1
|
Mukai K, Qiu X, Takai Y, Yasuo S, Oshima Y, Shimasaki Y. Diurnal-Rhythmic Relationships between Physiological Parameters and Photosynthesis- and Antioxidant-Enzyme Genes Expression in the Raphidophyte Chattonella marina Complex. Antioxidants (Basel) 2024; 13:781. [PMID: 39061850 PMCID: PMC11274130 DOI: 10.3390/antiox13070781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 06/25/2024] [Accepted: 06/25/2024] [Indexed: 07/28/2024] Open
Abstract
Diurnal rhythms in physiological functions contribute to homeostasis in many organisms. Although relationships between molecular biology and diurnal rhythms have been well studied in model organisms like higher plants, those in harmful algal bloom species are poorly understood. Here we measured several physiological parameters and the expression patterns of photosynthesis-related and antioxidant-enzyme genes in the Chattonella marina complex to understand the biological meaning of diurnal rhythm. Under a light-dark cycle, Fv/Fm and expression of psbA, psbD, and 2-Cys prx showed significant increases in the light and decreases during the dark. These rhythms remained even under continuous dark conditions. DCMU suppressed the induction of psbA, psbD, and 2-Cys prx expression under both light regimes. Oxidative stress levels and H2O2 scavenging activities were relatively stable, and there was no significant correlation between H2O2 scavenging activities and antioxidant-enzyme gene expression. These results indicate that the Chattonella marina complex has developed mechanisms for efficient photosynthetic energy production in the light. Our results showed that this species has a diurnal rhythm and a biological clock. These phenomena are thought to contribute to the efficiency of physiological activities centered on photosynthesis and cell growth related to the diurnal vertical movement of this species.
Collapse
Affiliation(s)
- Koki Mukai
- Fisheries Technology Institute, Japan Fisheries Research and Education Agency, 122-7 Nunoura, Tamanoura-cho, Goto, Nagasaki 853-0508, Japan
| | - Xuchun Qiu
- Institute of Environmental Health and Ecological Security, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China;
| | - Yuki Takai
- Laboratory of Marine Environmental Science, Faculty of Agriculture, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan; (Y.T.); (Y.O.)
| | - Shinobu Yasuo
- Laboratory of Regulation in Metabolism and Behavior, Faculty of Agriculture, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan;
| | - Yuji Oshima
- Laboratory of Marine Environmental Science, Faculty of Agriculture, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan; (Y.T.); (Y.O.)
| | - Yohei Shimasaki
- Laboratory of Marine Environmental Science, Faculty of Agriculture, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan; (Y.T.); (Y.O.)
| |
Collapse
|
2
|
Taunt HN, Jackson HO, Gunnarsson ÍN, Pervaiz R, Purton S. Accelerating Chloroplast Engineering: A New System for Rapid Generation of Marker-Free Transplastomic Lines of Chlamydomonas reinhardtii. Microorganisms 2023; 11:1967. [PMID: 37630526 PMCID: PMC10457852 DOI: 10.3390/microorganisms11081967] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/24/2023] [Accepted: 07/26/2023] [Indexed: 08/27/2023] Open
Abstract
'Marker-free' strategies for creating transgenic microorganisms avoid the issue of potential transmission of antibiotic resistance genes to other microorganisms. An already-established strategy for engineering the chloroplast genome (=plastome) of the green microalga Chlamydomonas reinhardtii involves the restoration of photosynthetic function using a recipient strain carrying a plastome mutation in a key photosynthesis gene. Selection for transformant colonies is carried out on minimal media, such that only those cells in which the mutated gene has been replaced with a wild-type copy carried on the transgenic DNA are capable of phototrophic growth. However, this approach can suffer from issues of efficiency due to the slow growth of C. reinhardtii on minimal media and the slow die-back of the untransformed lawn of cells when using mutant strains with a limited photosensitivity phenotype. Furthermore, such phototrophic rescue has tended to rely on existing mutants that are not necessarily ideal for transformation and targeted transgene insertion: Mutants carrying point mutations can easily revert, and those with deletions that do not extend to the intended transgene insertion site can give rise to a sub-population of rescued lines that lack the transgene. In order to improve and accelerate the transformation pipeline for C. reinhardtii, we have created a novel recipient line, HNT6, carrying an engineered deletion in exon 3 of psaA, which encodes one of the core subunits of photosystem I (PSI). Such PSI mutants are highly light-sensitive allowing faster recovery of transformant colonies by selecting for light-tolerance on acetate-containing media, rather than phototrophic growth on minimal media. The deletion extends to a site upstream of psaA-3 that serves as a neutral locus for transgene insertion, thereby ensuring that all of the recovered colonies are transformants containing the transgene. We demonstrate the application of HNT6 using a luciferase reporter.
Collapse
Affiliation(s)
- Henry N. Taunt
- Department of Structural and Molecular Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Harry O. Jackson
- Department of Structural and Molecular Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Ísarr N. Gunnarsson
- Department of Structural and Molecular Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Rabbia Pervaiz
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore 53700, Pakistan
| | - Saul Purton
- Department of Structural and Molecular Biology, University College London, Gower Street, London WC1E 6BT, UK
| |
Collapse
|
3
|
Fages‐Lartaud M, Hundvin K, Hohmann‐Marriott MF. Mechanisms governing codon usage bias and the implications for protein expression in the chloroplast of Chlamydomonas reinhardtii. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 112:919-945. [PMID: 36071273 PMCID: PMC9828097 DOI: 10.1111/tpj.15970] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 08/29/2022] [Accepted: 09/01/2022] [Indexed: 05/30/2023]
Abstract
Chloroplasts possess a considerably reduced genome that is decoded via an almost minimal set of tRNAs. These features make an excellent platform for gaining insights into fundamental mechanisms that govern protein expression. Here, we present a comprehensive and revised perspective of the mechanisms that drive codon selection in the chloroplast of Chlamydomonas reinhardtii and the functional consequences for protein expression. In order to extract this information, we applied several codon usage descriptors to genes with different expression levels. We show that highly expressed genes strongly favor translationally optimal codons, while genes with lower functional importance are rather affected by directional mutational bias. We demonstrate that codon optimality can be deduced from codon-anticodon pairing affinity and, for a small number of amino acids (leucine, arginine, serine, and isoleucine), tRNA concentrations. Finally, we review, analyze, and expand on the impact of codon usage on protein yield, secondary structures of mRNA, translation initiation and termination, and amino acid composition of proteins, as well as cotranslational protein folding. The comprehensive analysis of codon choice provides crucial insights into heterologous gene expression in the chloroplast of C. reinhardtii, which may also be applicable to other chloroplast-containing organisms and bacteria.
Collapse
Affiliation(s)
- Maxime Fages‐Lartaud
- Department of BiotechnologyNorwegian University of Science and TechnologyTrondheimN‐7491Norway
| | - Kristoffer Hundvin
- Department of BiotechnologyNorwegian University of Science and TechnologyTrondheimN‐7491Norway
| | | |
Collapse
|
4
|
Pupillo P, Sparla F, Melandri BA, Trost P. The circadian night depression of photosynthesis analyzed in a herb, Pulmonaria vallarsae. Day/night quantitative relationships. PHOTOSYNTHESIS RESEARCH 2022; 154:143-153. [PMID: 36087250 PMCID: PMC9630222 DOI: 10.1007/s11120-022-00956-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 08/25/2022] [Indexed: 06/15/2023]
Abstract
Although many photosynthesis related processes are known to be controlled by the circadian system, consequent changes in photosynthetic activities are poorly understood. Photosynthesis was investigated during the daily cycle by chlorophyll fluorescence using a PAM fluorometer in Pulmonaria vallarsae subsp. apennina, an understory herb. A standard test consists of a light induction pretreatment followed by light response curve (LRC). Comparison of the major diagnostic parameters collected during day and night showed a nocturnal drop of photosynthetic responses, more evident in water-limited plants and consisting of: (i) strong reduction of flash-induced fluorescence peaks (FIP), maximum linear electron transport rate (Jmax, ETREM) and effective PSII quantum yield (ΦPSII); (ii) strong enhancement of nonphotochemical quenching (NPQ) and (iii) little or no change in photochemical quenching qP, maximum quantum yield of linear electron transport (Φ), and shape of LRC (θ). A remarkable feature of day/night LRCs at moderate to high irradiance was their linear-parallel course in double-reciprocal plots. Photosynthesis was also monitored in plants subjected to 2-3 days of continuous darkness ("long night"). In such conditions, plants exhibited high but declining peaks of photosynthetic activity during subjective days and a low, constant value with elevated NPQ during subjective night tests. The photosynthetic parameters recorded in subjective days in artificial darkness resembled those under natural day conditions. On the basis of the evidence, we suggest a circadian component and a biochemical feedback inhibition to explain the night depression of photosynthesis in P. vallarsae.
