1
|
Peart NJ, Hwang JY, Quesnel-Vallières M, Sears MJ, Yang Y, Stoilov P, Barash Y, Park JW, Lynch KW, Carstens RP. The global Protein-RNA interaction map of ESRP1 defines a post-transcriptional program that is essential for epithelial cell function. iScience 2022; 25:105205. [PMID: 36238894 PMCID: PMC9550651 DOI: 10.1016/j.isci.2022.105205] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 07/25/2022] [Accepted: 09/21/2022] [Indexed: 01/11/2023] Open
Abstract
The epithelial splicing regulatory proteins, ESRP1 and ESRP2, are essential for mammalian development through the regulation of a global program of alternative splicing of genes involved in the maintenance of epithelial cell function. To further inform our understanding of the molecular functions of ESRP1, we performed enhanced crosslinking immunoprecipitation coupled with high-throughput sequencing (eCLIP) in epithelial cells of mouse epidermis. The genome-wide binding sites of ESRP1 were integrated with RNA-Seq analysis of alterations in splicing and total gene expression that result from epidermal ablation of Esrp1 and Esrp2. These studies demonstrated that ESRP1 functions in splicing regulation occur primarily through direct binding in a position-dependent manner to promote either exon inclusion or skipping. In addition, we also identified widespread binding of ESRP1 in 3' and 5' untranslated regions (UTRs) of genes involved in epithelial cell function, suggesting that its post-transcriptional functions extend beyond splicing regulation.
Collapse
Affiliation(s)
- Natoya J Peart
- Departments of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jae Yeon Hwang
- Department of Computer Science and Engineering, University of Louisville, Louisville, KY, USA
| | - Mathieu Quesnel-Vallières
- Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Matthew J Sears
- Departments of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Yuequin Yang
- Departments of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Peter Stoilov
- Department of Biochemistry and Cancer Institute, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV 26506, USA
| | - Yoseph Barash
- Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Juw Won Park
- Department of Computer Science and Engineering, University of Louisville, Louisville, KY, USA
- KY INBRE Bioinformatics Core, University of Louisville, Louisville, KY, USA
| | - Kristen W Lynch
- Department of Computer Science and Engineering, University of Louisville, Louisville, KY, USA
- Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Russ P Carstens
- Departments of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
2
|
A cytosine-rich splice regulatory determinant enforces functional processing of the human α-globin gene transcript. Blood 2019; 133:2338-2347. [PMID: 30833414 DOI: 10.1182/blood-2018-12-891408] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 02/26/2019] [Indexed: 01/28/2023] Open
Abstract
The establishment of efficient and stable splicing patterns in terminally differentiated cells is critical to maintenance of specific functions throughout the lifespan of an organism. The human α-globin (hα-globin) gene contains 3 exons separated by 2 short introns. Naturally occurring α-thalassemia mutations that trigger aberrant splicing have revealed the presence of cryptic splice sites within the hα-globin gene transcript. How cognate (functional) splice sites are selectively used in lieu of these cryptic sites has remained unexplored. Here we demonstrate that the preferential selection of a cognate splice donor essential to functional splicing of the hα-globin transcript is dependent on the actions of an intronic cytosine (C)-rich splice regulatory determinant and its interacting polyC-binding proteins. Inactivation of this determinant by mutation of the C-rich element or by depletion of polyC-binding proteins triggers a dramatic shift in splice donor activity to an upstream, out-of-frame, cryptic donor. The essential role of the C-rich element in hα-globin gene expression is supported by its coevolution with the cryptic donor site in primate species. These data lead us to conclude that an intronic C-rich determinant enforces functional splicing of the hα-globin transcript, thus acting as an obligate determinant of hα-globin gene expression.
Collapse
|
3
|
Bebee TW, Park JW, Sheridan KI, Warzecha CC, Cieply BW, Rohacek AM, Xing Y, Carstens RP. The splicing regulators Esrp1 and Esrp2 direct an epithelial splicing program essential for mammalian development. eLife 2015; 4. [PMID: 26371508 PMCID: PMC4566030 DOI: 10.7554/elife.08954] [Citation(s) in RCA: 116] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 08/18/2015] [Indexed: 12/13/2022] Open
Abstract
Tissue- and cell-type-specific regulators of alternative splicing (AS) are essential components of posttranscriptional gene regulation, necessary for normal cellular function, patterning, and development. Mice with ablation of Epithelial splicing regulatory protein (Esrp1) develop cleft lip and palate. Loss of both Esrp1 and its paralog Esrp2 results in widespread developmental defects with broad implications to human disease. Deletion of the Esrps in the epidermis revealed their requirement for establishing a proper skin barrier, a primary function of epithelial cells comprising the epidermis. We profiled the global Esrp-mediated splicing regulatory program in epidermis, which revealed large-scale programs of epithelial cell-type-specific splicing required for epithelial cell functions. These mice represent a valuable model for evaluating the essential role for AS in development and function of epithelial cells, which play essential roles in tissue homeostasis in numerous organs, and provide a genetic tool to evaluate important functional properties of epithelial-specific splice variants in vivo. DOI:http://dx.doi.org/10.7554/eLife.08954.001 Genes are turned into their protein products via two steps. The first, transcription, produces an intermediate RNA molecule or ‘transcript’; the second step, translation, turns the transcript into a protein. Most genes in mammals contain stretches of DNA called exons, which code for protein, interspersed with sequences called introns that do not. Therefore, a transcript must be ‘spliced’ before translation—the introns are removed and the exons joined. In some genes, certain exons can be optionally included or excluded from a transcript to produce different versions of the same protein that can often have very different functions. This is known as alternative splicing, and is essential for normal development. A large number of regulatory proteins control this process, many of which are only made in specific types of cells or tissues. Esrp1 and Esrp2 are two proteins that regulate alternative splicing in epithelial cells. These specialized cells form sheets that line most organs in the body and are found in the epidermis, the outermost layer of the skin. Although Esrp1 and Esrp2 have previously been studied in the laboratory using cultured cell lines, their roles have not been investigated in living animals. Bebee, Park et al. have now examined mice that are unable to produce one or both of these proteins. Mice that only lacked Esrp1 developed a cleft lip and palate. In mice that lacked both proteins, many organs failed to develop correctly and in some cases did not form at all. In the epidermis, the loss of Esrp1 and Esrp2 disrupted the splicing of the transcripts from genes that give epithelial cells many of their specialized characteristics, such as the ability to form sheets of cells with well formed junctions between them. This meant that epidermis that lacked Esrp1 and Esrp2 could not form a proper barrier layer, which is a crucial role of epithelia in skin as well as in other organs. In future, the mutant mice will be valuable for exploring how alternative splicing affects the development of epithelial cells and their properties. DOI:http://dx.doi.org/10.7554/eLife.08954.002
Collapse
Affiliation(s)
- Thomas W Bebee
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States
| | - Juw Won Park
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, United States
| | - Katherine I Sheridan
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States
| | - Claude C Warzecha
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States
| | - Benjamin W Cieply
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States
| | - Alex M Rohacek
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States
| | - Yi Xing
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, United States
| | - Russ P Carstens
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States
| |
Collapse
|
4
|
Fibroblast growth factor receptor 2: expression, roles, and potential as a novel molecular target for colorectal cancer. PATHOLOGY RESEARCH INTERNATIONAL 2012; 2012:574768. [PMID: 22701813 PMCID: PMC3373204 DOI: 10.1155/2012/574768] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2011] [Accepted: 03/28/2012] [Indexed: 12/19/2022]
Abstract
The fibroblast growth factor receptor (FGFR) family consists of four members, named FGFR1, 2, 3, and 4. All 4 FGFRs and their ligands, fibroblast growth factors (FGFs), are expressed in colorectal cancer (CRC). Recent studies have shown that FGFR2 plays important roles in cancer progression; therefore, it is of great interest as a novel target for cancers. Expression of FGFR2 regulates migration, invasion, and growth in CRC. Expression of the FGFR2 isoform FGFR2 IIIb was associated with well-differentiated histological types, and its specific ligand, FGF7, enhanced angiogenesis and adhesion to type-IV collagen via FGFR2 IIIb in CRC. FGFR2 IIIc is detected in CRC, but its roles have not been well elucidated. Interactions between FGFR2 IIIb and IIIc and FGFs may play important roles in CRC via autocrine and/or paracrine signaling. Several kinds of molecular-targeting agents against FGFR2 have been developed; however, it is not clear how a cancer treatment can most effectively inhibit FGFR2 IIIb or FGFR2 IIIc, or both isoforms. The aim of this paper is to summarize the roles of FGFR2 and its isoforms in CRC and clarify whether they are potent therapeutic targets for CRC.
