1
|
Sandhu A, Badal D, Sheokand R, Tyagi S, Singh V. Specific collagens maintain the cuticle permeability barrier in Caenorhabditis elegans. Genetics 2021; 217:iyaa047. [PMID: 33789349 PMCID: PMC8045729 DOI: 10.1093/genetics/iyaa047] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Accepted: 12/05/2020] [Indexed: 01/01/2023] Open
Abstract
Collagen-enriched cuticle forms the outermost layer of skin in nematode Caenorhabditis elegans. The nematode's genome encodes 177 collagens, but little is known about their role in maintaining the structure or barrier function of the cuticle. In this study, we found six permeability determining (PD) collagens. Loss of any of these PD collagens-DPY-2, DPY-3, DPY-7, DPY-8, DPY-9, and DPY-10-led to enhanced susceptibility of nematodes to paraquat (PQ) and antihelminthic drugs- levamisole and ivermectin. Upon exposure to PQ, PD collagen mutants accumulated more PQ and incurred more damage and death despite the robust activation of antioxidant machinery. We find that BLMP-1, a zinc finger transcription factor, maintains the barrier function of the cuticle by regulating the expression of PD collagens. We show that the permeability barrier maintained by PD collagens acts in parallel to FOXO transcription factor DAF-16 to enhance survival of insulin-like receptor mutant, daf-2. In all, this study shows that PD collagens regulate cuticle permeability by maintaining the structure of C. elegans cuticle and thus provide protection against exogenous toxins.
Collapse
Affiliation(s)
- Anjali Sandhu
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore 560012, India
| | - Divakar Badal
- Center for Biosystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India
| | - Riya Sheokand
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore 560012, India
| | - Shalini Tyagi
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore 560012, India
| | - Varsha Singh
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore 560012, India
- Center for Biosystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India
- Lead contact
| |
Collapse
|
2
|
Mesbahi H, Pho KB, Tench AJ, Leon Guerrero VL, MacNeil LT. Cuticle Collagen Expression Is Regulated in Response to Environmental Stimuli by the GATA Transcription Factor ELT-3 in Caenorhabditis elegans. Genetics 2020; 215:483-495. [PMID: 32229533 PMCID: PMC7268988 DOI: 10.1534/genetics.120.303125] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Accepted: 03/23/2020] [Indexed: 12/21/2022] Open
Abstract
The nematode Caenorhabditis elegans is protected from the environment by the cuticle, an extracellular collagen-based matrix that encloses the animal. Over 170 cuticular collagens are predicted in the C. elegans genome, but the role of each individual collagen is unclear. Stage-specific specialization of the cuticle explains the need for some collagens; however, the large number of collagens suggests that specialization of the cuticle may also occur in response to other environmental triggers. Missense mutations in many collagen genes can disrupt cuticle morphology, producing a helically twisted body causing the animal to move in a stereotypical pattern described as rolling. We find that environmental factors, including diet, early developmental arrest, and population density can differentially influence the penetrance of rolling in these mutants. These effects are in part due to changes in collagen gene expression that are mediated by the GATA family transcription factor ELT-3 We propose a model by which ELT-3 regulates collagen gene expression in response to environmental stimuli to promote the assembly of a cuticle specialized to a given environment.
Collapse
Affiliation(s)
- Hiva Mesbahi
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada L8S 4K1
| | - Kim B Pho
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada L8S 4K1
| | - Andrea J Tench
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada L8S 4K1
| | - Victoria L Leon Guerrero
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada L8S 4K1
| | - Lesley T MacNeil
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada L8S 4K1
- Farncombe Family Digestive Health Research Institute, McMaster University, Ontario, Canada
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada L8S 4K1
| |
Collapse
|
3
|
Azzi C, Aeschimann F, Neagu A, Großhans H. A branched heterochronic pathway directs juvenile-to-adult transition through two LIN-29 isoforms. eLife 2020; 9:e53387. [PMID: 32223899 PMCID: PMC7105380 DOI: 10.7554/elife.53387] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 03/10/2020] [Indexed: 01/23/2023] Open
Abstract
Robust organismal development relies on temporal coordination of disparate physiological processes. In Caenorhabditis elegans, the heterochronic pathway controls a timely juvenile-to-adult (J/A) transition. This regulatory cascade of conserved proteins and small RNAs culminates in accumulation of the transcription factor LIN-29, which triggers coordinated execution of transition events. We report that two LIN-29 isoforms fulfill distinct functions. Functional specialization is a consequence of distinct isoform expression patterns, not protein sequence, and we propose that distinct LIN-29 dose sensitivities of the individual J/A transition events help to ensure their temporal ordering. We demonstrate that unique isoform expression patterns are generated by the activities of LIN-41 for lin-29a, and of HBL-1 for lin-29b, whereas the RNA-binding protein LIN-28 coordinates LIN-29 isoform activity, in part by regulating both hbl-1 and lin-41. Our findings reveal that coordinated transition from juvenile to adult involves branching of a linear pathway to achieve timely control of multiple events.
Collapse
Affiliation(s)
- Chiara Azzi
- Friedrich Miescher Institute for Biomedical ResearchBaselSwitzerland
- University of BaselBaselSwitzerland
| | - Florian Aeschimann
- Friedrich Miescher Institute for Biomedical ResearchBaselSwitzerland
- University of BaselBaselSwitzerland
| | - Anca Neagu
- Friedrich Miescher Institute for Biomedical ResearchBaselSwitzerland
| | - Helge Großhans
- Friedrich Miescher Institute for Biomedical ResearchBaselSwitzerland
- University of BaselBaselSwitzerland
| |
Collapse
|
4
|
Serrano-Saiz E, Vogt MC, Levy S, Wang Y, Kaczmarczyk KK, Mei X, Bai G, Singson A, Grant BD, Hobert O. SLC17A6/7/8 Vesicular Glutamate Transporter Homologs in Nematodes. Genetics 2020; 214:163-178. [PMID: 31776169 PMCID: PMC6944403 DOI: 10.1534/genetics.119.302855] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 11/24/2019] [Indexed: 01/04/2023] Open
Abstract
Members of the superfamily of solute carrier (SLC) transmembrane proteins transport diverse substrates across distinct cellular membranes. Three SLC protein families transport distinct neurotransmitters into synaptic vesicles to enable synaptic transmission in the nervous system. Among them is the SLC17A6/7/8 family of vesicular glutamate transporters, which endows specific neuronal cell types with the ability to use glutamate as a neurotransmitter. The genome of the nematode Caenorhabditis elegans encodes three SLC17A6/7/8 family members, one of which, eat-4/VGLUT, has been shown to be involved in glutamatergic neurotransmission. Here, we describe our analysis of the two remaining, previously uncharacterized SLC17A6/7/8 family members, vglu-2 and vglu-3 These two genes directly neighbor one another and are the result of a recent gene duplication event in C. elegans, but not in other Caenorhabditis species. Compared to EAT-4, the VGLU-2 and VGLU-3 protein sequences display a more distant similarity to canonical, vertebrate VGLUT proteins. We tagged both genomic loci with gfp and detected no expression of vglu-3 at any stage of development in any cell type of both C. elegans sexes. In contrast, vglu-2::gfp is dynamically expressed in a restricted set of distinct cell types. Within the nervous system, vglu-2::gfp is exclusively expressed in a single interneuron class, AIA, where it localizes to vesicular structures in the soma, but not along the axon, suggesting that VGLU-2 may not be involved in synaptic transport of glutamate. Nevertheless, vglu-2 mutants are partly defective in the function of the AIA neuron in olfactory behavior. Outside the nervous system, VGLU-2 is expressed in collagen secreting skin cells where VGLU-2 most prominently localizes to early endosomes, and to a lesser degree to apical clathrin-coated pits, the trans-Golgi network, and late endosomes. On early endosomes, VGLU-2 colocalizes most strongly with the recycling promoting factor SNX-1, a retromer component. Loss of vglu-2 affects the permeability of the collagen-containing cuticle of the worm, and based on the function of a vertebrate VGLUT1 protein in osteoclasts, we speculate that vglu-2 may have a role in collagen trafficking in the skin. We conclude that C. elegans SLC17A6/7/8 family members have diverse functions within and outside the nervous system.