Collapse
Affiliation(s)
- Paolo Pupillo
- Department of Pharmacy and Biotechnology, University of Bologna Alma Mater, Via Irnerio 42, 40126, Bologna, Italy
| | - Francesca Sparla
- Department of Pharmacy and Biotechnology, University of Bologna Alma Mater, Via Irnerio 42, 40126, Bologna, Italy.
| | - Bruno A Melandri
- Department of Pharmacy and Biotechnology, University of Bologna Alma Mater, Via Irnerio 42, 40126, Bologna, Italy
| | - Paolo Trost
- Department of Pharmacy and Biotechnology, University of Bologna Alma Mater, Via Irnerio 42, 40126, Bologna, Italy
| |
Collapse
|
5
|
Gururaj M, Ohmura A, Ozawa M, Yamano T, Fukuzawa H, Matsuo T. A potential EARLY FLOWERING 3 homolog in Chlamydomonas is involved in the red/violet and blue light signaling pathways for the degradation of RHYTHM OF CHLOROPLAST 15. PLoS Genet 2022; 18:e1010449. [PMID: 36251728 PMCID: PMC9612821 DOI: 10.1371/journal.pgen.1010449] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 10/27/2022] [Accepted: 09/26/2022] [Indexed: 11/07/2022] Open
Abstract
Light plays a major role in resetting the circadian clock, allowing the organism to synchronize with the environmental day and night cycle. In Chlamydomonas the light-induced degradation of the circadian clock protein, RHYTHM OF CHLOROPLAST 15 (ROC15), is considered one of the key events in resetting the circadian clock. Red/violet and blue light signals have been shown to reach the clock via different molecular pathways; however, many of the participating components of these pathways are yet to be elucidated. Here, we used a forward genetics approach using a reporter strain that expresses a ROC15-luciferase fusion protein. We isolated a mutant that showed impaired ROC15 degradation in response to a wide range of visible wavelengths and impaired light-induced phosphorylation of ROC15. These results suggest that the effects of different wavelengths converge before acting on ROC15 or at ROC15 phosphorylation. Furthermore, the mutant showed a weakened phase resetting in response to light, but its circadian rhythmicity remained largely unaffected under constant light and constant dark conditions. Surprisingly, the gene disrupted in this mutant was found to encode a protein that possessed a very weak similarity to the Arabidopsis thaliana EARLY FLOWERING 3 (ELF3). Our results suggest that this protein is involved in the many different light signaling pathways to the Chlamydomonas circadian clock. However, it may not influence the transcriptional oscillator of Chlamydomonas to a great extent. This study provides an opportunity to further understand the mechanisms underlying light-induced clock resetting and explore the evolution of the circadian clock architecture in Viridiplantae. Resetting of the circadian clock is crucial for an organism, as it allows the synchronization of its internal processes with the day/night cycle. Environmental signals—such as light and temperature—contribute to this event. In plants, the molecular mechanisms underlying the light-induced resetting of the circadian clock have been well-studied in the streptophyte, Arabidopsis thaliana, and has been explored in some chlorophyte algae such as Ostreococcus tauri and Chlamydomonas reinhardtii. Here, we used a forward genetics approach to examine the light signaling pathway of a process considered critical for the light resetting of the Chlamydomonas clock—light-induced degradation of the circadian clock protein ROC15. We explored various aspects of the isolated mutant, such as the degradation of ROC15 in response to a range of visible wavelengths, the circadian rhythm, and the phase resetting of the rhythm. We show that the effects of different wavelengths of light converge before acting on ROC15 or at ROC15 phosphorylation with the aid of a potential homolog of the Arabidopsis thaliana ELF3. Our findings contradict the existing view that there is no known homolog of ELF3 in chlorophyte algae. This study, therefore, sheds light on the evolutionary aspects of the Viridiplantae circadian clocks and their light resetting.
Collapse
Affiliation(s)
- Malavika Gururaj
- Center for Gene Research, Nagoya University, Nagoya, Japan
- Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Ayumi Ohmura
- Center for Gene Research, Nagoya University, Nagoya, Japan
| | - Mariko Ozawa
- Center for Gene Research, Nagoya University, Nagoya, Japan
| | - Takashi Yamano
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Hideya Fukuzawa
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Takuya Matsuo
- Center for Gene Research, Nagoya University, Nagoya, Japan
- Graduate School of Science, Nagoya University, Nagoya, Japan
- * E-mail:
| |
Collapse
|
6
|
Jackson HO, Taunt HN, Mordaka PM, Kumari S, Smith AG, Purton S. CpPosNeg: A positive-negative selection strategy allowing multiple cycles of marker-free engineering of the Chlamydomonas plastome. Biotechnol J 2022; 17:e2200088. [PMID: 35509114 DOI: 10.1002/biot.202200088] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 04/19/2022] [Accepted: 04/23/2022] [Indexed: 02/02/2023]
Abstract
The chloroplast represents an attractive compartment for light-driven biosynthesis of recombinant products, and advanced synthetic biology tools are available for engineering the chloroplast genome ( = plastome) of several algal and plant species. However, producing commercial lines will likely require several plastome manipulations. This presents issues with respect to selectable markers, since there are a limited number available, they can be used only once in a serial engineering strategy, and it is undesirable to retain marker genes for antibiotic resistance in the final transplastome. To address these problems, we have designed a rapid iterative selection system, known as CpPosNeg, for the green microalga Chlamydomonas reinhardtii that allows creation of marker-free transformants starting from wild-type strains. The system employs a dual marker encoding a fusion protein of E. coli aminoglycoside adenyltransferase (AadA: conferring spectinomycin resistance) and a variant of E. coli cytosine deaminase (CodA: conferring sensitivity to 5-fluorocytosine). Initial selection on spectinomycin allows stable transformants to be established and driven to homoplasmy. Subsequent selection on 5-fluorocytosine results in rapid loss of the dual marker through intramolecular recombination between the 3'UTR of the marker and the 3'UTR of the introduced transgene. We demonstrate the versatility of the CpPosNeg system by serial introduction of reporter genes into the plastome.
Collapse
Affiliation(s)
- Harry O Jackson
- Department of Structural and Molecular Biology, University College London, London, UK
| | - Henry N Taunt
- Department of Structural and Molecular Biology, University College London, London, UK
| | - Paweł M Mordaka
- Department of Plant Sciences, University of Cambridge, Cambridge, UK
| | - Sujata Kumari
- DBT-ICT Centre for Energy Biosciences, Institute of Chemical Technology, Mumbai, India
| | - Alison G Smith
- Department of Plant Sciences, University of Cambridge, Cambridge, UK
| | - Saul Purton
- Department of Structural and Molecular Biology, University College London, London, UK
| |
Collapse
|
7
|
Petersen J, Rredhi A, Szyttenholm J, Mittag M. Evolution of circadian clocks along the green lineage. PLANT PHYSIOLOGY 2022; 190:924-937. [PMID: 35325228 PMCID: PMC9516769 DOI: 10.1093/plphys/kiac141] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 03/04/2022] [Indexed: 05/10/2023]
Abstract
Circadian clocks govern temporal programs in the green lineage (Chloroplastida) as they do in other photosynthetic pro- and eukaryotes, bacteria, fungi, animals, and humans. Their physiological properties, including entrainment, phase responses, and temperature compensation, are well conserved. The involvement of transcriptional/translational feedback loops in the oscillatory machinery and reversible phosphorylation events are also maintained. Circadian clocks control a large variety of output rhythms in green algae and terrestrial plants, adjusting their metabolism and behavior to the day-night cycle. The angiosperm Arabidopsis (Arabidopsis thaliana) represents a well-studied circadian clock model. Several molecular components of its oscillatory machinery are conserved in other Chloroplastida, but their functions may differ. Conserved clock components include at least one member of the CIRCADIAN CLOCK ASSOCIATED1/REVEILLE and one of the PSEUDO RESPONSE REGULATOR family. The Arabidopsis evening complex members EARLY FLOWERING3 (ELF3), ELF4, and LUX ARRHYTHMO are found in the moss Physcomitrium patens and in the liverwort Marchantia polymorpha. In the flagellate chlorophyte alga Chlamydomonas reinhardtii, only homologs of ELF4 and LUX (named RHYTHM OF CHLOROPLAST ROC75) are present. Temporal ROC75 expression in C. reinhardtii is opposite to that of the angiosperm LUX, suggesting different clock mechanisms. In the picoalga Ostreococcus tauri, both ELF genes are missing, suggesting that it has a progenitor circadian "green" clock. Clock-relevant photoreceptors and thermosensors vary within the green lineage, except for the CRYPTOCHROMEs, whose variety and functions may differ. More genetically tractable models of Chloroplastida are needed to draw final conclusions about the gradual evolution of circadian clocks within the green lineage.
