1
|
Ling X, Jiao Q, Lin D, Chen J, Han Y, Meng J, Zhong B, Zhang H, Zhang G, Zhu F, Qin J, Ruan Y, Liu L. Extrachromosomal circular DNA containing DTX1 promotes cell growth in hydroquinone-induced malignantly transformed cells by regulating the transcription of DTX1. BMC Cancer 2024; 24:1448. [PMID: 39587541 PMCID: PMC11587744 DOI: 10.1186/s12885-024-13177-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 11/09/2024] [Indexed: 11/27/2024] Open
Abstract
BACKGROUND Extrachromosomal circular DNA (eccDNA), a novel class of DNA with a circular topological structure, is present in a variety of cancer cells and tissues and may play broad roles in processes ranging from aging to cancer cell heterogeneity through multiple mechanisms. EccDNA has been characterized by profile, structure and function in several prominent studies but its effect on hydroquinone (HQ)-induced malignantly transformed cells (TK6-HQ) is still elusive. METHODS Circle-seq was applied to determine the eccDNA counts and characteristics of TK6-HQ cells. DNA-fluorescence in situ hybridization was used to measure the abundance of eccDNA_DTX1. Differential gene expression analysis was carried out by RNA-seq. Gene expression was quantified by wertern blot and qPCR. Decircularization of eccDNA_DTX1 was achieved by CRISPR/Cas9. Tumorigenicity was evaluated by xenograft assay in BALB/c nude mice. RESULTS In this study, we characterized the structure of eccDNAs and the function of DTX1-containing eccDNA (eccDNA_DTX1) in TK6-HQ cells. A total of 669,179 eccDNAs were identified, including 901 eccDNAs with different counts. Most of the eccDNAs were < 1000 bp in length and were enriched in four periodic peaks starting at 186 bp with an interval of ~ 180 bp. The genomic distribution of eccDNAs confirmed that eccDNAs could be observed across all chromosomes and had greater enrichment on chromosomes 17, 19, 20, and 22, with abundant Alu repeat elements, introns and CpG islands. By combining the results of the integrated circle-seq analysis of eccDNAs with those from the RNA-seq analysis (differentially expressed genes, 1064 upregulated and 427 downregulated), the authors showed that the transcription of 20 potential coding genes might be driven by eccDNAs. Finally, the knockdown of eccDNA_DTX1 by CRISPR/Cas9 inhibited the growth of TK6-HQ cells in vitro and in vivo by inhibiting the transcription of DTX1 and promoting ferroptosis, and ferroptosis inhibior, Ferrostatin-1, abrogated the proliferation inhibition of eccDNA_DTX1 knockdown. CONCLUSIONS EccDNA_DTX1 promotes cell growth in hydroquinone-induced malignantly transformed cells by regulating the transcription of DTX1 and ferroptosis. This study profiles eccDNA characteristics and defines the role and mechanism of eccDNA_DTX1 for the first time, shedding new light on the relationship between eccDNAs and carcinogenesis.
Collapse
Affiliation(s)
- Xiaoxuan Ling
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, 523808, P. R. China
| | - Qunfang Jiao
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, 523808, P. R. China
- Department of Preventive Medicine, School of Public Health, Guangdong Medical University, Dongguan, 523808, P. R. China
| | - Daifan Lin
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, 523808, P. R. China
| | - Jialong Chen
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, 523808, P. R. China
- Department of Preventive Medicine, School of Public Health, Guangdong Medical University, Dongguan, 523808, P. R. China
| | - Yali Han
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, 523808, P. R. China
| | - Jinxue Meng
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, 523808, P. R. China
| | - Bohuan Zhong
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, 523808, P. R. China
| | - He Zhang
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, 523808, P. R. China
- Department of Preventive Medicine, School of Public Health, Guangdong Medical University, Dongguan, 523808, P. R. China
| | - Gongda Zhang
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, 523808, P. R. China
| | - Fangling Zhu
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, 523808, P. R. China
| | - Jiheng Qin
- Guangdong Provincial Key Laboratory of Medical Immunology and Molecular Diagnostics, Guangdong Meidical University, Dongguan, 523808, P.R. China
| | - Yongdui Ruan
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, 523722, P.R. China
| | - Linhua Liu
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, 523808, P. R. China.