Collapse
|
5
|
Warzecha CC, Carstens RP. Complex changes in alternative pre-mRNA splicing play a central role in the epithelial-to-mesenchymal transition (EMT). Semin Cancer Biol 2012; 22:417-27. [PMID: 22548723 DOI: 10.1016/j.semcancer.2012.04.003] [Citation(s) in RCA: 109] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2011] [Accepted: 04/16/2012] [Indexed: 12/18/2022]
Abstract
The epithelial-to-mesenchymal transition (EMT) is an important developmental process that is also implicated in disease pathophysiology, such as cancer progression and metastasis. A wealth of literature in recent years has identified important transcriptional regulators and large-scale changes in gene expression programs that drive the phenotypic changes that occur during the EMT. However, in the past couple of years it has become apparent that extensive changes in alternative splicing also play a profound role in shaping the changes in cell behavior that characterize the EMT. While long known splicing switches in FGFR2 and p120-catenin provided hints of a larger program of EMT-associated alternative splicing, the recent identification of the epithelial splicing regulatory proteins 1 and 2 (ESRP1 and ESRP2) began to reveal this genome-wide post-transcriptional network. Several studies have now demonstrated the truly vast extent of this alternative splicing program. The global switches in splicing associated with the EMT add an important additional layer of post-transcriptional control that works in harmony with transcriptional and epigenetic regulation to effect complex changes in cell shape, polarity, and behavior that mediate transitions between epithelial and mesenchymal cell states. Future challenges include the need to investigate the functional consequences of these splicing switches at both the individual gene as well as systems level.
Collapse
Affiliation(s)
- Claude C Warzecha
- Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, United States
| | | |
Collapse
|
6
|
Genome-wide determination of a broad ESRP-regulated posttranscriptional network by high-throughput sequencing. Mol Cell Biol 2012; 32:1468-82. [PMID: 22354987 DOI: 10.1128/mcb.06536-11] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Tissue-specific alternative splicing is achieved through the coordinated assembly of RNA binding proteins at specific sites to enhance or silence splicing at nearby splice sites. We used high-throughput sequencing (RNA-Seq) to investigate the complete spectrum of alternative splicing events that are regulated by the epithelium-specific splicing regulatory proteins ESRP1 and ESRP2. We also combined this analysis with direct RNA sequencing (DRS) to reveal ESRP-mediated regulation of alternative polyadenylation. To define binding motifs that mediate direct regulation of splicing and polyadenylation by ESRP, SELEX-Seq analysis was performed, coupling traditional SELEX with high-throughput sequencing. Identification and scoring of high-affinity ESRP1 binding motifs within ESRP target genes allowed the generation of RNA maps that define the position-dependent activity of the ESRPs in regulating cassette exons and alternative 3' ends. These extensive analyses provide a comprehensive picture of the functions of the ESRPs in an epithelial posttranscriptional gene expression program.
Collapse
|
7
|
Warzecha CC, Hovhannisyan R, Carstens RP. Dynamic fluorescent and luminescent reporters for cell-based splicing screens. Methods Mol Biol 2012; 867:273-287. [PMID: 22454068 DOI: 10.1007/978-1-61779-767-5_18] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Alternative splicing of pre-mRNA transcripts is a critical and extensively utilized mechanism of gene regulation. In this chapter, we describe a series of fluorescent and luminescent minigene reporters our lab has used to facilitate the study of alternative splicing regulation in cultured cells. Through the use of different versions of these minigenes, the inclusion level of a cassette exon can be directly ascertained by fluorescence or luciferase activity, thereby making it possible to establish cell-based assays for induced exon splicing or skipping. A successful application of these minigenes in a high-throughput cDNA screen led to the identification of a cell type-specific regulator of FGFR2 splicing, illustrating the power of these reporters to yield novel insights into alternative splicing. The methods and minigenes described are adaptable for genetic screens to uncover novel regulators of a broader set of alternative splicing events in other gene transcripts. These reporters also have a dynamic range that is suitable for small molecule screening for compounds that can regulate splicing.
Collapse
Affiliation(s)
- Claude C Warzecha
- Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | | | | |
Collapse
|
8
|
Fenwick AL, Bowdin SC, Klatt REM, Wilkie AOM. A deletion of FGFR2 creating a chimeric IIIb/IIIc exon in a child with Apert syndrome. BMC MEDICAL GENETICS 2011; 12:122. [PMID: 21943124 PMCID: PMC3192734 DOI: 10.1186/1471-2350-12-122] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2011] [Accepted: 09/23/2011] [Indexed: 12/26/2022]
Abstract
Background Signalling by fibroblast growth factor receptor type 2 (FGFR2) normally involves a tissue-specific alternative splice choice between two exons (IIIb and IIIc), which generates two receptor isoforms (FGFR2b and FGFR2c respectively) with differing repertoires of FGF-binding specificity. Here we describe a unique chimeric IIIb/c exon in a patient with Apert syndrome, generated by a non-allelic homologous recombination event. Case Presentation We present a child with Apert syndrome in whom routine genetic testing had excluded the FGFR2 missense mutations commonly associated with this disorder. The patient was found to harbour a heterozygous 1372 bp deletion between FGFR2 exons IIIb and IIIc, apparently originating from recombination between 13 bp of identical DNA sequence present in both exons. The rearrangement was not present in the unaffected parents. Conclusions Based on the known pathogenesis of Apert syndrome, the chimeric FGFR2 protein is predicted to act in a dominant gain-of-function manner. This is likely to result from its expression in mesenchymal tissues, where retention of most of the residues essential for FGFR2b binding activity would result in autocrine activation. This report adds to the repertoire of rare cases of Apert syndrome for which a pathogenesis based on atypical FGFR2 rearrangements can be demonstrated.
