1
|
Hornick EL, Wallis AM, Bishop GA. TRAF3 enhances type I interferon receptor signaling in T cells by modulating the phosphatase PTPN22. Sci Signal 2022; 15:eabn5507. [PMID: 36166512 PMCID: PMC9728096 DOI: 10.1126/scisignal.abn5507] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Type I interferons (IFNs) are among the most powerful tools that host cells deploy against intracellular pathogens. Their effectiveness is due both to the rapid, directly antiviral effects of IFN-stimulated gene products and to the effects of type I IFN on responding immune cells. Type I IFN signaling through its receptor, IFNAR, is tightly regulated at multiple steps in the signaling cascade, including at the level of IFNAR downstream effectors, which include the kinase JAK1 and the transcriptional regulator STAT1. Here, we found that tumor necrosis factor receptor (TNFR)-associated factor 3 (TRAF3) enhanced the activation of JAK1 and STAT1 specifically in CD4+ T cells by preventing recruitment of the negative regulatory phosphatase PTPN22 to the IFNAR complex. The balance between signals through IFNAR and other cytokine receptors influences CD4+ T cell differentiation and function during infections. Our work reveals TRAF3 and PTPN22 as key regulators of CD4+ T cell activation by type I IFNs.
Collapse
Affiliation(s)
- Emma L. Hornick
- Department of Microbiology and Immunology, The University of Iowa, Iowa City, IA 52242, USA
| | - Alicia M. Wallis
- Department of Microbiology and Immunology, The University of Iowa, Iowa City, IA 52242, USA
- Graduate Program in Immunology, The University of Iowa, Iowa City, IA 52242, USA
| | - Gail A. Bishop
- Department of Microbiology and Immunology, The University of Iowa, Iowa City, IA 52242, USA
- Graduate Program in Immunology, The University of Iowa, Iowa City, IA 52242, USA
- Department of Internal Medicine, The University of Iowa, Iowa City, IA 52242, USA
- Iowa City VA Medical Center, Iowa City, IA 52246, USA
| |
Collapse
|
2
|
McFadden MJ, Sacco MT, Murphy KA, Park M, Gokhale NS, Somfleth KY, Horner SM. FTO Suppresses STAT3 Activation and Modulates Proinflammatory Interferon-Stimulated Gene Expression. J Mol Biol 2021; 434:167247. [PMID: 34537236 PMCID: PMC8924017 DOI: 10.1016/j.jmb.2021.167247] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 09/10/2021] [Accepted: 09/11/2021] [Indexed: 12/14/2022]
Abstract
Signaling initiated by type I interferon (IFN) results in the induction of hundreds of IFN-stimulated genes (ISGs). The type I IFN response is important for antiviral restriction, but aberrant activation of this response can lead to inflammation and autoimmunity. Regulation of this response is incompletely understood. We previously reported that the mRNA modification m6A and its deposition enzymes, METTL3 and METTL14 (METTL3/14), promote the type I IFN response by directly modifying the mRNA of a subset of ISGs to enhance their translation. Here, we determined the role of the RNA demethylase fat mass and obesity-associated protein (FTO) in the type I IFN response. FTO, which can remove either m6A or cap-adjacent m6Am RNA modifications, has previously been associated with obesity and body mass index, type 2 diabetes, cardiovascular disease, and inflammation. We found that FTO suppresses the transcription of a distinct set of ISGs, including many known pro-inflammatory genes, and that this regulation requires its catalytic activity but is not through the actions of FTO on m6Am. Interestingly, depletion of FTO led to activation of the transcription factor STAT3, whose role in the type I IFN response is not well understood. This activation of STAT3 increased the expression of a subset of ISGs. Importantly, this increased ISG induction resulting from FTO depletion was partially ablated by depletion of STAT3. Together, these results reveal that FTO negatively regulates STAT3-mediated signaling that induces proinflammatory ISGs during the IFN response, highlighting an important role for FTO in suppression of inflammatory genes.
Collapse
Affiliation(s)
- Michael J McFadden
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA.
| | - Matthew T Sacco
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA.
| | - Kristen A Murphy
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA.
| | - Moonhee Park
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA.
| | - Nandan S Gokhale
- Department of Immunology, University of Washington, Seattle, WA 98109, USA.
| | - Kim Y Somfleth
- Department of Immunology, University of Washington, Seattle, WA 98109, USA.
| | - Stacy M Horner
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA; Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA.
| |
Collapse
|
3
|
Marié IJ, Brambilla L, Azzouz D, Chen Z, Baracho GV, Arnett A, Li HS, Liu W, Cimmino L, Chattopadhyay P, Silverman G, Watowich SS, Khor B, Levy DE. Tonic interferon restricts pathogenic IL-17-driven inflammatory disease via balancing the microbiome. eLife 2021; 10:68371. [PMID: 34378531 PMCID: PMC8376249 DOI: 10.7554/elife.68371] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 08/10/2021] [Indexed: 02/07/2023] Open
Abstract
Maintenance of immune homeostasis involves a synergistic relationship between the host and the microbiome. Canonical interferon (IFN) signaling controls responses to acute microbial infection, through engagement of the STAT1 transcription factor. However, the contribution of tonic levels of IFN to immune homeostasis in the absence of acute infection remains largely unexplored. We report that STAT1 KO mice spontaneously developed an inflammatory disease marked by myeloid hyperplasia and splenic accumulation of hematopoietic stem cells. Moreover, these animals developed inflammatory bowel disease. Profiling gut bacteria revealed a profound dysbiosis in the absence of tonic IFN signaling, which triggered expansion of TH17 cells and loss of splenic Treg cells. Reduction of bacterial load by antibiotic treatment averted the TH17 bias and blocking IL17 signaling prevented myeloid expansion and splenic stem cell accumulation. Thus, tonic IFNs regulate gut microbial ecology, which is crucial for maintaining physiologic immune homeostasis and preventing inflammation.
Collapse
Affiliation(s)
| | | | - Doua Azzouz
- NYU School of Medicine, New York, United States
| | - Ze Chen
- NYU School of Medicine, New York, United States
| | | | - Azlann Arnett
- Translational Immunology, Benaroya Research Institute at Virginia Mason, Seattle, United States
| | - Haiyan S Li
- University of Texas MD Anderson Cancer Center, Houston, United States
| | - Weiguo Liu
- NYU School of Medicine, New York, United States
| | - Luisa Cimmino
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, United States
| | | | | | | | - Bernard Khor
- Translational Immunology, Benaroya Research Institute at Virginia Mason, Seattle, United States
| | | |
Collapse
|
4
|
Abstract
The Nipah virus (NiV) phosphoprotein (P) gene encodes four proteins. Three of these-P, V, and W-possess a common N-terminal domain but distinct C termini. These proteins interact with immune modulators. Previous studies demonstrated that P, V, and W bind STAT1 and STAT4 and that V also interacts with STAT2 but not with STAT3. The STAT1 and STAT2 interactions block interferon (IFN)-induced STAT tyrosine phosphorylation. To more fully characterize the interactions of P, V, and W with the STATs, we screened for interaction of each viral protein with STATs 1 to 6 by coimmunoprecipitation. We demonstrate that NiV P, V, and W interact with STAT4 through their common N-terminal domain and block STAT4 activity, based on a STAT4 response element reporter assay. Although none of the NiV proteins interact with STAT3 or STAT6, NiV V, but not P or W, interacts with STAT5 through its unique C terminus. Furthermore, the interaction of NiV V with STAT5 was not disrupted by overexpression of the N-terminal binding STAT1 or the C-terminal binding MDA5. NiV V also inhibits a STAT5 response element reporter assay. Residues 114 to 140 of the common N-terminal domain of the NiV P gene products were found to be sufficient to bind STAT1 and STAT4. Analysis of STAT1-STAT3 chimeras suggests that the P gene products target the STAT1 SH2 domain. When fused to GST, the 114-140 peptide is sufficient to decrease STAT1 phosphorylation in IFN-β-stimulated cells, suggesting that this peptide could potentially be fused to heterologous proteins to confer inhibition of STAT1- and STAT4-dependent responses.IMPORTANCE How Nipah virus (NiV) antagonizes innate immune responses is incompletely understood. The P gene of NiV encodes the P, V, and W proteins. These proteins have a common N-terminal sequence that is sufficient to bind to STAT1 and STAT2 and block IFN-induced signal transduction. This study sought to more fully understand how P, V, and W engage with the STAT family of transcription factors to influence their functions. The results identify a novel interaction of V with STAT5 and demonstrate V inhibition of STAT5 function. We also demonstrate that the common N-terminal residues 114 to 140 of P, V, and W are critical for inhibition of STAT1 and STAT4 function, map the interaction to the SH2 region of STAT1, and show that a fusion construct with this peptide significantly inhibits cytokine-induced STAT1 phosphorylation. These data clarify how these important virulence factors modulate innate antiviral defenses.
Collapse
|
5
|
Chyuan IT, Tzeng HT, Chen JY. Signaling Pathways of Type I and Type III Interferons and Targeted Therapies in Systemic Lupus Erythematosus. Cells 2019; 8:cells8090963. [PMID: 31450787 PMCID: PMC6769759 DOI: 10.3390/cells8090963] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 08/17/2019] [Accepted: 08/20/2019] [Indexed: 02/06/2023] Open
Abstract
Type I and type III interferons (IFNs) share several properties in common, including the induction of signaling pathways, the activation of gene transcripts, and immune responses, against viral infection. Recent advances in the understanding of the molecular basis of innate and adaptive immunity have led to the re-examination of the role of these IFNs in autoimmune diseases. To date, a variety of IFN-regulated genes, termed IFN signature genes, have been identified. The expressions of these genes significantly increase in systemic lupus erythematosus (SLE), highlighting the role of type I and type III IFNs in the pathogenesis of SLE. In this review, we first discussed the signaling pathways and the immunoregulatory roles of type I and type III IFNs. Next, we discussed the roles of these IFNs in the pathogenesis of autoimmune diseases, including SLE. In SLE, IFN-stimulated genes induced by IFN signaling contribute to a positive feedback loop of autoimmunity, resulting in perpetual autoimmune inflammation. Based on this, we discussed the use of several specific IFN blocking strategies using anti-IFN-α antibodies, anti-IFN-α receptor antibodies, and IFN-α-kinoid or downstream small molecules, which intervene in Janus kinase (JAK)-signal transducer and activator of transcription (STAT) pathways, in clinical trials for SLE patients. Hopefully, the development of novel regimens targeting IFN signaling pathways will shed light on promising future therapeutic applications for SLE patients.
Collapse
Affiliation(s)
- I-Tsu Chyuan
- Department of Internal Medicine, Cathay General Hospital, Taipei 10630, Taiwan
- Department of Medical Research, Cathay General Hospital, Taipei 10630, Taiwan
- School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei City 24205, Taiwan
| | - Hong-Tai Tzeng
- Institute for translational research in biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan
| | - Ji-Yih Chen
- Department of Medicine, Division of Allergy, Immunology and Rheumatology, Chang Gung Memorial Hospital, Taoyuan 33375, Taiwan.