Collapse
Affiliation(s)
- Jan Petersen
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich Schiller University Jena, Jena 07743, Germany
| | - Anxhela Rredhi
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich Schiller University Jena, Jena 07743, Germany
| | - Julie Szyttenholm
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich Schiller University Jena, Jena 07743, Germany
| | - Maria Mittag
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich Schiller University Jena, Jena 07743, Germany
| |
Collapse
|
8
|
Chen XL, Li YL, Wang LC, Yang QC, Guo WZ. Responses of butter leaf lettuce to mixed red and blue light with extended light/dark cycle period. Sci Rep 2022; 12:6924. [PMID: 35484294 PMCID: PMC9051091 DOI: 10.1038/s41598-022-10681-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 04/04/2022] [Indexed: 11/30/2022] Open
Abstract
To investigate the effects of extended light/dark (L/D) cycle period (relative to the diurnal L/D cycle) on lettuce and explore potential advantages of abnormal L/D cycles, butter leaf lettuce were grown in a plant factory with artificial light (PFAL) and exposed to mixed red (R) and blue (B) LED light with different L/D cycles that were respectively 16 h light/8 h dark (L16/D8, as control), L24/D12, L48/D24, L96/D48 and L120/D60. The results showed that, all the abnormal L/D cycles increased shoot dry weight (DW) of lettuce (by 34-83%) compared with the control, and lettuce DW increased with the L/D cycle period prolonged. The contents of soluble sugar and crude fiber in lettuce showed an overall upward trend with the length of L/D cycle extended, and the highest vitamin C content as well as low nitrate content were both detected in lettuce treated with L120/D60. The light use efficiency (LUE) and electric use efficiency (EUE) of lettuce reached the maximum (respectively 5.37% and 1.76%) under L120/D60 treatment and so were DW, Assimilation rate (A), RC/CS, ABS/CS, TRo/CS and DIo/CS, indicating that longer L/D cycle period was beneficial for the assimilation efficiency and dry matter accumulation in lettuce leaves. The highest shoot fresh weight (FW) and nitrate content detected in lettuce subjected to L24/D12 may be related to the vigorous growth of root, specific L/D cycle seemed to strengthen root growth and water absorption of lettuce. The openness level of RC in PSII (Ψo), ETo/CS, and PIabs were all the highest in lettuce treated with L24/D12, implying that slightly extending the L/D cycle period might promote the energy flowing to the final electron transfer chain. In general, irradiation modes with extended L/D cycle period had the potential to improve energy use efficiency and biomass of lettuce in PFAL. No obvious stress or injury was detected in lettuce subjected to prolonged L/D cycles in terms of plant growth and production. From the perspective of shoot FW, the optimal treatment in this study was L24/D12, while L120/D60 was the recommended treatment as regards of the energy use efficiency and nutritional quality.
Collapse
Affiliation(s)
- Xiao-Li Chen
- Intelligent Equipment Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - You-Li Li
- Intelligent Equipment Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Li-Chun Wang
- Intelligent Equipment Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Qi-Chang Yang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Wen-Zhong Guo
- Intelligent Equipment Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China.
- Key Laboratory of Urban Agriculture (North China), Ministry of Agriculture and Rural Affairs, Beijing, China.
| |
Collapse
|
9
|
Newkirk GM, de Allende P, Jinkerson RE, Giraldo JP. Nanotechnology Approaches for Chloroplast Biotechnology Advancements. FRONTIERS IN PLANT SCIENCE 2021; 12:691295. [PMID: 34381480 PMCID: PMC8351593 DOI: 10.3389/fpls.2021.691295] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 06/28/2021] [Indexed: 05/17/2023]
Abstract
Photosynthetic organisms are sources of sustainable foods, renewable biofuels, novel biopharmaceuticals, and next-generation biomaterials essential for modern society. Efforts to improve the yield, variety, and sustainability of products dependent on chloroplasts are limited by the need for biotechnological approaches for high-throughput chloroplast transformation, monitoring chloroplast function, and engineering photosynthesis across diverse plant species. The use of nanotechnology has emerged as a novel approach to overcome some of these limitations. Nanotechnology is enabling advances in the targeted delivery of chemicals and genetic elements to chloroplasts, nanosensors for chloroplast biomolecules, and nanotherapeutics for enhancing chloroplast performance. Nanotechnology-mediated delivery of DNA to the chloroplast has the potential to revolutionize chloroplast synthetic biology by allowing transgenes, or even synthesized DNA libraries, to be delivered to a variety of photosynthetic species. Crop yield improvements could be enabled by nanomaterials that enhance photosynthesis, increase tolerance to stresses, and act as nanosensors for biomolecules associated with chloroplast function. Engineering isolated chloroplasts through nanotechnology and synthetic biology approaches are leading to a new generation of plant-based biomaterials able to self-repair using abundant CO2 and water sources and are powered by renewable sunlight energy. Current knowledge gaps of nanotechnology-enabled approaches for chloroplast biotechnology include precise mechanisms for entry into plant cells and organelles, limited understanding about nanoparticle-based chloroplast transformations, and the translation of lab-based nanotechnology tools to the agricultural field with crop plants. Future research in chloroplast biotechnology mediated by the merging of synthetic biology and nanotechnology approaches can yield tools for precise control and monitoring of chloroplast function in vivo and ex vivo across diverse plant species, allowing increased plant productivity and turning plants into widely available sustainable technologies.
Collapse
Affiliation(s)
- Gregory M. Newkirk
- Department of Botany and Plant Sciences, University of California, Riverside, Riverside, CA, United States
- Department of Microbiology and Plant Pathology, University of California, Riverside, Riverside, CA, United States
| | - Pedro de Allende
- Department of Botany and Plant Sciences, University of California, Riverside, Riverside, CA, United States
| | - Robert E. Jinkerson
- Department of Botany and Plant Sciences, University of California, Riverside, Riverside, CA, United States
- Department of Chemical and Environmental Engineering, University of California, Riverside, Riverside, CA, United States
| | - Juan Pablo Giraldo
- Department of Botany and Plant Sciences, University of California, Riverside, Riverside, CA, United States
- *Correspondence: Juan Pablo Giraldo,
| |
Collapse
|
10
|
Matsuo T, Iida T, Ohmura A, Gururaj M, Kato D, Mutoh R, Ihara K, Ishiura M. The role of ROC75 as a daytime component of the circadian oscillator in Chlamydomonas reinhardtii. PLoS Genet 2020; 16:e1008814. [PMID: 32555650 PMCID: PMC7299327 DOI: 10.1371/journal.pgen.1008814] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 04/29/2020] [Indexed: 01/20/2023] Open
Abstract
The circadian clocks in chlorophyte algae have been studied in two model organisms, Chlamydomonas reinhardtii and Ostreococcus tauri. These studies revealed that the chlorophyte clocks include some genes that are homologous to those of the angiosperm circadian clock. However, the genetic network architectures of the chlorophyte clocks are largely unknown, especially in C. reinhardtii. In this study, using C. reinhardtii as a model, we characterized RHYTHM OF CHLOROPLAST (ROC) 75, a clock gene encoding a putative GARP DNA-binding transcription factor similar to the clock proteins LUX ARRHYTHMO (LUX, also called PHYTOCLOCK 1 [PCL1]) and BROTHER OF LUX ARRHYTHMO (BOA, also called NOX) of the angiosperm Arabidopsis thaliana. We observed that ROC75 is a day/subjective day-phase-expressed nuclear-localized protein that associates with some night-phased clock genes and represses their expression. This repression may be essential for the gating of reaccumulation of the other clock-related GARP protein, ROC15, after its light-dependent degradation. The restoration of ROC75 function in an arrhythmic roc75 mutant under constant darkness leads to the resumption of circadian oscillation from the subjective dawn, suggesting that the ROC75 restoration acts as a morning cue for the C. reinhardtii clock. Our study reveals a part of the genetic network of C. reinhardtii clock that could be considerably different from that of A. thaliana.
Collapse
Affiliation(s)
- Takuya Matsuo
- Center for Gene Research, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Japan
- Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Japan
- * E-mail:
| | - Takahiro Iida
- Center for Gene Research, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Japan
- Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Japan
| | - Ayumi Ohmura
- Center for Gene Research, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Japan
- Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Japan
| | - Malavika Gururaj
- Center for Gene Research, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Japan
- Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Japan
| | - Daisaku Kato
- Center for Gene Research, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Japan
- Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Japan
| | - Risa Mutoh
- Center for Gene Research, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Japan
- Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Japan
| | - Kunio Ihara
- Center for Gene Research, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Japan
- Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Japan
| | - Masahiro Ishiura
- Center for Gene Research, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Japan
- Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Japan
| |
Collapse
|
11
|
Salomé PA, Merchant SS. A Series of Fortunate Events: Introducing Chlamydomonas as a Reference Organism. THE PLANT CELL 2019; 31:1682-1707. [PMID: 31189738 PMCID: PMC6713297 DOI: 10.1105/tpc.18.00952] [Citation(s) in RCA: 144] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 05/20/2019] [Accepted: 06/08/2019] [Indexed: 05/13/2023]
Abstract
The unicellular alga Chlamydomonas reinhardtii is a classical reference organism for studying photosynthesis, chloroplast biology, cell cycle control, and cilia structure and function. It is also an emerging model for studying sensory cilia, the production of high-value bioproducts, and in situ structural determination. Much of the early appeal of Chlamydomonas was rooted in its promise as a genetic system, but like other classic model organisms, this rise to prominence predated the discovery of the structure of DNA, whole-genome sequences, and molecular techniques for gene manipulation. The haploid genome of C. reinhardtii facilitates genetic analyses and offers many of the advantages of microbial systems applied to a photosynthetic organism. C. reinhardtii has contributed to our understanding of chloroplast-based photosynthesis and cilia biology. Despite pervasive transgene silencing, technological advances have allowed researchers to address outstanding lines of inquiry in algal research. The most thoroughly studied unicellular alga, C. reinhardtii, is the current standard for algal research, and although genome editing is still far from efficient and routine, it nevertheless serves as a template for other algae. We present a historical retrospective of the rise of C. reinhardtii to illuminate its past and present. We also present resources for current and future scientists who may wish to expand their studies to the realm of microalgae.
