1
|
Robainas-Del-Pino Y, Viader-Salvadó JM, Herrera-Estala AL, Guerrero-Olazarán M. Functional characterization of the Komagataella phaffii 1033 gene promoter and transcriptional terminator. World J Microbiol Biotechnol 2023; 39:246. [PMID: 37420160 DOI: 10.1007/s11274-023-03682-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 06/16/2023] [Indexed: 07/09/2023]
Abstract
The methylotrophic yeast Komagataella phaffii (syn. Pichia pastoris) is a widely used host for extracellularly producing heterologous proteins via an expression cassette integrated into the yeast genome. A strong promoter in the expression cassette is not always the most favorable choice for heterologous protein production, especially if the correct folding of the protein and/or post-translational processing is the limiting step. The transcriptional terminator is another regulatory element in the expression cassette that can modify the expression levels of the heterologous gene. In this work, we identified and functionally characterized the promoter (P1033) and transcriptional terminator (T1033) of a constitutive gene (i.e., the 1033 gene) with a weak non-methanol-dependent transcriptional activity. We constructed two K. phaffii strains with two combinations of the regulatory DNA elements from the 1033 and AOX1 genes (i.e., P1033-TAOX1 and P1033-T1033 pairs) and evaluated the impact of the regulatory element combinations on the transcript levels of the heterologous gene and endogenous 1033 and GAPDH genes in cells grown in glucose or glycerol, and on the extracellular product/biomass yield. The results indicate that the P1033 has a 2-3% transcriptional activity of the GAP promoter and it is tunable by cell growth and the carbon source. The combinations of the regulatory elements rendered different transcriptional activity of the heterologous and endogenous genes that were dependent on the carbon source. The promoter-terminator pair and the carbon source affected the heterologous gene translation and/or protein secretion pathway. Moreover, low heterologous gene-transcript levels along with glycerol cultures increased translation and/or protein secretion.
Collapse
Affiliation(s)
- Yanelis Robainas-Del-Pino
- Facultad de Ciencias Biológicas, Instituto de Biotecnología, Universidad Autónoma de Nuevo León UANL, Av. Universidad S/N Col. Ciudad Universitaria, 66455, San Nicolás de los Garza, Nuevo León, Mexico
| | - José María Viader-Salvadó
- Facultad de Ciencias Biológicas, Instituto de Biotecnología, Universidad Autónoma de Nuevo León UANL, Av. Universidad S/N Col. Ciudad Universitaria, 66455, San Nicolás de los Garza, Nuevo León, Mexico.
| | - Ana Lucía Herrera-Estala
- Facultad de Ciencias Biológicas, Instituto de Biotecnología, Universidad Autónoma de Nuevo León UANL, Av. Universidad S/N Col. Ciudad Universitaria, 66455, San Nicolás de los Garza, Nuevo León, Mexico
| | - Martha Guerrero-Olazarán
- Facultad de Ciencias Biológicas, Instituto de Biotecnología, Universidad Autónoma de Nuevo León UANL, Av. Universidad S/N Col. Ciudad Universitaria, 66455, San Nicolás de los Garza, Nuevo León, Mexico.
| |
Collapse
|
2
|
Mittal C, Lang O, Lai WKM, Pugh BF. An integrated SAGA and TFIID PIC assembly pathway selective for poised and induced promoters. Genes Dev 2022; 36:985-1001. [PMID: 36302553 PMCID: PMC9732905 DOI: 10.1101/gad.350026.122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 10/11/2022] [Indexed: 02/05/2023]
Abstract
Genome-wide, little is understood about how proteins organize at inducible promoters before and after induction and to what extent inducible and constitutive architectures depend on cofactors. We report that sequence-specific transcription factors and their tethered cofactors (e.g., SAGA [Spt-Ada-Gcn5-acetyltransferase], Mediator, TUP, NuA4, SWI/SNF, and RPD3-L) are generally bound to promoters prior to induction ("poised"), rather than recruited upon induction, whereas induction recruits the preinitiation complex (PIC) to DNA. Through depletion and/or deletion experiments, we show that SAGA does not function at constitutive promoters, although a SAGA-independent Gcn5 acetylates +1 nucleosomes there. When inducible promoters are poised, SAGA catalyzes +1 nucleosome acetylation but not PIC assembly. When induced, SAGA catalyzes acetylation, deubiquitylation, and PIC assembly. Surprisingly, SAGA mediates induction by creating a PIC that allows TFIID (transcription factor II-D) to stably associate, rather than creating a completely TFIID-independent PIC, as generally thought. These findings suggest that inducible systems, where present, are integrated with constitutive systems.
Collapse
Affiliation(s)
- Chitvan Mittal
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16801, USA
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14850, USA
| | - Olivia Lang
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14850, USA
| | - William K M Lai
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16801, USA
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14850, USA
| | - B Franklin Pugh
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16801, USA
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14850, USA
| |
Collapse
|
3
|
The Regulatory Properties of the Ccr4-Not Complex. Cells 2020; 9:cells9112379. [PMID: 33138308 PMCID: PMC7692201 DOI: 10.3390/cells9112379] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 10/21/2020] [Accepted: 10/26/2020] [Indexed: 12/12/2022] Open
Abstract
The mammalian Ccr4–Not complex, carbon catabolite repression 4 (Ccr4)-negative on TATA-less (Not), is a large, highly conserved, multifunctional assembly of proteins that acts at different cellular levels to regulate gene expression. In the nucleus, it is involved in the regulation of the cell cycle, chromatin modification, activation and inhibition of transcription initiation, control of transcription elongation, RNA export, nuclear RNA surveillance, and DNA damage repair. In the cytoplasm, the Ccr4–Not complex plays a central role in mRNA decay and affects protein quality control. Most of our original knowledge of the Ccr4–Not complex is derived, primarily, from studies in yeast. More recent studies have shown that the mammalian complex has a comparable structure and similar properties. In this review, we summarize the evidence for the multiple roles of both the yeast and mammalian Ccr4–Not complexes, highlighting their similarities.
Collapse
|
4
|
Cao M, Gao M, Suástegui M, Mei Y, Shao Z. Building microbial factories for the production of aromatic amino acid pathway derivatives: From commodity chemicals to plant-sourced natural products. Metab Eng 2020; 58:94-132. [DOI: 10.1016/j.ymben.2019.08.008] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 08/03/2019] [Accepted: 08/07/2019] [Indexed: 01/23/2023]
|
5
|
Petrenko N, Jin Y, Dong L, Wong KH, Struhl K. Requirements for RNA polymerase II preinitiation complex formation in vivo. eLife 2019; 8:43654. [PMID: 30681409 PMCID: PMC6366898 DOI: 10.7554/elife.43654] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 01/25/2019] [Indexed: 01/26/2023] Open
Abstract
Transcription by RNA polymerase II requires assembly of a preinitiation complex (PIC) composed of general transcription factors (GTFs) bound at the promoter. In vitro, some GTFs are essential for transcription, whereas others are not required under certain conditions. PICs are stable in the absence of nucleotide triphosphates, and subsets of GTFs can form partial PICs. By depleting individual GTFs in yeast cells, we show that all GTFs are essential for TBP binding and transcription, suggesting that partial PICs do not exist at appreciable levels in vivo. Depletion of FACT, a histone chaperone that travels with elongating Pol II, strongly reduces PIC formation and transcription. In contrast, TBP-associated factors (TAFs) contribute to transcription of most genes, but TAF-independent transcription occurs at substantial levels, preferentially at promoters containing TATA elements. PICs are absent in cells deprived of uracil, and presumably UTP, suggesting that transcriptionally inactive PICs are removed from promoters in vivo.
