1
|
Georis I, Ronsmans A, Vierendeels F, Dubois E. Differing SAGA module requirements for NCR-sensitive gene transcription in yeast. Yeast 2024; 41:207-221. [PMID: 37357465 DOI: 10.1002/yea.3885] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 04/24/2023] [Accepted: 05/25/2023] [Indexed: 06/27/2023] Open
Abstract
Nitrogen catabolite repression (NCR) is a means for yeast to adapt its transcriptome to changing nitrogen sources in its environment. In conditions of derepression (under poor nitrogen conditions, upon rapamycin treatment, or when glutamine production is inhibited), two transcriptional activators of the GATA family are recruited to NCR-sensitive promoters and activate transcription of NCR-sensitive genes. Earlier observations have involved the Spt-Ada-Gcn5 acetyltransferase (SAGA) chromatin remodeling complex in these transcriptional regulations. In this report, we provide an illustration of the varying NCR-sensitive responses and question whether differing SAGA recruitment could explain this diversity of responses.
Collapse
Affiliation(s)
| | | | | | - Evelyne Dubois
- Labiris, Brussels, Belgium
- Université Libre de Bruxelles, Brussels, Belgium
| |
Collapse
|
2
|
Isabelle G, Mohammad FK, Evi Z, Fabienne V, Martine R, Evelyne D. Glutamine transport as a possible regulator of nitrogen catabolite repression in Saccharomyces cerevisiae. Yeast 2022; 39:493-507. [PMID: 35942513 DOI: 10.1002/yea.3809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 07/19/2022] [Accepted: 08/03/2022] [Indexed: 11/08/2022] Open
Abstract
Nitrogen Catabolite Repression (NCR) is a major transcriptional control pathway governing nitrogen use in yeast, with several hundred of target genes identified to date. Early and extensive studies on NCR led to the identification of the 4 GATA zinc finger transcription factors, but the primary mechanism initiating NCR is still unclear up till now. To identify novel players of NCR, we have undertaken a genetic screen in an NCR-relieved gdh1Δ mutant, which led to the identification of four genes directly linked to protein ubiquitylation. Ubiquitylation is an important way of regulating amino acid transporters and our observations being specifically observed in glutamine-containing media, we hypothesized that glutamine transport could be involved in establishing NCR. Stabilization of Gap1 at the plasma membrane restored NCR in gdh1Δ cells and AGP1 (but not GAP1) deletion could relieve repression in the ubiquitylation mutants isolated during the screen. Altogether, our results suggest that deregulated glutamine transporter function in all three weak nitrogen derepressed (wnd) mutants restores the repression of NCR-sensitive genes consecutive to GDH1 deletion. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
| | - Fayyad-Kazan Mohammad
- Université Libre de Bruxelles, Belgium.,Biotechnology Department, American International University (AIU), Saad Al Abdullah, Al Jahra, Kuwait
| | - Zaremba Evi
- Labiris, Brussels, Belgium.,Université Libre de Bruxelles, Belgium
| | | | | | - Dubois Evelyne
- Labiris, Brussels, Belgium.,Université Libre de Bruxelles, Belgium
| |
Collapse
|
3
|
Critical Roles of the Pentose Phosphate Pathway and GLN3 in Isobutanol-Specific Tolerance in Yeast. Cell Syst 2019; 9:534-547.e5. [DOI: 10.1016/j.cels.2019.10.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 08/23/2019] [Accepted: 10/18/2019] [Indexed: 02/01/2023]
|
4
|
Salim N, Santhiagu A, Joji K. Process modeling and optimization of high yielding L-methioninase from a newly isolated Trichoderma harzianum using response surface methodology and artificial neural network coupled genetic algorithm. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2019. [DOI: 10.1016/j.bcab.2018.11.032] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
5
|
Mara P, Fragiadakis GS, Gkountromichos F, Alexandraki D. The pleiotropic effects of the glutamate dehydrogenase (GDH) pathway in Saccharomyces cerevisiae. Microb Cell Fact 2018; 17:170. [PMID: 30384856 PMCID: PMC6211499 DOI: 10.1186/s12934-018-1018-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 10/29/2018] [Indexed: 12/19/2022] Open
Abstract
Ammonium assimilation is linked to fundamental cellular processes that include the synthesis of non-essential amino acids like glutamate and glutamine. In Saccharomyces cerevisiae glutamate can be synthesized from α-ketoglutarate and ammonium through the action of NADP-dependent glutamate dehydrogenases Gdh1 and Gdh3. Gdh1 and Gdh3 are evolutionarily adapted isoforms and cover the anabolic role of the GDH-pathway. Here, we review the role and function of the GDH pathway in glutamate metabolism and we discuss the additional contributions of the pathway in chromatin regulation, nitrogen catabolite repression, ROS-mediated apoptosis, iron deficiency and sphingolipid-dependent actin cytoskeleton modulation in S.cerevisiae. The pleiotropic effects of GDH pathway in yeast biology highlight the importance of glutamate homeostasis in vital cellular processes and reveal new features for conserved enzymes that were primarily characterized for their metabolic capacity. These newly described features constitute insights that can be utilized for challenges regarding genetic engineering of glutamate homeostasis and maintenance of redox balances, biosynthesis of important metabolites and production of organic substrates. We also conclude that the discussed pleiotropic features intersect with basic metabolism and set a new background for further glutamate-dependent applied research of biotechnological interest.
Collapse
Affiliation(s)
- P. Mara
- Department of Chemistry, University of Crete, Voutes University Campus, 71003 Heraklion, Crete Greece
- Present Address: Woods Hole Oceanographic Institution, Woods Hole, MA 02543 USA
| | - G. S. Fragiadakis
- Institute of Molecular Biology & Biotechnology, FORTH, Nikolaou Plastira 100 GR-70013, Heraklion, Crete Greece
| | - F. Gkountromichos
- Department of Biology, University of Crete, Voutes University Campus, 71003 Heraklion, Crete Greece
- Faculty of Biology, Biocenter, Ludwig-Maximilians-University of Munich, Großhaderner Str. 2, 82152 Planegg-Martinsried, Germany
| | - D. Alexandraki
- Department of Biology, University of Crete, Voutes University Campus, 71003 Heraklion, Crete Greece
- Institute of Molecular Biology & Biotechnology, FORTH, Nikolaou Plastira 100 GR-70013, Heraklion, Crete Greece
| |
Collapse
|
6
|
Dal81 Regulates Expression of Arginine Metabolism Genes in Candida parapsilosis. mSphere 2018; 3:3/2/e00028-18. [PMID: 29564399 PMCID: PMC5853489 DOI: 10.1128/msphere.00028-18] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 02/08/2018] [Indexed: 01/26/2023] Open
Abstract
Fungi can use a wide variety of nitrogen sources. In the absence of preferred sources such as ammonium, glutamate, and glutamine, secondary sources, including most other amino acids, are used. Expression of the nitrogen utilization pathways is very strongly controlled at the transcriptional level. Here, we investigated the regulation of nitrogen utilization in the pathogenic yeast Candida parapsilosis. We found that the functions of many regulators are conserved with respect to Saccharomyces cerevisiae and other fungi. For example, the core GATA activators GAT1 and GLN3 have a conserved role in nitrogen catabolite repression (NCR). There is one ortholog of GZF3 and DAL80, which represses expression of genes in preferred nitrogen sources. The regulators PUT3 and UGA3 are required for metabolism of proline and γ-aminobutyric acid (GABA), respectively. However, the role of the Dal81 transcription factor is distinctly different. In S. cerevisiae, Dal81 is a positive regulator of acquisition of nitrogen from GABA, allantoin, urea, and leucine, and it is required for maximal induction of expression of the relevant pathway genes. In C. parapsilosis, induction of GABA genes is independent of Dal81, and deleting DAL81 has no effect on acquisition of nitrogen from GABA or allantoin. Instead, Dal81 represses arginine synthesis during growth under preferred nitrogen conditions. IMPORTANCE Utilization of nitrogen by fungi is controlled by nitrogen catabolite repression (NCR). Expression of many genes is switched off during growth on nonpreferred nitrogen sources. Gene expression is regulated through a combination of activation and repression. Nitrogen regulation has been studied best in the model yeast Saccharomyces cerevisiae. We found that although many nitrogen regulators have a conserved function in Saccharomyces species, some do not. The Dal81 transcriptional regulator has distinctly different functions in S. cerevisiae and C. parapsilosis. In the former, it regulates utilization of nitrogen from GABA and allantoin, whereas in the latter, it regulates expression of arginine synthesis genes. Our findings make an important contribution to our understanding of nitrogen regulation in a human-pathogenic fungus.
Collapse
|
7
|
Nizhnikov AA, Antonets KS, Bondarev SA, Inge-Vechtomov SG, Derkatch IL. Prions, amyloids, and RNA: Pieces of a puzzle. Prion 2017; 10:182-206. [PMID: 27248002 DOI: 10.1080/19336896.2016.1181253] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Amyloids are protein aggregates consisting of fibrils rich in β-sheets. Growth of amyloid fibrils occurs by the addition of protein molecules to the tip of an aggregate with a concurrent change of a conformation. Thus, amyloids are self-propagating protein conformations. In certain cases these conformations are transmissible / infectious; they are known as prions. Initially, amyloids were discovered as pathological extracellular deposits occurring in different tissues and organs. To date, amyloids and prions have been associated with over 30 incurable diseases in humans and animals. However, a number of recent studies demonstrate that amyloids are also functionally involved in a variety of biological processes, from biofilm formation by bacteria, to long-term memory in animals. Interestingly, amyloid-forming proteins are highly overrepresented among cellular factors engaged in all stages of mRNA life cycle: from transcription and translation, to storage and degradation. Here we review rapidly accumulating data on functional and pathogenic amyloids associated with mRNA processing, and discuss possible significance of prion and amyloid networks in the modulation of key cellular functions.
