1
|
Saha K, Nielsen GI, Nandani R, Kong L, Ye P, An W. YY1 is a transcriptional activator of mouse LINE-1 Tf subfamily. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.03.573552. [PMID: 38260579 PMCID: PMC10802269 DOI: 10.1101/2024.01.03.573552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Long interspersed element type 1 (LINE-1, L1) is an active autonomous transposable element (TE) in the human genome. The first step of L1 replication is transcription, which is controlled by an internal RNA polymerase II promoter in the 5' untranslated region (UTR) of a full-length L1. It has been shown that transcription factor YY1 binds to a conserved sequence motif at the 5' end of the human L1 5'UTR and dictates where transcription initiates but not the level of transcription. Putative YY1-binding motifs have been predicted in the 5'UTRs of two distinct mouse L1 subfamilies, Tf and Gf. Using site-directed mutagenesis, in vitro binding, and gene knockdown assays, we experimentally tested the role of YY1 in mouse L1 transcription. Our results indicate that Tf, but not Gf subfamily, harbors functional YY1-binding sites in its 5'UTR monomers. In contrast to its role in human L1, YY1 functions as a transcriptional activator for the mouse Tf subfamily. Furthermore, YY1-binding motifs are solely responsible for the synergistic interaction between monomers, consistent with a model wherein distant monomers act as enhancers for mouse L1 transcription. The abundance of YY1-binding sites in Tf elements also raise important implications for gene regulation at the genomic level.
Collapse
Affiliation(s)
- Karabi Saha
- Department of Pharmaceutical Sciences, South Dakota State University, Brookings, SD 57007, USA
| | - Grace I. Nielsen
- Department of Pharmaceutical Sciences, South Dakota State University, Brookings, SD 57007, USA
| | - Raj Nandani
- Department of Pharmaceutical Sciences, South Dakota State University, Brookings, SD 57007, USA
| | - Lingqi Kong
- Department of Pharmaceutical Sciences, South Dakota State University, Brookings, SD 57007, USA
| | - Ping Ye
- Department of Pharmaceutical Sciences, South Dakota State University, Brookings, SD 57007, USA
| | - Wenfeng An
- Department of Pharmaceutical Sciences, South Dakota State University, Brookings, SD 57007, USA
| |
Collapse
|
2
|
Hermant C, Torres-Padilla ME. TFs for TEs: the transcription factor repertoire of mammalian transposable elements. Genes Dev 2021; 35:22-39. [PMID: 33397727 PMCID: PMC7778262 DOI: 10.1101/gad.344473.120] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In this review, Hermant and Torres-Padilla summarize and discuss the transcription factors known to be involved in the sequence-specific recognition and transcriptional activation of specific transposable element families or subfamilies. Transposable elements (TEs) are genetic elements capable of changing position within the genome. Although their mobilization can constitute a threat to genome integrity, nearly half of modern mammalian genomes are composed of remnants of TE insertions. The first critical step for a successful transposition cycle is the generation of a full-length transcript. TEs have evolved cis-regulatory elements enabling them to recruit host-encoded factors driving their own, selfish transcription. TEs are generally transcriptionally silenced in somatic cells, and the mechanisms underlying their repression have been extensively studied. However, during germline formation, preimplantation development, and tumorigenesis, specific TE families are highly expressed. Understanding the molecular players at stake in these contexts is of utmost importance to establish the mechanisms regulating TEs, as well as the importance of their transcription to the biology of the host. Here, we review the transcription factors known to be involved in the sequence-specific recognition and transcriptional activation of specific TE families or subfamilies. We discuss the diversity of TE regulatory elements within mammalian genomes and highlight the importance of TE mobilization in the dispersal of transcription factor-binding sites over the course of evolution.
Collapse
Affiliation(s)
- Clara Hermant
- Institute of Epigenetics and Stem Cells (IES), Helmholtz Zentrum München, D-81377 München, Germany
| | - Maria-Elena Torres-Padilla
- Institute of Epigenetics and Stem Cells (IES), Helmholtz Zentrum München, D-81377 München, Germany.,Faculty of Biology, Ludwig-Maximilians Universität München, D-82152 Planegg-Martinsried, Germany
| |
Collapse
|
3
|
Nohara K, Nakabayashi K, Okamura K, Suzuki T, Suzuki S, Hata K. Gestational arsenic exposure induces site-specific DNA hypomethylation in active retrotransposon subfamilies in offspring sperm in mice. Epigenetics Chromatin 2020; 13:53. [PMID: 33267854 PMCID: PMC7709384 DOI: 10.1186/s13072-020-00375-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Accepted: 11/12/2020] [Indexed: 01/26/2023] Open
Abstract
Background Environmental impacts on a fetus can disrupt germ cell development leading to epimutations in mature germ cells. Paternal inheritance of adverse health effects through sperm epigenomes, including DNA methylomes, has been recognized in human and animal studies. However, the impacts of gestational exposure to a variety of environmental factors on the germ cell epigenomes are not fully investigated. Arsenic, a naturally occurring contaminant, is one of the most concerning environmental chemicals, that is causing serious health problems, including an increase in cancer, in highly contaminated areas worldwide. We previously showed that gestational arsenic exposure of pregnant C3H mice paternally induces hepatic tumor increase in the second generation (F2). In the present study, we have investigated the F1 sperm DNA methylomes genome-widely by one-base resolution analysis using a reduced representation bisulfite sequencing (RRBS) method. Results We have clarified that gestational arsenic exposure increases hypomethylated cytosines in all the chromosomes and they are significantly overrepresented in the retrotransposon LINEs and LTRs, predominantly in the intergenic regions. Closer analyses of detailed annotated DNA sequences showed that hypomethylated cytosines are especially accumulated in the promoter regions of the active full-length L1MdA subfamily in LINEs, and 5′LTRs of the active IAPE subfamily in LTRs. This is the first report that has identified the specific positions of methylomes altered in the retrotransposon elements by environmental exposure, by genome-wide methylome analysis. Conclusion Lowered DNA methylation potentially enhances L1MdA retrotransposition and cryptic promoter activity of 5′LTR for coding genes and non-coding RNAs. The present study has illuminated the environmental impacts on sperm DNA methylome establishment that can lead to augmented retrotransposon activities in germ cells and can cause harmful effects in the following generation.
Collapse
Affiliation(s)
- Keiko Nohara
- Center for Health and Environmental Risk Research, National Institute for Environmental Studies, Tsukuba, 305-8506, Japan.
| | - Kazuhiko Nakabayashi
- Department of Maternal-Fetal Biology, National Center for Child Health and Development, Tokyo, 157-8535, Japan
| | - Kazuyuki Okamura
- Center for Health and Environmental Risk Research, National Institute for Environmental Studies, Tsukuba, 305-8506, Japan
| | - Takehiro Suzuki
- Center for Health and Environmental Risk Research, National Institute for Environmental Studies, Tsukuba, 305-8506, Japan
| | - Shigekatsu Suzuki
- Center for Environmental Biology and Ecosystem Studies, National Institute for Environmental Studies, Tsukuba, 305-8506, Japan
| | - Kenichiro Hata
- Department of Maternal-Fetal Biology, National Center for Child Health and Development, Tokyo, 157-8535, Japan
| |
Collapse
|
4
|
Newkirk SJ, Kong L, Jones MM, Habben CE, Dilts VL, Ye P, An W. Subfamily-specific quantification of endogenous mouse L1 retrotransposons by droplet digital PCR. Anal Biochem 2020; 601:113779. [PMID: 32442414 DOI: 10.1016/j.ab.2020.113779] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 05/06/2020] [Accepted: 05/14/2020] [Indexed: 11/18/2022]
Abstract
Long interspersed element type 1 (LINE-1; L1) mobilizes during early embryogenesis, neurogenesis, and germ cell development, accounting for 25% of disease-causing heritable insertions and 98% of somatic insertions in cancer. To better understand the regulation and impact of L1 mobilization in the genome, reliable methods for measuring L1 copy number variation (CNV) are needed. Here we present a comprehensive analysis of a droplet digital PCR (ddPCR) based method for quantifying endogenous mouse L1. We provide experimental evidence that ddPCR assays can be designed to target specific L1 subfamilies using diagnostic single nucleotide polymorphisms (SNPs). The target and off-target L1 subfamilies form distinct droplet clusters, which were experimentally verified using both synthetic gene fragments and endogenous L1 derived plasmid clones. We further provide a roadmap for in silico assay design and evaluation of target specificity, ddPCR testing, and optimization for L1 CNV quantification. The assay can achieve a sensitivity of 5% CNV with 8 technical replicates. With 24 technical replicates, it can detect 2% CNV because of the increased precision. The same approach will serve as a guide for the development of ddPCR based assays for quantifying human L1 copy number and any other high copy genomic target sequences.
Collapse
Affiliation(s)
- Simon J Newkirk
- Department of Pharmaceutical Sciences, South Dakota State University, Brookings, SD, 57007, United States.
| | - Lingqi Kong
- Department of Pharmaceutical Sciences, South Dakota State University, Brookings, SD, 57007, United States.
| | - Mason M Jones
- Department of Pharmaceutical Sciences, South Dakota State University, Brookings, SD, 57007, United States.
| | - Chase E Habben
- Department of Pharmaceutical Sciences, South Dakota State University, Brookings, SD, 57007, United States.
| | - Victoria L Dilts
- Department of Pharmaceutical Sciences, South Dakota State University, Brookings, SD, 57007, United States.
| | - Ping Ye
- Department of Pharmacy Practice, South Dakota State University, Brookings, SD, 57007, United States; Avera Research Institute, Sioux Falls, SD, 57108, United States.
| | - Wenfeng An
- Department of Pharmaceutical Sciences, South Dakota State University, Brookings, SD, 57007, United States.
| |
Collapse
|
5
|
Zhou M, Smith AD. Subtype classification and functional annotation of L1Md retrotransposon promoters. Mob DNA 2019; 10:14. [PMID: 31007728 PMCID: PMC6454616 DOI: 10.1186/s13100-019-0156-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 03/28/2019] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND L1Md retrotransposons are the most abundant and active transposable elements in the mouse genome. The promoters of many L1Md retrotransposons are composed of tandem repeats called monomers. The number of monomers varies between retrotransposon copies, thus making it difficult to annotate L1Md promoters. Duplication of monomers contributes to the maintenance of L1Md promoters during truncation-prone retrotranspositions, but the associated mechanism remains unclear. Since the current classification of monomers is based on limited data, a comprehensive monomer annotation is needed for supporting functional studies of L1Md promoters genome-wide. RESULTS We developed a pipeline for de novo monomer detection and classification. Identified monomers are further classified into subtypes based on their sequence profiles. We applied this pipeline to genome assemblies of various rodent species. A major monomer subtype of the lab mouse was also found in other Mus species, implying that such subtype has emerged in the common ancestor of involved species. We also characterized the positioning pattern of monomer subtypes within individual promoters. Our analyses indicate that the subtype composition of an L1Md promoter can be used to infer its transcriptional activity during male germ cell development. CONCLUSIONS We identified subtypes for all monomer types using comprehensive data, greatly expanding the spectrum of monomer variants. The analysis of monomer subtype positioning provides evidence supporting both previously proposed models of L1Md promoter expansion. The transcription silencing of L1Md promoters differs between promoter types, which supports a model involving distinct suppressive pathways rather than a universal mechanism for retrotransposon repression in gametogenesis.
