1
|
Flower CT, Liu C, Chuang HY, Ye X, Cheng H, Heath JR, Wei W, White FM. Signaling and transcriptional dynamics underlying early adaptation to oncogenic BRAF inhibition. Cell Syst 2025; 16:101239. [PMID: 40118060 PMCID: PMC12045616 DOI: 10.1016/j.cels.2025.101239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 07/19/2024] [Accepted: 02/21/2025] [Indexed: 03/23/2025]
Abstract
A major contributor to poor sensitivity to anti-cancer kinase inhibitor therapy is drug-induced cellular adaptation, whereby remodeling of signaling and gene regulatory networks permits a drug-tolerant phenotype. Here, we resolve the scale and kinetics of critical subcellular events following oncogenic kinase inhibition and preceding cell cycle re-entry, using mass spectrometry-based phosphoproteomics and RNA sequencing (RNA-seq) to monitor the dynamics of thousands of growth- and survival-related signals over the first minutes, hours, and days of oncogenic BRAF inhibition in human melanoma cells. We observed sustained inhibition of the BRAF-ERK axis, gradual downregulation of cell cycle signaling, and three distinct, reversible phase transitions toward quiescence. Statistical inference of kinetically defined regulatory modules revealed a dominant compensatory induction of SRC family kinase (SFK) signaling, promoted in part by excess reactive oxygen species, rendering cells sensitive to co-treatment with an SFK inhibitor in vitro and in vivo, underscoring the translational potential for assessing early drug-induced adaptive signaling. A record of this paper's transparent peer review process is included in the supplemental information.
Collapse
Affiliation(s)
- Cameron T Flower
- Center for Precision Cancer Medicine, Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA; Program in Computational and Systems Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Chunmei Liu
- Institute for Systems Biology, Seattle, WA, USA
| | | | - Xiaoyang Ye
- Institute for Systems Biology, Seattle, WA, USA
| | | | | | - Wei Wei
- Institute for Systems Biology, Seattle, WA, USA.
| | - Forest M White
- Center for Precision Cancer Medicine, Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA; Program in Computational and Systems Biology, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
2
|
Goldschmidt-Clermont PJ, Sevilla BA. Redox and actin, a fascinating story. Redox Biol 2025; 83:103630. [PMID: 40328105 DOI: 10.1016/j.redox.2025.103630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2025] [Revised: 04/06/2025] [Accepted: 04/06/2025] [Indexed: 05/08/2025] Open
Abstract
Actin is an extraordinarily complex protein whose functions are essential to cell motility, division, contraction, signaling, transport, tissular structures, DNA repair, and many more cellular activities critical to life for both animals and plants. It is one of the most abundant and conserved proteins and it exists in either a soluble, globular (monomeric, G-actin) or an insoluble, self-assembled (polymerized or filamentous actin, F-actin) conformation as a key component of the cytoskeleton. In the early 1990's little, if anything, was known about the impact of reactive oxygen species (ROS) on the biology of actin except that ROS could disrupt the actin cytoskeleton. Instructively, G-actin is susceptible to alteration by ROS, and thus, purification of G-actin is typically performed in the presence of strong antioxidants (like dithiothreitol) to limit its oxidative degradation. In contrast, F-actin is a more stable conformation and thus actin can be kept relatively intact in purified preparations as filaments at low temperature for extended periods of time. Both G- and F-actin interact with a myriad of intracellular proteins and at least with a couple of extracellular proteins, and these interactions are essential to the many actin functions. This review will show how, over the past 30 years, our understanding of the role of ROS for actin biology has evolved from noxious denaturizing agents to remarkable regulators of the actin cytoskeleton in cells and consequent cellular functions.
Collapse
|
3
|
Hsu SY, Huang YP, Hsia TC, Chen JC, Peng SF, Hsieh WT, Chueh FS, Kuo CL. PEITC Induces DNA Damage and Inhibits DNA Repair-Associated Proteins in Human Retinoblastoma Cells In Vitro. ENVIRONMENTAL TOXICOLOGY 2024; 39:5274-5283. [PMID: 39177411 DOI: 10.1002/tox.24393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 06/25/2024] [Accepted: 07/23/2024] [Indexed: 08/24/2024]
Abstract
Phenethyl isothiocyanate (PEITC), a natural product, exists in biological activities, including anticancer activity in many human cancer cells. No information shows that PEITC affects DNA damage in human retinoblastoma (RB) cells in vitro. In this study, the aim of experiments was to determine whether PEITC decreased total viable cell number or not by inducing protein expressions involved in DNA damage and repair in Y79 RB cells in vitro. Total cell viability was measured by PI exclusion assay, and PEITC reduced the total Y79 viable cell numbers in a dose-dependent manner. DNA condensation and DNA impairment were conducted by DAPI staining and comet assays, respectively, in Y79 cells. The findings show that PEITC induced DNA condensation dose-dependently based on the brighter fluorescence of cell nuclei stained by DAPI staining. PEITC-induced DNA damage showed a more extended DNA migration smears than that of the control, which was performed by a comet assay. Western blotting was performed to measure the protein expressions involved in DNA damage and repair, which showed that PEITC at 2.5-10 μM increased NRF2, HO-1, SOD (Mn), and catalase; however, it decreased SOD (Cu/Zn) except 10 μM PEITC treatment, and decreased glutathione, which were associated with oxidative stress. Furthermore, PEITC increased DNA-PK, MDC1, H2A.XpSer139, ATMpSer1981, p53, p53pSer15, PARP, HSP70, and HSP90, but decreased TOPIIα, TOPIIβ, and MDM2pSer166 that were associated with DNA damage and repair mechanism in Y79 cells. The examination from confocal laser microscopy shows that PEITC increased H2A.XpSer139 and p53pSer15, and decreased glutathione and TOPIIα in Y79 cells. In conclusion, the cytotoxic effects of PEITC on reducing the number of viable cells may be due to the induction of DNA damage and the alteration of DNA repair proteins in Y79 cells in vitro.
Collapse
Affiliation(s)
- Sheng-Yao Hsu
- Department of Ophthalmology, An Nan Hospital, China Medical University, Tainan, Taiwan
- Department of Optometry, Chung Hwa University of Medical Technology, Tainan, Taiwan
- Department of Medicine, School of Medicine, China Medical University, Taichung, Taiwan
| | - Yi-Ping Huang
- Department of Physiology, School of Medicine, China Medical University, Taichung, Taiwan
| | - Te-Chun Hsia
- Department of Respiratory Therapy, China Medical University, Taichung, Taiwan
- Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Jaw-Chyun Chen
- Department of Medicinal Botanicals and Foods on Health Applications, Da-Yeh University, Changhua, Taiwan
| | - Shu-Fen Peng
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan
- Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
| | - Wen-Tsong Hsieh
- Chinese Medicine Research Center, China Medical University, Taichung, Taiwan
- Department of Pharmacology, China Medical University, Taichung, Taiwan
| | - Fu-Shin Chueh
- Department of Food Nutrition and Health Biotechnology, Asia University, Taichung, Taiwan
| | - Chao-Lin Kuo
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, China Medical University, Taichung, Taiwan
| |
Collapse
|
4
|
Ying Z, Qiao L, Liu B, Gao L, Zhang P. Development of a microfluidic wearable electrochemical sensor for the non-invasive monitoring of oxidative stress biomarkers in human sweat. Biosens Bioelectron 2024; 261:116502. [PMID: 38896980 DOI: 10.1016/j.bios.2024.116502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/09/2024] [Accepted: 06/13/2024] [Indexed: 06/21/2024]
Abstract
Oxidative stress is widely recognized as a pivotal factor contributing to numerous Central Nervous System (CNS) ailments. The concentrations of hydrogen peroxide (H2O2) and phosphorylated proteins within the human body serve as crucial indicators of oxidative stress. As such, the real-time monitoring of H2O2 and phosphorylated proteins in sweat is vital for the early identification, diagnosis, and management of diseases linked to oxidative stress. In this context, we present a novel microfluidic wearable electrochemical sensor by modifying the electrode with Prussian blue (PB) and loading sulfur-rich vacancy-containing molybdenum disulfide (MoS2-X) onto Multi-walled carbon nanotube (CNTs) to form coaxially layered CNTs/MoS2-X, which was then synthesized with highly dispersed titanium dioxide nanoparticles (TiO2) to synthesize CNTs/MoS2-X/TiO2 composites for the detection of human sweat H2O2 and phosphorylated proteins, respectively. This structure, with its sulfur vacancies and coaxial layering, significantly improved sensitivity of electrochemical sensors, allowing it to detect H2O2 in a range of 0.01-1 mM with a detection limit of 4.80 μM, and phosphoproteins in a range of 0.01-1 mg/mL with a threshold of 0.917 μg/mL. Furthermore, the miniature sensor demonstrates outstanding performance in detecting analytes in both simulated and real sweat. Comprehensive biosafety assessments have validated the compatibility of the electrode material, underscoring the potential of sensor as a reliable and non-invasive method for tracking biomarkers linked to CNS disorders. This microfluidic wearable electrochemical biosensor with high performance and biosafety features shows great promise for the development of cutting-edge wearable technology devices for tracking CNS disease indicators.
Collapse
Affiliation(s)
- Zhiye Ying
- School of Mechanical Engineering, Qinghai University, Xining, 810016, PR China
| | - Lijuan Qiao
- Research Center of Basic Medical Science, Medical College, Qinghai University, Xining, 810016, PR China
| | - Bingxin Liu
- School of Mechanical Engineering, Qinghai University, Xining, 810016, PR China; Salt Lake Chemical Engineering Research Complex, Qinghai Provincial Key Laboratory of Salt Lake Materials Chemical Engineering, Qinghai University, Xining, 810016, PR China.
| | - Li Gao
- School of Mechanical Engineering, Qinghai University, Xining, 810016, PR China; Salt Lake Chemical Engineering Research Complex, Qinghai Provincial Key Laboratory of Salt Lake Materials Chemical Engineering, Qinghai University, Xining, 810016, PR China.
| | - Peng Zhang
- School of Mechanical Engineering, Qinghai University, Xining, 810016, PR China
| |
Collapse
|
5
|
Xie A, Kang GJ, Kim EJ, Liu H, Feng F, Dudley SC. c-Src Is Responsible for Mitochondria-Mediated Arrhythmic Risk in Ischemic Cardiomyopathy. Circ Arrhythm Electrophysiol 2024; 17:e013054. [PMID: 39212055 PMCID: PMC11477858 DOI: 10.1161/circep.124.013054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 08/07/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Increased mitochondrial Ca2+ uptake has been implicated in the QT prolongation and lethal arrhythmias associated with nonischemic cardiomyopathy. We attempted to define the role of mitochondria in ischemic arrhythmic risk and to identify upstream regulators. METHODS Myocardial infarction (MI) was induced in wild-type FVB/NJ mice by ligation of the left anterior descending coronary artery. Western blot, immunoprecipitation, ECG telemetry, and patch-clamp techniques were used. RESULTS After MI, c-Src (proto-oncogene tyrosine-protein kinase Src) and its active form (phosphorylated Src, p-Src) were increased. The activation of c-Src was associated with increased diastolic Ca2+ sparks, action potential duration prolongation, and arrhythmia in MI mice. c-Src upregulation and arrhythmia could be reversed by treatment of mice with the Src inhibitor PP1 but not with the inactive analogue PP3. Tyrosine phosphorylated mitochondrial Ca2+ uniporter (MCU) was upregulated in the heart tissues of MI mice and patients with ischemic cardiomyopathy. In a heterologous expression system, c-Src could bind MCU and phosphorylate MCU tyrosines. Overexpression of wild-type c-Src significantly increased the mitochondrial Ca2+ transient while overexpression of dominant-negative c-Src significantly decreased the mitochondrial Ca2+ transient. c-Src inhibition by PP1, MCU inhibition by Ru360, or MCU knockdown could reduce the action potential duration, Ca2+ sparks, and arrhythmia after MI. The human heart tissue showed that patients with ischemic cardiomyopathy had significantly increased c-Src active form associated with increased MCU tyrosine phosphorylation and ventricular arrhythmia. CONCLUSIONS MI leads to increased c-Src active form that results in MCU tyrosine phosphorylation, increased mitochondrial Ca2+ uptake, QT prolongation, and arrhythmia, suggesting c-Src or MCU may represent novel antiarrhythmic targets.
Collapse
MESH Headings
- Animals
- src-Family Kinases/metabolism
- Arrhythmias, Cardiac/metabolism
- Arrhythmias, Cardiac/physiopathology
- Arrhythmias, Cardiac/etiology
- Arrhythmias, Cardiac/genetics
- Arrhythmias, Cardiac/enzymology
- Mitochondria, Heart/metabolism
- Mitochondria, Heart/enzymology
- Humans
- Disease Models, Animal
- Mice
- Action Potentials
- Phosphorylation
- Male
- Cardiomyopathies/metabolism
- Cardiomyopathies/genetics
- Cardiomyopathies/physiopathology
- Cardiomyopathies/etiology
- Cardiomyopathies/enzymology
- CSK Tyrosine-Protein Kinase/metabolism
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/enzymology
- Calcium Channels/metabolism
- Calcium Channels/genetics
- Calcium Signaling
- Myocardial Infarction/metabolism
- Myocardial Infarction/complications
- Myocardial Infarction/physiopathology
- Myocardial Infarction/genetics
- Risk Factors
Collapse
Affiliation(s)
- An Xie
- Department of Medicine, Lillehei Heart Institute, University of Minnesota, Minneapolis, USA
| | - Gyeoung-Jin Kang
- Department of Medicine, Lillehei Heart Institute, University of Minnesota, Minneapolis, USA
| | - Eun Ji Kim
- Department of Medicine, Lillehei Heart Institute, University of Minnesota, Minneapolis, USA
| | - Hong Liu
- Department of Medicine, Lillehei Heart Institute, University of Minnesota, Minneapolis, USA
| | - Feng Feng
- Department of Medicine, Lillehei Heart Institute, University of Minnesota, Minneapolis, USA
| | - Samuel C. Dudley
- Department of Medicine, Lillehei Heart Institute, University of Minnesota, Minneapolis, USA
| |
Collapse
|
6
|
Kook E, Lee J, Kim DH. YES1 as a potential target to overcome drug resistance in EGFR-deregulated non-small cell lung cancer. Arch Toxicol 2024; 98:1437-1455. [PMID: 38443724 DOI: 10.1007/s00204-024-03693-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 01/23/2024] [Indexed: 03/07/2024]
Abstract
Epidermal growth factor receptor (EGFR)-tyrosine kinase inhibitors (TKIs) such as gefitinib and osimertinib have primarily been used as first-line treatments for patients with EGFR-activating mutations in non-small cell lung cancer (NSCLC). Novel biomarkers are required to distinguish patients with lung cancer who are resistant to EGFR-TKIs. The aim of the study is to investigate the expression and functional role of YES1, one of the Src-family kinases, in EGFR-TKI-resistant NSCLC. YES1 expression was elevated in gefitinib-resistant HCC827 (HCC827/GR) cells, harboring EGFR mutations. Moreover, HCC827/GR cells exhibited increased reactive oxygen species (ROS) levels compared to those of the parent cells, resulting in the phosphorylation/activation of YES1 due to oxidation of the cysteine residue. HCC827/GR cells showed elevated expression levels of YES1-associated protein 1 (YAP1), NF-E2-related factor 2 (Nrf2), cancer stemness-related markers, and antioxidant proteins compared to those of the parent cells. Knockdown of YES1 in HCC827/GR cells suppressed YAP1 phosphorylation, leading to the inhibition of Bcl-2, Bcl-xL, and Cyclin D1 expression. Silencing YES1 markedly attenuated the proliferation, migration, and tumorigenicity of HCC827/GR cells. Dasatinib inhibited the proliferation of HCC827/GR cells by targeting YES1-mediated signaling pathways. Furthermore, the combination of gefitinib and dasatinib demonstrated a synergistic effect in suppressing the proliferation of HCC827/GR cells. Notably, YES1- and Nrf2-regulated genes showed a positive regulatory relationship in patients with lung cancer and in TKI-resistant NSCLC cell lines. Taken together, these findings suggest that modulation of YES1 expression and activity may be an attractive therapeutic strategy for the treatment of drug-resistant NSCLC.