- Department of Preventive Medicine, School of Public Health, Guangdong Medical University, Dongguan, 523808, P. R. China.
| |
Collapse
|
2
|
Chitwood DG, Wang Q, Klaubert SR, Green K, Wu CH, Harcum SW, Saski CA. Microevolutionary dynamics of eccDNA in Chinese hamster ovary cells grown in fed-batch cultures under control and lactate-stressed conditions. Sci Rep 2023; 13:1200. [PMID: 36681715 PMCID: PMC9862248 DOI: 10.1038/s41598-023-27962-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 01/10/2023] [Indexed: 01/22/2023] Open
Abstract
Chinese hamster ovary (CHO) cell lines are widely used to manufacture biopharmaceuticals. However, CHO cells are not an optimal expression host due to the intrinsic plasticity of the CHO genome. Genome plasticity can lead to chromosomal rearrangements, transgene exclusion, and phenotypic drift. A poorly understood genomic element of CHO cell line instability is extrachromosomal circular DNA (eccDNA) in gene expression and regulation. EccDNA can facilitate ultra-high gene expression and are found within many eukaryotes including humans, yeast, and plants. EccDNA confers genetic heterogeneity, providing selective advantages to individual cells in response to dynamic environments. In CHO cell cultures, maintaining genetic homogeneity is critical to ensuring consistent productivity and product quality. Understanding eccDNA structure, function, and microevolutionary dynamics under various culture conditions could reveal potential engineering targets for cell line optimization. In this study, eccDNA sequences were investigated at the beginning and end of two-week fed-batch cultures in an ambr®250 bioreactor under control and lactate-stressed conditions. This work characterized structure and function of eccDNA in a CHO-K1 clone. Gene annotation identified 1551 unique eccDNA genes including cancer driver genes and genes involved in protein production. Furthermore, RNA-seq data is integrated to identify transcriptionally active eccDNA genes.
Collapse
Affiliation(s)
- Dylan G Chitwood
- Department of Bioengineering, Clemson University, Clemson, SC, USA
| | - Qinghua Wang
- Center for Bioinformatics and Computational Biology, University of Delaware, Newark, DE, USA
| | - Stephanie R Klaubert
- Department of Chemical and Biomolecular Engineering, Clemson University, Clemson, SC, USA
| | - Kiana Green
- Department of Biological Sciences, University of South Carolina, Columbia, SC, USA
| | - Cathy H Wu
- Center for Bioinformatics and Computational Biology, University of Delaware, Newark, DE, USA
| | - Sarah W Harcum
- Department of Bioengineering, Clemson University, Clemson, SC, USA
- Department of Chemical and Biomolecular Engineering, Clemson University, Clemson, SC, USA
| | - Christopher A Saski
- Department of Plant and Environmental Sciences, Clemson University, Clemson, SC, USA.
| |
Collapse
|
3
|
Liang X, Chen H, Li L, An R, Komiyama M. Ring-Structured DNA and RNA as Key Players In Vivoand In Vitro. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2021. [DOI: 10.1246/bcsj.20200235] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Xingguo Liang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, P. R. China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266235, P. R. China
| | - Hui Chen
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, P. R. China
| | - Lin Li
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, P. R. China
| | - Ran An
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, P. R. China
| | - Makoto Komiyama
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, P. R. China
| |
Collapse
|
4
|
Xing J, Ning Q, Tang D, Mo Z, Lei X, Tang S. Progress on the role of extrachromosomal DNA in tumor pathogenesis and evolution. Clin Genet 2020; 99:503-512. [PMID: 33314031 DOI: 10.1111/cge.13896] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 12/03/2020] [Accepted: 12/09/2020] [Indexed: 12/23/2022]
Abstract
The amplification of oncogenes on extrachromosomal DNA (ecDNA) provides a new mechanism for cancer cells to adapt to the changes in the tumor microenvironment and accelerate tumor evolution. These extrachromosomal elements contain oncogenes, and their chromatin structures are more open than linear chromosomes and therefore have stronger oncogene transcriptional activity. ecDNA always contains enhancer elements, and genes on ecDNA can be reintegrated into the linear genome to regulate the selective expression of genes. ecDNA lacks centromeres, and the inheritance from the parent cell to the daughter cell is uneven. This non-Mendelian genetic mechanism results in the increase of tumor heterogeneity with daughter cells that can gain a competitive advantage through a large number of copies of oncogenes. ecDNA promotes tumor invasiveness and provides a mechanism for drug resistance associated with poorer survival outcomes. Recent studies have demonstrated that the overall proportion of ecDNA in tumors is approximately 40%. In this review, we summarize the current knowledge of ecDNA in the field of tumorigenesis and development.