Collapse
Affiliation(s)
- Patrice A Salomé
- University of California, Los Angeles, Department of Chemistry and Biochemistry, Los Angeles, CA 90095
| | - Sabeeha S Merchant
- University of California, Los Angeles, Department of Chemistry and Biochemistry, Los Angeles, CA 90095
- University of California, Berkeley, Departments of Plant and Microbial Biology and Molecular and Cell Biology, Berkeley, CA 94720
| |
Collapse
|
12
|
Esland L, Larrea-Alvarez M, Purton S. Selectable Markers and Reporter Genes for Engineering the Chloroplast of Chlamydomonas reinhardtii. BIOLOGY 2018; 7:E46. [PMID: 30309004 PMCID: PMC6315944 DOI: 10.3390/biology7040046] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 10/02/2018] [Accepted: 10/03/2018] [Indexed: 02/07/2023]
Abstract
Chlamydomonas reinhardtii is a model alga of increasing interest as a cell factory for the production of valuable compounds, including therapeutic proteins and bioactive metabolites. Expression of foreign genes in the chloroplast is particularly advantageous as: (i) accumulation of product in this sub-cellular compartment minimises potential toxicity to the rest of the cell; (ii) genes can integrate at specific loci of the chloroplast genome (plastome) by homologous recombination; (iii) the high ploidy of the plastome and the high-level expression of chloroplast genes can be exploited to achieve levels of recombinant protein as high as 5% total cell protein; (iv) the lack of any gene silencing mechanisms in the chloroplast ensures stable expression of transgenes. However, the generation of C. reinhardtii chloroplast transformants requires efficient methods of selection, and ideally methods for subsequent marker removal. Additionally, the use of reporter genes is critical to achieving a comprehensive understanding of gene expression, thereby informing experimental design for recombinant applications. This review discusses currently available selection and reporter systems for chloroplast engineering in C. reinhardtii, as well as those used for chloroplast engineering in higher plants and other microalgae, and looks to the future in terms of possible new markers and reporters that will further advance the C. reinhardtii chloroplast as an expression platform.
Collapse
Affiliation(s)
- Lola Esland
- Department of Life Sciences, Imperial College London, South Kensington Campus, London SW7 2AZ, UK.
| | - Marco Larrea-Alvarez
- School of Biological Sciences and Engineering, Yachay-Tech University, Hacienda San José, Urcuquí-Imbabura 100650, Ecuador.
| | - Saul Purton
- Institute of Structural & Molecular Biology, University College London, Gower Street, London WC1E 6BT, UK.
| |
Collapse
|
13
|
Kinoshita A, Niwa Y, Onai K, Yamano T, Fukuzawa H, Ishiura M, Matsuo T. CSL encodes a leucine-rich-repeat protein implicated in red/violet light signaling to the circadian clock in Chlamydomonas. PLoS Genet 2017; 13:e1006645. [PMID: 28333924 PMCID: PMC5363811 DOI: 10.1371/journal.pgen.1006645] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 02/20/2017] [Indexed: 01/12/2023] Open
Abstract
The green alga Chlamydomonas reinhardtii shows various light responses in behavior and physiology. One such photoresponse is the circadian clock, which can be reset by external light signals to entrain its oscillation to daily environmental cycles. In a previous report, we suggested that a light-induced degradation of the clock protein ROC15 is a trigger to reset the circadian clock in Chlamydomonas. However, light signaling pathways of this process remained unclear. Here, we screened for mutants that show abnormal ROC15 diurnal rhythms, including the light-induced protein degradation at dawn, using a luciferase fusion reporter. In one mutant, ROC15 degradation and phase resetting of the circadian clock by light were impaired. Interestingly, the impairments were observed in response to red and violet light, but not to blue light. We revealed that an uncharacterized gene encoding a protein similar to RAS-signaling-related leucine-rich repeat (LRR) proteins is responsible for the mutant phenotypes. Our results indicate that a previously uncharacterized red/violet light signaling pathway is involved in the phase resetting of circadian clock in Chlamydomonas. The unicellular green alga Chlamydomonas reinhardtii is used as a model system in many biological researches. Although blue light responses of this alga (e.g., phototaxis) are well known and well characterized, far less is understood about responses to other wavelengths. One such photoresponse is the circadian clock, which can be reset by various wavelengths of light, ranging from violet to red, to entrain its oscillation to daily environmental cycles. In this study, we identified a gene responsible for red and violet light responses of the circadian clock by a forward genetic screen. Our results shed light on a previously unrecognized red/violet light signaling pathway in green algae.
Collapse
Affiliation(s)
- Ayumi Kinoshita
- Center for Gene Research, Nagoya University, Nagoya, Japan
- Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Yoshimi Niwa
- Center for Gene Research, Nagoya University, Nagoya, Japan
- Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Kiyoshi Onai
- Center for Gene Research, Nagoya University, Nagoya, Japan
| | - Takashi Yamano
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Hideya Fukuzawa
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Masahiro Ishiura
- Center for Gene Research, Nagoya University, Nagoya, Japan
- Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Takuya Matsuo
- Center for Gene Research, Nagoya University, Nagoya, Japan
- Graduate School of Science, Nagoya University, Nagoya, Japan
- * E-mail:
| |
Collapse
|
14
|
Douchi D, Qu Y, Longoni P, Legendre-Lefebvre L, Johnson X, Schmitz-Linneweber C, Goldschmidt-Clermont M. A Nucleus-Encoded Chloroplast Phosphoprotein Governs Expression of the Photosystem I Subunit PsaC in Chlamydomonas reinhardtii. THE PLANT CELL 2016; 28:1182-99. [PMID: 27113776 PMCID: PMC4904667 DOI: 10.1105/tpc.15.00725] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 04/25/2016] [Indexed: 05/05/2023]
Abstract
The nucleo-cytoplasmic compartment exerts anterograde control on chloroplast gene expression through numerous proteins that intervene at posttranscriptional steps. Here, we show that the maturation of psaC mutant (mac1) of Chlamydomonas reinhardtii is defective in photosystem I and fails to accumulate psaC mRNA. The MAC1 locus encodes a member of the Half-A-Tetratricopeptide (HAT) family of super-helical repeat proteins, some of which are involved in RNA transactions. The Mac1 protein localizes to the chloroplast in the soluble fraction. MAC1 acts through the 5' untranslated region of psaC transcripts and is required for their stability. Small RNAs that map to the 5'end of psaC RNA in the wild type but not in the mac1 mutant are inferred to represent footprints of MAC1-dependent protein binding, and Mac1 expressed in bacteria binds RNA in vitro. A coordinate response to iron deficiency, which leads to dismantling of the photosynthetic electron transfer chain and in particular of photosystem I, also causes a decrease of Mac1. Overexpression of Mac1 leads to a parallel increase in psaC mRNA but not in PsaC protein, suggesting that Mac1 may be limiting for psaC mRNA accumulation but that other processes regulate protein accumulation. Furthermore, Mac 1 is differentially phosphorylated in response to iron availability and to conditions that alter the redox balance of the electron transfer chain.
Collapse
Affiliation(s)
- Damien Douchi
- Department of Botany and Plant Biology and Department of Molecular Biology, University of Geneva, 1211 Geneva 4, Switzerland
| | - Yujiao Qu
- Institute of Biology, Molecular Genetics, Humboldt University of Berlin, D-10115 Berlin, Germany
| | - Paolo Longoni
- Department of Botany and Plant Biology and Department of Molecular Biology, University of Geneva, 1211 Geneva 4, Switzerland
| | - Linnka Legendre-Lefebvre
- Department of Botany and Plant Biology and Department of Molecular Biology, University of Geneva, 1211 Geneva 4, Switzerland
| | - Xenie Johnson
- Unité Mixte de Recherche 7141, CNRS/Université Pierre et Marie Curie, Institut de Biologie Physico-Chimique, 75005 Paris, France
| | | | - Michel Goldschmidt-Clermont
- Department of Botany and Plant Biology and Department of Molecular Biology, University of Geneva, 1211 Geneva 4, Switzerland
| |
Collapse
|
15
|
Ryo M, Matsuo T, Yamashino T, Ichinose M, Sugita M, Aoki S. Diversity of plant circadian clocks: Insights from studies of Chlamydomonas reinhardtii and Physcomitrella patens. PLANT SIGNALING & BEHAVIOR 2016; 11:e1116661. [PMID: 26645746 PMCID: PMC4871632 DOI: 10.1080/15592324.2015.1116661] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Arabidopsis thaliana has long been the model plant of choice for elucidating the mechanisms of the circadian clock. Recently, relevant results have accumulated in other species of green plant lineages, including green algae. This mini-review describes a comparison of the mechanism of the A. thaliana clock to those of the green alga Chlamydomonas reinhardtii and the moss Physcomitrella patens, focusing on commonalities and divergences of subsystems of the clock. The potential of such an approach from an evolutionary viewpoint is discussed.