Collapse
Affiliation(s)
- Natalia Petrenko
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, United States
| | - Yi Jin
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, United States
| | - Liguo Dong
- Faculty of Health Sciences, University of Macau, Macau, China
| | - Koon Ho Wong
- Institute of Translational Medicine, University of Macau, Macau, China
| | - Kevin Struhl
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, United States
| |
Collapse
|
6
|
Haberle V, Stark A. Eukaryotic core promoters and the functional basis of transcription initiation. Nat Rev Mol Cell Biol 2018; 19:621-637. [PMID: 29946135 PMCID: PMC6205604 DOI: 10.1038/s41580-018-0028-8] [Citation(s) in RCA: 438] [Impact Index Per Article: 62.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
RNA polymerase II (Pol II) core promoters are specialized DNA sequences at transcription start sites of protein-coding and non-coding genes that support the assembly of the transcription machinery and transcription initiation. They enable the highly regulated transcription of genes by selectively integrating regulatory cues from distal enhancers and their associated regulatory proteins. In this Review, we discuss the defining properties of gene core promoters, including their sequence features, chromatin architecture and transcription initiation patterns. We provide an overview of molecular mechanisms underlying the function and regulation of core promoters and their emerging functional diversity, which defines distinct transcription programmes. On the basis of the established properties of gene core promoters, we discuss transcription start sites within enhancers and integrate recent results obtained from dedicated functional assays to propose a functional model of transcription initiation. This model can explain the nature and function of transcription initiation at gene starts and at enhancers and can explain the different roles of core promoters, of Pol II and its associated factors and of the activating cues provided by enhancers and the transcription factors and cofactors they recruit.
Collapse
Affiliation(s)
- Vanja Haberle
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Vienna, Austria
| | - Alexander Stark
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Vienna, Austria.
- Medical University of Vienna, Vienna Biocenter (VBC), Vienna, Austria.
| |
Collapse
|
7
|
Espinar L, Schikora Tamarit MÀ, Domingo J, Carey LB. Promoter architecture determines cotranslational regulation of mRNA. Genome Res 2018; 28:509-518. [PMID: 29567675 PMCID: PMC5880241 DOI: 10.1101/gr.230458.117] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 02/27/2018] [Indexed: 01/08/2023]
Abstract
Information that regulates gene expression is encoded throughout each gene but if different regulatory regions can be understood in isolation, or if they interact, is unknown. Here we measure mRNA levels for 10,000 open reading frames (ORFs) transcribed from either an inducible or constitutive promoter. We find that the strength of cotranslational regulation on mRNA levels is determined by promoter architecture. By using a novel computational genetic screen of 6402 RNA-seq experiments, we identify the RNA helicase Dbp2 as the mechanism by which cotranslational regulation is reduced specifically for inducible promoters. Finally, we find that for constitutive genes, but not inducible genes, most of the information encoding regulation of mRNA levels in response to changes in growth rate is encoded in the ORF and not in the promoter. Thus, the ORF sequence is a major regulator of gene expression, and a nonlinear interaction between promoters and ORFs determines mRNA levels.
Collapse
Affiliation(s)
- Lorena Espinar
- Bioinformatics and Genomics Programme, Centre for Genomic Regulation (CRG), 08003 Barcelona, Spain
| | | | - Júlia Domingo
- Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain.,EMBL-CRG Systems Biology Research Unit, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, 08003 Barcelona, Spain
| | - Lucas B Carey
- Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain
| |
Collapse
|
8
|
Petrenko N, Jin Y, Wong KH, Struhl K. Evidence that Mediator is essential for Pol II transcription, but is not a required component of the preinitiation complex in vivo. eLife 2017; 6. [PMID: 28699889 PMCID: PMC5529107 DOI: 10.7554/elife.28447] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2016] [Accepted: 07/09/2017] [Indexed: 12/27/2022] Open
Abstract
The Mediator complex has been described as a general transcription factor, but it is unclear if it is essential for Pol II transcription and/or is a required component of the preinitiation complex (PIC) in vivo. Here, we show that depletion of individual subunits, even those essential for cell growth, causes a general but only modest decrease in transcription. In contrast, simultaneous depletion of all Mediator modules causes a drastic decrease in transcription. Depletion of head or middle subunits, but not tail subunits, causes a downstream shift in the Pol II occupancy profile, suggesting that Mediator at the core promoter inhibits promoter escape. Interestingly, a functional PIC and Pol II transcription can occur when Mediator is not detected at core promoters. These results provide strong evidence that Mediator is essential for Pol II transcription and stimulates PIC formation, but it is not a required component of the PIC in vivo. DOI:http://dx.doi.org/10.7554/eLife.28447.001
Collapse
Affiliation(s)
- Natalia Petrenko
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School Boston, Boston, United States
| | - Yi Jin
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School Boston, Boston, United States
| | - Koon Ho Wong
- Faculty of Health Sciences, University of Macau, Macau, China
| | - Kevin Struhl
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School Boston, Boston, United States
| |
Collapse
|
9
|
de Jonge WJ, O'Duibhir E, Lijnzaad P, van Leenen D, Groot Koerkamp MJ, Kemmeren P, Holstege FC. Molecular mechanisms that distinguish TFIID housekeeping from regulatable SAGA promoters. EMBO J 2016; 36:274-290. [PMID: 27979920 PMCID: PMC5286361 DOI: 10.15252/embj.201695621] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 10/18/2016] [Accepted: 11/01/2016] [Indexed: 11/28/2022] Open
Abstract
An important distinction is frequently made between constitutively expressed housekeeping genes versus regulated genes. Although generally characterized by different DNA elements, chromatin architecture and cofactors, it is not known to what degree promoter classes strictly follow regulatability rules and which molecular mechanisms dictate such differences. We show that SAGA‐dominated/TATA‐box promoters are more responsive to changes in the amount of activator, even compared to TFIID/TATA‐like promoters that depend on the same activator Hsf1. Regulatability is therefore an inherent property of promoter class. Further analyses show that SAGA/TATA‐box promoters are more dynamic because TATA‐binding protein recruitment through SAGA is susceptible to removal by Mot1. In addition, the nucleosome configuration upon activator depletion shifts on SAGA/TATA‐box promoters and seems less amenable to preinitiation complex formation. The results explain the fundamental difference between housekeeping and regulatable genes, revealing an additional facet of combinatorial control: an activator can elicit a different response dependent on core promoter class.