- College of Medicine, Chang Gung University, Taoyuan 33375, Taiwan.
| |
Collapse
|
6
|
Tsai MH, Pai LM, Lee CK. Fine-Tuning of Type I Interferon Response by STAT3. Front Immunol 2019; 10:1448. [PMID: 31293595 PMCID: PMC6606715 DOI: 10.3389/fimmu.2019.01448] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 06/10/2019] [Indexed: 12/20/2022] Open
Abstract
Type I interferon (IFN-I) is induced during innate immune response and is required for initiating antiviral activity, growth inhibition, and immunomodulation. STAT1, STAT2, and STAT3 are activated in response to IFN-I stimulation. STAT1, STAT2, and IRF9 form ISGF3 complex which transactivates downstream IFN-stimulated genes and mediates antiviral response. However, the role of STAT3 remains to be characterized. Here, we review the multiple actions of STAT3 on suppressing IFN-I responses, including blocking IFN-I signaling, downregulating the expression of ISGF3 components, and antagonizing the transcriptional activity of ISGF3. Finally, we discuss the evolution of the suppressive activity of STAT3 and the therapeutic potential of STAT3 inhibitors in host defense against viral infections and IFN-I-associated diseases.
Collapse
Affiliation(s)
- Ming-Hsun Tsai
- Graduate Institute of Immunology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Li-Mei Pai
- Department of Biochemistry and Molecular Biology, Chang Gung University, Taoyuan, Taiwan.,Molecular Medicine Research Center, Chang Gung University, Taoyuan, Taiwan.,Liver Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Chien-Kuo Lee
- Graduate Institute of Immunology, National Taiwan University College of Medicine, Taipei, Taiwan
| |
Collapse
|
7
|
Huang Z, Zak J, Pratumchai I, Shaabani N, Vartabedian VF, Nguyen N, Wu T, Xiao C, Teijaro JR. IL-27 promotes the expansion of self-renewing CD8 + T cells in persistent viral infection. J Exp Med 2019; 216:1791-1808. [PMID: 31164392 PMCID: PMC6683984 DOI: 10.1084/jem.20190173] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 04/04/2019] [Accepted: 05/07/2019] [Indexed: 12/21/2022] Open
Abstract
CXCR5+ TCF1+ CD8+ T cells sustain responses during persistent viral infection and mediate the proliferative burst following anti-PD1 treatment. Huang et al. show that IL-27 supports rapid division of these cells by competing with type 1 interferon for STAT1, driving IRF1 expression and preventing cell death. Chronic infection and cancer are associated with suppressed T cell responses in the presence of cognate antigen. Recent work identified memory-like CXCR5+ TCF1+ CD8+ T cells that sustain T cell responses during persistent infection and proliferate upon anti-PD1 treatment. Approaches to expand these cells are sought. We show that blockade of interferon type 1 (IFN-I) receptor leads to CXCR5+ CD8+ T cell expansion in an IL-27– and STAT1-dependent manner. IFNAR1 blockade promoted accelerated cell division and retention of TCF1 in virus-specific CD8+ T cells. We found that CD8+ T cell–intrinsic IL-27 signaling safeguards the ability of TCF1hi cells to maintain proliferation and avoid terminal differentiation or programmed cell death. Mechanistically, IL-27 endowed rapidly dividing cells with IRF1, a transcription factor that was required for sustained division in a cell-intrinsic manner. These findings reveal that IL-27 opposes IFN-I to uncouple effector differentiation from cell division and suggest that IL-27 signaling could be exploited to augment self-renewing T cells in chronic infections and cancer.
Collapse
Affiliation(s)
- Zhe Huang
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA
| | - Jaroslav Zak
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA
| | - Isaraphorn Pratumchai
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA.,Department of Chemical Immunology, Leiden University Medical Center, Leiden, Netherlands
| | - Namir Shaabani
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA
| | - Vincent F Vartabedian
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA
| | - Nhan Nguyen
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA
| | - Tuoqi Wu
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD
| | - Changchun Xiao
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA
| | - John R Teijaro
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA
| |
Collapse
|
8
|
Chiriac MT, Buchen B, Wandersee A, Hundorfean G, Günther C, Bourjau Y, Doyle SE, Frey B, Ekici AB, Büttner C, Weigmann B, Atreya R, Wirtz S, Becker C, Siebler J, Neurath MF. Activation of Epithelial Signal Transducer and Activator of Transcription 1 by Interleukin 28 Controls Mucosal Healing in Mice With Colitis and Is Increased in Mucosa of Patients With Inflammatory Bowel Disease. Gastroenterology 2017; 153:123-138.e8. [PMID: 28342759 DOI: 10.1053/j.gastro.2017.03.015] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 03/09/2017] [Accepted: 03/10/2017] [Indexed: 01/01/2023]
Abstract
BACKGROUND & AIMS We investigated the roles of interleukin 28A (also called IL28A or interferon λ2) in intestinal epithelial cell (IEC) activation, studying its effects in mouse models of inflammatory bowel diseases (IBD) and intestinal mucosal healing. METHODS Colitis was induced in C57BL/6JCrl mice (controls), mice with IEC-specific disruption of Stat1 (Stat1IEC-KO), mice with disruption of the interferon λ receptor 1 gene (Il28ra-/-), and mice with disruption of the interferon regulatory factor 3 gene (Irf3-/-), with or without disruption of Irf7 (Irf7-/-). We used high-resolution mini-endoscopy and in vivo imaging methods to assess colitis progression. We used 3-dimensional small intestine and colon organoids, along with RNA-Seq and gene ontology methods, to characterize the effects of IL28 on primary IECs. We studied the effects of IL28 on the human intestinal cancer cell line Caco-2 in a wound-healing assay, and in mice colon wounds. Colonic biopsies and resected tissue from patients with IBD (n = 62) and patients without colon inflammation (controls, n = 23) were analyzed by quantitative polymerase chain rection to measure expression of IL28A, IL28RA, and other related cytokines; biopsy samples were also analyzed by immunofluorescence to identify sources of IL28 production. IECs were isolated from patient tissues and incubated with IL28; signal transducer and activator of transcription 1 (STAT1) phosphorylation was measured by immunoblots and confocal imaging. RESULTS Lamina propria cells in colon tissues of patients with IBD, and mice with colitis, had increased expression of IL28 compared with controls; levels of IL28R were increased in the colonic epithelium of patients with IBD and mice with colitis. Administration of IL28 induced phosphorylation of STAT1 in primary human and mouse IECs, increasing with dose. Il28ra-/-, Irf3-/-, Irf3-/-Irf7-/-, as well as Stat1IEC-KO mice, developed more severe colitis after administration of dextran sulfate sodium than control mice, with reduced epithelial restitution. Il28ra-/- and Stat1IEC-KO mice also developed more severe colitis in response to oxazolone than control mice. We found IL28 to induce phosphorylation (activation) of STAT1 in epithelial cells, leading to their proliferation in organoid culture. Administration of IL28 to mice with induced colonic wounds promoted mucosal healing. CONCLUSIONS IL28 controls proliferation of IECs in mice with colitis and accelerates mucosal healing by activating STAT1. IL28 might be developed as a therapeutic agent for patients with IBD.
Collapse
Affiliation(s)
- Mircea T Chiriac
- Medical Clinic 1, Department of Medicine, University Hospital Erlangen, University of Erlangen-Nuremberg, Erlangen, Germany.
| | - Barbara Buchen
- Medical Clinic 1, Department of Medicine, University Hospital Erlangen, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Alexandra Wandersee
- Medical Clinic 1, Department of Medicine, University Hospital Erlangen, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Gheorghe Hundorfean
- Medical Clinic 1, Department of Medicine, University Hospital Erlangen, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Claudia Günther
- Medical Clinic 1, Department of Medicine, University Hospital Erlangen, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Yvonne Bourjau
- Medical Clinic 1, Department of Medicine, University Hospital Erlangen, University of Erlangen-Nuremberg, Erlangen, Germany
| | | | - Benjamin Frey
- Department of Radiation Oncology, University Hospital Erlangen, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Arif B Ekici
- Core Unit Genomics, Institute of Human Genetics, University Hospital Erlangen, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Christian Büttner
- Core Unit Genomics, Institute of Human Genetics, University Hospital Erlangen, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Benno Weigmann
- Medical Clinic 1, Department of Medicine, University Hospital Erlangen, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Raja Atreya
- Medical Clinic 1, Department of Medicine, University Hospital Erlangen, University of Erlangen-Nuremberg, Erlangen, Germany; Ludwig Demling Endoscopy Center of Excellence, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Stefan Wirtz
- Medical Clinic 1, Department of Medicine, University Hospital Erlangen, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Christoph Becker
- Medical Clinic 1, Department of Medicine, University Hospital Erlangen, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Jürgen Siebler
- Medical Clinic 1, Department of Medicine, University Hospital Erlangen, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Markus F Neurath
- Medical Clinic 1, Department of Medicine, University Hospital Erlangen, University of Erlangen-Nuremberg, Erlangen, Germany; Ludwig Demling Endoscopy Center of Excellence, University of Erlangen-Nuremberg, Erlangen, Germany.
| |
Collapse
|
9
|
De Beuckelaer A, Grooten J, De Koker S. Type I Interferons Modulate CD8 + T Cell Immunity to mRNA Vaccines. Trends Mol Med 2017; 23:216-226. [PMID: 28185789 DOI: 10.1016/j.molmed.2017.01.006] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 01/03/2017] [Accepted: 01/13/2017] [Indexed: 12/24/2022]
Abstract
mRNA vaccines have emerged as potent tools to elicit antitumor T cell immunity. They are characterized by a strong induction of type I interferons (IFNs), potent inflammatory cytokines affecting T cell differentiation and survival. Recent reports have attributed opposing roles for type I IFNs in modulating CD8+ T cell immunity to mRNA vaccines, from profoundly stimulatory to strongly inhibitory. The mechanisms behind this duality are unclear. Disentangling the factors governing the beneficial or detrimental impact of type I IFNs on CD8+ T cell responses is vital to the design of mRNA vaccines of increased potency. In light of recent advancements regarding the complex role of type I IFNs in regulating CD8+ T cell immunity to infectious diseases, we posit that the dual outcome of type I IFNs on CD8+ T cell responses to mRNA vaccination is determined by the timing and intensity of type I IFN induction relative to T cell receptor (TCR) activation.
Collapse
Affiliation(s)
- Ans De Beuckelaer
- Laboratory of Molecular Immunology, Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Johan Grooten
- Laboratory of Molecular Immunology, Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium.
| | - Stefaan De Koker
- Laboratory of Molecular Immunology, Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium; Cytokine Receptor Laboratory, Department of Biochemistry, Ghent University, Ghent, Belgium
| |
Collapse
|
10
|
Type I Interferons Interfere with the Capacity of mRNA Lipoplex Vaccines to Elicit Cytolytic T Cell Responses. Mol Ther 2016; 24:2012-2020. [PMID: 27506450 DOI: 10.1038/mt.2016.161] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 07/28/2016] [Indexed: 12/12/2022] Open
Abstract
Given their high potential to evoke cytolytic T cell responses, tumor antigen-encoding messenger RNA (mRNA) vaccines are now being intensively explored as therapeutic cancer vaccines. mRNA vaccines clearly benefit from wrapping the mRNA into nano-sized carriers such as lipoplexes that protect the mRNA from degradation and increase its uptake by dendritic cells in vivo. Nevertheless, the early innate host factors that regulate the induction of cytolytic T cells to mRNA lipoplex vaccines have remained unresolved. Here, we demonstrate that mRNA lipoplexes induce a potent type I interferon (IFN) response upon subcutaneous, intradermal and intranodal injection. Regardless of the route of immunization applied, these type I IFNs interfered with the generation of potent cytolytic T cell responses. Most importantly, blocking type I IFN signaling at the site of immunization through the use of an IFNAR blocking antibody greatly enhanced the prophylactic and therapeutic antitumor efficacy of mRNA lipoplexes in the highly aggressive B16 melanoma model. As type I IFN induction appears to be inherent to the mRNA itself rather than to unique properties of the mRNA lipoplex formulation, preventing type I IFN induction and/or IFNAR signaling at the site of immunization might constitute a widely applicable strategy to improve the potency of mRNA vaccination.