Collapse
Affiliation(s)
- Anton A Nizhnikov
- a Dept. of Genetics and Biotechnology , St. Petersburg State University , St. Petersburg , Russia.,b Vavilov Institute of General Genetics of the Russian Academy of Sciences, St. Petersburg Branch , St. Petersburg , Russia.,c All-Russia Research Institute for Agricultural Microbiology , St. Petersburg , Russia
| | - Kirill S Antonets
- a Dept. of Genetics and Biotechnology , St. Petersburg State University , St. Petersburg , Russia.,b Vavilov Institute of General Genetics of the Russian Academy of Sciences, St. Petersburg Branch , St. Petersburg , Russia
| | - Stanislav A Bondarev
- a Dept. of Genetics and Biotechnology , St. Petersburg State University , St. Petersburg , Russia
| | - Sergey G Inge-Vechtomov
- a Dept. of Genetics and Biotechnology , St. Petersburg State University , St. Petersburg , Russia.,b Vavilov Institute of General Genetics of the Russian Academy of Sciences, St. Petersburg Branch , St. Petersburg , Russia
| | - Irina L Derkatch
- d Department of Neuroscience , College of Physicians and Surgeons of Columbia University, Columbia University , New York , NY , USA
| |
Collapse
|
8
|
Antonets KS, Sargsyan HM, Nizhnikov AA. A Glutamine/Asparagine-Rich Fragment of Gln3, but not the Full-Length Protein, Aggregates in Saccharomyces cerevisiae. BIOCHEMISTRY (MOSCOW) 2017; 81:407-13. [PMID: 27293098 DOI: 10.1134/s0006297916040118] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The amino acid sequence of protein Gln3 in yeast Saccharomyces cerevisiae has a region enriched with Gln (Q) and Asn (N) residues. In this study, we analyzed the effects of overexpression of Gln3 and its Q/N-rich fragment fused with yellow fluorescent protein (YFP). Being overexpressed, full-length Gln3-YFP does not form aggregates, inhibits vegetative growth, and demonstrates nuclear localization, while the Q/N-rich fragment (Gln3QN) fused with YFP forms aggregates that do not colocalize with the nucleus and do not affect growth of the cells. Although detergent-resistant aggregates of Gln3QN are formed in the absence of yeast prions, the aggregation of Gln3QN significantly increases in the presence of [PIN(+)] prion, while in the presence of two prions, [PSI(+)] and [PIN(+)], the percentage of cells with Gln3QN aggregates is significantly lower than in the strain bearing only [PIN(+)]. Data on colocalization demonstrate that this effect is mediated by interaction between Gln3QN aggregates and [PSI(+)] and [PIN(+)] prions.
Collapse
Affiliation(s)
- K S Antonets
- St. Petersburg State University, Department of Genetics and Biotechnology, St. Petersburg, 199034, Russia.
| | | | | |
Collapse
|
9
|
Dummer AM, Su Z, Cherney R, Choi K, Denu J, Zhao X, Fox CA. Binding of the Fkh1 Forkhead Associated Domain to a Phosphopeptide within the Mph1 DNA Helicase Regulates Mating-Type Switching in Budding Yeast. PLoS Genet 2016; 12:e1006094. [PMID: 27257873 PMCID: PMC4892509 DOI: 10.1371/journal.pgen.1006094] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 05/10/2016] [Indexed: 12/18/2022] Open
Abstract
The Saccharomyces cerevisiae Fkh1 protein has roles in cell-cycle regulated transcription as well as a transcription-independent role in recombination donor preference during mating-type switching. The conserved FHA domain of Fkh1 regulates donor preference by juxtaposing two distant regions on chromosome III to promote their recombination. A model posits that this Fkh1-mediated long-range chromosomal juxtaposition requires an interaction between the FHA domain and a partner protein(s), but to date no relevant partner has been described. In this study, we used structural modeling, 2-hybrid assays, and mutational analyses to show that the predicted phosphothreonine-binding FHA domain of Fkh1 interacted with multiple partner proteins. The Fkh1 FHA domain was important for its role in cell-cycle regulation, but no single interaction partner could account for this role. In contrast, Fkh1’s interaction with the Mph1 DNA repair helicase regulated donor preference during mating-type switching. Using 2-hybrid assays, co-immunoprecipitation, and fluorescence anisotropy, we mapped a discrete peptide within the regulatory Mph1 C-terminus required for this interaction and identified two threonines that were particularly important. In vitro binding experiments indicated that at least one of these threonines had to be phosphorylated for efficient Fkh1 binding. Substitution of these two threonines with alanines (mph1-2TA) specifically abolished the Fkh1-Mph1 interaction in vivo and altered donor preference during mating-type switching to the same degree as mph1Δ. Notably, the mph1-2TA allele maintained other functions of Mph1 in genome stability. Deletion of a second Fkh1-interacting protein encoded by YMR144W also resulted in a change in Fkh1-FHA-dependent donor preference. We have named this gene FDO1 for Forkhead one interacting protein involved in donor preference. We conclude that a phosphothreonine-mediated protein-protein interface between Fkh1-FHA and Mph1 contributes to a specific long-range chromosomal interaction required for mating-type switching, but that Fkh1-FHA must also interact with several other proteins to achieve full functionality in this process. Specific chromosomal interactions between distal regions of the genome allow for DNA transactions necessary for normal cell function, but the protein-protein interfaces that regulate such interactions remain largely unknown. The budding yeast Fkh1 protein uses its evolutionarily conserved phosphothreonine-binding FHA domain to regulate a long-range DNA transaction called mating-type switching that allows yeast cells to switch their sexual phenotype. In this study, another conserved nuclear protein, the Mph1 DNA repair helicase, was shown to interact directly with the FHA domain of Fkh1 to regulate mating-type switching. The Fkh1-Mph1 interaction required two phosphorylated threonines on Mph1 that were dispensable for many other Mph1-protein interactions and other Mph1 chromosomal functions. Thus a discrete protein-protein interface between two multifunctional chromosomal proteins helps define a long-range chromosomal interaction important for controlling cell behavior.
Collapse
Affiliation(s)
- Antoinette M. Dummer
- Department of Biomolecular Chemistry, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Graduate Program in Cellular and Molecular Biology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Zhangli Su
- Department of Biomolecular Chemistry, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Graduate Program in Cellular and Molecular Biology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Rachel Cherney
- Department of Biomolecular Chemistry, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Koyi Choi
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York, United States of America
| | - John Denu
- Department of Biomolecular Chemistry, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Xiaolan Zhao
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York, United States of America
| | - Catherine A. Fox
- Department of Biomolecular Chemistry, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- * E-mail:
| |
Collapse
|
10
|
Georis I, Isabelle G, Tate JJ, Vierendeels F, Cooper TG, Dubois E. Premature termination of GAT1 transcription explains paradoxical negative correlation between nitrogen-responsive mRNA, but constitutive low-level protein production. RNA Biol 2016; 12:824-37. [PMID: 26259534 PMCID: PMC4615157 DOI: 10.1080/15476286.2015.1058476] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The first step in executing the genetic program of a cell is production of mRNA. In yeast, almost every gene is transcribed as multiple distinct isoforms, differing at their 5′ and/or 3′ termini. However, the implications and functional significance of the transcriptome-wide diversity of mRNA termini remains largely unexplored. In this paper, we show that the GAT1 gene, encoding a transcriptional activator of nitrogen-responsive catabolic genes, produces a variety of mRNAs differing in their 5′ and 3′ termini. Alternative transcription initiation leads to the constitutive, low level production of 2 full length proteins differing in their N-termini, whereas premature transcriptional termination generates a short, highly nitrogen catabolite repression- (NCR-) sensitive transcript that, as far as we can determine, is not translated under the growth conditions we used, but rather likely protects the cell from excess Gat1.
Collapse
Affiliation(s)
| | - Georis Isabelle
- a Yeast Physiology ; Institut de Recherches Microbiologiques J. M. Wiame ; Laboratoire de Microbiologie Université Libre de Bruxelles ; Brussels , Belgium
| | | | | | | | | |
Collapse
|
11
|
An L, Fitzpatrick D, Harrison PM. Emergence and evolution of yeast prion and prion-like proteins. BMC Evol Biol 2016; 16:24. [PMID: 26809710 PMCID: PMC4727409 DOI: 10.1186/s12862-016-0594-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 01/13/2016] [Indexed: 11/10/2022] Open
Abstract
Background Prions are transmissible, propagating alternative states of proteins, and are usually made from the fibrillar, beta-sheet-rich assemblies termed amyloid. Prions in the budding yeast Saccharomyces cerevisiae propagate heritable phenotypes, uncover hidden genetic variation, function in large-scale gene regulation, and can act like diseases. Almost all these amyloid prions have asparagine/glutamine-rich (N/Q–rich) domains. Other proteins, that we term here ‘prionogenic amyloid formers’ (PAFs), have been shown to form amyloid in vivo, and to have N/Q-rich domains that can propagate heritable states in yeast cells. Also, there are >200 other S.cerevisiae proteins with prion-like N/Q-rich sequence composition. Furthermore, human proteins with such N/Q-rich composition have been linked to the pathomechanisms of neurodegenerative amyloid diseases. Results Here, we exploit the increasing abundance of complete fungal genomes to examine the ancestry of prions/PAFs and other N/Q-rich proteins across the fungal kingdom. We find distinct evolutionary behavior for Q-rich and N-rich prions/PAFs; those of ancient ancestry (outside the budding yeasts, Saccharomycetes) are Q-rich, whereas N-rich cases arose early in Saccharomycetes evolution. This emergence of N-rich prion/PAFs is linked to a large-scale emergence of N-rich proteins during Saccharomycetes evolution, with Saccharomycetes showing a distinctive trend for population sizes of prion-like proteins that sets them apart from all the other fungi. Conversely, some clades, e.g. Eurotiales, have much fewer N/Q-rich proteins, and in some cases likely lose them en masse, perhaps due to greater amyloid intolerance, although they contain relatively more non-N/Q-rich predicted prions. We find that recent mutational tendencies arising during Saccharomycetes evolution (i.e., increased numbers of N residues and a tendency to form more poly-N tracts), contributed to the expansion/development of the prion phenomenon. Variation in these mutational tendencies in Saccharomycetes is correlated with the population sizes of prion-like proteins, thus implying that selection pressures on N/Q-rich protein sequences against amyloidogenesis are not generally maintained in budding yeasts. Conclusions These results help to delineate further the limits and origins of N/Q-rich prions, and provide insight as a case study of the evolution of compositionally-defined protein domains. Electronic supplementary material The online version of this article (doi:10.1186/s12862-016-0594-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Lu An
- Department of Biology, McGill University, Montreal, QC, Canada
| | - David Fitzpatrick
- Bioinformatics and Molecular Evolution Unit, NUI Maynooth, Maynooth, Ireland
| | - Paul M Harrison
- Department of Biology, McGill University, Montreal, QC, Canada.