Collapse
Affiliation(s)
- Wim J de Jonge
- Molecular Cancer Research, University Medical Center Utrecht, Utrecht, The Netherlands.,Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Eoghan O'Duibhir
- Molecular Cancer Research, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Philip Lijnzaad
- Molecular Cancer Research, University Medical Center Utrecht, Utrecht, The Netherlands.,Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Dik van Leenen
- Molecular Cancer Research, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Marian Ja Groot Koerkamp
- Molecular Cancer Research, University Medical Center Utrecht, Utrecht, The Netherlands.,Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Patrick Kemmeren
- Molecular Cancer Research, University Medical Center Utrecht, Utrecht, The Netherlands.,Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Frank Cp Holstege
- Molecular Cancer Research, University Medical Center Utrecht, Utrecht, The Netherlands .,Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| |
Collapse
|
10
|
Yan C, Zhang D, Raygoza Garay JA, Mwangi MM, Bai L. Decoupling of divergent gene regulation by sequence-specific DNA binding factors. Nucleic Acids Res 2015; 43:7292-305. [PMID: 26082499 PMCID: PMC4551913 DOI: 10.1093/nar/gkv618] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Accepted: 06/03/2015] [Indexed: 01/30/2023] Open
Abstract
Divergent gene pairs (DGPs) are abundant in eukaryotic genomes. Since two genes in a DGP potentially share the same regulatory sequence, one might expect that they should be co-regulated. However, an inspection of yeast DGPs containing cell-cycle or stress response genes revealed that most DGPs are differentially-regulated. The mechanism underlying DGP differential regulation is not understood. Here, we showed that co- versus differential regulation cannot be explained by genetic features including promoter length, binding site orientation, TATA elements, nucleosome distribution, or presence of non-coding RNAs. Using time-lapse fluorescence microscopy, we carried out an in-depth study of a differentially regulated DGP, PFK26-MOB1. We found that their differential regulation is mainly achieved through two DNA-binding factors, Tbf1 and Mcm1. Similar to 'enhancer-blocking insulators' in higher eukaryotes, these factors shield the proximal promoter from the action of more distant transcription regulators. We confirmed the blockage function of Tbf1 using synthetic promoters. We further presented evidence that the blockage mechanism is widely used among genome-wide DGPs. Besides elucidating the DGP regulatory mechanism, our work revealed a novel class of insulators in yeast.
Collapse
Affiliation(s)
- Chao Yan
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA Center for Eukaryotic Gene Regulation, The Pennsylvania State University, University Park, PA 16802, USA
| | - Daoyong Zhang
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA Center for Eukaryotic Gene Regulation, The Pennsylvania State University, University Park, PA 16802, USA
| | - Juan Antonio Raygoza Garay
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA Center for Infectious Disease Dynamics, The Pennsylvania State University, University Park, PA 16802, USA
| | - Michael M Mwangi
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA Center for Infectious Disease Dynamics, The Pennsylvania State University, University Park, PA 16802, USA
| | - Lu Bai
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA Center for Eukaryotic Gene Regulation, The Pennsylvania State University, University Park, PA 16802, USA Department of Physics, The Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
11
|
Morelos RM, Ramírez JL, García-Gasca A, Ibarra AM. Expression of the myostatin gene in the adductor muscle of the Pacific lion-paw scallop Nodipecten subnodosus in association with growth and environmental conditions. ACTA ACUST UNITED AC 2015; 323:239-55. [PMID: 25731876 DOI: 10.1002/jez.1914] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Revised: 11/07/2014] [Accepted: 12/27/2014] [Indexed: 12/25/2022]
Abstract
The cDNA sequence of the myostatin gene in the Pacific lion-paw Nodipecten subnodosus (Ns-mstn) was characterized, and the temporal expression during grow-out was analyzed for the first time in a scallop. Ns-mstn encodes a 459-amino-acid protein in which two propeptide proteolytic sites were identified, the previously recognized (RSKR) and a second one at position 266-269 aa (RRKR). The alternative furin cleavage site could be related with post-translational processing, or it could be a tissue-specific mechanism for signaling activity. The Ns-mstn transcript was located by in situ hybridization in sarcomeres and around the nucleus of muscle fibers. The temporal expression analysis by qPCR in the adductor muscle showed that Ns-mstn expression was significantly different (P < 0.05) between months during the grow-out period, increasing largely during the summer months when both biomass and muscle weight did not increase or even decreased; muscle fiber size and number were found to decrease significantly. Exogenous and endogenous factors such as high temperature and low food availability, as well as gametogenesis and reproduction, can be associated with the growth pattern and Ns-mstn expression changes. Our results indicate that MSTN is involved in adductor muscle growth regulation in N. subnodosus as it occurs in vertebrate skeletal muscle although Ns-mstn expression in non-muscle organs/tissues suggests additional functions.
Collapse
Affiliation(s)
- Rosa M Morelos
- Aquaculture Genetics and Breeding Laboratory, Centro de Investigaciones Biológicas del Noroeste S.C., La Paz, Mexico
| | | | | | | |
Collapse
|
12
|
Natural and modified promoters for tailored metabolic engineering of the yeast Saccharomyces cerevisiae. Methods Mol Biol 2014; 1152:17-42. [PMID: 24744025 DOI: 10.1007/978-1-4939-0563-8_2] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The ease of highly sophisticated genetic manipulations in the yeast Saccharomyces cerevisiae has initiated numerous initiatives towards development of metabolically engineered strains for novel applications beyond its traditional use in brewing, baking, and wine making. In fact, baker's yeast has become a key cell factory for the production of various bulk and fine chemicals. Successful metabolic engineering requires fine-tuned adjustments of metabolic fluxes and coordination of multiple pathways within the cell. This has mostly been achieved by controlling gene expression at the transcriptional level, i.e., by using promoters with appropriate strengths and regulatory properties. Here we present an overview of natural and modified promoters, which have been used in metabolic pathway engineering of S. cerevisiae. Recent developments in creating promoters with tailor-made properties are also discussed.
Collapse
|
13
|
Abstract
Drosophilists have identified many, or perhaps most, of the key regulatory genes determining sex using classical genetics, however, regulatory genes must ultimately result in the deployment of the genome in a quantitative manner, replete with complex interactions with other regulatory pathways. In the last decade, genomics has provided a rich picture of the transcriptional profile of the sexes that underlies sexual dimorphism. The current challenge is linking transcriptional profiles with the regulatory genes. This will be a complex synthesis, but the prospects for progress are outstanding.
Collapse
Affiliation(s)
- Emily Clough
- Section of Developmental Genomics and Laboratory of Cellular and Developmental Biology, National Institute of Diabetes, and Digestive and Kidney Diseases, National Institutes of Health, Bethesda MD 20892-8028, USA.
| | | |
Collapse
|
14
|
Affiliation(s)
- Stephen Buratowski
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA.
| |
Collapse
|
15
|
Contribution of transcription factor binding site motif variants to condition-specific gene expression patterns in budding yeast. PLoS One 2012; 7:e32274. [PMID: 22384202 PMCID: PMC3285675 DOI: 10.1371/journal.pone.0032274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2011] [Accepted: 01/24/2012] [Indexed: 11/19/2022] Open
Abstract
It is now experimentally well known that variant sequences of a cis transcription factor binding site motif can contribute to differential regulation of genes. We characterize the relationship between motif variants and gene expression by analyzing expression microarray data and binding site predictions. To accomplish this, we statistically detect motif variants with effects that differ among environments. Such environmental specificity may be due to either affinity differences between variants or, more likely, differential interactions of TFs bound to these variants with cofactors, and with differential presence of cofactors across environments. We examine conservation of functional variants across four Saccharomyces species, and find that about a third of transcription factors have target genes that are differentially expressed in a condition-specific manner that is correlated with the nucleotide at variant motif positions. We find good correspondence between our results and some cases in the experimental literature (Reb1, Sum1, Mcm1, and Rap1). These results and growing consensus in the literature indicates that motif variants may often be functionally distinct, that this may be observed in genomic data, and that variants play an important role in condition-specific gene regulation.