Collapse
|
11
|
Peptide motif analysis predicts alphaviruses as triggers for rheumatoid arthritis. Mol Immunol 2015; 68:465-75. [PMID: 26476978 DOI: 10.1016/j.molimm.2015.09.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Revised: 09/11/2015] [Accepted: 09/17/2015] [Indexed: 01/23/2023]
Abstract
Rheumatoid arthritis (RA) develops in response to both genetic and environmental factors. The strongest genetic determinant is HLA-DR, where polymorphisms within the P4 and P6 binding pockets confer elevated risk. However, low disease concordance across monozygotic twin pairs underscores the importance of an environmental factor, probably infectious. The goal of this investigation was to predict the microorganism most likely to interact with HLA-DR to trigger RA under the molecular mimicry hypothesis. A set of 185 structural proteins from viruses or intracellular bacteria was scanned for regions of sequence homology with a collagen peptide that binds preferentially to DR4; candidates were then evaluated against a motif required for T cell cross-reactivity. The plausibility of the predicted agent was evaluated by comparison of microbial prevalence patterns to epidemiological characteristics of RA. Peptides from alphavirus capsid proteins provided the closest fit. Variations in the P6 position suggest that the HLA binding preference may vary by species, with Ross River virus, Chikungunya virus, and Mayaro virus peptides binding preferentially to DR4, and peptides from Sindbis/Ockelbo virus showing stronger affinity to DR1. The predicted HLA preference is supported by epidemiological studies of post-infection chronic arthralgia. Parallels between the cytokine profiles of RA and chronic alphavirus infection are discussed.
Collapse
|
12
|
Mello AS, de Oliveira DC, Bizzarro B, Sá-Nunes A, Hastreiter AA, Beltran JSDO, Xavier JG, Borelli P, Fock RA. Protein malnutrition alters spleen cell proliferation and IL-2 and IL-10 production by affecting the STAT-1 and STAT-3 balance. Inflammation 2015; 37:2125-38. [PMID: 24986442 DOI: 10.1007/s10753-014-9947-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Protein malnutrition (PM) is an important public health problem that affects resistance to infection by impairing a number of physiological processes. PM induces structural changes in the lymphoid organs that affect the roles of the immune and inflammatory responses in a crucial way. The activation of different transcription factors, including signal transducer and activator of transcription (STAT) family members, leads to the production of different cytokines, which are mediators essential to mounting adequate immune and inflammatory responses. In this study, malnourished animals presented anemia, leukopenia, and a severe reduction in spleen cellularity, with reduced numbers of most cell populations, as well as increased percentages of CD3(+) and CD4(+) cells. The proliferation rates were reduced, and cells were increasingly observed in the G0/G1 cell cycle phase; further, IL-2 production was reduced, while IL-10 production was increased. In spleen cells from malnourished animals, STAT-3 protein expression was increased, with a concomitant reduction in STAT-1 expression. Knowing that STAT-1 and STAT-3 are key transcription factors in both immunity and inflammatory pathways, these results infer, at least in part, a mechanistic pathway that affects the manner or intensity of the immune response in malnourished individuals, increasing susceptibility to infection.
Collapse
Affiliation(s)
- Alexandra Siqueira Mello
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
McNab F, Mayer-Barber K, Sher A, Wack A, O'Garra A. Type I interferons in infectious disease. Nat Rev Immunol 2015; 15:87-103. [PMID: 25614319 DOI: 10.1038/nri3787] [Citation(s) in RCA: 1919] [Impact Index Per Article: 191.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Type I interferons (IFNs) have diverse effects on innate and adaptive immune cells during infection with viruses, bacteria, parasites and fungi, directly and/or indirectly through the induction of other mediators. Type I IFNs are important for host defence against viruses. However, recently, they have been shown to cause immunopathology in some acute viral infections, such as influenza virus infection. Conversely, they can lead to immunosuppression during chronic viral infections, such as lymphocytic choriomeningitis virus infection. During bacterial infections, low levels of type I IFNs may be required at an early stage, to initiate cell-mediated immune responses. High concentrations of type I IFNs may block B cell responses or lead to the production of immunosuppressive molecules, and such concentrations also reduce the responsiveness of macrophages to activation by IFNγ, as has been shown for infections with Listeria monocytogenes and Mycobacterium tuberculosis. Recent studies in experimental models of tuberculosis have demonstrated that prostaglandin E2 and interleukin-1 inhibit type I IFN expression and its downstream effects, demonstrating that a cross-regulatory network of cytokines operates during infectious diseases to provide protection with minimum damage to the host.
Collapse
Affiliation(s)
- Finlay McNab
- 1] Allergic Inflammation Discovery Performance Unit, Respiratory Disease Respiratory Research and Development, GlaxoSmithKline, Stevenage, Hertfordshire SG1 2NY, UK. [2] Division of Immunoregulation, Medical Research Council (MRC) National Institute for Medical Research, Mill Hill, London NW7 1AA, UK
| | - Katrin Mayer-Barber
- Immunobiology Section, Laboratory of Parasitic Diseases (LPD), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, Maryland 20892, USA
| | - Alan Sher
- Immunobiology Section, Laboratory of Parasitic Diseases (LPD), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, Maryland 20892, USA
| | - Andreas Wack
- Division of Immunoregulation, Medical Research Council (MRC) National Institute for Medical Research, Mill Hill, London NW7 1AA, UK
| | - Anne O'Garra
- 1] Division of Immunoregulation, Medical Research Council (MRC) National Institute for Medical Research, Mill Hill, London NW7 1AA, UK. [2] National Heart and Lung Institute (NHLI), Faculty of Medicine, Imperial College London, London, UK
| |
Collapse
|
14
|
|
15
|
Out-of-sequence signal 3 as a mechanism for virus-induced immune suppression of CD8 T cell responses. PLoS Pathog 2014; 10:e1004357. [PMID: 25255454 PMCID: PMC4177909 DOI: 10.1371/journal.ppat.1004357] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Accepted: 07/28/2014] [Indexed: 12/15/2022] Open
Abstract
Virus infections are known to induce a transient state of immune suppression often associated with an inhibition of T cell proliferation in response to mitogen or cognate-antigen stimulation. Recently, virus-induced immune suppression has been linked to responses to type 1 interferon (IFN), a signal 3 cytokine that normally can augment the proliferation and differentiation of T cells exposed to antigen (signal 1) and co-stimulation (signal 2). However, pre-exposure of CD8 T cells to IFN-inducers such as viruses or poly(I∶C) prior to antigen signaling is inhibitory, indicating that the timing of IFN exposure is of essence. We show here that CD8 T cells pretreated with poly(I∶C) down-regulated the IFN receptor, up-regulated suppressor of cytokine signaling 1 (SOCS1), and were refractory to IFNβ-induced signal transducers and activators of transcription (STAT) phosphorylation. When exposed to a viral infection, these CD8 T cells behaved more like 2-signal than 3-signal T cells, showing defects in short lived effector cell differentiation, reduced effector function, delayed cell division, and reduced levels of survival proteins. This suggests that IFN-pretreated CD8 T cells are unable to receive the positive effects that type 1 IFN provides as a signal 3 cytokine when delivered later in the signaling process. This desensitization mechanism may partially explain why vaccines function poorly in virus-infected individuals.
Collapse
|
16
|
Kallal LE, Biron CA. Changing partners at the dance: Variations in STAT concentrations for shaping cytokine function and immune responses to viral infections. JAKSTAT 2014; 2:e23504. [PMID: 24058795 PMCID: PMC3670271 DOI: 10.4161/jkst.23504] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Revised: 01/04/2013] [Accepted: 01/04/2013] [Indexed: 12/17/2022] Open
Abstract
Differential use of cellular and molecular components shapes immune responses, but understanding of how these are regulated to promote defense and health during infections is still incomplete. Examples include signaling from members of the Janus activated kinase-signal transducer and activator of transcription (JAK-STAT) cytokine family. Following receptor stimulation, individual JAK-STAT cytokines have preferences for particular key STAT molecules to lead to specific cellular responses. Certain of these cytokines, however, can conditionally activate alternative STATs as well as elicit pleiotropic and paradoxical effects. Studies examining basal and infection conditions are revealing intrinsic and induced cellular differences in various intracellular STAT concentrations to control the biological consequences of cytokine exposure. The system can be likened to changing partners at a dance based on competition and relative availability, and sets a framework for understanding the particular conditions promoting subset biological functions of cytokines as needed during evolving immune responses to infections.
Collapse
Affiliation(s)
- Lara E Kallal
- Department of Molecular Microbiology and Immunology; Division of Biology and Medicine and Warren Alpert Medical School; Brown University; Providence, RI USA
| | | |
Collapse
|
17
|
Yue C, Xu J, Tan Estioko MD, Kotredes KP, Lopez-Otalora Y, Hilliard BA, Baker DP, Gallucci S, Gamero AM. Host STAT2/type I interferon axis controls tumor growth. Int J Cancer 2014; 136:117-26. [PMID: 24895110 DOI: 10.1002/ijc.29004] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Accepted: 05/08/2014] [Indexed: 12/31/2022]
Abstract
The role of STAT2 in mediating the antigrowth effects of type I interferon (IFN) is well-documented in vitro. Yet evidence of IFN-activated STAT2 as having tumor suppressor function in vivo and participation in antitumor immunity is lacking. Here we show in a syngeneic tumor transplantation model that STAT2 reduces tumor growth. Stat2(-/-) mice formed larger tumors compared to wild type (WT) mice. IFN-β treatment of Stat2(-/-) mice did not cause tumor regression. Gene expression analysis revealed a small subset of immunomodulatory genes to be downregulated in tumors established in Stat2(-/-) mice. Additionally, we found tumor antigen cross-presentation by Stat2(-/-) dendritic cells to T cells to be impaired. Adoptive transfer of tumor antigen specific CD8(+) T cells primed by Stat2(-/-) dendritic cells into tumor-bearing Stat2(-/-) mice did not induce tumor regression with IFN-β intervention. We observed that an increase in the number of CD4(+) and CD8(+) T cells in the draining lymph nodes of IFN-β-treated tumor-bearing WT mice was absent in IFN-β treated Stat2(-/-) mice. Thus our study provides evidence for further evaluation of STAT2 function in cancer patients receiving type I IFN based immunotherapy.