Collapse
Affiliation(s)
- Jichen Xing
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, and Institute of Pharmacy & Pharmacology, University of South China, Hengyang, China.,Hunan Province Key Laboratory for Antibody-Based Drug and Intelligent Delivery System, Hunan University of Medicine, Huaihua, China
| | - Qian Ning
- Hunan Province Key Laboratory for Antibody-Based Drug and Intelligent Delivery System, Hunan University of Medicine, Huaihua, China
| | - Diya Tang
- Department of Medical Oncology, Xiangya Hospital Central South University, Changsha, China
| | - Zhongcheng Mo
- Institute of Basic Medical Sciences, College of Basic Medicine, Guilin Medical University, Guilin, Guangxi, China
| | - Xiaoyong Lei
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, and Institute of Pharmacy & Pharmacology, University of South China, Hengyang, China
| | - Shengsong Tang
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, and Institute of Pharmacy & Pharmacology, University of South China, Hengyang, China.,Hunan Province Key Laboratory for Antibody-Based Drug and Intelligent Delivery System, Hunan University of Medicine, Huaihua, China
| |
Collapse
|
5
|
Liao Z, Jiang W, Ye L, Li T, Yu X, Liu L. Classification of extrachromosomal circular DNA with a focus on the role of extrachromosomal DNA (ecDNA) in tumor heterogeneity and progression. Biochim Biophys Acta Rev Cancer 2020; 1874:188392. [PMID: 32735964 DOI: 10.1016/j.bbcan.2020.188392] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 06/26/2020] [Accepted: 07/10/2020] [Indexed: 02/08/2023]
Abstract
Although the eukaryotic genome is mainly comprised of linear chromosomal DNA, genes can also be found outside of chromosomes. The unconventional presence of extrachromosomal genes is usually found to be circular, and these structures are named extrachromosomal circular DNA (eccDNA), which are often observed in cancer cells. Various types of eccDNA including small polydispersed DNA (spcDNA), telomeric cirlces, microDNA, etc. have been discovered. Among these eccDNA, extrachromosomal DNA (ecDNA), which encompasses the full spectrum of large, gene-containing extrachromosomal particles, has regained great research interest due to recent technological advances such as next-generation sequencing and super-resolution microscopy. In this review, we summarize the different types of eccDNA and discuss the role of eccDNA, especially ecDNA in tumor heterogeneity and progression. Additionally, we discuss some possible future investigative directions related to ecDNA biogenesis and its clinical application.
Collapse
Affiliation(s)
- Zhenyu Liao
- Department of Pancreatic Surgery, Shanghai Cancer Centre, Fudan University, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China; Shanghai Pancreatic Cancer Institute, Shanghai, China; Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Wang Jiang
- Department of Pancreatic Surgery, Shanghai Cancer Centre, Fudan University, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China; Shanghai Pancreatic Cancer Institute, Shanghai, China; Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Longyun Ye
- Department of Pancreatic Surgery, Shanghai Cancer Centre, Fudan University, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China; Shanghai Pancreatic Cancer Institute, Shanghai, China; Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Tianjiao Li
- Department of Pancreatic Surgery, Shanghai Cancer Centre, Fudan University, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China; Shanghai Pancreatic Cancer Institute, Shanghai, China; Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Xianjun Yu
- Department of Pancreatic Surgery, Shanghai Cancer Centre, Fudan University, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China; Shanghai Pancreatic Cancer Institute, Shanghai, China; Pancreatic Cancer Institute, Fudan University, Shanghai, China.
| | - Liang Liu
- Department of Pancreatic Surgery, Shanghai Cancer Centre, Fudan University, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China; Shanghai Pancreatic Cancer Institute, Shanghai, China; Pancreatic Cancer Institute, Fudan University, Shanghai, China.
| |
Collapse
|
6
|
Møller HD, Ramos-Madrigal J, Prada-Luengo I, Gilbert MTP, Regenberg B. Near-Random Distribution of Chromosome-Derived Circular DNA in the Condensed Genome of Pigeons and the Larger, More Repeat-Rich Human Genome. Genome Biol Evol 2020; 12:3762-3777. [PMID: 31882998 PMCID: PMC6993614 DOI: 10.1093/gbe/evz281] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/20/2019] [Indexed: 12/15/2022] Open
Abstract
Extrachromosomal circular DNA (eccDNA) elements of chromosomal origin are known to be common in a number of eukaryotic species. However, it remains to be addressed whether genomic features such as genome size, the load of repetitive elements within a genome, and/or animal physiology affect the number of eccDNAs. Here, we investigate the distribution and numbers of eccDNAs in a condensed and less repeat-rich genome compared with the human genome, using Columba livia domestica (domestic rock pigeon) as a model organism. By sequencing eccDNA in blood and breast muscle from three pigeon breeds at various ages and with different flight behavior, we characterize 30,000 unique eccDNAs. We identify genomic regions that are likely hotspots for DNA circularization in breast muscle, including genes involved in muscle development. We find that although eccDNA counts do not correlate with the biological age in pigeons, the number of unique eccDNAs in a nonflying breed (king pigeons) is significantly higher (9-fold) than homing pigeons. Furthermore, a comparison between eccDNA from skeletal muscle in pigeons and humans reveals ∼9-10 times more unique eccDNAs per human nucleus. The fraction of eccDNA sequences, derived from repetitive elements, exist in proportions to genome content, that is, human 72.4% (expected 52.5%) and pigeon 8.7% (expected 5.5%). Overall, our results support that eccDNAs are common in pigeons, that the amount of unique eccDNA types per nucleus can differ between species as well as subspecies, and suggest that eccDNAs from repeats are found in proportions relative to the content of repetitive elements in a genome.