Collapse
|
16
|
Sugihara F, Kasahara K, Kokubo T. Highly redundant function of multiple AT-rich sequences as core promoter elements in the TATA-less RPS5 promoter of Saccharomyces cerevisiae. Nucleic Acids Res 2010; 39:59-75. [PMID: 20805245 PMCID: PMC3017598 DOI: 10.1093/nar/gkq741] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
In eukaryotes, protein-coding genes are transcribed by RNA polymerase II (pol II) together with general transcription factors (GTFs). TFIID, the largest GTF composed of TATA element-binding protein (TBP) and 14 TBP-associated factors (TAFs), plays a critical role in transcription from TATA-less promoters. In metazoans, several core promoter elements other than the TATA element are thought to be recognition sites for TFIID. However, it is unclear whether functionally homologous elements also exist in TATA-less promoters in Saccharomyces cerevisiae. Here, we identify the cis-elements required to support normal levels of transcription and accurate initiation from sites within the TATA-less and TFIID-dependent RPS5 core promoter. Systematic mutational analyses show that multiple AT-rich sequences are required for these activities and appear to function as recognition sites for TFIID. A single copy of these sequences can support accurate initiation from the endogenous promoter, indicating that they carry highly redundant functions. These results show a novel architecture of yeast TATA-less promoters and support a model in which pol II scans DNA downstream from a recruited site, while searching for appropriate initiation site(s).
Collapse
Affiliation(s)
- Fuminori Sugihara
- Division of Molecular and Cellular Biology, Graduate School of Nanobioscience, Yokohama City University, Yokohama, Kanagawa, Japan
| | | | | |
Collapse
|
17
|
Segal E, Widom J. Poly(dA:dT) tracts: major determinants of nucleosome organization. Curr Opin Struct Biol 2009; 19:65-71. [PMID: 19208466 PMCID: PMC2673466 DOI: 10.1016/j.sbi.2009.01.004] [Citation(s) in RCA: 318] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2009] [Accepted: 01/16/2009] [Indexed: 11/27/2022]
Abstract
Homopolymeric stretches of deoxyadenosine nucleotides (A's) on one strand of double-stranded DNA, referred to as poly(dA:dT) tracts or A-tracts, are overabundant in eukaryotic genomes. They have unusual structural, dynamic, and mechanical properties, and may resist sharp bending. Such unusual material properties, together with their overabundance in eukaryotes, raised the possibility that poly(dA:dT) tracts might function in eukaryotes to influence the organization of nucleosomes at many genomic regions. Recent genome-wide studies strongly confirm these ideas and suggest that these tracts play major roles in chromatin organization and genome function. Here we review what is known about poly(dA:dT) tracts and how they work.
Collapse
Affiliation(s)
- Eran Segal
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Jonathan Widom
- Department of Biochemistry, Molecular Biology, and Cell Biology, Northwestern University, 2205 Tech Drive, Evanston, IL 60208-3500 USA
| |
Collapse
|
18
|
Single-RNA counting reveals alternative modes of gene expression in yeast. Nat Struct Mol Biol 2008; 15:1263-71. [PMID: 19011635 DOI: 10.1038/nsmb.1514] [Citation(s) in RCA: 544] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2008] [Accepted: 10/14/2008] [Indexed: 11/09/2022]
Abstract
Proper execution of transcriptional programs is a key requirement of gene expression regulation, demanding accurate control of timing and amplitude. How precisely the transcription machinery fulfills this task is not known. Using an in situ hybridization approach that detects single mRNA molecules, we measured mRNA abundance and transcriptional activity within single Saccharomyces cerevisiae cells. We found that expression levels for particular genes are higher than initially reported and can vary substantially among cells. However, variability for most constitutively expressed genes is unexpectedly small. Combining single-transcript measurements with computational modeling indicates that low expression variation is achieved by transcribing genes using single transcription-initiation events that are clearly separated in time, rather than by transcriptional bursts. In contrast, PDR5, a gene regulated by the transcription coactivator complex SAGA, is expressed using transcription bursts, resulting in larger variation. These data directly demonstrate the existence of multiple expression modes used to modulate the transcriptome.
Collapse
|
19
|
Abstract
The events leading to transcription of eukaryotic protein-coding genes culminate in the positioning of RNA polymerase II at the correct initiation site. The core promoter, which can extend ~35 bp upstream and/or downstream of this site, plays a central role in regulating initiation. Specific DNA elements within the core promoter bind the factors that nucleate the assembly of a functional preinitiation complex and integrate stimulatory and repressive signals from factors bound at distal sites. Although core promoter structure was originally thought to be invariant, a remarkable degree of diversity has become apparent. This article reviews the structural and functional diversity of the RNA polymerase II core promoter.
Collapse
Affiliation(s)
- Stephen T Smale
- Howard Hughes Medical Institute and Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, California 90095-1662, USA.
| | | |
Collapse
|
20
|
Sunnarborg SW, Miller SP, Unnikrishnan I, LaPorte DC. Expression of the yeast glycogen phosphorylase gene is regulated by stress-response elements and by the HOG MAP kinase pathway. Yeast 2001; 18:1505-14. [PMID: 11748727 DOI: 10.1002/yea.752] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Yeast glycogen metabolism responds to environmental stressors such as nutrient limitation and heat shock. This response is mediated, in part, by the regulation of the glycogen metabolic genes. Environmental stressors induce a number of glycogen metabolic genes, including GPH1, which encodes glycogen phosphorylase. Primer extension analysis detected two start sites for GPH1, one of which predominated. Sequences upstream of these sites included a possible TATA element. Mutation of this sequence reduced GPH1 expression by a factor of 10 but did not affect start site selection. This mutation also did not affect the relative induction of GPH1 upon entry into stationary phase. Three candidates for stress response elements (STREs) were found upstream of the TATA sequence. Mutation of the STREs showed that they were required for regulation of GPH1 expression in early stationary phase, and in response to osmotic shock and heat shock. These elements appeared to act synergistically, since the intact promoter exhibited 30-fold more expression in stationary phase than the sum of that observed for each element acting independently. HOG1, which encodes a MAP kinase, has been implicated in control mediated by STREs. For GPH1, induction by osmotic shock depended on a functional HOG1 allele. In contrast, induction upon entry into stationary phase was only partially dependent on HOG1. Furthermore, the heat shock response, which can also be mediated by STREs, was independent of HOG1. These observations suggest that the GPH1 STREs respond to more than one pathway, only one of which requires HOG1.
Collapse
Affiliation(s)
- S W Sunnarborg
- Department of Biochemistry, Molecular Biology, and Biophysics, 6-155 Jackson Hall, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | | | |
Collapse
|
21
|
Stewart JJ, Stargell LA. The stability of the TFIIA-TBP-DNA complex is dependent on the sequence of the TATAAA element. J Biol Chem 2001; 276:30078-84. [PMID: 11402056 DOI: 10.1074/jbc.m105276200] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
To determine the mechanistic differences between canonical and noncanonical TATA elements, we compared the functional activity of two sequences: TATAAA (canonical) and CATAAA (noncanonical). The TATAAA element can support high levels of transcription in vivo, whereas the CATAAA element is severely defective for this function. This dramatic functional difference is not likely to be due to a difference in TBP (TATA-binding protein) binding efficiency because protein-DNA complex studies in vitro indicate little difference between the two DNA sequences in the formation and stability of the TBP-DNA complex. In addition, the binding and stability of the TFIIB-TBP-DNA complex is similar for the two elements. In striking contrast, the TFIIA-TBP-DNA complex is significantly less stable on the CATAAA element when compared with the TATAAA element. A role for TFIIA in distinguishing between TATAAA and CATAAA in vivo was tested by fusing a subunit of TFIIA to TBP. We found that fusion of TFIIA to TBP dramatically increases transcription from CATAAA in yeast cells. Taken together, these results indicate that the stability of the TFIIA-TBP complex depends strongly on the sequence of the core promoter element and that the TFIIA-TBP complex plays an important function in recognizing optimal promoters in vivo.