Collapse
Affiliation(s)
- Masashi Ryo
- Graduate School of Information Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Takuya Matsuo
- Center for Gene Research, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Takafumi Yamashino
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Mizuho Ichinose
- Center for Gene Research, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
- Institute of Transformative Bio-Molecules, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Mamoru Sugita
- Center for Gene Research, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Setsuyuki Aoki
- Graduate School of Information Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| |
Collapse
|
16
|
Ohnuma M, Yokoyama T, Inouye T, Sekine Y, Kuroiwa T, Tanaka K. Optimization of polyethylene glycol (PEG)-mediated DNA introduction conditions for transient gene expression in the unicellular red alga Cyanidioschyzon merolae. J GEN APPL MICROBIOL 2015; 60:156-9. [PMID: 25273989 DOI: 10.2323/jgam.60.156] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Mio Ohnuma
- Institute of Molecular and Cellular Biosciences, The University of Tokyo
| | | | | | | | | | | |
Collapse
|
17
|
Pan WJ, Wang X, Deng YR, Li JH, Chen W, Chiang JY, Yang JB, Zheng L. Nondestructive and intuitive determination of circadian chlorophyll rhythms in soybean leaves using multispectral imaging. Sci Rep 2015; 5:11108. [PMID: 26059057 PMCID: PMC4461922 DOI: 10.1038/srep11108] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Accepted: 04/21/2015] [Indexed: 12/29/2022] Open
Abstract
The circadian clock, synchronized by daily cyclic environmental cues, regulates diverse aspects of plant growth and development and increases plant fitness. Even though much is known regarding the molecular mechanism of circadian clock, it remains challenging to quantify the temporal variation of major photosynthesis products as well as their metabolic output in higher plants in a real-time, nondestructive and intuitive manner. In order to reveal the spatial-temporal scenarios of photosynthesis and yield formation regulated by circadian clock, multispectral imaging technique has been employed for nondestructive determination of circadian chlorophyll rhythms in soybean leaves. By utilizing partial least square regression analysis, the determination coefficients R(2), 0.9483 for chlorophyll a and 0.8906 for chlorophyll b, were reached, respectively. The predicted chlorophyll contents extracted from multispectral data showed an approximately 24-h rhythm which could be entrained by external light conditions, consistent with the chlorophyll contents measured by chemical analyses. Visualization of chlorophyll map in each pixel offers an effective way to analyse spatial-temporal distribution of chlorophyll. Our results revealed the potentiality of multispectral imaging as a feasible nondestructive universal assay for examining clock function and robustness, as well as monitoring chlorophyll a and b and other biochemical components in plants.
Collapse
Affiliation(s)
- Wen-Juan Pan
- School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei 230009, China
| | - Xia Wang
- School of Medical Engineering, Hefei University of Technology, Hefei 230009, China
| | - Yong-Ren Deng
- Department of Computer Science and Engineering, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
| | - Jia-Hang Li
- Department of Computer Science and Engineering, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
| | - Wei Chen
- School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei 230009, China
| | - John Y. Chiang
- Department of Computer Science and Engineering, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
- Department of Healthcare Administration and Medical Informatics, Kaohsiung 80708, Taiwan
| | - Jian-Bo Yang
- Rice Research Institute, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - Lei Zheng
- School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei 230009, China
- School of Medical Engineering, Hefei University of Technology, Hefei 230009, China
| |
Collapse
|
18
|
Chaudhari VR, Vyawahare A, Bhattacharjee SK, Rao BJ. Enhanced excision repair and lack of PSII activity contribute to higher UV survival of Chlamydomonas reinhardtii cells in dark. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2015; 88:60-69. [PMID: 25660990 DOI: 10.1016/j.plaphy.2015.02.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2014] [Accepted: 02/02/2015] [Indexed: 06/04/2023]
Abstract
Plant cells are known to differentiate their responses to stress depending up on the light conditions. We observed that UVC sensitive phenotype of light grown asynchronous Chlamydomonas reinhardtii culture (Light culture: LC) can be converted to relatively resistant form by transfer to dark condition (Dark culture: DC) before UVC exposure. The absence of photosystem II (PSII) function, by either atrazine treatment in wild type or in D1 (psbA) null mutant, conferred UV protection even in LC. We provide an indirect support for involvement of reactive oxygen species (ROS) signalling by showing higher UV survival on exposures to mild dose of H2O2 or Methyl Viologen. Circadian trained culture also showed a rhythmic variation in UV sensitivity in response to alternating light-dark (12 h:12 h) entrainment, with maximum UV survival at the end of 12 h dark and minimum at the end of 12 h light. This rhythm failed to maintain in "free running" conditions, making it a non-circadian phenotype. Moreover, atrazine strongly inhibited rhythmic UV sensitivity and conferred a constitutively high resistance, without affecting internal circadian rhythm marker expression. Dampening of UV sensitivity rhythm in Thymine-dimer excision repair mutant (cc-888) suggested the involvement of DNA repair in this phenomenon. DNA excision repair (ER) assays in cell-free extracts revealed that dark incubated cells exhibit higher ER compared to those growing in light, underscoring the role of ER in conferring differential UV sensitivity in dark versus light incubation. We suggest that multiple factors such as ROS changes triggered by differences in PSII activity, concomitant with differential ER efficiency collectively contribute to light-dark (12 h: 12 h) rhythmicity in C. reinhardtii UV sensitivity.
Collapse
Affiliation(s)
- Vishalsingh R Chaudhari
- Department of Biological Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Mumbai 400005, India.
| | - Aniket Vyawahare
- Department of Biological Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Mumbai 400005, India.
| | - Swapan K Bhattacharjee
- School of Life Sciences, Devi Ahilya Vishwavidyalaya, Khandwa Road, Indore 452017, India.
| | - Basuthkar J Rao
- Department of Biological Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Mumbai 400005, India.
| |
Collapse
|
19
|
Idoine AD, Boulouis A, Rupprecht J, Bock R. The diurnal logic of the expression of the chloroplast genome in Chlamydomonas reinhardtii. PLoS One 2014; 9:e108760. [PMID: 25272288 PMCID: PMC4182738 DOI: 10.1371/journal.pone.0108760] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2014] [Accepted: 09/04/2014] [Indexed: 12/01/2022] Open
Abstract
Chloroplasts are derived from cyanobacteria and have retained a bacterial-type genome and gene expression machinery. The chloroplast genome encodes many of the core components of the photosynthetic apparatus in the thylakoid membranes. To avoid photooxidative damage and production of harmful reactive oxygen species (ROS) by incompletely assembled thylakoid protein complexes, chloroplast gene expression must be tightly regulated and co-ordinated with gene expression in the nucleus. Little is known about the control of chloroplast gene expression at the genome-wide level in response to internal rhythms and external cues. To obtain a comprehensive picture of organelle transcript levels in the unicellular model alga Chlamydomonas reinhardtii in diurnal conditions, a qRT-PCR platform was developed and used to quantify 68 chloroplast, 21 mitochondrial as well as 71 nuclear transcripts in cells grown in highly controlled 12 h light/12 h dark cycles. Interestingly, in anticipation of dusk, chloroplast transcripts from genes involved in transcription reached peak levels first, followed by transcripts from genes involved in translation, and finally photosynthesis gene transcripts. This pattern matches perfectly the theoretical demands of a cell “waking up” from the night. A similar trend was observed in the nuclear transcripts. These results suggest a striking internal logic in the expression of the chloroplast genome and a previously unappreciated complexity in the regulation of chloroplast genes.
Collapse
Affiliation(s)
- Adam D. Idoine
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam, Golm, Germany
| | - Alix Boulouis
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam, Golm, Germany
| | - Jens Rupprecht
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam, Golm, Germany
| | - Ralph Bock
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam, Golm, Germany
- * E-mail:
| |
Collapse
|
20
|
Kucho KI, Kakoi K, Yamaura M, Iwashita M, Abe M, Uchiumi T. Codon-optimized antibiotic resistance gene improves efficiency of transient transformation in Frankia. J Biosci 2014; 38:713-7. [PMID: 24287650 DOI: 10.1007/s12038-013-9361-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Frankia is a unique actinobacterium having abilities to fix atmospheric dinitrogen and to establish endosymbiosis with trees, but molecular bases underlying these interesting characteristics are poorly understood because of a lack of stable transformation system. Extremely high GC content of Frankia genome (more than 70 percent) can be a hindrance to successful transformation. We generated a synthetic gentamicin resistance gene whose codon usage is optimized to Frankia (fgmR) and evaluated its usefulness as a selection marker using a transient transformation system. Success rate of transient transformation and cell growth in selective culture were significantly increased by use of fgmR instead of a native gentamicin resistance gene, suggesting that codon optimization improved translation efficiency of the marker gene and increased antibiotic resistance. Our result shows that similarity in codon usage pattern is an important factor to be taken into account when exogenous transgenes are expressed in Frankia cells.
Collapse
Affiliation(s)
- Ken-Ichi Kucho
- Graduate School of Science and Engineering, Kagoshima University, Korimoto 1-21-35, Kagoshima 890-0065, Japan,
| | | | | | | | | | | |
Collapse
|
21
|
Dodd AN, Kusakina J, Hall A, Gould PD, Hanaoka M. The circadian regulation of photosynthesis. PHOTOSYNTHESIS RESEARCH 2014; 119:181-90. [PMID: 23529849 DOI: 10.1007/s11120-013-9811-8] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2012] [Accepted: 03/08/2013] [Indexed: 05/25/2023]
Abstract
Correct circadian regulation increases plant productivity, and photosynthesis is circadian-regulated. Here, we discuss the regulatory basis for the circadian control of photosynthesis. We discuss candidate mechanisms underpinning circadian oscillations of light harvesting and consider how the circadian clock modulates CO2 fixation by Rubisco. We show that new techniques may provide a platform to better understand the signalling pathways that couple the circadian clock with the photosynthetic apparatus. Finally, we discuss how understanding circadian regulation in model systems is underpinning research into the impact of circadian regulation in crop species.