Collapse
Affiliation(s)
- Meng Zhou
- Molecular and Computational Biology Section, Division of Biological Sciences, University of Southern California, Los Angeles, USA
| | - Andrew D. Smith
- Molecular and Computational Biology Section, Division of Biological Sciences, University of Southern California, Los Angeles, USA
| |
Collapse
|
6
|
Richardson SR, Faulkner GJ. Heritable L1 Retrotransposition Events During Development: Understanding Their Origins: Examination of heritable, endogenous L1 retrotransposition in mice opens up exciting new questions and research directions. Bioessays 2018; 40:e1700189. [PMID: 29709066 PMCID: PMC6681178 DOI: 10.1002/bies.201700189] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 03/04/2018] [Indexed: 01/08/2023]
Abstract
The retrotransposon Long Interspersed Element 1 (LINE-1 or L1) has played a major role in shaping the sequence composition of the mammalian genome. In our recent publication, "Heritable L1 retrotransposition in the mouse primordial germline and early embryo," we systematically assessed the rate and developmental timing of de novo, heritable endogenous L1 insertions in mice. Such heritable retrotransposition events allow L1 to exert an ongoing influence upon genome evolution. Here, we place our findings in the context of earlier studies, and highlight how our results corroborate, and depart from, previous research based on human patient samples and transgenic mouse models harboring engineered L1 reporter genes. In parallel, we outline outstanding questions regarding the stage-specificity, regulation, and functional impact of embryonic and germline L1 retrotransposition, and propose avenues for future research in this field.
Collapse
Affiliation(s)
- Sandra R. Richardson
- Mater Research Institute–University of QueenslandWoolloongabbaQueensland 4102Australia
| | - Geoffrey J. Faulkner
- Mater Research Institute–University of QueenslandWoolloongabbaQueensland 4102Australia
- Queensland Brain InstituteUniversity of QueenslandBrisbaneQueensland 4072Australia
- School of Biomedical SciencesUniversity of QueenslandBrisbaneQueensland 4072Australia
| |
Collapse
|
7
|
Schwertz H, Rowley JW, Schumann GG, Thorack U, Campbell RA, Manne BK, Zimmerman GA, Weyrich AS, Rondina MT. Endogenous LINE-1 (Long Interspersed Nuclear Element-1) Reverse Transcriptase Activity in Platelets Controls Translational Events Through RNA-DNA Hybrids. Arterioscler Thromb Vasc Biol 2018; 38:801-815. [PMID: 29301786 PMCID: PMC5864535 DOI: 10.1161/atvbaha.117.310552] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 12/11/2017] [Indexed: 12/11/2022]
Abstract
OBJECTIVE One source of endogenous reverse transcriptase (eRT) activity in nucleated cells is the LINE-1/L1 (long interspersed nuclear element-1), a non-LTR retrotransposon that is implicated in the regulation of gene expression. Nevertheless, the presence and function of eRT activity and LINE-1 in human platelets, an anucleate cell, has not previously been determined. APPROACH AND RESULTS We demonstrate that human and murine platelets possess robust eRT activity and identify the source as being LINE-1 ribonucleoprotein particles. Inhibition of eRT in vitro in isolated platelets from healthy individuals or in people with HIV treated with RT inhibitors enhanced global protein synthesis and platelet activation. If HIV patients were treated with reverse transcriptase inhibitor, we found that platelets from these patients had increased basal activation. We next discovered that eRT activity in platelets controlled the generation of RNA-DNA hybrids, which serve as translational repressors. Inhibition of platelet eRT lifted this RNA-DNA hybrid-induced translational block and was sufficient to increase protein expression of target RNAs identified by RNA-DNA hybrid immunoprecipitation. CONCLUSIONS Thus, we provide the first evidence that platelets possess L1-encoded eRT activity. We also demonstrate that platelet eRT activity regulates platelet hyperreactivity and thrombosis and controls RNA-DNA hybrid formation and identify that RNA-DNA hybrids function as a novel translational control mechanism in human platelets.
Collapse
Affiliation(s)
- Hansjörg Schwertz
- From the Molecular Medicine Program (H.S., J.W.R., R.A.C., B.K.M., G.A.Z., A.S.W., M.T.R.), Department of Internal Medicine (H.S., J.W.R., G.A.Z., A.S.W., M.T.R.), and Department of Surgery, Division of Vascular Surgery (H.S.), University of Utah, Salt Lake City; Department of Internal Medicine, George E. Wahlen Salt Lake City VAMC, UT (M.T.R.); Department of Immunology and Transfusion Medicine (U.T.) and Lichtenberg-Professor for Experimental Hemostasis (H.S.), University of Greifswald, Germany; and Division of Medical Biotechnology, Paul-Ehrlich-Institut, Langen, Germany (G.G.S.).
| | - Jesse W Rowley
- From the Molecular Medicine Program (H.S., J.W.R., R.A.C., B.K.M., G.A.Z., A.S.W., M.T.R.), Department of Internal Medicine (H.S., J.W.R., G.A.Z., A.S.W., M.T.R.), and Department of Surgery, Division of Vascular Surgery (H.S.), University of Utah, Salt Lake City; Department of Internal Medicine, George E. Wahlen Salt Lake City VAMC, UT (M.T.R.); Department of Immunology and Transfusion Medicine (U.T.) and Lichtenberg-Professor for Experimental Hemostasis (H.S.), University of Greifswald, Germany; and Division of Medical Biotechnology, Paul-Ehrlich-Institut, Langen, Germany (G.G.S.)
| | - Gerald G Schumann
- From the Molecular Medicine Program (H.S., J.W.R., R.A.C., B.K.M., G.A.Z., A.S.W., M.T.R.), Department of Internal Medicine (H.S., J.W.R., G.A.Z., A.S.W., M.T.R.), and Department of Surgery, Division of Vascular Surgery (H.S.), University of Utah, Salt Lake City; Department of Internal Medicine, George E. Wahlen Salt Lake City VAMC, UT (M.T.R.); Department of Immunology and Transfusion Medicine (U.T.) and Lichtenberg-Professor for Experimental Hemostasis (H.S.), University of Greifswald, Germany; and Division of Medical Biotechnology, Paul-Ehrlich-Institut, Langen, Germany (G.G.S.)
| | - Ulrike Thorack
- From the Molecular Medicine Program (H.S., J.W.R., R.A.C., B.K.M., G.A.Z., A.S.W., M.T.R.), Department of Internal Medicine (H.S., J.W.R., G.A.Z., A.S.W., M.T.R.), and Department of Surgery, Division of Vascular Surgery (H.S.), University of Utah, Salt Lake City; Department of Internal Medicine, George E. Wahlen Salt Lake City VAMC, UT (M.T.R.); Department of Immunology and Transfusion Medicine (U.T.) and Lichtenberg-Professor for Experimental Hemostasis (H.S.), University of Greifswald, Germany; and Division of Medical Biotechnology, Paul-Ehrlich-Institut, Langen, Germany (G.G.S.)
| | - Robert A Campbell
- From the Molecular Medicine Program (H.S., J.W.R., R.A.C., B.K.M., G.A.Z., A.S.W., M.T.R.), Department of Internal Medicine (H.S., J.W.R., G.A.Z., A.S.W., M.T.R.), and Department of Surgery, Division of Vascular Surgery (H.S.), University of Utah, Salt Lake City; Department of Internal Medicine, George E. Wahlen Salt Lake City VAMC, UT (M.T.R.); Department of Immunology and Transfusion Medicine (U.T.) and Lichtenberg-Professor for Experimental Hemostasis (H.S.), University of Greifswald, Germany; and Division of Medical Biotechnology, Paul-Ehrlich-Institut, Langen, Germany (G.G.S.)
| | - Bhanu Kanth Manne
- From the Molecular Medicine Program (H.S., J.W.R., R.A.C., B.K.M., G.A.Z., A.S.W., M.T.R.), Department of Internal Medicine (H.S., J.W.R., G.A.Z., A.S.W., M.T.R.), and Department of Surgery, Division of Vascular Surgery (H.S.), University of Utah, Salt Lake City; Department of Internal Medicine, George E. Wahlen Salt Lake City VAMC, UT (M.T.R.); Department of Immunology and Transfusion Medicine (U.T.) and Lichtenberg-Professor for Experimental Hemostasis (H.S.), University of Greifswald, Germany; and Division of Medical Biotechnology, Paul-Ehrlich-Institut, Langen, Germany (G.G.S.)
| | - Guy A Zimmerman
- From the Molecular Medicine Program (H.S., J.W.R., R.A.C., B.K.M., G.A.Z., A.S.W., M.T.R.), Department of Internal Medicine (H.S., J.W.R., G.A.Z., A.S.W., M.T.R.), and Department of Surgery, Division of Vascular Surgery (H.S.), University of Utah, Salt Lake City; Department of Internal Medicine, George E. Wahlen Salt Lake City VAMC, UT (M.T.R.); Department of Immunology and Transfusion Medicine (U.T.) and Lichtenberg-Professor for Experimental Hemostasis (H.S.), University of Greifswald, Germany; and Division of Medical Biotechnology, Paul-Ehrlich-Institut, Langen, Germany (G.G.S.)
| | - Andrew S Weyrich
- From the Molecular Medicine Program (H.S., J.W.R., R.A.C., B.K.M., G.A.Z., A.S.W., M.T.R.), Department of Internal Medicine (H.S., J.W.R., G.A.Z., A.S.W., M.T.R.), and Department of Surgery, Division of Vascular Surgery (H.S.), University of Utah, Salt Lake City; Department of Internal Medicine, George E. Wahlen Salt Lake City VAMC, UT (M.T.R.); Department of Immunology and Transfusion Medicine (U.T.) and Lichtenberg-Professor for Experimental Hemostasis (H.S.), University of Greifswald, Germany; and Division of Medical Biotechnology, Paul-Ehrlich-Institut, Langen, Germany (G.G.S.)
| | - Matthew T Rondina
- From the Molecular Medicine Program (H.S., J.W.R., R.A.C., B.K.M., G.A.Z., A.S.W., M.T.R.), Department of Internal Medicine (H.S., J.W.R., G.A.Z., A.S.W., M.T.R.), and Department of Surgery, Division of Vascular Surgery (H.S.), University of Utah, Salt Lake City; Department of Internal Medicine, George E. Wahlen Salt Lake City VAMC, UT (M.T.R.); Department of Immunology and Transfusion Medicine (U.T.) and Lichtenberg-Professor for Experimental Hemostasis (H.S.), University of Greifswald, Germany; and Division of Medical Biotechnology, Paul-Ehrlich-Institut, Langen, Germany (G.G.S.)
| |
Collapse
|
8
|
Arkhipova IR. Using bioinformatic and phylogenetic approaches to classify transposable elements and understand their complex evolutionary histories. Mob DNA 2017; 8:19. [PMID: 29225705 PMCID: PMC5718144 DOI: 10.1186/s13100-017-0103-2] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 11/28/2017] [Indexed: 12/11/2022] Open
Abstract
In recent years, much attention has been paid to comparative genomic studies of transposable elements (TEs) and the ensuing problems of their identification, classification, and annotation. Different approaches and diverse automated pipelines are being used to catalogue and categorize mobile genetic elements in the ever-increasing number of prokaryotic and eukaryotic genomes, with little or no connectivity between different domains of life. Here, an overview of the current picture of TE classification and evolutionary relationships is presented, updating the diversity of TE types uncovered in sequenced genomes. A tripartite TE classification scheme is proposed to account for their replicative, integrative, and structural components, and the need to expand in vitro and in vivo studies of their structural and biological properties is emphasized. Bioinformatic studies have now become front and center of novel TE discovery, and experimental pursuits of these discoveries hold great promise for both basic and applied science.
