffic. A rapidly growing body of evidence indicates that these GTPases do not act as lone agents but are networked to one another through a variety of mechanisms to coordinate the individual events of one stage of transport and to link together the different stages of an entire transport pathway. These mechanisms include guanine nucleotide exchange factor (GEF) cascades, GTPase-activating protein (GAP) cascades, effectors that bind to multiple GTPases, and positive-feedback loops generated by exchange factor-effector interactions. Together these mechanisms can lead to an ordered series of transitions from one GTPase to the next. As each GTPase recruits a unique set of effectors, these transitions help to define changes in the functionality of the membrane compartments with which they are associated.
Collapse
Affiliation(s)
- Emi Mizuno-Yamasaki
- Institute for Molecular and Cellular Regulation, Gunma University, Maebashi 371-8512, Japan.
| | | | | |
Collapse
|
11
|
Modular TRAPP complexes regulate intracellular protein trafficking through multiple Ypt/Rab GTPases in Saccharomyces cerevisiae. Genetics 2012; 191:451-60. [PMID: 22426882 DOI: 10.1534/genetics.112.139378] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Ypt/Rab are key regulators of intracellular trafficking in all eukaryotic cells. In yeast, Ypt1 is essential for endoplasmic reticulum (ER)-to-Golgi transport, whereas Ypt31/32 regulate Golgi-to-plasma membrane and endosome-to-Golgi transport. TRAPP is a multisubunit complex that acts as an activator of Ypt/Rab GTPases. Trs85 and Trs130 are two subunits specific for TRAPP III and TRAPP II, respectively. Whereas TRAPP III was shown to acts as a Ypt1 activator, it is still controversial whether TRAPP II acts as a Ypt1 or Ypt31/32 activator. Here, we use GFP-Snc1 as a tool to study transport in Ypt and TRAPP mutant cells. First, we show that expression of GFP-Snc1 in trs85Δ mutant cells results in temperature sensitivity. Second, we suggest that in ypt1ts and trs85Δ, but not in ypt31Δ/32ts and trs130ts mutant cells, GFP-Snc1 accumulates in the ER. Third, we show that overexpression of Ypt1, but not Ypt31/32, can suppress both the growth and GFP-Snc1 accumulation phenotypes of trs85Δ mutant cells. In contrast, overexpression of Ypt31, but not Ypt1, suppresses the growth and GFP-Snc1 transport phenotypes of trs130ts mutant cells. These results provide genetic support for functional grouping of Ypt1 with Trs85-containing TRAPP III and Ypt31/32 with Trs130-containing TRAPP II.
Collapse
|
12
|
Peptides induce persistent signaling from endosomes by a nutrient transceptor. Nat Chem Biol 2012; 8:400-8. [PMID: 22388927 DOI: 10.1038/nchembio.910] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2011] [Accepted: 12/23/2011] [Indexed: 11/09/2022]
Abstract
The yeast Gap1 transceptor mediates amino acid activation of the protein kinase A pathway and undergoes endocytic internalization following amino acid transport. We identified three specific γ-glutamyl dipeptides that cause persistent cyclic AMP-independent activation of protein kinase A, prevent Gap1 vacuolar sorting and cause Gap1 accumulation in endosomes. To our knowledge, these are the first examples of persistent agonists of a transceptor. In yeast mutants blocked in multivesicular body sorting, L-citrulline mimicked persistent signaling, further supporting that the internalized Gap1 transceptor keeps signaling. Unexpectedly, these dipeptides were transported by Gap1 and not by the regular dipeptide transporters. Their uptake was unusually sensitive to external pH and caused transient intracellular acidification. High external pH, NHA1 deletion or V-ATPase inhibition overcame the vacuolar sorting defect. Hence, this work has identified specific dipeptides that cause enhanced proton influx through the Gap1 symporter, resulting in its defective vacuolar sorting, and independently transform it into a persistently signaling transceptor.
Collapse
|
13
|
Sancenon V, Lee SA, Patrick C, Griffith J, Paulino A, Outeiro TF, Reggiori F, Masliah E, Muchowski PJ. Suppression of α-synuclein toxicity and vesicle trafficking defects by phosphorylation at S129 in yeast depends on genetic context. Hum Mol Genet 2012; 21:2432-49. [PMID: 22357655 DOI: 10.1093/hmg/dds058] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The aggregation of α-synuclein (αSyn) is a neuropathologic hallmark of Parkinson's disease and other synucleinopathies. In Lewy bodies, αSyn is extensively phosphorylated, predominantly at serine 129 (S129). Recent studies in yeast have shown that, at toxic levels, αSyn disrupts Rab homeostasis, causing an initial endoplasmic reticulum-to-Golgi block that precedes a generalized trafficking collapse. However, whether αSyn phosphorylation modulates trafficking defects has not been evaluated. Here, we show that constitutive expression of αSyn in yeast impairs late-exocytic, early-endocytic and/or recycling trafficking. Although members of the casein kinase I (CKI) family phosphorylate αSyn at S129, they attenuate αSyn toxicity and trafficking defects by an S129 phosphorylation-independent mechanism. Surprisingly, phosphorylation of S129 modulates αSyn toxicity and trafficking defects in a manner strictly determined by genetic background. Abnormal endosome morphology, increased levels of the endosome marker Rab5 and co-localization of mammalian CKI with αSyn aggregates are observed in brain sections from αSyn-overexpressing mice and human synucleinopathies. Our results contribute to evidence that suggests αSyn-induced defects in endocytosis, exocytosis and/or recycling of vesicles involved in these cellular processes might contribute to the pathogenesis of synucleinopathies.