Collapse
Affiliation(s)
- Aimee L Fenwick
- Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, Oxford, UK
| | | | | | | |
Collapse
|
9
|
Branch point identification and sequence requirements for intron splicing in Plasmodium falciparum. EUKARYOTIC CELL 2011; 10:1422-8. [PMID: 21926333 DOI: 10.1128/ec.05193-11] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Splicing of mRNA is an ancient and evolutionarily conserved process in eukaryotic organisms, but intron-exon structures vary. Plasmodium falciparum has an extreme AT nucleotide bias (>80%), providing a unique opportunity to investigate how evolutionary forces have acted on intron structures. In this study, we developed an in vivo luciferase reporter splicing assay and employed it in combination with lariat isolation and sequencing to characterize 5' and 3' splicing requirements and experimentally determine the intron branch point in P. falciparum. This analysis indicates that P. falciparum mRNAs have canonical 5' and 3' splice sites. However, the 5' consensus motif is weakly conserved and tolerates nucleotide substitution, including the fifth nucleotide in the intron, which is more typically a G nucleotide in most eukaryotes. In comparison, the 3' splice site has a strong eukaryotic consensus sequence and adjacent polypyrimidine tract. In four different P. falciparum pre-mRNAs, multiple branch points per intron were detected, with some at U instead of the typical A residue. A weak branch point consensus was detected among 18 identified branch points. This analysis indicates that P. falciparum retains many consensus eukaryotic splice site features, despite having an extreme codon bias, and possesses flexibility in branch point nucleophilic attack.
Collapse
|
10
|
Lee CM, Yang P, Chen LC, Chen CC, Wu SC, Cheng HY, Chang YS. A novel role of RASSF9 in maintaining epidermal homeostasis. PLoS One 2011; 6:e17867. [PMID: 21445300 PMCID: PMC3061870 DOI: 10.1371/journal.pone.0017867] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2010] [Accepted: 02/16/2011] [Indexed: 02/05/2023] Open
Abstract
The physiological role of RASSF9, a member of the Ras-association domain family (RASSF), is currently unclear. Here, we report a mouse line in which an Epstein-Barr virus Latent Membrane Protein 1 (LMP1) transgene insertion has created a 7.2-kb chromosomal deletion, which abolished RASSF9 gene expression. The RASSF9-null mice exhibited interesting phenotypes that resembled human ageing, including growth retardation, short lifespan, less subcutaneous adipose layer and alopecia. In the wild-type mice, RASSF9 is predominantly expressed in the epidermal keratinocytes of skin, as determined by quantitative reverse-transcription PCR, immunofluorescence and in situ hybridization. In contrast, RASSF9-/- mice presented a dramatic change in epithelial organization of skin with increased proliferation and aberrant differentiation as detected by bromodeoxyuridine incorporation assays and immunofluorescence analyses. Furthermore, characteristic functions of RASSF9-/- versus wild type (WT) mouse primary keratinocytes showed significant proliferation linked to a reduction of p21Cip1 expression under growth or early differentiation conditions. Additionally, in RASSF9-/- keratinocytes there was a drastic down-modulation of terminal differentiation markers, which could be rescued by infection with a recombinant adenovirus, Adv/HA-RASSF9. Our results indicate a novel and significant role of RASSF9 in epidermal homeostasis.
Collapse
Affiliation(s)
- Chiou-Mei Lee
- Department of Medical Research and Development, Chang Gung Memorial Hospital at Lin-Kou, Taoyuan, Taiwan.
| | | | | | | | | | | | | |
Collapse
|
11
|
Takeuchi A, Hosokawa M, Nojima T, Hagiwara M. Splicing reporter mice revealed the evolutionally conserved switching mechanism of tissue-specific alternative exon selection. PLoS One 2010; 5:e10946. [PMID: 20532173 PMCID: PMC2880598 DOI: 10.1371/journal.pone.0010946] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2010] [Accepted: 05/10/2010] [Indexed: 12/16/2022] Open
Abstract
Since alternative splicing of pre-mRNAs is essential for generating tissue-specific diversity in proteome, elucidating its regulatory mechanism is indispensable to understand developmental process or tissue-specific functions. We have been focusing on tissue-specific regulation of mutually exclusive selection of alternative exons because this implies the typical molecular mechanism of alternative splicing regulation and also can be good examples to elicit general rule of “splice code”. So far, mutually exclusive splicing regulation has been explained by the outcome from the balance of multiple regulators that enhance or repress either of alternative exons discretely. However, this “balance” model is open to questions of how to ensure the selection of only one appropriate exon out of several candidates and how to switch them. To answer these questions, we generated an original bichromatic fluorescent splicing reporter system for mammals using fibroblast growth factor-receptor 2 (FGFR2) gene as model. By using this splicing reporter, we demonstrated that FGFR2 gene is regulated by the “switch-like” mechanism, in which key regulators modify the ordered splice-site recognition of two mutually exclusive exons, eventually ensure single exon selection and their distinct switching. Also this finding elucidated the evolutionally conserved “splice code,” in which combination of tissue-specific and broadly expressed RNA binding proteins regulate alternative splicing of specific gene in a tissue-specific manner. These findings provide the significant cue to understand how a number of spliced genes are regulated in various tissue-specific manners by a limited number of regulators, eventually to understand developmental process or tissue-specific functions.