Collapse
Affiliation(s)
- Henrik Devitt Møller
- Department of Biology, University of Copenhagen, Denmark.,Department of Biology, Institute of Biochemistry, ETH Zürich, Switzerland
| | | | | | - M Thomas P Gilbert
- The GLOBE Institute, University of Copenhagen, Denmark.,NTNU University Museum, Trondheim, Norway
| | | |
Collapse
|
7
|
Paulsen T, Shibata Y, Kumar P, Dillon L, Dutta A. Small extrachromosomal circular DNAs, microDNA, produce short regulatory RNAs that suppress gene expression independent of canonical promoters. Nucleic Acids Res 2019; 47:4586-4596. [PMID: 30828735 PMCID: PMC6511871 DOI: 10.1093/nar/gkz155] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 02/20/2019] [Accepted: 02/25/2019] [Indexed: 01/17/2023] Open
Abstract
Interest in extrachromosomal circular DNA (eccDNA) molecules has increased recently because of their widespread presence in normal cells across every species ranging from yeast to humans, their increased levels in cancer cells and their overlap with oncogenic and drug-resistant genes. However, the majority of eccDNA (microDNA) in mammalian tissues and cell lines are too small to carry protein coding genes. We have tested functional capabilities of microDNA by creating artificial microDNA molecules mimicking known microDNA sequences and have discovered that they express functional small regulatory RNA including microRNA and novel si-like RNA. MicroDNA are transcribed in vitro and in vivo independent of a canonical promoter sequence. MicroDNA that carry miRNA genes form transcripts that are processed by the endogenous RNA-interference pathway into mature miRNA molecules, which repress a luciferase reporter gene as well as endogenous mRNA targets of the miRNA. Further, microDNA that contain sequences of exons repress the endogenous gene from which the microDNA were derived through the formation of novel si-like RNA. We also show that endogenous microDNA associate with RNA polymerases subunits, POLR2H and POLR3F. Together, these results suggest that microDNA may modulate gene expression through the production of both known and novel regulatory small RNA.
Collapse
Affiliation(s)
- Teressa Paulsen
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Yoshiyuki Shibata
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Pankaj Kumar
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Laura Dillon
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Anindya Dutta
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| |
Collapse
|
8
|
Roehl AC, Vogt J, Mussotter T, Zickler AN, Spöti H, Högel J, Chuzhanova NA, Wimmer K, Kluwe L, Mautner VF, Cooper DN, Kehrer-Sawatzki H. Intrachromosomal mitotic nonallelic homologous recombination is the major molecular mechanism underlying type-2 NF1 deletions. Hum Mutat 2011; 31:1163-73. [PMID: 20725927 DOI: 10.1002/humu.21340] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Nonallelic homologous recombination (NAHR) is responsible for the recurrent rearrangements that give rise to genomic disorders. Although meiotic NAHR has been investigated in multiple contexts, much less is known about mitotic NAHR despite its importance for tumorigenesis. Because type-2 NF1 microdeletions frequently result from mitotic NAHR, they represent a good model in which to investigate the features of mitotic NAHR. We have used microsatellite analysis and SNP arrays to distinguish between the various alternative recombinational possibilities, thereby ascertaining that 17 of 18 type-2 NF1 deletions, with breakpoints in the SUZ12 gene and its highly homologous pseudogene, originated via intrachromosomal recombination. This high proportion of intrachromosomal NAHR causing somatic type-2 NF1 deletions contrasts with the interchromosomal origin of germline type-1 NF1 microdeletions, whose breakpoints are located within the NF1-REPs (low-copy repeats located adjacent to the SUZ12 sequences). Further, meiotic NAHR causing type-1 NF1 deletions occurs within recombination hotspots characterized by high GC-content and DNA duplex stability, whereas the type-2 breakpoints associated with the mitotic NAHR events investigated here do not cluster within hotspots and are located within regions of significantly lower GC-content and DNA stability. Our findings therefore point to fundamental mechanistic differences between the determinants of mitotic and meiotic NAHR.