Collapse
Affiliation(s)
- Chanyu Yue
- Department of Biochemistry, Temple University School of Medicine, Philadelphia, PA
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Lymphocyte glucose and glutamine metabolism as targets of the anti-inflammatory and immunomodulatory effects of exercise. Mediators Inflamm 2014; 2014:326803. [PMID: 24987195 PMCID: PMC4060061 DOI: 10.1155/2014/326803] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Revised: 04/23/2014] [Accepted: 05/06/2014] [Indexed: 12/30/2022] Open
Abstract
Glucose and glutamine are important energetic and biosynthetic nutrients for T and B lymphocytes. These cells consume both nutrients at high rates in a function-dependent manner. In other words, the pathways that control lymphocyte function and survival directly control the glucose and glutamine metabolic pathways. Therefore, lymphocytes in different functional states reprogram their glucose and glutamine metabolism to balance their requirement for ATP and macromolecule production. The tight association between metabolism and function in these cells was suggested to introduce the possibility of several pathologies resulting from the inability of lymphocytes to meet their nutrient demands under a given condition. In fact, disruptions in lymphocyte metabolism and function have been observed in different inflammatory, metabolic, and autoimmune pathologies. Regular physical exercise and physical activity offer protection against several chronic pathologies, and this benefit has been associated with the anti-inflammatory and immunomodulatory effects of exercise/physical activity. Chronic exercise induces changes in lymphocyte functionality and substrate metabolism. In the present review, we discuss whether the beneficial effects of exercise on lymphocyte function in health and disease are associated with modulation of the glucose and glutamine metabolic pathways.
Collapse
|
19
|
Abstract
Liver injury is a complicated pathological process caused by multiple biological and chemical factors. The repair mechanism after liver injury is the focus of liver research, involving numerous signaling pathways, cytokines and transcription factors. Signal transducer and activator of transcription 3 (STAT3) is a cytoplasmic signal transcription factor which belongs to the signal transducers and activators of transcription family and plays a critical role in the process of liver injury repair. STAT3 activation boosts the process of liver repair by promoting hepatocyte proliferation, maintains homeostasis by regulating metabolism of carbohydrates and lipids, and prevents the liver from bacterial infection and acute liver injury induced by toxic chemicals and drugs by increasing the expression of beneficial acute phase proteins. This review focuses on the composition of STAT3 signaling pathway and its role in liver injury repair.
Collapse
|
20
|
The microRNA miR-155 controls CD8(+) T cell responses by regulating interferon signaling. Nat Immunol 2013; 14:593-602. [PMID: 23603793 PMCID: PMC3664306 DOI: 10.1038/ni.2576] [Citation(s) in RCA: 220] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Accepted: 02/26/2013] [Indexed: 02/07/2023]
Abstract
We found upregulation of expression of the microRNA miR-155 in primary effector and effector memory CD8(+) T cells, but low miR-155 expression in naive and central memory cells. Antiviral CD8(+) T cell responses and viral clearance were impaired in miR-155-deficient mice, and this defect was intrinsic to CD8(+) T cells, as miR-155-deficient CD8(+) T cells mounted greatly diminished primary and memory responses. Conversely, miR-155 overexpression augmented antiviral CD8(+) T cell responses in vivo. Gene-expression profiling showed that miR-155-deficient CD8(+) T cells had enhanced type I interferon signaling and were more susceptible to interferon's antiproliferative effect. Inhibition of the type I interferon-associated transcription factors STAT1 or IRF7 resulted in enhanced responses of miR-155-deficient CD8(+) T cells in vivo. We have thus identified a previously unknown role for miR-155 in regulating responsiveness to interferon and CD8(+) T cell responses to pathogens in vivo.
Collapse
|
21
|
Shodeinde A, Ginjupalli K, Lewis HD, Riaz S, Barton BE. STAT3 Inhibition Induces Apoptosis in Cancer Cells Independent of STAT1 or STAT2. JOURNAL OF MOLECULAR BIOCHEMISTRY 2013; 2:18-26. [PMID: 25364701 PMCID: PMC4215738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Signal transducers and activators of transcription (STATs) were originally discovered as mediators of signal transduction. Persistent aberrant activation of STAT3 is part of the malignant phenotype of hormone-refractory prostate cancer and pancreatic cancer; this is thought to be mediated by homodimers of phosphorylated STAT3, which translocate to the nucleus. One consequence of persistently-activated STAT3 in malignant cells is that they depend upon it for survival. STAT3 is observed to heterodimerize with STAT1 and STAT2; however the contributions of STAT3:STAT1 and STAT3:STAT2 heterodimers to the survival of malignant cells have not been investigated in detail. Previously we reported that single-stranded oligonucleotides containing consensus STAT3 binding sequences (13410 and 13411) were more effective for inducing apoptosis in prostate cancer cells than antisense STAT3 oligonucleotides. Control oligonucleotides (scrambled sequences) had no effect. STAT3-inhibiting oligonucleotide 13410, but not scrambled-sequence oligonucleotides, induced apoptosis in pancreatic cancer cells as well. Here we report that 13410 and derivative olignucleotides induced apoptosis in STAT1-null and STAT2-null fibrosarcoma cell lines U3A and U6A, as well as in the parental fibrosarcoma cell line 2fTGH. The cell lines expressed constitutively-activated STAT3 and depended on its activity for survival. Forty-eight hr after transfection of 13410 or related oligonucleotides, significant apoptosis was observed in 2fTGH, U3A and U6A cells. Scrambled-sequence oligonucleotides had no effect on survival. These data indicate that neither STAT1 nor STAT2 play significant roles in the maintenance of these cells, and by extension that STAT3:STAT1 and STAT3:STAT2 heterodimers regulate a different set of genes from STAT3:STAT3 homodimers.
Collapse
Affiliation(s)
- Adetola Shodeinde
- Department of Pharmacology and Physiology, University of Medicine and Dentistry of New Jersey, New Jersey Medical School, 185 S. Orange Avenue, Newark, NJ 07103, United States
| | - Kalyani Ginjupalli
- Department of Pharmacology and Physiology, University of Medicine and Dentistry of New Jersey, New Jersey Medical School, 185 S. Orange Avenue, Newark, NJ 07103, United States
| | - H. Dan Lewis
- Department of Pharmacology and Physiology, University of Medicine and Dentistry of New Jersey, New Jersey Medical School, 185 S. Orange Avenue, Newark, NJ 07103, United States
| | - Sheraz Riaz
- Department of Pharmacology and Physiology, University of Medicine and Dentistry of New Jersey, New Jersey Medical School, 185 S. Orange Avenue, Newark, NJ 07103, United States
| | - Beverly E. Barton
- Department of Pharmacology and Physiology, University of Medicine and Dentistry of New Jersey, New Jersey Medical School, 185 S. Orange Avenue, Newark, NJ 07103, United States
- Veterans Administration – New Jersey Health Care System, 385 Tremont Avenue, East Orange, NJ 07018, United States
| |
Collapse
|
22
|
Regulating type 1 IFN effects in CD8 T cells during viral infections: changing STAT4 and STAT1 expression for function. Blood 2012; 120:3718-28. [PMID: 22968462 DOI: 10.1182/blood-2012-05-428672] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Type 1 IFNs can conditionally activate all of the signal transducers and activators of transcription molecules (STATs), including STAT4. The best-characterized signaling pathways use STAT1, however, and type 1 IFN inhibition of cell proliferation is STAT1 dependent. We report that type 1 IFNs can basally stimulate STAT1- and STAT4-dependent effects in CD8 T cells, but that CD8 T cells responding to infections of mice with lymphocytic choriomenigitis virus have elevated STAT4 and lower STAT1 expression with significant consequences for modifying the effects of type 1 IFN exposure. The phenotype was associated with preferential type 1 IFN activation of STAT4 compared with STAT1. Stimulation through the TCR induced elevated STAT4 expression, and STAT4 was required for peak expansion of antigen-specific CD8 T cells, low STAT1 levels, and resistance to type 1 IFN-mediated inhibition of proliferation. Thus, a mechanism is discovered for regulating the consequences of type 1 IFN exposure in CD8 T cells, with STAT4 acting as a key molecule in driving optimal antigen-specific responses and overcoming STAT1-dependent inhibition of proliferation.
Collapse
|
23
|
Cambi GE, Lucchese G, Djeokeng MMH, Modesti A, Fiaschi T, Faggian G, Sani G, Modesti PA. Impaired JAK2-induced activation of STAT3 in failing human myocytes. MOLECULAR BIOSYSTEMS 2012; 8:2351-9. [PMID: 22735740 DOI: 10.1039/c2mb25120e] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Although angiotensin (Ang)II-induced Janus-activated kinase (JAK)2 phosphorylation was reported to be enhanced in failing human cardiomyocytes, the downstream balance between cardio-protective (signal transducer and activator of transcription-STAT3) and the pro-inflammatory (STAT2 and STAT5) response remains unexplored. Therefore STATs phosphorylation and putative genes overexpression following JAK2 activation were investigated in isolated cardiomyocytes obtained from failing human hearts (n = 16), and from non-failing(NF) hearts of humans (putative donors, n = 6) or adult rats. In NF myocytes Ang II-induced JAK2 activation was followed by STAT3 phosphorylation (186 ± 45% at 30 min), with no STAT2 or STAT5 response. The associated B cell lymphoma (Bcl)-xL overexpression (1.05 ± 0.39 fold) was abolished by both JAK2 and extracellular signal-regulated kinase (ERK)1/2 inhibitors (AG490, 10 μM, and PD98059, 30 μM, respectively), whereas Fas ligand (Fas-L) response (0.91 ± 0.21 fold) was inhibited only by p38MAPK antagonism (SB203580, 10 μM). In failing myocytes Ang II-induced JAK2 activation was followed by STAT2 (237 ± 38%) and STAT5 (222 ± 31%) phosphorylation, with no STAT3 response. No changes in Bcl-xL expression were observed, and the associated Fas-L gene overexpression (1.14 ± 0.27 fold) being abolished by p38 mitogen-activated protein kinase (MAPK) antagonism. The altered JAK2 induced STATs response in human failing cardiomyocytes may be of relevance for the progression of cardiac dysfunction in heart failure.