Collapse
Affiliation(s)
- Eunjin Kook
- Department of Chemistry, Kyonggi University, Suwon, Gyeonggi-do, 16227, Republic of Korea
| | - JungYeol Lee
- New Drug Discovery Center, DGMIF, Daegu, 41061, Republic of Korea
| | - Do-Hee Kim
- Department of Chemistry, Kyonggi University, Suwon, Gyeonggi-do, 16227, Republic of Korea.
| |
Collapse
|
7
|
Ren X, Shi P, Su J, Wei T, Li J, Hu Y, Wu C. Loss of Myo19 increases metastasis by enhancing microenvironmental ROS gradient and chemotaxis. EMBO Rep 2024; 25:971-990. [PMID: 38279020 PMCID: PMC10933354 DOI: 10.1038/s44319-023-00052-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 12/10/2023] [Accepted: 12/19/2023] [Indexed: 01/28/2024] Open
Abstract
Tumor metastasis involves cells migrating directionally in response to external chemical signals. Reactive oxygen species (ROS) in the form of H2O2 has been demonstrated as a chemoattractant for neutrophils but its spatial characteristics in tumor microenvironment and potential role in tumor cell dissemination remain unknown. Here we investigate the spatial ROS distribution in 3D tumor spheroids and identify a ROS concentration gradient in spheroid periphery, which projects into a H2O2 gradient in tumor microenvironment. We further reveal the role of H2O2 gradient to induce chemotaxis of tumor cells by activating Src and subsequently inhibiting RhoA. Finally, we observe that the absence of mitochondria cristae remodeling proteins including the mitochondria-localized actin motor Myosin 19 (Myo19) enhances ROS gradient and promotes tumor dissemination. Myo19 downregulation is seen in many tumors, and Myo19 expression is negatively associated with tumor metastasis in vivo. Together, our study reveals the chemoattractant role of tumor microenvironmental ROS and implies the potential impact of mitochondria cristae disorganization on tumor invasion and metastasis.
Collapse
Affiliation(s)
- Xiaoyu Ren
- Institute of Systems Biomedicine, Peking University Health Science Center, Key Laboratory of Tumor Systems Biology, Beijing, 100191, China
| | - Peng Shi
- Institute of Systems Biomedicine, Peking University Health Science Center, Key Laboratory of Tumor Systems Biology, Beijing, 100191, China.
- International Cancer Institute, Peking University, Beijing, 100191, China.
| | - Jing Su
- Department of Pathology, School of Basic Medical Sciences, Peking University Third Hospital, Peking University Health Science Center, Beijing, 100191, China
| | - Tonghua Wei
- Institute of Systems Biomedicine, Peking University Health Science Center, Key Laboratory of Tumor Systems Biology, Beijing, 100191, China
| | - Jiayi Li
- Institute of Systems Biomedicine, Peking University Health Science Center, Key Laboratory of Tumor Systems Biology, Beijing, 100191, China
| | - Yiping Hu
- Institute of Systems Biomedicine, Peking University Health Science Center, Key Laboratory of Tumor Systems Biology, Beijing, 100191, China
| | - Congying Wu
- Institute of Systems Biomedicine, Peking University Health Science Center, Key Laboratory of Tumor Systems Biology, Beijing, 100191, China.
- International Cancer Institute, Peking University, Beijing, 100191, China.
| |
Collapse
|
8
|
Flower CT, Liu C, Chuang HY, Ye X, Cheng H, Heath JR, Wei W, White FM. Signaling and transcriptional dynamics underlying early adaptation to oncogenic BRAF inhibition. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.19.581004. [PMID: 39071317 PMCID: PMC11275845 DOI: 10.1101/2024.02.19.581004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
A major contributor to poor sensitivity to anti-cancer kinase inhibitor therapy is drug-induced cellular adaptation, whereby remodeling of signaling and gene regulatory networks permits a drug-tolerant phenotype. Here, we resolve the scale and kinetics of critical subcellular events following oncogenic kinase inhibition and preceding cell cycle re-entry, using mass spectrometry-based phosphoproteomics and RNA sequencing to capture molecular snapshots within the first minutes, hours, and days of BRAF kinase inhibitor exposure in a human BRAF -mutant melanoma model of adaptive therapy resistance. By enriching specific phospho-motifs associated with mitogenic kinase activity, we monitored the dynamics of thousands of growth- and survival-related protein phosphorylation events under oncogenic BRAF inhibition and drug removal. We observed early and sustained inhibition of the BRAF-ERK axis, gradual downregulation of canonical cell cycle-dependent signals, and three distinct and reversible phase transitions toward quiescence. Statistical inference of kinetically-defined signaling and transcriptional modules revealed a concerted response to oncogenic BRAF inhibition and a dominant compensatory induction of SRC family kinase (SFK) signaling, which we found to be at least partially driven by accumulation of reactive oxygen species via impaired redox homeostasis. This induction sensitized cells to co-treatment with an SFK inhibitor across a panel of patient-derived melanoma cell lines and in an orthotopic mouse xenograft model, underscoring the translational potential for measuring the early temporal dynamics of signaling and transcriptional networks under therapeutic challenge.
Collapse
|
9
|
Dewan SMR, Meem SS, Proma AY, Shahriar M. Dietary Salt Can Be Crucial for Food-Induced Vascular Inflammation. CLINICAL PATHOLOGY (THOUSAND OAKS, VENTURA COUNTY, CALIF.) 2024; 17:2632010X241228039. [PMID: 38313416 PMCID: PMC10838034 DOI: 10.1177/2632010x241228039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 01/06/2024] [Indexed: 02/06/2024]
Abstract
Salt enhances the taste as well as the nutritional value of food. Besides, several reports are available on the incidence and epidemiology of various illnesses in relation to salt intake. Excessive salt consumption has been found to be linked with high blood pressure, renal disease, and other cardiovascular disorders due to the result of vascular inflammation. Nevertheless, studies aimed at elucidating the molecular processes that produce vascular inflammation have yet to reach their conclusions. This article emphasizes the significance of investigating the mechanisms underlying both acute and chronic vascular inflammation induced by salt. It also explores the logical inferences behind cellular oxidative stress and the role of endothelial dysfunction as the potential initiator of the inflammatory segments that remain poorly understood. It is therefore hypothesized that salt is one of the causes of chronic vascular inflammation such as atherosclerosis. The hypothesis's secrets, when revealed, can help assure cardiovascular health by proactive efforts and the development of appropriate preventative measures, in combination with medication, dietary and lifestyle adjustments.
Collapse
Affiliation(s)
| | - Sara Shahid Meem
- Department of Pharmacy, School of Medicine, University of Asia Pacific, Dhaka, Bangladesh
| | - Amrin Yeasin Proma
- Department of Pharmacy, School of Medicine, University of Asia Pacific, Dhaka, Bangladesh
| | - Mohammad Shahriar
- Department of Pharmacy, School of Medicine, University of Asia Pacific, Dhaka, Bangladesh
| |
Collapse
|
10
|
Alam SMS, Watanabe Y, Steeno BL, Dutta S, Szilagyi HA, Wei A, Suter DM. Neuronal NADPH oxidase is required for neurite regeneration of Aplysia bag cell neurons. J Neurochem 2023; 167:505-519. [PMID: 37818836 PMCID: PMC10842957 DOI: 10.1111/jnc.15977] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 01/22/2023] [Accepted: 09/16/2023] [Indexed: 10/13/2023]
Abstract
NADPH oxidase (Nox), a major source of reactive oxygen species (ROS), is involved in neurodegeneration after injury and disease. Nox is expressed in both neuronal and non-neuronal cells and contributes to an elevated ROS level after injury. Contrary to the well-known damaging effect of Nox-derived ROS in neurodegeneration, recently a physiological role of Nox in nervous system development including neurogenesis, neuronal polarity, and axonal growth has been revealed. Here, we tested a role for neuronal Nox in neurite regeneration following mechanical transection in cultured Aplysia bag cell neurons. Using a novel hydrogen peroxide (H2 O2 )-sensing dye, 5'-(p-borophenyl)-2'-pyridylthiazole pinacol ester (BPPT), we found that H2 O2 levels are elevated in regenerating growth cones following injury. Redistribution of Nox2 and p40phox in the growth cone central domain suggests Nox2 activation after injury. Inhibiting Nox with the pan-Nox inhibitor celastrol reduced neurite regeneration rate. Pharmacological inhibition of Nox is correlated with reduced activation of Src2 tyrosine kinase and F-actin content in the growth cone. Taken together, these findings suggest that Nox-derived ROS regulate neurite regeneration following injury through Src2-mediated regulation of actin organization in Aplysia growth cones.
Collapse
Affiliation(s)
- S. M. Sabbir Alam
- Department of Biological Sciences, Purdue University, West Lafayette, IN, 47907, USA
| | - Yuichiro Watanabe
- Department of Chemistry, Purdue University, West Lafayette, IN, 47907, USA
| | - Brooke L. Steeno
- Department of Chemistry, Purdue University, West Lafayette, IN, 47907, USA
| | - Soumyajit Dutta
- Department of Biological Sciences, Purdue University, West Lafayette, IN, 47907, USA
| | - Halie A. Szilagyi
- Department of Biological Sciences, Purdue University, West Lafayette, IN, 47907, USA
| | - Alexander Wei
- Department of Chemistry, Purdue University, West Lafayette, IN, 47907, USA
- Birck Nanotechnology Center, Purdue University, West Lafayette, IN, 47907, USA
| | - Daniel M. Suter
- Department of Biological Sciences, Purdue University, West Lafayette, IN, 47907, USA
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN, 47907, USA
- Purdue Institute for Inflammation, Immunology, and Infectious Disease, Purdue University, West Lafayette, IN, 47907, USA
- Bindley Bioscience Center, Purdue University, West Lafayette, IN, 47907, USA
- Birck Nanotechnology Center, Purdue University, West Lafayette, IN, 47907, USA
| |
Collapse
|
11
|
Weilinger NL, Yang K, Choi HB, Groten CJ, Wendt S, Murugan M, Wicki-Stordeur LE, Bernier LP, Velayudhan PS, Zheng J, LeDue JM, Rungta RL, Tyson JR, Snutch TP, Wu LJ, MacVicar BA. Pannexin-1 opening in neuronal edema causes cell death but also leads to protection via increased microglia contacts. Cell Rep 2023; 42:113128. [PMID: 37742194 PMCID: PMC10824275 DOI: 10.1016/j.celrep.2023.113128] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 06/26/2023] [Accepted: 08/28/2023] [Indexed: 09/26/2023] Open
Abstract
Neuronal swelling during cytotoxic edema is triggered by Na+ and Cl- entry and is Ca2+ independent. However, the causes of neuronal death during swelling are unknown. Here, we investigate the role of large-conductance Pannexin-1 (Panx1) channels in neuronal death during cytotoxic edema. Panx1 channel inhibitors reduce and delay neuronal death in swelling triggered by voltage-gated Na+ entry with veratridine. Neuronal swelling causes downstream production of reactive oxygen species (ROS) that opens Panx1 channels. We confirm that ROS activates Panx1 currents with whole-cell electrophysiology and find scavenging ROS is neuroprotective. Panx1 opening and subsequent ATP release attract microglial processes to contact swelling neurons. Depleting microglia using the CSF1 receptor antagonist PLX3397 or blocking P2Y12 receptors exacerbates neuronal death, suggesting that the Panx1-ATP-dependent microglia contacts are neuroprotective. We conclude that cytotoxic edema triggers oxidative stress in neurons that opens Panx1 to trigger death but also initiates neuroprotective feedback mediated by microglia contacts.
Collapse
Affiliation(s)
- Nicholas L Weilinger
- Department of Psychiatry, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC V6T 1Z3, Canada.
| | - Kai Yang
- Department of Psychiatry, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Hyun B Choi
- Department of Psychiatry, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Christopher J Groten
- Department of Psychiatry, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Stefan Wendt
- Department of Psychiatry, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | | | - Leigh E Wicki-Stordeur
- Department of Psychiatry, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Louis-Philippe Bernier
- Department of Psychiatry, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Prashanth S Velayudhan
- Department of Psychiatry, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Jiaying Zheng
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| | - Jeffrey M LeDue
- Department of Psychiatry, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Ravi L Rungta
- Department of Psychiatry, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC V6T 1Z3, Canada; Department of Stomatology and Department of Neuroscience, Université de Montréal, Montréal, QC, Canada
| | - John R Tyson
- Department of Psychiatry, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC V6T 1Z3, Canada; Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Terrance P Snutch
- Department of Psychiatry, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC V6T 1Z3, Canada; Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Long-Jun Wu
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| | - Brian A MacVicar
- Department of Psychiatry, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC V6T 1Z3, Canada.
| |
Collapse
|
12
|
Qin H, Zheng G, Li Q, Shen L. Metabolic reprogramming induced by DCA enhances cisplatin sensitivity through increasing mitochondrial oxidative stress in cholangiocarcinoma. Front Pharmacol 2023; 14:1128312. [PMID: 37818192 PMCID: PMC10560739 DOI: 10.3389/fphar.2023.1128312] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 09/13/2023] [Indexed: 10/12/2023] Open
Abstract
Background: Cholangiocarcinoma has obvious primary multidrug resistance and is generally resistant to cisplatin and other chemotherapy drugs and high glycolytic levels may be associated with chemotherapy resistance of cholangiocarcinoma cells. Dichloroacetate (DCA) is a specific inhibitor of PDK, which can promote mitochondrial aerobic oxidation process by activating PDH. In the past few years, there have been an increasing number of studies supporting the action of DCA against cancer, which also provided evidence for targeting metabolism to enhance the efficacy of cholangiocarcinoma chemotherapy. Methods: Glucose uptake and lactic acid secretion were used to detect cell metabolism level. Cell apoptosis and cell cycle were detected to confirm cell fate induced by cisplatin combined with DCA. Mito-TEMPO was used to inhibit mtROS to explore the relationship between oxidative stress and cell cycle arrest induced by DCA under cisplatin stress. Finally, PCR array and autophagy inhibitor CQ were used to explore the potential protective mechanism under cell stress. Results: DCA changed the metabolic model from glycolysis to aerobic oxidation in cholangiocarcinoma cells under cisplatin stress. This metabolic reprogramming increased mitochondrial reactive oxygen species (mtROS) levels, which promoted cell cycle arrest, increased the expression of antioxidant genes and activated autophagy. Inhibition of autophagy further increased the synergistic effect of DCA and cisplatin. Conclusion: DCA increased cisplatin sensitivity in cholangiocarcinoma cells via increasing the mitochondria oxidative stress and cell growth inhibition. Synergistic effects of DCA and CQ were observed in cholangiocarcinoma cells, which further increased the cisplatin sensitivity via both metabolic reprogramming and inhibition of the stress response autophagy.