Collapse
Affiliation(s)
- Irina R Arkhipova
- Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biological Laboratory, Woods Hole, MA 02543 USA
| |
Collapse
|
9
|
Baker RJ, Wichman HA. RETROTRANSPOSON
MYS
IS CONCENTRATED ON THE SEX CHROMOSOMES: IMPLICATIONS FOR COPY NUMBER CONTAINMENT. Evolution 2017; 44:2083-2088. [DOI: 10.1111/j.1558-5646.1990.tb04313.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/1990] [Accepted: 04/06/1990] [Indexed: 11/26/2022]
Affiliation(s)
- Robert J. Baker
- Department of Biological Sciences and The Museum Texas Tech University Lubbock TX 79409 USA
| | - Holly A. Wichman
- Department of Biological Science University of Idaho Moscow ID 83843 USA
| |
Collapse
|
10
|
Bodak M, Cirera-Salinas D, Yu J, Ngondo RP, Ciaudo C. Dicer, a new regulator of pluripotency exit and LINE-1 elements in mouse embryonic stem cells. FEBS Open Bio 2017; 7:204-220. [PMID: 28174687 PMCID: PMC5292673 DOI: 10.1002/2211-5463.12174] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 11/18/2016] [Accepted: 12/05/2016] [Indexed: 12/18/2022] Open
Abstract
A gene regulation network orchestrates processes ensuring the maintenance of cellular identity and genome integrity. Small RNAs generated by the RNAse III DICER have emerged as central players in this network. Moreover, deletion of Dicer in mice leads to early embryonic lethality. To better understand the underlying mechanisms leading to this phenotype, we generated Dicer‐deficient mouse embryonic stem cells (mESCs). Their detailed characterization revealed an impaired differentiation potential, and incapacity to exit from the pluripotency state. We also observed a strong accumulation of LINE‐1 (L1s) transcripts, which was translated at protein level and led to an increased L1s retrotransposition. Our findings reveal Dicer as a new essential player that sustains mESCs self‐renewal and genome integrity by controlling L1s regulation.
Collapse
Affiliation(s)
- Maxime Bodak
- Department of Biology RNAi and Genome Integrity IMHS Swiss Federal Institute of Technology Zurich Zurich Switzerland; Life Science Zurich Graduate School Molecular Life Science Program University of Zurich Switzerland
| | - Daniel Cirera-Salinas
- Department of Biology RNAi and Genome Integrity IMHS Swiss Federal Institute of Technology Zurich Zurich Switzerland
| | - Jian Yu
- Department of Biology RNAi and Genome Integrity IMHS Swiss Federal Institute of Technology Zurich Zurich Switzerland; Life Science Zurich Graduate School Molecular and Translational Biomedicine Program University of Zurich Switzerland
| | - Richard P Ngondo
- Department of Biology RNAi and Genome Integrity IMHS Swiss Federal Institute of Technology Zurich Zurich Switzerland
| | - Constance Ciaudo
- Department of Biology RNAi and Genome Integrity IMHS Swiss Federal Institute of Technology Zurich Zurich Switzerland
| |
Collapse
|
11
|
Vieira-da-Silva A, Adega F, Guedes-Pinto H, Chaves R. LINE-1 distribution in six rodent genomes follow a species-specific pattern. J Genet 2016; 95:21-33. [PMID: 27019429 DOI: 10.1007/s12041-015-0595-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
L1 distribution in mammal's genomes is yet a huge riddle. However, these repetitive sequences were already found in all chromosomic regions, and in general, they seem to be nonrandomly distributed in the genome. It also seems that after insertion and when they are not deleterious, they are always involved in dynamic processes occurring on that particular chromosomic region. Furthermore, it seems that large-scale genome rearrangements and L1 activity and accumulation are somehow interconnected. In the present study, we analysed L1 genomic distribution in Tatera gambiana (Muridae, Gerbillinae), Acomys sp. (Muridae, Deomyinae), Cricetomys sp. (Nesomyidae, Cricetomyinae), Microtus arvalis (Cricetidae, Arvicolinae), Phodopus roborovskii and P. sungorus (Cricetidae, Cricetinae). All the species studied here seems to exhibit a species-specific pattern.Possible mechanisms, and processes involved in L1 distribution and preferential accumulation in certain regions are di scussed.
Collapse
Affiliation(s)
- A Vieira-da-Silva
- Department of Genetics and Biotechnology (DGB), Laboratory of Cytogenomics and Animal Genomics (CAG), University of Trάs-os-Montes and Alto Douro (UTAD), 5001, 801 Vila Real,
| | | | | | | |
Collapse
|
12
|
Bodak M, Ciaudo C. Monitoring Long Interspersed Nuclear Element 1 Expression During Mouse Embryonic Stem Cell Differentiation. Methods Mol Biol 2016; 1400:237-59. [PMID: 26895058 DOI: 10.1007/978-1-4939-3372-3_16] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Long Interspersed Elements-1 (LINE-1 or L1) are a class of transposable elements which account for almost 19 % of the mouse genome. This represents around 600,000 L1 fragments, among which it is estimated that 3000 intact copies still remain capable to retrotranspose and to generate deleterious mutation by insertion into genomic coding region. In differentiated cells, full length L1 are transcriptionally repressed by DNA methylation. However at the blastocyst stage, L1 elements are subject to a demethylation wave and able to be expressed and to be inserted into new genomic locations. Mouse Embryonic Stem Cells (mESCs) are pluripotent stem cells derived from the inner cell mass of blastocysts. Mouse ESCs can be maintained undifferentiated under controlled culture conditions or induced into the three primary germ layers, therefore they represent a suitable model to follow mechanisms involved in L1 repression during the process of differentiation of mESCs. This protocol presents how to maintain culture of undifferentiated mESCs, induce their differentiation, and monitor L1 expression at the transcriptional and translational levels. L1 transcriptional levels are assessed by real-time qRT-PCR performed on total RNA extracts using specific L1 primers and translation levels are measured by Western blot analysis of L1 protein ORF1 using a specific L1 antibody.
Collapse
Affiliation(s)
- Maxime Bodak
- Department of Biology, Swiss Federal Institute of Technology, HPL G32.1, Otto-Stern-Weg 7, CH-8093, Zurich, Switzerland
| | - Constance Ciaudo
- Department of Biology, Swiss Federal Institute of Technology, HPL G32.1, Otto-Stern-Weg 7, CH-8093, Zurich, Switzerland.
| |
Collapse
|
13
|
Kannan S, Chernikova D, Rogozin IB, Poliakov E, Managadze D, Koonin EV, Milanesi L. Transposable Element Insertions in Long Intergenic Non-Coding RNA Genes. Front Bioeng Biotechnol 2015; 3:71. [PMID: 26106594 PMCID: PMC4460805 DOI: 10.3389/fbioe.2015.00071] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Accepted: 05/06/2015] [Indexed: 11/13/2022] Open
Abstract
Transposable elements (TEs) are abundant in mammalian genomes and appear to have contributed to the evolution of their hosts by providing novel regulatory or coding sequences. We analyzed different regions of long intergenic non-coding RNA (lincRNA) genes in human and mouse genomes to systematically assess the potential contribution of TEs to the evolution of the structure and regulation of expression of lincRNA genes. Introns of lincRNA genes contain the highest percentage of TE-derived sequences (TES), followed by exons and then promoter regions although the density of TEs is not significantly different between exons and promoters. Higher frequencies of ancient TEs in promoters and exons compared to introns implies that many lincRNA genes emerged before the split of primates and rodents. The content of TES in lincRNA genes is substantially higher than that in protein-coding genes, especially in exons and promoter regions. A significant positive correlation was detected between the content of TEs and evolutionary rate of lincRNAs indicating that inserted TEs are preferentially fixed in fast-evolving lincRNA genes. These results are consistent with the repeat insertion domains of LncRNAs hypothesis under which TEs have substantially contributed to the origin, evolution, and, in particular, fast functional diversification, of lincRNA genes.
Collapse
Affiliation(s)
- Sivakumar Kannan
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health , Bethesda, MD , USA
| | - Diana Chernikova
- Department of Genetics, Institute for Quantitative Biomedical Sciences, Geisel School of Medicine, Dartmouth College , Hanover, NH , USA
| | - Igor B Rogozin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health , Bethesda, MD , USA
| | - Eugenia Poliakov
- Laboratory of Retinal Cell and Molecular Biology, National Eye Institute, National Institutes of Health , Bethesda, MD , USA
| | - David Managadze
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health , Bethesda, MD , USA
| | - Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health , Bethesda, MD , USA
| | - Luciano Milanesi
- Institute for Biomedical Technologies, National Research Council , Segrate , Italy
| |
Collapse
|
14
|
Bulut-Karslioglu A, De La Rosa-Velázquez I, Ramirez F, Barenboim M, Onishi-Seebacher M, Arand J, Galán C, Winter G, Engist B, Gerle B, O’Sullivan R, Martens J, Walter J, Manke T, Lachner M, Jenuwein T. Suv39h-Dependent H3K9me3 Marks Intact Retrotransposons and Silences LINE Elements in Mouse Embryonic Stem Cells. Mol Cell 2014; 55:277-90. [DOI: 10.1016/j.molcel.2014.05.029] [Citation(s) in RCA: 176] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Revised: 01/30/2014] [Accepted: 05/20/2014] [Indexed: 12/28/2022]
|
15
|
Metzner M, Jäck HM, Wabl M. LINE-1 retroelements complexed and inhibited by activation induced cytidine deaminase. PLoS One 2012; 7:e49358. [PMID: 23133680 PMCID: PMC3487726 DOI: 10.1371/journal.pone.0049358] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Accepted: 10/08/2012] [Indexed: 12/31/2022] Open
Abstract
LINE-1 (abbreviated L1) is a major class of retroelements in humans and mice. If unrestricted, retroelements accumulate in the cytoplasm and insert their DNA into the host genome, with the potential to cause autoimmune disease and cancer. Retroviruses and other retroelements are inhibited by proteins of the APOBEC family, of which activation-induced cytidine deaminase (AID) is a member. Although AID is mainly known for being a DNA mutator shaping the antibody repertoire in B lymphocytes, we found that AID also restricts de novo L1 integrations in B- and non-B-cell lines. It does so by decreasing the protein level of open reading frame 1 (ORF1) of both exogenous and endogenous L1. In activated B lymphocytes, AID deficiency increased L1 mRNA 1.6-fold and murine leukemia virus (MLV) mRNA 2.7-fold. In cell lines and activated B lymphocytes, AID forms cytoplasmic high-molecular-mass complexes with L1 mRNA, which may contribute to L1 restriction. Because AID-deficient activated B lymphocytes do not express ORF1 protein, we suggest that ORF1 protein expression is inhibited by additional restriction factors in these cells. The greater increase in MLV compared to L1 mRNA in AID-deficient activated B lymphocytes may indicate less strict surveillance of retrovirus.