Collapse
Affiliation(s)
- Giulia Elisa Cambi
- Department of Critical Care Medicine, University of Florence, Largo Brambilla 3, 50134 Florence, Italy
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Souissi I, Ladam P, Cognet JAH, Le Coquil S, Varin-Blank N, Baran-Marszak F, Metelev V, Fagard R. A STAT3-inhibitory hairpin decoy oligodeoxynucleotide discriminates between STAT1 and STAT3 and induces death in a human colon carcinoma cell line. Mol Cancer 2012; 11:12. [PMID: 22423663 PMCID: PMC3325846 DOI: 10.1186/1476-4598-11-12] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2011] [Accepted: 03/16/2012] [Indexed: 01/09/2023] Open
Abstract
Background The Signal Transducer and Activator of Transcription 3 (STAT3) is activated in tumor cells, and STAT3-inhibitors are able to induce the death of those cells. Decoy oligodeoxynucleotides (dODNs), which bind to the DNA Binding Domain (DBD) of STAT3, are efficient inhibitors. However, they also inhibit STAT1, whose activity is essential not only to resistance to pathogens, but also to cell growth inhibition and programmed cell death processes. The aim of this study was to design STAT3-specific dODNs which do not affect STAT1-mediated processes. Results New dODNs with a hairpin (hpdODNs) were designed. Modifications were introduced, based on the comparison of STAT3- and STAT1-DBD interactions with DNA using 3D structural analyses. The designed hpdODNs were tested for their ability to inhibit STAT3 but not STAT1 by determining: i) cell death in the active STAT3-dependent SW480 colon carcinoma cell line, ii) absence of inhibition of interferon (IFN) γ-dependent cell death, iii) expression of STAT1 targets, and iv) nuclear location of STAT3 and STAT1. One hpdODN was found to efficiently induce the death of SW480 cells without interfering with IFNγ-activated STAT1. This hpdODN was found in a complex with STAT3 but not with STAT1 using an original in-cell pull-down assay; this hpdODN also did not inhibit IFNγ-induced STAT1 phosphorylation, nor did it inhibit the expression of the STAT1-target IRF1. Furthermore, it prevented the nuclear transfer of STAT3 but not that of IFNγ-activated STAT1. Conclusions Comparative analyses at the atomic level revealed slight differences in STAT3 and STAT1 DBDs' interaction with their DNA target. These were sufficient to design a new discriminating hpdODN that inhibits STAT3 and not STAT1, thereby inducing tumor cell death without interfering with STAT1-dependent processes. Preferential interaction with STAT3 depends on oligodeoxynucleotide sequence modifications but might also result from DNA shape changes, known to modulate protein/DNA interactions. The finding of a STAT3-specific hpdODN establishes the first rational basis for designing STAT3 DBD-specific inhibitors.
Collapse
|
25
|
Yue C, Soboloff J, Gamero AM. Control of type I interferon-induced cell death by Orai1-mediated calcium entry in T cells. J Biol Chem 2011; 287:3207-16. [PMID: 22144678 DOI: 10.1074/jbc.m111.269068] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Store-operated Ca(2+) entry (SOCE) is an essential process in T cell activation. SOCE is controlled by the Ca(2+) release-activated Ca(2+) (CRAC) channel encoded by the gene Orai1 that is expressed on the plasma membrane and activated by STIM1 when ER Ca(2+) stores are depleted. Our earlier work showed that a somatic T-cell line Jurkat mutant H123 bearing a defect in Ca(2+) signaling was susceptible to the apoptotic effects of type I interferons (IFN-α/β). The nature of the mutation and whether this mutation was linked to IFN-α/β apoptotic susceptibility was unknown. Here we show that H123 cells lacked Orai1 and exhibit reduced STIM1 protein. Reconstitution of both Orai1 and STIM1 in H123 cells rescued SOCE in response to thapsigargin and ionomycin and abrogated IFN-α/β-induced apoptosis. Reciprocally, overexpression of the dominant negative Orai1-E106A in either parental Jurkat cells or an unrelated human T cell line (CEM391) inhibited SOCE and led to sensitization to IFN-α/β-induced apoptosis. Furthermore, we showed that the Ca(2+) response pathway antagonized the IFN-α/β -induced transcriptional responses; in the absence of SOCE, this negative regulatory effect was lost. However, the inhibitory effect of Ca(2+) on type I IFN-induced gene transcription was diminished by pharmacological inhibition of NF-κB in cells with intact SOCE. Our findings reveal an unexpected and novel regulatory crosstalk mechanism between type I IFNs and store-operated Ca(2+) signaling pathways mediated at least in part by NF-κB activity with significant clinical implications to both viral and tumor immunology.
Collapse
Affiliation(s)
- Chanyu Yue
- Department of Biochemistry, Temple University School of Medicine, Philadelphia, Pennsylvania 19140, USA
| | | | | |
Collapse
|
26
|
Bacher N, Graulich E, Jonuleit H, Grabbe S, Steinbrink K. Interferon-α abrogates tolerance induction by human tolerogenic dendritic cells. PLoS One 2011; 6:e22763. [PMID: 21818385 PMCID: PMC3144929 DOI: 10.1371/journal.pone.0022763] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2011] [Accepted: 06/29/2011] [Indexed: 02/08/2023] Open
Abstract
Background Administration of interferon-α (IFN-α) represents an approved adjuvant therapy as reported for malignancies like melanoma and several viral infections. In malignant diseases, tolerance processes are critically involved in tumor progression. In this study, the effect of IFN-α on tolerance induction by human tolerogenic dendritic cells (DC) was analyzed. We focussed on tolerogenic IL-10-modulated DC (IL-10 DC) that are known to induce anergic regulatory T cells (iTregs). Methodology/Principal Findings IFN-α promoted an enhanced maturation of IL-10 DC as demonstrated by upregulation of the differentiation marker CD83 as well as costimulatory molecules. IFN-α treatment resulted in an increased capacity of DC to stimulate T cell activation compared to control tolerogenic DC. We observed a strengthened T cell proliferation and increased IFN-γ production of CD4+ and CD8+ T cells stimulated by IFN-α-DC, demonstrating a restoration of the immunogenic capacity of tolerogenic DC in the presence of IFN-α. Notably, restimulation experiments revealed that IFN-α treatment of tolerogenic DC abolished the induction of T cell anergy and suppressor function of iTregs. In contrast, IFN-α neither affected the priming of iTregs nor converted iTregs into effector T cells. Conclusions/Significance IFN-α inhibits the induction of T cell tolerance by reversing the tolerogenic function of human DC.
Collapse
Affiliation(s)
- Nicole Bacher
- Department of Dermatology, University Medical Center Mainz, University of Mainz, Mainz, Germany
- * E-mail: (KS); (NB)
| | - Edith Graulich
- Department of Dermatology, University Medical Center Mainz, University of Mainz, Mainz, Germany
| | - Helmut Jonuleit
- Department of Dermatology, University Medical Center Mainz, University of Mainz, Mainz, Germany
| | - Stephan Grabbe
- Department of Dermatology, University Medical Center Mainz, University of Mainz, Mainz, Germany
| | - Kerstin Steinbrink
- Department of Dermatology, University Medical Center Mainz, University of Mainz, Mainz, Germany
- * E-mail: (KS); (NB)
| |
Collapse
|
27
|
Hervas-Stubbs S, Riezu-Boj JI, Gonzalez I, Mancheño U, Dubrot J, Azpilicueta A, Gabari I, Palazon A, Aranguren A, Ruiz J, Prieto J, Larrea E, Melero I. Effects of IFN-α as a signal-3 cytokine on human naïve and antigen-experienced CD8(+) T cells. Eur J Immunol 2011; 40:3389-402. [PMID: 21108462 DOI: 10.1002/eji.201040664] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
IFN-α/β link innate and adaptive immune responses by directly acting on naïve CD8(+) T cells. This concept unveiled in mice remains unexplored in humans. To investigate that, human CD8(+) CD45RO(-) cells were stimulated with beads coated with anti-CD3 and anti-CD28 mAb, mimicking Ag (type-1) and co-stimulatory (type-2) signals, in the presence or absence of IFN-α and their transcriptional profiles were defined by cDNA-microarrays. We show that IFN-α provides a strong third signal directly to human CD8(+) T cells resulting in regulation of critical genes for their overall activation. This transcriptional effect was substantiated at the protein level and verified by functional assays. Interestingly, the biological effects derived from this stimulation vary depending on the CD8(+) T-cell population. Thus, whereas IFN-α increases the proliferative capacity of naïve CD8(+) T cells, it inhibits or does not affect the proliferation of Ag-experienced cells, such as memory and effector CTL, including CMV-specific lymphocytes. Cytolysis and IFN-γ-secretion of all these populations are enhanced by IFN-α-derived signals, which are critical in naïve CD8(+) T cells for acquisition of effector functions. Our findings in human CD8(+) T cells are informative to understand and improve IFN-α-based therapies for viral and malignant diseases.
Collapse
Affiliation(s)
- Sandra Hervas-Stubbs
- Division of Gene Therapy and Hepatology, Centre for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Changes in glucose and glutamine lymphocyte metabolisms induced by type I interferon α. Mediators Inflamm 2010; 2010:364290. [PMID: 21234393 PMCID: PMC3017935 DOI: 10.1155/2010/364290] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2010] [Accepted: 12/08/2010] [Indexed: 01/16/2023] Open
Abstract
In lymphocytes (LY), the well-documented antiproliferative effects of IFN-α are associated with inhibition of protein synthesis, decreased amino acid incorporation, and cell cycle arrest. However, the effects of this cytokine on the metabolism of glucose and glutamine in these cells have not been well investigated. Thus, mesenteric and spleen LY of male Wistar rats were cultured in the presence or absence of IFN-α, and the changes on glucose and glutamine metabolisms were investigated. The reduced proliferation of mesenteric LY was accompanied by a reduction in glucose total consumption (35%), aerobic glucose metabolism (55%), maximal activity of glucose-6-phosphate dehydrogenase (49%), citrate synthase activity (34%), total glutamine consumption (30%), aerobic glutamine consumption (20.3%) and glutaminase activity (56%). In LY isolated from spleen, IFNα also reduced the proliferation and impaired metabolism. These data demonstrate that in LY, the antiproliferative effects of IFNα are associated with a reduction in glucose and glutamine metabolisms.
Collapse
|
29
|
Effects of human respiratory syncytial virus, metapneumovirus, parainfluenza virus 3 and influenza virus on CD4+ T cell activation by dendritic cells. PLoS One 2010; 5:e15017. [PMID: 21124776 PMCID: PMC2993941 DOI: 10.1371/journal.pone.0015017] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2010] [Accepted: 10/11/2010] [Indexed: 12/24/2022] Open
Abstract
Background Human respiratory syncytial virus (HRSV), and to a lesser extent human metapneumovirus (HMPV) and human parainfluenza virus type 3 (HPIV3), re-infect symptomatically throughout life without antigenic change, suggestive of incomplete immunity. One causative factor is thought to be viral interference with dendritic cell (DC)-mediated stimulation of CD4+ T cells. Methodology, Principal Findings We infected human monocyte-derived DC with purified HRSV, HMPV, HPIV3, or influenza A virus (IAV) and compared their ability to induce activation and proliferation of autologous CD4+ T cells in vitro. IAV was included because symptomatic re-infection without antigenic change is less frequent, suggesting that immune protection is more complete and durable. We examined virus-specific memory responses and superantigen-induced responses by multiparameter flow cytometry. Live virus was more stimulatory than inactivated virus in inducing DC-mediated proliferation of virus-specific memory CD4+ T cells, suggesting a lack of strong suppression by live virus. There were trends of increasing proliferation in the order: HMPV<HRSV<HPIV3<IAV, and greater production of interferon-γ and tumor necrosis factor-α by proliferating cells in response to IAV, but differences were not significant. Exposure of DC to HRSV, HPIV3, or IAV reduced CD4+ T cell proliferation in response to secondary stimulus with superantigen, but the effect was transitory and greatest for IAV. T cell cytokine production was similar, with no evidence of Th2 or Th17 skewing. Conclusions, Significance Understanding the basis for the ability of HRSV in particular to symptomatically re-infect without significant antigenic change is of considerable interest. The present results show that these common respiratory viruses are similar in their ability to induce DC to activate CD4+ T cells. Thus, the results do not support the common model in which viral suppression of CD4+ T cell activation and proliferation by HRSV, HMPV, and HPIV3 is a major factor in the difference in re-infectability compared to IAV.