Collapse
Affiliation(s)
- Akihide Takeuchi
- Department of Functional Genomics, Medical Research Institute, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, Japan
- Department of Anatomy and Developmental Biology, Kyoto University Graduate School of Medicine, Sakyo-ku, Kyoto, Japan
| | - Motoyasu Hosokawa
- Laboratory of Gene Expression, School of Biomedical Science, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, Japan
| | - Takayuki Nojima
- Department of Functional Genomics, Medical Research Institute, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, Japan
- Laboratory of Gene Expression, School of Biomedical Science, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, Japan
| | - Masatoshi Hagiwara
- Department of Functional Genomics, Medical Research Institute, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, Japan
- Laboratory of Gene Expression, School of Biomedical Science, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, Japan
- Department of Anatomy and Developmental Biology, Kyoto University Graduate School of Medicine, Sakyo-ku, Kyoto, Japan
- * E-mail:
| |
Collapse
|
12
|
The CUGBP2 splicing factor regulates an ensemble of branchpoints from perimeter binding sites with implications for autoregulation. PLoS Genet 2009; 5:e1000595. [PMID: 19680430 PMCID: PMC2715136 DOI: 10.1371/journal.pgen.1000595] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2009] [Accepted: 07/13/2009] [Indexed: 12/30/2022] Open
Abstract
Alternative pre-mRNA splicing adjusts the transcriptional output of the genome by generating related mRNAs from a single primary transcript, thereby expanding protein diversity. A fundamental unanswered question is how splicing factors achieve specificity in the selection of target substrates despite the recognition of information-poor sequence motifs. The CUGBP2 splicing regulator plays a key role in the brain region-specific silencing of the NI exon of the NMDA R1 receptor. However, the sequence motifs utilized by this factor for specific target exon selection and its role in splicing silencing are not understood. Here, we use chemical modification footprinting to map the contact sites of CUGBP2 to GU-rich motifs closely positioned at the boundaries of the branch sites of the NI exon, and we demonstrate a mechanistic role for this specific arrangement of motifs for the regulation of branchpoint formation. General support for a branch site-perimeter–binding model is indicated by the identification of a group of novel target exons with a similar configuration of motifs that are silenced by CUGBP2. These results reveal an autoregulatory role for CUGBP2 as indicated by its direct interaction with functionally significant RNA motifs surrounding the branch sites upstream of exon 6 of the CUGBP2 transcript itself. The perimeter-binding model explains how CUGBP2 can effectively embrace the branch site region to achieve the specificity needed for the selection of exon targets and the fine-tuning of alternative splicing patterns. Alternative splicing is a precisely controlled process that determines whether an exon will be included or skipped in the mature mRNA transcript. Factors that control alternative splicing bind to RNA sequence motifs in the exon or flanking introns and guide tissue and developmental specific splicing events. CUGBP2 is a dual functional regulator of alternative splicing that can cause inclusion or skipping of a target exon, depending on the context of its binding motifs. Previously, the mechanisms of regulation by this protein and the positional significance of its target motifs have not been characterized. In this study, the authors dissected the mechanism of exon skipping by CUGBP2 and demonstrate that a specific configuration of motifs at the perimeters of a functional reference point are intimately involved in this event. Furthermore, this mechanism of regulation is shown to have general significance because novel CUGBP2 target exons contain a similar arrangement of motifs. The most interesting of this group is an exon within the CUGBP2 transcript itself. This study underscores the importance of a functional reference point in the specificity of regulation by an alternative splicing factor and reveals a novel autoregulatory role for CUGBP2.
Collapse
|
13
|
Warzecha CC, Sato TK, Nabet B, Hogenesch JB, Carstens RP. ESRP1 and ESRP2 are epithelial cell-type-specific regulators of FGFR2 splicing. Mol Cell 2009; 33:591-601. [PMID: 19285943 PMCID: PMC2702247 DOI: 10.1016/j.molcel.2009.01.025] [Citation(s) in RCA: 457] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2008] [Revised: 12/11/2008] [Accepted: 01/12/2009] [Indexed: 12/26/2022]
Abstract
Cell-type-specific expression of epithelial and mesenchymal isoforms of Fibroblast Growth Factor Receptor 2 (FGFR2) is achieved through tight regulation of mutually exclusive exons IIIb and IIIc, respectively. Using an application of cell-based cDNA expression screening, we identified two paralogous epithelial cell-type-specific RNA-binding proteins that are essential regulators of FGFR2 splicing. Ectopic expression of either protein in cells that express FGFR2-IIIc caused a switch in endogenous FGFR2 splicing to the epithelial isoform. Conversely, knockdown of both factors in cells that express FGFR2-IIIb by RNA interference caused a switch from the epithelial to mesenchymal isoform. These factors also regulate splicing of CD44, p120-Catenin (CTNND1), and hMena (ENAH), three transcripts that undergo changes in splicing during the epithelial-to-mesenchymal transition (EMT). These studies suggest that Epithelial Splicing Regulatory Proteins 1 and 2 (ESRP1 and ESRP2) are coordinators of an epithelial cell-type-specific splicing program.
Collapse
Affiliation(s)
- Claude C. Warzecha
- Renal Division, Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
- Cell and Molecular Biology Graduate Group, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | - Trey K. Sato
- Department of Pharmacology, Institute for Translational Medicine and Therapeutics, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | - Behnam Nabet
- Renal Division, Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | - John B. Hogenesch
- Department of Pharmacology, Institute for Translational Medicine and Therapeutics, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
- Penn Genome Frontiers Institute, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Russ P. Carstens
- Renal Division, Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
- Cell and Molecular Biology Graduate Group, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
- Department of Genetics, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| |
Collapse
|
14
|
Yang W, Li QZ. One parameter to describe the mechanism of splice sites competition. Biochem Biophys Res Commun 2008; 368:379-81. [PMID: 18230347 DOI: 10.1016/j.bbrc.2008.01.089] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2008] [Accepted: 01/17/2008] [Indexed: 11/19/2022]
Abstract
The choice of a splice site is not only related to its own intrinsic strength, but also is influenced by its flanking competitors. Splice site competition is an important mechanism for splice site prediction, especially, it is a new insight for alternative splice site prediction. In this paper, the position weight matrix scoring function is used to represent splice site strength, and the mechanism of splice site competition is described by only one parameter: scoring function subtraction. While applying on the alternative splice site prediction, based on the only one parameter, 68.22% of donor sites and 70.86% of acceptor sites are correctly classified into alternative and constitutive. The prediction abilities are approximately equal to the recent method which is based on the mechanism of splice site competition. The results reveal that the scoring function subtraction is the best parameter to describe the mechanism of splice sites competition.