Collapse
Affiliation(s)
- Hanjiao Qin
- Department of Radiation Oncology, The Second Hospital of Jilin University, Changchun, China
| | - Ge Zheng
- Department of Hepatobiliary and Pancreatic Surgery, Second Hospital of Jilin University, Changchun, China
| | - Qiao Li
- Department of Hepatobiliary and Pancreatic Surgery, Second Hospital of Jilin University, Changchun, China
| | - Luyan Shen
- Second Hospital of Jilin University, Changchun, China
- Key Laboratory of Pathobiology, Department of Pathophysiology, Ministry of Education, Jilin University, Changchun, China
| |
Collapse
|
13
|
Kumar S, Stainer A, Dubrulle J, Simpkins C, Cooper JA. Cas phosphorylation regulates focal adhesion assembly. eLife 2023; 12:e90234. [PMID: 37489578 PMCID: PMC10435235 DOI: 10.7554/elife.90234] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 07/19/2023] [Indexed: 07/26/2023] Open
Abstract
Integrin-mediated cell attachment rapidly induces tyrosine kinase signaling. Despite years of research, the role of this signaling in integrin activation and focal adhesion assembly is unclear. We provide evidence that the Src-family kinase (SFK) substrate Cas (Crk-associated substrate, p130Cas, BCAR1) is phosphorylated and associated with its Crk/CrkL effectors in clusters that are precursors of focal adhesions. The initial phospho-Cas clusters contain integrin β1 in its inactive, bent closed, conformation. Later, phospho-Cas and total Cas levels decrease as integrin β1 is activated and core focal adhesion proteins including vinculin, talin, kindlin, and paxillin are recruited. Cas is required for cell spreading and focal adhesion assembly in epithelial and fibroblast cells on collagen and fibronectin. Cas cluster formation requires Cas, Crk/CrkL, SFKs, and Rac1 but not vinculin. Rac1 provides positive feedback onto Cas through reactive oxygen, opposed by negative feedback from the ubiquitin proteasome system. The results suggest a two-step model for focal adhesion assembly in which clusters of phospho-Cas, effectors and inactive integrin β1 grow through positive feedback prior to integrin activation and recruitment of core focal adhesion proteins.
Collapse
Affiliation(s)
- Saurav Kumar
- Fred Hutchinson Cancer CenterSeattleUnited States
| | | | | | | | | |
Collapse
|
14
|
Jiang Y, Song L, Lin Y, Nowialis P, Gao Q, Li T, Li B, Mao X, Song Q, Xing C, Zheng G, Huang S, Jin L. ROS-mediated SRMS activation confers platinum resistance in ovarian cancer. Oncogene 2023; 42:1672-1684. [PMID: 37020040 PMCID: PMC10231978 DOI: 10.1038/s41388-023-02679-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 03/17/2023] [Accepted: 03/21/2023] [Indexed: 04/07/2023]
Abstract
Ovarian cancer is the leading cause of death among gynecological malignancies. Checkpoint blockade immunotherapy has so far only shown modest efficacy in ovarian cancer and platinum-based chemotherapy remains the front-line treatment. Development of platinum resistance is one of the most important factors contributing to ovarian cancer recurrence and mortality. Through kinome-wide synthetic lethal RNAi screening combined with unbiased datamining of cell line platinum response in CCLE and GDSC databases, here we report that Src-Related Kinase Lacking C-Terminal Regulatory Tyrosine And N-Terminal Myristylation Sites (SRMS), a non-receptor tyrosine kinase, is a novel negative regulator of MKK4-JNK signaling under platinum treatment and plays an important role in dictating platinum efficacy in ovarian cancer. Suppressing SRMS specifically sensitizes p53-deficient ovarian cancer cells to platinum in vitro and in vivo. Mechanistically, SRMS serves as a "sensor" for platinum-induced ROS. Platinum treatment-induced ROS activates SRMS, which inhibits MKK4 kinase activity by directly phosphorylating MKK4 at Y269 and Y307, and consequently attenuates MKK4-JNK activation. Suppressing SRMS leads to enhanced MKK4-JNK-mediated apoptosis by inhibiting MCL1 transcription, thereby boosting platinum efficacy. Importantly, through a "drug repurposing" strategy, we uncovered that PLX4720, a small molecular selective inhibitor of B-RafV600E, is a novel SRMS inhibitor that can potently boost platinum efficacy in ovarian cancer in vitro and in vivo. Therefore, targeting SRMS with PLX4720 holds the promise to improve the efficacy of platinum-based chemotherapy and overcome chemoresistance in ovarian cancer.
Collapse
Affiliation(s)
- Yunhan Jiang
- Department of Molecular Medicine, Long School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Lina Song
- Department of Molecular Medicine, Long School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Yizhu Lin
- Department of Cell and Tissue Biology, School of Dentistry, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Pawel Nowialis
- Department of Molecular Medicine, Long School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Qiongmei Gao
- Department of Molecular Medicine, Long School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Tao Li
- Department of Anatomy and Cell Biology, College of Medicine, University of Florida, Gainesville, FL, 32610, USA
| | - Bin Li
- Department of Anatomy and Cell Biology, College of Medicine, University of Florida, Gainesville, FL, 32610, USA
| | - Xiaobo Mao
- Institute for Cell Engineering, Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Qianqian Song
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC, 27101, USA
| | - Chengguo Xing
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL, 32610, USA
| | - Guangrong Zheng
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL, 32610, USA
| | - Shuang Huang
- Department of Anatomy and Cell Biology, College of Medicine, University of Florida, Gainesville, FL, 32610, USA
| | - Lingtao Jin
- Department of Molecular Medicine, Long School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA.
| |
Collapse
|
15
|
Germon ZP, Sillar JR, Mannan A, Duchatel RJ, Staudt D, Murray HC, Findlay IJ, Jackson ER, McEwen HP, Douglas AM, McLachlan T, Schjenken JE, Skerrett-Byrne DA, Huang H, Melo-Braga MN, Plank MW, Alvaro F, Chamberlain J, De Iuliis G, Aitken RJ, Nixon B, Wei AH, Enjeti AK, Huang Y, Lock RB, Larsen MR, Lee H, Vaghjiani V, Cain JE, de Bock CE, Verrills NM, Dun MD. Blockade of ROS production inhibits oncogenic signaling in acute myeloid leukemia and amplifies response to precision therapies. Sci Signal 2023; 16:eabp9586. [PMID: 36976863 DOI: 10.1126/scisignal.abp9586] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
Mutations in the type III receptor tyrosine kinase FLT3 are frequent in patients with acute myeloid leukemia (AML) and are associated with a poor prognosis. AML is characterized by the overproduction of reactive oxygen species (ROS), which can induce cysteine oxidation in redox-sensitive signaling proteins. Here, we sought to characterize the specific pathways affected by ROS in AML by assessing oncogenic signaling in primary AML samples. The oxidation or phosphorylation of signaling proteins that mediate growth and proliferation was increased in samples from patient subtypes with FLT3 mutations. These samples also showed increases in the oxidation of proteins in the ROS-producing Rac/NADPH oxidase-2 (NOX2) complex. Inhibition of NOX2 increased the apoptosis of FLT3-mutant AML cells in response to FLT3 inhibitors. NOX2 inhibition also reduced the phosphorylation and cysteine oxidation of FLT3 in patient-derived xenograft mouse models, suggesting that decreased oxidative stress reduces the oncogenic signaling of FLT3. In mice grafted with FLT3 mutant AML cells, treatment with a NOX2 inhibitor reduced the number of circulating cancer cells, and combining FLT3 and NOX2 inhibitors increased survival to a greater extent than either treatment alone. Together, these data raise the possibility that combining NOX2 and FLT3 inhibitors could improve the treatment of FLT3 mutant AML.
Collapse
Affiliation(s)
- Zacary P Germon
- Cancer Signalling Research Group, School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW, Australia
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Jonathan R Sillar
- Cancer Signalling Research Group, School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW, Australia
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
- Department of Haematology, Calvary Mater Hospital, Waratah, NSW, Australia
| | - Abdul Mannan
- Cancer Signalling Research Group, School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW, Australia
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Ryan J Duchatel
- Cancer Signalling Research Group, School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW, Australia
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Dilana Staudt
- Cancer Signalling Research Group, School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW, Australia
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Heather C Murray
- Cancer Signalling Research Group, School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW, Australia
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Izac J Findlay
- Cancer Signalling Research Group, School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW, Australia
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Evangeline R Jackson
- Cancer Signalling Research Group, School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW, Australia
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Holly P McEwen
- Cancer Signalling Research Group, School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW, Australia
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Alicia M Douglas
- Cancer Signalling Research Group, School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW, Australia
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Tabitha McLachlan
- Cancer Signalling Research Group, School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW, Australia
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - John E Schjenken
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, College of Engineering, Science and Environment, University of Newcastle, Callaghan, NSW, Australia
| | - David A Skerrett-Byrne
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, College of Engineering, Science and Environment, University of Newcastle, Callaghan, NSW, Australia
| | - Honggang Huang
- Department of Molecular Biology and Biochemistry, Protein Research Group, University of Southern Denmark, Odense, Denmark
| | - Marcella N Melo-Braga
- Department of Molecular Biology and Biochemistry, Protein Research Group, University of Southern Denmark, Odense, Denmark
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Maximilian W Plank
- Cancer Signalling Research Group, School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW, Australia
- GlaxoSmithKline, Abbotsford, Victoria, Australia
| | - Frank Alvaro
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
- John Hunter Children's Hospital, New Lambton Heights, NSW, Australia
| | - Janis Chamberlain
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
- John Hunter Children's Hospital, New Lambton Heights, NSW, Australia
| | - Geoff De Iuliis
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, College of Engineering, Science and Environment, University of Newcastle, Callaghan, NSW, Australia
| | - R John Aitken
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, College of Engineering, Science and Environment, University of Newcastle, Callaghan, NSW, Australia
| | - Brett Nixon
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, College of Engineering, Science and Environment, University of Newcastle, Callaghan, NSW, Australia
| | - Andrew H Wei
- Australian Centre for Blood Diseases, Monash University, Melbourne, VIC, Australia
| | - Anoop K Enjeti
- Cancer Signalling Research Group, School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW, Australia
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
- Department of Haematology, Calvary Mater Hospital, Waratah, NSW, Australia
- NSW Health Pathology, John Hunter Hospital, New Lambton Heights, NSW, Australia
| | - Yizhou Huang
- Children's Cancer Institute, Lowy Cancer Centre, School of Women's and Children's Health, University of New South Wales Centre for Childhood Cancer Research, UNSW Sydney, Kensington, NSW, Australia
| | - Richard B Lock
- Children's Cancer Institute, Lowy Cancer Centre, School of Women's and Children's Health, University of New South Wales Centre for Childhood Cancer Research, UNSW Sydney, Kensington, NSW, Australia
| | - Martin R Larsen
- Department of Molecular Biology and Biochemistry, Protein Research Group, University of Southern Denmark, Odense, Denmark
| | - Heather Lee
- Cancer Signalling Research Group, School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW, Australia
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Vijesh Vaghjiani
- Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Molecular and Translational Science, Monash University, Clayton, VIC, Australia
| | - Jason E Cain
- Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Molecular and Translational Science, Monash University, Clayton, VIC, Australia
| | - Charles E de Bock
- Children's Cancer Institute, Lowy Cancer Centre, School of Women's and Children's Health, University of New South Wales Centre for Childhood Cancer Research, UNSW Sydney, Kensington, NSW, Australia
| | - Nicole M Verrills
- Cancer Signalling Research Group, School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW, Australia
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Matthew D Dun
- Cancer Signalling Research Group, School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW, Australia
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| |
Collapse
|
16
|
Chen YH, Hsu JY, Chu CT, Chang YW, Fan JR, Yang MH, Chen HC. Loss of cell-cell adhesion triggers cell migration through Rac1-dependent ROS generation. Life Sci Alliance 2023; 6:6/2/e202201529. [PMID: 36446524 PMCID: PMC9711860 DOI: 10.26508/lsa.202201529] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 11/14/2022] [Accepted: 11/15/2022] [Indexed: 11/30/2022] Open
Abstract
Epithelial cells usually trigger their "migratory machinery" upon loss of adhesion to their neighbors. This default is important for both physiological (e.g., wound healing) and pathological (e.g., tumor metastasis) processes. However, the underlying mechanism for such a default remains unclear. In this study, we used the human head and neck squamous cell carcinoma (HNSCC) SAS cells as a model and found that loss of cell-cell adhesion induced reactive oxygen species (ROS) generation and vimentin expression, both of which were required for SAS cell migration upon loss of cell-cell adhesion. We demonstrated that Tiam1-mediated Rac1 activation was responsible for the ROS generation through NADPH-dependent oxidases. Moreover, the ROS-Src-STAT3 signaling pathway that led to vimentin expression was important for SAS cell migration. The activation of ROS, Src, and STAT3 was also detected in tumor biopsies from HNSCC patients. Notably, activated STAT3 was more abundant at the tumor invasive front and correlated with metastatic progression of HNSCC. Together, our results unveil a mechanism of how cells trigger their migration upon loss of cell-cell adhesion and highlight an important role of the ROS-Src-STAT3 signaling pathway in the progression of HNSCC.