| |
Collapse
|
12
|
Sameith K, Amini S, Groot Koerkamp MJA, van Leenen D, Brok M, Brabers N, Lijnzaad P, van Hooff SR, Benschop JJ, Lenstra TL, Apweiler E, van Wageningen S, Snel B, Holstege FCP, Kemmeren P. A high-resolution gene expression atlas of epistasis between gene-specific transcription factors exposes potential mechanisms for genetic interactions. BMC Biol 2015; 13:112. [PMID: 26700642 PMCID: PMC4690272 DOI: 10.1186/s12915-015-0222-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 12/14/2015] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Genetic interactions, or non-additive effects between genes, play a crucial role in many cellular processes and disease. Which mechanisms underlie these genetic interactions has hardly been characterized. Understanding the molecular basis of genetic interactions is crucial in deciphering pathway organization and understanding the relationship between genotype, phenotype and disease. RESULTS To investigate the nature of genetic interactions between gene-specific transcription factors (GSTFs) in Saccharomyces cerevisiae, we systematically analyzed 72 GSTF pairs by gene expression profiling double and single deletion mutants. These pairs were selected through previously published growth-based genetic interactions as well as through similarity in DNA binding properties. The result is a high-resolution atlas of gene expression-based genetic interactions that provides systems-level insight into GSTF epistasis. The atlas confirms known genetic interactions and exposes new ones. Importantly, the data can be used to investigate mechanisms that underlie individual genetic interactions. Two molecular mechanisms are proposed, "buffering by induced dependency" and "alleviation by derepression". CONCLUSIONS These mechanisms indicate how negative genetic interactions can occur between seemingly unrelated parallel pathways and how positive genetic interactions can indirectly expose parallel rather than same-pathway relationships. The focus on GSTFs is important for understanding the transcription regulatory network of yeast as it uncovers details behind many redundancy relationships, some of which are completely new. In addition, the study provides general insight into the complex nature of epistasis and proposes mechanistic models for genetic interactions, the majority of which do not fall into easily recognizable within- or between-pathway relationships.
Collapse
Affiliation(s)
- Katrin Sameith
- Molecular Cancer Research, University Medical Centre Utrecht, Universiteitsweg 100, Utrecht, The Netherlands
| | - Saman Amini
- Molecular Cancer Research, University Medical Centre Utrecht, Universiteitsweg 100, Utrecht, The Netherlands
| | - Marian J A Groot Koerkamp
- Molecular Cancer Research, University Medical Centre Utrecht, Universiteitsweg 100, Utrecht, The Netherlands
| | - Dik van Leenen
- Molecular Cancer Research, University Medical Centre Utrecht, Universiteitsweg 100, Utrecht, The Netherlands
| | - Mariel Brok
- Molecular Cancer Research, University Medical Centre Utrecht, Universiteitsweg 100, Utrecht, The Netherlands
| | - Nathalie Brabers
- Molecular Cancer Research, University Medical Centre Utrecht, Universiteitsweg 100, Utrecht, The Netherlands
| | - Philip Lijnzaad
- Molecular Cancer Research, University Medical Centre Utrecht, Universiteitsweg 100, Utrecht, The Netherlands
| | - Sander R van Hooff
- Molecular Cancer Research, University Medical Centre Utrecht, Universiteitsweg 100, Utrecht, The Netherlands
| | - Joris J Benschop
- Molecular Cancer Research, University Medical Centre Utrecht, Universiteitsweg 100, Utrecht, The Netherlands
| | - Tineke L Lenstra
- Molecular Cancer Research, University Medical Centre Utrecht, Universiteitsweg 100, Utrecht, The Netherlands
| | - Eva Apweiler
- Molecular Cancer Research, University Medical Centre Utrecht, Universiteitsweg 100, Utrecht, The Netherlands
| | - Sake van Wageningen
- Molecular Cancer Research, University Medical Centre Utrecht, Universiteitsweg 100, Utrecht, The Netherlands
| | - Berend Snel
- Theoretical Biology and Bioinformatics, Department of Biology, Utrecht University, Padualaan 8, Utrecht, The Netherlands
| | - Frank C P Holstege
- Molecular Cancer Research, University Medical Centre Utrecht, Universiteitsweg 100, Utrecht, The Netherlands
| | - Patrick Kemmeren
- Molecular Cancer Research, University Medical Centre Utrecht, Universiteitsweg 100, Utrecht, The Netherlands.
| |
Collapse
|
13
|
Fayyad-Kazan M, Feller A, Bodo E, Boeckstaens M, Marini AM, Dubois E, Georis I. Yeast nitrogen catabolite repression is sustained by signals distinct from glutamine and glutamate reservoirs. Mol Microbiol 2015; 99:360-79. [DOI: 10.1111/mmi.13236] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/28/2015] [Indexed: 01/29/2023]
Affiliation(s)
- Mohammad Fayyad-Kazan
- Institut de Recherches Microbiologiques J.-M. Wiame; 1070 Brussels Belgium
- Laboratoire de Biologie du Transport Membranaire; Institut de Biologie et de Médecine Moléculaires; Université Libre de Bruxelles; 6041 Gosselies Belgium
| | - A. Feller
- Institut de Recherches Microbiologiques J.-M. Wiame; 1070 Brussels Belgium
- Laboratoire de Microbiologie; Institut de Biologie et de Médecine Moléculaires; Université Libre de Bruxelles; 6041 Gosselies Belgium
| | - E. Bodo
- Unité de Biotechnologie; 1070 Brussels Belgium
| | - M. Boeckstaens
- Laboratoire de Biologie du Transport Membranaire; Institut de Biologie et de Médecine Moléculaires; Université Libre de Bruxelles; 6041 Gosselies Belgium
| | - A. M. Marini
- Laboratoire de Biologie du Transport Membranaire; Institut de Biologie et de Médecine Moléculaires; Université Libre de Bruxelles; 6041 Gosselies Belgium
| | - E. Dubois
- Institut de Recherches Microbiologiques J.-M. Wiame; 1070 Brussels Belgium
- Laboratoire de Microbiologie; Institut de Biologie et de Médecine Moléculaires; Université Libre de Bruxelles; 6041 Gosselies Belgium
| | - I. Georis
- Institut de Recherches Microbiologiques J.-M. Wiame; 1070 Brussels Belgium
| |
Collapse
|
14
|
Nguyen T, Fischl H, Howe FS, Woloszczuk R, Serra Barros A, Xu Z, Brown D, Murray SC, Haenni S, Halstead JM, O'Connor L, Shipkovenska G, Steinmetz LM, Mellor J. Transcription mediated insulation and interference direct gene cluster expression switches. eLife 2014; 3:e03635. [PMID: 25407679 PMCID: PMC4275577 DOI: 10.7554/elife.03635] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2014] [Accepted: 11/17/2014] [Indexed: 01/12/2023] Open
Abstract
In yeast, many tandemly arranged genes show peak expression in different phases of the metabolic cycle (YMC) or in different carbon sources, indicative of regulation by a bi-modal switch, but it is not clear how these switches are controlled. Using native elongating transcript analysis (NET-seq), we show that transcription itself is a component of bi-modal switches, facilitating reciprocal expression in gene clusters. HMS2, encoding a growth-regulated transcription factor, switches between sense- or antisense-dominant states that also coordinate up- and down-regulation of transcription at neighbouring genes. Engineering HMS2 reveals alternative mono-, di- or tri-cistronic and antisense transcription units (TUs), using different promoter and terminator combinations, that underlie state-switching. Promoters or terminators are excluded from functional TUs by read-through transcriptional interference, while antisense TUs insulate downstream genes from interference. We propose that the balance of transcriptional insulation and interference at gene clusters facilitates gene expression switches during intracellular and extracellular environmental change. DOI:http://dx.doi.org/10.7554/eLife.03635.001 A DNA double helix is made up of two DNA strands, which in turn are made of molecules that are each known by a single letter—A, T, C, or G. The sequence of these ‘letters’ in each DNA strand contains biological information. Genes are sections of DNA that can be ‘expressed’ to produce proteins and RNA molecules. To express a gene, the DNA strands in the double helix must first be partially separated so that one of them can be used as a template to build an RNA molecule in a process called transcription. Either of the DNA strands in a helix can be used as an RNA template, but contain different genes and are read in opposite directions. One of the two strands is called the ‘sense’ strand, the other the ‘antisense’ strand. The RNA molecule does not transcribe a whole DNA strand; instead, it transcribes a section of DNA, known as a transcription unit, which contains at least one gene. The end of a transcription unit is marked by certain signals that stop transcription. However, some transcription units in a DNA strand overlap, so there must be some way that the transcription machinery can sometimes ignore these stop signals. The activity of some genes is linked to the activity of their immediate neighbours. Furthermore, some genes are expressed in different amounts in response to changes in environmental conditions. Researchers have previously suggested that there must be some form of switch that controls when these genes are expressed. Nguyen et al. now engineer start and stop signals at a neighbouring pair of genes, called HMS2 and BAT2, in yeast. When one gene is switched on, the other is switched off and which gene is active depends on the diet of the yeast cells. On the antisense DNA strand opposite to HMS2 is another gene, SUT650. Nguyen et al. show that when this gene is transcribed, the transcription of HMS2 on the other DNA strand is blocked. This has the knock-on effect of turning on BAT2. Conversely, transcribing HMS2 switches off SUT650 and BAT2 because the end of HMS2 overlaps with the beginning of both SUT650 and BAT2. Switching between different genes relies on loops that physically link the start and stop signals of the gene to be transcribed while ignoring the start and stop signals for neighbouring genes. Proteins called transcription factors can bind to DNA and affect whether a gene is transcribed. Nguyen et al. found that a transcription factor that binds near the start of the HMS2 gene helps to control which DNA strand is transcribed. When transcription factors do not bind to the start of HMS2, antisense transcription—and the expression of SUT650—occurs instead. Overall, Nguyen et al. show that the transcription process itself makes up part of a switch that can control the expression of several genes on both the sense and antisense strands of a DNA double helix. This may also explain how many other, more complex, gene networks are activated in response to changes in the environment. DOI:http://dx.doi.org/10.7554/eLife.03635.002
Collapse
Affiliation(s)
- Tania Nguyen
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Harry Fischl
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Françoise S Howe
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Ronja Woloszczuk
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Ana Serra Barros
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Zhenyu Xu
- Genome Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - David Brown
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Struan C Murray
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Simon Haenni
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - James M Halstead
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Leigh O'Connor
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | | | - Lars M Steinmetz
- Genome Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Jane Mellor
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
15
|
Kemmeren P, Sameith K, van de Pasch L, Benschop J, Lenstra T, Margaritis T, O’Duibhir E, Apweiler E, van Wageningen S, Ko C, van Heesch S, Kashani M, Ampatziadis-Michailidis G, Brok M, Brabers N, Miles A, Bouwmeester D, van Hooff S, van Bakel H, Sluiters E, Bakker L, Snel B, Lijnzaad P, van Leenen D, Groot Koerkamp M, Holstege F. Large-Scale Genetic Perturbations Reveal Regulatory Networks and an Abundance of Gene-Specific Repressors. Cell 2014; 157:740-52. [DOI: 10.1016/j.cell.2014.02.054] [Citation(s) in RCA: 203] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Revised: 12/30/2013] [Accepted: 02/25/2014] [Indexed: 11/17/2022]
|
16
|
Fayyadkazan M, Tate JJ, Vierendeels F, Cooper TG, Dubois E, Georis I. Components of Golgi-to-vacuole trafficking are required for nitrogen- and TORC1-responsive regulation of the yeast GATA factors. Microbiologyopen 2014; 3:271-87. [PMID: 24644271 PMCID: PMC4082702 DOI: 10.1002/mbo3.168] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Revised: 01/20/2014] [Accepted: 01/27/2014] [Indexed: 01/18/2023] Open
Abstract
Nitrogen catabolite repression (NCR) is the regulatory pathway through which Saccharomyces cerevisiae responds to the available nitrogen status and selectively utilizes rich nitrogen sources in preference to poor ones. Expression of NCR-sensitive genes is mediated by two transcription activators, Gln3 and Gat1, in response to provision of a poorly used nitrogen source or following treatment with the TORC1 inhibitor, rapamycin. During nitrogen excess, the transcription activators are sequestered in the cytoplasm in a Ure2-dependent fashion. Here, we show that Vps components are required for Gln3 localization and function in response to rapamycin treatment when cells are grown in defined yeast nitrogen base but not in complex yeast peptone dextrose medium. On the other hand, Gat1 function was altered in vps mutants in all conditions tested. A significant fraction of Gat1, like Gln3, is associated with light intracellular membranes. Further, our results are consistent with the possibility that Ure2 might function downstream of the Vps components during the control of GATA factor-mediated gene expression. These observations demonstrate distinct media-dependent requirements of vesicular trafficking components for wild-type responses of GATA factor localization and function. As a result, the current model describing participation of Vps system components in events associated with translocation of Gln3 into the nucleus following rapamycin treatment or growth in nitrogen-poor medium requires modification.