Collapse
Affiliation(s)
- Mirjam Metzner
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, California, United States of America.
| | | | | |
Collapse
|
16
|
Yin Z, Kong QR, Zhao ZP, Wu ML, Mu YS, Hu K, Liu ZH. Position effect variegation and epigenetic modification of a transgene in a pig model. GENETICS AND MOLECULAR RESEARCH 2012; 11:355-69. [PMID: 22370938 DOI: 10.4238/2012.february.16.1] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Sequences proximal to transgene integration sites are able to regulate transgene expression, resulting in complex position effect variegation. Position effect variegation can cause differences in epigenetic modifications, such as DNA methylation and histone acetylation. However, it is not known which factor, position effect or epigenetic modification, plays a more important role in the regulation of transgene expression. We analyzed transgene expression patterns and epigenetic modifications of transgenic pigs expressing green fluorescent protein, driven by the cytomegalovirus (CMV) promoter. DNA hypermethylation and loss of acetylation of specific histone H3 and H4 lysines, except H4K16 acetylation in the CMV promoter, were consistent with a low level of transgene expression. Moreover, the degree of DNA methylation and histone H3/H4 acetylation in the promoter region depended on the integration site; consequently, position effect variegation caused variations in epigenetic modifications. The transgenic pig fibroblast cell lines were treated with DNA methyltransferase inhibitor 5-Aza-2'-deoxycytidine and/or histone deacetylase inhibitor trichostatin A. Transgene expression was promoted by reversing the DNA hypermethylation and histone hypoacetylation status. The differences in DNA methylation and histone acetylation in the CMV promoter region in these cell lines were not significant; however, significant differences in transgene expression were detected, demonstrating that variegation of transgene expression is affected by the integration site. We conclude that in this pig model, position effect variegation affects transgene expression.
Collapse
Affiliation(s)
- Z Yin
- College of Life Science, Northeast Agricultural University of China, Harbin, China
| | | | | | | | | | | | | |
Collapse
|
17
|
Montoya-Durango DE, Ramos KS. HPV E7 viral oncoprotein disrupts transcriptional regulation of L1Md retrotransposon. FEBS Lett 2011; 586:102-6. [PMID: 22172279 DOI: 10.1016/j.febslet.2011.12.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2011] [Revised: 11/29/2011] [Accepted: 12/02/2011] [Indexed: 01/01/2023]
Abstract
Murine L1Md-A5 retrotransposon is a redox-inducible element regulated by Nrf-2/JunD and E2F/Rb-binding sites within its promoter (5'-UTR). Because the human papillomavirus (HPV) oncoprotein E7 interacts with retinoblastoma (pRb) and members of the AP1 family, studies were conducted to examine functional interactions between HPV E7, pRb, and histone deacetylase 2 (HDAC2) in the regulation of L1Md-A5. Using a transient heterologous transcription system we found that HPV E7 alone, or in combination with HDAC2, disrupted pRb-mediated L1MdA-5 transactivation. HPV E7 also ablated the transcriptional response of L1Md-A5 to genotoxic stress, but did not interfere with basal activity. We conclude that HPV E7 associates with proteins involved in the assembly of macromolecular complexes that regulate antioxidant and E2F/Rb sites within L1MdA-5 to regulate biological activity.
Collapse
Affiliation(s)
- Diego E Montoya-Durango
- Department of Biochemistry and Molecular Biology and Center for Genetics and Molecular Medicine, School of Medicine, University of Louisville, Louisville, KY 40202, USA
| | | |
Collapse
|
18
|
Cowley M, de Burca A, McCole RB, Chahal M, Saadat G, Oakey RJ, Schulz R. Short interspersed element (SINE) depletion and long interspersed element (LINE) abundance are not features universally required for imprinting. PLoS One 2011; 6:e18953. [PMID: 21533089 PMCID: PMC3080381 DOI: 10.1371/journal.pone.0018953] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2010] [Accepted: 03/18/2011] [Indexed: 01/22/2023] Open
Abstract
Genomic imprinting is a form of gene dosage regulation in which a gene is expressed from only one of the alleles, in a manner dependent on the parent of origin. The mechanisms governing imprinted gene expression have been investigated in detail and have greatly contributed to our understanding of genome regulation in general. Both DNA sequence features, such as CpG islands, and epigenetic features, such as DNA methylation and non-coding RNAs, play important roles in achieving imprinted expression. However, the relative importance of these factors varies depending on the locus in question. Defining the minimal features that are absolutely required for imprinting would help us to understand how imprinting has evolved mechanistically. Imprinted retrogenes are a subset of imprinted loci that are relatively simple in their genomic organisation, being distinct from large imprinting clusters, and have the potential to be used as tools to address this question. Here, we compare the repeat element content of imprinted retrogene loci with non-imprinted controls that have a similar locus organisation. We observe no significant differences that are conserved between mouse and human, suggesting that the paucity of SINEs and relative abundance of LINEs at imprinted loci reported by others is not a sequence feature universally required for imprinting.
Collapse
Affiliation(s)
- Michael Cowley
- Department of Medical & Molecular Genetics, King's College London, Guy's Hospital, London, United Kingdom
| | - Anna de Burca
- Department of Medical & Molecular Genetics, King's College London, Guy's Hospital, London, United Kingdom
| | - Ruth B. McCole
- Department of Medical & Molecular Genetics, King's College London, Guy's Hospital, London, United Kingdom
| | - Mandeep Chahal
- Department of Medical & Molecular Genetics, King's College London, Guy's Hospital, London, United Kingdom
| | - Ghazal Saadat
- Department of Medical & Molecular Genetics, King's College London, Guy's Hospital, London, United Kingdom
| | - Rebecca J. Oakey
- Department of Medical & Molecular Genetics, King's College London, Guy's Hospital, London, United Kingdom
| | - Reiner Schulz
- Department of Medical & Molecular Genetics, King's College London, Guy's Hospital, London, United Kingdom
- * E-mail:
| |
Collapse
|
19
|
Characterization of a synthetic human LINE-1 retrotransposon ORFeus-Hs. Mob DNA 2011; 2:2. [PMID: 21320307 PMCID: PMC3045867 DOI: 10.1186/1759-8753-2-2] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2010] [Accepted: 02/14/2011] [Indexed: 11/18/2022] Open
Abstract
Long interspersed elements, type 1(LINE-1, L1) are the most abundant and only active autonomous retrotransposons in the human genome. Native L1 elements are inefficiently expressed because of a transcription elongation defect thought to be caused by high adenosine content in L1 sequences. Previously, we constructed a highly active synthetic mouse L1 element (ORFeus-Mm), partially by reducing the nucleotide composition bias. As a result, the transcript abundance of ORFeus-Mm was greatly increased, and its retrotransposition frequency was > 200-fold higher than its native counterpart. In this paper, we report a synthetic human L1 element (ORFeus-Hs) synthesized using a similar strategy. The adenosine content of the L1 open reading frames (ORFs) was reduced from 40% to 27% by changing 25% of the bases in the ORFs, without altering the amino acid sequence. By studying a series of native/synthetic chimeric elements, we observed increased levels of full-length L1 RNA and ORF1 protein and retrotransposition frequency, mostly proportional to increased fraction of synthetic sequence. Overall, the fully synthetic ORFeus-Hs has > 40-fold more RNA but is at most only ~threefold more active than its native counterpart (L1RP); however, its absolute retrotransposition activity is similar to ORFeus-Mm. Owing to the elevated expression of the L1 RNA/protein and its high retrotransposition ability, ORFeus-Hs and its chimeric derivatives will be useful tools for mechanistic L1 studies and mammalian genome manipulation.
Collapse
|
20
|
Martin SL. Nucleic acid chaperone properties of ORF1p from the non-LTR retrotransposon, LINE-1. RNA Biol 2010; 7:706-11. [PMID: 21045547 DOI: 10.4161/rna.7.6.13766] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Long interspersed element-1 (LINE-1, or L1) is a non-long terminal repeat (LTR) retrotransposon that has amplified to hundreds of thousands of copies in mammalian evolution. A small number of the individual copies of L1 are active retrotransposons which are presently replicating in most species, including humans and mice. L1 retrotransposition begins with transcription of an active element and ends with a newly inserted cDNA copy, a process which requires the two element-encoded proteins to act in cis on the L1 RNA. The ORF1 protein (ORF1p) is a high-affinity, non-sequence-specific RNA binding protein with nucleic acid chaperone activity, whereas the ORF2 protein (ORF2p) supplies the enzymatic activities for cDNA synthesis. This article reviews the nucleic acid chaperone properties of ORF1p in the context of L1 retrotransposition.
Collapse
Affiliation(s)
- Sandra L Martin
- Department of Cell and Developmental Biology, University of Colorado School of Medicine, Aurora, CO, USA.
| |
Collapse
|
21
|
Martin SL. The ORF1 protein encoded by LINE-1: structure and function during L1 retrotransposition. J Biomed Biotechnol 2010; 2006:45621. [PMID: 16877816 PMCID: PMC1510943 DOI: 10.1155/jbb/2006/45621] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
LINE-1, or L1 is an autonomous non-LTR retrotransposon in mammals.
Retrotransposition requires the function of the two, L1-encoded polypeptides,
ORF1p and ORF2p. Early recognition of regions of homology between the predicted
amino acid sequence of ORF2 and known endonuclease and reverse transcriptase
enzymes led to testable hypotheses regarding the function of ORF2p in retrotransposition.
As predicted, ORF2p has been demonstrated to have both endonuclease and reverse
transcriptase activities. In contrast, no homologs of known function have contributed
to our understanding of the function of ORF1p during retrotransposition. Nevertheless,
significant advances have been made such that we now know that ORF1p is a high affinity
RNA binding protein that forms a ribonucleoprotein particle together with L1 RNA.
Furthermore, ORF1p is a nucleic acid chaperone and this nucleic acid chaperone activity
is required for L1 retrotransposition.