Collapse
Affiliation(s)
- Esther Serrano-Saiz
- Department of Biological Sciences, Columbia University, Howard Hughes Medical Institute, New York, New York 10027
- Centro de Biologia Molecular Severo Ochoa/Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Merly C Vogt
- Department of Biological Sciences, Columbia University, Howard Hughes Medical Institute, New York, New York 10027
| | - Sagi Levy
- Rockefeller University, New York, New York 10065
| | - Yu Wang
- Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, New Jersey 08854
| | - Karolina K Kaczmarczyk
- Department of Biological Sciences, Columbia University, Howard Hughes Medical Institute, New York, New York 10027
| | - Xue Mei
- Waksman Institute, Rutgers University, Piscataway, New Jersey 08854
| | - Ge Bai
- Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, New Jersey 08854
| | - Andrew Singson
- Waksman Institute, Rutgers University, Piscataway, New Jersey 08854
- Department of Genetics, Rutgers University, Piscataway, New Jersey 08854
| | - Barth D Grant
- Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, New Jersey 08854
| | - Oliver Hobert
- Department of Biological Sciences, Columbia University, Howard Hughes Medical Institute, New York, New York 10027
| |
Collapse
|
5
|
Rahe DP, Hobert O. Restriction of Cellular Plasticity of Differentiated Cells Mediated by Chromatin Modifiers, Transcription Factors and Protein Kinases. G3 (BETHESDA, MD.) 2019; 9:2287-2302. [PMID: 31088904 PMCID: PMC6643894 DOI: 10.1534/g3.119.400328] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 05/11/2019] [Indexed: 12/30/2022]
Abstract
Ectopic expression of master regulatory transcription factors can reprogram the identity of specific cell types. The effectiveness of such induced cellular reprogramming is generally greatly reduced if the cellular substrates are fully differentiated cells. For example, in the nematode C. elegans, the ectopic expression of a neuronal identity-inducing transcription factor, CHE-1, can effectively induce CHE-1 target genes in immature cells but not in fully mature non-neuronal cells. To understand the molecular basis of this progressive restriction of cellular plasticity, we screened for C. elegans mutants in which ectopically expressed CHE-1 is able to induce neuronal effector genes in epidermal cells. We identified a ubiquitin hydrolase, usp-48, that restricts cellular plasticity with a notable cellular specificity. Even though we find usp-48 to be very broadly expressed in all tissue types, usp-48 null mutants specifically make epidermal cells susceptible to CHE-1-mediated activation of neuronal target genes. We screened for additional genes that allow epidermal cells to be at least partially reprogrammed by ectopic che-1 expression and identified many additional proteins that restrict cellular plasticity of epidermal cells, including a chromatin-related factor (H3K79 methyltransferase, DOT-1.1), a transcription factor (nuclear hormone receptor NHR-48), two MAPK-type protein kinases (SEK-1 and PMK-1), a nuclear localized O-GlcNAc transferase (OGT-1) and a member of large family of nuclear proteins related to the Rb-associated LIN-8 chromatin factor. These findings provide novel insights into the control of cellular plasticity.
Collapse
Affiliation(s)
- Dylan P Rahe
- Department of Biological Sciences, Howard Hughes Medical Institute, Columbia University, New York, NY
| | - Oliver Hobert
- Department of Biological Sciences, Howard Hughes Medical Institute, Columbia University, New York, NY
| |
Collapse
|
6
|
Chen F, Chisholm AD, Jin Y. Tissue-specific regulation of alternative polyadenylation represses expression of a neuronal ankyrin isoform in C. elegans epidermal development. Development 2017; 144:698-707. [PMID: 28087624 DOI: 10.1242/dev.146001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2016] [Accepted: 01/02/2017] [Indexed: 12/26/2022]
Abstract
Differential mRNA polyadenylation plays an important role in shaping the neuronal transcriptome. In C. elegans, several ankyrin isoforms are produced from the unc-44 locus through alternative polyadenylation. Here, we identify a key role for an intronic polyadenylation site (PAS) in temporal- and tissue-specific regulation of UNC-44/ankyrin isoforms. Removing an intronic PAS results in ectopic expression of the neuronal ankyrin isoform in non-neural tissues. This mis-expression underlies epidermal developmental defects in mutants of the conserved tumor suppressor death-associated protein kinase dapk-1 We have previously reported that the use of this intronic PAS depends on the nuclear polyadenylation factor SYDN-1, which inhibits the RNA polymerase II CTD phosphatase SSUP-72. Consistent with this, loss of sydn-1 blocks ectopic expression of neuronal ankyrin and suppresses epidermal morphology defects of dapk-1 These effects of sydn-1 are mediated by ssup-72 autonomously in the epidermis. We also show that a peptidyl-prolyl isomerase PINN-1 antagonizes SYDN-1 in the spatiotemporal control of neuronal ankyrin isoform. Moreover, the nuclear localization of PINN-1 is altered in dapk-1 mutants. Our data reveal that tissue and stage-specific expression of ankyrin isoforms relies on differential activity of positive and negative regulators of alternative polyadenylation.
Collapse
Affiliation(s)
- Fei Chen
- Neurobiology Section, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA.,Howard Hughes Medical Institute, Department of Cellular and Molecular Medicine, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Andrew D Chisholm
- Neurobiology Section, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Yishi Jin
- Neurobiology Section, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA .,Howard Hughes Medical Institute, Department of Cellular and Molecular Medicine, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
7
|
Gill HK, Cohen JD, Ayala-Figueroa J, Forman-Rubinsky R, Poggioli C, Bickard K, Parry JM, Pu P, Hall DH, Sundaram MV. Integrity of Narrow Epithelial Tubes in the C. elegans Excretory System Requires a Transient Luminal Matrix. PLoS Genet 2016; 12:e1006205. [PMID: 27482894 PMCID: PMC4970718 DOI: 10.1371/journal.pgen.1006205] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 06/28/2016] [Indexed: 02/07/2023] Open
Abstract
Most epithelial cells secrete a glycoprotein-rich apical extracellular matrix that can have diverse but still poorly understood roles in development and physiology. Zona Pellucida (ZP) domain glycoproteins are common constituents of these matrices, and their loss in humans is associated with a number of diseases. Understanding of the functions, organization and regulation of apical matrices has been hampered by difficulties in imaging them both in vivo and ex vivo. We identified the PAN-Apple, mucin and ZP domain glycoprotein LET-653 as an early and transient apical matrix component that shapes developing epithelia in C. elegans. LET-653 has modest effects on shaping of the vulva and epidermis, but is essential to prevent lumen fragmentation in the very narrow, unicellular excretory duct tube. We were able to image the transient LET-653 matrix by both live confocal imaging and transmission electron microscopy. Structure/function and fluorescence recovery after photobleaching studies revealed that LET-653 exists in two separate luminal matrix pools, a loose fibrillar matrix in the central core of the lumen, to which it binds dynamically via its PAN domains, and an apical-membrane-associated matrix, to which it binds stably via its ZP domain. The PAN domains are both necessary and sufficient to confer a cyclic pattern of duct lumen localization that precedes each molt, while the ZP domain is required for lumen integrity. Ectopic expression of full-length LET-653, but not the PAN domains alone, could expand lumen diameter in the developing gut tube, where LET-653 is not normally expressed. Together, these data support a model in which the PAN domains regulate the ability of the LET-653 ZP domain to interact with other factors at the apical membrane, and this ZP domain interaction promotes expansion and maintenance of lumen diameter. These data identify a transient apical matrix component present prior to cuticle secretion in C. elegans, demonstrate critical roles for this matrix component in supporting lumen integrity within narrow bore tubes such as those found in the mammalian microvasculature, and reveal functional importance of the evolutionarily conserved ZP domain in this tube protecting activity. Most organs in the body are made up of networks of tubes that transport fluids or gases. These tubes come in many different sizes and shapes, with some narrow capillaries being only one cell in diameter. As tubes develop and take their final shapes, they secrete various glycoproteins into their hollow interior or lumen. The functions of these luminal proteins are not well understood, but there is increasing evidence that they are important for lumen shaping and that their loss can contribute to diseases such as cardiovascular disease and chronic kidney disease. Through studies of the nematode C. elegans, we identified a luminal glycoprotein, LET-653, that is transiently expressed in multiple developing tube types but is particularly critical to maintain integrity of the narrowest, unicellular tubes. We identified protein domains that direct LET-653 to specific apical matrix compartments and mediate its oscillatory pattern of lumen localization. Furthermore, we showed that the LET-653 tube-protecting activity depends on a Zona Pellucida (ZP) domain similar to that found in the mammalian egg-coat and in many other luminal or sensory matrix proteins involved in human disease.