Collapse
Affiliation(s)
- Vicente Sancenon
- Gladstone Institute of Neurological Disease, 1650 Owens Street, San Francisco, CA 94158, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Imae R, Inoue T, Kimura M, Kanamori T, Tomioka NH, Kage-Nakadai E, Mitani S, Arai H. Intracellular phospholipase A1 and acyltransferase, which are involved in Caenorhabditis elegans stem cell divisions, determine the sn-1 fatty acyl chain of phosphatidylinositol. Mol Biol Cell 2010; 21:3114-24. [PMID: 20668164 PMCID: PMC2938378 DOI: 10.1091/mbc.e10-03-0195] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Phosphatidylinositol (PI), an important constituent of membranes, contains stearic acid as the major fatty acid at the sn-1 position. This fatty acid is thought to be incorporated into PI through fatty acid remodeling by sequential deacylation and reacylation. However, the genes responsible for the reaction are unknown, and consequently, the physiological significance of the sn-1 fatty acid remains to be elucidated. Here, we identified acl-8, -9, and -10, which are closely related to each other, and ipla-1 as strong candidates for genes involved in fatty acid remodeling at the sn-1 position of PI. In both ipla-1 mutants and acl-8 acl-9 acl-10 triple mutants of Caenorhabditis elegans, the stearic acid content of PI is reduced, and asymmetric division of stem cell-like epithelial cells is defective. The defects in asymmetric division of these mutants are suppressed by a mutation of the same genes involved in intracellular retrograde transport, suggesting that ipla-1 and acl genes act in the same pathway. IPLA-1 and ACL-10 have phospholipase A(1) and acyltransferase activity, respectively, both of which recognize the sn-1 position of PI as their substrate. We propose that the sn-1 fatty acid of PI is determined by ipla-1 and acl-8, -9, -10 and crucial for asymmetric divisions.
Collapse
Affiliation(s)
- Rieko Imae
- Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo 113-0033, Japan
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Ma Y, Sugiura R, Zhang L, Zhou X, Takeuchi M, He Y, Kuno T. Isolation of a fission yeast mutant that is sensitive to valproic acid and defective in the gene encoding Ric1, a putative component of Ypt/Rab-specific GEF for Ryh1 GTPase. Mol Genet Genomics 2010; 284:161-71. [PMID: 20623139 DOI: 10.1007/s00438-010-0550-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2010] [Accepted: 06/10/2010] [Indexed: 01/08/2023]
Abstract
Valproic acid (VPA) causes various therapeutic and biological effects, but the exact mechanisms underlying these effects, however, remain elusive. To gain insights into the molecular mechanisms of VPA action, we performed in fission yeast a genetic screen for mutants that show VPA hypersensitivity and have identified several membrane-trafficking mutants including vas1-1/vps45 and vas2-1/aps1. Here, we describe the isolation and characterization of vas3-1/ric1-v3, a mutant allele of the ric1 (+) gene encoding a fission yeast homolog of the budding yeast Ric1p, a component of Ypt/Rab-specific guanyl-nucleotide exchange factor (GEF). The Rab GTPase Ryh1 knockout (Deltaryh1) cells and Deltaric1 cells exhibited similar phenotypes. The double knockout Deltaric1Deltaryh1 cells did not display synthetic growth defects. These results are consistent with the notion that Ric1 may be a component of the GEF complex for Ryh1. Overexpression of wild-type Ryh1 and the constitutively active Ryh1Q70L only partially suppressed the phenotypes of ric1-v3 and Deltaric1 cells, and they failed to localize to the Golgi/endosomes in ric1-v3 and Deltaric1 cells. Furthermore, we isolated vps15 (+) gene, encoding a serine/threonine protein kinase, as a dosage-dependent suppressor of the temperature-sensitive phenotype of ric1-v3 mutant, but not that of Deltaric1 cells. Our results showed that the ric1-v3 mutant allele has some residual functional activity and suggest that Vps15 plays a role in the regulation of Ric1 function. In conclusion, Ric1 is a putative component of GEF for Ryh1 and might be regulated by Vps15. Further studies are needed to reveal the mechanism underlying the regulation.