Collapse
Affiliation(s)
- Sandra L. Martin
- Department of Cell and Developmental Biology, School of Medicine, University of Colorado, Fitzsimons Campus, PO Box 6511 , Mail Stop 8108, Aurora, CO 80045, USA
- *Sandra L. Martin:
| |
Collapse
|
22
|
Wenke T, Holtgräwe D, Horn AV, Weisshaar B, Schmidt T. An abundant and heavily truncated non-LTR retrotransposon (LINE) family in Beta vulgaris. PLANT MOLECULAR BIOLOGY 2009; 71:585-97. [PMID: 19697140 DOI: 10.1007/s11103-009-9542-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2009] [Accepted: 08/10/2009] [Indexed: 05/18/2023]
Abstract
We describe a non-LTR retrotransposon family,BvL, of the long interspersed nuclear elements L1 clade isolated from sugar beet (Beta vulgaris). Characteristic molecular domains of three full-length BvL elements were determined in detail, showing that coding sequences are interrupted and most likely non-functionally. In addition,eight highly conserved endonuclease regions were defined by comparison with other plant LINEs. The abundant BvL family is widespread within the genus Beta, however, the vast majority of BvL copies are extremely 50 truncated indicating an error-prone reverse transcriptase activity. The dispersed distribution of BvL copies on all sugar beet chromosomes with exclusion of most heterochromatic regions was shown by fluorescent in situ hybridization. The analysis of BvL 30 end sequences and corresponding flanking regions, respectively, revealed the preferred integration of BvL into A/T-rich regions of the sugar beet genome, but no specific target sequences.
Collapse
Affiliation(s)
- Torsten Wenke
- Institute of Botany, Dresden University of Technology, 01062 Dresden, Germany
| | | | | | | | | |
Collapse
|
23
|
Lathe R, Harris A. Differential display detects host nucleic acid motifs altered in scrapie-infected brain. J Mol Biol 2009; 392:813-22. [PMID: 19631225 DOI: 10.1016/j.jmb.2009.07.045] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2009] [Revised: 07/08/2009] [Accepted: 07/16/2009] [Indexed: 10/20/2022]
Abstract
The transmissible spongiform encephalopathies (TSEs) including scrapie have been attributed to an infectious protein or prion. Infectivity is allied to conversion of the endogenous nucleic-acid-binding protein PrP to an infectious modified form known as PrP(sc). The protein-only theory does not easily explain the enigmatic properties of the agent including strain variation. It was previously suggested that a short nucleic acid, perhaps host-encoded, might contribute to the pathoetiology of the TSEs. No candidate host molecules that might explain transmission of strain differences have yet been put forward. Differential display is a robust technique for detecting nucleic acid differences between two populations. We applied this technique to total nucleic acid preparations from scrapie-infected and control brain. Independent RNA preparations from eight normal and eight scrapie-infected (strain 263K) hamster brains were randomly amplified and visualized in parallel. Though the nucleic acid patterns were generally identical in scrapie-infected versus control brain, some rare bands were differentially displayed. Molecular species consistently overrepresented (or underrepresented) in all eight infected brain samples versus all eight controls were excised from the display, sequenced, and assembled into contigs. Only seven ros contigs (RNAs over- or underrepresented in scrapie) emerged, representing <4 kb from the transcriptome. All contained highly stable regions of secondary structure. The most abundant scrapie-only ros sequence was homologous to a repetitive transposable element (LINE; long interspersed nuclear element). Other ros sequences identified cellular RNA 7SL, clathrin heavy chain, visinin-like protein-1, and three highly specific subregions of ribosomal RNA (ros1-3). The ribosomal ros sequences accurately corresponded to LINE; retrotransposon insertion sites in ribosomal DNA (p<0.01). These differential motifs implicate specific host RNAs in the pathoetiology of the TSEs.
Collapse
|
24
|
|
25
|
Rebuzzini P, Castiglia R, Nergadze SG, Mitsainas G, Munclinger P, Zuccotti M, Capanna E, Redi CA, Garagna S. Quantitative variation of LINE-1 sequences in five species and three subspecies of the subgenus Mus and in five Robertsonian races of Mus musculus domesticus. Chromosome Res 2009; 17:65-76. [PMID: 19184476 DOI: 10.1007/s10577-008-9004-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2008] [Revised: 10/24/2008] [Accepted: 10/24/2008] [Indexed: 10/21/2022]
Abstract
The quantitative variation of a conserved region of the LINE-1 ORF2 sequence was determined in eight species and subspecies of the subgenus Mus (M. m. domesticus, M. m. musculus, M. m. castaneus, M. spicilegus, M. spretus, M. cervicolor, M. cookii, M. caroli) and five Robertsonian races of M. m. domesticus. No differences in LINE-1 ORF2 content were found between all acrocentric or Robertsonian chromosome races, whereas the quantitative variation of the LINE-1 ORF2 sequences detected among the eight taxa partly matches with the clades into which the subgenus is divided. An accumulation of LINE-1 ORF2 elements likely occurred during the evolution of the subgenus. Within the Asiatic clade, M. cervicolor, cookii, and caroli show a low quantity of LINE-1 sequences, also detected within the Palearctic clade in M. m. castaneus and M. spretus, representing perhaps the ancestral condition within the subgenus. On the other hand, M. m. domesticus, M. m. musculus and M. spicilegus showed a high content of LINE-1 ORF2 sequences. Comparison between the chromosomal hybridization pattern of M. m. domesticus, which possesses the highest content, and M. spicilegus did not show any difference in the LINE-1 ORF2 distribution, suggesting that the quantitative variation of this sequence family did not involve chromosome restructuring or a preferential chromosome accumulation, during the evolution of M. m. domesticus.
Collapse
Affiliation(s)
- Paola Rebuzzini
- Dipartimento di Biologia Animale, Università degli Studi di Pavia, Piazza Botta, 9-10, 27100, Pavia, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Retroelements (LINEs and SINEs) in vole genomes: differential distribution in the constitutive heterochromatin. Chromosome Res 2008; 16:949-59. [PMID: 18836842 DOI: 10.1007/s10577-008-1253-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2008] [Revised: 07/15/2008] [Accepted: 07/15/2008] [Indexed: 10/21/2022]
Abstract
The chromosomal distribution of mobile genetic elements is scarcely known in Arvicolinae species, but could be of relevance to understand the origin and complex evolution of the sex chromosome heterochromatin. In this work we cloned two retrotransposon sequences, L1 and SINE-B1, from the genome of Chionomys nivalis and investigated their chromosomal distribution on several arvicoline species. Our results demonstrate first that both retroelements are the most abundant repeated DNA sequences in the genome of these species. L1 elements, in most species, are highly accumulated in the sex chromosomes compared to the autosomes. This favoured L1 insertion could have played an important role in the origin of the enlarged heterochromatic blocks existing in the sex chromosomes of some Microtus species. Also, we propose that L1 accumulation on the X heterochromatin could have been the consequence of different, independent and rapid amplification processes acting in each species. SINE elements, however, were completely lacking from the constitutive heterochromatin, either in autosomes or in the heterochromatic blocks of sex chromosomes. These data could indicate that some SINE elements are incompatible with the formation of heterochromatic complexes and hence are necessarily missing from the constitutive heterochromatin.
Collapse
|
27
|
Ramos KS, He Q, Kalbfleisch T, Montoya-Durango DE, Teneng I, Stribinskis V, Brun M. Computational and biological inference of gene regulatory networks of the LINE-1 retrotransposon. Genomics 2007; 90:176-85. [PMID: 17521869 PMCID: PMC2065750 DOI: 10.1016/j.ygeno.2007.04.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2007] [Accepted: 04/05/2007] [Indexed: 01/21/2023]
Abstract
Computational approaches were used to define structural and functional determinants of a putative genetic regulatory network of murine LINE-1 (long interspersed nuclear element-1), an active mammalian retrotransposon that uses RNA intermediates to populate new sites throughout the genome. Polymerase (RNA) II polypeptide E AI845735 and mouse DNA homologous to Drosophila per fragment M12039 were identified as primary attractors. siRNA knockdown of the aryl hydrocarbon receptor NM_013464 modulated gene expression within the network, including LINE-1, Sgpl1, Sdcbp, and Mgst1. Genes within the network did not exhibit physical proximity and instead were dispersed throughout the genome. The potential impact of individual members of the network on the global dynamical behavior of LINE-1 was examined from a theoretical and empirical framework.
Collapse
Affiliation(s)
- Kenneth S Ramos
- Department of Biochemistry and Molecular Biology and Center for Genetics and Molecular Medicine, University of Louisville School of Medicine, Louisville, KY 40292, USA.
| | | | | | | | | | | | | |
Collapse
|
28
|
Marchal JA, Acosta MJ, Bullejos M, Puerma E, Díaz de la Guardia R, Sánchez A. Distribution of L1-retroposons on the giant sex chromosomes of Microtus cabrerae (Arvicolidae, Rodentia): functional and evolutionary implications. Chromosome Res 2006; 14:177-86. [PMID: 16544191 DOI: 10.1007/s10577-006-1034-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2005] [Accepted: 01/06/2006] [Indexed: 11/28/2022]
Abstract
Long interspersed nuclear elements (L1 or LINE-1) are the most abundant and active retroposons in the mammalian genome. Traditionally, the bulk of L1 sequences have been explained by the 'selfish DNA' hypothesis; however, recently it has been also argued that L1s could play an important role in genome and gene organizations. The non-random chromosomal distribution of these retroelements is a striking feature considered to reflect this functionality. In the present study we have cloned and analyzed three different L1 fragments from the genome of the rodent Microtus cabrerae. In addition, we have examined the chromosomal distribution of this L1 in several species of Microtus, a very interesting group owing to the presence in some species of enlarged ('giant') sex chromosomes. Interestingly, in all species analyzed, L1-retroposons have preferentially accumulated on both the giant- and the normal-sized sex chromosomes compared with the autosomes. Also we have demonstrated that L1-retroposons are not similarly distributed among the heterochromatic blocks of the giant sex chromosomes in M. cabrerae and M. agrestis, which suggest that L1 retroposition and amplification over the sex heterochromatin have been different and independent processes in each species. Finally, we proposed that the main factors responsible for the L1 distribution on the mammalian sex chromosomes are the heterochromatic nature of the Y chromosome and the possible role of L1 sequences during the X-inactivation process.
Collapse
Affiliation(s)
- J A Marchal
- Departamento de Biología Experimental, Facultad de Ciencias Experimentales, Universidad de Jaén, Campus Las Lagunillas s/n, E-23071, Jaén, Spain
| | | | | | | | | | | |
Collapse
|
29
|
Basame S, Wai-lun Li P, Howard G, Branciforte D, Keller D, Martin SL. Spatial assembly and RNA binding stoichiometry of a LINE-1 protein essential for retrotransposition. J Mol Biol 2006; 357:351-7. [PMID: 16434051 DOI: 10.1016/j.jmb.2005.12.063] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2005] [Revised: 12/13/2005] [Accepted: 12/18/2005] [Indexed: 11/16/2022]
Abstract
LINE-1, or L1, is a highly successful retrotransposon in mammals, comprising 17% and 19% of the human and mouse genomes, respectively. L1 retrotransposition and hence amplification requires the protein products of its two open reading frames, ORF1 and ORF2. The sequence of the ORF1 protein (ORF1p) is not related to any protein with known function. ORF1p has RNA binding and nucleic acid chaperone activities that are both required for retrotransposition. Earlier studies have shown that ORF1p forms a homotrimer with an asymmetric dumbbell shape, in which a rod separates a large end from a small end. Here, we determine the topological arrangement of monomers within the homotrimer by comparing atomic force microscopy (AFM) images of the full ORF1p with those of truncations containing just the N or C-terminal regions. In addition, AFM images of ORF1p bound to RNA at high protein/RNA molar ratios show that ORF1p can form tightly packed clusters on RNA, with binding occurring at the C-terminal domain. The number of bound ORF1p trimers increases with increasing length of the RNA, revealing that the binding site size is about 50 nt, a value confirmed by nitrocellulose filter binding under stoichiometric conditions. These results are consistent with a role for ORF1p during L1 retrotransposition that includes both coating the RNA and acting as a nucleic acid chaperone. Furthermore, these in vitro L1 ribonucleoprotein particles provide insight into the structure of the L1 retrotransposition intermediate.