Collapse
Affiliation(s)
- Hasreet K. Gill
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Jennifer D. Cohen
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Jesus Ayala-Figueroa
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Rachel Forman-Rubinsky
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Corey Poggioli
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Kevin Bickard
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Jean M. Parry
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Department of Biology, Georgian Court University, Lakewood, New Jersey, United States of America
| | - Pu Pu
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - David H. Hall
- Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Meera V. Sundaram
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
8
|
Use of an activated beta-catenin to identify Wnt pathway target genes in caenorhabditis elegans, including a subset of collagen genes expressed in late larval development. G3-GENES GENOMES GENETICS 2014; 4:733-47. [PMID: 24569038 PMCID: PMC4059243 DOI: 10.1534/g3.113.009522] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The Wnt signaling pathway plays a fundamental role during metazoan development, where it regulates diverse processes, including cell fate specification, cell migration, and stem cell renewal. Activation of the beta-catenin-dependent/canonical Wnt pathway up-regulates expression of Wnt target genes to mediate a cellular response. In the nematode Caenorhabditis elegans, a canonical Wnt signaling pathway regulates several processes during larval development; however, few target genes of this pathway have been identified. To address this deficit, we used a novel approach of conditionally activated Wnt signaling during a defined stage of larval life by overexpressing an activated beta-catenin protein, then used microarray analysis to identify genes showing altered expression compared with control animals. We identified 166 differentially expressed genes, of which 104 were up-regulated. A subset of the up-regulated genes was shown to have altered expression in mutants with decreased or increased Wnt signaling; we consider these genes to be bona fide C. elegans Wnt pathway targets. Among these was a group of six genes, including the cuticular collagen genes, bli-1 col-38, col-49, and col-71. These genes show a peak of expression in the mid L4 stage during normal development, suggesting a role in adult cuticle formation. Consistent with this finding, reduction of function for several of the genes causes phenotypes suggestive of defects in cuticle function or integrity. Therefore, this work has identified a large number of putative Wnt pathway target genes during larval life, including a small subset of Wnt-regulated collagen genes that may function in synthesis of the adult cuticle.
Collapse
|
9
|
Synapse location during growth depends on glia location. Cell 2013; 154:337-50. [PMID: 23870123 DOI: 10.1016/j.cell.2013.06.028] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2012] [Revised: 04/09/2013] [Accepted: 06/19/2013] [Indexed: 11/22/2022]
Abstract
Synaptic contacts are largely established during embryogenesis and are then maintained during growth. To identify molecules involved in this process, we conducted a forward genetic screen in C. elegans and identified cima-1. In cima-1 mutants, synaptic contacts are correctly established during embryogenesis, but ectopic synapses emerge during postdevelopmental growth. cima-1 encodes a solute carrier in the SLC17 family of transporters that includes sialin, a protein that when mutated in humans results in neurological disorders. cima-1 does not function in neurons but rather functions in the nearby epidermal cells to correctly position glia during postlarval growth. Our findings indicate that CIMA-1 antagonizes the FGF receptor (FGFR), and does so most likely by inhibiting FGFR's role in epidermal-glia adhesion rather than signaling. Our data suggest that epidermal-glia crosstalk, in this case mediated by a transporter and the FGF receptor, is vital to preserve embryonically derived circuit architecture during postdevelopmental growth.
Collapse
|
10
|
Shin H, Lee H, Fejes AP, Baillie DL, Koo HS, Jones SJ. Gene expression profiling of oxidative stress response of C. elegans aging defective AMPK mutants using massively parallel transcriptome sequencing. BMC Res Notes 2011; 4:34. [PMID: 21303547 PMCID: PMC3045954 DOI: 10.1186/1756-0500-4-34] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2010] [Accepted: 02/08/2011] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND A strong association between stress resistance and longevity in multicellular organisms has been established as many mutations that extend lifespan also show increased resistance to stress. AAK-2, the C. elegans homolog of an alpha subunit of AMP-activated protein kinase (AMPK) is an intracellular fuel sensor that regulates cellular energy homeostasis and functions in stress resistance and lifespan extension. FINDINGS Here, we investigated global transcriptional responses of aak-2 mutants to oxidative stress and in turn identified potential downstream targets of AAK-2 involved in stress resistance in C. elegans. We employed massively parallel Illumina sequencing technology and performed comprehensive comparative transcriptome analysis. Specifically, we compared the transcriptomes of aak-2 and wild type animals under normal conditions and conditions of induced oxidative stress. This research has presented a snapshot of genome-wide transcriptional activities that take place in C. elegans in response to oxidative stress both in the presence and absence of AAK-2. CONCLUSIONS The analysis presented in this study has enabled us to identify potential genes involved in stress resistance that may be either directly or indirectly under the control of AAK-2. Furthermore, we have extended our current knowledge of general defense responses of C. elegans against oxidative stress supporting the function for AAK-2 in inhibition of biosynthetic processes, especially lipid synthesis, under oxidative stress and transcriptional regulation of genes involved in reproductive processes.
Collapse
Affiliation(s)
- Heesun Shin
- Genome Sciences Centre, BC Cancer Agency, Suite 100 570 West 7th Avenue, Vancouver, British Columbia, Canada V5Z 4S6.
| | | | | | | | | | | |
Collapse
|
11
|
Heterochronic control of AFF-1-mediated cell-to-cell fusion in C. elegans. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2011; 713:5-11. [PMID: 21432011 DOI: 10.1007/978-94-007-0763-4_2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
In normal development cell fusion is essential for organ formation and sexual reproduction. The nematode Caenorhabditis elegans has become an excellent system to study the mechanisms and developmental functions of cell-to-cell fusion. In this review we focus on the heterochronic regulation of cell fusion. Heterochronic genes control the timing of specific developmental events in C. elegans. The first microRNAs discovered were found as mutations that affect heterochronic development and cell-cell fusions. In addition numerous heterochronic transcription factors also control specific cell fusion events in C. elegans. We describe what is known about the heterochronic regulation of cell fusion of the epidermal seam cells. The fusogen AFF-1 was previously shown to mediate the fusion of the lateral epidermal seam cells. Here we provide evidence supporting the model in which LIN-29, the heterochronic Zinc-finger transcription factor that controls the terminal fusion of the seam cells, stimulates AFF-1 expression in the seam cells before they fuse. Therefore, the heterochronic gene LIN-29 controls AFF-1-mediated cell-cell fusion as part of the terminal differentiation program of the epidermal seam cells.
Collapse
|
12
|
Zhang H, Fire AZ. Cell autonomous specification of temporal identity by Caenorhabditis elegans microRNA lin-4. Dev Biol 2010; 344:603-10. [PMID: 20493184 DOI: 10.1016/j.ydbio.2010.05.018] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2010] [Accepted: 05/12/2010] [Indexed: 11/19/2022]
Abstract
MicroRNAs provide developing systems with substantial flexibility in posttranscriptional gene regulation. Despite advances made in understanding microRNA structure and function, the relationships between their site-of-synthesis and site-of-action ("autonomy" versus "non-autonomy") remain an open question. Given the well-defined role of microRNA lin-4 in a reproducible series of time-specific developmental switches, lin-4 is an excellent candidate for understanding whether microRNAs and the resulting heterochronic regulatory pathway have the potential to act cell autonomously. By monitoring temporal development and reporter activity in animals where lin-4 is modulated, we have demonstrated that lin-4 acts cell autonomously to specify temporal identity. This work (i) provides an example of cell autonomy in microRNA functions, and (ii) reveals a cell autonomous component of temporal regulation in C. elegans.
Collapse
Affiliation(s)
- Huibin Zhang
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | | |
Collapse
|
13
|
Drace K, McLaughlin S, Darby C. Caenorhabditis elegans BAH-1 is a DUF23 protein expressed in seam cells and required for microbial biofilm binding to the cuticle. PLoS One 2009; 4:e6741. [PMID: 19707590 PMCID: PMC2727005 DOI: 10.1371/journal.pone.0006741] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2009] [Accepted: 07/22/2009] [Indexed: 11/24/2022] Open
Abstract
The cuticle of Caenorhabditis elegans, a complex, multi-layered extracellular matrix, is a major interface between the animal and its environment. Biofilms produced by the bacterial genus Yersinia attach to the cuticle of the worm, providing an assay for surface characteristics. A C. elegans gene required for biofilm attachment, bah-1, encodes a protein containing the domain of unknown function DUF23. The DUF23 domain is found in 61 predicted proteins in C. elegans, which can be divided into three distinct phylogenetic clades. bah-1 is expressed in seam cells, which are among the hypodermal cells that synthesize the cuticle, and is regulated by a TGF-β signaling pathway.
Collapse
Affiliation(s)
- Kevin Drace
- Department of Cell and Tissue Biology, Program in Microbial Pathogenesis and Host Defense, University of California San Francisco, San Francisco, California, USA.
| | | | | |
Collapse
|
14
|
Broday L, Hauser CA, Kolotuev I, Ronai Z. Muscle-epidermis interactions affect exoskeleton patterning in Caenorhabditis elegans. Dev Dyn 2008; 236:3129-36. [PMID: 17937397 DOI: 10.1002/dvdy.21341] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The C. elegans hypodermis is a single epithelial cell layer separated from the musculature by a thin basement membrane on its basal surface. The hypodermis secretes the extracellular material of the cuticle from its apical surface. The regulation of cuticle synthesis and apical secretion is not well understood. UNC-95 is a component of the muscle dense bodies and M-lines, which are integrin-based adhesion complexes required for force transduction to the cuticle. Using gene expression profiling and in vivo assays, we show that, in unc-95 mutant worms, there is an increase in expression levels of a group of hypodermal and pharyngeal genes related to cuticle structure and molting. Moreover, the cuticle structure of unc-95 mutant adult is impaired. Our findings suggest that aberrant force transduction from the structurally impaired muscle attachments across the basement membrane to the underlying hypodermis elicits intercellular signaling that plays a role in regulating cuticle synthesis and patterning.