Collapse
Affiliation(s)
- Yu-Hsuan Chen
- Institute of Biochemistry and Molecular Biology, School of Life Science, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Cancer Progression Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Jinn-Yuan Hsu
- Institute of Biochemistry and Molecular Biology, School of Life Science, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Cancer Progression Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Ching-Tung Chu
- Institute of Biochemistry and Molecular Biology, School of Life Science, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Cancer Progression Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yao-Wen Chang
- Institute of Clinical Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Jia-Rong Fan
- Institute of Biochemistry and Molecular Biology, School of Life Science, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Cancer Progression Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Muh-Hwa Yang
- Cancer Progression Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Institute of Clinical Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Division of Medical Oncology, Department of Oncology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Hong-Chen Chen
- Institute of Biochemistry and Molecular Biology, School of Life Science, National Yang Ming Chiao Tung University, Taipei, Taiwan .,Cancer Progression Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| |
Collapse
|
17
|
Rizza S, Di Leo L, Pecorari C, Giglio P, Faienza F, Montagna C, Maiani E, Puglia M, Bosisio FM, Petersen TS, Lin L, Rissler V, Viloria JS, Luo Y, Papaleo E, De Zio D, Blagoev B, Filomeni G. GSNOR deficiency promotes tumor growth via FAK1 S-nitrosylation. Cell Rep 2023; 42:111997. [PMID: 36656716 DOI: 10.1016/j.celrep.2023.111997] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 11/15/2022] [Accepted: 01/04/2023] [Indexed: 01/20/2023] Open
Abstract
Nitric oxide (NO) production in the tumor microenvironment is a common element in cancer. S-nitrosylation, the post-translational modification of cysteines by NO, is emerging as a key transduction mechanism sustaining tumorigenesis. However, most oncoproteins that are regulated by S-nitrosylation are still unknown. Here we show that S-nitrosoglutathione reductase (GSNOR), the enzyme that deactivates S-nitrosylation, is hypo-expressed in several human malignancies. Using multiple tumor models, we demonstrate that GSNOR deficiency induces S-nitrosylation of focal adhesion kinase 1 (FAK1) at C658. This event enhances FAK1 autophosphorylation and sustains tumorigenicity by providing cancer cells with the ability to survive in suspension (evade anoikis). In line with these results, GSNOR-deficient tumor models are highly susceptible to treatment with FAK1 inhibitors. Altogether, our findings advance our understanding of the oncogenic role of S-nitrosylation, define GSNOR as a tumor suppressor, and point to GSNOR hypo-expression as a therapeutically exploitable vulnerability in cancer.
Collapse
Affiliation(s)
- Salvatore Rizza
- Redox Biology, Danish Cancer Society Research Center, 2100 Copenhagen, Denmark.
| | - Luca Di Leo
- Melanoma Research Team, Danish Cancer Society Research Center, 2100 Copenhagen, Denmark
| | - Chiara Pecorari
- Redox Biology, Danish Cancer Society Research Center, 2100 Copenhagen, Denmark
| | - Paola Giglio
- Department of Biology, University of Rome "Tor Vergata", 00133 Rome, Italy
| | - Fiorella Faienza
- Department of Biology, University of Rome "Tor Vergata", 00133 Rome, Italy
| | - Costanza Montagna
- Department of Biology, University of Rome "Tor Vergata", 00133 Rome, Italy; UniCamillus-Saint Camillus, University of Health Sciences, 00131 Rome, Italy
| | - Emiliano Maiani
- Department of Biology, University of Rome "Tor Vergata", 00133 Rome, Italy; UniCamillus-Saint Camillus, University of Health Sciences, 00131 Rome, Italy
| | - Michele Puglia
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense M, Denmark
| | - Francesca M Bosisio
- Lab of Translational Cell and Tissue Research, University of Leuven, 3000 Leuven, Belgium
| | | | - Lin Lin
- Department of Biomedicine, Aarhus University, 8000 Aarhus C, Denmark; Steno Diabetes Center Aarhus, Aarhus University Hospital, 8200 Aarhus N, Denmark
| | - Vendela Rissler
- Cancer Structural Biology, Danish Cancer Society Research Center, 2100 Copenhagen, Denmark
| | - Juan Salamanca Viloria
- Cancer Structural Biology, Danish Cancer Society Research Center, 2100 Copenhagen, Denmark
| | - Yonglun Luo
- Department of Biomedicine, Aarhus University, 8000 Aarhus C, Denmark; Steno Diabetes Center Aarhus, Aarhus University Hospital, 8200 Aarhus N, Denmark; Lars Bolund Institute of Regenerative Medicine, Qingdao-Europe Advanced Institute for Life Sciences, BGI-Qingdao, BGI-Shenzhen, Shenzhen 518083, China
| | - Elena Papaleo
- Cancer Structural Biology, Danish Cancer Society Research Center, 2100 Copenhagen, Denmark; Cancer Systems Biology, Section for Bioinformatics, Department of Health and Technology, Technical University of Denmark, 2800 Lyngby, Denmark
| | - Daniela De Zio
- Melanoma Research Team, Danish Cancer Society Research Center, 2100 Copenhagen, Denmark; Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, Copenhagen University, 2100 Copenhagen, Denmark
| | - Blagoy Blagoev
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense M, Denmark
| | - Giuseppe Filomeni
- Redox Biology, Danish Cancer Society Research Center, 2100 Copenhagen, Denmark; Department of Biology, University of Rome "Tor Vergata", 00133 Rome, Italy; Center for Healthy Aging, Copenhagen University, 2200 Copenhagen, Denmark.
| |
Collapse
|
18
|
Koivusalo S, Schmidt A, Manninen A, Wenta T. Regulation of Kinase Signaling Pathways by α6β4-Integrins and Plectin in Prostate Cancer. Cancers (Basel) 2022; 15:149. [PMID: 36612146 PMCID: PMC9818203 DOI: 10.3390/cancers15010149] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/19/2022] [Accepted: 12/24/2022] [Indexed: 12/28/2022] Open
Abstract
Hemidesmosomes (HDs) are adhesive structures that ensure stable anchorage of cells to the basement membrane. They are formed by α6β4-integrin heterodimers and linked to intermediate filaments via plectin. It has been reported that one of the most common events during the pathogenesis of prostate cancer (PCa) is the loss of HD organization. While the expression levels of β4-integrins are strongly reduced, the expression levels of α6-integrins and plectin are maintained or even elevated, and seem to promote tumorigenic properties of PCa cells, such as proliferation, invasion, metastasis, apoptosis- and drug-resistance. In this review, we discuss the potential mechanisms of how HD components might contribute to various cellular signaling pathways to promote prostate carcinogenesis. Moreover, we summarize the current knowledge on the involvement of α6β4-integrins and plectin in PCa initiation and progression.
Collapse
Affiliation(s)
- Saara Koivusalo
- Disease Networks Research Unit, Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, University of Oulu, 90220 Oulu, Finland
| | - Anette Schmidt
- Disease Networks Research Unit, Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, University of Oulu, 90220 Oulu, Finland
| | - Aki Manninen
- Disease Networks Research Unit, Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, University of Oulu, 90220 Oulu, Finland
| | - Tomasz Wenta
- Disease Networks Research Unit, Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, University of Oulu, 90220 Oulu, Finland
- Department of General and Medical Biochemistry, Faculty of Biology, University of Gdansk, 80-308 Gdansk, Poland
| |
Collapse
|
19
|
Li G, Park JN, Park HJ, Suh JH, Choi HS. High Cholesterol-Induced Bone Loss Is Attenuated by Arctiin via an Action in Osteoclasts. Nutrients 2022; 14:4483. [PMID: 36364745 PMCID: PMC9657919 DOI: 10.3390/nu14214483] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/21/2022] [Accepted: 10/21/2022] [Indexed: 10/29/2023] Open
Abstract
High cholesterol-induced bone loss is highly associated with oxidative stress, which leads to the generation of oxysterols, such as 7-ketocholesterol (7-KC). Here, we conducted in vivo and in vitro experiments to determine whether arctiin prevents high cholesterol diet-induced bone loss by decreasing oxidative stress. First, arctiin was orally administered to atherogenic diet (AD)-fed C57BL/6J male mice at a dose of 10 mg/kg for 6 weeks. Micro-computerized tomography (μCT) analysis showed that arctiin attenuated AD-induced boss loss. For our in vitro experiments, the anti-oxidant effects of arctiin were evaluated in 7-KC-stimulated osteoclasts (OCs). Arctiin decreased the number and activity of OCs and inhibited autophagy by disrupting the nuclear localization of transcription factor EB (TFEB) and downregulating the oxidized TFEB signaling pathway in OCs upon 7-KC stimulation. Furthermore, arctiin decreased the levels of reactive oxygen species (ROS) by enhancing the expression of nuclear factor erythroid 2-related factor 2 (Nrf2), catalase, and heme oxygenase 1 (HO-1), all of which affected OC differentiation. Conversely, silencing of Nrf2 or HO-1/catalase attenuated the effects of arctiin on OCs. Collectively, our findings suggested that arctiin attenuates 7-KC-induced osteoclastogenesis by increasing the expression of ROS scavenging genes in the Nrf2/HO-1/catalase signaling pathway, thereby decreasing OC autophagy. Moreover, arctiin inhibits the oxidation and nuclear localization of TFEB, thus protecting mice from AD-induced bone loss. Our findings thus demonstrate the therapeutic potential of arctiin for the prevention of cholesterol-induced bone loss.
Collapse
Affiliation(s)
- Guoen Li
- Department of Biological Sciences (BK21 Program), University of Ulsan, Ulsan 44610, Korea
| | - Jung-Nam Park
- Department of Biological Sciences (BK21 Program), University of Ulsan, Ulsan 44610, Korea
| | - Hyun-Jung Park
- Department of Biological Sciences (BK21 Program), University of Ulsan, Ulsan 44610, Korea
| | - Jae-Hee Suh
- Department of Pathology, Ulsan University Hospital, Ulsan 44030, Korea
| | - Hye-Seon Choi
- Department of Biological Sciences (BK21 Program), University of Ulsan, Ulsan 44610, Korea
| |
Collapse
|
20
|
A Cysteine Residue within the Kinase Domain of Zap70 Regulates Lck Activity and Proximal TCR Signaling. Cells 2022; 11:cells11172723. [PMID: 36078131 PMCID: PMC9455082 DOI: 10.3390/cells11172723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/18/2022] [Accepted: 08/30/2022] [Indexed: 11/16/2022] Open
Abstract
Alterations in both the expression and function of the non-receptor tyrosine kinase Zap70 are associated with numerous human diseases including immunodeficiency, autoimmunity, and leukemia. Zap70 propagates the TCR signal by phosphorylating two important adaptor molecules, LAT and SLP76, which orchestrate the assembly of the signaling complex, leading to the activation of PLCγ1 and further downstream pathways. These events are crucial to drive T-cell development and T-cell activation. Recently, it has been proposed that C564, located in the kinase domain of Zap70, is palmitoylated. A non-palmitoylable C564R Zap70 mutant, which has been reported in a patient suffering from immunodeficiency, is incapable of propagating TCR signaling and activating T cells. The lack of palmitoylation was suggested as the cause of this human disease. Here, we confirm that Zap70C564R is signaling defective, but surprisingly, the defective Zap70 function does not appear to be due to a loss in palmitoylation. We engineered a C564A mutant of Zap70 which, similarly to Zap70C564R, is non-palmitoylatable. However, this mutant was capable of propagating TCR signaling. Moreover, Zap70C564A enhanced the activity of Lck and increased its proximity to the TCR. Accordingly, Zap70-deficient P116 T cells expressing Zap70C564A displayed the hyperphosphorylation of TCR-ζ and Zap70 (Y319), two well-known Lck substrates. Collectively, these data indicate that C564 is important for the regulation of Lck activity and proximal TCR signaling, but not for the palmitoylation of Zap70.
Collapse
|
21
|
Staples JF, Mathers KE, Duffy BM. Mitochondrial Metabolism in Hibernation: Regulation and Implications. Physiology (Bethesda) 2022; 37:0. [PMID: 35658625 DOI: 10.1152/physiol.00006.2022] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Hibernators rapidly and reversibly suppress mitochondrial respiration and whole animal metabolism. Posttranslational modifications likely regulate these mitochondrial changes, which may help conserve energy in winter. These modifications are affected by reactive oxygen species (ROS), so suppressing mitochondrial ROS production may also be important for hibernators, just as it is important for surviving ischemia-reperfusion injury.
Collapse
Affiliation(s)
- James F Staples
- Department of Biology, University of Western Ontario, London, Ontario, Canada
| | - Katherine E Mathers
- Department of Biology, University of Western Ontario, London, Ontario, Canada
| | - Brynne M Duffy
- Department of Biology, University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
22
|
Doxorubicin Induces Bone Loss by Increasing Autophagy through a Mitochondrial ROS/TRPML1/TFEB Axis in Osteoclasts. Antioxidants (Basel) 2022; 11:antiox11081476. [PMID: 36009195 PMCID: PMC9404930 DOI: 10.3390/antiox11081476] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/20/2022] [Accepted: 07/25/2022] [Indexed: 12/10/2022] Open
Abstract
Doxorubicin (DOX), a widely used chemotherapeutic agent, has been linked to an increased risk of bone damage in human patients and induces bone loss in mice. DOX induces autophagy, which contributes to bone homeostasis and excess autophagy in osteoclasts (OCs), resulting in bone loss. We hypothesized that DOX-induced bone loss is caused by the induction of autophagy in OCs. In vitro, DOX significantly increased the area of OCs and bone resorption activity, whereas it decreased OC number through apoptosis. DOX enhanced the level of LC3II and acidic vesicular organelles-containing cells in OCs, whereas an autophagy inhibitor, 3-methyladenine (3-MA), reversed these, indicating that enhanced autophagy was responsible for the effects of DOX. Increased mitochondrial reactive oxygen species (mROS) by DOX oxidized transient receptor potential mucolipin 1 (TRPML1) on the lysosomal membrane, which led to nuclear localization of transcription factor EB (TFEB), an autophagy-inducing transcription factor. In vivo, micro-computerized tomography analysis revealed that the injection of 3-MA reversed DOX-induced bone loss, and tartrate-resistant acid phosphatase staining showed that 3-MA reduced the area of OCs on the bone surface, which was enhanced upon DOX administration. Collectively, DOX-induced bone loss is at least partly attributable to autophagy upregulation in OCs via an mROS/TRPML1/TFEB axis.
Collapse
|
23
|
Shannon N, Gravelle R, Cunniff B. Mitochondrial trafficking and redox/phosphorylation signaling supporting cell migration phenotypes. Front Mol Biosci 2022; 9:925755. [PMID: 35936783 PMCID: PMC9355248 DOI: 10.3389/fmolb.2022.925755] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 07/05/2022] [Indexed: 11/13/2022] Open
Abstract
Regulation of cell signaling cascades is critical in making sure the response is activated spatially and for a desired duration. Cell signaling cascades are spatially and temporally controlled through local protein phosphorylation events which are determined by the activation of specific kinases and/or inactivation of phosphatases to elicit a complete and thorough response. For example, A-kinase-anchoring proteins (AKAPs) contribute to the local regulated activity protein kinase A (PKA). The activity of kinases and phosphatases can also be regulated through redox-dependent cysteine modifications that mediate the activity of these proteins. A primary example of this is the activation of the epidermal growth factor receptor (EGFR) and the inactivation of the phosphatase and tensin homologue (PTEN) phosphatase by reactive oxygen species (ROS). Therefore, the local redox environment must play a critical role in the timing and magnitude of these events. Mitochondria are a primary source of ROS and energy (ATP) that contributes to redox-dependent signaling and ATP-dependent phosphorylation events, respectively. The strategic positioning of mitochondria within cells contributes to intracellular gradients of ROS and ATP, which have been shown to correlate with changes to protein redox and phosphorylation status driving downstream cellular processes. In this review, we will discuss the relationship between subcellular mitochondrial positioning and intracellular ROS and ATP gradients that support dynamic oxidation and phosphorylation signaling and resulting cellular effects, specifically associated with cell migration signaling.