Collapse
Affiliation(s)
- Wuritu Yang
- Laboratory of Theoretical Biophysics, Department of Physics, College of Sciences and Technology, Inner Mongolia University, Hohhot 010021, China.
| | | |
Collapse
|
15
|
Hovhannisyan RH, Carstens RP. Heterogeneous ribonucleoprotein m is a splicing regulatory protein that can enhance or silence splicing of alternatively spliced exons. J Biol Chem 2007; 282:36265-74. [PMID: 17959601 DOI: 10.1074/jbc.m704188200] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Splicing of fibroblast growth factor receptor 2 (FGFR2) alternative exons IIIb and IIIc is regulated by the auxiliary RNA cis-element ISE/ISS-3 that promotes splicing of exon IIIb and silencing of exon IIIc. Using RNA affinity chromatography, we have identified heterogeneous nuclear ribonucleoprotein M (hnRNP M) as a splicing regulatory factor that binds to ISE/ISS-3 in a sequence-specific manner. Overexpression of hnRNP M promoted exon IIIc skipping in a cell line that normally includes it, and association of hnRNP M with ISE/ISS-3 was shown to contribute to this splicing regulatory function. Thus hnRNP M, along with other members of the hnRNP family of RNA-binding proteins, plays a combinatorial role in regulation of FGFR2 alternative splicing. We also determined that hnRNP M can affect the splicing of several other alternatively spliced exons. This activity of hnRNP M included the ability not only to induce exon skipping but also to promote exon inclusion. This is the first report demonstrating a role for this abundant hnRNP family member in alternative splicing in mammals and suggests that this protein may broadly contribute to the fidelity of splice site recognition and alternative splicing regulation.
Collapse
Affiliation(s)
- Ruben H Hovhannisyan
- Renal-Electrolyte and Hypertension Division, Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104-4539, USA
| | | |
Collapse
|
16
|
Simarro M, Mauger D, Rhee K, Pujana MA, Kedersha NL, Yamasaki S, Cusick ME, Vidal M, Garcia-Blanco MA, Anderson P. Fas-activated serine/threonine phosphoprotein (FAST) is a regulator of alternative splicing. Proc Natl Acad Sci U S A 2007; 104:11370-5. [PMID: 17592127 PMCID: PMC2040905 DOI: 10.1073/pnas.0704964104] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Fas-activated serine/threonine phosphoprotein (FAST) is a survival protein that is tethered to the outer mitochondrial membrane. In cells subjected to environmental stress, FAST moves to stress granules, where it interacts with TIA1 to modulate the process of stress-induced translational silencing. Both FAST and TIA1 are also found in the nucleus, where TIA1 promotes the inclusion of exons flanked by weak splice recognition sites such as exon IIIb of the fibroblast growth factor receptor 2 (FGFR2) mRNA. Two-hybrid interaction screens and biochemical analysis reveal that FAST binds to several alternative and constitutive splicing regulators, suggesting that FAST might participate in this process. The finding that FAST is concentrated at nuclear speckles also supports this contention. We show that FAST, like TIA1, promotes the inclusion of exon IIIb of the FGFR2 mRNA. Both FAST and TIA1 target a U-rich intronic sequence (IAS1) adjacent the 5' splice site of exon IIIb. However, unlike TIA1, FAST does not bind to the IAS1 sequence. Surprisingly, knockdown experiments reveal that FAST and TIA1 act independently of one another to promote the inclusion of exon IIIb. Mutational analysis reveals that FAST-mediated alternative splicing is separable from the survival effects of FAST. Our data reveal that nuclear FAST can regulate the splicing of FGFR2 transcripts.
Collapse
Affiliation(s)
- Maria Simarro
- *Division of Rheumatology, Immunology, and Allergy, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115
| | - David Mauger
- Department of Molecular Genetics and Microbiology
- Center for RNA Biology, and
| | - Kirsten Rhee
- *Division of Rheumatology, Immunology, and Allergy, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115
| | - Miguel A. Pujana
- Center for Cancer Systems Biology (CCSB) and Department of Cancer Biology, Dana–Farber Cancer Institute and Department of Genetics, Harvard Medical School, Boston, MA 02115
| | - Nancy L. Kedersha
- *Division of Rheumatology, Immunology, and Allergy, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115
| | - Satoshi Yamasaki
- *Division of Rheumatology, Immunology, and Allergy, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115
| | - Michael E. Cusick
- Center for Cancer Systems Biology (CCSB) and Department of Cancer Biology, Dana–Farber Cancer Institute and Department of Genetics, Harvard Medical School, Boston, MA 02115
| | - Marc Vidal
- Center for Cancer Systems Biology (CCSB) and Department of Cancer Biology, Dana–Farber Cancer Institute and Department of Genetics, Harvard Medical School, Boston, MA 02115
| | - Mariano A. Garcia-Blanco
- Department of Molecular Genetics and Microbiology
- Center for RNA Biology, and
- Department of Medicine, Duke University Medical Center, Durham, NC 27710; and
| | - Paul Anderson
- *Division of Rheumatology, Immunology, and Allergy, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115
- **To whom correspondence should be addressed at: Division of Rheumatology and Immunology, Brigham and Women's Hospital, Smith 652, One Jimmy Fund Way, Boston, MA 02115. E-mail:
| |
Collapse
|
17
|
Ji X, Kong J, Carstens RP, Liebhaber SA. The 3' untranslated region complex involved in stabilization of human alpha-globin mRNA assembles in the nucleus and serves an independent role as a splice enhancer. Mol Cell Biol 2007; 27:3290-302. [PMID: 17325043 PMCID: PMC1899960 DOI: 10.1128/mcb.02289-05] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2005] [Revised: 12/27/2005] [Accepted: 02/08/2007] [Indexed: 11/20/2022] Open
Abstract
Posttranscriptional controls, mediated primarily by RNA-protein complexes, have the potential to alter multiple steps in RNA processing and function. Human alpha-globin mRNA is bound at a C-rich motif in the 3' untranslated region (3'UTR) by the KH domain protein alpha-globin poly(C)-binding protein (alphaCP). This "alpha-complex" is essential to cytoplasmic stability of alpha-globin mRNA in erythroid cells. Here we report that the 3'UTR alpha-complex also serves an independent nuclear role as a splice enhancer. Consistent with this role, we find that alphaCP binds alpha-globin transcripts prior to splicing. Surprisingly, this binding occurs at C-rich sites within intron I as well as at the 3'UTR C-rich determinant. The intronic and 3'UTR alphaCP complexes appear to have distinct effects on splicing. While intron I complexes repress intron I excision, the 3'UTR complex enhances splicing of the full-length transcript both in vivo and in vitro. In addition to its importance to splicing, nuclear assembly of the 3'UTR alphaCP complex may serve to "prepackage" alpha-globin mRNA with its stabilizing complex prior to cytoplasmic export. Linking nuclear and cytoplasmic controls by the action of a particular RNA-binding protein, as reported here, may represent a modality of general importance in eukaryotic gene regulation.
