1
|
Foss EJ, Lichauco C, Gatbonton-Schwager T, Gonske SJ, Lofts B, Lao U, Bedalov A. Identification of 1600 replication origins in S. cerevisiae. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.11.536402. [PMID: 38014147 PMCID: PMC10680564 DOI: 10.1101/2023.04.11.536402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
There are approximately 500 known origins of replication in the yeast genome, and the process by which DNA replication initiates at these locations is well understood. In particular, these sites are made competent to initiate replication by loading of the Mcm replicative helicase prior to the start of S phase; thus, "a site to which MCM is bound in G1" might be considered to provide an operational definition of a replication origin. By fusing a subunit of Mcm to micrococcal nuclease, a technique referred to as "Chromatin Endogenous Cleavage", we previously showed that known origins are typically bound by a single Mcm double hexamer, loaded adjacent to the ARS consensus sequence (ACS). Here we extend this analysis from known origins to the entire genome, identifying candidate Mcm binding sites whose signal intensity varies over at least 3 orders of magnitude. Published data quantifying the production of ssDNA during S phase showed clear evidence of replication initiation among the most abundant 1600 of these sites, with replication activity decreasing in concert with Mcm abundance and disappearing at the limit of detection of ssDNA. Three other hallmarks of replication origins were apparent among the most abundant 5,500 sites. Specifically, these sites (1) appeared in intergenic nucleosome-free regions that were flanked on one or both sides by well-positioned nucleosomes; (2) were flanked by ACSs; and (3) exhibited a pattern of GC skew characteristic of replication initiation. Furthermore, the high resolution of this technique allowed us to demonstrate a strong bias for detecting Mcm double-hexamers downstream rather than upstream of the ACS, which is consistent with the directionality of Mcm loading by Orc that has been observed in vitro. We conclude that, if sites at which Mcm double-hexamers are loaded can function as replication origins, then DNA replication origins are at least 3-fold more abundant than previously assumed, and we suggest that replication may occasionally initiate in essentially every intergenic region. These results shed light on recent reports that as many as 15% of replication events initiate outside of known origins, and this broader distribution of replication origins suggest that S phase in yeast may be less distinct from that in humans than is widely assumed.
Collapse
Affiliation(s)
- Eric J Foss
- Clinical Research Division, Fred Hutch Cancer Center, Seattle, WA 98109
| | - Carmina Lichauco
- Clinical Research Division, Fred Hutch Cancer Center, Seattle, WA 98109
| | | | - Sara J Gonske
- Clinical Research Division, Fred Hutch Cancer Center, Seattle, WA 98109
| | - Brandon Lofts
- Clinical Research Division, Fred Hutch Cancer Center, Seattle, WA 98109
| | - Uyen Lao
- Clinical Research Division, Fred Hutch Cancer Center, Seattle, WA 98109
| | - Antonio Bedalov
- Clinical Research Division, Fred Hutch Cancer Center, Seattle, WA 98109
| |
Collapse
|
2
|
The S-Phase Cyclin Clb5 Promotes rRNA Gene (rDNA) Stability by Maintaining Replication Initiation Efficiency in rDNA. Mol Cell Biol 2021; 41:MCB.00324-20. [PMID: 33619126 PMCID: PMC8088266 DOI: 10.1128/mcb.00324-20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Accepted: 02/05/2021] [Indexed: 11/26/2022] Open
Abstract
Regulation of replication origins is important for complete duplication of the genome, but the effect of origin activation on the cellular response to replication stress is poorly understood. The budding yeast rRNA gene (rDNA) forms tandem repeats and undergoes replication fork arrest at the replication fork barrier (RFB), inducing DNA double-strand breaks (DSBs) and genome instability accompanied by copy number alterations. Regulation of replication origins is important for complete duplication of the genome, but the effect of origin activation on the cellular response to replication stress is poorly understood. The budding yeast rRNA gene (rDNA) forms tandem repeats and undergoes replication fork arrest at the replication fork barrier (RFB), inducing DNA double-strand breaks (DSBs) and genome instability accompanied by copy number alterations. Here, we demonstrate that the S-phase cyclin Clb5 promotes rDNA stability. Absence of Clb5 led to reduced efficiency of replication initiation in rDNA but had little effect on the number of replication forks arrested at the RFB, suggesting that arrival of the converging fork is delayed and forks are more stably arrested at the RFB. Deletion of CLB5 affected neither DSB formation nor its repair at the RFB but led to homologous recombination-dependent rDNA instability. Therefore, arrested forks at the RFB may be subject to DSB-independent, recombination-dependent rDNA instability. The rDNA instability in clb5Δ was not completely suppressed by the absence of Fob1, which is responsible for fork arrest at the RFB. Thus, Clb5 establishes the proper interval for active replication origins and shortens the travel distance for DNA polymerases, which may reduce Fob1-independent DNA damage.