Collapse
Affiliation(s)
- Limor Broday
- Department of Cell and Developmental Biology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.
| | | | | | | |
Collapse
|
15
|
Gerisch B, Antebi A. Hormonal signals produced by DAF-9/cytochrome P450 regulate C. elegans dauer diapause in response to environmental cues. Development 2004; 131:1765-76. [PMID: 15084461 DOI: 10.1242/dev.01068] [Citation(s) in RCA: 134] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
In response to the environment, the nematode C. elegans must choose between arrest at a long-lived alternate third larval stage, the dauer diapause, or reproductive development. This decision may ultimately be mediated by daf-9, a cytochrome P450 related to steroidogenic hydroxylases and its cognate nuclear receptor daf-12, implying organism-wide coordination by lipophilic hormones. Accordingly, here we show that daf-9(+) works cell non-autonomously to bypass diapause, and promote gonadal outgrowth. Among daf-9-expressing cells, the hypodermis is most visibly regulated by environmental inputs, including dietary cholesterol. On in reproductive growth, off in dauer, hypodermal daf-9 expression is strictly daf-12 dependent, suggesting feedback regulation. Expressing daf-9 constitutively in hypodermis rescues dauer phenotypes of daf-9, as well as insulin/IGF receptor and TGFbeta mutants, revealing that daf-9 is an important downstream point of control within the dauer circuits. This study illuminates how endocrine networks integrate environmental cues and transduce them into adaptive life history choices.
Collapse
Affiliation(s)
- Birgit Gerisch
- Max-Planck-Institut für Molekulare Genetik, Ihnestrasse 73, D-14195 Berlin, Germany
| | | |
Collapse
|
16
|
Thein MC, McCormack G, Winter AD, Johnstone IL, Shoemaker CB, Page AP. Caenorhabditis elegans exoskeleton collagen COL-19: an adult-specific marker for collagen modification and assembly, and the analysis of organismal morphology. Dev Dyn 2003; 226:523-39. [PMID: 12619137 DOI: 10.1002/dvdy.10259] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The integral role that collagens play in the morphogenesis of the nematode exoskeleton or cuticle makes them a useful marker in the examination of the collagen synthesizing machinery. In this study, a green fluorescent protein-collagen fusion has been constructed by using the Caenorhabditis elegans adult-specific, hypodermally synthesized collagen COL-19. In wild-type nematodes, this collagen marker localized to the circumferential annular rings and the lateral trilaminar alae of the cuticle. Crosses carried out between a COL-19::GFP integrated strain and several morphologically mutant strains, including blister, dumpy, long, small, squat, and roller revealed significant COL-19 disruption that was predominantly strain-specific and provided a structural basis for the associated phenotypes. Disruption was most notable in the cuticle overlying the lateral seam cell syncytium, and confirmed the presence of two distinct forms of hypodermis, namely the circumferentially contracting lateral seam cells and the laterally contracting ventral-dorsal hypodermis. The effect of a single aberrant collagen being sufficient to mediate widespread collagen disruption was exemplified by the collagen mutant strain dpy-5 and its disrupted COL-19::GFP and DPY-7 collagen expression patterns. Through the disrupted pattern of COL-19 and DPY-7 in a thioredoxin mutant, dpy-11, and through RNA interference of a dual oxidase enzyme and a vesicular transport protein, we also show the efficacy of the COL-19::GFP strain as a marker for aberrant cuticle collagen synthesis and, thus, for the identification of factors involved in the construction of collagenous extracellular matrices.
Collapse
Affiliation(s)
- Melanie C Thein
- Wellcome Centre for Molecular Parasitology, Anderson College, The University of Glasgow, Glasgow, United Kingdom
| | | | | | | | | | | |
Collapse
|
17
|
Abstract
The molecular mechanisms that time development are now being deciphered in various organisms, particularly in Caenorhabditis elegans. Key recent findings indicate that certain C. elegans timekeeping genes are conserved across phyla, and their developmental expression patterns indicate that a timing function might also be conserved. Small regulatory RNAs have crucial roles in the timing mechanism, and the cellular machinery required for production of these RNAs intersects with that used to process double-stranded RNAs during RNA interference.
Collapse
Affiliation(s)
- A E Rougvie
- Department of Genetics, University of Minnesota, 1445 Gortner Avenue, St Paul, Minnesota 55108, USA.
| |
Collapse
|
18
|
Hong L, Elbl T, Ward J, Franzini-Armstrong C, Rybicka KK, Gatewood BK, Baillie DL, Bucher EA. MUP-4 is a novel transmembrane protein with functions in epithelial cell adhesion in Caenorhabditis elegans. J Cell Biol 2001; 154:403-14. [PMID: 11470827 PMCID: PMC2150763 DOI: 10.1083/jcb.200007075] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2000] [Revised: 06/08/2001] [Accepted: 06/14/2001] [Indexed: 01/20/2023] Open
Abstract
Tissue functions and mechanical coupling of cells must be integrated throughout development. A striking example of this coupling is the interactions of body wall muscle and hypodermal cells in Caenorhabditis elegans. These tissues are intimately associated in development and their interactions generate structures that provide a continuous mechanical link to transmit muscle forces across the hypodermis to the cuticle. Previously, we established that mup-4 is essential in embryonic epithelial (hypodermal) morphogenesis and maintenance of muscle position. Here, we report that mup-4 encodes a novel transmembrane protein that is required for attachments between the apical epithelial surface and the cuticular matrix. Its extracellular domain includes epidermal growth factor-like repeats, a von Willebrand factor A domain, and two sea urchin enterokinase modules. Its intracellular domain is homologous to filaggrin, an intermediate filament (IF)-associated protein that regulates IF compaction and that has not previously been reported as part of a junctional complex. MUP-4 colocalizes with epithelial hemidesmosomes overlying body wall muscles, beginning at the time of embryonic cuticle maturation, as well as with other sites of mechanical coupling. These findings support that MUP-4 is a junctional protein that functions in IF tethering, cell-matrix adherence, and mechanical coupling of tissues.
Collapse
Affiliation(s)
- L Hong
- Department of Cell and Developmental Biology, University of Pennsylvania, School of Medicine, Philadelphia, PA 19104, USA
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Grant K, Hanna-Rose W, Han M. sem-4 promotes vulval cell-fate determination in Caenorhabditis elegans through regulation of lin-39 Hox. Dev Biol 2000; 224:496-506. [PMID: 10926783 DOI: 10.1006/dbio.2000.9774] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Vulval cell-fate determination in Caenorhabditis elegans requires the action of numerous gene products, including components of the Ras/Raf/MAPK signaling cascade and the hox gene lin-39. sem-4 encodes a zinc finger protein with previously characterized roles in fate specification of sex myoblasts, coelomocytes, and multiple neuronal lineages in C. elegans (M. Basson and R. Horvitz, 1996, Genes Dev. 10, 1953-1965). By characterizing three new alleles of sem-4 that we identified in a screen for vulval-defective mutants, we determined that loss of sem-4 activity results in abnormal specification of the secondary vulval cell lineages. We analyzed sem-4 interactions with other genes involved in vulval differentiation and determined that sem-4 does not function directly in the Ras-mediated signal transduction pathway but acts in close association with and upstream of lin-39 to promote vulval cell fate. We demonstrate that sem-4 regulates lin-39 expression and propose that sem-4 is a regulator of lin-39 in the vulval cell-fate determination pathway that may act to link lin-39 to incoming signals.
Collapse
Affiliation(s)
- K Grant
- Department of Molecular, Howard Hughes Medical Institute, Boulder, Colorado 80309, USA
| | | | | |
Collapse
|
20
|
Hill KL, Harfe BD, Dobbins CA, L'Hernault SW. dpy-18 encodes an alpha-subunit of prolyl-4-hydroxylase in caenorhabditis elegans. Genetics 2000; 155:1139-48. [PMID: 10880476 PMCID: PMC1461137 DOI: 10.1093/genetics/155.3.1139] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Collagen is an extracellular matrix (ECM) component encoded by a large multigene family in multicellular animals. Procollagen is post-translationally modified by prolyl-4-hydroxylase (EC 1.14.11.2) before secretion and participation in ECM formation. Therefore, collagen processing and regulation can be studied by examining this required interaction of prolyl-4-hydroxylase with procollagen. High-resolution polymorphism mapping was used to place the Caenorhabditis elegans dpy-18 gene on the physical map, and we show that it encodes a prolyl-4-hydroxylase alpha catalytic subunit. The Dpy phenotype of dpy-18(e364) amber mutants is more severe when this mutation is in trans to the noncomplementing deficiency tDf7, while the dpy-18(e499) deletion mutant exhibits the same phenotype as dpy-18(e499)/tDf7. Furthermore, dpy-18 RNA interference (RNAi) in wild-type worms results in Dpy progeny, while dpy-18 (RNAi) in dpy-18(e499) mutants does not alter the Dpy phenotype of their progeny. These observations suggest that the dpy-18 null phenotype is Dpy. A dpy-18::gfp promoter fusion construct is expressed throughout the hypodermis within the cells that abundantly produce the cuticle collagens, as well as in certain head and posterior neurons. While prolyl-4-hydroxylase has been studied extensively by biochemical techniques, this is the first report of a mutationally defined prolyl-4-hydroxylase in any animal.