Collapse
Affiliation(s)
- J J Stewart
- Pacific Biomedical Research Center, University of Hawaii, Honolulu, Hawaii 96813, USA
| | | |
Collapse
|
22
|
Kuo MH, vom Baur E, Struhl K, Allis CD. Gcn4 activator targets Gcn5 histone acetyltransferase to specific promoters independently of transcription. Mol Cell 2000; 6:1309-20. [PMID: 11163205 DOI: 10.1016/s1097-2765(00)00129-5] [Citation(s) in RCA: 160] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Histone acetylation correlates well with transcriptional activity, and histone acetyltransferases (HATs) selectively regulate subsets of target genes by mechanisms that remain unclear. Here, we provide in vivo evidence that the yeast transcriptional activator Gcn4 recruits Gcn5 HAT complexes to selective promoters positioned in natural or ectopic locations, thereby creating local domains of histone H3 hyperacetylation and subsequent transcriptional activation. A significant portion of the Gcn4-targeted histone acetylation by Gcn5 is independent of transcriptional activity. These observations provide strong evidence for promoter-selective, targeted histone acetylation by Gcn5 that facilitates transcription in a causal fashion. In addition, Gcn5 also functions in an untargeted manner to acetylate H3 on a genome-wide scale.
Collapse
Affiliation(s)
- M H Kuo
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | | | | | | |
Collapse
|
23
|
Stargell LA, Moqtaderi Z, Dorris DR, Ogg RC, Struhl K. TFIIA has activator-dependent and core promoter functions in vivo. J Biol Chem 2000; 275:12374-80. [PMID: 10777519 DOI: 10.1074/jbc.275.17.12374] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The physiological role of TFIIA was investigated by analyzing transcription in a yeast strain that contains a TATA-binding protein (TBP) mutant (N2-1) defective for interacting with TFIIA. In cells containing N2-1, transcription from a set of artificial his3 promoters dependent on different activators is generally reduced by a similar extent, indicating that TFIIA function is largely nonselective for activators. In addition, TATA element utilization, a core promoter function, is altered at his3 promoters dependent on weak activators. Genomic expression analysis reveals that 3% of the genes are preferentially affected by a factor of 4 or more. Chimeras of affected promoters indicate that the sensitivity to the TFIIA-TBP interaction can map either to the upstream or core promoter region. Unlike wild-type TBP or TFIIA, the N2-1 derivative does not activate transcription when artificially recruited to the promoter via a heterologous DNA binding domain, indicating that TFIIA is important for transcription even in the absence of an activation domain. Taken together, these results suggest that TFIIA plays an important role in both activator-dependent and core promoter functions in vivo. Further, they suggest that TFIIA function may not be strictly related to the recruitment of TBP to promoters but may also involve a step after TBP recruitment.
Collapse
Affiliation(s)
- L A Stargell
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, Colorado 80523, USA
| | | | | | | | | |
Collapse
|
24
|
Struhl K, Kadosh D, Keaveney M, Kuras L, Moqtaderi Z. Activation and repression mechanisms in yeast. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 1999; 63:413-21. [PMID: 10384306 DOI: 10.1101/sqb.1998.63.413] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- K Struhl
- Department Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | |
Collapse
|
25
|
Abstract
In yeast cells, independent depletion of TAFs (130, 67, 40, and 19) found specifically in TFIID results in selective effects on transcription, including a common effect on his3 core promoter function. In contrast, depletion of TAF17, which is also present in the SAGA histone acetylase complex, causes a decrease in transcription of most genes. However, TAF17-depleted cells maintain Ace1-dependent activation, and they induce de novo activation by heat shock factor in a manner predominantly associated with the activator, not the core promoter. Thus, TAF17 is broadly, but not universally, required for transcription in yeast, TAF17 depletion and TAF130 depletion each disrupt TFIID integrity yet cause different transcriptional consequences, suggesting that the widespread influence of TAF17 might not be due solely to its function in TFIID.
Collapse
Affiliation(s)
- Z Moqtaderi
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|
26
|
Filetici P, Aranda C, Gonzàlez A, Ballario P. GCN5, a yeast transcriptional coactivator, induces chromatin reconfiguration of HIS3 promoter in vivo. Biochem Biophys Res Commun 1998; 242:84-7. [PMID: 9439614 DOI: 10.1006/bbrc.1997.7918] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Gcn5p, the nuclear histone acetyltransferase (HAT A), is a component of the multiprotein adaptor complex, ADA. Its role as a transcriptional coactivator is required for full induction of most of the genes regulated by GCN4. In this study we present experimental evidence demonstrating that, during gene activation, the nuclease sensitive region of HIS3 promoter, harbouring the poly (dA:dT) and the GCN4 binding site, is invaded by nucleosomes in a gcn5 disrupted strain. These data demonstrate, for the first time, that Gcn5p affects directly the chromatin organization of a chromosomal gene during its transcriptional activation.
Collapse
Affiliation(s)
- P Filetici
- Centro di studio per gli Acidi Nucleici, CNR, Dipartimento di Genetica e Biologia Molecolare, Università La Sapienza, Rome, Italy
| | | | | | | |
Collapse
|
27
|
Angermayr M, Bandlow W. The type of basal promoter determines the regulated or constitutive mode of transcription in the common control region of the yeast gene pair GCY1/RIO1. J Biol Chem 1997; 272:31630-5. [PMID: 9395503 DOI: 10.1074/jbc.272.50.31630] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The yeast genes, GCY1 and RIO1, are transcribed divergently from the 869-base pair intergenic region. GCY1 is inducible by galactose about 25-fold due to Gal4p-binding to a single UASGAL, whereas RIO1 is constitutively expressed. GCY1 has a TATA box obeying the consensus TATAAA, whereas the RIO1 5'-upstream region lacks such a motif. In vitro mutagenesis of the TATA motif of GCY1, on the one hand, and introduction of a TATA-element into the promoter of RIO1, on the other hand, as well as inversion of the intergenic region have revealed that transcription of GCY1 and RIO1 is only regulated by Gal4p when a consensus TATA motif is included in their core promoters but not in its absence. The data imply that only transcription complexes that assemble at a consensus TATA box are compatible with specific transactivators, such as Gal4p. As a result, the adjacent gene is subject to regulated expression. By contrast, if a consensus TATA sequence is absent, the initiation complex does not respond to regulatory transcription factors, and consequently, the respective gene is constitutively transcribed. On the other hand, we show that two blocks of homo-oligomeric (dA.dT) sequences do not function as boundary sequences that might confine regulatory action of Gal4p to GCY1.