Collapse
Affiliation(s)
- Yan Ma
- Division of Molecular Pharmacology and Pharmacogenomics, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan.
| | | | | | | | | | | | | |
Collapse
|
16
|
Sclafani A, Chen S, Rivera-Molina F, Reinisch K, Novick P, Ferro-Novick S. Establishing a role for the GTPase Ypt1p at the late Golgi. Traffic 2010; 11:520-32. [PMID: 20059749 DOI: 10.1111/j.1600-0854.2010.01031.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
GTPases of the Rab family cycle between an inactive (GDP-bound) and active (GTP-bound) conformation. The active form of the Rab regulates a variety of cellular functions via multiple effectors. Guanine nucleotide exchange factors (GEFs) activate Rabs by accelerating the exchange of GDP for GTP, while GTPase activating proteins (GAPs) inactivate Rabs by stimulating the hydrolysis of GTP. The GTPase Ypt1p is required for endoplasmic reticulum (ER)-Golgi and intra-Golgi traffic in the yeast Saccharomyces cerevisiae. Recent findings, however, have shown that Ypt1p GEF, GAP and an effector are all required for traffic from the early endosome to the Golgi. Here we describe a screen for ypt1 mutants that block traffic from the early endosome to the late Golgi, but not general secretion. This screen has led to the identification of a collection of recessive and dominant mutants that block traffic from the early endosome. While it has long been known that Ypt1p regulates the flow of biosynthetic traffic into the cis side of the Golgi, these findings have established a role for Ypt1p in the regulation of early endosome-Golgi traffic. We propose that Ypt1p regulates the flow of traffic into the cis and trans side of the Golgi via multiple effectors.
Collapse
Affiliation(s)
- Anthony Sclafani
- Department of Cell Biology, Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT 06519, USA
| | | | | | | | | | | |
Collapse
|
17
|
Pinheiro H, Samalova M, Geldner N, Chory J, Martinez A, Moore I. Genetic evidence that the higher plant Rab-D1 and Rab-D2 GTPases exhibit distinct but overlapping interactions in the early secretory pathway. J Cell Sci 2009; 122:3749-58. [PMID: 19789181 DOI: 10.1242/jcs.050625] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
GTPases of the Rab1 subclass are essential for membrane traffic between the endoplasmic reticulum (ER) and Golgi complex in animals, fungi and plants. Rab1-related proteins in higher plants are unusual because sequence comparisons divide them into two putative subclasses, Rab-D1 and Rab-D2, that are conserved in monocots and dicots. We tested the hypothesis that the Rab-D1 and Rab-D2 proteins of Arabidopsis represent functionally distinct groups. RAB-D1 and RAB-D2a each targeted fluorescent proteins to the same punctate structures associated with the Golgi stacks and trans-Golgi-network. Dominant-inhibitory N121I mutants of each protein inhibited traffic of diverse cargo proteins at the ER but they appeared to act via distinct biochemical pathways as biosynthetic traffic in cells expressing either of the N121I mutants could be restored by coexpressing the wild-type form of the same subclass but not the other subclass. The same interaction was observed in transgenic seedlings expressing RAB-D1 [N121I]. Insertional mutants confirmed that the three Arabidopsis Rab-D2 genes were extensively redundant and collectively performed an essential function that could not be provided by RAB-D1, which was non-essential. However, plants lacking RAB-D1, RAB-D2b and RAB-D2c were short and bushy with low fertility, indicating that the Rab-D1 and Rab-D2 subclasses have overlapping functions.
Collapse
Affiliation(s)
- Hazel Pinheiro
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK
| | | | | | | | | | | |
Collapse
|
18
|
A Rab GAP cascade defines the boundary between two Rab GTPases on the secretory pathway. Proc Natl Acad Sci U S A 2009; 106:14408-13. [PMID: 19666511 DOI: 10.1073/pnas.0906536106] [Citation(s) in RCA: 137] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Membrane traffic along the endocytic and exocytic pathways relies on the appropriate localization and activation of a series of different Rab GTPases. Rabs are activated by specific guanine nucleotide exchange factors (GEFs) and inactivated by GTPase-activating proteins (GAPs). GEF cascades, in which one Rab in its GTP-bound form recruits the GEF that activates the next Rab along the pathway, can account for the sequential activation of a series of Rabs, but it does not explain how the first Rab is inactivated after the next Rab has been activated. We present evidence for a counter-current GAP cascade that serves to restrict the spatial and temporal overlap of 2 Rabs, Ypt1p and Ypt32p, on the exocytic pathway in Saccharomyces cerevisiae. We show that Gyp1p, a GAP for Ypt1p, specifically interacts with Ypt32p, and that this interaction is important for the localization and stability of Gyp1p. Moreover, we demonstrate that, in WT cells, Ypt1p compartments are converted over time into Ypt32p compartments, whereas in gyp1Delta cells there is a significant increase in compartments containing both proteins that reflects a slower transition from Ypt1p to Ypt32p. GEF cascades working in concert with counter-current GAP cascades could generate a programmed series of Rab conversions responsible for regulating the choreography of membrane traffic.