Collapse
|
9
|
Hartig R, Shoeman RL, Janetzko A, Tolstonog G, Traub P. DNA-mediated transport of the intermediate filament protein vimentin into the nucleus of cultured cells. J Cell Sci 1998; 111 ( Pt 24):3573-84. [PMID: 9819349 DOI: 10.1242/jcs.111.24.3573] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A number of characteristic properties of intermediate filament (IF) proteins, such as nucleic acid-binding activity, affinity for histones and structural relatedness to transcription factors and nuclear matrix proteins, in conjunction with the tight association of IFs with the nucleus, suggest that these proteins might also fulfill nuclear functions in addition to their structure-organizing and -stabilizing activities in the cytoplasm. Yet, cytoplasmic IF proteins do not possess nuclear localization signals. In a search for carriers capable of transporting the IF protein vimentin into the nucleus, complexes of FITC-vimentin with various DNAs were microinjected into the cytoplasm of cultured cells and the intracellular distribution of the protein was followed by confocal laser scanning microscopy. The single-stranded oligodeoxyribonucleotides oligo(dG)25, oligo[d(GT)12G] and oligo[d(G3T2A)4G] proved to be excellent nuclear carriers for vimentin. However, in fibroblasts, fluorescence-labeled vimentin taken up by the nuclei remained undetectable with affinity-purified, polyclonal anti-vimentin antibody, whereas it was readily identifiable in the nuclei of microinjected epithelial cells in this way. Moreover, when FITC-vimentin was preinjected into fibroblasts and allowed to assemble into the endogenous vimentin filament system, it was still transferred into the nucleus by post-injected oligo(dG)25, although to a lesser extent. Superhelical circular DNAs, like pBR322, SV40 and mitochondrial DNA, were also characterized by considerable capacities for nuclear vimentin transport; these transport potentials were totally destroyed by relaxation or linearization of the DNA molecules. Nevertheless, certain linear double-stranded DNA molecules with a high affinity for vimentin IFs, such as repetitive telomere and centromere or mobile long interspersed repeat (LINE) DNA, could carry FITC-vimentin into the nucleus. This was also true for a 375 bp extrachromosomal linear DNA fragment which occurs in the cytoplasm of mouse tumor cells and which is capable of immortalizing human lymphocytes. On the basis of these results, it appears very likely that cellular and viral products of reverse transcription as well as other extrachromosomal DNAs, which are circular, superhelical and apparently shuttling between the cytoplasm and the nucleus (eccDNA), are constantly loaded with vimentin in vimentin-positive cells. Since such DNAs are considered as markers of genomic instability, it is conceivable that vimentin directly participates as an architectural, chromatin-modifying protein in recombinatorial processes set off by these DNAs in the nucleus.
Collapse
Affiliation(s)
- R Hartig
- Max-Planck-Institut für Zellbiologie, D-68526 Ladenburg/Heidelberg, Germany
| | | | | | | | | |
Collapse
|
10
|
Nairn RS, Adair GM, Porter T, Pennington SL, Smith DG, Wilson JH, Seidman MM. Targeting vector configuration and method of gene transfer influence targeted correction of the APRT gene in Chinese hamster ovary cells. SOMATIC CELL AND MOLECULAR GENETICS 1993; 19:363-75. [PMID: 8105543 DOI: 10.1007/bf01232748] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
A 21-bp deletion in the third exon of the APRT gene in Chinese hamster ovary (CHO) cells was corrected by transfection with a plasmid containing hamster APRT sequences. Targeted correction frequencies in the range of 0.3-3.0 x 10(-6) were obtained with a vector containing 3.2 kb of APRT sequence homology. To examine the influence of vector configuration on targeted gene correction, a double-strand break was introduced at one of two positions in the vector prior to transfection by calcium phosphate-DNA coprecipitation or electroporation. A double-strand break in the region of APRT homology contained in the vector produced an insertion-type vector, while placement of the break just outside the region of homology produced a replacement-type vector. Gene targeting with both linear vector configurations yielded equivalent ratios of targeted recombinants to nontargeted vector integrants; however, targeting with the two different vector configurations resulted in different distributions of targeted recombination products. Analysis of 66 independent APRT+ recombinant clones by Southern hybridization showed that targeting with the vector in a replacement-type configuration yielded fewer targeted integrants and more target gene convertants than did the integration vector configuration. Targeted recombination was about fivefold more efficient with electroporation than with calcium phosphate-DNA coprecipitation; however, both gene transfer methods produced similar distributions of targeted recombinants, which depended only on targeting vector configuration. Our results demonstrate that insertion-type and replacement-type gene targeting vectors produce similar overall targeting frequencies in gene correction experiments, but that vector configuration can significantly influence the yield of particular recombinant types.
Collapse
Affiliation(s)
- R S Nairn
- Department of Carcinogenesis, University of Texas M.D. Anderson Cancer Center, Smithville 78957
| | | | | | | | | | | | | |
Collapse
|
11
|
Abstract
The ability of eukaryotic organisms of the same genotype to vary in developmental pattern or in phenotype according to varying environmental conditions is frequently associated with changes in extrachromosomal circular DNA (eccDNA) sequences. Although variable in size, sequence complexity, and copy number, the best characterized of these eccDNAs contain sequences homologous to chromosomal DNA which indicates that they might arise from genetic rearrangements, such as homologous recombination. The abundance of repetitive sequence families in eccDNAs is consistent with the notion that tandem repeats and dispersed repetitive elements participate in intrachromosomal recombination events. There is also evidence that a fraction of this DNA has characteristics similar to retrotransposons. It has been suggested that eccDNAs could reflect altered patterns of gene expression or an instability of chromosomal sequences during development and aging. This article reviews some of the findings and concepts regarding eccDNAs and sequence plasticity in eukaryotic genomes.