Collapse
Affiliation(s)
- Mohammad Fayyadkazan
- Institut de Recherches Microbiologiques J.-M. Wiame, Laboratoire de Microbiologie, Université Libre de Bruxelles, 1070, Brussels, Belgium; Laboratoire de Biologie du Transport Membranaire, Institut de Biologie et de Médecine Moléculaires, Université Libre de Bruxelles, 6041, Gosselies, Belgium
| | | | | | | | | | | |
Collapse
|
17
|
Conrad M, Schothorst J, Kankipati HN, Van Zeebroeck G, Rubio-Texeira M, Thevelein JM. Nutrient sensing and signaling in the yeast Saccharomyces cerevisiae. FEMS Microbiol Rev 2014; 38:254-99. [PMID: 24483210 PMCID: PMC4238866 DOI: 10.1111/1574-6976.12065] [Citation(s) in RCA: 453] [Impact Index Per Article: 41.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Revised: 12/23/2013] [Accepted: 01/22/2014] [Indexed: 02/04/2023] Open
Abstract
The yeast Saccharomyces cerevisiae has been a favorite organism for pioneering studies on nutrient-sensing and signaling mechanisms. Many specific nutrient responses have been elucidated in great detail. This has led to important new concepts and insight into nutrient-controlled cellular regulation. Major highlights include the central role of the Snf1 protein kinase in the glucose repression pathway, galactose induction, the discovery of a G-protein-coupled receptor system, and role of Ras in glucose-induced cAMP signaling, the role of the protein synthesis initiation machinery in general control of nitrogen metabolism, the cyclin-controlled protein kinase Pho85 in phosphate regulation, nitrogen catabolite repression and the nitrogen-sensing target of rapamycin pathway, and the discovery of transporter-like proteins acting as nutrient sensors. In addition, a number of cellular targets, like carbohydrate stores, stress tolerance, and ribosomal gene expression, are controlled by the presence of multiple nutrients. The protein kinase A signaling pathway plays a major role in this general nutrient response. It has led to the discovery of nutrient transceptors (transporter receptors) as nutrient sensors. Major shortcomings in our knowledge are the relationship between rapid and steady-state nutrient signaling, the role of metabolic intermediates in intracellular nutrient sensing, and the identity of the nutrient sensors controlling cellular growth.
Collapse
Affiliation(s)
- Michaela Conrad
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU LeuvenLeuven-Heverlee, Flanders, Belgium
- Department of Molecular Microbiology, VIBLeuven-Heverlee, Flanders, Belgium
| | - Joep Schothorst
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU LeuvenLeuven-Heverlee, Flanders, Belgium
- Department of Molecular Microbiology, VIBLeuven-Heverlee, Flanders, Belgium
| | - Harish Nag Kankipati
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU LeuvenLeuven-Heverlee, Flanders, Belgium
- Department of Molecular Microbiology, VIBLeuven-Heverlee, Flanders, Belgium
| | - Griet Van Zeebroeck
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU LeuvenLeuven-Heverlee, Flanders, Belgium
- Department of Molecular Microbiology, VIBLeuven-Heverlee, Flanders, Belgium
| | - Marta Rubio-Texeira
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU LeuvenLeuven-Heverlee, Flanders, Belgium
- Department of Molecular Microbiology, VIBLeuven-Heverlee, Flanders, Belgium
| | - Johan M Thevelein
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU LeuvenLeuven-Heverlee, Flanders, Belgium
- Department of Molecular Microbiology, VIBLeuven-Heverlee, Flanders, Belgium
| |
Collapse
|
18
|
Lee IR, Lim JWC, Ormerod KL, Morrow CA, Fraser JA. Characterization of an Nmr homolog that modulates GATA factor-mediated nitrogen metabolite repression in Cryptococcus neoformans. PLoS One 2012; 7:e32585. [PMID: 22470421 PMCID: PMC3314646 DOI: 10.1371/journal.pone.0032585] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2012] [Accepted: 02/01/2012] [Indexed: 11/18/2022] Open
Abstract
Nitrogen source utilization plays a critical role in fungal development, secondary metabolite production and pathogenesis. In both the Ascomycota and Basidiomycota, GATA transcription factors globally activate the expression of catabolic enzyme-encoding genes required to degrade complex nitrogenous compounds. However, in the presence of preferred nitrogen sources such as ammonium, GATA factor activity is inhibited in some species through interaction with co-repressor Nmr proteins. This regulatory phenomenon, nitrogen metabolite repression, enables preferential utilization of readily assimilated nitrogen sources. In the basidiomycete pathogen Cryptococcus neoformans, the GATA factor Gat1/Are1 has been co-opted into regulating multiple key virulence traits in addition to nitrogen catabolism. Here, we further characterize Gat1/Are1 function and investigate the regulatory role of the predicted Nmr homolog Tar1. While GAT1/ARE1 expression is induced during nitrogen limitation, TAR1 transcription is unaffected by nitrogen availability. Deletion of TAR1 leads to inappropriate derepression of non-preferred nitrogen catabolic pathways in the simultaneous presence of favoured sources. In addition to exhibiting its evolutionary conserved role of inhibiting GATA factor activity under repressing conditions, Tar1 also positively regulates GAT1/ARE1 transcription under non-repressing conditions. The molecular mechanism by which Tar1 modulates nitrogen metabolite repression, however, remains open to speculation. Interaction between Tar1 and Gat1/Are1 was undetectable in a yeast two-hybrid assay, consistent with Tar1 and Gat1/Are1 each lacking the conserved C-terminus regions present in ascomycete Nmr proteins and GATA factors that are known to interact with each other. Importantly, both Tar1 and Gat1/Are1 are suppressors of C. neoformans virulence, reiterating and highlighting the paradigm of nitrogen regulation of pathogenesis.
Collapse
Affiliation(s)
- I. Russel Lee
- Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, Queensland, Australia
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Queensland, Australia
| | - Jonathan W. C. Lim
- Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, Queensland, Australia
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Queensland, Australia
| | - Kate L. Ormerod
- Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, Queensland, Australia
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Queensland, Australia
| | - Carl A. Morrow
- Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, Queensland, Australia
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Queensland, Australia
| | - James A. Fraser
- Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, Queensland, Australia
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Queensland, Australia
- * E-mail:
| |
Collapse
|
19
|
Ngamskulrungroj P, Chang Y, Roh J, Kwon-Chung KJ. Differences in nitrogen metabolism between Cryptococcus neoformans and C. gattii, the two etiologic agents of cryptococcosis. PLoS One 2012; 7:e34258. [PMID: 22479580 PMCID: PMC3313984 DOI: 10.1371/journal.pone.0034258] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Accepted: 02/24/2012] [Indexed: 12/23/2022] Open
Abstract
Two members of the Cryptococcus neoformans-gattii species complex, the etiologic agents of cryptococcosis, can be differentiated by biological, biochemical, serological and molecular typing techniques. Based on their differences in carbon and nitrogen utilization patterns, cost effective and very specific diagnostic tests using D-proline and canvanine-glycine-bromthymol blue (CGB) media have been formulated and are widely used for identification of the two species. However, these methods have yet to be tested for strains with confirmed molecular types to assess the degree of specificity for each molecular type in the two species. We collected global isolates of every major molecular type available and tested their patterns of nitrogen utilization. We confirmed specificity of the CGB test to be 100% regardless of molecular type while the D-proline test yielded 8–38% false negative results in three of the four C. gattii molecular types, VGI–VGIII. The utilization pattern of a new set of amino acids: D-alanine, L-tryptophan and L-phenylalanine, showed species specificity comparable to that of D-proline. We discovered that the transcription factor Gat1 (Are1) regulates the utilization of nitrogen differently between C. neoformans and C. gattii strains. Unlike in C. neoformans, expression of the genes encoding glycine decarboxylase complex in C. gatti was only partially suppressed by nitrogen catabolite repression in the presence of ammonium. GAT1 in C. neoformans controlled the induction of three of the four genes encoding the glycine decarboxylase complex when glycine was used as the sole nitrogen source while in C. gattii its regulation of these genes was less stringent. Moreover, while virulence of C. neoformans strains in mice was not affected by Gat1, the transcription factor positively influenced the virulence of C. gattii strain.