Collapse
|
19
|
Jourdain I, Spielewoy N, Thompson J, Dhut S, Yates JR, Toda T. Identification of a conserved F-box protein 6 interactor essential for endocytosis and cytokinesis in fission yeast. Biochem J 2009; 420:169-77. [PMID: 19243310 PMCID: PMC2950653 DOI: 10.1042/bj20081659] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The F-box domain is a degenerated motif consisting of approximately 40 amino acid residues that specifically bind Skp1, a core component of the SCF (Skp1-Cdc53/Cullin 1-F-box protein) ubiquitin ligase. Recent work, mainly performed in budding yeast, indicates that certain F-box proteins form non-SCF complexes together with Skp1 in the absence of cullins and play various roles in cell cycle and signalling pathways. However, it is not established whether these non-SCF complexes are unique to budding yeast or common in other eukaryotes. In the present paper, using TAP (tandem affinity purification) coupled to MudPIT (Multidimensional Protein Identification Technology) analysis, we have identified a novel conserved protein, Sip1, in fission yeast, as an interacting partner of an essential F-box protein Pof6. Sip1 is a large HEAT (huntingtin, elongation factor 3, the PR65/A subunit of protein phosphatase 2A and the lipid kinase Tor)-repeats containing protein (217 kDa) and forms a complex with Pof6 and Skp1. This complex does not contain cullins, indicating that it is a novel non-SCF complex. Like Pof6 and Skp1, Sip1 is essential for cell viability and temperature-sensitive sip1 mutants display cell division arrest as binucleate cells with septa. Sip1 localizes to the nucleus and dynamic cytoplasmic dots, which are shown in the present study to be endocytic vesicles. Consistent with this, sip1 mutants are defective in endocytosis. Furthermore, towards the end of cytokinesis, constriction of the actomyosin ring and dissociation of type II myosin and septum materials are substantially delayed in the absence of functional Sip1. These results indicate that the conserved Sip1 protein comprises a novel non-SCF F-box complex that plays an essential role in endocytosis, cytokinesis and cell division.
Collapse
Affiliation(s)
- Isabelle Jourdain
- Laboratory of Cell Regulation, Cancer Research UK, London Research Institute, 44 Lincoln’s Inn Fields, London WC2A 3PX, UK
| | - Nathalie Spielewoy
- Laboratory of Cell Regulation, Cancer Research UK, London Research Institute, 44 Lincoln’s Inn Fields, London WC2A 3PX, UK
| | - James Thompson
- Department of Cell Biology, The Scripps Research Institute, La Jolla, California 92037
| | - Susheela Dhut
- Laboratory of Cell Regulation, Cancer Research UK, London Research Institute, 44 Lincoln’s Inn Fields, London WC2A 3PX, UK
| | - John R. Yates
- Department of Cell Biology, The Scripps Research Institute, La Jolla, California 92037
| | - Takashi Toda
- Laboratory of Cell Regulation, Cancer Research UK, London Research Institute, 44 Lincoln’s Inn Fields, London WC2A 3PX, UK
| |
Collapse
|
20
|
Curwin AJ, Fairn GD, McMaster CR. Phospholipid transfer protein Sec14 is required for trafficking from endosomes and regulates distinct trans-Golgi export pathways. J Biol Chem 2009; 284:7364-75. [PMID: 19129178 DOI: 10.1074/jbc.m808732200] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A protein known to regulate both lipid metabolism and vesicular transport is the phosphatidylcholine/phosphatidylinositol transfer protein Sec14 of Saccharomyces cerevisiae. Sec14 is thought to globally affect secretion from the trans-Golgi. The results from a synthetic genetic array screen for genes whose inactivation impaired growth of cells with a temperature-sensitive SEC14 allele implied Sec14 regulates transport into and out of the Golgi. This prompted us to examine the role of Sec14 in various vesicular transport pathways. We determined that Sec14 function was required for the route followed by Bgl2, whereas trafficking of other secreted proteins, including Hsp150, Cts1, Scw4, Scw10, Exg1, Cis3, and Ygp1, still occurred, indicating Sec14 regulates specific trans-Golgi export pathways. Upon diminution of Sec14 function, the v-SNARE Snc1 accumulated in endosomes and the trans-Golgi. Its accumulation in endosomes is consistent with Sec14 being required for transport from endosomes to the trans-Golgi. Sec14 was also required for trafficking of Ste3 and the lipophilic dye FM4-64 from the plasma membrane to the vacuole at the level of the endosome. The combined genetic and cell biology data are consistent with regulation of endosome trafficking being a major role for Sec14. We further determined that lipid ligand occupancy differentially regulates Sec14 functions.