Collapse
Affiliation(s)
- J W Gaubatz
- Department of Biochemistry, University of South Alabama College of Medicine, Mobile 36688
| |
Collapse
|
12
|
Gaubatz JW, Flores SC. Purification of eucaryotic extrachromosomal circular DNAs using exonuclease III. Anal Biochem 1990; 184:305-10. [PMID: 2327574 DOI: 10.1016/0003-2697(90)90685-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A method for the isolation of eucaryotic extrachromosomal circular (ecc) DNA is described. Exonuclease III was used to preparatively digest linear and open circular forms of DNA; the resultant exonuclease-resistant molecules were then characterized by buoyant density gradient sedimentation and were found to be essentially covalently closed circular DNA. The efficiency of the exonuclease method was compared to ultracentrifugation techniques and was found to give yields greater than those obtained by two or more equilibrium density gradients. The utility of the exonuclease III technique was determined by purifying eccDNAs from mouse liver, brain, heart, and kidney tissues. The results showed that there are tissue-related differences in eccDNA content.
Collapse
Affiliation(s)
- J W Gaubatz
- Department of Biochemistry, University of South Alabama, College of Medicine, Mobile 36688
| | | |
Collapse
|
13
|
Miles C, Meuth M. Hamster line and ALU-equivalent sequences are present in the small polydispersed circular DNA population of CHO cells. Nucleic Acids Res 1989; 17:5846. [PMID: 2548169 PMCID: PMC318209 DOI: 10.1093/nar/17.14.5846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Affiliation(s)
- C Miles
- Imperial Cancer Research Fund, Clare Hall Laboratories, Herts, UK
| | | |
Collapse
|
14
|
Kiyama R, Oishi M, Kanda N. Cytoplasmic localization of human repetitive DNA revealed by in situ hybridization. Exp Cell Res 1989; 183:239-44. [PMID: 2737247 DOI: 10.1016/0014-4827(89)90433-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Previously, we showed that a human repetitive DNA sequence (Sau3A family) belonging to a satellite DNA is unstable and constantly excised from the chromosomes (R. Kiyama, H. Matsui, and M. Oishi, 1986, Proc. Natl. Acad. Sci. USA 83, 4665). The unusual property of the repetitive DNA, along with another repetitive DNA (Alu sequence), was further investigated by in situ hybridization in several different human cells including HeLa, bone marrow, and peripheral blood cells. We found that the excised repetitive DNA sequences are localized not only in nuclei, but also in cytoplasm. These results have confirmed the instability of these DNA sequences in the chromosomes and further suggest that the alpha satellite DNA and the Alu sequence which were excised from the chromosomes are released from nuclei to cytoplasm.
Collapse
Affiliation(s)
- R Kiyama
- Institute of Applied Microbiology, University of Tokyo, Japan
| | | | | |
Collapse
|
15
|
Assum G, Böckle B, Fink T, Dmochewitz U, Krone W. Restriction analysis of chromosomal sequences homologous to single-copy fragments cloned from small polydisperse circular DNA (spcDNA). Hum Genet 1989; 82:249-54. [PMID: 2567274 DOI: 10.1007/bf00291164] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Restriction fragments from the fraction of small polydisperse circular DNA (spcDNA) were cloned in pBR322. The spcDNA was prepared from cell cultures derived from an angiofibroma of a patient with tuberous sclerosis (TS). Such cultures have been shown previously to contain increased amounts of spcDNA. Four cloned spcDNA fragments containing single-copy sequences were chosen to characterize the homologous chromosomal DNA segments by restriction analysis. When used as hybridization probes, these four fragments generate well-defined nonvariable patterns in the chromosomal DNA from healthy donors. The restriction patterns obtained with one of the fragments (D-C4) can best be interpreted by assuming the presence of two copies of the homologous sequences in chromosomal DNA. A second sequence, A-B4, occurs at least 30-50 times in the haploid human genome. In both cases the duplicated regions span relatively large segments of DNA.
Collapse
Affiliation(s)
- G Assum
- Abteilung Humangenetik der Universität, Ulm, Federal Republic of Germany
| | | | | | | | | |
Collapse
|
16
|
Sunnerhagen P, Sjöberg RM, Bjursell G. Increase of extrachromosomal circular DNA in mouse 3T6 cells on perturbation of DNA synthesis: implications for gene amplification. SOMATIC CELL AND MOLECULAR GENETICS 1989; 15:61-70. [PMID: 2492679 DOI: 10.1007/bf01534670] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
We have analyzed the amount of extrachromosomal double-stranded covalently closed circular nonmitochondrial DNA in mouse 3T6 cells by Southern blotting and electron microscopy. Treatment with 7,1-dimethylbenz[a]anthracene, known to promote amplification of integrated SV40 genomes, elevated the amount of circular DNA. Inhibition of DNA synthesis with hydroxyurea, earlier shown to enhance amplification of the cellular dihydrofolate reductase gene, resulted in yet higher levels. Thus, elevation of the frequency of gene amplification and generation of extrachromosomal circular DNA seem to accompany each other in the situations studied in this paper. Two other DNA synthesis inhibitors, aphidicolin and thymidine, had markedly lesser effects on circular DNA. The significance of these findings for the mechanism of gene amplification is discussed.