Collapse
|
30
|
Nickens KP, Patierno SR, Ceryak S. Chromium genotoxicity: A double-edged sword. Chem Biol Interact 2010; 188:276-88. [PMID: 20430016 PMCID: PMC2942955 DOI: 10.1016/j.cbi.2010.04.018] [Citation(s) in RCA: 231] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2010] [Revised: 04/16/2010] [Accepted: 04/19/2010] [Indexed: 01/25/2023]
Abstract
Certain forms of hexavalent chromium [Cr(VI)] are known respiratory carcinogens that induce a broad spectrum of DNA damage. Cr(VI)-carcinogenesis may be initiated or promoted through several mechanistic processes including, the intracellular metabolic reduction of Cr(VI) producing chromium species capable of interacting with DNA to yield genotoxic and mutagenic effects, Cr(VI)-induced inflammatory/immunological responses, and alteration of survival signaling pathways. Cr(VI) enters the cell through non-specific anion channels, and is metabolically reduced by agents including ascorbate, glutathione, and cysteine to Cr(V), Cr(IV), and Cr(III). Cr(III) has a weak membrane permeability capacity and is unable to cross the cell membrane, thereby trapping it within the cell where it can bind to DNA and produce genetic damage leading to genomic instability. Structural genetic lesions produced by the intracellular reduction of Cr(VI) include DNA adducts, DNA-strand breaks, DNA-protein crosslinks, oxidized bases, abasic sites, and DNA inter- and intrastrand crosslinks. The damage induced by Cr(VI) can lead to dysfunctional DNA replication and transcription, aberrant cell cycle checkpoints, dysregulated DNA repair mechanisms, microsatelite instability, inflammatory responses, and the disruption of key regulatory gene networks responsible for the balance of cell survival and cell death, which may all play an important role in Cr(VI) carcinogenesis. Several lines of evidence have indicated that neoplastic progression is a result of consecutive genetic/epigenetic changes that provide cellular survival advantages, and ultimately lead to the conversion of normal human cells to malignant cancer cells. This review is based on studies that provide a glimpse into Cr(VI) carcinogenicity via mechanisms including Cr(VI)-induced death-resistance, the involvement of DNA repair mechanisms in survival after chromium exposure, and the activation of survival signaling cascades in response to Cr(VI) genotoxicity.
Collapse
Affiliation(s)
- Kristen P. Nickens
- Department of Pharmacology and Physiology, The George Washington University Medical Center, 2300 I Street NW, Washington, DC 20037
| | - Steven R. Patierno
- Department of Pharmacology and Physiology, The George Washington University Medical Center, 2300 I Street NW, Washington, DC 20037
- GW Cancer Institute, The George Washington University Medical Center, 2300 I Street NW, Washington, DC 20037
- Department of Medicine, The George Washington University Medical Center, 2300 I Street NW, Washington, DC 20037
| | - Susan Ceryak
- Department of Pharmacology and Physiology, The George Washington University Medical Center, 2300 I Street NW, Washington, DC 20037
- Department of Medicine, The George Washington University Medical Center, 2300 I Street NW, Washington, DC 20037
| |
Collapse
|
31
|
Seo YJ, Hahm B. Type I interferon modulates the battle of host immune system against viruses. ADVANCES IN APPLIED MICROBIOLOGY 2010; 73:83-101. [PMID: 20800760 PMCID: PMC7112037 DOI: 10.1016/s0065-2164(10)73004-5] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Type I interferon (IFN), as its name implies, 'interferes' with virus replication by activating numerous genes. Further, virus-induced type I IFN regulates the magnitude and functions of cells directing the host immune system. Importantly, recent exploration into how type I IFN operates following virus infection has advanced our understanding of its role with respect to modulation of host innate and adaptive immune responses. Such activities include the activation of antigen-presenting dendritic cells and the localization, expansion or differentiation of virus-specific T lymphocytes and antibody-producing B lymphocytes. However, type I IFN not only benefits the host but can also induce unnecessary or extremely pathogenic immune responses. This review focuses on such interactions and the manner in which type I IFN induces dynamic changes in the host immune network, particularly adaptive immune responses to viral invasion. Manipulating the type I IFN-mediated host immune response during virus infections could provide new immunotherapeutic interventions to remedy viral diseases and implement more effective and sustainable type I IFN therapy.
Collapse
Affiliation(s)
- Young-Jin Seo
- Department of Surgery, Department of Molecular Microbiology and Immunology, Center for Cellular and Molecular Immunology, Virology Center, University of Missouri-Columbia, Columbia, Missouri, USA
| | | |
Collapse
|
32
|
Nemec AA, Zubritsky LM, Barchowsky A. Chromium(VI) stimulates Fyn to initiate innate immune gene induction in human airway epithelial cells. Chem Res Toxicol 2010; 23:396-404. [PMID: 19994902 DOI: 10.1021/tx900365u] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Mechanisms for pathogenic metal signaling in airway injury or disease promotion are poorly understood. It is widely believed that one mechanism for pathogenic and possible carcinogenic effects of inhaled chromium (Cr(VI)) is inhibition of inducible gene transactivation. However, we recently reported that Cr(VI) inhibition of Sp1-dependent transactivation required signal transducer and activator of transcription 1 (STAT1)-dependent expression of an inhibitory protein in airway epithelium. Thus, Cr(VI) exposures can induce genes, and we hypothesized that this induction resulted from Cr(VI) signaling through an innate immune-like STAT1-dependent pathway initiated by Fyn. Exposure of human airway epithelial (BEAS-2B) cells to Cr(VI) selectively transactivated the STAT-responsive interferon-stimulated response element (ISRE) and induced ISRE-driven transactivation of interferon regulatory factor 7 (IRF7), without affecting the gamma interferon-activated site (GAS)-driven IRF1 expression. Cr(VI)-induced IRF7 was absent or greatly reduced in cells that lacked STAT1, were treated with the Src family kinase inhibitor, PP2, or lacked Fyn. Expressing Fyn, but not Src, in mouse embryonic fibroblasts cells null for Src, Yes, and Fyn restored Cr(VI)-stimulated STAT1 tyrosine phosphorylation and IRF7 expression. Finally, shRNA knockdown of Fyn in BEAS-2B cells prevented Cr(VI)-activated STAT1 transactivation of IRF7. These data support a novel mechanism through which Cr(VI) stimulates Fyn to initiate interferon-like signaling for STAT1-dependent gene transactivation.
Collapse
Affiliation(s)
- Antonia A Nemec
- University of Pittsburgh Graduate School of Public Health, Pittsburgh, Pennsylvania 15219, USA
| | | | | |
Collapse
|
33
|
Gamero AM, Young MR, Mentor-Marcel R, Bobe G, Scarzello AJ, Wise J, Colburn NH. STAT2 contributes to promotion of colorectal and skin carcinogenesis. Cancer Prev Res (Phila) 2010; 3:495-504. [PMID: 20233899 PMCID: PMC2851485 DOI: 10.1158/1940-6207.capr-09-0105] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Signal transducer and activator of transcription 2 (STAT2) is an essential transcription factor in the type I IFN (IFN-alpha/beta) signal transduction pathway and known for its role in mediating antiviral immunity and cell growth inhibition. Unlike other members of the STAT family, IFNs are the only cytokines known to date that can activate STAT2. Given the inflammatory and antiproliferative dual nature of IFNs, we hypothesized that STAT2 prevents inflammation-induced colorectal and skin carcinogenesis by altering the inflammatory immune response. Contrary to our hypothesis, deletion of STAT2 inhibited azoxymethane/dextran sodium sulfate-induced colorectal carcinogenesis as measured by prolonged survival, lower adenoma incidence, smaller polyps, and less chronic inflammation. STAT2 deficiency also inhibited 7,12-dimethylbenz(a)anthracene/12-O-tetradecanoylphorbol-13-acetate-induced skin carcinogenesis as indicated by reduced papilloma multiplicity. A potential mechanism by which STAT2 promotes carcinogenesis is through activation of proinflammatory mediators. Deletion of STAT2 decreased azoxymethane/dextran sodium sulfate-induced expression and release of proinflammatory mediators, such as interleukin-6 and CCL2, and decreased interleukin-6 release from skin carcinoma cells, which then decreased STAT3 activation. Our findings identify STAT2 as a novel contributor to colorectal and skin carcinogenesis that may act to increase the gene expression and secretion of proinflammatory mediators, which in turn activate the oncogenic STAT3 signaling pathway.
Collapse
Affiliation(s)
- Ana M Gamero
- Temple University School of Medicine, Philadelphia, PA 19140, USA.
| | | | | | | | | | | | | |
Collapse
|
34
|
Romero-Weaver AL, Wang HW, Steen HC, Scarzello AJ, Hall VL, Sheikh F, Donnelly RP, Gamero AM. Resistance to IFN-alpha-induced apoptosis is linked to a loss of STAT2. Mol Cancer Res 2010; 8:80-92. [PMID: 20068068 DOI: 10.1158/1541-7786.mcr-08-0344] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Type I IFNs (IFN-alpha/beta) are pleitropic cytokines widely used in the treatment of certain malignancies, hepatitis B and C, and multiple sclerosis. IFN resistance is a challenging clinical problem to overcome. Hence, understanding the molecular mechanism by which IFN immunotherapy ceases to be effective is of translational importance. In this study, we report that continuous IFN-alpha stimulation of the human Jurkat variant H123 led to resistance to type I IFN-induced apoptosis due to a loss of signal transducers and activators of transcription 2 (STAT2) expression. The apoptotic effects of IFN-alpha were hampered as STAT2-deficient cells were defective in activating the mitochondrial-dependent death pathway and ISGF3-mediated gene activation. Reconstitution of STAT2 restored the apoptotic effects of IFN-alpha as measured by the loss of mitochondrial membrane potential, cytochrome c release from mitochondria, caspase activation, and ultimately cell death. Nuclear localization of STAT2 was a critical event as retention of tyrosine-phosphorylated STAT2 in the cytosol was not sufficient to activate apoptosis. Furthermore, silencing STAT2 gene expression in Saos2 and A375S.2 tumor cell lines significantly reduced the apoptotic capacity of IFN-alpha. Altogether, we show that STAT2 is a critical mediator in the activation of type I IFN-induced apoptosis. More importantly, defects in the expression or nuclear localization of STAT2 could lessen the efficacy of type I IFN immunotherapy.
Collapse
Affiliation(s)
- Ana L Romero-Weaver
- Laboratory of Experimental Immunology, Cancer and Inflammation Program, National Cancer Institute, NIH, Frederick, Maryland, USA
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Plumlee CR, Lee C, Beg AA, Decker T, Shuman HA, Schindler C. Interferons direct an effective innate response to Legionella pneumophila infection. J Biol Chem 2009; 284:30058-66. [PMID: 19720834 DOI: 10.1074/jbc.m109.018283] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Legionella pneumophila remains an important opportunistic pathogen of human macrophages. Its more limited ability to replicate in murine macrophages has been attributed to redundant innate sensor systems that detect and effectively respond to this infection. The current studies evaluate the role of one of these innate response systems, the type I interferon (IFN-I) autocrine loop. The ability of L. pneumophila to induce IFN-I expression was found to be dependent on IRF-3, but not NF-kappaB. Secreted IFN-Is then in turn suppress the intracellular replication of L. pneumophila. Surprisingly, this suppression is mediated by a pathway that is independent of Stat1, Stat2, Stat3, but correlates with the polarization of macrophages toward the M1 or classically activated phenotype.