Collapse
Affiliation(s)
- Amy J Curwin
- Department of Pediatrics, Atlantic Research Centre, Dalhousie University, Halifax, Nova Scotia B3H 4H7, Canada
| | | | | |
Collapse
|
21
|
Kurischko C, Kuravi VK, Wannissorn N, Nazarov PA, Husain M, Zhang C, Shokat KM, McCaffery JM, Luca FC. The yeast LATS/Ndr kinase Cbk1 regulates growth via Golgi-dependent glycosylation and secretion. Mol Biol Cell 2008; 19:5559-78. [PMID: 18843045 DOI: 10.1091/mbc.e08-05-0455] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Saccharomyces cerevisiae Cbk1 is a LATS/Ndr protein kinase and a downstream component of the regulation of Ace2 and morphogenesis (RAM) signaling network. Cbk1 and the RAM network are required for cellular morphogenesis, cell separation, and maintenance of cell integrity. Here, we examine the phenotypes of conditional cbk1 mutants to determine the essential function of Cbk1. Cbk1 inhibition severely disrupts growth and protein secretion, and triggers the Swe1-dependent morphogenesis checkpoint. Cbk1 inhibition also delays the polarity establishment of the exocytosis regulators Rab-GTPase Sec4 and its exchange factor Sec2, but it does not interfere with actin polarity establishment. Cbk1 binds to and phosphorylates Sec2, suggesting that it regulates Sec4-dependent exocytosis. Intriguingly, Cbk1 inhibition causes a >30% decrease in post-Golgi vesicle accumulation in late secretion mutants, indicating that Cbk1 also functions upstream of Sec2-Sec4, perhaps at the level of the Golgi. In agreement, conditional cbk1 mutants mislocalize the cis-Golgi mannosyltransferase Och1, are hypersensitive to the aminoglycoside hygromycin B, and exhibit diminished invertase and Sim1 glycosylation. Significantly, the conditional lethality and hygromycin B sensitivity of cbk1 mutants are suppressed by moderate overexpression of several Golgi mannosyltransferases. These data suggest that an important function for Cbk1 and the RAM signaling network is to regulate growth and secretion via Golgi and Sec2/Sec4-dependent processes.
Collapse
Affiliation(s)
- Cornelia Kurischko
- Department of Animal Biology and the Mari Lowe Center for Comparative Oncology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Kanamori T, Inoue T, Sakamoto T, Gengyo-Ando K, Tsujimoto M, Mitani S, Sawa H, Aoki J, Arai H. Beta-catenin asymmetry is regulated by PLA1 and retrograde traffic in C. elegans stem cell divisions. EMBO J 2008; 27:1647-57. [PMID: 18497747 PMCID: PMC2396877 DOI: 10.1038/emboj.2008.102] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2008] [Accepted: 04/28/2008] [Indexed: 12/17/2022] Open
Abstract
Asymmetric division is an important property of stem cells. In Caenorhabditis elegans, the Wnt/beta-catenin asymmetry pathway determines the polarity of most asymmetric divisions. The Wnt signalling components such as beta-catenin localize asymmetrically to the cortex of mother cells to produce two distinct daughter cells. However, the molecular mechanism to polarize them remains to be elucidated. Here, we demonstrate that intracellular phospholipase A(1) (PLA(1)), a poorly characterized lipid-metabolizing enzyme, controls the subcellular localizations of beta-catenin in the terminal asymmetric divisions of epithelial stem cells (seam cells). In mutants of ipla-1, a single C. elegans PLA(1) gene, cortical beta-catenin is delocalized and the asymmetry of cell-fate specification is disrupted in the asymmetric divisions. ipla-1 mutant phenotypes are rescued by expression of ipla-1 in seam cells in a catalytic activity-dependent manner. Furthermore, our genetic screen utilizing ipla-1 mutants reveals that reduction of endosome-to-Golgi retrograde transport in seam cells restores normal subcellular localization of beta-catenin to ipla-1 mutants. We propose that membrane trafficking regulated by ipla-1 provides a mechanism to control the cortical asymmetry of beta-catenin.