Collapse
Affiliation(s)
- M Angermayr
- Institut für Genetik und Mikrobiologie der Universität München, Maria-Ward-Str. 1a, 80638 Munich, Germany
| | | |
Collapse
|
28
|
Affiliation(s)
- J W Fickett
- Bioinformatics, SmithKline Beecham Pharmaceuticals, King of Prussia, Pennsylvania 19406, USA.
| | | |
Collapse
|
29
|
Diagana TT, North DL, Jabet C, Fiszman MY, Takeda S, Whalen RG. The transcriptional activity of a muscle-specific promoter depends critically on the structure of the TATA element and its binding protein. J Mol Biol 1997; 265:480-93. [PMID: 9048943 DOI: 10.1006/jmbi.1996.0752] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
We have previously characterized the proximal promoter of the mouse IIB myosin heavy chain (MyHC) gene, which is expressed only in fast-contracting glycolytic skeletal muscle fibers. We show here that the substitution into this promoter of a non-canonical TATA sequence from the IgH gene results in inactivity in muscle cells, even though TATA-binding protein (TBP) can bind strongly to this mutated promoter. Chemical foot-printing data show, however, that TBP makes different DNA contacts on this heterologous TATA sequence. The inactivity of such a non-canonical TATA motif in the IIB promoter context appears to be caused by a non-functional conformation of the bound TBP-DNA complex that is incapable of sustaining transcription. The conclusions imply that the precise sequence of the promoter TATA motif needs to be matched with the specific functional class of upstream activator proteins present in a given cell type in order for the gene to be transcriptionally active.
Collapse
Affiliation(s)
- T T Diagana
- Département de Biologie Moleulaire, Institut Pasteur, Paris, France.
| | | | | | | | | | | |
Collapse
|
30
|
Sakurai H, Ohishi T, Fukasawa T. Core promoter elements are essential as selective determinants for function of the yeast transcription factor GAL11. FEBS Lett 1996; 398:113-9. [PMID: 8946963 DOI: 10.1016/s0014-5793(96)01219-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The GAL11 gene product, which copurifies with RNA polymerase II holoenzyme, is necessary for full expression of many, but not all, genes in yeast. Here we shows that the GAL11 dependence of a gene for expression is determined by the core promoter structure. In the GAL80 gene, a gal11 null mutation caused reduction of TATA-dependent transcription, but exerted no effect on initiator-mediated transcription. GAL11 stimulated TATA-dependent transcription, but did not affect the TATA-independent transcription in HIS4. GAL11 was also required for transcription mediated by a canonical TATA sequence but not by a nonconsensus TATA sequence of HIS3. These results suggest that GAL11 is specifically involved in the transcription machinery formed on the TATA element.
Collapse
Affiliation(s)
- H Sakurai
- School of Health Sciences, Faculty of Medicine, Kanazawa University, Japan.
| | | | | |
Collapse
|
31
|
Desmarais D, Royal A. The TATA motif is a target for efficient transcriptional activation and nerve growth factor induction of the peripherin gene. J Biol Chem 1996; 271:24976-81. [PMID: 8798778 DOI: 10.1074/jbc.271.40.24976] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Three proximal elements, PER1, PER2, and PER3, have been implicated in the regulation of peripherin gene expression. PER1 contains the TATA motif and was identified as the principal mediator of neuronal specificity. Here, we demonstrate by transfection of constructs mutated in PER1 that the in vitro protein binding activity of PER1 is irrelevant to its function. However, mutations or substitutions in the TATA box decreased promoter activity by up to 80%. We have investigated this unusual preference for a particular TATA sequence in PC12 cells. In these cells, nerve growth factor induces neuronal differentiation, increasing peripherin gene expression 3-4-fold, while dexamethasone elicits chromaffin differentiation and a 3-fold decrease in peripherin mRNA. Experiments with stably transfected PC12 cells revealed that the specific TATA box of the peripherin gene was crucial for nerve growth factor response. However, it did not affect dexamethasone down-regulation. Therefore, nerve growth factor acts through an element essential for neuronal peripherin gene expression. The results predict that proteins interacting in the vicinity of the TATA box, by inference factors associated with the preinitiation complex, are important for peripherin gene regulation and provide new insights into the mechanisms underlying neuronal differentiation.
Collapse
Affiliation(s)
- D Desmarais
- Groupe de Recherche en Oncogénétique, Département de Pathologie, Université de Montréal, Montréal, Québec, Canada H3C 3J7
| | | |
Collapse
|
32
|
Covitz PA, Song W, Mitchell AP. Requirement for RGR1 and SIN4 in RME1-dependent repression in Saccharomyces cerevisiae. Genetics 1994; 138:577-86. [PMID: 7851756 PMCID: PMC1206209 DOI: 10.1093/genetics/138.3.577] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
RME1 is a zinc-finger protein homolog that functions as a repressor of the meiotic activator IME1. RME1 is unusual among yeast repressors in two respects: it acts over a considerable distance (2 kbp) and it can activate transcription from a binding site separated from its natural flanking region. To identify genes required for RME1 to exert repression, we have selected mutants with improved RME1-dependent activation. One rare mutant was defective in RME1-dependent repression of an artificial reporter gene as well as the native IME1 gene. The mutation permits sporulation of a/a diploids, which express RME1 from its natural promoter, and of a/alpha diploids constructed to express RME1 from the GAL1 promoter. The mutation also causes temperature-sensitive growth and a methionine or cysteine requirement. Analysis of a complementing genomic clone indicates that the mutation lies in a known essential gene, RGR1. Prior studies have indicated a functional relationship between RGR1 and SIN4 (also called TSF3); we have found that a sin4 null mutation also causes a defect in RME1-dependent repression and a methionine or cysteine requirement. The rgr1 and sin4 mutations do not cause a reduction of RME1 polypeptide levels. The defect in RME1-dependent repression may result from effects of sin4 and, presumably, rgr1 on chromatin structure.
Collapse
Affiliation(s)
- P A Covitz
- Department of Microbiology, Columbia University, New York, New York 10032
| | | | | |
Collapse
|
33
|
Yao B, Sollitti P, Zhang X, Marmur J. Shared control of maltose induction and catabolite repression of the MAL structural genes in Saccharomyces. MOLECULAR & GENERAL GENETICS : MGG 1994; 243:622-30. [PMID: 8028578 DOI: 10.1007/bf00279571] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Maltose utilization in yeast requires the presence of any one of the five unlinked, homologous MAL loci. Transcription of the two structural genes MALT (permease) and MALS (maltase) is induced by maltose and catabolite-repressed by glucose. MAL6T and MAL6S share a common 5' intergenic sequence; deletion studies within this sequence revealed a bi-directionally functioning upstream activation sequence (UASM) consisting of four 11 bp homologous sites. Activation of these sites by the MALR protein results in the coordinate expression of MAL6T and MAL6S. The basal promoter activates MALS expression to a greater extent than MALT and is located in a region that overlaps UASM. Deletion of several subsites within the UASM has an asymmetric effect on MAL gene expression, having a greater affect on MALT than on MALS. Catabolite repression of MAL6T and MAL6S by glucose is controlled at several levels. Using disruption mutants, the positively acting MAL1R protein was also found to play a role in catabolite repression of MAL6T and MAL6S.