Collapse
Affiliation(s)
- Antony N Dodd
- School of Biological Sciences, University of Bristol, Bristol, BS8 1UG, UK,
| | | | | | | | | |
Collapse
|
22
|
Forbes-Stovall J, Howton J, Young M, Davis G, Chandler T, Kessler B, Rinehart CA, Jacobshagen S. Chlamydomonas reinhardtii strain CC-124 is highly sensitive to blue light in addition to green and red light in resetting its circadian clock, with the blue-light photoreceptor plant cryptochrome likely acting as negative modulator. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2014; 75:14-23. [PMID: 24361506 PMCID: PMC3938392 DOI: 10.1016/j.plaphy.2013.12.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2013] [Accepted: 12/03/2013] [Indexed: 05/20/2023]
Abstract
The unicellular green alga Chlamydomonas reinhardtii has long served as model organism for studies on the circadian clock. This clock is present in all eukaryotes and some prokaryotes allowing them to anticipate and take advantage of the daily oscillations in the environment. Although much is known about the circadian clock in C. reinhardtii, the photoreceptors mediating entrainment of the clock to the daily changes of light remain obscure. Based on its circadian rhythm of phototaxis as a reporter of the clock's phase, we show here that C. reinhardtii strain CC-124 is highly sensitive to blue light of 440 nm when resetting its circadian clock upon light pulses. Thus, CC-124 differs in this respect from what was previously reported for a cell wall-deficient strain. An action spectrum analysis revealed that CC-124 also responds with high sensitivity to green (540 nm), red (640-660 nm), and possibly UV-A (≤400 nm) light, and therefore shows similarities as well to what has been reported for the cell wall-deficient strain. We also investigated two RNA interference strains with reductions in the level of the blue light photoreceptor plant cryptochrome (CPH1). One of them, the strain with the greater reduction, surprisingly showed an increased sensitivity in clock resetting upon blue light pulses of 440 nm. This increase in sensitivity reverted to wild-type levels when the RNA interference strain reverted to wild-type protein levels. It suggests that plant cryptochrome in C. reinhardtii could function as negative rather than positive modulator of circadian clock resetting.
Collapse
Affiliation(s)
- Jennifer Forbes-Stovall
- Department of Biology, Western Kentucky University, 1906 College Heights Blvd., Bowling Green, KY 42101, USA
| | - Jonathan Howton
- Department of Biology, Western Kentucky University, 1906 College Heights Blvd., Bowling Green, KY 42101, USA
| | - Matthew Young
- Department of Biology, Western Kentucky University, 1906 College Heights Blvd., Bowling Green, KY 42101, USA
| | - Gavin Davis
- Department of Biology, Western Kentucky University, 1906 College Heights Blvd., Bowling Green, KY 42101, USA
| | - Todd Chandler
- Department of Biology, Western Kentucky University, 1906 College Heights Blvd., Bowling Green, KY 42101, USA
| | - Bruce Kessler
- Department of Mathematics, Western Kentucky University, 1906 College Heights Blvd., Bowling Green, KY 42101, USA
| | - Claire A Rinehart
- Department of Biology, Western Kentucky University, 1906 College Heights Blvd., Bowling Green, KY 42101, USA
| | - Sigrid Jacobshagen
- Department of Biology, Western Kentucky University, 1906 College Heights Blvd., Bowling Green, KY 42101, USA.
| |
Collapse
|
23
|
Phase-resetting mechanism of the circadian clock in Chlamydomonas reinhardtii. Proc Natl Acad Sci U S A 2013; 110:13666-71. [PMID: 23898163 DOI: 10.1073/pnas.1220004110] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Although the circadian clock is a self-sustaining oscillator having a periodicity of nearly 1 d, its period length is not necessarily 24 h. Therefore, daily adjustment of the clock (i.e., resetting) is an essential mechanism for the circadian clock to adapt to daily environmental changes. One of the major cues for this resetting mechanism is light. In the unicellular green alga Chlamydomonas reinhardtii, the circadian clock is reset by blue/green and red light. However, the underlying molecular mechanisms remain largely unknown. In this study, using clock protein-luciferase fusion reporters, we found that the level of RHYTHM OF CHLOROPLAST 15 (ROC15), a clock component in C. reinhardtii, decreased rapidly after light exposure in a circadian-phase-independent manner. Blue, green, and red light were able to induce this process, with red light being the most effective among them. Expression analyses and inhibitor experiments suggested that this process was regulated mainly by a proteasome-dependent protein degradation pathway. In addition, we found that the other clock gene, ROC114, encoding an F-box protein, was involved in this process. Furthermore, we demonstrated that a roc15 mutant showed defects in the phase-resetting of the circadian clock by light. Taken together, these data strongly suggest that the light-induced degradation of ROC15 protein is one of the triggers for resetting the circadian clock in C. reinhardtii. Our data provide not only a basis for understanding the molecular mechanisms of light-induced phase-resetting in C. reinhardtii, but also insights into the phase-resetting mechanisms of circadian clocks in plants.
Collapse
|
24
|
Kawazoe R, Mahan KM, Venghaus BE, Carter ML, Herrin DL. Circadian regulation of chloroplast transcription in Chlamydomonas is accompanied by little or no fluctuation in RPOD levels or core RNAP activity. Mol Biol Rep 2012; 39:10565-71. [DOI: 10.1007/s11033-012-1942-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2012] [Accepted: 10/01/2012] [Indexed: 10/27/2022]
|
25
|
Kanesaki Y, Imamura S, Minoda A, Tanaka K. External light conditions and internal cell cycle phases coordinate accumulation of chloroplast and mitochondrial transcripts in the red alga Cyanidioschyzon merolae. DNA Res 2012; 19:289-303. [PMID: 22518007 PMCID: PMC3372377 DOI: 10.1093/dnares/dss013] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Accepted: 03/14/2012] [Indexed: 01/08/2023] Open
Abstract
The mitochondria and chloroplasts in plant cells are originated from bacterial endosymbioses, and they still replicate their own genome and divide in a similar manner as their ancestors did. It is thus likely that the organelle transcription is coordinated with its proliferation cycle. However, this possibility has not extensively been explored to date, because in most plant cells there are many mitochondria and chloroplasts that proliferate asynchronously. It is generally believed that the gene transfer from the organellar to nuclear genome has enabled nuclear control of the organelle functions during the evolution of eukaryotic plant cells. Nevertheless, no significant relationship has been reported between the organelle transcriptome and the host cell cycle even in Chlamydomonas reinhardtii. While the organelle proliferation cycle is not coordinated with the cell cycle in vascular plants, in the unicellular red alga Cyanidioschyzon merolae that contains only one mitochondrion, one chloroplast, and one nucleus per cell, each of the organelles is known to proliferate at a specific phase of the cell cycle. Here, we show that the expression of most of the organelle genes is highly coordinated with the cell cycle phases as well as with light regimes in clustering analyses. In addition, a strong correlation was observed between the gene expression profiles in the mitochondrion and chloroplast, resulting in the identification of a network of functionally related genes that are co-expressed during organelle proliferation.
Collapse
Affiliation(s)
- Yu Kanesaki
- Genome Research Center, Nodai Research Institute, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo156-8502, Japan
- Laboratory of Molecular Genetics, Institute of Molecular and Cellular Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Sousuke Imamura
- Laboratory of Molecular Genetics, Institute of Molecular and Cellular Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
- Department of Biological Sciences, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo112-8551, Japan
- Chemical Resources Laboratory, Tokyo Institute of Technology, 4259-R1-29 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan
| | - Ayumi Minoda
- Laboratory of Molecular Genetics, Institute of Molecular and Cellular Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Horinouchi, Tokyo192-0392, Japan
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8572, Japan
| | - Kan Tanaka
- Laboratory of Molecular Genetics, Institute of Molecular and Cellular Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
- Chemical Resources Laboratory, Tokyo Institute of Technology, 4259-R1-29 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan
- Graduate School of Horticulture, Chiba University, 648 Matsudo, Matsudo, Chiba 271-8510, Japan
| |
Collapse
|
26
|
Matsuo T, Iida T, Ishiura M. N-terminal acetyltransferase 3 gene is essential for robust circadian rhythm of bioluminescence reporter in Chlamydomonas reinhardtii. Biochem Biophys Res Commun 2012; 418:342-6. [PMID: 22266323 DOI: 10.1016/j.bbrc.2012.01.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2012] [Accepted: 01/06/2012] [Indexed: 11/19/2022]
Abstract
Chlamydomonas reinhardtii is a model species of algae for studies on the circadian clock. Previously, we isolated a series of mutants showing defects in the circadian rhythm of a luciferase reporter introduced into the chloroplast genome, and identified the genes responsible for the defective circadian rhythm. However, we were unable to identify the gene responsible for the defective circadian rhythm of the rhythm of chloroplast 97 (roc97) mutant because of a large genomic deletion. Here, we identified the gene responsible for the roc97 mutation through a genetic complementation study. This gene encodes a protein that is homologous to the subunit of N-terminal acetyltransferase (NAT) which catalyzes N-terminal acetylation of proteins. Our results provide the first example of involvement of the protein N-terminal acetyltransferase in the circadian rhythm.