Collapse
Affiliation(s)
- Solomon Basame
- Molecular Machines Laboratory, Department of Chemistry, University of New Mexico, Albuquerque, NM 87131, USA
| | | | | | | | | | | |
Collapse
|
30
|
Zingler N, Weichenrieder O, Schumann GG. APE-type non-LTR retrotransposons: determinants involved in target site recognition. Cytogenet Genome Res 2005; 110:250-68. [PMID: 16093679 DOI: 10.1159/000084959] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2003] [Accepted: 02/05/2004] [Indexed: 10/25/2022] Open
Abstract
Non-long terminal repeat (Non-LTR) retrotransposons represent a diverse and widely distributed group of transposable elements and an almost ubiquitous component of eukaryotic genomes that has a major impact on evolution. Their copy number can range from a few to several million and they often make up a significant fraction of the genomes. The members of the dominating subtype of non-LTR retrotransposons code for an endonuclease with homology to apurinic/apyrimidinic endonucleases (APE), and are thus termed APE-type non-LTR retrotransposons. In the last decade both the number of identified non-LTR retrotransposons and our knowledge of biology and evolution of APE-type non-LTR retrotransposons has increased tremendously.
Collapse
Affiliation(s)
- N Zingler
- Paul-Ehrlich-Institut, Langen, Germany
| | | | | |
Collapse
|
31
|
Dewannieux M, Heidmann T. LINEs, SINEs and processed pseudogenes: parasitic strategies for genome modeling. Cytogenet Genome Res 2005; 110:35-48. [PMID: 16093656 DOI: 10.1159/000084936] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2004] [Accepted: 04/22/2004] [Indexed: 11/19/2022] Open
Abstract
Two major classes of retrotransposons have invaded eukaryotic genomes: the LTR retrotransposons closely resembling the proviral integrated form of infectious retroviruses, and the non-LTR retrotransposons including the widespread, autonomous LINE elements. Here, we review the modeling effects of the latter class of elements, which are the most active in humans, and whose enzymatic machinery is subverted to generate a large series of "secondary" retroelements. These include the processed pseudogenes, naturally present in all eukaryotic genomes possessing non-LTR retroelements, and the very successful SINE elements such as the human Alu sequences which have evolved refined parasitic strategies to efficiently bypass the original "protectionist" cis-preference of LINEs for their own retrotransposition.
Collapse
Affiliation(s)
- M Dewannieux
- Unité des Rétrovirus Endogènes et Eléments Rétroïdes des Eucaryotes Supérieurs, UMR 8122 CNRS, Institut Gustave Roussy, Villejuif, France
| | | |
Collapse
|
32
|
Martin SL, Cruceanu M, Branciforte D, Wai-Lun Li P, Kwok SC, Hodges RS, Williams MC. LINE-1 retrotransposition requires the nucleic acid chaperone activity of the ORF1 protein. J Mol Biol 2005; 348:549-61. [PMID: 15826653 DOI: 10.1016/j.jmb.2005.03.003] [Citation(s) in RCA: 130] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2004] [Revised: 02/27/2005] [Accepted: 03/01/2005] [Indexed: 11/19/2022]
Abstract
LINE-1 is a highly successful, non-LTR retrotransposon that has played a leading role in shaping mammalian genomes. These elements move autonomously through an RNA intermediate using target-primed reverse transcription (TPRT). L1 encodes two essential polypeptides for retrotransposition, the products of its two open reading frames, ORF1 and ORF2. The exact function of the ORF1 protein (ORF1p) in L1 retrotransposition is unknown, although it is an RNA-binding protein that can act as a nucleic acid chaperone. Here, we investigate the requirements for these two activities in L1 retrotransposition by examining the consequences of mutating two adjacent and highly conserved arginine residues in the ORF1p from mouse L1. Substitution of both arginine residues with alanine strongly reduces the affinity of the protein for single-stranded nucleic acid, whereas substitution of one or both with lysine has only minimal effects on this feature. Rather, the lysine substitutions alter the delicate balance between the ORF1 protein's melting and reannealing activities, thereby reducing its nucleic acid chaperone activity. These findings establish the importance of the nucleic acid chaperone activity of ORF1p to successful L1 retrotransposition, and provide insight into the essential properties of nucleic acid chaperones.
Collapse
Affiliation(s)
- Sandra L Martin
- Department of Cell and Developmental Biology, University of Colorado School of Medicine, 12801 E. 17th Ave., Aurora, CO 80045, USA.
| | | | | | | | | | | | | |
Collapse
|
33
|
Würtele H, Gusew N, Lussier R, Chartrand P. Characterization of in vivo recombination activities in the mouse embryo. Mol Genet Genomics 2005; 273:252-63. [PMID: 15902491 DOI: 10.1007/s00438-005-1112-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2004] [Accepted: 12/20/2004] [Indexed: 10/25/2022]
Abstract
Homologous recombination makes use of sequence homology to repair DNA and to rearrange genetic material. In mammals, these processes have mainly been characterized using cultured cell systems. We have developed an assay that allows us to quantitatively analyze homologous recombination in vivo in the mouse embryo. Transgenic mouse lines were generated by microinjection into a fertilized mouse ovum of a vector containing two homologous LINE-1 (L1) sequences arranged as a direct repeat: these sequences can recombine with each other and with endogenous L1 sequences before, during or after integration of the vector into the genome. Using a plasmid rescue procedure, we determined the composition of the integrated vector array in several transgenic mice and their descendants. Homologous recombination frequencies were found to be strikingly high, involving 70% of integrated vectors in some arrays, with homologous deletions being five times more frequent than gene conversion without crossing-over. Interestingly, non-homologous recombination was found to be much less frequent. We also found that endogenous L1 sequences could be involved in homologous recombination events in the mouse embryo, and that the integrated arrays could be modified from generation to generation by homologous recombination between the integrated L1 sequences.
Collapse
Affiliation(s)
- Hugo Würtele
- Institute of Research in Immunology and Cancer, Université de Montréal, Pavillon Roger-Gaudry, 2900 Edouard-Montpetit, Montreal, Quebec, Canada H3T 1J4
| | | | | | | |
Collapse
|
34
|
Han JS, Boeke JD. LINE-1 retrotransposons: Modulators of quantity and quality of mammalian gene expression? Bioessays 2005; 27:775-84. [PMID: 16015595 DOI: 10.1002/bies.20257] [Citation(s) in RCA: 156] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
LINE-1 (L1) retrotransposons are replicating repetitive elements that, by mass, are the most-abundant sequences in the human genome. Over one-third of mammalian genomes are the result, directly or indirectly, of L1 retrotransposition. L1 encodes two proteins: ORF1, an RNA-binding protein, and ORF2, an endonuclease/reverse transcriptase. Both proteins are required for L1 mobilization. Apart from the obvious function of self-replication, it is not clear what other roles, if any, L1 plays within its host. The sheer magnitude of L1 sequences in our genome has fueled speculation that over evolutionary time L1 insertions may structurally modify endogenous genes and regulate gene expression. Here we provide a review of L1 replication and its potential functional consequences.
Collapse
Affiliation(s)
- Jeffrey S Han
- Department of Molecular Biology and Genetics and High Throughput Biology Center, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | |
Collapse
|
35
|
Muller-Borer BJ, Cascio WE, Anderson PAW, Snowwaert JN, Frye JR, Desai N, Esch GL, Brackham JA, Bagnell CR, Coleman WB, Grisham JW, Malouf NN. Adult-derived liver stem cells acquire a cardiomyocyte structural and functional phenotype ex vivo. THE AMERICAN JOURNAL OF PATHOLOGY 2004; 165:135-45. [PMID: 15215169 PMCID: PMC1618549 DOI: 10.1016/s0002-9440(10)63282-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
We examined the differentiation potential of an adult liver stem cell line (WB F344) in a cardiac microenvironment, ex vivo. WB F344 cells were established from a single cloned nonparenchymal epithelial cell isolated from a normal male adult rat liver. Genetically modified, WB F344 cells that express beta-galactosidase and green fluorescent protein or only beta-galactosidase were co-cultured with dissociated rat or mouse neonatal cardiac cells. After 4 to 14 days, WB F344-derived cardiomyocytes expressed cardiac-specific proteins and exhibited myofibrils, sarcomeres, and a nascent sarcoplasmic reticulum. Further, rhythmically beating WB F344-derived cardiomyocytes displayed calcium transients. Fluorescent recovery after photobleaching demonstrated that WB F344-derived cardiomyocytes were coupled with adjacent neonatal cardiomyocytes and other WB F344-derived cardiomyocytes. Fluorescence in situ hybridization experiments suggested that fusion between WB F344 cells and neonatal mouse cardiomyocytes did not take place. Collectively, these results support the conclusion that these adult-derived liver stem cells respond to signals generated in a cardiac microenvironment ex vivo acquiring a cardiomyocyte phenotype and function. The identification ex vivo of microenvironmental signals that appear to cross germ layer and species specificities should prove valuable in understanding the molecular basis of adult stem cell differentiation and phenotypic plasticity.
Collapse
Affiliation(s)
- Barbara J Muller-Borer
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Komatsu M, Shimamoto K, Kyozuka J. Two-step regulation and continuous retrotransposition of the rice LINE-type retrotransposon Karma. THE PLANT CELL 2003; 15:1934-44. [PMID: 12897263 PMCID: PMC167180 DOI: 10.1105/tpc.011809] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2003] [Accepted: 05/25/2003] [Indexed: 05/19/2023]
Abstract
Here, we report the identification of Karma, a LINE-type retrotransposon of plants for which continuous retrotransposition was observed in consecutive generations. The transcription of Karma is activated in cultured cells of rice upon DNA hypomethylation. However, transcription is insufficient for retrotransposition, because no increase in the copy number was observed in cultured cells or in the first generation of plants regenerated from them. Despite that finding, copy number increase was detected in the next generation of regenerated plants as well as in later generations, suggesting that the post-transcriptional regulation of Karma retrotransposition is development dependent. Our results indicate that two different mechanisms, one transcriptional and the other developmental, control the mobilization of KARMA: In addition, unlike other known active plant retrotransposons, Karma is not subject to de novo methylation, and retrotransposition persists through several generations.