Collapse
Affiliation(s)
- B Yao
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461
| | | | | | | |
Collapse
|
34
|
Martens J, Brandl C. GCN4p activation of the yeast TRP3 gene is enhanced by ABF1p and uses a suboptimal TATA element. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)40732-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
35
|
Liaw PC, Brandl CJ. Defining the sequence specificity of the Saccharomyces cerevisiae DNA binding protein REB1p by selecting binding sites from random-sequence oligonucleotides. Yeast 1994; 10:771-87. [PMID: 7975895 DOI: 10.1002/yea.320100608] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
We have used a random selection protocol to define the consensus and range of binding sites for the Saccharomyces cerevisiae REB1 protein. Thirty-five elements were sequenced which bound specifically to a GST-REB1p fusion protein coupled to glutathione-Sepharose under conditions in which more than 99.9% of the random sequences were not retained. Twenty-two of the elements contained the core sequence CGGGTRR, with all but one of the remaining elements containing only one deviation from the core. Of the core sequence, the only residues that were absolutely conserved were the three consecutive G residues. Statistical analysis of a nucleotide-use matrix suggested that the REB1p binding site also extends into flanking sequences with the optimal sequence for REB1p binding being GNGCCGGGGTAACNC. There was a positive correlation between the ability of the sites to bind in vitro and activate transcription in vivo; however, the presence of non-conformants suggests that the binding site may contribute more to transcriptional activation than simply allowing protein binding. Interestingly, one of the REB1p binding elements had a DNAse 1 footprint appreciably longer than other elements with similar affinity. Analysis of its sequence indicated the potential for a second REB1p binding site on the opposite strand. This suggests that two closely positioned low-affinity sites can function together as a highly active site. In addition, database searches with some of the randomly defined REB1p binding sites suggest that related elements are commonly found within 'TATA-less' promoters.
Collapse
Affiliation(s)
- P C Liaw
- Department of Biochemistry, University of Western Ontario, London, Canada
| | | |
Collapse
|
36
|
Boles E, Zimmermann FK. Open reading frames in the antisense strands of genes coding for glycolytic enzymes in Saccharomyces cerevisiae. MOLECULAR & GENERAL GENETICS : MGG 1994; 243:363-8. [PMID: 8202080 DOI: 10.1007/bf00280465] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Open reading frames longer than 300 bases were observed in the antisense strands of the genes coding for the glycolytic enzymes phosphoglucose isomerase, phosphoglycerate mutase, pyruvate kinase and alcohol dehydrogenase I. The open reading frames on both strands are in codon register. It has been suggested that proteins coded in codon register by complementary DNA strands can bind to each other. Consequently, it was interesting to investigate whether the open reading frames in the antisense strands of glycolytic enzyme genes are functional. We used oligonucleotide-directed mutagenesis of the PGI1 phosphoglucose isomerase gene to introduce pairs of closely spaced base substitutions that resulted in stop codons in one strand and only silent replacements in the other. Introduction of the two stop codons into the PGI1 sense strand caused the same physiological defects as already observed for pgil deletion mutants. No detectable effects were caused by the two stop codons in the antisense strand. A deletion that removed a section from -31 bp to +109 bp of the PGI1 gene but left 83 bases of the 3' region beyond the antisense open reading frame had the same phenotype as a deletion removing both reading frames. A similar pair of deletions of the PYK1 gene and its antisense reading frame showed identical defects. Our own Northern experiments and those reported by other authors using double-stranded probes detected only one transcript for each gene. These observations indicate that the antisense reading frames are not functional. On the other hand, evidence is provided to show that the rather long reading frames in the antisense strands of these glycolytic enzyme genes could arise from the strongly selective codon usage in highly expressed yeast genes, which reduces the frequency of stop codons in the antisense strand.
Collapse
Affiliation(s)
- E Boles
- Institut für Mikrobiologie, Technische Hochschule Darmstadt, Germany
| | | |
Collapse
|
37
|
Affiliation(s)
- N A Woychik
- Roche Institute of Molecular Biology, Nutley, NJ 07110
| |
Collapse
|
38
|
Boles E, Liebetrau W, Hofmann M, Zimmermann FK. A family of hexosephosphate mutases in Saccharomyces cerevisiae. EUROPEAN JOURNAL OF BIOCHEMISTRY 1994; 220:83-96. [PMID: 8119301 DOI: 10.1111/j.1432-1033.1994.tb18601.x] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The Saccharomyces cerevisiae PGM1 and PGM2 genes encoding two phosphoglucomutase isoenzymes have been isolated and sequenced. The derived protein sequences are closely related to one another and show distinct sequence similarities to the human and rabbit phosphoglucomutases, especially in the region supposed to constitute the active site. PGM1 and PGM2 are located on chromosomes XI and XIII, respectively, just upstream of the known genes YPK1 and YKR2 coding for a pair of closely related putative protein kinases. These observations suggest that an extended region of DNA arose by the process of gene duplication. Cells deleted for both, PGM1 and PGM2, could not grow on galactose. No residual phosphoglucomutase activity could be measured in crude extracts or in permeabilized cells of pgm1/2 double mutants. Unexpectedly, growth with glucose was not impaired and the mutant cells were still able to accumulate trehalose and glycogen, although at a reduced level. Two further genes could be isolated and characterized which when over-expressed on a multi-copy plasmid could restore growth on galactose of the pgm1/2 double deletion mutant. Multi-copy complementation was due to a sharply increased level of phosphoglucomutase activity. Partial sequencing and characterization of the two genes revealed one of them to be SEC53 encoding phosphomannomutase. No extended sequence similarities could be found in the databases for the second gene. However, part of the derived amino acid sequence contained a region of high similarity to the active-site consensus sequence of hexosephosphate mutases from different organism. Further investigations suggest that a complex network of mutases exist in yeast which interact and can partially substitute for each other.
Collapse
Affiliation(s)
- E Boles
- Institut für Mikrobiologie, Technische Hochschule Darmstadt, Germany
| | | | | | | |
Collapse
|
39
|
Kokubo T, Gong DW, Wootton JC, Horikoshi M, Roeder RG, Nakatani Y. Molecular cloning of Drosophila TFIID subunits. Nature 1994; 367:484-7. [PMID: 7545910 DOI: 10.1038/367484a0] [Citation(s) in RCA: 97] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Transcription initiation factor TFIID is a multisubunit complex containing a TATA-box-binding factor (TFIID tau/TBP) and associated polypeptide factors (TAFs) with sizes ranging from M(r) approximately 20,000 to > 200,000. As a result of direct promoter interactions, TFIID nucleates the assembly of RNA polymerase II and other initiation factors into a functional preinitiation complex. Although the native TFIID complex mediates both basal and activator-dependent transcription in reconstituted systems, TBP itself is competent for only basal transcription. Thus, TAFs are essential cofactors for regulated transcription. The complementary DNAs encoding the p230 (M(r) 230,000), p110 and p85 subunits of TFIID have recently been cloned. Here we report the molecular cloning and characterization of the p62, p42, p28 and p22 subunits. These participate in a network of heterogeneous protein-protein interactions within TFIID. Sequence similarities between p62/p42 and the histones H4/H3, respectively, suggest that these subunits have a functional relationship with chromatin.
Collapse
Affiliation(s)
- T Kokubo
- National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892
| | | | | | | | | | | |
Collapse
|
40
|
Takiya S, Suzuki Y. Role of the Core Promoter for the Preferential Transcription of Fibroin Gene in the Posterior Silk Gland Extract. (transcription/core promoter/fibroin gene/initiator/DNase I footprint). Dev Growth Differ 1993. [DOI: 10.1111/j.1440-169x.1993.00311.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
41
|
Weinstock KG, Strathern JN. Molecular genetics in Saccharomyces kluyveri: the HIS3 homolog and its use as a selectable marker gene in S. kluyveri and Saccharomyces cerevisiae. Yeast 1993; 9:351-61. [PMID: 8511965 DOI: 10.1002/yea.320090405] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
We cloned the Saccharomyces kluyveri HIS3 homolog, k-HIS3, and made a partial deletion of the gene. The k-HIS3 gene complemented a HIS3 deletion in S. cerevisiae. The DNA sequences of the open reading frames (ORFs) of the HIS3 homologs are 70% identical at the DNA level and 83% identical at the deduced amino acid level. The ORF upstream of the k-HIS3 gene is related to the PET56 gene of S. cerevisiae found upstream of the HIS3 gene of S. cerevisiae. The ORF downstream from the k-HIS3 gene is not related to the DED1 gene found downstream of the HIS3 gene in S. cerevisiae.