Collapse
Affiliation(s)
- Nathaniel Shannon
- Department of Pathology and Laboratory Medicine, Redox Biology Program, University of Vermont Larner College of Medicine, Burlington, VT, United States
| | - Randi Gravelle
- Department of Pathology and Laboratory Medicine, Redox Biology Program, University of Vermont Larner College of Medicine, Burlington, VT, United States
| | - Brian Cunniff
- Department of Pathology and Laboratory Medicine, Redox Biology Program, University of Vermont Larner College of Medicine, Burlington, VT, United States
- University of Vermont Cancer Center, University of Vermont Larner College of Medicine, Burlington, VT, United States
| |
Collapse
|
24
|
Smith ALM, Whitehall JC, Greaves LC. Mitochondrial
DNA
mutations in aging and cancer. Mol Oncol 2022; 16:3276-3294. [PMID: 35842901 PMCID: PMC9490137 DOI: 10.1002/1878-0261.13291] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 06/18/2022] [Accepted: 07/15/2022] [Indexed: 11/09/2022] Open
Abstract
Advancing age is a major risk factor for malignant transformation and the development of cancer. As such, over 50% of neoplasms occur in individuals over the age of 70. The pathologies of both ageing and cancer have been characterized by respective groups of molecular hallmarks, and while some features are divergent between the two pathologies, several are shared. Perturbed mitochondrial function is one such common hallmark, and this observation therefore suggests that mitochondrial alterations may be of significance in age‐related cancer development. There is now considerable evidence documenting the accumulation of somatic mitochondrial DNA (mtDNA) mutations in ageing human postmitotic and replicative tissues. Similarly, mutations of the mitochondrial genome have been reported in human cancers for decades. The plethora of functions in which mitochondria partake, such as oxidative phosphorylation, redox balance, apoptosis and numerous biosynthetic pathways, manifests a variety of ways in which alterations in mtDNA may contribute to tumour growth. However, the specific mechanisms by which mtDNA mutations contribute to tumour progression remain elusive and often contradictory. This review aims to consolidate current knowledge and describe future direction within the field.
Collapse
Affiliation(s)
- Anna LM Smith
- Wellcome Centre for Mitochondrial Research, Biosciences Institute Newcastle University Newcastle Upon Tyne NE2 4HH UK
| | - Julia C Whitehall
- Wellcome Centre for Mitochondrial Research, Biosciences Institute Newcastle University Newcastle Upon Tyne NE2 4HH UK
| | - Laura C Greaves
- Wellcome Centre for Mitochondrial Research, Biosciences Institute Newcastle University Newcastle Upon Tyne NE2 4HH UK
| |
Collapse
|
25
|
Src Family Kinases: A Potential Therapeutic Target for Acute Kidney Injury. Biomolecules 2022; 12:biom12070984. [PMID: 35883540 PMCID: PMC9312434 DOI: 10.3390/biom12070984] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/09/2022] [Accepted: 07/11/2022] [Indexed: 02/04/2023] Open
Abstract
Src family kinases (SFKs) are non-receptor tyrosine kinases and play a key role in regulating signal transduction. The mechanism of SFKs in various tumors has been widely studied, and there are more and more studies on its role in the kidney. Acute kidney injury (AKI) is a disease with complex pathogenesis, including oxidative stress (OS), inflammation, endoplasmic reticulum (ER) stress, autophagy, and apoptosis. In addition, fibrosis has a significant impact on the progression of AKI to developing chronic kidney disease (CKD). The mortality rate of this disease is very high, and there is no effective treatment drug at present. In recent years, some studies have found that SFKs, especially Src, Fyn, and Lyn, are involved in the pathogenesis of AKI. In this paper, the structure, function, and role of SFKs in AKI are discussed. SFKs play a crucial role in the occurrence and development of AKI, making them promising molecular targets for the treatment of AKI.
Collapse
|
26
|
Park HJ, Park JN, Yoon SY, Yu R, Suh JH, Choi HS. Morin Disrupts Cytoskeleton Reorganization in Osteoclasts through an ROS/SHP1/c-Src Axis and Grants Protection from LPS-Induced Bone Loss. Antioxidants (Basel) 2022; 11:963. [PMID: 35624827 PMCID: PMC9137647 DOI: 10.3390/antiox11050963] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/10/2022] [Accepted: 05/11/2022] [Indexed: 11/16/2022] Open
Abstract
Morin is a naturally occurring flavonoid with anti-inflammatory and antioxidative properties. Therefore, we hypothesized that morin may prevent inflammatory bone loss by reducing oxidative stress. To investigate the effect of morin on inflammatory bone loss, mice were injected with lipopolysaccharide (LPS). Osteoclasts (OCs) were analyzed by tartrate-resistant acid phosphatase (TRAP) staining and actin ring formation. Micro-computerized tomography analysis indicated that morin prevented LPS-induced bone loss in mice. In vivo TRAP staining indicated that morin decreased the number and surface of the OCs that were increased in LPS-treated mice. Furthermore, in vitro experiments indicated that morin decreased the number and activity of OCs upon LPS stimulation. Morin decreased actin ring-containing OCs with decreased activation of c-Src (Y416)/vav guanine nucleotide exchange factor 3/Ras-related C3 botulinum toxin substrate 1 compared with LPS alone. Morin decreased cytosolic reactive oxygen species (ROS), thus preventing the oxidation of Src homology region 2 domain-containing phosphatase 1 (SHP-1), followed by the inactivation of c-Src via direct interaction with SHP1. Conversely, SHP1 knockdown abolished the inhibitory effect of morin on OCs. Therefore, our findings suggest that morin disrupted cytoskeletal reorganization via an ROS/SHP1/c-Src axis in OCs, thereby granting protection from LPS-induced bone loss, which demonstrates its therapeutic potential against inflammatory bone loss.
Collapse
Affiliation(s)
- Hyun-Jung Park
- Department of Biological Sciences (BK21 Program), University of Ulsan, Ulsan 44610, Korea; (H.-J.P.); (J.-N.P.); (S.-Y.Y.)
| | - Jung-Nam Park
- Department of Biological Sciences (BK21 Program), University of Ulsan, Ulsan 44610, Korea; (H.-J.P.); (J.-N.P.); (S.-Y.Y.)
| | - Sun-Young Yoon
- Department of Biological Sciences (BK21 Program), University of Ulsan, Ulsan 44610, Korea; (H.-J.P.); (J.-N.P.); (S.-Y.Y.)
| | - Rina Yu
- Department of Food and Nutrition, University of Ulsan, Ulsan 44610, Korea;
| | - Jae-Hee Suh
- Department of Pathology, Ulsan University Hospital, Ulsan 44030, Korea;
| | - Hye-Seon Choi
- Department of Biological Sciences (BK21 Program), University of Ulsan, Ulsan 44610, Korea; (H.-J.P.); (J.-N.P.); (S.-Y.Y.)
| |
Collapse
|
27
|
Min JK, Park HS, Lee YB, Kim JG, Kim JI, Park JB. Cross-Talk between Wnt Signaling and Src Tyrosine Kinase. Biomedicines 2022; 10:biomedicines10051112. [PMID: 35625853 PMCID: PMC9138253 DOI: 10.3390/biomedicines10051112] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/09/2022] [Accepted: 05/09/2022] [Indexed: 12/17/2022] Open
Abstract
Src, a non-receptor tyrosine kinase, was first discovered as a prototype oncogene and has been shown to critical for cancer progression for a variety of tissues. Src activity is regulated by a number of post-translational modifications in response to various stimuli. Phosphorylations of Src Tyr419 (human; 416 in chicken) and Src Tyr530 (human; 527 in chicken) have been known to be critical for activation and inactivation of Src, respectively. Wnt signaling regulates a variety of cellular functions including for development and cell proliferation, and has a role in certain diseases such as cancer. Wnt signaling is carried out through two pathways: β-catenin-dependent canonical and β-catenin-independent non-canonical pathways as Wnt ligands bind to their receptors, Frizzled, LRP5/6, and ROR1/2. In addition, many signaling components including Axin, APC, Damm, Dishevelled, JNK kinase and Rho GTPases contribute to these canonical and non-canonical Wnt pathways. However, the communication between Wnt signaling and Src tyrosine kinase has not been well reviewed as Src regulates Wnt signaling through LRP6 tyrosine phosphorylation. GSK-3β phosphorylated by Wnt also regulates Src activity. As Wnt signaling and Src mutually regulate each other, it is noted that aberrant regulation of these components give rise to various diseases including typically cancer, and as such, merit a closer look.
Collapse
Affiliation(s)
- Jung Ki Min
- Department of Biochemistry, Hallym University College of Medicine, Chuncheon 25242, Korea; (J.K.M.); (Y.-B.L.); (J.-G.K.)
- Institute of Cell Differentiation and Aging, Hallym University College of Medicine, Chuncheon 24252, Korea
| | - Hwee-Seon Park
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Korea; (H.-S.P.); (J.-I.K.)
- Genomic Medicine Institute, Medical Research Center, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Yoon-Beom Lee
- Department of Biochemistry, Hallym University College of Medicine, Chuncheon 25242, Korea; (J.K.M.); (Y.-B.L.); (J.-G.K.)
- Institute of Cell Differentiation and Aging, Hallym University College of Medicine, Chuncheon 24252, Korea
| | - Jae-Gyu Kim
- Department of Biochemistry, Hallym University College of Medicine, Chuncheon 25242, Korea; (J.K.M.); (Y.-B.L.); (J.-G.K.)
- Institute of Cell Differentiation and Aging, Hallym University College of Medicine, Chuncheon 24252, Korea
| | - Jong-Il Kim
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Korea; (H.-S.P.); (J.-I.K.)
- Genomic Medicine Institute, Medical Research Center, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Jae-Bong Park
- Department of Biochemistry, Hallym University College of Medicine, Chuncheon 25242, Korea; (J.K.M.); (Y.-B.L.); (J.-G.K.)
- Institute of Cell Differentiation and Aging, Hallym University College of Medicine, Chuncheon 24252, Korea
- Correspondence: ; Tel.: +82-33-248-2542; Fax: +82-33-244-8425
| |
Collapse
|
28
|
Kim JS, Lim STS. LED Light-Induced ROS Differentially Regulates Focal Adhesion Kinase Activity in HaCaT Cell Viability. Curr Issues Mol Biol 2022; 44:1235-1246. [PMID: 35723305 PMCID: PMC8947587 DOI: 10.3390/cimb44030082] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/28/2022] [Accepted: 03/02/2022] [Indexed: 11/16/2022] Open
Abstract
In this study, changes in cell signaling mechanisms in skin cells induced by various wavelengths and intensities of light-emitting diodes (LED) were investigated, focusing on the activity of focal adhesion kinase (FAK) in particular. We examined the effect of LED irradiation on cell survival, the generation of intracellular reactive oxygen species (ROS), and the activity of various cell-signaling proteins. Red LED light increased cell viability at all intensities, whereas strong green and blue LED light reduced cell viability, and this effect was reversed by NAC or DPI treatment. Red LED light caused an increase in ROS formation according to the increase in the intensity of the LED light, and green and blue LED lights led to sharp increases in ROS formation. In the initial reaction to LEDs, red LED light only increased the phosphorylation of FAK and extracellular-signal regulated protein kinase (ERK), whereas green and blue LED lights increased the phosphorylation of inhibitory-κB Kinase α (IKKα), c-jun N-terminal kinase (JNK), and p38. The phosphorylation of these intracellular proteins was reduced via FAK inhibitor, NAC, and DPI treatments. Even after 24 h of LED irradiation, the activity of FAK and ERK appeared in cells treated with red LED light but did not appear in cells treated with green and blue LED lights. Furthermore, the activity of caspase-3 was confirmed along with cell detachment. Therefore, our results suggest that red LED light induced mitogenic effects via low levels of ROS–FAK–ERK, while green and blue LED lights induced cytotoxic effects via cellular stress and apoptosis signaling resulting from high levels of ROS.
Collapse
Affiliation(s)
- Jun-Sub Kim
- Department of Biotechnology, Korea National University of Transportation, Jeungpyeong 27909, Chungbuk, Korea
- Correspondence: (J.-S.K.); (S.-T.S.L.)
| | - Ssang-Taek Steve Lim
- Department of Biochemistry and Molecular Biology, College of Medicine, University of South Alabama, Mobile, AL 36688, USA
- Correspondence: (J.-S.K.); (S.-T.S.L.)
| |
Collapse
|
29
|
Morris G, Walder K, Berk M, Carvalho AF, Marx W, Bortolasci CC, Yung AR, Puri BK, Maes M. Intertwined associations between oxidative and nitrosative stress and endocannabinoid system pathways: Relevance for neuropsychiatric disorders. Prog Neuropsychopharmacol Biol Psychiatry 2022; 114:110481. [PMID: 34826557 DOI: 10.1016/j.pnpbp.2021.110481] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 10/19/2021] [Accepted: 11/21/2021] [Indexed: 12/12/2022]
Abstract
The endocannabinoid system (ECS) appears to regulate metabolic, cardiovascular, immune, gastrointestinal, lung, and reproductive system functions, as well as the central nervous system. There is also evidence that neuropsychiatric disorders are associated with ECS abnormalities as well as oxidative and nitrosative stress pathways. The goal of this mechanistic review is to investigate the mechanisms underlying the ECS's regulation of redox signalling, as well as the mechanisms by which activated oxidative and nitrosative stress pathways may impair ECS-mediated signalling. Cannabinoid receptor (CB)1 activation and upregulation of brain CB2 receptors reduce oxidative stress in the brain, resulting in less tissue damage and less neuroinflammation. Chronically high levels of oxidative stress may impair CB1 and CB2 receptor activity. CB1 activation in peripheral cells increases nitrosative stress and inducible nitric oxide (iNOS) activity, reducing mitochondrial activity. Upregulation of CB2 in the peripheral and central nervous systems may reduce iNOS, nitrosative stress, and neuroinflammation. Nitrosative stress may have an impact on CB1 and CB2-mediated signalling. Peripheral immune activation, which frequently occurs in response to nitro-oxidative stress, may result in increased expression of CB2 receptors on T and B lymphocytes, dendritic cells, and macrophages, reducing the production of inflammatory products and limiting the duration and intensity of the immune and oxidative stress response. In conclusion, high levels of oxidative and nitrosative stress may compromise or even abolish ECS-mediated redox pathway regulation. Future research in neuropsychiatric disorders like mood disorders and deficit schizophrenia should explore abnormalities in these intertwined signalling pathways.