Collapse
Affiliation(s)
- K L Hill
- Program in Genetics and Molecular Biology, Graduate Division of Biological and Biomedical Sciences, Emory University, Atlanta, Georgia 30322, USA
| | | | | | | |
Collapse
|
21
|
Thacker C, Marra MA, Jones A, Baillie DL, Rose AM. Functional genomics in Caenorhabditis elegans: An approach involving comparisons of sequences from related nematodes. Genome Res 1999; 9:348-59. [PMID: 10207157 PMCID: PMC310735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
Comparative genomic analysis was used to investigate the gene structure of the bli-4 locus from two related Caenorhabditis species, C. elegans and C. briggsae. In C. elegans, bli-4 is a complex gene encoding a member of the kex2/subtilisin-like family of proprotein convertases. Genomic sequence comparisons coupled with RT-PCR analysis identified five additional coding exons that had not been identified previously using standard recombinant DNA techniques. The C. briggsae gene was able to rescue both viable blistered and developmentally arrested mutants of C. elegans bli-4, demonstrating functional conservation. In addition, deletion analysis of conserved sequences outside of coding regions, combined with phenotypic rescue experiments, identified regulatory elements that alter the expression of the bli-4 gene. These results demonstrate the utility of genomic sequence comparisons of homologous genes in related species as an effective tool with which to dissect the functional information of complex genes.
Collapse
Affiliation(s)
- C Thacker
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, V6T 1Z3, Canada
| | | | | | | | | |
Collapse
|
22
|
Koltai H, Chejanovsky N, Raccah B, Spiegel Y. The first isolated collagen gene of the root-knot nematode Meloidogyne javanica is developmentally regulated. Gene 1997; 196:191-9. [PMID: 9322758 DOI: 10.1016/s0378-1119(97)00227-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The nematode's surface comprises a multilayered cuticle, which consists mainly of collagen proteins. We identified, cloned and characterized the first cuticular collagen gene, Mjcol-3, of the plant-parasitic nematode Meloidogyne javanica. The gene putatively encodes a 32.4-kDa collagen protein, including a propeptide which possesses a subtilisin-like protease-cleavage site. Six introns were identified in the gene sequence, with three slightly different acceptor-splicing sites. The basic structure of the predicted MJCOL-3 protein sequence is highly similar to that of the Caenorhabditis elegans DPY-7, with 65.9% identity between the two amino acid sequences. Relative to DPY-7, the putative MJCOL-3 protein has a shorter carboxy-terminus. This non-conserved feature may indicate different contributions of DPY-7 and MJCOL-3 collagens to the structure of the cuticle. Mjcol-3 is developmentally regulated: transcripts were found mainly in preparasitic developing eggs, less in parasitic third- and fourth-stage juveniles and young females shortly after the fourth molt, and much less in females before egg-laying.
Collapse
Affiliation(s)
- H Koltai
- Department of Nematology, A.R.O., Volcani Center, Bet-Dagan, Israel.
| | | | | | | |
Collapse
|
23
|
Jones JT, Curtis RH, Wightman PJ, Burrows PR. Isolation and characterization of a putative collagen gene from the potato cyst nematode Globodera pallida. Parasitology 1996; 113 ( Pt 6):581-8. [PMID: 8939055 DOI: 10.1017/s0031182000067639] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
A cDNA clone encoding a full length putative collagen has been isolated in a screen of a mixed stage Globodera pallida expression library. Comparison of the deduced amino acid sequence of this molecule with other collagens suggests it is a cuticular collagen and a member of the col-8 subfamily of collagen genes. Northern blots show the gene is expressed specifically in gravid, adult females of the parasite as compared to second (invasive) stage juveniles and virgin females. Preliminary immunocytochemical studies indicate this collagen is present in areas other than the cuticle; these findings and the potential functional role of this collagen are discussed.
Collapse
Affiliation(s)
- J T Jones
- Unit of Nematology, Scottish Crop Research Institute, Invergowrie, Dundee, Scotland.
| | | | | | | |
Collapse
|
24
|
Bettinger JC, Lee K, Rougvie AE. Stage-specific accumulation of the terminal differentiation factor LIN-29 during Caenorhabditis elegans development. Development 1996; 122:2517-27. [PMID: 8756296 DOI: 10.1242/dev.122.8.2517] [Citation(s) in RCA: 85] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The Caenorhabditis elegans gene lin-29 is required for the terminal differentiation of the lateral hypodermal seam cells during the larval-to-adult molt. We find that lin-29 protein accumulates in the nuclei of these cells, consistent with its predicted role as a zinc finger transcription factor. The earliest detectable LIN-29 accumulation in seam cell nuclei is during the last larval stage (L4), following the final seam cell division, which occurs during the L3-to-L4 molt. LIN-29 accumulates in all hypodermal nuclei during the L4 stage. The time of LIN-29 appearance in the hypodermis is controlled by the heterochronic gene pathway: LIN-29 accumulates in the hypodermis abnormally early, during the third larval stage, in loss-of-function lin-14, lin-28 and lin-42 mutants, and fails to accumulate in hypodermis of lin-4 mutants. LIN-29 also accumulates stage-specifically in the nuclei of a variety of non-hypodermal cells during development. Its accumulation is dependent upon the upstream heterochronic genes in some, but not all, of these non-hypodermal cells.
Collapse
Affiliation(s)
- J C Bettinger
- Department of Genetics and Cell Biology, University of Minnesota, St Paul 55108, USA
| | | | | |
Collapse
|
25
|
Liu Z, Kirch S, Ambros V. The Caenorhabditis elegans heterochronic gene pathway controls stage-specific transcription of collagen genes. Development 1995; 121:2471-8. [PMID: 7671811 DOI: 10.1242/dev.121.8.2471] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In Caenorhabditis elegans, the terminal differentiation of the hypodermal cells occurs at the larval-to-adult molt, and is characterized in part by the formation of a morphologically distinct adult cuticle. The timing of this event is controlled by a pathway of heterochronic genes that includes the relatively direct regulatory gene, lin-29, and upstream genes lin-4, lin-14 and lin-28. Using northern analysis to detect endogenous collagen mRNA levels and collagen/lacZ reporter constructs to monitor collagen transcriptional activity, we show that the stage-specific switch from larval cuticle to adult cuticle correlates with the transcriptional activation of adult-specific collagen genes and repression of larval-specific collagen genes. Heterochronic mutations that cause precocious formation of adult cuticle also cause precocious transcription of the adult-specific collagen genes, col-7 and col-19; heterochronic mutations that prevent the switch to adult cuticle cause continued expression of the larval collagen gene, col-17, in adults and prevent adult-specific activation of col-7 or col-19. A 235 bp segment of col-19 5′ sequences is sufficient to direct the adult-specific expression of a col-19/lacZ reporter gene in hypodermal cells. These findings indicate that the heterochronic gene pathway regulates the timing of hypodermal cell terminal differentiation by regulating larval- and adult-specific gene expression, perhaps by the direct action of lin-29.
Collapse
Affiliation(s)
- Z Liu
- Harvard University Department of Cellular and Developmental Biology, Cambridge, MA 02138, USA
| | | | | |
Collapse
|
26
|
Rougvie AE, Ambros V. The heterochronic gene lin-29 encodes a zinc finger protein that controls a terminal differentiation event in Caenorhabditis elegans. Development 1995; 121:2491-500. [PMID: 7671813 DOI: 10.1242/dev.121.8.2491] [Citation(s) in RCA: 99] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A hierarchy of heterochronic genes, lin-4, lin-14, lin-28 and lin-29, temporally restricts terminal differentiation of Caenorhabditis elegans hypodermal seam cells to the final molt. This terminal differentiation event involves cell cycle exit, cell fusion and the differential regulation of genes expressed in the larval versus adult hypodermis. lin-29 is the most downstream gene in the developmental timing pathway and thus it is the most direct known regulator of these diverse processes. We show that lin-29 encodes a protein with five zinc fingers of the (Cys)2-(His)2 class and thus likely controls these processes by regulating transcription in a stage-specific manner. Consistent with this role, a lin-29 fusion protein binds in vitro to the 5′ regulatory sequences necessary in vivo for expression of col-19, a collagen gene expressed in the adult hypodermis. lin-29 mRNA is detected in the first larval stage and increases in abundance through subsequent larval stages until the final molt, when lin-29 activity is required for terminal differentiation.