Collapse
Affiliation(s)
- Popchai Ngamskulrungroj
- Molecular Microbiology Section, Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
- Department of Microbiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Yun Chang
- Molecular Microbiology Section, Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Jamin Roh
- Molecular Microbiology Section, Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Kyung J. Kwon-Chung
- Molecular Microbiology Section, Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
20
|
Huang YC, Chen HT, Teng SC. Intragenic transcription of a noncoding RNA modulates expression of ASP3 in budding yeast. RNA (NEW YORK, N.Y.) 2010; 16:2085-2093. [PMID: 20817754 PMCID: PMC2957049 DOI: 10.1261/rna.2177410] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2010] [Accepted: 07/23/2010] [Indexed: 05/29/2023]
Abstract
Inter- and intragenic noncoding transcription is widespread in eukaryotic genomes; however, the purpose of these types of transcription is still poorly understood. Here, we show that intragenic sense-oriented transcription within the budding yeast ASP3 coding region regulates a constitutively and immediately accessible promoter for the transcription of full-length ASP3. Expression of this short intragenic transcript is independent of GATA transcription factors, which are essential for the activation of full-length ASP3, and independent of RNA polymerase II (RNAPII). Furthermore, we found that an intragenic control element is required for the expression of this noncoding RNA (ncRNA). Continuous expression of the short ncRNA maintains a high level of trimethylation of histone H3 at lysine 4 (H3K4me3) at the ASP3 promoter and makes this region more accessible for RNAPII to transcribe the full-length ASP3. Our results show for the first time that intragenic noncoding transcription promotes gene expression.
Collapse
Affiliation(s)
- Yu-Ching Huang
- Department of Microbiology, College of Medicine, National Taiwan University, Taipei 10051, Taiwan
| | | | | |
Collapse
|
21
|
Abstract
Yeast cells sense the amount and quality of external nutrients through multiple interconnected signaling networks, which allow them to adjust their metabolism, transcriptional profile and developmental program to adapt readily and appropriately to changing nutritional states. We present our current understanding of the nutritional sensing networks yeast cells rely on for perceiving the nutritional landscape, with particular emphasis on those sensitive to carbon and nitrogen sources. We describe the means by which these networks inform the cell's decision among the different developmental programs available to them-growth, quiescence, filamentous development, or meiosis/sporulation. We conclude that the highly interconnected signaling networks provide the cell with a highly nuanced view of the environment and that the cell can interpret that information through a sophisticated calculus to achieve optimum responses to any nutritional condition.
Collapse
Affiliation(s)
- Shadia Zaman
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA
| | | | | | | |
Collapse
|
22
|
Barnett JA. A history of research on yeasts 13. Active transport and the uptake of various metabolites. Yeast 2008; 25:689-731. [PMID: 18951365 DOI: 10.1002/yea.1630] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- James A Barnett
- School of Biological Sciences, University of East Anglia, Norwich, UK.
| |
Collapse
|
23
|
l-Methioninase Production by Filamentous Fungi: I-Screening and Optimization Under Submerged Conditions. Curr Microbiol 2008; 58:219-26. [DOI: 10.1007/s00284-008-9311-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2008] [Revised: 10/09/2008] [Accepted: 10/10/2008] [Indexed: 10/21/2022]
|
24
|
Growth control via TOR kinase signaling, an intracellular sensor of amino acid and energy availability, with crosstalk potential to proline metabolism. Amino Acids 2008; 35:761-70. [DOI: 10.1007/s00726-008-0100-3] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2008] [Accepted: 04/25/2008] [Indexed: 12/25/2022]
|
25
|
Jin R, Dobry CJ, McCown PJ, Kumar A. Large-scale analysis of yeast filamentous growth by systematic gene disruption and overexpression. Mol Biol Cell 2007; 19:284-96. [PMID: 17989363 DOI: 10.1091/mbc.e07-05-0519] [Citation(s) in RCA: 112] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Under certain conditions of nutrient stress, the budding yeast Saccharomyces cerevisiae initiates a striking developmental transition to a filamentous form of growth, resembling developmental transitions required for virulence in closely related pathogenic fungi. In yeast, filamentous growth involves known mitogen-activated protein kinase and protein kinase A signaling modules, but the full scope of this extensive filamentous response has not been delineated. Accordingly, we have undertaken the first systematic gene disruption and overexpression analysis of yeast filamentous growth. Standard laboratory strains of yeast are nonfilamentous; thus, we constructed a unique set of reagents in the filamentous Sigma1278b strain, encompassing 3627 integrated transposon insertion alleles and 2043 overexpression constructs. Collectively, we analyzed 4528 yeast genes with these reagents and identified 487 genes conferring mutant filamentous phenotypes upon transposon insertion and/or gene overexpression. Using a fluorescent protein reporter integrated at the MUC1 locus, we further assayed each filamentous growth mutant for aberrant protein levels of the key flocculence factor Muc1p. Our results indicate a variety of genes and pathways affecting filamentous growth. In total, this filamentous growth gene set represents a wealth of yeast biology, highlighting 84 genes of uncharacterized function and an underappreciated role for the mitochondrial retrograde signaling pathway as an inhibitor of filamentous growth.
Collapse
Affiliation(s)
- Rui Jin
- Department of Molecular, Cellular, and Developmental Biology and Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109-2216, USA
| | | | | | | |
Collapse
|
26
|
Ranson N, Stromer T, Bousset L, Melki R, Serpell LC. Insights into the architecture of the Ure2p yeast protein assemblies from helical twisted fibrils. Protein Sci 2006; 15:2481-7. [PMID: 17001037 PMCID: PMC2242408 DOI: 10.1110/ps.062215206] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
The protein Ure2 from baker's yeast is associated with a heritable and transmissible phenotypic change in the yeast Saccharomyces cerevisiae. Such prion properties are thought to arise from the fact that Ure2p is able to self-assemble into insoluble fibrils. Assemblies of Ure2p are composed of full-length proteins in which the structure of the globular, functional, C-terminal domain is retained. We have carried out structural studies on full-length, wild-type Ure2p fibrils with a regularly twisted morphology. Using electron microscopy and cryo-electron microscopy with image analysis we show high-resolution images of the twisted filaments revealing details within the fibrillar structure. We examine these details in light of recent proposed models and discuss how this new information contributes to an understanding of the architecture of Ure2p yeast prion fibrils.
Collapse
Affiliation(s)
- Neil Ranson
- Astbury Centre for Structural Molecular Biology and Institute for Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | | | | | | | | |
Collapse
|
27
|
López-Pedrosa A, González-Guerrero M, Valderas A, Azcón-Aguilar C, Ferrol N. GintAMT1 encodes a functional high-affinity ammonium transporter that is expressed in the extraradical mycelium of Glomus intraradices. Fungal Genet Biol 2005; 43:102-10. [PMID: 16386437 DOI: 10.1016/j.fgb.2005.10.005] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2005] [Revised: 10/19/2005] [Accepted: 10/31/2005] [Indexed: 11/27/2022]
Abstract
We report the cloning and characterization of the first NH(4)(+) transporter gene (GintAMT1) in an arbuscular mycorrhizal fungus. GintAMT1 encodes a polypeptide of 479 amino acids sharing high sequence similarity with previously characterized NH(4)(+) transporters from other fungi. Heterologous expression of GintAMT1 in the yeast triple mep mutant complemented the defect of this strain to grow in the presence of less than 1mM NH(4)(+). As revealed by [(14)C]methylammonium uptake experiments carried out in yeast, GintAMT1 encodes a high-affinity NH(4)(+) transporter. In mycelia developed in the presence of 0.9 m M NO(3)(-), GintAMT1 transcription was increased after the addition of 30 microM NH(4)(+) but decreased after the addition of 3 mM NH(4)(+). However, in mycelia grown in the presence of higher N concentrations, GintAMT1 transcripts decreased after the addition of NH(4)(+), irrespective of the concentration used. These data suggest that GintAMT1 is involved in NH(4)(+) uptake by the extraradical mycelia from the surrounding media when it is present at micromolar concentrations.
Collapse
Affiliation(s)
- Agustín López-Pedrosa
- Departamento de Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín, CSIC, Profesor Albareda 1, 18008 Granada, Spain
| | | | | | | | | |
Collapse
|
28
|
Fay N, Redeker V, Savistchenko J, Dubois S, Bousset L, Melki R. Structure of the prion Ure2p in protein fibrils assembled in vitro. J Biol Chem 2005; 280:37149-58. [PMID: 16131495 DOI: 10.1074/jbc.m506917200] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Ure2 protein from the yeast Saccharomyces cerevisiae has prion properties. In vitro and at neutral pH, soluble Ure2p spontaneously forms long, straight, insoluble protein fibrils. Two models have been proposed to account for the assembly of Ure2p into protein fibrils. The "amyloid backbone" model postulates that a segment ranging from 40 to 70 amino acids in the flexible N-terminal domain from different Ure2p molecules forms a parallel superpleated beta-structure running along the fibrils. The second model hypothesizes that assembly of full-length Ure2p is driven by limited conformational rearrangements and non-native inter- and/or intramolecular interactions between Ure2p monomers. Here, we performed a cysteine scan on residues located in the N- and C-terminal parts of Ure2p to determine whether these domains interact. Amino acid sequences centered around residue 6 in the N-terminal domain of Ure2p and residue 137 in the C-terminal moiety interacted at least transiently via intramolecular interactions. We documented the assembly properties of a Ure2p variant in which a disulfide bond was established between the N- and C-terminal domains and showed that it possesses assembly properties indistinguishable from those of wild-type Ure2p. We probed the structure of Ure2pC6C137 within the fibrils and demonstrate that the polypeptide is in a conformation similar to that of its soluble assembly-competent state. Our results constitute the first structural characterization of the N-terminal domain of Ure2p in both its soluble assembly-competent and fibrillar forms. Our data indicate that the flexibility of the N-terminal domain and conformational changes within this domain are essential for fibril formation and provide new insight into the conformational rearrangements that lead to the assembly of Ure2p into fibrils and the propagation of the [URE3] phenotype in yeast.