Collapse
Affiliation(s)
- Gerwyn Morris
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia
| | - Ken Walder
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia.
| | - Michael Berk
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia; Orygen, Parkville, Victoria, Australia; Centre for Youth Mental Health, The University of Melbourne, Parkville, Victoria, Australia.
| | - Andre F Carvalho
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia
| | - Wolf Marx
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia.
| | - Chiara C Bortolasci
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia.
| | - Alison R Yung
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia; Orygen, Parkville, Victoria, Australia; Centre for Youth Mental Health, The University of Melbourne, Parkville, Victoria, Australia; School of Health Science, University of Manchester, UK.
| | - Basant K Puri
- University of Winchester, UK, and C.A.R., Cambridge, UK.
| | - Michael Maes
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia; Department of Psychiatry, Faculty of Medicine, King Chulalongkorn Memorial Hospital, Bangkok, Thailand; Department of Psychiatry, Medical University of Plovdiv, Plovdiv, Bulgaria.
| |
Collapse
|
30
|
Cruz-Gregorio A, Aranda-Rivera AK, Pedraza-Chaverri J, Solano JD, Ibarra-Rubio ME. Redox-sensitive signaling pathways in renal cell carcinoma. Biofactors 2022; 48:342-358. [PMID: 34590744 DOI: 10.1002/biof.1784] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 09/07/2021] [Indexed: 12/24/2022]
Abstract
Renal cell carcinoma (RCC) is one of the most lethal urological cancers, highly resistant to chemo and radiotherapy. Obesity and smoking are the best-known risk factors of RCC, both related to oxidative stress presence, suggesting a significant role in RCC development and maintenance. Surgical resection is the treatment of choice for localized RCC; however, this neoplasia is hardly diagnosable at its initial stages, occurring commonly in late phases and even when metastasis is already present. Systemic therapies are the option against RCC in these more advanced stages, such as cytokine therapy or a combination of tyrosine kinase inhibitors with immunotherapies; nevertheless, these strategies are still insufficient. A field poorly analyzed in this neoplasia is the status of cell signaling pathways sensible to the redox state, which have been associated with the development and maintenance of RCC. This review focuses on alterations reported in the following redox-sensitive molecules and signaling pathways in RCC: mitogen-activated protein kinases, protein kinase B (AKT)/tuberous sclerosis complex 2/mammalian target of rapamycin C1, AKT/glycogen synthase kinase 3/β-catenin, nuclear factor κB/inhibitor of κB/epidermal growth factor receptor, and protein kinase Cζ/cut-like homeodomain protein/factor inhibiting hypoxia-inducible factor (HIF)/HIF as potential targets for redox therapy.
Collapse
Affiliation(s)
- Alfredo Cruz-Gregorio
- Laboratorio F-225, Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Ana Karina Aranda-Rivera
- Laboratorio F-315, Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - José Pedraza-Chaverri
- Laboratorio F-315, Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - José D Solano
- Laboratorio F-225, Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - María Elena Ibarra-Rubio
- Laboratorio F-225, Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| |
Collapse
|
31
|
Prosthetic Materials Used for Implant-Supported Restorations and Their Biochemical Oral Interactions: A Narrative Review. MATERIALS 2022; 15:ma15031016. [PMID: 35160962 PMCID: PMC8839238 DOI: 10.3390/ma15031016] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/21/2022] [Accepted: 01/24/2022] [Indexed: 12/11/2022]
Abstract
The purpose of this study is to outline relevant elements regarding the biochemical interactions between prosthetic materials used for obtaining implant-supported restorations and the oral environment. Implant-supported prostheses have seen unprecedented development in recent years, benefiting from the emergence of both new prosthetic materials (with increased biocompatibility and very good mechanical behavior), and computerized manufacturing technologies, which offer predictability, accuracy, and reproducibility. On the other hand, the quality of conventional materials for obtaining implant-supported prostheses is acknowledged, as they have already proven their clinical performance. The properties of PMMA (poly (methyl methacrylate))-which is a representative interim material frequently used in prosthodontics-and of PEEK (polyether ether ketone)-a biomaterial which is placed on the border between interim and final prosthetic use-are highlighted in order to illustrate the complex way these materials interact with the oral environment. In regard to definitive prosthetic materials used for obtaining implant-supported prostheses, emphasis is placed on zirconia-based ceramics. Zirconia exhibits several distinctive advantages (excellent aesthetics, good mechanical behavior, biocompatibility), through which its clinical applicability has become increasingly wide. Zirconia's interaction with the oral environment (fibroblasts, osteoblasts, dental pulp cells, macrophages) is presented in a relevant synthesis, thus revealing its good biocompatibility.
Collapse
|
32
|
Chang H, Zou Z, Li J, Shen Q, Liu L, An X, Yang S, Xing D. Photoactivation of mitochondrial reactive oxygen species-mediated Src and protein kinase C pathway enhances MHC class II-restricted T cell immunity to tumours. Cancer Lett 2021; 523:57-71. [PMID: 34563641 DOI: 10.1016/j.canlet.2021.09.032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 09/08/2021] [Accepted: 09/21/2021] [Indexed: 10/20/2022]
Abstract
High fluence low-level laser (HF-LLL), a mitochondria-targeted tumour phototherapy, results in oxidative damage and apoptosis of tumour cells, as well as damage to normal tissue. To circumvent this, the therapeutic effect of low fluence LLL (LFL), a non-invasive and drug-free therapeutic strategy, was identified for tumours and the underlying molecular mechanisms were investigated. We observed that LFL enhanced antigen-specific immune response of macrophages and dendritic cells by upregulating MHC class II, which was induced by mitochondrial reactive oxygen species (ROS)-activated signalling, suppressing tumour growth in both CD11c-DTR and C57BL/6 mice. Mechanistically, LFL upregulated MHC class II in an MHC class II transactivator (CIITA)-dependent manner. LFL-activated protein kinase C (PKC) promoted the nuclear translocation of CIITA, as inhibition of PKC attenuated the DNA-binding efficiency of CIITA to MHC class II promoter. CIITA mRNA and protein expression also improved after LFL treatment, characterised by direct binding of Src and STAT1, and subsequent activation of STAT1. Notably, scavenging of ROS downregulated LFL-induced Src and PKC activation and antagonised the effects of LFL treatment. Thus, LFL treatment altered the adaptive immune response via the mitochondrial ROS-activated signalling pathway to control the progress of neoplastic disease.
Collapse
Affiliation(s)
- Haocai Chang
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China; Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China.
| | - Zhengzhi Zou
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China; Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China.
| | - Jie Li
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China; Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China.
| | - Qi Shen
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China; Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China.
| | - Lei Liu
- Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, 510631, China.
| | - Xiaorui An
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China; Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China.
| | - Sihua Yang
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China; Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China.
| | - Da Xing
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China; Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China.
| |
Collapse
|
33
|
Khan AQ, Rashid K, AlAmodi AA, Agha MV, Akhtar S, Hakeem I, Raza SS, Uddin S. Reactive oxygen species (ROS) in cancer pathogenesis and therapy: An update on the role of ROS in anticancer action of benzophenanthridine alkaloids. Biomed Pharmacother 2021; 143:112142. [PMID: 34536761 DOI: 10.1016/j.biopha.2021.112142] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/13/2021] [Accepted: 08/31/2021] [Indexed: 12/12/2022] Open
Abstract
Reactive oxygen species play crucial role in biological homeostasis and pathogenesis of human diseases including cancer. In this line, now it has become evident that ROS level/concentration is a major factor in the growth, progression and stemness of cancer cells. Moreover, cancer cells maintain a delicate balance between ROS and antioxidants to promote pathogenesis and clinical challenges via targeting a battery of signaling pathways converging to cancer hallmarks. Recent findings also entail the therapeutic importance of ROS for the better clinical outcomes in cancer patients as they induce apoptosis and autophagy. Moreover, poor clinical outcomes associated with cancer therapies are the major challenge and use of natural products have been vital in attenuation of these challenges due to their multitargeting potential with less adverse effects. In fact, most available drugs are derived from natural resources, either directly or indirectly and available evidence show the clinical importance of natural products in the management of various diseases, including cancer. ROS play a critical role in the anticancer actions of natural products, particularly phytochemicals. Benzophenanthridine alkaloids of the benzyl isoquinoline family of alkaloids, such as sanguinarine, possess several pharmacological properties and are thus being studied for the treatment of different human diseases, including cancer. In this article, we review recent findings, on how benzophenanthridine alkaloid-induced ROS play a critical role in the attenuation of pathological changes and stemness features associated with human cancers. In addition, we highlight the role of ROS in benzophenanthridine alkaloid-mediated activation of the signaling pathway associated with cancer cell apoptosis and autophagy.
Collapse
Affiliation(s)
- Abdul Q Khan
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Khalid Rashid
- Department of Medical Oncology, Zhongshan Hospital, Fudan University, Shanghai, China
| | | | - Maha Victor Agha
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Sabah Akhtar
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Ishrat Hakeem
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Syed Shadab Raza
- Department of Stem Cell Biology and Regenerative Medicine, Era University, Lucknow, India
| | - Shahab Uddin
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; Department of Dermatology and Venereology, Rumailah Hospital, Hamad Medical Corporation, Doha 3050, Qatar; Laboratory Animal Research Center, Qatar University, Doha 2713, Qatar.
| |
Collapse
|
34
|
Geng S, Zhang Y, Yi Z, Lu R, Li L. Resolving monocytes generated through TRAM deletion attenuate atherosclerosis. JCI Insight 2021; 6:e149651. [PMID: 34499622 PMCID: PMC8564896 DOI: 10.1172/jci.insight.149651] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 09/08/2021] [Indexed: 02/06/2023] Open
Abstract
Polarization of low-grade inflammatory monocytes facilitates the pathogenesis of atherosclerosis. However, underlying mechanisms as well as approaches for resolving monocyte polarization conducive to the regression of atherosclerosis are not well established. In this report, we demonstrate that TRIF-related adaptor molecule (TRAM) mediated monocyte polarization in vivo and in vitro. TRAM controlled monocyte polarization through activating Src family kinase c-SRC, which not only induces STAT1/STAT5-regulated inflammatory mediators CCR2 and SIRP-α but also suppresses PPARγ-regulated resolving mediator CD200R. Enhanced PPARγ and Pex5 due to TRAM deficiency facilitated peroxisome homeostasis and reduction of cellular reactive oxygen species, further contributing to the establishment of a resolving monocyte phenotype. TRAM-deficient monocytes propagated the resolving phenotype to neighboring monocytes through CD200R-mediated intercellular communication. At the translational level, we show that TRAM-deficient mice were resistant to high-fat diet-induced pathogenesis of atherosclerosis. We further document that intravenous transfusion of TRAM-deficient resolving monocytes into atherosclerotic mice potently reduced the progression of atherosclerosis. Together, our data reveal that targeting TRAM may facilitate the effective generation of resolving monocytes conducive for the treatment of atherosclerosis.
Collapse
Affiliation(s)
- Shuo Geng
- Department of Biological Sciences and
| | - Yao Zhang
- Department of Biological Sciences and
| | - Ziyue Yi
- Graduate Program of Genetics, Biotechnology and Computational Biology, Virginia Tech, Blacksburg, Virginia, USA
| | - Ran Lu
- Department of Biological Sciences and
| | - Liwu Li
- Department of Biological Sciences and
- Graduate Program of Genetics, Biotechnology and Computational Biology, Virginia Tech, Blacksburg, Virginia, USA
| |
Collapse
|
35
|
Sul OJ, Li G, Kim JE, Kim ES, Choi HS. 7-ketocholesterol enhances autophagy via the ROS-TFEB signaling pathway in osteoclasts. J Nutr Biochem 2021; 96:108783. [PMID: 34023424 DOI: 10.1016/j.jnutbio.2021.108783] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 04/20/2021] [Accepted: 04/29/2021] [Indexed: 11/30/2022]
Abstract
Oxysterols play a critical role in human health and diseases associated with high cholesterol and oxidative stress. Given that a positive correlation was observed between cholesterol and collagen type 1 fragment (CTX-1) or serum reactive oxygen species (ROS) in humans, we hypothesized that oxidized cholesterol metabolites may participate in cholesterol-induced bone loss. Therefore, this study aimed to identify the metabolite responsible for cholesterol-associated bone loss and evaluate its effect on osteoclasts (OCs) leading to bone loss. An atherogenic diet in mice increased the levels of the oxysterol, 7-ketocholesterol (7-KC) in bone, as well as serum ROS. 7-KC increased the number and activity of OCs by enhancing autophagy via the ROS-transcription factor EB signaling pathway. These findings suggest that 7-KC acts as a cholesterol metabolite and is at least partially responsible for cholesterol-induced bone loss by inducing autophagy in OCs.
Collapse
Affiliation(s)
- Ok-Joo Sul
- Department of Biological Sciences (BK21 Program), University of Ulsan, Ulsan, Korea
| | - Guoen Li
- Department of Biological Sciences (BK21 Program), University of Ulsan, Ulsan, Korea
| | - Ji-Eun Kim
- Department of Biological Sciences (BK21 Program), University of Ulsan, Ulsan, Korea
| | - Eun-Sook Kim
- Department of Endocrinology, Ulsan University Hospital, Ulsan, Korea
| | - Hye-Seon Choi
- Department of Biological Sciences (BK21 Program), University of Ulsan, Ulsan, Korea.
| |
Collapse
|
36
|
Cynometra cauliflora L.: An indigenous tropical fruit tree in Malaysia bearing essential oils and their biological activities. ARAB J CHEM 2021. [DOI: 10.1016/j.arabjc.2021.103302] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
|
37
|
Wang Q, Chang H, Shen Q, Li Y, Xing D. Photobiomodulation therapy for thrombocytopenia by upregulating thrombopoietin expression via the ROS-dependent Src/ERK/STAT3 signaling pathway. J Thromb Haemost 2021; 19:2029-2043. [PMID: 33501731 DOI: 10.1111/jth.15252] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 01/05/2021] [Accepted: 01/07/2021] [Indexed: 12/31/2022]
Abstract
BACKGROUND Chemotherapy-induced thrombocytopenia (CIT) can increase the risk of bleeding, which may delay or prevent the administration of anticancer treatment schedules. Photobiomodulation therapy (PBMT), a non-invasive physical treatment, has been proposed to improve thrombocytopenia; however, its underlying regulatory mechanism is not fully understood. OBJECTIVE To further investigate the mechanism of thrombopoietin (TPO) in megakaryocytopoiesis and thrombopoiesis. METHODS Multiple approaches such as western blotting, cell transfection, flow cytometry, and animal studies were utilized to explore the effect and mechanism of PBMT on thrombopoiesis. RESULTS PBMT prevented a severe drop in platelet count by increasing platelet production, and then ameliorated CIT. Mechanistically, PBMT significantly upregulated hepatic TPO expression in a thrombocytopenic mouse model, which promoted megakaryocytopoiesis and thrombopoiesis. The levels of TPO mRNA and protein increased by PBMT via the Src/ERK/STAT3 signaling pathway in hepatic cells. Furthermore, the generation of the reactive oxygen species was responsible for PBMT-induced activation of Src and its downstream target effects. CONCLUSIONS Our research suggests that PBMT is a promising therapeutic strategy for the treatment of CIT.