Collapse
Affiliation(s)
- A E Rougvie
- Department of Cellular and Developmental Biology, Harvard University, Cambridge, Massachusetts 02138, USA
| | | |
Collapse
|
27
|
Clark DV, Suleman DS, Beckenbach KA, Gilchrist EJ, Baillie DL. Molecular cloning and characterization of the dpy-20 gene of Caenorhabditis elegans. MOLECULAR & GENERAL GENETICS : MGG 1995; 247:367-78. [PMID: 7770042 DOI: 10.1007/bf00293205] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
We describe the molecular analysis of the dpy-20 gene in Caenorhabditis elegans. Isolation of genomic sequences was facilitated by the availability of a mutation that resulted from insertion of a Tc1 transposable element into the dpy-20 gene. The Tc1 insertion site in the m474::Tc1 allele was identified and was found to lie within the coding region of dpy-20. Three revertants (two wild-type and one partial revertant) resulted from the excision of this Tc1 element. Genomic dpy-20 clones' were isolated from a library of wild-type DNA and were found to lie just to the left of the unc-22 locus on the physical map, compatible with the position of dpy-20 on the genetic map. Cosmid DNA containing the dpy-20 gene was successfully used to rescue the mutant phenotype of animals homozygous for another dpy-20 allele, e1282ts. Sequence analysis of the putative dpy-20 homologue in Caenorhabditis briggsae was performed to confirm identification of the coding regions of the C. elegans gene and to identify conserved regulatory regions. Sequence analysis of dpy-20 revealed that it was not similar to other genes encoding known cuticle components such as collagen or cuticulin. The dpy-20 gene product, therefore, identifies a previously unknown type of protein that may be directly or indirectly involved in cuticle function. Northern blot analysis showed that dpy-20 is expressed predominantly in the second larval stage and that the mRNA is not at all abundant. Data from temperature shift studies using the temperature-sensitive allele e1282ts showed that the sensitive period also occurs at approximately the second larval stage. Therefore, expression of dpy-20 mRNA and function of the DPY-20 protein are closely linked temporally.
Collapse
Affiliation(s)
- D V Clark
- Department of Biological Sciences, Simon Fraser University, Burnaby, B.C., Canada
| | | | | | | | | |
Collapse
|
28
|
Krause M. Chapter 20 Transcription and Translation. Methods Cell Biol 1995. [DOI: 10.1016/s0091-679x(08)61400-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
29
|
van der Keyl H, Kim H, Espey R, Oke CV, Edwards MK. Caenorhabditis elegans sqt-3 mutants have mutations in the col-1 collagen gene. Dev Dyn 1994; 201:86-94. [PMID: 7803850 DOI: 10.1002/aja.1002010109] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
sqt-3 mutants of Caenorhabditis elegans form dumpy larvae and adults and display allele-specific defects in locomotion, fertility, and viability. We have determined that the sqt-3 locus encodes COL-1 collagen. We physically mapped the col-1 gene to a cosmid on chromosome V whose position is consistent with the location of the sqt-3 gene. We also observed morphological defects in sqt-3 mutants at stages that correlate with the mRNA expression patterns of col-1. Sequence analysis of the col-1 gene in the three temperature-sensitive mutants revealed that each allele of sqt-3 has a unique missense mutation causing arginine or glutamic acid to replace glycine in a Gly-X-Y triple helical domain. These glycine substitutions may result in longer non-collagenous domains, which may decrease the thermal stability or impart additional flexibility to mutant trimers. In addition, we describe four corrections to the published sequence of col-1, including one fifteen nucleotide addition that completes a conserved domain in the amino terminal coding region.
Collapse
Affiliation(s)
- H van der Keyl
- Department of Biology, Haverford College, Pennsylvania 19041
| | | | | | | | | |
Collapse
|
30
|
Abstract
The cuticle of the nematode Caenorhabditis elegans forms the barrier between the animal and its environment. In addition to being a protective layer, it is an exoskeleton which is important in maintaining and defining the normal shape of the nematode. The cuticle is an extracellular matrix consisting predominantly of small collagen-like proteins that are extensively crosslinked. Although it also contains other protein and non-protein compounds that undoubtedly play a significant part in its function, the specific role of collagen in cuticle structure and morphology is considered here. The C. elegans genome contains between 50 and 150 collagen genes, most of which are believed to encode cuticular collagens. Mutations that result in cuticular defects and grossly altered body form have been identified in more than 40 genes. Six of these genes are now known to encode cuticular collagens, a finding that confirms the importance of this group of structural proteins to the formation of the cuticle and the role of the cuticle as an exoskeleton in shaping the worm. It is likely that many more of the genes identified by mutations giving altered body form, will be collagen genes. Mutations in the cuticular collagen genes provide a powerful tool for investigating the mechanisms by which this group of proteins interact to form the nematode cuticle.
Collapse
|
31
|
Levy AD, Kramer JM. Identification, sequence and expression patterns of the Caenorhabditis elegans col-36 and col-40 collagen-encoding genes. Gene 1993; 137:281-5. [PMID: 8299960 DOI: 10.1016/0378-1119(93)90021-t] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The collagen (Col)-encoding gene family in the nematode, Caenorhabditis elegans, consists of 50-150 members. We have undertaken studies of these genes as part of the analysis of the assembly of the cuticle, the nematode's exoskeleton. We present here the complete nucleotide and deduced amino acid sequences of the col-36 and col-40 genes, both located on chromosome II and encoding cuticle Col. Both Col possess the structural properties found in the type of Col that form the cuticle, such as short Gly-Xaa-Yaa interruptions and Cys clusters at conserved sites. On the basis of identical patterns of conserved cysteines, col-36 and col-40 belong to the col-6 cuticle Col family. Semi-quantitative analysis using reverse transcription-PCR demonstrates that the col-36 transcript is present in L1 larvae and at the L1-L2 and L2d-dauer molts. The col-40 transcript is present in L1 larvae and at the L2d-dauer molt. Different members of the col-6 family are structurally related, but have different developmental expression patterns.
Collapse
Affiliation(s)
- A D Levy
- Department of Cell, Molecular and Structural Biology, Northwestern University Medical School, Chicago, IL 60611
| | | |
Collapse
|
32
|
Kramer JM, Johnson JJ. Analysis of mutations in the sqt-1 and rol-6 collagen genes of Caenorhabditis elegans. Genetics 1993; 135:1035-45. [PMID: 8307321 PMCID: PMC1205736 DOI: 10.1093/genetics/135.4.1035] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Different mutations in the sqt-1 and rol-6 collagen genes of Caenorhabditis elegans can cause diverse changes in body morphology and display different genetic attributes. We have determined the nucleotide alterations in 15 mutant alleles of these genes. Three mutations in sqt-1 and one in rol-6 that cause dominant right-handed helical twisting (RRol) of animals are arginine to cysteine replacements. These mutations are all within a short conserved sequence, on the amino terminal side of the Gly-X-Y repeats, that is found in all C. elegans cuticle collagens. A recessive RRol mutation of rol-6 is a replacement of one of the same conserved arginines by histidine. In contrast, three sqt-1 mutations that cause recessive left-handed helical twisting (LRol) are replacements of a conserved carboxy-terminal cysteine residue with either tyrosine or serine. These results suggest that disulfide bonding is important in collagen organization and that a deficit or surplus of disulfides may cause cuticle alterations of opposite handedness. In contrast to other collagens, glycine replacement mutations in the Gly-X-Y repeats of sqt-1 cause very mild phenotypes. Nonsense mutations of both sqt-1 and rol-6 cause nearly, but not totally, wild-type phenotypes. A nonsense mutation in sqt-1 suppresses the phenotype of rol-6 RRol mutations, suggesting that rol-6 collagen function is dependent on the presence of sqt-1 collagen. Mutations of sqt-1 are not suppressed by a rol-6 nonsense mutation, however, indicating that sqt-1 collagen can function independently of rol-6.
Collapse
Affiliation(s)
- J M Kramer
- Department of Cell, Molecular and Structural Biology, Northwestern University Medical School, Chicago, Illinois 60611
| | | |
Collapse
|
33
|
Abstract
Patterns of expression of surface-associated antigens were analyzed in the filarial nematode Brugia malayi immediately prior, and during development in the vertebrate host. Two surface-associated protein molecules, i.e., accessible to surface radioiodination and soluble in aqueous buffers, were investigated: Mrs 29-30,000 and 16,000, both of which are antigenic in infected animals. The Mr 29-30,000 glycoprotein is expressed in a surface-associated manner by adult worms and by fourth-stage larvae, but is not detectable in preparasitic third-stage larvae. The 16,000 component, which appears not to be glycosylated, is surface-associated in adult worms and fourth-stage larvae. In contrast to the 29-30,000 glycoprotein, the 16,000 protein is also expressed both by pre- and postparastic third-stage larvae. However, it becomes surface-associated only after infection. Thus, immediately prior, and during development within the vertebrate host, B. malayi displays at least two different patterns of expression of surface-associated antigens: (i) de novo, intiated either immediately after infection (phase specific) or during genesis of the fourth-stage larva (stage specific); (ii) continuous, but with phase-dependent surface exposure of previously cryptic antigens, during the transition from intermediate to definitive host.