Collapse
Affiliation(s)
- Takahiro Kanamori
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
- Laboratory of Cellular Biochemistry, RIKEN, Saitama, Japan
| | - Takao Inoue
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
- CREST, Japan Science and Technology Agency, Saitama, Japan
| | - Taro Sakamoto
- School of Pharmaceutical Sciences, Kitasato University, Tokyo, Japan
| | - Keiko Gengyo-Ando
- CREST, Japan Science and Technology Agency, Saitama, Japan
- Department of Physiology, Tokyo Women's Medical University School of Medicine, Tokyo, Japan
| | | | - Shohei Mitani
- CREST, Japan Science and Technology Agency, Saitama, Japan
- Department of Physiology, Tokyo Women's Medical University School of Medicine, Tokyo, Japan
| | - Hitoshi Sawa
- Laboratory for Cell Fate Decision, RIKEN Center for Developmental Biology, Kobe, Japan
- Department of Biology, Graduate School of Science, Kobe University, Kobe, Japan
| | - Junken Aoki
- Department of Molecular & Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Miyagi, Japan
- PRESTO, Japan Science and Technology Agency, Saitama, Japan
| | - Hiroyuki Arai
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
- CREST, Japan Science and Technology Agency, Saitama, Japan
| |
Collapse
|
23
|
Swennen D, Beckerich JM. Yarrowia lipolytica vesicle-mediated protein transport pathways. BMC Evol Biol 2007; 7:219. [PMID: 17997821 PMCID: PMC2241642 DOI: 10.1186/1471-2148-7-219] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2007] [Accepted: 11/12/2007] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND Protein secretion is a universal cellular process involving vesicles which bud and fuse between organelles to bring proteins to their final destination. Vesicle budding is mediated by protein coats; vesicle targeting and fusion depend on Rab GTPase, tethering factors and SNARE complexes. The Génolevures II sequencing project made available entire genome sequences of four hemiascomycetous yeasts, Yarrowia lipolytica, Debaryomyces hansenii, Kluyveromyces lactis and Candida glabrata. Y. lipolytica is a dimorphic yeast and has good capacities to secrete proteins. The translocation of nascent protein through the endoplasmic reticulum membrane was well studied in Y. lipolytica and is largely co-translational as in the mammalian protein secretion pathway. RESULTS We identified S. cerevisiae proteins involved in vesicular secretion and these protein sequences were used for the BLAST searches against Génolevures protein database (Y. lipolytica, C. glabrata, K. lactis and D. hansenii). These proteins are well conserved between these yeasts and Saccharomyces cerevisiae. We note several specificities of Y. lipolytica which may be related to its good protein secretion capacities and to its dimorphic aspect. An expansion of the Y. lipolytica Rab protein family was observed with autoBLAST and the Rab2- and Rab4-related members were identified with BLAST against NCBI protein database. An expansion of this family is also found in filamentous fungi and may reflect the greater complexity of the Y. lipolytica secretion pathway. The Rab4p-related protein may play a role in membrane recycling as rab4 deleted strain shows a modification of colony morphology, dimorphic transition and permeability. Similarly, we find three copies of the gene (SSO) encoding the plasma membrane SNARE protein. Quantification of the percentages of proteins with the greatest homology between S. cerevisiae, Y. lipolytica and animal homologues involved in vesicular transport shows that 40% of Y. lipolytica proteins are closer to animal ones, whereas they are only 13% in the case of S. cerevisiae. CONCLUSION These results provide further support for the idea, previously noted about the endoplasmic reticulum translocation pathway, that Y. lipolytica is more representative of vesicular secretion of animals and other fungi than is S. cerevisiae.
Collapse
Affiliation(s)
- Dominique Swennen
- Laboratoire de Microbiologie et Génétique Moléculaire INRA-CNRS-AgroParisTech UMR 1238 CBAI BP01 F-78850 Thiverval Grignon, France.
| | | |
Collapse
|
24
|
Sarry JE, Chen S, Collum RP, Liang S, Peng M, Lang A, Naumann B, Dzierszinski F, Yuan CX, Hippler M, Rea PA. Analysis of the vacuolar luminal proteome of Saccharomyces cerevisiae. FEBS J 2007; 274:4287-305. [PMID: 17651441 DOI: 10.1111/j.1742-4658.2007.05959.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Despite its large size and the numerous processes in which it is implicated, neither the identity nor the functions of the proteins targeted to the yeast vacuole have been defined comprehensively. In order to establish a methodological platform and protein inventory to address this shortfall, we refined techniques for the purification of 'proteomics-grade' intact vacuoles. As confirmed by retention of the preloaded fluorescent conjugate glutathione-bimane throughout the fractionation procedure, the resistance of soluble proteins that copurify with this fraction to digestion by exogenous extravacuolar proteinase K, and the results of flow cytometric, western and marker enzyme activity analyses, vacuoles prepared in this way retain most of their protein content and are of high purity and integrity. Using this material, 360 polypeptides species associated with the soluble fraction of the vacuolar isolates were resolved reproducibly by 2D gel electrophoresis. Of these, 260 were identified by peptide mass fingerprinting and peptide sequencing by MALDI-MS and liquid chromatography coupled to ion trap or quadrupole TOF tandem MS, respectively. The polypeptides identified in this way, many of which correspond to alternate size and charge states of the same parent translation product, can be assigned to 117 unique ORFs. Most of the proteins identified are canonical vacuolar proteases, glycosidases, phosphohydrolases, lipid-binding proteins or established vacuolar proteins of unknown function, or other proteases, glycosidases, lipid-binding proteins, regulatory proteins or proteins involved in intermediary metabolism, protein synthesis, folding or targeting, or the alleviation of oxidative stress. On the basis of the high purity of the vacuolar preparations, the electrophoretic properties of the proteins identified and the results of quantitative proteinase K protection measurements, many of the noncanonical vacuolar proteins identified are concluded to have entered this compartment for breakdown, processing and/or salvage purposes.