Collapse
Affiliation(s)
- Qiuhong Wang
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
| | - Haocai Chang
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
| | - Qi Shen
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
| | - Yonghua Li
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
| | - Da Xing
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
| |
Collapse
|
38
|
Soluble CD95L in cancers and chronic inflammatory disorders, a new therapeutic target? Biochim Biophys Acta Rev Cancer 2021; 1876:188596. [PMID: 34324950 DOI: 10.1016/j.bbcan.2021.188596] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/12/2021] [Accepted: 07/23/2021] [Indexed: 12/20/2022]
Abstract
Although CD95L (also known as FasL) is still predominantly considered as a death ligand that induces apoptosis in infected and transformed cells, substantial evidence indicate that it can also trigger non-apoptotic signaling pathways whose pathophysiological roles remain to be fully elucidated. The transmembrane ligand CD95L belongs to the tumor necrosis factor (TNF) superfamily. After cleavage by metalloprotease, its soluble form (s-CD95L) fails to trigger the apoptotic program but instead induces signaling pathways promoting the aggressiveness of certain inflammatory disorders such as autoimmune diseases and cancers. We propose to evaluate the various pathologies in which the metalloprotease-cleaved CD95L is accumulated and analyze whether this soluble ligand may play a significant role in the pathology progression. Based on the TNFα-targeting therapeutics, we envision that targeting the soluble form of CD95L may represent a very attractive therapeutic option in the pathologies depicted herein.
Collapse
|
39
|
Zhang S, Gui X, Ding Y, Tong H, Ju W, Li Y, Li Z, Zeng L, Xu K, Qiao J. Matrine Impairs Platelet Function and Thrombosis and Inhibits ROS Production. Front Pharmacol 2021; 12:717725. [PMID: 34366869 PMCID: PMC8339414 DOI: 10.3389/fphar.2021.717725] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 07/15/2021] [Indexed: 12/13/2022] Open
Abstract
Matrine is a naturally occurring alkaloid and possesses a wide range of pharmacological properties, such as anti-cancer, anti-oxidant, anti-inflammatory effects. However, whether it affects platelet function and thrombosis remains unclear. This study aims to evaluate the effect of matrine on platelet function and thrombus formation. Human platelets were treated with matrine (0–1 mg/ml) for 1 h at 37°C followed by measuring platelet aggregation, granule secretion, receptor expression by flow cytometry, spreading and clot retraction. In addition, matrine (10 mg/kg) was injected intraperitoneally into mice to measure tail bleeding time, arterial and venous thrombus formation. Matrine dose-dependently inhibited platelet aggregation and ATP release in response to either collagen-related peptide (Collagen-related peptide, 0.1 μg/ml) or thrombin (0.04 U/mL) stimulation without altering the expression of P-selectin, glycoprotein Ibα, GPVI, or αIIbβ3. In addition, matrine-treated platelets presented significantly decreased spreading on fibrinogen or collagen and clot retraction along with reduced phosphorylation of c-Src. Moreover, matrine administration significantly impaired the in vivo hemostatic function of platelets, arterial and venous thrombus formation. Furthermore, in platelets stimulated with CRP or thrombin, matrine significantly reduced Reactive oxygen species generation, inhibited the phosphorylation level of ERK1/2 (Thr202/Tyr204), p38 (Thr180/Tyr182) and AKT (Thr308/Ser473) as well as increased VASP phosphorylation (Ser239) and intracellular cGMP level. In conclusion, matrine inhibits platelet function, arterial and venous thrombosis, possibly involving inhibition of ROS generation, suggesting that matrine might be used as an antiplatelet agent for treating thrombotic or cardiovascular diseases.
Collapse
Affiliation(s)
- Sixuan Zhang
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China.,Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China.,Key Laboratory of Bone Marrow Stem Cell, Xuzhou, China
| | - Xiang Gui
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China.,Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China.,Key Laboratory of Bone Marrow Stem Cell, Xuzhou, China
| | - Yangyang Ding
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China.,Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China.,Key Laboratory of Bone Marrow Stem Cell, Xuzhou, China
| | - Huan Tong
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China.,Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China.,Key Laboratory of Bone Marrow Stem Cell, Xuzhou, China
| | - Wen Ju
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China.,Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China.,Key Laboratory of Bone Marrow Stem Cell, Xuzhou, China
| | - Yue Li
- School of Medical Technology, Xuzhou Medical University, Xuzhou, China
| | - Zhenyu Li
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China.,Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China.,Key Laboratory of Bone Marrow Stem Cell, Xuzhou, China
| | - Lingyu Zeng
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China.,Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China.,Key Laboratory of Bone Marrow Stem Cell, Xuzhou, China.,School of Medical Technology, Xuzhou Medical University, Xuzhou, China
| | - Kailin Xu
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China.,Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China.,Key Laboratory of Bone Marrow Stem Cell, Xuzhou, China
| | - Jianlin Qiao
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China.,Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China.,Key Laboratory of Bone Marrow Stem Cell, Xuzhou, China
| |
Collapse
|
40
|
Mushtaq U, Bashir M, Nabi S, Khanday FA. Epidermal growth factor receptor and integrins meet redox signaling through P66shc and Rac1. Cytokine 2021; 146:155625. [PMID: 34157521 DOI: 10.1016/j.cyto.2021.155625] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 05/23/2021] [Accepted: 06/08/2021] [Indexed: 12/24/2022]
Abstract
This review examines the concerted role of Epidermal Growth Factor Receptor (EGFR) and integrins in regulating Reactive oxygen species (ROS) production through different signaling pathways. ROS as such are not always deleterious to the cells but they also act as signaling molecules, that regulates numerous indespensible physiological fuctions of life. Many adaptor proteins, particularly Shc and Grb2, are involved in mediating the downstream signaling pathways stimulated by EGFR and integrins. Integrin-induced activation of EGFR and subsequent tyrosine phosphorylation of a class of acceptor sites on EGFR leads to alignment and tyrosine phosphorylation of Shc, PLCγ, the p85 subunit of PI-3 K, and Cbl, followed by activation of the downstream targets Erk and Akt/PKB. Functional interactions between these receptors result in the activation of Rac1 via these adaptor proteins, thereby leading to Reactive Oxygen Species. Both GF and integrin activation can produce oxidants independently, however synergistically there is increased ROS generation, suggesting a mutual cooperation between integrins and GFRs for redox signalling. The ROS produced further promotes feed-forward stimulation of redox signaling events such as MAPK activation and gene expression. This relationship has not been reviewed previously. The literature presented here can have multiple implications, ranging from looking at synergistic effects of integrin and EGFR mediated signaling mechanisms of different proteins to possible therapeutic interventions operated by these two receptors. Furthermore, such mutual redox regulation of crosstalk between EGFR and integrins not only add to the established models of pathological oxidative stress, but also can impart new avenues and opportunities for targeted antioxidant based therapeutics.
Collapse
Affiliation(s)
- Umar Mushtaq
- Department of Biotechnology, University of Kashmir, Srinagar, JK 190006, India; Department of Biotechnology, Central University of Kashmir, Ganderbal, JK 191201, India
| | - Muneesa Bashir
- Department of Biotechnology, University of Kashmir, Srinagar, JK 190006, India; Department of Higher Education, Government of Jammu & Kashmir, 190001, India
| | - Sumaiya Nabi
- Department of Biochemistry, University of Kashmir, Srinagar, JK 190006, India
| | - Firdous A Khanday
- Department of Biotechnology, University of Kashmir, Srinagar, JK 190006, India.
| |
Collapse
|
41
|
Saito T, Chiku T, Oka M, Wada-Kakuda S, Nobuhara M, Oba T, Shinno K, Abe S, Asada A, Sumioka A, Takashima A, Miyasaka T, Ando K. Disulfide bond formation in microtubule-associated tau protein promotes tau accumulation and toxicity in vivo. Hum Mol Genet 2021; 30:1955-1967. [PMID: 34137825 PMCID: PMC8522637 DOI: 10.1093/hmg/ddab162] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/11/2021] [Accepted: 06/11/2021] [Indexed: 11/12/2022] Open
Abstract
Accumulation of microtubule-associated tau protein is thought to cause neuron loss in a group of neurodegenerative diseases called tauopathies. In diseased brains, tau molecules adopt pathological structures that propagate into insoluble forms with disease-specific patterns. Several types of posttranslational modifications in tau are known to modulate its aggregation propensity in vitro, but their influence on tau accumulation and toxicity at the whole-organism level has not been fully elucidated. Herein, we utilized a series of transgenic Drosophila models to compare systematically the toxicity induced by five tau constructs with mutations or deletions associated with aggregation, including substitutions at seven disease-associated phosphorylation sites (S7A and S7E), deletions of PHF6 and PHF6* sequences (ΔPHF6 and ΔPHF6*), and substitutions of cysteine residues in the microtubule binding repeats (C291/322A). We found that substitutions and deletions resulted in different patterns of neurodegeneration and accumulation, with C291/322A having a dramatic effect on both tau accumulation and neurodegeneration. These cysteines formed disulfide bonds in mouse primary cultured neurons and in the fly retina, and stabilized tau proteins. Additionally, they contributed to tau accumulation under oxidative stress. We also found that each of these cysteine residues contributes to the microtubule polymerization rate and microtubule levels at equilibrium, but none of them affected tau binding to polymerized microtubules. Since tau proteins expressed in the Drosophila retina are mostly present in the early stages of tau filaments self-assembly, our results suggest that disulfide bond formation by these cysteine residues could be attractive therapeutic targets.
Collapse
Affiliation(s)
- Taro Saito
- Department of Biological Sciences, Graduate School of Science, Tokyo Metropolitan University, Tokyo, Japan.,Department of Biological Sciences, Faculty of Science, Tokyo Metropolitan University, Tokyo, Japan
| | - Tomoki Chiku
- Department of Biological Sciences, Graduate School of Science, Tokyo Metropolitan University, Tokyo, Japan
| | - Mikiko Oka
- Department of Biological Sciences, Graduate School of Science, Tokyo Metropolitan University, Tokyo, Japan
| | - Satoko Wada-Kakuda
- Department of Neuropathology, Faculty of Life and Medical Sciences, Doshisha University, Kyoto, Japan
| | - Mika Nobuhara
- Department of Neuropathology, Faculty of Life and Medical Sciences, Doshisha University, Kyoto, Japan
| | - Toshiya Oba
- Department of Biological Sciences, Graduate School of Science, Tokyo Metropolitan University, Tokyo, Japan
| | - Kanako Shinno
- Department of Biological Sciences, Graduate School of Science, Tokyo Metropolitan University, Tokyo, Japan
| | - Saori Abe
- Department of Biological Sciences, Faculty of Science, Tokyo Metropolitan University, Tokyo, Japan
| | - Akiko Asada
- Department of Biological Sciences, Graduate School of Science, Tokyo Metropolitan University, Tokyo, Japan.,Department of Biological Sciences, Faculty of Science, Tokyo Metropolitan University, Tokyo, Japan
| | - Akio Sumioka
- Faculty of Science, Department of Life Science, Gakushuin University, Tokyo, Japan
| | - Akihiko Takashima
- Faculty of Science, Department of Life Science, Gakushuin University, Tokyo, Japan
| | - Tomohiro Miyasaka
- Department of Neuropathology, Faculty of Life and Medical Sciences, Doshisha University, Kyoto, Japan
| | - Kanae Ando
- Department of Biological Sciences, Graduate School of Science, Tokyo Metropolitan University, Tokyo, Japan.,Department of Biological Sciences, Faculty of Science, Tokyo Metropolitan University, Tokyo, Japan
| |
Collapse
|
42
|
Hassan NME, Shehatou GSG, Kenawy HI, Said E. Dasatinib mitigates renal fibrosis in a rat model of UUO via inhibition of Src/STAT-3/NF-κB signaling. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2021; 84:103625. [PMID: 33617955 DOI: 10.1016/j.etap.2021.103625] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 02/14/2021] [Accepted: 02/17/2021] [Indexed: 06/12/2023]
Abstract
This research aimed to investigate the reno-protective impact of the tyrosine kinase inhibitor dasatinib (DAS) against renal fibrosis induced by unilateral ureteral obstruction (UUO) in rats. DAS administration improved renal function and mitigated renal oxidative stress with paralleled reduction in the ligated kidney mass index, significant retraction in renal histopathological alterations and suppression of renal interstitial fibrosis. Nevertheless, DAS administration attenuated renal expression of phosphorylated Src (p-Src), Abelson (c-Abl) tyrosine kinases, nuclear factor-kappaB (NF-κB) p65, and phosphorylated signal transducer and activator of transcription-3 (p-STAT-3)/STAT-3 with paralleled reduction in renal contents of tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and monocyte chemoattractant protein-1 (MCP-1). DAS diminished interstitial macrophage infiltration and decreased renal profibrotic transforming growth factor-β1 (TGF-β1) levels and suppressed interstitial expression of renal α-smooth muscle actin (α-SMA) and fibronectin. Collectively, DAS slowed the progression of renal interstitial fibrosis, possibly via attenuating renal oxidative stress, impairing Src/STAT-3/NF-κB signaling, and reducing renal inflammation.
Collapse
Affiliation(s)
- Nabila M E Hassan
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - George S G Shehatou
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt; Department of Pharmacology and Biochemistry, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa City, Egypt
| | - Hany Ibrahim Kenawy
- Department of Microbiology and Immunology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Eman Said
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt.
| |
Collapse
|
43
|
Estrogen Decreases Cytoskeletal Organization by Forming an ERα/SHP2/c-Src Complex in Osteoclasts to Protect against Ovariectomy-Induced Bone Loss in Mice. Antioxidants (Basel) 2021; 10:antiox10040619. [PMID: 33920630 PMCID: PMC8073670 DOI: 10.3390/antiox10040619] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 03/30/2021] [Accepted: 04/15/2021] [Indexed: 12/16/2022] Open
Abstract
Loss of ovarian function is closely related to estrogen (E2) deficiency, which is responsible for increased osteoclast (OC) differentiation and activity. We aimed to investigate the action mechanism of E2 to decrease bone resorption in OCs to protect from ovariectomy (OVX)-induced bone loss in mice. In vivo, tartrate-resistant acid phosphatase (TRAP) staining in femur and serum carboxy-terminal collagen crosslinks-1 (CTX-1) were analyzed upon E2 injection after OVX in mice. In vitro, OCs were analyzed by TRAP staining, actin ring formation, carboxymethylation, determination of reactive oxygen species (ROS) level, and immunoprecipitation coupled with Western blot. In vivo and in vitro, E2 decreased OC size more dramatically than OC number and Methyl-piperidino-pyrazole hydrate dihydrochloride (MPPD), an estrogen receptor alpha (ERα) antagonist, augmented the OC size. ERα was found in plasma membranes and E2/ERα signaling affected receptor activator of nuclear factor κB ligand (RANKL)-induced actin ring formation by rapidly decreasing a proto-oncogene tyrosine-protein kinase, cellular sarcoma (c-Src) (Y416) phosphorylation in OCs. E2 exposure decreased physical interactions between NADPH oxidase 1 (NOX1) and the oxidized form of c-Src homology 2 (SH2)-containing protein tyrosine phosphatase 2 (SHP2), leading to higher levels of reduced SHP2. ERα formed a complex with the reduced form of SHP2 and c-Src to decrease c-Src activation upon E2 exposure, which blocked a signal for actin ring formation by decreased Vav guanine nucleotide exchange factor 3 (Vav3) (p-Y) and Ras-related C3 botulinum toxin substrate 1 (Rac1) (GTP) activation in OCs. E2/ERα signals consistently inhibited bone resorption in vitro. In conclusion, our study suggests that E2-binding to ERα forms a complex with SHP2/c-Src to attenuate c-Src activation that was induced upon RANKL stimulation in a non-genomic manner, resulting in an impaired actin ring formation and reducing bone resorption.