Collapse
Affiliation(s)
- N Storey
- New England Biolabs, Inc., Beverly, Massachusetts 01915
| | | |
Collapse
|
34
|
Peters K, McDowall J, Rose AM. Mutations in the bli-4 (I) locus of Caenorhabditis elegans disrupt both adult cuticle and early larval development. Genetics 1991; 129:95-102. [PMID: 1936966 PMCID: PMC1204585 DOI: 10.1093/genetics/129.1.95] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The bli-4 (I) gene of Caenorhabditis elegans had been previously defined by a single recessive mutation, e937, which disrupts the structure of adult-stage cuticle causing the formation of fluid-filled separations of the cuticle layers, or blisters. We report the identification of 11 new alleles of bli-4, all early larval lethals, including an allele induced by transposon mutagenesis. Nine of the lethal alleles failed to complement the blistered phenotype of e937; two alleles, s90 and h754, complement e937. The complementing alleles arrested development somewhat later than the noncomplementing alleles, which blocked just prior to hatching. We conclude that bli-4 is a complex locus with an essential function late in embryogenesis. We investigated the blistered phenotype of e937 through interactions with other mutations that alter worm morphology or cuticle structure. Recessive and dominant epistasis of several dumpy mutations over the blistered phenotype was observed. Using two heterochronic mutations that alter the developmental stage at which adult cuticle is expressed, we observed that adult worms that lack an adult-stage cuticle could not express blisters. However, late larval worms that expressed the adult cuticle did not express blisters either. It seems likely that the presence of the adult cuticle is necessary, but not sufficient, for blister expression. Blistering resulting from e937 is more severe in trans to null alleles, indicating that e937 is hypomorphic. We postulate that the adult-specific blistering is due to an altered or reduced function of bli-4 gene product in the adult cuticle.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- K Peters
- Department of Medical Genetics, University of British Columbia, Vancouver, Canada
| | | | | |
Collapse
|
35
|
Liu Z, Ambros V. Alternative temporal control systems for hypodermal cell differentiation in Caenorhabditis elegans. Nature 1991; 350:162-5. [DOI: 10.1038/350162a0] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
36
|
Abstract
The collagen genes of nematodes encode proteins that have a diverse range of functions. Among their most abundant products are the cuticular collagens, which include about 80% of the proteins present in the nematode cuticle. The structures of these collagens have been found to be strikingly similar in the free-living and parasitic nematode species studied so far, and the genes that encode them appear to constitute a large multigene family whose expression is subject to developmental regulation. Collagen genes that may have a role in cell-cell interactions and collagen genes that correspond to the vertebrate type IV collagen genes have also been identified and studied in nematodes.
Collapse
Affiliation(s)
- I B Kingston
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK
| |
Collapse
|
37
|
Cox GN. Molecular biology of the cuticle collagen gene families of Caenorhabditis elegans and Haemonchus contortus. Acta Trop 1990; 47:269-81. [PMID: 1978527 DOI: 10.1016/0001-706x(90)90028-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- G N Cox
- Synergen Inc., Boulder, CO 80301
| |
Collapse
|
38
|
Haemonchus contortus: evidence that the 3A3 collagen gene is a member of an evolutionarily conserved family of nematode cuticle collagens. Exp Parasitol 1990; 70:175-85. [PMID: 2404780 DOI: 10.1016/0014-4894(90)90098-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Rabbit antisera were raised against an 18 amino acid-long peptide that corresponds to the predicted sequence of the carboxy-terminal, nontriple helical region of the Haemonchus contortus 3A3 collagen gene. This sequence is highly conserved and diagnostic for members of the col-l collagen family, which includes the 3A3 gene. We find that these antisera react predominantly with multiple, high molecular weight (greater than 68 kDa) proteins on Western blots of whole worm extracts. The number and molecular weights of the reacting proteins vary depending upon the developmental stage of the worms analyzed. All of the reacting proteins are collagenase sensitive. The reacting collagens copurify with cuticles and are released from cuticles by reducing agents. In indirect immunofluorescence assays the antisera react only with the broken edges of isolated cuticles, suggesting that the antisera are reacting with an internal cuticle layer. This layer appears to be circular and to extend throughout the length of the worm. The antisera react on Western blots with multiple, high molecular weight collagens of eight other nematodes examined, representing two classes and several orders. These data provide additional support for the notion that the 3A3 collagen gene, and other members of the col-l collagen family, encode cuticle collagens. Collagens with this peptide sequence, presumably other members of the col-l collagen family, appear to be widely distributed in the phylum Nematoda.
Collapse
|
39
|
Park YS, Kramer JM. Tandemly duplicated Caenorhabditis elegans collagen genes differ in their modes of splicing. J Mol Biol 1990; 211:395-406. [PMID: 1689778 DOI: 10.1016/0022-2836(90)90360-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Caenorhabditis elegans contains 50 to 150 collagen genes dispersed throughout its genome. We have determined the complete nucleotide sequences of two collagen genes, col-12 and col-13, that are separated by only 1800 bases and are transcribed in the same direction. The 951 nucleotides of their coding regions differ by only five nucleotides (99.5% identity). The amino acid sequences are identical except for two conservative amino acid changes within the putative secretory signal sequences, so the mature forms of the col-12 and col-13 collagens would be identical. The position and sequence of the intron (52 base-pairs) within the coding region of each gene are perfectly conserved. In contrast to the coding regions and the introns, the 5' and 3' flanking regions show little sequence similarity, col-12 and col-13 are expressed at similar levels at the same developmental stages, and appear to utilize conserved TATA boxes and transcription start sites. The major differences between the genes is that, preceding the initiator ATG, col-12 has a cis-spliced intron, while col-13 is transspliced. Thus, col-12 and col-13 are essentially identical in all aspects except that the col-12 mRNA has a 26-nucleotide cis-spliced leader at the same place where the col-13 mRNA has a 22-nucleotide trans-spliced leader. These results suggest that col-12 and col-13 are derived from a gene duplication and that sequence homology in the coding regions, but not in the flanking regions, has been maintained by gene conversion. The fact that the only significant difference between the two genes is in their modes of splicing suggests that cis and trans-splicing can be interchanged during gene evolution.
Collapse
Affiliation(s)
- Y S Park
- University of Illinois, Department of Biological Sciences, Chicago 60680
| | | |
Collapse
|
40
|
Guo XD, Kramer JM. The Two Caenorhabditis elegans Basement Membrane (Type IV) Collagen Genes Are Located on Separate Chromosomes. J Biol Chem 1989. [DOI: 10.1016/s0021-9258(18)71530-5] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
41
|
Harris LJ, Rose AM. Structural analysis of Tc1 elements in Caenorhabditis elegans var. Bristol (strain N2). Plasmid 1989; 22:10-21. [PMID: 2550981 DOI: 10.1016/0147-619x(89)90031-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The transposable element Tc1 in the genome of Caenorhabditis elegans var. Bristol strain N2 is very stable. In order to investigate possible causes of Tc1 immobility in this strain 17 individual isolates have been cloned and characterized with regard to their structure and genomic environment. Ten of 16 elements examined had identical restriction maps, and at least 1 of these (#7) showed a high level of somatic excision. Two of the elements had altered restriction sites, 2 had different internal deletions of about 700 bp, 1 had an 89-bp terminal deletion, and 1 a 54-bp insertion. When DNA sequences flanking the N2 Tc1 elements were used as probes in genomic hybridizations, it was found that most N2 elements are located in regions of repetitive DNA. Furthermore when hybridizations to DNA from N2 and var. Bergerac strain B0 were performed, a major band of the same size was observed in both strains. Two flanking sequences identified strain polymorphic sites hP2(IV) and hP3(IV). In at least one of these cases, a rearranged Tc1 was present in the B0 strain at the same location. The fact that all or most of the Tc1 elements are in the same location in N2 and B0 adds support to the hypothesis that the high copy number B0 strain arose from amplification of Tc1 copies in a N2-like strain. The N2 Tc1 elements are highly conserved; however, intact elements had fewer nucleotide changes than the rearranged elements. These results may indicate that the intact Tc1 elements in N2 are functionally active and subject to selective pressure.