Collapse
Affiliation(s)
- Xinjun Ji
- Department of Genetics, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | | | | | | |
Collapse
|
18
|
Ibrahim EC, Hims MM, Shomron N, Burge CB, Slaugenhaupt SA, Reed R. Weak definition of IKBKAP exon 20 leads to aberrant splicing in familial dysautonomia. Hum Mutat 2007; 28:41-53. [PMID: 16964593 DOI: 10.1002/humu.20401] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Splicing mutations that lead to devastating genetic diseases are often located in nonconserved or weakly conserved sequences that normally do not affect splicing. Thus, the underlying reason for the splicing defect is not immediately obvious. An example of this phenomenon is observed in the neurodevelopmental disease familial dysautonomia (FD), which is caused by a single-base change in the 5' splice site (5'ss) of intron 20 in the IKBKAP gene (c.2204+6T>C). This mutation, which is in the sixth position of the intron and results in exon 20 skipping, has no phenotype in many other introns. To determine why the position 6 mutation causes aberrant splicing only in certain cases, we first used an in silico approach to identify potential sequences involved in exon 20 skipping. Computational analyses of the exon 20 5'ss itself predicted that this nine-nucleotide splicing signal, even when it contains the T>C mutation, is not sufficiently weak to explain the FD phenotype. However, the computational analysis predicted that both the upstream 3' splice site (3'ss) and exon 20 contain weak splicing signals, indicating that the FD 5'ss, together with the surrounding splicing signals, are not adequate for defining exon 20. These in silico predictions were corroborated using IKBKAP minigenes in a new rapid and simple in vitro coupled RNA polymerase (RNAP) II transcription/splicing assay. Finally, the weak splicing signals that flank the T>C mutation were validated as the underlying cause of familial dysautonomia in vivo using transient transfection assays. Together, our study demonstrates the general utility of combining in silico data with an in vitro RNAP II transcription/splicing system for rapidly identifying critical sequences that underlie the numerous splicing diseases caused by otherwise silent mutations.
Collapse
Affiliation(s)
- El Chérif Ibrahim
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | |
Collapse
|
19
|
Kuslak SL, Thielen JL, Marker PC. The mouse seminal vesicle shape mutation is allelic with Fgfr2. Development 2007; 134:557-65. [PMID: 17202188 DOI: 10.1242/dev.02741] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The mouse seminal vesicle shape (svs) mutation is a spontaneous recessive mutation that causes branching morphogenesis defects in the prostate gland and seminal vesicles. Unlike many other mutations that reduce prostatic and/or seminal vesicle branching, the svs mutation dramatically reduces branching without reducing organ growth. Using a positional cloning approach, we identified the svs mutant lesion as a 491 bp insertion in the tenth intron of Fgfr2 that results in changes in the pattern of Fgfr2 alternative splicing. An engineered null allele of Fgfr2 failed to complement the svs mutation proving that a partial loss of FGFR2(IIIb) isoforms causes svs phenotypes. Thus, the svs mutation represents a new type of adult viable Fgfr2 allele that can be used to elucidate receptor function during normal development and in the adult. In the developing seminal vesicles, sustained activation of ERK1/2 was associated with branching morphogenesis and this was absent in svs mutant seminal vesicles. This defect appears to be the immediate downstream effect of partial loss of FGFR2(IIIb) because activation of FGFR2(IIIb) by FGF10 rapidly induced ERK1/2 activation, and inhibition of ERK1/2 activation blocked seminal vesicle branching morphogenesis. Partial loss of FGFR2(IIIb) was also associated with down-regulation of several branching morphogenesis regulators including Shh, Ptch1, Gli1, Gli2, Bmp4, and Bmp7. Together with previous studies, these data suggest that peak levels of FGFR2(IIIb) signaling are required to induce branching and sustain ERK1/2 activation, whereas reduced levels support ductal outgrowth in the prostate gland and seminal vesicles.
Collapse
MESH Headings
- Alleles
- Alternative Splicing
- Animals
- Base Sequence
- Crosses, Genetic
- DNA Primers/genetics
- Female
- Gene Expression Regulation, Developmental
- Male
- Mice/genetics
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Mice, Mutant Strains
- Mice, Transgenic
- Molecular Sequence Data
- Mutation
- Phenotype
- Pregnancy
- Prostate/abnormalities
- Prostate/growth & development
- Prostate/metabolism
- Receptor, Fibroblast Growth Factor, Type 2/genetics
- Receptor, Fibroblast Growth Factor, Type 2/metabolism
- Seminal Vesicles/abnormalities
- Seminal Vesicles/growth & development
- Seminal Vesicles/metabolism
- Signal Transduction
Collapse
Affiliation(s)
- Sheri L Kuslak
- Department of Genetics, Cell Biology and Development, University of Minnesota Comprehensive Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | |
Collapse
|
20
|
The coupling of alternative splicing and nonsense-mediated mRNA decay. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2007; 623:190-211. [PMID: 18380348 DOI: 10.1007/978-0-387-77374-2_12] [Citation(s) in RCA: 170] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Most human genes exhibit alternative splicing, but not all alternatively spliced transcripts produce functional proteins. Computational and experimental results indicate that a substantial fraction of alternative splicing events in humans result in mRNA isoforms that harbor a premature termination codon (PTC). These transcripts are predicted to be degraded by the nonsense-mediated mRNA decay (NMD) pathway. One explanation for the abundance of PTC-containing isoforms is that they represent splicing errors that are identified and degraded by the NMD pathway. Another potential explanation for this startling observation is that cells may link alternative splicing and NMD to regulate the abundance of mRNA transcripts. This mechanism, which we call "Regulated Unproductive Splicing and Translation" (RUST), has been experimentally shown to regulate expression of a wide variety of genes in many organisms from yeast to human. It is frequently employed for autoregulation of proteins that affect the splicing process itself. Thus, alternative splicing and NMD act together to play an important role in regulating gene expression.
Collapse
|
21
|
Bonano VI, Oltean S, Brazas RM, Garcia-Blanco MA. Imaging the alternative silencing of FGFR2 exon IIIb in vivo. RNA (NEW YORK, N.Y.) 2006; 12:2073-9. [PMID: 17068207 PMCID: PMC1664716 DOI: 10.1261/rna.248506] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Alternative splicing multiplies genomic coding capacity and regulates proteomic composition. A well-studied example of this plasticity leads to the synthesis of functionally distinct isoforms of the Fibroblast Growth Factor Receptor-2 (FGFR2). The regulation of this isoform diversity necessitates the silencing of FGFR2 exon IIIb, which is mediated by flanking intronic splicing silencers and the polypyrimidine tract binding protein (PTB). To visualize this splicing decision in vivo, we developed mice harboring a green fluorescent protein construct that reports on the silencing of exon IIIb. The animals also harbor a red fluorescent protein reporter of constitutive splicing as an allelic control. This dual reporter system revealed that in various organs and cell types the silencing of exon IIIb required the intronic silencers. In neurons, which do not express PTB, we observed robust silencer-dependent repression of exon IIIb, suggesting that the neural paralog, brain PTB, can take over this function. In the epidermis, however, the intronic silencers were not required for efficient silencing. This work provides a first glimpse at splicing regulation among different cell types in vivo and promises the drafting of an anatomic map of splicing decisions.