Collapse
Affiliation(s)
- P Sunnerhagen
- Department of Medical Biochemistry, University of Göteborg, Sweden
| | | | | |
Collapse
|
17
|
Obukhova LV, Kiseleva EV, Borovkov AY, Kumarev VP, Khristolyubova NB. Extrachromosomal DNA in brain and liver cells of normal rats. ACTA ACUST UNITED AC 1988. [DOI: 10.7124/bc.000221] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- L. V. Obukhova
- Institute of Cytology and Genetics, Siberian Branch of the Academy of Sciences of the USSR
| | - E. V. Kiseleva
- Institute of Cytology and Genetics, Siberian Branch of the Academy of Sciences of the USSR
| | - A. Yu. Borovkov
- Institute of Cytology and Genetics, Siberian Branch of the Academy of Sciences of the USSR
| | - V. P. Kumarev
- Institute of Cytology and Genetics, Siberian Branch of the Academy of Sciences of the USSR
| | - N. B. Khristolyubova
- Institute of Cytology and Genetics, Siberian Branch of the Academy of Sciences of the USSR
| |
Collapse
|
18
|
Kastern W, Kryspin-Sorensen I. Penetrance and low concordance in monozygotic twins in disease: are they the results of alterations in somatic genomes? Mol Reprod Dev 1988; 1:63-75. [PMID: 2856085 DOI: 10.1002/mrd.1080010110] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- W Kastern
- Hagedorn Research Laboratory, Gentofte, Denmark
| | | |
Collapse
|
19
|
Kunisada T, Yamagishi H. Sequence organization of repetitive sequences enriched in small polydisperse circular DNAs from HeLa cells. J Mol Biol 1987; 198:557-65. [PMID: 3430621 DOI: 10.1016/0022-2836(87)90199-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
A total of 36 clones were randomly selected from a recombinant DNA library of small polydisperse circular DNA (spcDNA) molecules from HeLa cells and were shown to contain repetitive sequences of different reiteration frequencies that ranged from several hundred to several hundred thousand per genome. Sequencing of representative clones revealed tandem repeats of alphoid (alpha) satellite DNA, clustered repeats of the Alu family, KpnI family sequences, tandem repeats of an alpha satellite DNA specific to the X chromosome (alpha X), and A + T-rich segments carrying short stretches of poly(A) or poly(T). DNA rearrangement was frequently found in the repetitive sequences enriched in these spcDNA clones. Short regions of homology that were patchy and inverted were often found, especially at the novel joint where spcDNA sequences are circularized. The presence of these inverted repeats suggests that HeLa spcDNAs are formed by a mechanism that involves looping out of the spcDNA region and joining of the flanking DNA by illegitimate recombination.
Collapse
Affiliation(s)
- T Kunisada
- Department of Biophysics, Faculty of Science, Kyoto University, Japan
| | | |
Collapse
|
20
|
Kiyama R, Oishi M. Pulse-labeled, small closed circular DNA in cultured mouse and human cells. Plasmid 1987; 18:215-22. [PMID: 2832862 DOI: 10.1016/0147-619x(87)90064-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Mouse (erythroleukemia, TSA8, and FM3A) cells and human (HeLa and HL-60) cells were pulse-labeled with [3H]thymidine and covalently closed circular DNA in the extrachromosomal fraction was analyzed by fluorography following polyacrylamide gel electrophoresis. Two discrete bands for mouse and at least one, different, band for human cells emerged in the position to which small circular DNA (less than 1 kb) migrate, suggesting there to be species-specific, preferentially labeled, small circular DNA in mammalian cells. The incorporation of [3H]thymidine into the DNA was inhibited by cycloheximide but unaffected by aphidicolin. Restriction enzyme (AluI) digestion of the DNA fraction from MEL cells produced approximately 120-, 100-, and 50-bp labeled DNA fragments. The origin of the pulse-labeled DNAs is discussed.