Collapse
Affiliation(s)
- Jean-Emmanuel Sarry
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Cai H, Reinisch K, Ferro-Novick S. Coats, tethers, Rabs, and SNAREs work together to mediate the intracellular destination of a transport vesicle. Dev Cell 2007; 12:671-82. [PMID: 17488620 DOI: 10.1016/j.devcel.2007.04.005] [Citation(s) in RCA: 523] [Impact Index Per Article: 29.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Tethering factors have been shown to interact with Rabs and SNAREs and, more recently, with coat proteins. Coat proteins are required for cargo selection and membrane deformation to bud a transport vesicle from a donor compartment. It was once thought that a vesicle must uncoat before it recognizes its target membrane. However, recent findings have revealed a role for the coat in directing a vesicle to its correct intracellular destination. In this review we will discuss the literature that links coat proteins to vesicle targeting events.
Collapse
Affiliation(s)
- Huaqing Cai
- Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT 06519, USA
| | | | | |
Collapse
|
26
|
Pan X, Eathiraj S, Munson M, Lambright DG. TBC-domain GAPs for Rab GTPases accelerate GTP hydrolysis by a dual-finger mechanism. Nature 2006; 442:303-6. [PMID: 16855591 DOI: 10.1038/nature04847] [Citation(s) in RCA: 321] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2006] [Accepted: 04/28/2006] [Indexed: 11/09/2022]
Abstract
Rab GTPases regulate membrane trafficking by cycling between inactive (GDP-bound) and active (GTP-bound) conformations. The duration of the active state is limited by GTPase-activating proteins (GAPs), which accelerate the slow intrinsic rate of GTP hydrolysis. Proteins containing TBC (Tre-2, Bub2 and Cdc16) domains are broadly conserved in eukaryotic organisms and function as GAPs for Rab GTPases as well as GTPases that control cytokinesis. An exposed arginine residue is a critical determinant of GAP activity in vitro and in vivo. It has been expected that the catalytic mechanism of TBC domains would parallel that of Ras and Rho family GAPs. Here we report crystallographic, mutational and functional analyses of complexes between Rab GTPases and the TBC domain of Gyp1p. In the crystal structure of a TBC-domain-Rab-GTPase-aluminium fluoride complex, which approximates the transition-state intermediate for GTP hydrolysis, the TBC domain supplies two catalytic residues in trans, an arginine finger analogous to Ras/Rho family GAPs and a glutamine finger that substitutes for the glutamine in the DxxGQ motif of the GTPase. The glutamine from the Rab GTPase does not stabilize the transition state as expected but instead interacts with the TBC domain. Strong conservation of both catalytic fingers indicates that most TBC-domain GAPs may accelerate GTP hydrolysis by a similar dual-finger mechanism.
Collapse
Affiliation(s)
- Xiaojing Pan
- Program in Molecular Medicine & Department of Biochemistry and Molecular Pharmacology, UMASS Medical School, Two Biotech, 373 Plantation Street, Worcester, Massachusetts 01605, USA
| | | | | | | |
Collapse
|
27
|
Rubio-Texeira M, Kaiser CA. Amino acids regulate retrieval of the yeast general amino acid permease from the vacuolar targeting pathway. Mol Biol Cell 2006; 17:3031-50. [PMID: 16641373 PMCID: PMC1483039 DOI: 10.1091/mbc.e05-07-0669] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Intracellular sorting of the general amino acid permease (Gap1p) in Saccharomyces cerevisiae depends on availability of amino acids such that at low amino acid concentrations Gap1p is sorted to the plasma membrane, whereas at high concentrations Gap1p is sorted to the vacuole. In a genome-wide screen for mutations that affect Gap1p sorting we identified deletions in a subset of components of the ESCRT (endosomal sorting complex required for transport) complex, which is required for formation of the multivesicular endosome (MVE). Gap1p-GFP is delivered to the vacuolar interior by the MVE pathway in wild-type cells, but when formation of the MVE is blocked by mutation, Gap1p-GFP efficiently cycles from this compartment to the plasma membrane, resulting in unusually high permease activity at the cell surface. Importantly, cycling of Gap1p-GFP to the plasma membrane is blocked by high amino acid concentrations, defining recycling from the endosome as a major step in Gap1p trafficking under physiological control. Mutations in LST4 and LST7 genes, previously identified for their role in Gap1p sorting, similarly block MVE to plasma membrane trafficking of Gap1p. However, mutations in other recycling complexes such as the retromer had no significant effect on the intracellular sorting of Gap1p, suggesting that Gap1p follows a genetically distinct pathway for recycling. We previously found that Gap1p sorting from the Golgi to the endosome requires ubiquitination of Gap1p by an Rsp5p ubiquitin ligase complex, but amino acid abundance does not appear to significantly alter the accumulation of polyubiquitinated Gap1p. Thus the role of ubiquitination appears to be a signal for delivery of Gap1p to the MVE, whereas amino acid abundance appears to control the cycling of Gap1p from the MVE to the plasma membrane.