Collapse
Affiliation(s)
- K G Weinstock
- Laboratory of Eukaryotic Gene Expression, ABL-Basic Research Program, NCI-Frederick Cancer Research and Development Center, MD 21702-1201
| | | |
Collapse
|
42
|
Brandl C, Martens J, Liaw P, Furlanetto A, Wobbe C. TATA-binding protein activates transcription when upstream of a GCN4-binding site in a novel yeast promoter. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(19)36780-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
43
|
Hoopes B, LeBlanc J, Hawley D. Kinetic analysis of yeast TFIID-TATA box complex formation suggests a multi-step pathway. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(19)49944-4] [Citation(s) in RCA: 84] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
44
|
Cormack BP, Struhl K. The TATA-binding protein is required for transcription by all three nuclear RNA polymerases in yeast cells. Cell 1992; 69:685-96. [PMID: 1586947 DOI: 10.1016/0092-8674(92)90232-2] [Citation(s) in RCA: 320] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Using temperature- and proteolytically sensitive derivatives to inactivate the function of the yeast TATA-binding protein (TBP) in vivo, we investigated the requirement of TBP for transcription by the three nuclear RNA polymerases in yeast cells. TBP is required for RNA polymerase II (pol II) transcription from promoters containing conventional TATA elements as well as functionally distinct promoters that lack TATA-like sequences. TBP is also required for transcription of the U6 snRNA and two different tRNA genes mediated by RNA pol III as well as transcription of ribosomal RNA mediated by RNA pol I. For all promoters tested, transcription decreases rapidly and specifically upon inactivation of TBP, strongly suggesting that TBP is directly involved in the transcription process. These observations suggest that TBP is required for transcription of all nuclearly encoded genes in yeast, although distinct molecular mechanisms are probably involved for the three RNA polymerase transcription machineries.
Collapse
Affiliation(s)
- B P Cormack
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115
| | | |
Collapse
|
45
|
Berkenstam A, Vivanco Ruiz MM, Barettino D, Horikoshi M, Stunnenberg HG. Cooperativity in transactivation between retinoic acid receptor and TFIID requires an activity analogous to E1A. Cell 1992; 69:401-12. [PMID: 1316240 DOI: 10.1016/0092-8674(92)90443-g] [Citation(s) in RCA: 97] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
In embryonal carcinoma (EC) cells retinoic acid (RA) strongly induces transcription from the RA receptor beta 2 (RAR beta 2) promoter through an RA response element (RARE) located in close proximity to the TATA box. Here we demonstrate that recombinant human TATA box-binding protein, hTFIID, and RAR functionally cooperate in transactivation of the RAR beta 2 promoter in EC cells in a strictly RA-dependent manner. We demonstrate that the core domain of hTFIID is sufficient to mediate RAR-dependent transcription and that Drosophila, but not yeast, TFIID can substitute for hTFIID. In COS cells ectopic expression of the E1A protein is a prerequisite for hTFIID and RAR to cooperate in transactivation. We propose a model for transcriptional regulation of the RAR beta 2 promoter in EC cells in which RAR, following activation by RA, functionally interacts with hTFIID via an E1A-like activity present in EC cells.
Collapse
Affiliation(s)
- A Berkenstam
- EMBL, Gene Expression Program, Heidelberg, Germany
| | | | | | | | | |
Collapse
|
46
|
Abstract
TFIID is the highly conserved, but species-specific, component of the RNA polymerase II transcription machinery that binds specifically to the TATA element (consensus TATAAA). Using a genetic selection, we isolated an altered specificity derivative of yeast TFIID that permits transcription from promoters containing a mutated TATA element (TGTAAA). Biochemical analysis indicates that this TFIID derivative has specifically gained the ability to bind TGTAAA efficiently. The mutant protein contains three substitutions within a 12 amino acid region; two of these are necessary and primarily responsible for the altered specificity. An analogous version of human TFIID, generated by introducing the same amino acid substitutions in the corresponding region of the protein, can support basal and GCN4-activated transcription in yeast cells from a TGTAAA-containing promoter. These results define a surface of TFIID that directly interacts with the TATA element, and they indicate that human TFIID can respond to acidic activator proteins in conjunction with the other components of the yeast transcription machinery.
Collapse
Affiliation(s)
- M Strubin
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115
| | | |
Collapse
|
47
|
Kamholz J, Sessa M, Scherer S, Vogelbacker H, Mokuno K, Baron P, Wrabetz L, Shy M, Pleasure D. Structure and expression of proteolipid protein in the peripheral nervous system. J Neurosci Res 1992; 31:231-44. [PMID: 1374129 DOI: 10.1002/jnr.490310204] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Proteolipid protein (PLP), the major myelin protein in the central nervous system (CNS), is also made by Schwann cells (SC) in the peripheral nervous system (PNS) but is not incorporated into the SC myelin sheath. We analyzed several PLP cDNA clones isolated from a rat sciatic nerve cDNA library and found that their coding sequences were identical to PLP cDNAs previously isolated from the CNS. In addition, we have discovered an unusual form of PLP message, present in both brain and sciatic nerve RNA, that is likely formed by alternative splicing within the 3' untranslated region of the primary PLP transcript. The absence of PLP from the SC myelin sheath thus cannot be explained by an alteration in its amino acid sequence. Steady-state levels of PLP mRNA in SC cultures treated with the cAMP analogue dibutyryl cAMP (dBcAMP) were not increased, whereas dBcAMP increased steady-state levels of mRNA encoding the major myelin protein, P0. We have also shown that expression of PLP, unlike that of P0, is regulated in SC in vitro at a posttranscriptional level. Finally, the steady-state levels of P0 mRNA are much more dramatically reduced than those of PLP mRNA during Wallerian degeneration of the peripheral nerve. Thus PLP expression in the PNS is probably controlled by different molecular mechanisms from P0, and may not be part of the coordinate program of myelin gene expression. In contrast to its expression in the PNS, transcription of PLP in the CNS is coordinately regulated along with the other myelin protein genes, suggesting there may be differences in the cis-acting elements and transacting factors involved in the regulation of PLP transcription in SC and oligodendrocytes (OC). Consistent with this notion, we have found that most PLP transcripts are initiated at the more proximal of two start sites in the PNS, while in the CNS proportionally more PLP transcripts are initiated from the distal start site. We propose that the proximal site, utilized predominantly in SC, is responsible for maintenance expression of PLP and is not inducible, while the distal site is responsible for the rapid, inducible increase of PLP message during brain development.
Collapse
Affiliation(s)
- J Kamholz
- Department of Neurology, University of Pennsylvania, Philadelphia 19104
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Identification of novel factors which bind specifically to the core promoter of the immunoglobulin heavy chain gene. J Biol Chem 1991. [DOI: 10.1016/s0021-9258(18)54436-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
49
|
Mösch H, Scheier B, Lahti R, Mäntsäla P, Braus G. Transcriptional activation of yeast nucleotide biosynthetic gene ADE4 by GCN4. J Biol Chem 1991. [DOI: 10.1016/s0021-9258(18)54945-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
50
|
Affiliation(s)
- K Strum
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA
| |
Collapse
|