Collapse
Affiliation(s)
- Nicolas Fay
- Laboratoire d'Enzymologie et Biochimie Structurales, CNRS, Avenue de la Terrasse, 91198 Gif-sur-Yvette Cedex, France
| | | | | | | | | | | |
Collapse
|
29
|
Abstract
LST8, a Saccharomyces cerevisiae gene encoding a 34-kD WD-repeat protein, was identified by mutations that caused defects in sorting Gap1p to the plasma membrane. Here, we report that the Gap1p sorting defect in the lst8-1 mutant results from derepression of Rtg1/3p activity and the subsequent accumulation of high levels of intracellular amino acids, which signal Gap1p sorting to the vacuole. To identify the essential function of Lst8p, we isolated lst8 mutants that are temperature-sensitive for growth. These mutants show hypersensitivity to rapamycin and derepressed Gln3p activity like cells with compromised TOR pathway activity. Like tor2 mutants, lst8 mutants also have cell wall integrity defects. Confirming a role for Lst8p in the TOR pathway, we find that Lst8p associates with both Tor1p and Tor2p and is a peripheral membrane protein that localizes to endosomal or Golgi membranes and cofractionates with Tor1p. Further, we show that a sublethal concentration of rapamycin mimics the Gap1p sorting defect of an lst8 mutant. Finally, the different effects of lst8 alleles on the activation of either the Rtg1/3p or Gln3p transcription factors reveal that these two pathways constitute distinct, genetically separable outputs of the Tor-Lst8 regulatory complex.
Collapse
Affiliation(s)
- Esther J Chen
- Dept. of Biology, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA 02139, USA
| | | |
Collapse
|
30
|
Javelle A, Morel M, Rodríguez-Pastrana BR, Botton B, André B, Marini AM, Brun A, Chalot M. Molecular characterization, function and regulation of ammonium transporters (Amt) and ammonium-metabolizing enzymes (GS, NADP-GDH) in the ectomycorrhizal fungus Hebeloma cylindrosporum. Mol Microbiol 2003; 47:411-30. [PMID: 12519192 DOI: 10.1046/j.1365-2958.2003.03303.x] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
External hyphae, which play a key role in nitrogen nutrition of trees, are considered as the absorbing structures of the ectomycorrhizal symbiosis. Here, we have cloned and characterized Hebeloma cylindrosporum AMT1, GLNA and GDHA genes, which encode a third ammonium transporter, a glutamine synthetase and an NADP-dependent glutamate dehydrogenase respectively. Amt1 can fully restore the pseudohyphal growth defect of a Saccharomyces cerevisiae mep2 mutant, and this is the first evidence that a heterologous member of the Mep/Amt family complements this dimorphic change defect. Dixon plots of the inhibition of methylamine uptake by ammonium indicate that Amt1 has a much higher affinity than the two previously characterized members (Amt2 and Amt3) of the Amt/Mep family in H. cylindrosporum. We also identified the intracellular nitrogen pool(s) responsible for the modulation of expression of AMT1, AMT2, AMT3, GDHA and GLNA. In response to exogenously supplied ammonium or glutamine, AMT1, AMT2 and GDHA were downregulated and, therefore, these genes are subjected to nitrogen repression in H. cylindrosporum. Exogenously supplied nitrate failed to induce a downregulation of the five mRNAs after transfer of mycelia from a N-starved condition. Our results demonstrate that glutamine is the main effector for AMT1 and AMT2 repression, whereas GDHA repression is controlled by intracellular ammonium, independently of the intracellular glutamine or glutamate concentration. Ammonium transport activity may be controlled by intracellular NH4+. AMT3 and GLNA are highly expressed but not highly regulated. A model for ammonium assimilation in H. cylindrosporum is presented.
Collapse
Affiliation(s)
- Arnaud Javelle
- Université Henri Poincaré, Nancy 1, Faculté des Sciences et Techniques, UMR INRA/UHP 1136, Interactions Arbres/Micro-organismes, BP 239, 54506 Vandoeuvre-les-Nancy Cedex, France
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Abstract
Yeast cells can respond to growth on relatively poor nitrogen sources by increasing expression of the enzymes for the synthesis of glutamate and glutamine and by increasing the activities of permeases responsible for the uptake of amino acids for use as a source of nitrogen. These general responses to the quality of nitrogen source in the growth medium are collectively termed nitrogen regulation. In this review, we discuss the historical foundations of the study of nitrogen regulation as well as the current understanding of the regulatory networks that underlie nitrogen regulation. One focus of the review is the array of four GATA type transcription factors which are responsible for the regulation the expression of nitrogen-regulated genes. They are the activators Gln3p and Nil1p and their antagonists Nil2p and Dal80p. Our discussion includes consideration of the DNA elements which are the targets of the transcription factors and of the regulated translocation of Gln3p and Nil1p from the cytoplasm to the nucleus. A second focus of the review is the nitrogen regulation of the general amino acid permease, Gap1p, and the proline permease, Put4p, by ubiquitin mediated intracellular protein sorting in the secretory and endosomal pathways.
Collapse
Affiliation(s)
- Boris Magasanik
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | | |
Collapse
|
32
|
Abstract
Mammalian transmissible spongiform encephalopathies are likely due to the propagation of an abnormal form of a constitutive protein instead of traditional genetic material (nucleic acids). Such infectious proteins, which are termed prions, exist in yeast. They are at the origin of a number of phenotypes that are inherited in a non-Mendelian manner. These prions are very useful to dissect the molecular events at the origin of this structure-based inheritance. The properties of mammalian and yeast prions are presented and compared. This review highlights a number of similarities and differences.
Collapse
Affiliation(s)
- Luc Bousset
- Laboratoire d'enzymologie et biochimie structurales, CNRS, Bât. 34, avenue de la Terrasse, 91198 Gif-sur-Yvette, France
| | | |
Collapse
|
33
|
Sekito T, Liu Z, Thornton J, Butow RA. RTG-dependent Mitochondria-to-Nucleus Signaling Is Regulated by MKS1and Is Linked to Formation of Yeast Prion [URE3]. Mol Biol Cell 2002. [DOI: 10.1091/mbc.01-10-0473] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
An important function of the RTG signaling pathway is maintenance of intracellular glutamate supplies in yeast cells with dysfunctional mitochondria. Herein, we report that MKS1is a negative regulator of the RTG pathway, acting between Rtg2p, a proximal sensor of mitochondrial function, and the bHLH transcription factors Rtg1p and Rtg3p. In mks1Δcells, RTG target gene expression is constitutive, bypassing the requirement for Rtg2p, and is no longer repressible by glutamate. We show further that Mks1p is a phosphoprotein whose phosphorylation pattern parallels that of Rtg3p in response to activation of the RTG pathway, and that Mks1p is in a complex with Rtg2p. MKS1 was previously implicated in the formation of [URE3], an inactive prion form of a negative regulator of the nitrogen catabolite repression pathway, Ure2p.rtgΔ mutations induce [URE3] and can do so independently of MKS1. We find that glutamate suppresses [URE3] formation, suggesting that the Mks1p effect on the formation of [URE3] can occur indirectly via regulation of theRTG pathway.
Collapse
Affiliation(s)
- Takayuki Sekito
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9148
| | - Zhengchang Liu
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9148
| | - Janet Thornton
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9148
| | - Ronald A. Butow
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9148
| |
Collapse
|
34
|
Wickner RB, Taylor KL, Edskes HK, Maddelein ML, Moriyama H, Roberts BT. Yeast prions act as genes composed of self-propagating protein amyloids. ADVANCES IN PROTEIN CHEMISTRY 2002; 57:313-34. [PMID: 11447695 DOI: 10.1016/s0065-3233(01)57026-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Affiliation(s)
- R B Wickner
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | |
Collapse
|
35
|
Wickner RB, Taylor KL, Edskes HK, Maddelein ML, Moriyama H, Roberts BT. Prions of yeast as heritable amyloidoses. J Struct Biol 2000; 130:310-22. [PMID: 10940235 DOI: 10.1006/jsbi.2000.4250] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Two infectious proteins (prions) of Saccharomyces cerevisiae have been identified by their unusual genetic properties: (1) reversible curability, (2) de novo induction of the infectious prion form by overproduction of the protein, and (3) similar phenotype of the prion and mutation in the chromosomal gene encoding the protein. [URE3] is an altered infectious form of the Ure2 protein, a regulator of nitrogen catabolism, while [PSI] is a prion of the Sup35 protein, a subunit of the translation termination factor. The altered form of each is inactive in its normal function, but is able to convert the corresponding normal protein into the same altered inactive state. The N-terminal parts of Ure2p and Sup35p (the "prion domains") are responsible for prion formation and propagation and are rich in asparagine and glutamine residues. Ure2p and Sup35p are aggregated in vivo in [URE3]- and [PSI]-containing cells, respectively. The prion domains can form amyloid in vitro, suggesting that amyloid formation is the basis of these two prion diseases. Yeast prions can be cured by growth on millimolar concentrations of guanidine. An excess or deficiency of the chaperone Hsp104 cures the [PSI] prion. Overexpression of fragments of Ure2p or certain fusion proteins leads to curing of [URE3].
Collapse
Affiliation(s)
- R B Wickner
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes, Digestive and Kidney Diseases, Bethesda, Maryland, 20892-0830, USA
| | | | | | | | | | | |
Collapse
|
36
|
Cunningham TS, Andhare R, Cooper TG. Nitrogen catabolite repression of DAL80 expression depends on the relative levels of Gat1p and Ure2p production in Saccharomyces cerevisiae. J Biol Chem 2000; 275:14408-14. [PMID: 10799523 PMCID: PMC4382002 DOI: 10.1074/jbc.275.19.14408] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
GATA family activators (Gln3p and Gat1p) and repressors (Dal80p and Deh1p) regulate nitrogen catabolite repression (NCR)-sensitive transcription in Saccharomyces cerevisiae presumably via their competitive binding to the GATA sequences upstream of NCR-sensitive genes. Ure2p, which is not a GATA family member, inhibits Gln3p/Gat1p from functioning in the presence of good nitrogen sources. We show that NCR-sensitive DAL80 transcription can be influenced by the relative levels of GAT1 and URE2 expression. NCR, normally observed with ammonia or glutamine, is severely diminished when Gat1p is overproduced, and this inhibition is overcome by simultaneously increasing URE2 expression. Further, overproduction of Ure2p nearly eliminates NCR-sensitive transcription under derepressive growth conditions, i.e. with proline as the sole nitrogen source. Enhanced green fluorescent protein-Gat1p is nuclear when Gat1p-dependent transcription is high and cytoplasmic when it is inhibited by overproduction of Ure2p.