Collapse
Affiliation(s)
- Marta Rubio-Texeira
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Chris A. Kaiser
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139
| |
Collapse
|
28
|
Robinson M, Poon PP, Schindler C, Murray LE, Kama R, Gabriely G, Singer RA, Spang A, Johnston GC, Gerst JE. The Gcs1 Arf-GAP mediates Snc1,2 v-SNARE retrieval to the Golgi in yeast. Mol Biol Cell 2006; 17:1845-58. [PMID: 16452633 PMCID: PMC1415299 DOI: 10.1091/mbc.e05-09-0832] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Gcs1 is an Arf GTPase-activating protein (Arf-GAP) that mediates Golgi-ER and post-Golgi vesicle transport in yeast. Here we show that the Snc1,2 v-SNAREs, which mediate endocytosis and exocytosis, interact physically and genetically with Gcs1. Moreover, Gcs1 and the Snc v-SNAREs colocalize to subcellular structures that correspond to the trans-Golgi and endosomal compartments. Studies performed in vitro demonstrate that the Snc-Gcs1 interaction results in the efficient binding of recombinant Arf1Delta17N-Q71L to the v-SNARE and the recruitment of purified coatomer. In contrast, the presence of Snc had no effect on Gcs1 Arf-GAP activity in vitro, suggesting that v-SNARE binding does not attenuate Arf1 function. Disruption of both the SNC and GCS1 genes results in synthetic lethality, whereas overexpression of either SNC gene inhibits the growth of a distinct subset of COPI mutants. We show that GFP-Snc1 recycling to the trans-Golgi is impaired in gcs1Delta cells and these COPI mutants. Together, these results suggest that Gcs1 facilitates the incorporation of the Snc v-SNAREs into COPI recycling vesicles and subsequent endosome-Golgi sorting in yeast.
Collapse
Affiliation(s)
- Micah Robinson
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Abstract
Eukaryotic cells have systems of internal organelles to synthesize lipids and membrane proteins, to release secreted proteins, to take up nutrients and to degrade membrane-bound and internalized molecules. Proteins and lipids move from organelle to organelle using transport vesicles. The accuracy of this traffic depends upon organelles being correctly recognized. In general, organelles are identified by the activated GTPases and specific lipid species that they display. These short-lived determinants provide organelles with an identity that is both unique and flexible. Recent studies have helped to establish how cells maintain and restrict these determinants and explain how this system is exploited by invading pathogens.
Collapse
Affiliation(s)
- Rudy Behnia
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, UK
| | | |
Collapse
|
30
|
Bugnicourt A, Froissard M, Sereti K, Ulrich HD, Haguenauer-Tsapis R, Galan JM. Antagonistic roles of ESCRT and Vps class C/HOPS complexes in the recycling of yeast membrane proteins. Mol Biol Cell 2004; 15:4203-14. [PMID: 15215319 PMCID: PMC515352 DOI: 10.1091/mbc.e04-05-0420] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
In Saccharomyces cerevisiae, deficiencies in the ESCRT machinery trigger the mistargeting of endocytic and biosynthetic ubiquitinated cargoes to the limiting membrane of the vacuole. Surprisingly, impairment of this machinery also leads to the accumulation of various receptors and transporters at the plasma membrane in both yeast and higher eukaryotes. Using the well-characterized yeast endocytic cargo uracil permease (Fur4p), we show here that the apparent stabilization of the permease at the plasma membrane in ESCRT mutants results from an efficient recycling of the protein. Whereas several proteins as well as internalized dyes are known to be recycled in yeast, little is known about the machinery and molecular mechanisms involved. The SNARE protein Snc1p is the only cargo for which the recycling pathway is well characterized. Unlike Snc1p, endocytosed Fur4p did not pass through the Golgi apparatus en route to the plasma membrane. Although ubiquitination of Fur4p is required for its internalization, deubiquitination is not required for its recycling. In an attempt to identify actors in this new recycling pathway, we found an unexpected phenotype associated with loss of function of the Vps class C complex: cells defective for this complex are impaired for recycling of Fur4p, Snc1p, and the lipophilic dye FM4-64. Genetic analyses indicated that these phenotypes were due to the functioning of the Vps class C complex in trafficking both to and from the late endosomal compartment.
Collapse
Affiliation(s)
- Amandine Bugnicourt
- Institut Jacques Monod-Centre National de la Recherche Scientifique/Universités Paris 6 and 7, 75251 Paris Cedex 05, France
| | | | | | | | | | | |
Collapse
|