Collapse
Affiliation(s)
- L J Harris
- Department of Medical Genetics, University of British Columbia, Vancouver, Canada
| | | |
Collapse
|
42
|
Abstract
The heterochronic genes lin-4, lin-14, lin-28, and lin-29 control the timing of specific postembryonic developmental events in C. elegans. The experiments described here examine how these four genes interact to control a particular stage-specific event of the lateral hypodermal cell lineages. This event, termed the "larva-to-adult switch" (L/A switch), involves several coordinate changes in the behavior of hypodermal cells at the fourth molt: cessation of cell division, formation of adult (instead of larval) cuticle, cell fusion, and cessation of the molting cycle. The phenotypes of multiply mutant strains suggest a model wherein the L/A switch is controlled by the stage-specific activity of a regulatory hierarchy: At early stages of wild-type development, lin-14 and lin-28 inhibit lin-29 and thus prevent switching. Later, lin-4 inhibits lin-14 and lin-28, allowing activation of lin-29, which in turn triggers the switch in the L4 stage. lin-29 may activate the L/A switch by regulating genes that control cell division, differentiation, and stage-specific gene expression in hypodermal cells.
Collapse
Affiliation(s)
- V Ambros
- Department of Cellular and Developmental Biology, Harvard University, Cambridge, Massachusetts 02138
| |
Collapse
|
43
|
Cox GN, Fields C, Kramer JM, Rosenzweig B, Hirsh D. Sequence comparisons of developmentally regulated collagen genes of Caenorhabditis elegans. Gene 1989; 76:331-44. [PMID: 2753356 DOI: 10.1016/0378-1119(89)90173-x] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Collagen genes col-6, col-7 (partial), col-8, col-14 and col-19 from the nematode Caenorhabditis elegans were sequenced, and compared to the previously sequenced genes col-1 and col-2. The genes are between 1.0 and 1.2 kb in length, and each includes one or two short introns. The presumptive promoter regions contain sequences similar to the eukaryotic TATA promoter element. Two distinct, conserved sequences were found in the presumptive promoter regions of, respectively, the dauer larva-specific genes col-2 and col-6, and the primarily adult-specific genes col-7 and col-19. The domain structures of the collagen polypeptides are similar: each polypeptide contains two triple-helix forming (Gly-X-Y)n domains, one of 30-33 amino acids (aa), and the other of 127-132 aa. The latter domain is interrupted by one to three short (2-8 aa) non-(Gly-X-Y)n segments that occur at relatively conserved locations in each polypeptide. Sets of cysteine residues flank the (Gly-X-Y)n domains in all of the polypeptides. The genes can be placed into three families based upon amino acid sequence similarities. Genes within a family do not always exhibit similar developmental expression programs, suggesting that structural and regulatory regions of the genes have evolved separately. The codon usage in the genes is highly asymmetrical, with adenine appearing in the third position of 85% of the glycine codons, and 93% of the proline codons.
Collapse
Affiliation(s)
- G N Cox
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder 80309-0347
| | | | | | | | | |
Collapse
|
44
|
Fields C. Domain organization and intron positions in Caenorhabditis elegans collagen genes: the 54-bp module hypothesis revisited. J Mol Evol 1988; 28:55-63. [PMID: 3148742 DOI: 10.1007/bf02143497] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The amino acid (aa) sequences of the polypeptides encoded by five collagen genes of the nematode Caenorhabditis elegans, col-6, col-7 (partial), col-8, col-14, and col-19, were determined. These collagen polypeptides, as well as those encoded by the previously sequenced C. elegans collagen genes col-1 and col-2, share a common organization into five domains: an amino-terminal leader, a short (30-33 aa) (Gly-X-Y)n domain, a non(Gly-X-Y) spacer, a long (127-132 aa) (Gly-X-Y)n domain, and a short carboxyl-terminal domain. The domain organizations and intron positions of these polypeptides were compared with those of the polypeptides encoded by Drosophila and Strongylocentrotus type IV, and vertebrate types I, II, III, IV, and IX collagen genes; the C. elegans collagen polypeptides are most similar to the vertebrate type IX collagens. It is suggested that the collagen gene family comprises two divergent subfamilies, one of which includes the vertebrate interstitial collagen genes, and the other of which includes the invertebrate collagen genes and the vertebrate type IV and type IX collagen genes. Only the vertebrate interstitial collagen genes display clear evidence of evolution via the tandem duplication of a 54-bp exon.
Collapse
Affiliation(s)
- C Fields
- Computing Research Laboratory, New Mexico State University, Las Cruces 88003-0001
| |
Collapse
|
45
|
Kramer JM, Johnson JJ, Edgar RS, Basch C, Roberts S. The sqt-1 gene of C. elegans encodes a collagen critical for organismal morphogenesis. Cell 1988; 55:555-65. [PMID: 3180220 DOI: 10.1016/0092-8674(88)90214-0] [Citation(s) in RCA: 82] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Different mutations in the sqt-1 gene of C. elegans can lengthen, shorten, or helically twist the entire animal. We have cloned the sqt-1 gene and have shown that it encodes a collagen. sqt-1 was localized to a 35 kb region of DNA by physical mapping of chromosomal deficiencies. A transposon (Tc1)-induced mutation of sqt-1 was generated and utilized to identify the sqt-1 gene within this 35 kb region. Sequence analysis of the sqt-1 gene shows that it encodes a 32 kd collagen polypeptide that is similar in size and structure to other members of the C. elegans collagen family. The Tc1 insertion mutant has no detectable sqt-1 transcripts, yet it is morphologically normal, indicating that the null phenotype of sqt-1 is wild type. These results demonstrate that collagen mutations can have dramatic effects on organismal morphology.
Collapse
Affiliation(s)
- J M Kramer
- Laboratory for Cell, Molecular, and Developmental Biology, University of Illinois, Chicago 60680
| | | | | | | | | |
Collapse
|
46
|
Abstract
Mutations in the Caenorhabditis elegans dpy-13 (dumpy) gene result in a short, chunky body shape. This gene was tagged by insertion of the Tc1 transposon, and the wild-type gene was cloned by chromosomal walking 11 kb from ama-1, a cloned gene encoding the large subunit of RNA polymerase II. Three transposon insertion sites in dpy-13 are located near the 5' end of a 1.2 kb transcribed region. The EMS-induced reference allele, dpy-13(e184), carries a small deletion near the middle of this gene. The DNA sequence reveals that dpy-13 is a member of the collagen multi-gene family, and it could encode a polypeptide of 302 amino acids. A 146 base pair sequence, encoding amino acids 56-103, is unique in the C. elegans genome, and it hybridizes to a 1 kb mRNA of moderate abundance.
Collapse
Affiliation(s)
- N von Mende
- Division of Biological Sciences, University of Missouri, Columbia 65211
| | | | | | | |
Collapse
|
47
|
Klass M, Ammons D, Ward S. Conservation in the 5' flanking sequences of transcribed members of the Caenorhabditis elegans major sperm protein gene family. J Mol Biol 1988; 199:15-22. [PMID: 2451024 DOI: 10.1016/0022-2836(88)90375-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The major sperm proteins (MSPs) are encoded in the Caenorhabditis genome by a multigene family with more than 50 genes dispersed in small clusters at three chromosomal loci. In spite of their dispersed locations, all of the MSP genes appear to be expressed at the same time exclusively in the testis, indicating co-ordinate temporal and spatial regulation of these dispersed genes. Many of the MSP genes must be transcribed, because RNA hybridization with gene-specific probes showed that individual genes each contribute less than 3% to the total poly(A)+ RNA, and 13 out of 14 sequenced cDNAs came from different genes. Primer extension assays from MSP mRNA showed that most of the MSP mRNAs must be initiated at position -35 from the translation start codon. Extensive similarity was found in the first 100 nucleotides of genomic sequence flanking the start codons of ten MSP genes from different chromosomal locations. All MSP genes contained a consensus ribosome binding site, a consensus TATA homology 27 nucleotides distal to the site of mRNA initiation, and ten highly conserved nucleotides adjacent to the site of initiation. All the MSP genes contained the sequence AGATCT located approximately 65 nucleotides upstream from the transcriptional start, but little or no similarity was found more distal to this. Some of these conserved sequences may be cis-acting control elements that ensure the cell and temporal specificity of transcription of these co-ordinately regulated genes.
Collapse
Affiliation(s)
- M Klass
- Biology Department, University of Houston/University Park, TX 77004
| | | | | |
Collapse
|
48
|
Abstract
While determining the 5' ends of C. elegans actin mRNAs, we have discovered a 22 nucleotide spliced leader sequence. The leader sequence is found on mRNA from three of the four nematode actin genes. The leader also appears to be present on some, but not all, nonactin mRNAs. The actin mRNA leader sequence is identical to the first 22 nucleotides of a novel 100 nucleotide RNA transcribed adjacent, and in the opposite orientation, to the 5S ribosomal gene. The evidence suggests that the actin mRNA leader sequence is acquired from this novel nucleotide transcript by an intermolecular trans-splicing mechanism.
Collapse
|
49
|
|
50
|
|