Collapse
Affiliation(s)
- R Kiyama
- Institute of Applied Microbiology, University of Tokyo, Japan
| | | |
Collapse
|
21
|
Mukhopadhyay P, Filutowicz M, Helinski DR. Replication from one of the three origins of the plasmid R6K requires coupled expression of two plasmid-encoded proteins. J Biol Chem 1986. [DOI: 10.1016/s0021-9258(18)67690-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
22
|
|
23
|
Hollis M, Hindley J. Human Sau3A repeated DNA is enriched in small polydisperse circular DNA from normal lymphocytes. Gene 1986; 46:153-60. [PMID: 3803924 DOI: 10.1016/0378-1119(86)90399-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Representatives of the Sau3A family of short human repeated sequences [Meneveri et al., J. Mol. Biol. 186 (1985) 483-489] have been isolated from the small polydisperse circular DNA (spcDNA) of peripheral human lymphocytes. The prototype repeat is a 72-bp element which is at least partially tandemly repeated in spcDNA and human genomic DNA. In comparison with three major families of human repeated DNA, the Sau3A repeats are enriched in spcDNA. The function of spcDNA in normal and transformed eukaryotic cells is not understood and most studies have attempted to resolve this problem by molecular analysis of circular DNA isolated from cells in culture [see Rush and Misra, Plasmid 14 (1985) 177-191 for references]. We have studied the spcDNA present in normal uncultured human lymphocytes and present data pointing to the selective accumulation of the Sau3A family of repeated DNA within this population. The sequences of twelve of these repeats, the consensus sequence for this family and the sequence of a genomic repeat, are presented.
Collapse
|
24
|
Abstract
Eucaryotic extrachromosomal DNAs have been organized into four major classes: (1) Organelle DNAs, (2) plasmid DNAs, (3) amplified genes, and (4) intermediates and/or by-products of DNA transpositions and rearrangements. In this review some of the relatively well-characterized members of each class are described; it is suggested that many of them reflect the complexity and plasticity of eucaryotic genomes.
Collapse
|
25
|
Schindler CW, Rush MG. The KpnI family of long interspersed nucleotide sequences is present on discrete sizes of circular DNA in monkey (BSC-1) cells. J Mol Biol 1985; 181:161-73. [PMID: 2984431 DOI: 10.1016/0022-2836(85)90082-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Discretely sized molecules of small circular DNAs in African green monkey kidney (BSC-1) cells contain nucleotide sequences homologous to the KpnI family of long interspersed repetitive nucleotide sequences. The size distribution of these KpnI family-containing circular DNAs differs markedly from those of BSC-1 cell circular DNAs containing either the Alu family of short interspersed nucleotide sequences or the alpha-satellite family of tandemly repeated sequences. The structures of several cloned, apparently whole, KpnI family-related circular DNAs of varying sizes were analyzed and compared with a compilation of chromosomal KpnI sequences. In general, it was found that the cloned DNAs all contained only KpnI sequences, and that the recombination events given rise to them did not involve any noticeable gain of nucleotides.
Collapse
|
26
|
Kunisada T, Yamagishi H. Sequence repetition and genomic distribution of small polydisperse circular DNA purified from HeLa cells. Gene 1984; 31:213-23. [PMID: 6098526 DOI: 10.1016/0378-1119(84)90212-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Covalently closed circular DNA molecules (cccDNA) from the human HeLa cell line were purified (96% pure by weight) by use of ATP-dependent deoxyribonuclease, and cloned into the HindIII site of phage lambda vector Charon 7. From the cccDNA library thus obtained, nine recombinants carrying mitochondrial DNA and 36 recombinants carrying small polydisperse circular (spc) DNA were picked at random for subsequent tests. The inserted fragments of spcDNA ranged in size from 0.6 to 7.6 kb with a mean length of 1.9 kb, a value which is the same as the average length of spcDNA. Analysis of the cloned spcDNA fragments revealed that (a) all the spcDNA clones investigated shared homologies with chromosomal DNA sequences, (b) all but one cloned DNA contained repetitive sequences, (c) the sequence organization could be roughly classified according to the reiteration frequency as greater than 10(5) (Alu family class), 10(4) to 10(5) (KpnI family class), 10(3) to 10(4) (mitochondrial DNA class) and less than 10(3) times per haploid genome, and (d) most of the repetitive sequences were dispersed in the genome, although some appeared clustered.
Collapse
|
27
|
Beverley SM, Coderre JA, Santi DV, Schimke RT. Unstable DNA amplifications in methotrexate-resistant Leishmania consist of extrachromosomal circles which relocalize during stabilization. Cell 1984; 38:431-9. [PMID: 6467372 DOI: 10.1016/0092-8674(84)90498-7] [Citation(s) in RCA: 198] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Methotrexate-resistant Leishmania tropica contain two separate regions of DNA amplification, one encoding the bifunctional thymidylate synthetase-dihydrofolate reductase (TS-DHFR) characteristic of protozoans and the other of yet unknown function. The amplified DNAs are initially found as extrachromosomal closed circular forms, which are unstable in the absence of selection. After prolonged culture in methotrexate the amplified DNAs are found as repetitive arrays associated with the chromosomal DNA fraction after CsCl-ethidium bromide density gradient centrifugation, and are stable once selection is removed. The molecular description of gene amplification in Leishmania thus closely parallels the cytological features of gene amplification in cultured mammalian cells.
Collapse
|
28
|
|