Collapse
Affiliation(s)
- Mai Komatsu
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara 630-0101, Japan
| | | | | |
Collapse
|
37
|
Lees-Murdock DJ, De Felici M, Walsh CP. Methylation dynamics of repetitive DNA elements in the mouse germ cell lineage. Genomics 2003; 82:230-7. [PMID: 12837272 DOI: 10.1016/s0888-7543(03)00105-8] [Citation(s) in RCA: 105] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Repetitive DNA elements account for a substantial fraction of the mammalian genome. Many are subject to DNA methylation, which is known to undergo dynamic change during mouse germ cell development. We found that repeat sequences of three different classes retain high levels of methylation at E12.5, when methylation is erased from many single-copy genes. Maximal demethylation of repeats was seen later in development and at different times in male and female germ cells. At none of the time points examined (E12.5, E15.5, and E17.5) did we see complete demethylation, suggesting that methylation patterns on repeats may be passed on from one generation to the next. In male germ cells, we observed a de novo methylation event resulting in complete methylation of all the repeats in the interval between E15.5 and E17.5, which was not seen in females. These results suggest that repeat sequences undergo coordinate changes in methylation during germ cell development and give further insights into germ cell reprogramming in mice.
Collapse
Affiliation(s)
- D J Lees-Murdock
- Cancer and Ageing Research Group, School of Biomedical Sciences, University of Ulster, Coleraine BT52 1SA, UK
| | | | | |
Collapse
|
38
|
Lu KP, Ramos KS. Redox regulation of a novel L1Md-A2 retrotransposon in vascular smooth muscle cells. J Biol Chem 2003; 278:28201-9. [PMID: 12714586 DOI: 10.1074/jbc.m303888200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Activation and reintegration of retrotransposons into the genome is linked to several diseases in human and rodents, but mechanisms of gene activation remain largely unknown. Here we identify a novel gene of L1Md-A2 lineage in vascular smooth muscle cells and show that environmental hydrocarbons enhance gene expression and activate monomer-driven transcription via a redox-sensitive mechanism. Site-directed mutagenesis and progressive deletion analyses identified two antioxidant/electrophile response-like elements (5'-GTGACTCGAGC-3') within the A2/3 and A3 region. These elements mediated activation, with the A3 monomer playing an essential role in transactivation. This signaling pathway may contribute to gene instability during the course of atherogenesis.
Collapse
Affiliation(s)
- Kim P Lu
- Center for Environmental and Rural Health, Texas A & M University, College Station, Texas 77843-4455, USA
| | | |
Collapse
|
39
|
Munclinger P, Boursot P, Dod B. B1 insertions as easy markers for mouse population studies. Mamm Genome 2003; 14:359-66. [PMID: 12879357 DOI: 10.1007/s00335-002-3065-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2002] [Accepted: 02/05/2003] [Indexed: 10/26/2022]
Abstract
Few simple, easy-to-score PCR markers are available for studying genetic variation in wild mice populations belonging to Mus musculus at the population and subspecific levels. In this study, we show the abundant B1 family of short interspersed DNA elements (SINEs) is a very promising source of such markers. Thirteen B1 sequences from different regions of the genome were retrieved on the basis of their high degree of homology to a mouse consensus sequence, and the presence of these elements was screened for in wild derived mice representing M. spretus, macedonicus and spicilegus and the different subspecies of M. musculus. At five of these loci, varying degrees of insertion polymorphism were found in M. m. domesticus mice. These insertions were almost totally absent in the mice representing the other subspecies and species. Six other B1 elements were fixed in all the Mus species tested. At these loci, polymorphism associated with three restriction sites in the B1 consensus sequence was found in M. musculus. Most of these polymorphisms appear to be ancestral as they are shared by at least one of the other Mus species tested. Both insertion and restriction polymorphism revealed differences between five inbred laboratory strains considered to be of mainly domesticus origin, and at the six restriction loci a surprising number of these strains carried restriction variants that were either not found or very infrequent in domesticus. This suggests that in this particular group of loci, alleles of far Eastern origin are more frequent than expected.
Collapse
Affiliation(s)
- Pavel Munclinger
- Biodiversity Research Group, Department of Zoology, Faculty of Science, Charles University, Vinicná 7, CZ 128 44 Praha 2, Czech Republic.
| | | | | |
Collapse
|
40
|
Kolosha VO, Martin SL. High-affinity, non-sequence-specific RNA binding by the open reading frame 1 (ORF1) protein from long interspersed nuclear element 1 (LINE-1). J Biol Chem 2003; 278:8112-7. [PMID: 12506113 DOI: 10.1074/jbc.m210487200] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Long interspersed nuclear element 1 (LINE-1 or L1) is an interspersed repeated DNA found in mammalian genomes. L1 achieved its high copy number by retrotransposition, a process that requires the two L1-encoded proteins, ORF1p and ORF2p. The role of ORF1p in the retrotransposition cycle is incompletely understood, but it is known to bind single-stranded nucleic acids and act as a nucleic acid chaperone. This study assesses the nature and specificity of the interaction of ORF1p with RNA. Results of coimmunoprecipitation experiments demonstrate that ORF1p preferentially binds a single T1 nuclease digestion product of 38 nucleotides (nt) within the full-length mouse L1 transcript. The 38-nt fragment is localized within L1 RNA and found to be sufficient for binding by ORF1p but not necessary, because its complement is also efficiently coimmunoprecipitated, as are all sequences 38 nt or longer. Results of nitrocellulose filter-binding assays demonstrate that the binding of ORF1p to RNA does not require divalent cations but is sensitive to the concentration of monovalent cation. Both sense and antisense transcripts bind with apparent K(D)s in the low nanomolar range. The results of both types of assay unambiguously support the conclusion that purified ORF1p from mouse L1 is a high-affinity, non-sequence-specific RNA binding protein.
Collapse
Affiliation(s)
- Vladimir O Kolosha
- Department of Cellular and Structural Biology and Program in Molecular Biology, University of Colorado School of Medicine, Denver 80262, USA
| | | |
Collapse
|
41
|
Ostertag EM, DeBerardinis RJ, Goodier JL, Zhang Y, Yang N, Gerton GL, Kazazian HH. A mouse model of human L1 retrotransposition. Nat Genet 2002; 32:655-60. [PMID: 12415270 DOI: 10.1038/ng1022] [Citation(s) in RCA: 167] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2002] [Accepted: 09/24/2002] [Indexed: 11/09/2022]
Abstract
The L1 retrotransposon has had an immense impact on the size and structure of the human genome through a variety of mechanisms, including insertional mutagenesis. To study retrotransposition in a living organism, we created a mouse model of human L1 retrotransposition. Here we show that L1 elements can retrotranspose in male germ cells, and that expression of a human L1 element under the control of its endogenous promoter is restricted to testis and ovary. In the mouse line with the highest level of L1 expression, we found two de novo L1 insertions in 135 offspring. Both insertions were structurally indistinguishable from natural endogenous insertions. This suggests that an individual L1 element can have substantial mutagenic potential. In addition to providing a valuable in vivo model of retrotransposition in mammals, these mice are an important step in the development of a new random mutagenesis system.
Collapse
Affiliation(s)
- Eric M Ostertag
- Department of Genetics and University of Pennsylvania School of Medicine, 475 Clinical Research Bldg., 415 Curie Blvd., Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | | | | | |
Collapse
|
42
|
Benihoud K, Bonardelle D, Soual-Hoebeke E, Durand-Gasselin I, Emilie D, Kiger N, Bobé P. Unusual expression of LINE-1 transposable element in the MRL autoimmune lymphoproliferative syndrome-prone strain. Oncogene 2002; 21:5593-600. [PMID: 12165858 DOI: 10.1038/sj.onc.1205730] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2002] [Revised: 05/22/2002] [Accepted: 06/07/2002] [Indexed: 11/08/2022]
Abstract
LINE-1 are endogenous mobile genetic elements that have dispersed and accumulated in the genomes of eukaryotes via germline transposition, with up to 100,000 copies in mammalian genomes. LINE-1 elements transpose by reverse transcription of their own transcript. Transposition requires synthesis of a full-length, sense-strand transcripts and proteins encoded by open reading frame (ORF) 1 and ORF2. Although severely repressed in most normal tissues, LINE-1 occasionally leads to disease by insertional mutagenesis. In the present study, Northern blot and in situ hybridization analyses revealed a template-strand transcription of LINE-1 ORF2 (encoding reverse transcriptase, RT) in lymphoid organs and the liver from MRL-+/+ and Fas-deficient MRL/lpr strains and their normal ancestors. While these sense transcripts are restricted to the nucleus in hepatocytes, they are also found in the cytoplasm in splenocytes. In contrast to transcription, ORF2 translation was detected only in MRL strains, as shown by the cytoplasmic labelling of splenic cells obtained with a monoclonal antibody recognizing the LINE-1 RT. This antibody coprecipitated two proteins of 45 and 12 kDa from MRL/lpr lymphoid organ lysates that were removed by pretreatment with anti-beta2-microglobulin antiserum, suggesting a structural association between a LINE-1 product and a major histocompatibility complex class I or class I-like molecule.
Collapse
Affiliation(s)
- Karim Benihoud
- INSERM U 267, 14, avenue Paul-Vaillant-Couturier, 94807 Villejuif, France
| | | | | | | | | | | | | |
Collapse
|
43
|
Abstract
Mobile genetic elements, by virtue of their ability to move to new chromosomal locations, are considered important in shaping the evolutionary course of the genome. They are widespread in the biological kingdom. Among the protozoan parasites several types of transposable elements are encountered. The largest variety is seen in the trypanosomatids-Trypanosoma brucei, Trypanosoma cruzi and Crithidia fasciculata. They contain elements that insert site-specifically in the spliced-leader RNA genes, and others that are dispersed in a variety of genomic locations. Giardia lamblia contains three families of transposable elements. Two of these are subtleomeric in location while one is chromosome-internal. Entamoeba histolytica has an abundant retrotransposon dispersed in the genome. Nucleotide sequence analysis of all the elements shows that they are all retrotransposons, and, with the exception of one class of elements in T. cruzi, all of them are non-long-terminal-repeat retrotransposons. Although most copies have accumulated mutations, they can potentially encode reverse transcriptase, endonuclease and nucleic-acid-binding activities. Functionally and phylogenetically they do not belong to a single lineage, showing that retrotransposons were acquired early in the evolution of protozoan parasites. Many of the potentially autonomous elements that encode their own transposition functions have nonautonomous counterparts that probably utilize the functions in trans. In this respect these elements are similar to the mammalian LINEs and SINEs (long and short interspersed DNA elements), showing a common theme in the evolution of retrotransposons. So far there is no report of a DNA transposon in any protozoan parasite. The genome projects that are under way for most of these organisms will help understand the evolution and possible function of these genetic elements.