Collapse
Affiliation(s)
- Vivian I Bonano
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, 27710, USA
| | | | | | | |
Collapse
|
22
|
Oltean S, Sorg BS, Albrecht T, Bonano VI, Brazas RM, Dewhirst MW, Garcia-Blanco MA. Alternative inclusion of fibroblast growth factor receptor 2 exon IIIc in Dunning prostate tumors reveals unexpected epithelial mesenchymal plasticity. Proc Natl Acad Sci U S A 2006; 103:14116-21. [PMID: 16963563 PMCID: PMC1562548 DOI: 10.1073/pnas.0603090103] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In epithelial cells, alternative splicing of fibroblast growth factor receptor 2 (FGFR2) transcripts leads to the expression of the FGFR2(IIIb) isoform, whereas in mesenchymal cells, the same process results in the synthesis of FGFR2(IIIc). Expression of the FGFR2(IIIc) isoform during prostate tumor progression suggests a disruption of the epithelial character of these tumors. To visualize the use of FGFR2 exon IIIc in prostate AT3 tumors in syngeneic rats, we constructed minigene constructs that report on alternative splicing. Imaging these alternative splicing decisions revealed unexpected mesenchymal-epithelial transitions in these primary tumors. These transitions were observed more frequently where tumor cells were in contact with stroma. Indeed, these transitions were frequently observed among lung micrometastases in the organ parenchyma and immediately adjacent to blood vessels. Our data suggest an unforeseen relationship between epithelial mesenchymal plasticity and malignant fitness.
Collapse
Affiliation(s)
- Sebastian Oltean
- Departments of *Molecular Genetics and Microbiology
- Center for RNA Biology, and
| | | | - Todd Albrecht
- Departments of *Molecular Genetics and Microbiology
- Center for RNA Biology, and
| | - Vivian I. Bonano
- Departments of *Molecular Genetics and Microbiology
- Center for RNA Biology, and
- University Program in Genetics and Genomics, Duke University Medical Center, Durham, NC 27710
| | - Robert M. Brazas
- Departments of *Molecular Genetics and Microbiology
- Center for RNA Biology, and
| | | | - Mariano A. Garcia-Blanco
- Departments of *Molecular Genetics and Microbiology
- Medicine
- Center for RNA Biology, and
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
23
|
Newman EA, Muh SJ, Hovhannisyan RH, Warzecha CC, Jones RB, McKeehan WL, Carstens RP. Identification of RNA-binding proteins that regulate FGFR2 splicing through the use of sensitive and specific dual color fluorescence minigene assays. RNA (NEW YORK, N.Y.) 2006; 12:1129-41. [PMID: 16603716 PMCID: PMC1464843 DOI: 10.1261/rna.34906] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2006] [Accepted: 02/16/2006] [Indexed: 05/04/2023]
Abstract
We have developed a series of fluorescent splicing reporter minigenes for the establishment of cell-based screens to identify splicing regulatory proteins. A key technical advance in the application of these reporters was the use of two different fluorescent proteins: EGFP and monomeric Red Fluorescent Protein (mRFP). Through establishment of stable cell lines expressing such dual color fluorescent reporters, these minigenes can be used to perform enhanced screens for splicing regulatory proteins. As an example of such applications we generated fluorescent minigenes that can be used to determine the splicing of mutually exclusive FGFR2 exons IIIb and IIIc by flow cytometry. One minigene contained a coding sequence for EGFP whose translation was dependent on splicing of exon IIIb, whereas a second minigene required exon IIIc splicing for translation of an mRFP coding sequence. Stable incorporation of both minigenes into cells that express endogenous FGFR2-IIIb or FGFR2-IIIc resulted in EGFP or mRFP fluorescence, respectively. Cells stably transfected with both minigenes were used to screen a panel of cDNAs encoding known splicing regulatory proteins, and several were identified that induced a switch in splicing that could be detected specifically by an increase in green, but not red, fluorescence. We further demonstrated additional minigenes that can be used in dual color fluorescent screens for identification of splicing regulatory proteins that function through specific intronic splicing enhancer elements (ISEs). The methods and minigene designs described here should be adaptable for broader applications in identification of factors and mechanisms involved in alternative splicing of numerous other gene transcripts.
Collapse
Affiliation(s)
- Emily A Newman
- Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, 19104, USA
| | | | | | | | | | | | | |
Collapse
|
24
|
Baraniak AP, Chen JR, Garcia-Blanco MA. Fox-2 mediates epithelial cell-specific fibroblast growth factor receptor 2 exon choice. Mol Cell Biol 2006; 26:1209-22. [PMID: 16449636 PMCID: PMC1367178 DOI: 10.1128/mcb.26.4.1209-1222.2006] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2005] [Revised: 08/01/2005] [Accepted: 12/01/2005] [Indexed: 11/20/2022] Open
Abstract
Alternative splicing of fibroblast growth factor receptor 2 (FGFR2) transcripts occurs in a cell-type-specific manner leading to the mutually exclusive use of exon IIIb in epithelia or exon IIIc in mesenchyme. Epithelial cell-specific exon choice is dependent on (U)GCAUG elements, which have been shown to bind Fox protein family members. In this paper we show that FGFR2 exon choice is regulated by (U)GCAUG elements and Fox protein family members. Fox-2 isoforms are differentially expressed in IIIb+ cells in comparison to IIIc+ cells, and expression of Fox-1 or Fox-2 in the latter led to a striking alteration in FGFR2 splice choice from IIIc to IIIb. This switch was absolutely dependent on the (U)GCAUG elements present in the FGFR2 pre-mRNA and required critical residues in the C-terminal region of Fox-2. Interestingly, Fox-2 expression led to skipping of exon 6 among endogenous Fox-2 transcripts and formation of an inactive Fox-2 isoform, which suggests that Fox-2 can regulate its own activity. Moreover, the repression of exon IIIc in IIIb+ cells was abrogated by interfering RNA-mediated knockdown of Fox-2. We also show that Fox-2 is critical for the FGFR2(IIIb)-to-FGFR2(IIIc) switch observed in T Rex-293 cells grown to overconfluency. Overconfluent T Rex-293 cells show molecular and morphological changes consistent with a mesenchymal-to-epithelial transition. If overconfluent cells are depleted of Fox-2, the switch from IIIc to IIIb is abrogated. The data in this paper place Fox-2 among critical regulators of gene expression during mesenchymal-epithelial transitions and demonstrate that this action of Fox-2 is mediated by mechanisms distinct from those described for other cases of Fox activity.