Collapse
Affiliation(s)
- Takuya Matsuo
- Center for Gene Research, Graduate School of Science, Nagoya University, Furo, Chikusa, Nagoya 464-8602, Japan
| | | | | |
Collapse
|
27
|
Matsuo T, Ishiura M. Chlamydomonas reinhardtiias a new model system for studying the molecular basis of the circadian clock. FEBS Lett 2011; 585:1495-502. [DOI: 10.1016/j.febslet.2011.02.025] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2010] [Revised: 01/31/2011] [Accepted: 02/21/2011] [Indexed: 12/31/2022]
|
28
|
Vítová M, Bišová K, Umysová D, Hlavová M, Kawano S, Zachleder V, Cížková M. Chlamydomonas reinhardtii: duration of its cell cycle and phases at growth rates affected by light intensity. PLANTA 2011; 233:75-86. [PMID: 20922544 DOI: 10.1007/s00425-010-1282-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2010] [Accepted: 09/16/2010] [Indexed: 05/02/2023]
Abstract
In the cultures of the alga Chlamydomonas reinhardtii, division rhythms of any length from 12 to 75 h were found at a range of different growth rates that were set by the intensity of light as the sole source of energy. The responses to light intensity differed in terms of altered duration of the phase from the beginning of the cell cycle to the commitment to divide, and of the phase after commitment to cell division. The duration of the pre-commitment phase was determined by the time required to attain critical cell size and sufficient energy reserves (starch), and thus was inversely proportional to growth rate. If growth was stopped by interposing a period of darkness, the pre-commitment phase was prolonged corresponding to the duration of the dark interval. The duration of the post-commitment phase, during which the processes leading to cell division occurred, was constant and independent of growth rate (light intensity) in the cells of the same division number, or prolonged with increasing division number. It appeared that different regulatory mechanisms operated through these two phases, both of which were inconsistent with gating of cell division at any constant time interval. No evidence was found to support any hypothetical timer, suggested to be triggered at the time of daughter cell release.
Collapse
Affiliation(s)
- Milada Vítová
- Laboratory of Cell Cycles of Algae, Institute of Microbiology, Academy of Sciences of the Czech Republic, Třeboň, Opatovický mlýn, Czech Republic
| | | | | | | | | | | | | |
Collapse
|
29
|
Gaskill C, Forbes-Stovall J, Kessler B, Young M, Rinehart CA, Jacobshagen S. Improved automated monitoring and new analysis algorithm for circadian phototaxis rhythms in Chlamydomonas. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2010; 48:239-46. [PMID: 20116270 PMCID: PMC2843796 DOI: 10.1016/j.plaphy.2010.01.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2009] [Revised: 01/11/2010] [Accepted: 01/12/2010] [Indexed: 05/18/2023]
Abstract
Automated monitoring of circadian rhythms is an efficient way of gaining insight into oscillation parameters like period and phase for the underlying pacemaker of the circadian clock. Measurement of the circadian rhythm of phototaxis (swimming towards light) exhibited by the green alga Chlamydomonas reinhardtii has been automated by directing a narrow and dim light beam through a culture at regular intervals and determining the decrease in light transmittance due to the accumulation of cells in the beam. In this study, the monitoring process was optimized by constructing a new computer-controlled measuring machine that limits the test beam to wavelengths reported to be specific for phototaxis and by choosing an algal strain, which does not need background illumination between test light cycles for proper expression of the rhythm. As a result, period and phase of the rhythm are now unaffected by the time a culture is placed into the machine. Analysis of the rhythm data was also optimized through a new algorithm, whose robustness was demonstrated using virtual rhythms with various noises. The algorithm differs in particular from other reported algorithms by maximizing the fit of the data to a sinusoidal curve that dampens exponentially. The algorithm was also used to confirm the reproducibility of rhythm monitoring by the machine. Machine and algorithm can now be used for a multitude of circadian clock studies that require unambiguous period and phase determinations such as light pulse experiments to identify the photoreceptor(s) that reset the circadian clock in C. reinhardtii.
Collapse
Affiliation(s)
- Christa Gaskill
- Department of Biology, Western Kentucky University, Bowling Green, KY 42101, USA
| | | | - Bruce Kessler
- Department of Mathematics, Western Kentucky University, Bowling Green, KY 42101, USA
| | - Mike Young
- Engineering and Support Shop, Western Kentucky University, Bowling Green, KY 42101, USA
| | - Claire A. Rinehart
- Department of Biology, Western Kentucky University, Bowling Green, KY 42101, USA
| | - Sigrid Jacobshagen
- Department of Biology, Western Kentucky University, Bowling Green, KY 42101, USA
| |
Collapse
|
30
|
New Insights into the Circadian Clock in Chlamydomonas. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2010; 280:281-314. [DOI: 10.1016/s1937-6448(10)80006-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
31
|
Johanningmeier U, Fischer D. Perspective for the Use of Genetic Transformants in Order to Enhance the Synthesis of the Desired Metabolites: Engineering Chloroplasts of Microalgae for the Production of Bioactive Compounds. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 698:144-51. [DOI: 10.1007/978-1-4419-7347-4_11] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
32
|
Gould PD, Diaz P, Hogben C, Kusakina J, Salem R, Hartwell J, Hall A. Delayed fluorescence as a universal tool for the measurement of circadian rhythms in higher plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2009; 58:893-901. [PMID: 19638147 DOI: 10.1111/j.1365-313x.2009.03819.x] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
The plant circadian clock plays an important role in enhancing performance and increasing vegetative yield. Much of our current understanding of the mechanism and function of the plant clock has come from the development of Arabidopsis thaliana as a model circadian organism. Key to this rapid progress has been the development of robust circadian markers, specifically circadian-regulated luciferase reporter genes. Studies of the clock in crop species and non-model organisms are currently hindered by the absence of a simple high-throughput universal assay for clock function, accuracy and robustness. Delayed fluorescence (DF) is a fundamental process occurring in all photosynthetic organisms. It is luminescence-produced post-illumination due to charge recombination in photosystem II (PSII) leading to excitation of P680 and the subsequent emission of a photon. Here we report that the amount of DF oscillates with an approximately 24-h period and is under the control of the circadian clock in a diverse selection of plants. Thus, DF provides a simple clock output that may allow the clock to be assayed in vivo in any photosynthetic organism. Furthermore, our data provide direct evidence that the nucleus-encoded, three-loop circadian oscillator underlies rhythms of PSII activity in the chloroplast. This simple, high-throughput and non-transgenic assay could be integrated into crop breeding programmes, the assay allows the selection of plants that have robust and accurate clocks, and possibly enhanced performance and vegetative yield. This assay could also be used to characterize rapidly the role and function of any novel Arabidopsis circadian mutant.
Collapse
Affiliation(s)
- Peter D Gould
- School of Biological Sciences, University of Liverpool, Crown Street, Liverpool, UK
| | | | | | | | | | | | | |
Collapse
|
33
|
Kucho KI, Kakoi K, Yamaura M, Higashi S, Uchiumi T, Abe M. Transient Transformation of Frankia by Fusion Marker Genes in Liquid Culture. Microbes Environ 2009; 24:231-40. [DOI: 10.1264/jsme2.me09115] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Ken-ichi Kucho
- Graduate School of Science and Engineering, Kagoshima University
| | - Kentaro Kakoi
- Graduate School of Science and Engineering, Kagoshima University
| | | | - Shiro Higashi
- Department of Chemistry and Bioscience, Faculty of Science, Kagoshima University
| | - Toshiki Uchiumi
- Graduate School of Science and Engineering, Kagoshima University
| | - Mikiko Abe
- Graduate School of Science and Engineering, Kagoshima University
| |
Collapse
|
34
|
Gaussia-luciferase as a sensitive reporter gene for monitoring promoter activity in the nucleus of the green alga Chlamydomonas reinhardtii. Mol Genet Genomics 2008; 280:153-62. [DOI: 10.1007/s00438-008-0352-3] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2008] [Accepted: 05/11/2008] [Indexed: 10/22/2022]
|
35
|
Brunner M, Merrow M. The green yeast uses its plant-like clock to regulate its animal-like tail. Genes Dev 2008; 22:825-31. [PMID: 18381887 PMCID: PMC2732389 DOI: 10.1101/gad.1664508] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- Michael Brunner
- University of Heidelberg Biochemistry Center, 69120 Heidelberg, Germany
| | - Martha Merrow
- Department of Chronobiology, University of Groningen, 9750AA Haren, The Netherlands
| |
Collapse
|
36
|
Matsuo T, Okamoto K, Onai K, Niwa Y, Shimogawara K, Ishiura M. A systematic forward genetic analysis identified components of the Chlamydomonas circadian system. Genes Dev 2008; 22:918-30. [PMID: 18334618 DOI: 10.1101/gad.1650408] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The molecular bases of circadian clocks have been studied in animals, fungi, bacteria, and plants, but not in eukaryotic algae. To establish a new model for molecular analysis of the circadian clock, here we identified a large number of components of the circadian system in the eukaryotic unicellular alga Chlamydomonas reinhardtii by a systematic forward genetic approach. We isolated 105 insertional mutants that exhibited defects in period, phase angle, and/or amplitude of circadian rhythms in bioluminescence derived from a luciferase reporter gene in their chloroplast genome. Simultaneous measurement of circadian rhythms in bioluminescence and growth rate revealed that some of these mutants had defects in the circadian clock itself, whereas one mutant had a defect in a specific process for the chloroplast bioluminescence rhythm. We identified 30 genes (or gene loci) that would be responsible for rhythm defects in 37 mutants. Classification of these genes revealed that various biological processes are involved in regulation of the chloroplast rhythmicity. Amino acid sequences of six genes that would have crucial roles in the circadian clock revealed features of the Chlamydomonas clock that have both partially plant-like and original components.