Collapse
Affiliation(s)
- Sudha Bhattacharya
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi 110 067, India.
| | | | | |
Collapse
|
44
|
Abstract
L1 retrotransposons comprise 17% of the human genome. Although most L1s are inactive, some elements remain capable of retrotransposition. L1 elements have a long evolutionary history dating to the beginnings of eukaryotic existence. Although many aspects of their retrotransposition mechanism remain poorly understood, they likely integrate into genomic DNA by a process called target primed reverse transcription. L1s have shaped mammalian genomes through a number of mechanisms. First, they have greatly expanded the genome both by their own retrotransposition and by providing the machinery necessary for the retrotransposition of other mobile elements, such as Alus. Second, they have shuffled non-L1 sequence throughout the genome by a process termed transduction. Third, they have affected gene expression by a number of mechanisms. For instance, they occasionally insert into genes and cause disease both in humans and in mice. L1 elements have proven useful as phylogenetic markers and may find other practical applications in gene discovery following insertional mutagenesis in mice and in the delivery of therapeutic genes.
Collapse
Affiliation(s)
- E M Ostertag
- Department of Genetics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA.
| | | |
Collapse
|
45
|
Chen HH, Liu TYC, Huang CJ, Choo KB. Generation of two homologous and intronless zinc-finger protein genes, zfp352 and zfp353, with different expression patterns by retrotransposition. Genomics 2002; 79:18-23. [PMID: 11827453 DOI: 10.1006/geno.2001.6664] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have previously reported a mouse zinc-finger protein gene, Zfp352 (formerly 2czf48), that is expressed in early mouse embryos. Here, we report the genomic structure of Zfp352 and its lung-specific homolog, Zfp353. The two genes map on different chromosomes at 4C6 and 8B3.1. Both genes are intronless, except for the presence of a single 4.6-kb intron in the 5' untranslated region of Zfp352. The genes use different RNA start sites located 1.2 kb apart within the 5' homologous region. LINE1 sequences are structurally associated with the genes and form an integral part of Zfp353 transcripts, suggesting previous retrotransposition events. We propose a model of evolution of the genes. The main feature of the model is the presence of a fortuitous upstream promoter and an intron in the first retrotransposition site, creating a pre-Zfp352 gene with a 5' untranslated region intron. A second retrotransposition event copying from the pre-Zfp352 retroposon and removing the fortuitous intron resulted in the intronless Zfp353 at a different chromosomal location and with a different mode of expression. The model may be applicable to other genes with a similar structure with a single intron in the 5' untranslated region. The exact role of LINE1 in the retrotransposition events remains to be elucidated.
Collapse
Affiliation(s)
- Huang-Hui Chen
- Recombinant DNA Laboratory, Department of Medical Research and Education, Veterans General Hospital-Taipei, Shih Pai, Taipei, Taiwan 11217
| | | | | | | |
Collapse
|
46
|
Wagner K, Dendorfer U, Chilla S, Schlöndorff D, Luckow B. Identification of new regulatory sequences far upstream of the mouse monocyte chemoattractant protein-1 gene. Genomics 2001; 78:113-23. [PMID: 11735217 DOI: 10.1006/geno.2001.6660] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We systematically searched for sequences influencing the expression of the mouse monocyte chemoattractant protein-1 (MCP-1) gene (Scya2) by mapping DNase I hypersensitive sites (HS) in the chromatin of mesangial cells in a 40-kb interval around the gene. We found nine HS located between -24 kb and +12.7 kb. Three HS coincided with previously known regulatory sequences (HS-2.4, HS-1.0, and HS-0.2). We tested two of the previously unknown HS located far upstream of Scya2 (HS-19.4 and HS-16.3) in transfection experiments using luciferase reporter constructs and mouse mesangial cells as recipients. In transient transfections, both HS had a moderate effect on basal promoter activity as well as promoter activity stimulated by tumor necrosis factor-alpha. In stable transfection experiments, we found much higher activity. A DNA fragment containing HS-19.4 and HS-16.3 caused a considerable increase in the number of stably integrated luciferase copies. We determined the nucleotide sequence of the 5' flanking region to -28.6 kb. Computer-assisted sequence analysis did not yield evidence of an additional gene. These HS are located within the 5' flanking region of a gene cluster consisting of Scya2 (MCP-1), Scya7 (MCP-3), Scya11 (eotaxin), Scya12 (MCP-5), and Scya8 (MCP-2). This report represents the first comprehensive chromatin analysis of the mouse MCP-1 locus leading to the identification of a complex regulatory region located far upstream of Scya2.
Collapse
Affiliation(s)
- K Wagner
- Ludwig-Maximilians-Universität, Medizinische Poliklinik, Schillerstrasse 42, D-80336 München, Germany
| | | | | | | | | |
Collapse
|
47
|
Kusakabe T, Sugimoto Y, Maeda T, Nakajima Y, Miyano M, Nishikawa J, Tone S, Kawaguchi Y, Koga K, Ohyama T. Linearization and integration of DNA into cells preferentially occurs at intrinsically curved regions from human LINE-1 repetitive element. Gene 2001; 274:271-81. [PMID: 11675020 DOI: 10.1016/s0378-1119(01)00631-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
A bent DNA library was constructed from human genomic DNA, from which a new clone belonging to the human LINE-1 sequence family was isolated and characterized. This clone, with a length of 378 base pairs and termed HBC-1 (human bent clone-1), contained an intrinsically occurring curved DNA structure. By permutation analysis, the center of curvature of this fragment was mapped onto the nucleotide position 886 from the 5' terminus of the complete LINE-1 sequence. Reporter plasmids, which contain HBC-1, were effectively integrated into human chromosome, indicating that the bent DNA structure provides a preferential donor site for the integration of human LINE-1 sequences. The present finding may provide an explanation as to why some inactivated LINE-1 sequences on human chromosomes carry the deletion at their 5' termini.
Collapse
Affiliation(s)
- T Kusakabe
- Laboratory of Silkworm Science, Faculty of Agriculture, Kyusyu University Graduate School, 6-10-1 Hakozaki, Fukuoka 812, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Casaregola S, Neuvéglise C, Lépingle A, Bon E, Feynerol C, Artiguenave F, Wincker P, Gaillardin C. Genomic exploration of the hemiascomycetous yeasts: 17. Yarrowia lipolytica. FEBS Lett 2000; 487:95-100. [PMID: 11152892 DOI: 10.1016/s0014-5793(00)02288-2] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
A total of 4940 random sequence tags of the dimorphic yeast Yarrowia lipolytica, totalling 4.9 Mb, were analyzed. BLASTX comparisons revealed at least 1229 novel Y. lipolytica genes 1083 genes having homology with Saccharomyces cerevisiae genes and 146 with genes from various other genomes. This confirms the rapid sequence evolution assumed for Y. lipolytica. Functional analysis of newly discovered genes revealed that several enzymatic activities were increased compared to S. cerevisiae, in particular, transport activities, ion homeostasis, and various metabolism pathways. Most of the mitochondrial genes were identified in contigs spanning more than 47 kb. Matches to retrotransposons were observed, including a S. cerevisiae Ty3 and a LINE element. The sequences have been deposited with EMBL under the accession numbers AL409956-AL414895.
Collapse
Affiliation(s)
- S Casaregola
- Collection de Levures d'Intérêt Biotechnologie, Laboratoire de Génétique Moléculaire et Cellulaire, INA-PG, INRA, UMR216, CNRS URA1925, Thiverval-Grignon, France.
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Martin SL, Li J, Weisz JA. Deletion analysis defines distinct functional domains for protein-protein and nucleic acid interactions in the ORF1 protein of mouse LINE-1. J Mol Biol 2000; 304:11-20. [PMID: 11071806 DOI: 10.1006/jmbi.2000.4182] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
LINE-1, or L1, is a non-LTR retrotransposon in mammals. Retrotransposition of L1 requires the action of two element-encoded proteins, ORF1p and ORF2p. ORF2p provides essential enzymatic activities for the reverse transcription and integration of a newly transposed copy of L1, whereas the exact role of ORF1p is less well understood. The 43 kDa ORF1p copurifies as a large complex with L1 RNA in extracts of human and mouse cells. Mouse ORF1p purified from Escherichia coli binds RNA and single-stranded DNA in vitro, exhibits nucleic acid chaperone activity, and is capable of protein-protein interaction. In this study we create a series of deletions in the ORF1 sequence, express the truncated proteins and examine their activities to delineate the region of ORF1p responsible for these different functions. By both yeast two-hybrid analysis and GST pull-down assay, the protein-protein interaction domain is defined as a coiled-coil domain that encompasses about one third of the protein near its N terminus. Based on data obtained with UV-cross-linking, electrophoretic mobility-shift assay and an annealing assay, the C-terminal one third of ORF1p is both necessary and sufficient for nucleic acid binding and to promote annealing of complementary oligonucleotides. Separation of these activities into different domains of ORF1p will facilitate detailed biochemical analyses of the structure and function of this protein and understanding of its role during L1 retrotransposition.
Collapse
Affiliation(s)
- S L Martin
- Department of Cellular and Structural Biology, University of Colorado School of Medicine, Denver, CO 80262, USA.
| | | | | |
Collapse
|
50
|
Lu KP, Hallberg LM, Tomlinson J, Ramos KS. Benzo(a)pyrene activates L1Md retrotransposon and inhibits DNA repair in vascular smooth muscle cells. Mutat Res 2000; 454:35-44. [PMID: 11035157 DOI: 10.1016/s0027-5107(00)00095-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Benzo(a)pyrene (BaP) modulates vascular smooth muscle cells (vSMCs) from a quiescent to proliferative phenotype, a shift associated with activation of L1Md retrotransposon [K.P. Lu, K.S. Ramos, Biochem. Biophys. Res. Commun. 253 (1998) 828-833]. The present studies were conducted to evaluate L1Md activation profiles in murine vSMCs treated with BaP or its oxidative metabolites, and to screen for possible insertional mutations into p53 and retinoblastoma (RB) genes. We also sought to examine the profile of DNA damage and repair in BaP-treated vSMCs. Northern analysis revealed that BaP (0. 03-3microM), and its major reactive 7,8-diol metabolite (0. 03-3microM), activate L1Md gene in a concentration-dependent manner. Two other metabolites, 3-OH BaP and 3,6-BaP quinone (0.03-3microM), as well as hydrogen peroxide (25-75microM) also activated L1Md. No insertional mutations into either p53 or RB genes were observed in vSMCs treated with BaP in vitro, although a slight elevation of p53 mRNA was observed as early as 4h after chemical challenge. Treatment of vSMCs with 3 or 30microM BaP for 4h increased unscheduled DNA synthesis (UDS) 1.4- and 2.5-fold, respectively. Challenge with 0. 3microM BaP for 24h inhibited DNA repair capacity in vSMCs for up to 48h. These results demonstrate that BaP and its oxidative metabolites activate L1Md retrotransposon in vSMCs, which coupled to DNA damage and inhibition of DNA repair are part of the atherogenic response elicited by BaP and related hydrocarbons.
Collapse
Affiliation(s)
- K P Lu
- Department of Physiology and Pharmacology, College of Veterinary Medicine, Center for Environmental and Rural Health, Texas A & M University, College Station, TX 77843-4466, USA
| | | | | | | |
Collapse
|