Collapse
Affiliation(s)
| | | | - Terrance G. Cooper
- To whom correspondence should be addressed. Tel.: 901-448-6175; Fax: 901-448-8462;
| |
Collapse
|
37
|
ter Schure EG, van Riel NA, Verrips CT. The role of ammonia metabolism in nitrogen catabolite repression in Saccharomyces cerevisiae. FEMS Microbiol Rev 2000; 24:67-83. [PMID: 10640599 DOI: 10.1111/j.1574-6976.2000.tb00533.x] [Citation(s) in RCA: 161] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Saccharomyces cerevisiae is able to use a wide variety of nitrogen sources for growth. Not all nitrogen sources support growth equally well. In order to select the best out of a large diversity of available nitrogen sources, the yeast has developed molecular mechanisms. These mechanisms consist of a sensing mechanism and a regulatory mechanism which includes induction of needed systems, and repression of systems that are not beneficial. The first step in use of most nitrogen sources is its uptake via more or less specific permeases. Hence the first level of regulation is encountered at this level. The next step is the degradation of the nitrogen source to useful building blocks via the nitrogen metabolic pathways. These pathways can be divided into routes that lead to the degradation of the nitrogen source to ammonia and glutamate, and routes that lead to the synthesis of nitrogen containing compounds in which glutamate and glutamine are used as nitrogen donor. Glutamine is synthesized out of ammonia and glutamate. The expression of the specific degradation routes is also regulated depending on the availability of a particular nitrogen source. Ammonia plays a central role as intermediate between degradative and biosynthetic pathways. It not only functions as a metabolite in metabolic reactions but is also involved in regulation of metabolic pathways at several levels. This review describes the central role of ammonia in nitrogen metabolism. This role is illustrated at the level of enzyme activity, translation and transcription.
Collapse
Affiliation(s)
- E G ter Schure
- Unilever Research, Laboratorium Vlaardingen, Olivier van Noortlaan 120, 3133 AT, Vlaardingen, The Netherlands.
| | | | | |
Collapse
|
38
|
Rai R, Daugherty JR, Cunningham TS, Cooper TG. Overlapping positive and negative GATA factor binding sites mediate inducible DAL7 gene expression in Saccharomyces cerevisiae. J Biol Chem 1999; 274:28026-34. [PMID: 10488154 DOI: 10.1074/jbc.274.39.28026] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Allantoin pathway gene expression in Saccharomyces cerevisiae responds to two different environmental stimuli. The expression of these genes is induced in the presence of allantoin or its degradative metabolites and repressed when a good nitrogen source (e. g. asparagine or glutamine) is provided. Three types of cis-acting sites and trans-acting factors are required for allantoin pathway gene transcription as follows: (i) UAS(NTR) element associated with the transcriptional activators Gln3p and Gat1p, (ii) URS(GATA) element associated with the repressor Dal80p, and (iii) UIS(ALL) element associated with the Dal82 and Dal81 proteins required for inducer-dependent transcription. Most of the work leading to the above conclusions has employed inducer-independent allantoin pathway genes (e.g. DAL5 and DAL3). The purpose of this work is to extend our understanding of these elements and their roles to inducible allantoin pathway genes using the DAL7 (encoding malate synthase) as a model. We show that eight distinct cis-acting sites participate in the process as follows: a newly identified GC-rich element, two UAS(NTR), two UIS(ALL), and three URS(GATA) elements. The two GATA-containing UAS(NTR) elements are coincident with two of the three GATA sequences that make up the URS(GATA) elements. The remaining URS(GATA) GATA sequence, however, is not a UAS(NTR) element but appears to function only in repression. The data provide insights into how these cis- and trans-acting factors function together to accomplish the regulated expression of the DAL7 gene that is observed in vivo.
Collapse
Affiliation(s)
- R Rai
- Department of Microbiology and Immunology, University of Tennessee, Memphis, Tennessee 38163, USA
| | | | | | | |
Collapse
|
39
|
Abstract
Access to the powerful micro-array analytical methods used for genome-wide transcriptional analysis has so far been restricted by the high cost and/or lack of availability of the sophisticated instrumentation and materials needed to perform it. Mini-array membrane hybridization provides a less expensive alternative. The reliability of this technique, however, is not well documented and its reported use has, up to this point, been very limited. Our objective was to test whether or not mini-array membrane hybridization would reliably identify genes whose expression was controlled by a specific set of genetic and/or physiological signals. Our results demonstrate that mini-array hybridization can correctly identify genes whose expression is known to be controlled by the GATA-factor regulatory network in S. cerevisiae and in addition can reliably identify genes not previously reported to be associated with this nitrogen control system.
Collapse
Affiliation(s)
- K H Cox
- Department of Microbiology and Immunology, University of Tennessee, Memphis 38163, USA
| | | | | |
Collapse
|
40
|
Soussi-Boudekou S, André B. A co-activator of nitrogen-regulated transcription in Saccharomyces cerevisiae. Mol Microbiol 1999; 31:753-62. [PMID: 10048020 DOI: 10.1046/j.1365-2958.1999.01187.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In Saccharomyces cerevisiae, the transcription factors Gln3p and Nil1p of the GATA family play a determinant role in expression of genes that are subject to nitrogen catabolite repression. Here we report the isolation of a new yeast mutant, gan1-1, exhibiting dramatically decreased NAD-linked glutamate dehydrogenase (NAD-GDH) and glutamine synthetase (GS) activities. The GAN1 gene was cloned and found to encode a 488-amino-acid polypeptide bearing no typical DNA binding domain. Gan1p is required for full expression of GLN1, GDH2 and also other nitrogen utilization genes, including GAP1, PUT4, MEP2 and GDH1. The extent to which Gan1p is required, however, varies according to the gene and to the nitrogen source available. We show that Gan1p is in fact involved in Gln3p- and Nil1p-dependent transcription. In the case of Gln3p-dependent transcription, the degree to which Gan1p is required appears to be gene specific. The contribution of Gan1p to gene expression is also influenced by the nitrogen status of the cell. We found that GAN1 is identical to ADA1, which encodes a component of the ADA/GCN5 co-activator complex. Ada1/Gan1p thus represents the first reported case of an accessory protein (a co-activator) linking the GATA-binding proteins Gln3p and Nil1p, mediating nitrogen-regulated transcription, to the basal transcription machinery.
Collapse
Affiliation(s)
- S Soussi-Boudekou
- Laboratoire de Physiologie Cellulaire et de Génétique des Levures, Université Libre de Bruxelles-Campus Plaine, Brussels, Belgium
| | | |
Collapse
|
41
|
Wickner RB, Edskes HK, Maddelein ML, Taylor KL, Moriyama H. Prions of yeast and fungi. Proteins as genetic material. J Biol Chem 1999; 274:555-8. [PMID: 9872986 DOI: 10.1074/jbc.274.2.555] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- R B Wickner
- Laboratory of Biochemistry and Genetics, NIDDK, National Institutes of Health, Bethesda, Maryland 20892-0830, USA.
| | | | | | | | | |
Collapse
|
42
|
Ter Schure EG, Silljé HHW, Vermeulen EE, Kalhorn JW, Verkleij AJ, Boonstra J, Verrips CT. Repression of nitrogen catabolic genes by ammonia and glutamine in nitrogen-limited continuous cultures of Saccharomyces cerevisiae. MICROBIOLOGY (READING, ENGLAND) 1998; 144 ( Pt 5):1451-1462. [PMID: 9611819 DOI: 10.1099/00221287-144-5-1451] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Growth of Saccharomyces cerevisiae on ammonia and glutamine decreases the expression of many nitrogen catabolic genes to low levels. To discriminate between ammonia- and glutamine-driven repression of GAP1, PUT4, GDH1 and GLN1, a gln1-37 mutant was used. This mutant is not able to convert ammonia into glutamine. Glutamine-limited continuous cultures were used to completely derepress the expression of GAP1, PUT4, GDH1 and GLN1. Following an ammonia pulse, the expression of GAP1, PUT4 and GDH1 decreased while the intracellular glutamine concentration remained constant, both in the cytoplasm and in the vacuole. Therefore, it was concluded that ammonia causes gene repression independent of the intracellular glutamine concentration. The expression of GLN1 was not decreased by an ammonia pulse but solely by a glutamine pulse. Analysis of the mRNA levels of ILV5 and HIS4 showed that the response of the two biosynthetic genes, GDH1 and GLN1, to ammonia and glutamine in the wild-type and gln1-37 was not due to changes in general transcription of biosynthetic genes. Ure2p has been shown to be an essential element for nitrogen-regulated gene expression. Deletion of URE2 in the gln1-37 background prevented repression of gene expression by ammonia, showing that the ammonia-induced repression is not caused by a general stress response but represents a specific signal for nitrogen catabolite regulation.
Collapse
Affiliation(s)
- Eelko G Ter Schure
- Unilever Research Laboratorium Vlaardingen, Olivier van Noortlaan120, 3133 AT Viaardingen, The Netherlands
| | - Herman H W Silljé
- Department of Molecular Cell Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Edgar E Vermeulen
- Department of Molecular Cell Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Jan-Willem Kalhorn
- Department of Molecular Cell Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Arie J Verkleij
- Department of Molecular Cell Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Johannes Boonstra
- Department of Molecular Cell Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - C Theo Verrips
- Unilever Research Laboratorium Vlaardingen, Olivier van Noortlaan120, 3133 AT Viaardingen, The Netherlands
- Department of Molecular Cell Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| |
Collapse
|
43
|
Truong HN, Caboche M, Daniel-Vedele F. Sequence and characterization of two Arabidopsis thaliana cDNAs isolated by functional complementation of a yeast gln3 gdh1 mutant. FEBS Lett 1997; 410:213-8. [PMID: 9237632 DOI: 10.1016/s0014-5793(97)00590-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
We have isolated two Arabidopsis thaliana cDNAs by complementation of a yeast gln3 gdh1 strain that is affected in the regulation of nitrogen metabolism. The two clones (RGA1 and RGA2) are homologous to each other and to the SCARECROW (SCR) gene that is involved in regulating an asymmetric cell division in plants. RGA1, RGA2 and SCR share several structural features and may define a new family of genes. RGA1 and RGA2 have been mapped, respectively, to chromosome II and I, and their expression in plant is constitutive.