Collapse
|
44
|
Ma H, Zhang J, Zhou L, Wen S, Tang HY, Jiang B, Zhang F, Suleman M, Sun D, Chen A, Zhao W, Lin F, Tsau MT, Shih LM, Xie C, Li X, Lin D, Hung LM, Cheng ML, Li Q. c-Src Promotes Tumorigenesis and Tumor Progression by Activating PFKFB3. Cell Rep 2021; 30:4235-4249.e6. [PMID: 32209481 DOI: 10.1016/j.celrep.2020.03.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 01/29/2020] [Accepted: 03/02/2020] [Indexed: 02/06/2023] Open
Abstract
Reprogramming of glucose metabolism is a key event in tumorigenesis and progression. Here, we show that active c-Src stimulates glycolysis by phosphorylating (Tyr194) and activating PFKFB3, a key enzyme that boosts glycolysis by producing fructose-2,6-bisphosphate and activating PFK1. Increased glycolysis intermediates replenish non-oxidative pentose phosphate pathway (PPP) and serine pathway for biosynthesis of cancer cells. PFKFB3 knockout (KO) cells and their counterpart reconstituted with PFKFB3-Y194F show comparably impaired abilities for proliferation, migration, and xenograft formation. Furthermore, PFKFB3-Y194F knockin mice show impaired glycolysis and, mating of these mice with APCmin/+ mice attenuates spontaneous colon cancer formation in APCmin/+ mice. In summary, we identify a specific mechanism by which c-Src mediates glucose metabolism to meet cancer cells' requirements for maximal biosynthesis and proliferation. The PFKFB3-Tyr194 phosphorylation level highly correlates with c-Src activity in clinical tumor samples, indicating its potential as an evaluation for tumor prognosis.
Collapse
Affiliation(s)
- Huanhuan Ma
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Jia Zhang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Lin Zhou
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Shixiong Wen
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Hsiang-Yu Tang
- Metabolomics Core Laboratory, Healthy Aging Research Center, Chang Gung University, Taoyuan City 33302, Taiwan
| | - Bin Jiang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Fengqiong Zhang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Muhammad Suleman
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Dachao Sun
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Ai Chen
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Wentao Zhao
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Furong Lin
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Ming-Tong Tsau
- Metabolomics Core Laboratory, Healthy Aging Research Center, Chang Gung University, Taoyuan City 33302, Taiwan
| | - Lu-Min Shih
- Metabolomics Core Laboratory, Healthy Aging Research Center, Chang Gung University, Taoyuan City 33302, Taiwan
| | - Changchuan Xie
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Xiaotong Li
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Donghai Lin
- Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Li-Man Hung
- Department and Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Tao-Yuan 33302, Taiwan; Center for Healthy and Aging Research, Chang Gung University, Taoyuan City 33302, Taiwan; Kidney Research Center, Chang Gung Memorial Hospital, Taoyuan City 33302, Taiwan.
| | - Mei-Ling Cheng
- Metabolomics Core Laboratory, Healthy Aging Research Center, Chang Gung University, Taoyuan City 33302, Taiwan; Department and Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Tao-Yuan 33302, Taiwan; Clinical Metabolomics Core Laboratory, Chang Gung Memorial Hospital, Tao-Yuan, Taiwan.
| | - Qinxi Li
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China; Cancer Research Center of Xiamen University, Xiamen, Fujian 361102, China.
| |
Collapse
|
45
|
Sipka T, Peroceschi R, Hassan-Abdi R, Groß M, Ellett F, Begon-Pescia C, Gonzalez C, Lutfalla G, Nguyen-Chi M. Damage-Induced Calcium Signaling and Reactive Oxygen Species Mediate Macrophage Activation in Zebrafish. Front Immunol 2021; 12:636585. [PMID: 33841419 PMCID: PMC8032883 DOI: 10.3389/fimmu.2021.636585] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 03/10/2021] [Indexed: 12/24/2022] Open
Abstract
Immediately after a wound, macrophages are activated and change their phenotypes in reaction to danger signals released from the damaged tissues. The cues that contribute to macrophage activation after wounding in vivo are still poorly understood. Calcium signaling and Reactive Oxygen Species (ROS), mainly hydrogen peroxide, are conserved early wound signals that emanate from the wound and guide neutrophils within tissues up to the wound. However, the role of these signals in the recruitment and the activation of macrophages is elusive. Here we used the transparent zebrafish larva as a tractable vertebrate system to decipher the signaling cascade necessary for macrophage recruitment and activation after the injury of the caudal fin fold. By using transgenic reporter lines to track pro-inflammatory activated macrophages combined with high-resolutive microscopy, we tested the role of Ca²⁺ and ROS signaling in macrophage activation. By inhibiting intracellular Ca²⁺ released from the ER stores, we showed that macrophage recruitment and activation towards pro-inflammatory phenotypes are impaired. By contrast, ROS are only necessary for macrophage activation independently on calcium. Using genetic depletion of neutrophils, we showed that neutrophils are not essential for macrophage recruitment and activation. Finally, we identified Src family kinases, Lyn and Yrk and NF-κB as key regulators of macrophage activation in vivo, with Lyn and ROS presumably acting in the same signaling pathway. This study describes a molecular mechanism by which early wound signals drive macrophage polarization and suggests unique therapeutic targets to control macrophage activity during diseases.
Collapse
Affiliation(s)
- Tamara Sipka
- LPHI, Univ Montpellier, CNRS, Montpellier, France
| | | | | | - Martin Groß
- LPHI, Univ Montpellier, CNRS, Montpellier, France
| | - Felix Ellett
- Bateson Centre and Department of Infection and Immunity, University of Sheffield, Sheffield, United Kingdom.,BioMEMS Resource Center, Center for Engineering in Medicine and Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | | | | | | | | |
Collapse
|
46
|
Activation of Nm23-H1 to suppress breast cancer metastasis via redox regulation. Exp Mol Med 2021; 53:346-357. [PMID: 33753879 PMCID: PMC8080780 DOI: 10.1038/s12276-021-00575-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 12/21/2020] [Accepted: 01/12/2021] [Indexed: 02/05/2023] Open
Abstract
Non-metastatic protein 23 H1 (Nm23-H1), a housekeeping enzyme, is a nucleoside diphosphate kinase-A (NDPK-A). It was the first identified metastasis suppressor protein. Nm23-H1 prolongs disease-free survival and is associated with a good prognosis in breast cancer patients. However, the molecular mechanisms underlying the role of Nm23-H1 in biological processes are still not well understood. This is a review of recent studies focusing on controlling NDPK activity based on the redox regulation of Nm23-H1, structural, and functional changes associated with the oxidation of cysteine residues, and the relationship between NDPK activity and cancer metastasis. Further understanding of the redox regulation of the NDPK function will likely provide a new perspective for developing new strategies for the activation of NDPK-A in suppressing cancer metastasis.
Collapse
|
47
|
Young KA, Biggins L, Sharpe HJ. Protein tyrosine phosphatases in cell adhesion. Biochem J 2021; 478:1061-1083. [PMID: 33710332 PMCID: PMC7959691 DOI: 10.1042/bcj20200511] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 02/10/2021] [Accepted: 02/12/2021] [Indexed: 02/07/2023]
Abstract
Adhesive structures between cells and with the surrounding matrix are essential for the development of multicellular organisms. In addition to providing mechanical integrity, they are key signalling centres providing feedback on the extracellular environment to the cell interior, and vice versa. During development, mitosis and repair, cell adhesions must undergo extensive remodelling. Post-translational modifications of proteins within these complexes serve as switches for activity. Tyrosine phosphorylation is an important modification in cell adhesion that is dynamically regulated by the protein tyrosine phosphatases (PTPs) and protein tyrosine kinases. Several PTPs are implicated in the assembly and maintenance of cell adhesions, however, their signalling functions remain poorly defined. The PTPs can act by directly dephosphorylating adhesive complex components or function as scaffolds. In this review, we will focus on human PTPs and discuss their individual roles in major adhesion complexes, as well as Hippo signalling. We have collated PTP interactome and cell adhesome datasets, which reveal extensive connections between PTPs and cell adhesions that are relatively unexplored. Finally, we reflect on the dysregulation of PTPs and cell adhesions in disease.
Collapse
Affiliation(s)
- Katherine A. Young
- Signalling Programme, Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, U.K
| | - Laura Biggins
- Bioinformatics, Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, U.K
| | - Hayley J. Sharpe
- Signalling Programme, Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, U.K
| |
Collapse
|
48
|
Cruz-Gregorio A, Aranda-Rivera AK. Redox-sensitive signalling pathways regulated by human papillomavirus in HPV-related cancers. Rev Med Virol 2021; 31:e2230. [PMID: 33709497 DOI: 10.1002/rmv.2230] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/12/2021] [Accepted: 02/15/2021] [Indexed: 12/21/2022]
Abstract
High-risk human papillomavirus (HR-HPV) chronic infection is associated with the induction of different HPV-related cancers, such as cervical, anus, vaginal, vulva, penis and oropharynx. HPV-related cancers have been related to oxidative stress (OS), where OS has a significant role in cancer development and maintenance. Surgical resection is the treatment of choice for localised HPV-related cancers; however, these malignancies commonly progress to metastasis. In advanced stages, systemic therapies are the best option against HPV-related cancers. These therapies include cytokine therapy or a combination of tyrosine kinase inhibitors with immunotherapies. Nevertheless, these strategies are still insufficient. Cell redox-sensitive signalling pathways have been poorly studied, although they have been associated with the development and maintenance of HPV-related cancers. In this review, we analyse the known alterations of the following redox-sensitive molecules and signalling pathways by HR-HPV in HPV-related cancers: MAPKs, Akt/TSC2/mTORC1, Wnt/β-Cat, NFkB/IkB/NOX2, HIF/VHL/VEGF and mitochondrial signalling pathways as potential targets for redox therapy.
Collapse
Affiliation(s)
- Alfredo Cruz-Gregorio
- Laboratorio F-225, Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, México City, México
| | - Ana Karina Aranda-Rivera
- Laboratorio F-315, Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, México City, México.,Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, México City, México
| |
Collapse
|
49
|
Structural insights into redox-active cysteine residues of the Src family kinases. Redox Biol 2021; 41:101934. [PMID: 33765616 PMCID: PMC8022254 DOI: 10.1016/j.redox.2021.101934] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 02/18/2021] [Accepted: 03/02/2021] [Indexed: 12/24/2022] Open
Abstract
The Src Family Kinases (SFKs) are pivotal regulators of cellular signal transduction and highly sought-after targets in drug discovery. Their actions within cells are controlled by alterations in protein phosphorylation that switch the SFKs from autoinhibited to active states. The SFKs are also well recognized to contain redox-active cysteine residues where oxidation of certain residues directly contribute to kinase function. To more completely understand the factors that influence cysteine oxidation within the SFKs, a review is presented of the local structural environments surrounding SFK cysteine residues compared to their quantified oxidation in vivo from the Oximouse database. Generally, cysteine local structure and degree of redox sensitivity vary with respect to sequence conservation. Cysteine residues found in conserved positions are more mildly redox-active as they are found in hydrophobic environments and not fully exposed to solvent. Non-conserved redox-active cysteines are generally the most reactive with direct solvent access and/or in hydrophilic environments. Results from this analysis motivate future efforts to conduct comprehensive proteome-wide analysis of redox-sensitivity, conservation, and local structural environments of proteins containing reactive cysteine residues.
Collapse
|
50
|
Abstract
A number of diseases and conditions have been associated with prolonged or persistent exposure to non-physiological levels of reactive oxygen species (ROS). Similarly, ROS underproduction due to loss-of-function mutations in superoxide or hydrogen peroxide (H2O2)-generating enzymes is a risk factor or causative for certain diseases. However, ROS are required for basic cell functions; in particular the diffusible second messenger H2O2 that serves as signaling molecule in redox processes. This activity sets H2O2 apart from highly reactive oxygen radicals and influences the approach to drug discovery, clinical utility, and therapeutic intervention. Here we review the chemical and biological fundamentals of ROS with emphasis on H2O2 as a signaling conduit and initiator of redox relays and propose an integrated view of physiological versus non-physiological reactive species. Therapeutic interventions that target persistently altered ROS levels should include both selective inhibition of a specific source of primary ROS and careful consideration of a targeted pro-oxidant approach, an avenue that is still underdeveloped. Both strategies require attention to redox dynamics in complex cellular systems, integration of the overall spatiotemporal cellular environment, and target validation to yield effective and safe therapeutics. The only professional primary ROS producers are NADPH oxidases (NOX1-5, DUOX1-2). Many other enzymes, e.g., xanthine oxidase (XO), monoamine oxidases (MAO), lysyl oxidases (LO), lipoxygenase (LOX), and cyclooxygenase (COX), produce superoxide and H2O2 secondary to their primary metabolic function. Superoxide is too reactive to disseminate, but H2O2 is diffusible, only limited by adjacent PRDXs or GPXs, and can be apically secreted and imported into cells through aquaporin (AQP) channels. H2O2 redox signaling includes oxidation of the active site thiol in protein tyrosine phosphatases, which will inhibit their activity and thereby increase tyrosine phosphorylation on target proteins. Essential functions include the oxidative burst by NOX2 as antimicrobial innate immune response; gastrointestinal NOX1 and DUOX2 generating low H2O2 concentrations sufficient to trigger antivirulence mechanisms; and thyroidal DUOX2 essential for providing H2O2 reduced by TPO to oxidize iodide to an iodinating form which is then attached to tyrosyls in TG. Loss-of-function (LoF) variants in TPO or DUOX2 cause congenital hypothyroidism and LoF variants in the NOX2 complex chronic granulomatous disease.
Collapse
|