Collapse
Affiliation(s)
- Courtney R Plumlee
- Department of Biological Sciences, Columbia University, New York, New York 10032, USA
| | | | | | | | | | | |
Collapse
|
36
|
Regis G, Icardi L, Conti L, Chiarle R, Piva R, Giovarelli M, Poli V, Novelli F. IL-6, but not IFN-gamma, triggers apoptosis and inhibits in vivo growth of human malignant T cells on STAT3 silencing. Leukemia 2009; 23:2102-8. [PMID: 19626047 DOI: 10.1038/leu.2009.139] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
STAT1 and STAT3 are the main mediators of the signaling of interferons (IFNs) and of gp130 cytokines, respectively. Neoplastic T lymphocytes frequently become resistant to the IFN-gamma/STAT1 apoptotic pathway, often because of the downregulation of the IFN-gammaR2 receptor chain. Many studies suggest that cross-regulation between different STATs, in particular between STAT1 and STAT3, may profoundly affect cytokine/growth factor signaling. Here, the function of STAT3 in the negative regulation of STAT1 apoptotic pathway was investigated by RNA interference-mediated STAT3 silencing in human malignant T lymphocytes. In STAT3-depleted cells, interleukin (IL)-6 acquired the capacity to induce apoptosis, correlating with prolonged STAT1 activation and the induction of major histocompatibility complex (MHC) class I expression. In contrast, in the absence of STAT3, IFN-gamma could slightly enhance apoptosis but its ability to induce MHC class I expression was unchanged. Accordingly, IL-6, but not IFN-gamma, could significantly impair the in vivo growth of STAT3-depleted human neoplastic T lymphocytes transplanted into severe combined immunodeficient mice. Therefore, treatment with IL-6 and simultaneous STAT3 silencing may represent a potential therapeutic approach to control the expansion of IFN-gamma-unresponsive neoplastic T cells.
Collapse
Affiliation(s)
- G Regis
- The Center for Experimental Research and Medical Studies (CERMS), San Giovanni Battista Hospital-Molinette, Turin, Italy
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Nemec AA, Barchowsky A. Signal transducer and activator of transcription 1 (STAT1) is essential for chromium silencing of gene induction in human airway epithelial cells. Toxicol Sci 2009; 110:212-23. [PMID: 19403854 DOI: 10.1093/toxsci/kfp084] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Hexavalent chromium (Cr(VI)) promotes lung injury and pulmonary diseases through poorly defined mechanisms that may involve the silencing of inducible protective genes. The current study investigated the hypothesis that Cr(VI) actively signals through a signal transducer and activator of transcription 1 (STAT1)-dependent pathway to silence nickel (Ni)-induced expression of vascular endothelial cell growth factor A (VEGFA), an important mediator of lung injury and repair. In human bronchial airway epithelial (BEAS-2B) cells, Ni-induced VEGFA transcription by stimulating an extracellular regulated kinase (ERK) signaling cascade that involved Src kinase-activated Sp1 transactivation, as well as increased hypoxia-inducible factor-1 alpha (HIF-1 alpha) stabilization and DNA binding. Ni-stimulated ERK, Src, and HIF-1 alpha activities, as well as Ni-induced VEGFA transcript levels were inhibited in Cr(VI)-exposed cells. We previously demonstrated that Cr(VI) stimulates STAT1 to suppress VEGFA expression. In BEAS-2B cells stably expressing STAT1 short hairpin RNA, Cr(VI) increased VEGFA transcript levels and Sp1 transactivation. Moreover, in the absence of STAT1, Cr(VI), and Ni coexposures positively interacted to further increase VEGFA transcripts. This study demonstrates that metal-stimulated signaling cascades interact to regulate transcription and induction of adaptive or repair responses in airway cells. In addition, the data implicate STAT1 as a rate limiting mediator of Cr(VI)-stimulated gene regulation and suggest that cells lacking STAT1, such as many tumor cell lines, have opposite responses to Cr(VI) relative to normal cells.
Collapse
Affiliation(s)
- Antonia A Nemec
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, Pennsylvania 15219, USA
| | | |
Collapse
|
38
|
Hahm B. Hostile communication of measles virus with host innate immunity and dendritic cells. Curr Top Microbiol Immunol 2009; 330:271-87. [PMID: 19203114 DOI: 10.1007/978-3-540-70617-5_13] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Following measles virus (MV) infection, host innate immune responses promptly operate to purge the virus. Detection of alerting measles viral components or replication intermediates by pattern-recognizing host machinery of Toll-like receptors and RNA helicases triggers signaling to synthesize array of anti-viral and immunoregulatory molecules, including type I interferon (IFN). Diverse subtypes of dendritic cells (DCs) play pivotal roles in both host innate immunity on the primary MV-infected site and initiating adaptive immune responses on secondary lymphoid tissues. Responding to the predictable host immune responses, MV appears to have devised multiple strategies to evade, suppress, or even utilize host innate immunity and DC responses. This review focuses on versatile actions of MV-induced type I IFNs causing beneficial or deleterious influence on host immunity and the interplay between MV and heterogeneous DCs at distinct locations.
Collapse
Affiliation(s)
- B Hahm
- Department of Surgery, Center for Cellular and Molecular Immunology, University of Missouri-Columbia School of Medicine, One Hospital Dr., Columbia, MO 65212, USA.
| |
Collapse
|
39
|
Lal G, Zhang N, van der Touw W, Ding Y, Ju W, Bottinger EP, Reid SP, Levy DE, Bromberg JS. Epigenetic regulation of Foxp3 expression in regulatory T cells by DNA methylation. THE JOURNAL OF IMMUNOLOGY 2009; 182:259-73. [PMID: 19109157 DOI: 10.4049/jimmunol.182.1.259] [Citation(s) in RCA: 442] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Foxp3, a winged-helix family transcription factor, serves as the master switch for CD4(+) regulatory T cells (Treg). We identified a unique and evolutionarily conserved CpG-rich island of the Foxp3 nonintronic upstream enhancer and discovered that a specific site within it was unmethylated in natural Treg (nTreg) but heavily methylated in naive CD4(+) T cells, activated CD4(+) T cells, and peripheral TGFbeta-induced Treg in which it was bound by DNMT1, DNMT3b, MeCP2, and MBD2. Demethylation of this CpG site using the DNA methyltransferase inhibitor 5-aza-2'-deoxycytidine (Aza) induced acetylation of histone 3, interaction with TIEG1 and Sp1, and resulted in strong and stable induction of Foxp3. Conversely, IL-6 resulted in methylation of this site and repression of Foxp3 expression. Aza plus TGFbeta-induced Treg resembled nTreg, expressing similar receptors, cytokines, and stable suppressive activity. Strong Foxp3 expression and suppressor activity could be induced in a variety of T cells, including human CD4(+)CD25(-) T cells. Epigenetic regulation of Foxp3 can be predictably controlled with DNMT inhibitors to generate functional, stable, and specific Treg.
Collapse
Affiliation(s)
- Girdhari Lal
- Department of Gene and Cell Medicine, Mount Sinai School of Medicine, New York, NY 10029, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Eriksen KW, Søndergaard H, Woetmann A, Krejsgaard T, Skak K, Geisler C, Wasik MA, Ødum N. The combination of IL-21 and IFN-α boosts STAT3 activation, cytotoxicity and experimental tumor therapy. Mol Immunol 2009; 46:812-20. [DOI: 10.1016/j.molimm.2008.09.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2008] [Accepted: 09/07/2008] [Indexed: 11/25/2022]
|
41
|
Chakraborty P, Wang Y, Wei JH, van Deursen J, Yu H, Malureanu L, Dasso M, Forbes DJ, Levy DE, Seemann J, Fontoura BM. Nucleoporin levels regulate cell cycle progression and phase-specific gene expression. Dev Cell 2008; 15:657-67. [PMID: 19000832 PMCID: PMC2835575 DOI: 10.1016/j.devcel.2008.08.020] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2007] [Revised: 07/13/2008] [Accepted: 08/28/2008] [Indexed: 01/09/2023]
Abstract
The Nup107-160 complex, the largest subunit of the nuclear pore, is multifunctional. It mediates mRNA export in interphase, and has roles in kinetochore function, spindle assembly, and postmitotic nuclear pore assembly. We report here that the levels of constituents of the Nup107-160 complex are coordinately cell cycle-regulated. At mitosis, however, a member of the complex, Nup96, is preferentially downregulated. This occurs via the ubiquitin-proteasome pathway. When the levels of Nup96 are kept high, a significant delay in G1/S progression occurs. Conversely, in cells of Nup96(+/-) mice, which express low levels of Nup96, cell cycle progression is accelerated. These lowered levels of Nup96 yield specific defects in nuclear export of certain mRNAs and protein expression, among which are key cell cycle regulators. Thus, Nup96 levels regulate differential gene expression in a phase-specific manner, setting the stage for proper cell cycle progression.
Collapse
Affiliation(s)
- Papia Chakraborty
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Yaming Wang
- Department of Pathology, New York University School of Medicine, New York, NY 10016, USA
| | - Jen-Hsuan Wei
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jan van Deursen
- Department of Pediatrics and Adolescent Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Hongtao Yu
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Liviu Malureanu
- Department of Pediatrics and Adolescent Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Mary Dasso
- Laboratory of Gene Regulation and Development, NICHD, NIH, Bethesda, MD 20892, USA
| | - Douglass J. Forbes
- Section of Cell and Developmental Biology, University of California San Diego, La Jolla, CA 92093, USA
| | - David E. Levy
- Department of Pathology, New York University School of Medicine, New York, NY 10016, USA
| | - Joachim Seemann
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Beatriz M.A. Fontoura
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
42
|
Moore ML, Chi MH, Goleniewska K, Durbin JE, Peebles RS. Differential regulation of GM1 and asialo-GM1 expression by T cells and natural killer (NK) cells in respiratory syncytial virus infection. Viral Immunol 2008; 21:327-39. [PMID: 18788941 DOI: 10.1089/vim.2008.0003] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
We previously reported that respiratory syncytial virus (RSV) infection increases lung CD8(+) T cell GM1 expression. The related lipid asialo-GM1 (ASGM1) is expressed by T cells in viral infection and by natural killer (NK) cells. The in vivo co-expression of GM1 and ASGM1 by immune cells is not defined. Here we analyzed lung lymphocyte GM1 and ASGM1 expression in RSV-infected mice. GM1 and ASGM1 were coordinately upregulated by activated CD8(+) T cells in RSV-infected BALB/c and C57BL/6 mice. In contrast, RSV infection had no effect on constitutively high NK cell GM1 expression, while increasing NK cell ASGM1 expression. GM1 and ASGM1 co-localized in lipid raft structures in NK and CD8(+) T cells sorted from the lungs of RSV-infected mice. Anti-ASGM1 Ab treatment of RSV-infected BALB/c mice depleted GM1/ASGM1-expressing NK cells and GM1/ASGM1-expressing T cells, reduced lung IFN-gamma levels, increased viral load, delayed viral clearance, and reduced illness. STAT1(-/-) mice are more susceptible to RSV replication and disease than wild-type mice. In RSV-infected STAT1(-/-) mice, anti-ASGM1 Ab altered cytokine levels, but in contrast to BALB/c mice, antibody treatment had no effect on viral load or illness. Taken together, GM1 and ASGM1 expression are differentially regulated by T and NK cells in RSV infection. Also, GM1/ASGM1-expressing cells are important for control of RSV in BALB/c mice, whereas STAT1(-/-) mice clear RSV by an alternative pathway.