Collapse
Affiliation(s)
- Takuya Matsuo
- Center for Gene Research, Nagoya University, Furo, Chikusa, Nagoya 464-8602, Japan
| | | | | | | | | | | |
Collapse
|
37
|
The plastid sigma factor SIG5 is involved in the diurnal regulation of the chloroplast genepsbDin the mossPhyscomitrella patens. FEBS Lett 2008; 582:405-9. [DOI: 10.1016/j.febslet.2007.12.034] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2007] [Revised: 12/01/2007] [Accepted: 12/19/2007] [Indexed: 11/22/2022]
|
38
|
Okamoto K, Ishiura M, Torii T, Aoki S. A compact multi-channel apparatus for automated real-time monitoring of bioluminescence. ACTA ACUST UNITED AC 2007; 70:535-8. [PMID: 17300843 DOI: 10.1016/j.jbbm.2007.01.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2006] [Revised: 01/05/2007] [Accepted: 01/05/2007] [Indexed: 11/17/2022]
Abstract
We have developed a multi-channel apparatus for automated monitoring of bioluminescence in real time. We designed this apparatus to be compact (230 mm wide, 600 mm deep, and 227.5 mm high) so that it can be operated in a relatively small commercially-available incubator. The apparatus can process 20 samples at maximum in a single run, providing enough processibility in small-scale experiments. We verified the reliability and sensitivity of the apparatus by observing circadian bioluminescence rhythms over one week from a bioluminescent reporter strain (E9) of the cyanobacterium Synechococcus sp. strain PCC 7942 [Ishiura, M., Kutsuna, S., Aoki, S., Iwasaki, H., Andersson, C.R., Tanabe, A., Golden, S.S., Johnson, C.H., Kondo, T., Expression of a gene cluster kaiABC as a circadian feedback process in cyanobacteria, Science, 281 (1998) 1519-1523]. Our apparatus allows flexible experimental designs and will be effectively used for the studies of gene expression in various purposes.
Collapse
Affiliation(s)
- Kazuhisa Okamoto
- Gene Research Center, Nagoya University, Furo, Chikusa, Nagoya 464-8602, Japan
| | | | | | | |
Collapse
|
39
|
Abstract
Biolistic delivery of DNA initiated plastid transformation research and still is the most widelyused approach to generate transplastomic lines in both algae and higher plants. The principal designof transformation vectors is similar in both phylogenetic groups. Although important additions tothe list of species transformed in their plastomes have been made in algae and in higher plants, thekey organisms in the area are still the two species, in which stable plastid transformation was initiallysuccessful, i.e., Chlamydomonas reinhardtii and tobacco. Basicresearch into organelle biology has substantially benefited from the homologous recombination-basedcapability to precisely insert at predetermined loci, delete, disrupt, or exchange plastid genomesequences. Successful expression of recombinant proteins, including pharmaceutical proteins, hasbeen demonstrated in Chlamydomonas as well as in higher plants,where some interesting agronomic traits were also engineered through plastid transformation.
Collapse
|
40
|
Mayfield SP, Manuell AL, Chen S, Wu J, Tran M, Siefker D, Muto M, Marin-Navarro J. Chlamydomonas reinhardtii chloroplasts as protein factories. Curr Opin Biotechnol 2007; 18:126-33. [PMID: 17317144 DOI: 10.1016/j.copbio.2007.02.001] [Citation(s) in RCA: 119] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2006] [Revised: 01/05/2007] [Accepted: 02/08/2007] [Indexed: 11/19/2022]
Abstract
Protein-based therapeutics are the fastest growing sector of drug development, mainly because of the high sensitivity and specificity of these molecules. Their high specificity leads to few side effects and excellent success rates in drug development. However, the inherent complexity of these molecules restricts their synthesis to living cells, making recombinant proteins expensive to produce. In addition to therapeutic uses, recombinant proteins also have a variety of industrial applications and are important research reagents. Eukaryotic algae offer the potential to produce high yields of recombinant proteins more rapidly and at much lower cost than traditional cell culture. Additionally, transgenic algae can be grown in complete containment, reducing any risk of environmental contamination. This system might also be used for the oral delivery of therapeutic proteins, as green algae are edible and do not contain endotoxins or human viral or prion contaminants.
Collapse
Affiliation(s)
- Stephen P Mayfield
- Department of Cell Biology, The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Abstract
This review examines the connections between circadian and metabolic rhythms. Examples from a wide variety of well-studied organisms are used to illustrate some of the genetic and molecular pathways linking circadian timekeeping to metabolism. The principles underlying biological timekeeping by intrinsic circadian clocks are discussed briefly. Genetic and molecular studies have unambiguously identified the importance of gene expression feedback circuits to the generation of overt circadian rhythms. This is illustrated particularly well by the results of genome-wide expression studies, which have uncovered hundreds of clock-controlled genes in cyanobacteria, fungi, plants, and animals. The potential connections between circadian oscillations in gene expression and circadian oscillations in metabolic activity are a major focus of this review.
Collapse
Affiliation(s)
- Herman Wijnen
- Department of Biology, University of Virginia, Charlottesville, Virginia 22904-4328, USA.
| | | |
Collapse
|
42
|
Griesbeck C, Kobl I, Heitzer M. Chlamydomonas reinhardtii: a protein expression system for pharmaceutical and biotechnological proteins. Mol Biotechnol 2007; 34:213-23. [PMID: 17172667 DOI: 10.1385/mb:34:2:213] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/1999] [Revised: 11/30/1999] [Accepted: 11/30/1999] [Indexed: 11/11/2022]
Abstract
Recombinant proteins have become more and more important for the pharmaceutical and chemical industry. Although various systems for protein expression have been developed, there is an increasing demand for inexpensive methods of large-scale production. Eukaryotic algae could serve as a novel option for the manufacturing of recombinant proteins, as they can be cultivated in a cheap and easy manner and grown to high cell densities. Being a model organism, the unicellular green alga Chlamydomonas reinhardtii has been studied intensively over the last decades and offers now a complete toolset for genetic manipulation. Recently, the successful expression of several proteins with pharmaceutical relevance has been reported from the nuclear and the chloroplastic genome of this alga, demonstrating its ability for biotechnological applications.
Collapse
Affiliation(s)
- Christoph Griesbeck
- Center of Excellence for Fluorescent Bioanalysis, Josef-Engert-Str. 9, D-93053 Regensburg, Germany.
| | | | | |
Collapse
|
43
|
Abstract
Bioluminescent methods are gaining more and more attention among scientists due to their sensitivity, selectivity and simplicity; coupled with the fact that the bioluminescence can be monitored both in vitro and in vivo. Since the discovery of bioluminescence in the 19th century, enzymes involved in the bioluminescent process have been isolated and cloned. The bioluminescent reactions in several different organisms have also been fully characterized and used as reporters in a wide variety of biochemical assays. From the 1990s it became clear that bioluminescence can be detected and quantified directly from inside a living cell. This gave rise to numerous possibilities for the in vivo monitoring of intracellular processes non-invasively using bioluminescent molecules as reporters. This review describes recent developments in the area of bioluminescent imaging for cell biology. Newly developed imaging methods allow transcriptional/translational regulation, signal transduction, protein-protein interaction, oncogenic transformation, cell and protein trafficking, and target drug action to be monitored in vivo in real-time with high temporal and spatial resolution; thus providing researchers with priceless information on cellular functions. Advantages and limitations of these novel bioluminescent methods are discussed and possible future developments identified.
Collapse
Affiliation(s)
- Lubov Y. Brovko
- Canadian Research Institute for Food Safety and Adjunct, Food Science Department, University of Guelph, Canada
| | | |
Collapse
|
44
|
Abstract
Recent work on the circadian clock of the unicellular green alga Chlamydomonas reinhardtii strengthens its standing as a convenient model system for circadian study. It was shown to be amenable to molecular engineering using a luciferase-based real-time reporter for circadian rhythms. Together with the completed draft genomic sequence, the new system opens the door for genome-scale forward and reverse genetic analysis.
Collapse
Affiliation(s)
- Ghislain Breton
- The Scripps Research Institute, Biochemistry Department, 10550 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | - Steve A Kay
- The Scripps Research Institute, Biochemistry Department, 10550 N. Torrey Pines Road, La Jolla, CA 92037, USA
| |
Collapse
|