Collapse
Affiliation(s)
- Andrew P Baraniak
- Department of Molecular Genetics and Microbiology, Box 3053, Duke University Medical Center, Durham, NC 27710, USA
| | | | | |
Collapse
|
25
|
Hovhannisyan RH, Warzecha CC, Carstens RP. Characterization of sequences and mechanisms through which ISE/ISS-3 regulates FGFR2 splicing. Nucleic Acids Res 2006; 34:373-85. [PMID: 16410617 PMCID: PMC1331989 DOI: 10.1093/nar/gkj407] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2005] [Revised: 12/05/2005] [Accepted: 12/05/2005] [Indexed: 02/01/2023] Open
Abstract
Alternative splicing of fibroblast growth factor receptor-2 (FGFR2) mutually exclusive exons IIIb and IIIc results in highly cell-type-specific expression of functionally distinct receptors, FGFR2-IIIb and FGFR2-IIIc. We previously identified an RNA cis-element, ISE/ISS-3, that enhanced exon IIIb splicing and silenced exon IIIc splicing. Here, we have performed comprehensive mutational analysis to define critical sequence motifs within this element that independently either enhance splicing of upstream exons or repress splicing of downstream exons. Such analysis included use of a novel fluorescence-based splicing reporter assay that allowed quantitative determination of relative functional activity of ISE/ISS-3 mutants using flow cytometric analysis of live cells. We determined that specific sequences within this element that mediate splicing enhancement also mediate splicing repression, depending on their position relative to a regulated exon. Thus, factors that bind the element are likely to be coordinately involved in mediating both aspects of splicing regulation. Exon IIIc silencing is dependent upon a suboptimal branchpoint sequence containing a guanine branchpoint nucleotide. Previous studies of exon IIIc splicing in HeLa nuclear extracts demonstrated that this guanine branchsite primarily impaired the second step of splicing suggesting that ISE/ISS-3 may block exon IIIc inclusion at this step. However, results presented here that include use of newly developed in vitro splicing assays of FGFR2 using extracts from a cell line expressing FGFR2-IIIb strongly suggest that cell-type-specific silencing of exon IIIc occurs at or prior to the first step of splicing.
Collapse
Affiliation(s)
- Ruben H. Hovhannisyan
- Department of Medicine, University of Pennsylvania School of Medicine700 Clinical Research Building, 415 Curie Blvd., Philadelphia, PA 19104, USA
| | - Claude C. Warzecha
- Cell and Molecular Biology Graduate Group, University of Pennsylvania School of Medicine700 Clinical Research Building, 415 Curie Blvd., Philadelphia, PA 19104, USA
| | - Russ P. Carstens
- Department of Medicine, University of Pennsylvania School of Medicine700 Clinical Research Building, 415 Curie Blvd., Philadelphia, PA 19104, USA
- Cell and Molecular Biology Graduate Group, University of Pennsylvania School of Medicine700 Clinical Research Building, 415 Curie Blvd., Philadelphia, PA 19104, USA
| |
Collapse
|
26
|
Abstract
The branch point sequence (BPS) is a conserved splicing signal important for spliceosome assembly and lariat intron formation. BPS mutations may result in aberrant pre-mRNA splicing and genetic disorders, but their phenotypic consequences have been difficult to predict, largely due to a highly degenerate nature of the BPS consensus. Here, we have examined the splicing pattern of nine reporter pre-mRNAs that have previously been shown to give rise to human hereditary diseases as a result of single-nucleotide substitutions in the predicted BPS. Increased exon skipping and intron retention observed in vivo were recapitulated for each mutated pre-mRNA, but the reproducibility of cryptic splice site activation was lower. BP mutations in reporter pre-mRNAs frequently induced aberrant 3' splice sites and also activated a cryptic 5' splice site. Systematic mutagenesis of BP adenosines showed that in most pre-mRNAs, the expression of canonical transcripts was lower for BP transitions than BP transversions. Differential splicing outcome for transitions vs. transversions was abrogated or reduced if introns were truncated to 200 nt or less, suggesting that the nature of the BP residue is less critical for interactions across very short introns. Together, these results improve prediction of phenotypic consequences of point mutations upstream of splice acceptor sites and suggest that the overrepresentation of disease-causing adenosine-to-guanosine BP substitutions observed in Mendelian disorders is due to more profound defects of gene expression at the level of pre-mRNA splicing.
Collapse
Affiliation(s)
- Jana Královicová
- Division of Human Genetics, School of Medicine, University of Southampton, Southampton, United Kingdom
| | | | | |
Collapse
|
27
|
Mercado PA, Ayala YM, Romano M, Buratti E, Baralle FE. Depletion of TDP 43 overrides the need for exonic and intronic splicing enhancers in the human apoA-II gene. Nucleic Acids Res 2005; 33:6000-10. [PMID: 16254078 PMCID: PMC1270946 DOI: 10.1093/nar/gki897] [Citation(s) in RCA: 186] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2005] [Revised: 09/19/2005] [Accepted: 09/27/2005] [Indexed: 01/11/2023] Open
Abstract
Exon 3 of the human apolipoprotein A-II (apoA-II) gene is efficiently included in the mRNA although its acceptor site is significantly weak because of a peculiar (GU)16 tract instead of a canonical polypyrimidine tract within the intron 2/exon 3 junction. Our previous studies demonstrated that the SR proteins ASF/SF2 and SC35 bind specifically an exonic splicing enhancer (ESE) within exon 3 and promote exon 3 splicing. In the present study, we show that the ESE is necessary only in the proper context. In addition, we have characterized two novel sequences in the flanking introns that modulate apoA-II exon 3 splicing. There is a G-rich element in intron 2 that interacts with hnRNPH1 and inhibits exon 3 splicing. The second is a purine rich region in intron 3 that binds SRp40 and SRp55 and promotes exon 3 inclusion in mRNA. We have also found that the (GU) repeats in the apoA-II context bind the splicing factor TDP-43 and interfere with exon 3 definition. Significantly, blocking of TDP-43 expression by small interfering RNA overrides the need for all the other cis-acting elements making exon 3 inclusion constitutive even in the presence of disrupted exonic and intronic enhancers. Altogether, our results suggest that exonic and intronic enhancers have evolved to balance the negative effects of the two silencers located in intron 2 and hence rescue the constitutive exon 3 inclusion in apoA-II mRNA.
Collapse
Affiliation(s)
- Pablo Arrisi Mercado
- International Centre for Genetic Engineering and BiotechnologyPadriciano 99, I-34012 Trieste, Italy
| | - Youhna M. Ayala
- International Centre for Genetic Engineering and BiotechnologyPadriciano 99, I-34012 Trieste, Italy
| | - Maurizio Romano
- International Centre for Genetic Engineering and BiotechnologyPadriciano 99, I-34012 Trieste, Italy
- Department of Physiology and Pathology, University of TriesteVia A. Fleming 22, 34127 Trieste, Italy
| | - Emanuele Buratti
- International Centre for Genetic Engineering and BiotechnologyPadriciano 99, I-34012 Trieste, Italy
| | - Francisco E. Baralle
- International Centre for Genetic Engineering and BiotechnologyPadriciano 99, I-34012 Trieste, Italy
| |
Collapse
|