Collapse
Affiliation(s)
- H N Truong
- Laboratoire de Biologie Cellulaire, INRA-Versailles, France
| | | | | |
Collapse
|
44
|
Smith V, Chou KN, Lashkari D, Botstein D, Brown PO. Functional analysis of the genes of yeast chromosome V by genetic footprinting. Science 1996; 274:2069-74. [PMID: 8953036 DOI: 10.1126/science.274.5295.2069] [Citation(s) in RCA: 222] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Genetic footprinting was used to assess the phenotypic effects of Ty1 transposon insertions in 268 predicted genes of chromosome V of Saccharomyces cerevisiae. When seven selection protocols were used, Ty1 insertions in more than half the genes tested (157 of 268) were found to result in a detectable reduction in fitness. Results could not be obtained for fewer than 3 percent of the genes tested (7 of 268). Previously known mutant phenotypes were confirmed, and, for about 30 percent of the genes, new mutant phenotypes were identified.
Collapse
Affiliation(s)
- V Smith
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305, USA. Medicine, Stanford, CA 94305, USA.
| | | | | | | | | |
Collapse
|
45
|
Cunningham TS, Svetlov VV, Rai R, Smart W, Cooper TG. G1n3p is capable of binding to UAS(NTR) elements and activating transcription in Saccharomyces cerevisiae. J Bacteriol 1996; 178:3470-9. [PMID: 8655543 PMCID: PMC178115 DOI: 10.1128/jb.178.12.3470-3479.1996] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
When readily used nitrogen sources are available, the expression of genes encoding proteins needed to transport and metabolize poorly used nitrogen sources is repressed to low levels; this physiological response has been designated nitrogen catabolite repression (NCR). The cis-acting upstream activation sequence (UAS) element UAS(NTR) mediates Gln3p-dependent, NCR-sensitive transcription and consists of two separated dodecanucleotides, each containing the core sequence GATAA. Gln3p, produced in Escherichia coli and hence free of all other yeast proteins, specifically binds to wild-type UAS(NTR) sequences and DNA fragments derived from a variety of NCR-sensitive promoters (GDH2, CAR11 DAL3, PUT1, UGA4, and GLN1). A LexA-Gln3 fusion protein supported transcriptional activation when bound to one or more LexAp binding sites upstream of a minimal CYC1-derived promoter devoid of UAS elements. LexAp-Gln3p activation of transcription was largely independent of the nitrogen source used for growth. These data argue that Gln3p is capable of direct UAS(NTR) binding and participates in transcriptional activation of NCR-sensitive genes.
Collapse
Affiliation(s)
- T S Cunningham
- Department of Microbiology and Immunology, University of Tennessee, Memphis 38163, USA
| | | | | | | | | |
Collapse
|
46
|
Brandriss MC, Falvey DA, des Etages SAG, Xu S. The roles of PUT3, URE2, and GLN3 regulatory proteins in the proline utilization pathway ofSaccharomyces cerevisiae. ACTA ACUST UNITED AC 1995. [DOI: 10.1139/b95-239] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The yeast Saccharomyces cerevisiae can use alternative nitrogen sources such as allantoin, urea, γ-aminobutyrate, or proline when preferred nitrogen sources such as asparagine, glutamine, or ammonium ions are unavailable in the environment. To use proline as the sole nitrogen source, cells must activate the expression of the proline transporters and the genes that encode the catabolic enzymes proline oxidase (PUT1) and Δ1-pyrroline-5-carboxylate dehydrogenase (PUT2). Transcriptional activation of the PUT genes requires the PUT3 regulatory protein, proline, and relief from nitrogen repression. PUT3 is a 979 amino acid protein that binds a short DNA sequence in the promoters of PUT1 and PUT2, independent of the presence of proline. The functional domains of PUT3 have been studied by biochemical and molecular tests and analysis of activator-constitutive and activator-defective mutant proteins. Mutations in the URE2 gene relieve nitrogen repression, permitting inducer-independent transcription of the PUT genes in the presence of repressing nitrogen sources. The GLN3 protein that activates the expression of many genes in alternative nitrogen source pathways is not required for the expression of the PUT genes under inducing, derepressing conditions (proline) or noninducing, repressing conditions (ammonia). Although it has been speculated that the URE2 protein antagonizes the action of GLN3 in the regulation of many nitrogen assimilatory pathways, URE2 appears to act independently of GLN3 in the proline-utilization pathway. Key words: Saccharomyces cerevisiae, proline utilization, nitrogen repression.
Collapse
|
47
|
Svetlov VV, Cooper TG. Review: compilation and characteristics of dedicated transcription factors in Saccharomyces cerevisiae. Yeast 1995; 11:1439-84. [PMID: 8750235 DOI: 10.1002/yea.320111502] [Citation(s) in RCA: 57] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Affiliation(s)
- V V Svetlov
- Department of Microbiology and Immunology, University of Tennessee, Memphis 36163, USA
| | | |
Collapse
|
48
|
Melcher K, Rose M, Künzler M, Braus GH, Entian KD. Molecular analysis of the yeast SER1 gene encoding 3-phosphoserine aminotransferase: regulation by general control and serine repression. Curr Genet 1995; 27:501-8. [PMID: 7553933 DOI: 10.1007/bf00314439] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Although serine and glycine are ubiquitous amino acids the genetic and biochemical regulation of their synthesis has not been studied in detail. The SER1 gene encodes 3-phosphoserine aminotransferase which catalyzes the formation of phosphoserine from 3-phosphohydroxy-pyruvate, which is obtained by oxidation of 3-phosphoglycerate, an intermediate of glycolysis. Saccharomyces cerevisiae cells provided with fermentable carbon sources mainly use this pathway (glycolytic pathway) to synthesize serine and glycine. We report the isolation of the SER1 gene by complementation and the disruption of the chromosomal locus. Sequence analysis revealed an open reading frame encoding a protein with a predicted molecular weight of 43,401 Da. A previously described mammalian progesterone-induced protein shares 47% similarity with SER1 over the entire protein, indicating a common function for both proteins. We demonstrate that SER1 transcription is regulated by the general control of amino-acid biosynthesis mediated by GCN4. Additionally, DNaseI protection experiments proved the binding of GCN4 protein to the SER1 promoter in vitro and three GCN4 recognition elements (GCREs) were identified. Furthermore, there is evidence for an additional regulation by serine end product repression.
Collapse
Affiliation(s)
- K Melcher
- Institute for Microbiology, University of Frankfurt, Germany
| | | | | | | | | |
Collapse
|
49
|
Ter Schure EG, Silljé HHW, Raeven LJRM, Boonstra J, Verkleij AJ, Verrips CT. Nitrogen-regulated transcription and enzyme activities in continuous cultures of Saccharomyces cerevisiae. MICROBIOLOGY (READING, ENGLAND) 1995; 141 ( Pt 5):1101-1108. [PMID: 7773405 DOI: 10.1099/13500872-141-5-1101] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Variations in the transcription of nitrogen-regulated genes and in the activities of nitrogen-regulated enzymes of the yeast Saccharomyces cerevisiae were studied by changing the carbon and nitrogen fluxes. S. cerevisiae was grown in continuous culture at various dilution rates (D) under nitrogen limitation with NH4Cl as sole nitrogen source. With an increase in D from 0.05 to 0.29 h-1, both the glucose and the ammonia flux increased sixfold. The activities of the two ammonia-incorporating enzymes, NADPH-dependent glutamate dehydrogenase (NADPH-GDH) and glutamine synthetase (GS), encoded by GDH1 and GLN1, respectively, increased with increasing D, while the activity of the glutamate-degrading enzyme, NAD-dependent glutamate dehydrogenase (NAD-GDH), decreased. Surprisingly, no changes were observed in the transcription of GDH1 and GLN1; however increased D was accompanied by an increase in GAP1 transcription. At the metabolite level, the increase in the glucose and nitrogen flux did not result in changes in the intracellular 2-oxoglutarate, glutamate or glutamine concentrations. It is shown that growth on ammonia alone is not sufficient to cause repression of GAP1 and GLN1 transcription and that the regulation of GAP1 transcription and both NADPH-GDH and GS activity is not an on/off switch, but is gradually modulated in correlation with the ammonia concentration.
Collapse
Affiliation(s)
- Eelko G Ter Schure
- 1Department of Molecular Cell Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Herman H W Silljé
- 1Department of Molecular Cell Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Leon J R M Raeven
- 1Department of Molecular Cell Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Johannes Boonstra
- 1Department of Molecular Cell Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Arie J Verkleij
- 1Department of Molecular Cell Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - C Theo Verrips
- 2Unilever Research Laboratorium Vlaardingen, Olivier van Noortlaan 120, 3133 AT Vlaardingen, The Netherlands
- 1Department of Molecular Cell Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| |
Collapse
|
50
|
Rai R, Daugherty JR, Cooper TG. UASNTR functioning in combination with other UAS elements underlies exceptional patterns of nitrogen regulation in Saccharomyces cerevisiae. Yeast 1995; 11:247-60. [PMID: 7785325 DOI: 10.1002/yea.320110307] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
UASNTR, the UAS responsible for nitrogen catabolite repression-sensitive transcriptional activation of many nitrogen catabolic genes in Saccharomyces cerevisiae, has been previously thought to operate only as a pair of closely related dodecanucleotide sites each containing the sequence GATAA at its core. Here we show that a single UASNTR the unrelated cis-acting element was TTTGTTTAC situated upstream of GLN1, while in another the cis-acting element was the one previously shown to bind the PUT3 protein. When a UASNTR site functions in combination with an unrelated site, the regulatory responses observed are a hybrid consisting of characteristics derived from both the UASNTR site and the unrelated site as well. These observations resolve several significant inconsistencies that have plagued studies focused on elucidation of the mechanisms involved in the global regulation of nitrogen catabolism.
Collapse
Affiliation(s)
- R Rai
- Department of Microbiology and Immunology, University of Tennessee, Memphis 38163, USA
| | | | | |
Collapse
|