Collapse
Affiliation(s)
- Martin L Moore
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-2650, USA
| | | | | | | | | |
Collapse
|
43
|
Zhao W, Lee C, Piganis R, Plumlee C, de Weerd N, Hertzog PJ, Schindler C. A conserved IFN-alpha receptor tyrosine motif directs the biological response to type I IFNs. THE JOURNAL OF IMMUNOLOGY 2008; 180:5483-9. [PMID: 18390731 DOI: 10.4049/jimmunol.180.8.5483] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Mammalian type I IFNs (IFN-Is) mediate their potent biological activities through an evolutionarily conserved IFN-alpha receptor (IFNAR), consisting of IFNAR1 and IFNAR2. These two chains direct the rapid activation of two founding members of the STAT family of transcription factors, STAT1 and STAT2. To understand how IFN-Is direct the recruitment and activation of STATs, a series of mutant murine IFNAR1 and IFNAR2 receptors were generated and evaluated in IFNAR1 and IFNAR2 knockout cells. These studies reveal that a single conserved IFNAR2 tyrosine, Y(510), plays a critical role in directing the IFN-I-dependent activation of STAT1 and STAT2, both in murine fibroblasts and macrophages. A second IFNAR2 tyrosine, Y(335), plays a more minor role. Likewise, Y(510) > Y(335) play a critical role in the induction of genes and antiviral activity traditionally associated with IFN-Is.
Collapse
Affiliation(s)
- Wenli Zhao
- Department of Microbiology, Columbia University, New York, NY 10032, USA
| | | | | | | | | | | | | |
Collapse
|
44
|
Regis G, Pensa S, Boselli D, Novelli F, Poli V. Ups and downs: the STAT1:STAT3 seesaw of Interferon and gp130 receptor signalling. Semin Cell Dev Biol 2008; 19:351-9. [PMID: 18620071 DOI: 10.1016/j.semcdb.2008.06.004] [Citation(s) in RCA: 183] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2008] [Revised: 06/04/2008] [Accepted: 06/17/2008] [Indexed: 02/04/2023]
Abstract
Downstream of cytokine or growth factor receptors, STAT3 counteracts inflammation and promotes cell survival/proliferation and immune tolerance while STAT1 inhibits proliferation and favours innate and adaptive immune responses. STAT1 and STAT3 activation are reciprocally regulated and perturbation in their balanced expression or phosphorylation levels may re-direct cytokine/growth factor signals from proliferative to apoptotic, or from inflammatory to anti-inflammatory. Here we review the functional canonical and non-canonical effects of STAT1/3 activation and discuss the hypothesis that perturbation of their expression and/or activation levels may provide novel therapeutic strategies in different clinical settings and particularly in cancer.
Collapse
Affiliation(s)
- Gabriella Regis
- Molecular Biotechnology Center, University of Turin, via Nizza 52, 10126 Turin, Italy.
| | | | | | | | | |
Collapse
|
45
|
Zeng R, Spolski R, Casas E, Zhu W, Levy DE, Leonard WJ. The molecular basis of IL-21-mediated proliferation. Blood 2007; 109:4135-42. [PMID: 17234735 PMCID: PMC1885510 DOI: 10.1182/blood-2006-10-054973] [Citation(s) in RCA: 247] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Interleukin-21 (IL-21) is a type I cytokine that modulates functions of T, B, natural killer (NK), and myeloid cells. The IL-21 receptor (IL-21R) is closely related to the IL-2 receptor beta chain and is capable of transducing signals through its dimerization with the common cytokine receptor gamma chain (gamma(c)), the protein whose expression is defective in humans with X-linked severe combined immunodeficiency. To clarify the molecular basis of IL-21 actions, we investigated the role of tyrosine residues in the IL-21R cytoplasmic domain. Simultaneous mutation of all 6 tyrosines greatly diminished IL-21-mediated proliferation, whereas retention of tyrosine 510 (Y510) allowed full proliferation. Y510 efficiently mediated IL-21-induced phosphorylation of Stat1 and Stat3, but not of Stat5, and CD8(+) T cells from Stat1/Stat3 double knock-out mice exhibited decreased proliferation in response to IL-21 + IL-15. In addition, IL-21 weakly induced phosphorylation of Shc and Akt, and consistent with this, specific inhibitors of the MAPK and PI3K pathways inhibited IL-21-mediated proliferation. Collectively, these data indicate the involvement of the Jak-STAT, MAPK, and PI3K pathways in IL-21 signaling.
Collapse
Affiliation(s)
- Rong Zeng
- Laboratory of Molecular Immunology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892-1674, USA
| | | | | | | | | | | |
Collapse
|
46
|
Siebler J, Wirtz S, Weigmann B, Atreya I, Schmitt E, Kreft A, Galle PR, Neurath MF. IL-28A is a key regulator of T-cell-mediated liver injury via the T-box transcription factor T-bet. Gastroenterology 2007; 132:358-71. [PMID: 17241885 DOI: 10.1053/j.gastro.2006.10.028] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2006] [Accepted: 10/05/2006] [Indexed: 02/04/2023]
Abstract
BACKGROUND & AIMS T-cell-mediated fulminant hepatitis is a potentially life-threatening event for which the underlying pathogenic mechanisms are not fully understood. Here, we demonstrate a key regulatory role of IL-28A in T-cell-mediated hepatitis. METHODS We cloned the murine IL-28A gene by reverse-transcription polymerase chain reaction, assessed the effects of recombinant IL-28A, and generated IL-28A-transgenic mice. RESULTS IL-28A induced TH1 cytokine production by CD4+ T lymphocytes in a T-bet-dependent manner and was up-regulated in a murine model of T-cell-mediated hepatitis upon Con A administration. In vivo, CD4+ T cells from newly created IL-28A-transgenic animals revealed an increased proliferation and proinflammatory TH1 cytokine production, as compared with wild-type mice. In addition, IL-28A-transgenic mice showed markedly augmented Con A-induced hepatitis with up-regulated interferon-gamma cytokine production, as compared with wild-type mice. Transgenic mice exhibited an up-regulation of the interferon-gamma-T-bet signaling pathway in Con A hepatitis, and augmented hepatitis in these mice was suppressed by crossing them with T-bet-deficient mice. In addition, in vivo blockade of interferon-gamma but not IL-4 suppressed augmented liver inflammation in transgenic mice, suggesting that IL-28A induces the T-bet signaling pathway in T-cell-induced hepatitis. Finally, IL-28A-specific antisense phosphorothioate oligonucleotides suppressed liver pathology in Con A-treated wild-type mice, as compared with the case of control oligonucleotides. CONCLUSIONS IL-28A emerges as a key regulatory cytokine with pathogenic function in T-cell-mediated liver injury. Thus, targeting of IL-28A represents a potential novel approach for therapy of Th1-mediated inflammatory diseases such as T-cell-mediated hepatitis.
Collapse
Affiliation(s)
- Juergen Siebler
- Laboratory of Immunology, I. Medical Clinic, University of Mainz, Lasngenbeckstrasse 1, 55131 Mainz, Germany
| | | | | | | | | | | | | | | |
Collapse
|
47
|
|
48
|
van Boxel-Dezaire AHH, Rani MRS, Stark GR. Complex Modulation of Cell Type-Specific Signaling in Response to Type I Interferons. Immunity 2006; 25:361-72. [PMID: 16979568 DOI: 10.1016/j.immuni.2006.08.014] [Citation(s) in RCA: 408] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The type I interferons (IFNs) are pleiotropic cytokines that regulate many different cellular functions. The major signaling pathway activated by type I IFNs involves sequential phosphorylation of the tyrosine residues of the Janus kinase (JAK) and signal transducers and activators of transcription (STAT) proteins, providing the primary mechanism through which gene expression is induced. Recent work has shown that the responses are quite complex, as shown by different responses to specific subtypes of type I IFN, activation of kinases in addition to JAKs, patterns of activation of all seven STATs in different cells, and activation of transcription factors other than STATs. The type I IFNs use this complexity to regulate many different biological functions in different types of cells, by activating different specific signals and patterns of gene expression.
Collapse
Affiliation(s)
- Anette H H van Boxel-Dezaire
- Department of Molecular Genetics, Lerner Research Institute, The Cleveland Clinic Foundation, Cleveland, Ohio 44195, USA
| | | | | |
Collapse
|
49
|
Abstract
The interface between an infectious agent and its host represents the ultimate battleground for survival: The microbe must secure a niche for replication, whereas the host must limit the pathogen's advance. Among the host's arsenal of antimicrobial factors, the type 1 interferons (IFNs) induce potent defense mechanisms against viruses and are key in the host-virus standoff. Viruses have evolved multiple tricks to avoid the immediate antiviral effects of IFNs and, in turn, hosts have adapted use of this innate cytokine system to galvanize multiple additional layers of immune defense. The plasticity that exists in these interactions provides us with a lesson in détente.
Collapse
Affiliation(s)
- Adolfo García-Sastre
- Department of Microbiology, Mount Sinai School of Medicine, New York, NY 10029, USA
| | | |
Collapse
|
50
|
Ho HH, Ivashkiv LB. Role of STAT3 in type I interferon responses. Negative regulation of STAT1-dependent inflammatory gene activation. J Biol Chem 2006; 281:14111-8. [PMID: 16571725 DOI: 10.1074/jbc.m511797200] [Citation(s) in RCA: 256] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Type I interferons (IFNalpha/beta) induce antiviral responses and have immunomodulatory effects that can either promote or suppress immunity and inflammation. In myeloid cells IFNalpha/beta activates signal transducers and activators of transcription STAT1, STAT2, and STAT3. STAT1 and STAT2 mediate the antiviral and inflammatory effects of IFNalpha/beta, but the function of IFNalpha/beta-activated STAT3 is not known. We investigated the role of STAT3 in type I IFN signaling in myeloid cells by modulating STAT3 expression and the intensity of STAT3 activation using overexpression and RNA interference and determining the effects on downstream signaling and gene expression. IFNalpha-activated STAT3 inhibited STAT1-dependent gene activation, thereby down-regulating IFNalpha-mediated induction of inflammatory mediators such as the chemokines CXCL9 (Mig) and CXCL10 (IP-10). At the same time, IFNalpha-activated STAT3 supported ISGF-3-dependent induction of antiviral genes. STAT3 did not suppress STAT1 tyrosine phosphorylation or nuclear translocation but instead sequestered STAT1 and suppressed the formation of DNA-binding STAT1 homodimers. These results identify a regulatory function for STAT3 in attenuating the inflammatory properties of type I IFNs and provide a mechanism of suppression of STAT1 function that differs from previously described suppression of tyrosine phosphorylation. The results suggest that changes in the relative expression and activation of STAT1 and STAT3 that occur during immune responses determine the nature of cellular responses to type I IFNs.
Collapse
Affiliation(s)
- Hao H Ho
- Arthritis and Tissue Degeneration Program, Department of Medicine, Hospital for Special Surgery, New York, New York 10021, USA
| | | |
Collapse
|