Collapse
|
3
|
Scull CE, Schneider DA. Coordinated Control of rRNA Processing by RNA Polymerase I. Trends Genet 2019; 35:724-733. [PMID: 31358304 DOI: 10.1016/j.tig.2019.07.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 06/25/2019] [Accepted: 07/01/2019] [Indexed: 11/19/2022]
Abstract
Ribosomal RNA (rRNA) is co- and post-transcriptionally processed into active ribosomes. This process is dynamically regulated by direct covalent modifications of the polymerase that synthesizes the rRNA, RNA polymerase I (Pol I), and by interactions with cofactors that influence initiation, elongation, and termination activities of Pol I. The rate of transcription elongation by Pol I directly influences processing of nascent rRNA, and changes in Pol I transcription rate result in alternative rRNA processing events that lead to cellular signaling alterations and stress. It is clear that in divergent species, there exists robust organization of nascent rRNA processing events during transcription elongation. This review evaluates the current state of our understanding of the complex relationship between transcription elongation and rRNA processing.
Collapse
Affiliation(s)
- Catherine E Scull
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - David A Schneider
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| |
Collapse
|
4
|
Srivastava A, Ahamad J, Ray AK, Kaur D, Bhattacharya A, Bhattacharya S. Analysis of U3 snoRNA and small subunit processome components in the parasitic protist Entamoeba histolytica. Mol Biochem Parasitol 2014; 193:82-92. [PMID: 24631428 DOI: 10.1016/j.molbiopara.2014.03.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Revised: 02/27/2014] [Accepted: 03/01/2014] [Indexed: 10/25/2022]
Abstract
In the early branching parasitic protist Entamoeba histolytica, pre-rRNA synthesis continues when cells are subjected to growth stress, but processing slows down and unprocessed pre-rRNA accumulates. To gain insight into the regulatory mechanisms leading to accumulation, it is necessary to define the pre-rRNA processing machinery in E. histolytica. We searched the E. histolytica genome sequence for homologs of the SSU processome, which contains the U3snoRNA, and 72 proteins in yeast. We could identify 57 of the proteins with high confidence. Of the rest, 6 were absent in human, and 4 were non-essential in yeast. The remaining 5 were absent in other parasite genomes as well. Analysis of U3snoRNA showed that the E. histolytica U3snoRNA adopted the same conserved secondary structure as seen in yeast and human. The predicted structure was verified by chemical modification followed by primer extension (SHAPE). Further we showed that the predicted interactions of Eh_U3snoRNA boxes A and A' with pre-18S rRNA were highly conserved both in position and sequence. The predicted interactions of 5'-hinge and 3'-hinge sequences of Eh_U3 snoRNA with the 5'-ETS sequences were conserved in position but not in sequence. Transcription of selected genes of SSU processome was tested by northern analysis, and transcripts of predicted sizes were obtained. During serum starvation, when unprocessed pre-RNA accumulated, the transcript levels of some of these genes declined. This is the first report on pre-rRNA processing machinery in E. histolytica, and shows that the components are well conserved with respect to yeast and human.
Collapse
Affiliation(s)
- Ankita Srivastava
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi 110067, India.
| | - Jamaluddin Ahamad
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi 110067, India.
| | - Ashwini Kumar Ray
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi 110067, India.
| | - Devinder Kaur
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi 110067, India.
| | - Alok Bhattacharya
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India.
| | - Sudha Bhattacharya
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi 110067, India.
| |
Collapse
|
5
|
Lebaron S, Segerstolpe A, French SL, Dudnakova T, de Lima Alves F, Granneman S, Rappsilber J, Beyer AL, Wieslander L, Tollervey D. Rrp5 binding at multiple sites coordinates pre-rRNA processing and assembly. Mol Cell 2013; 52:707-19. [PMID: 24239293 PMCID: PMC3991325 DOI: 10.1016/j.molcel.2013.10.017] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Revised: 08/27/2013] [Accepted: 10/08/2013] [Indexed: 01/01/2023]
Abstract
In vivo UV crosslinking identified numerous preribosomal RNA (pre-rRNA) binding sites for the large, highly conserved ribosome synthesis factor Rrp5. Intramolecular complementation has shown that the C-terminal domain (CTD) of Rrp5 is required for pre-rRNA cleavage at sites A0–A2 on the pathway of 18S rRNA synthesis, whereas the N-terminal domain (NTD) is required for A3 cleavage on the pathway of 5.8S/25S rRNA synthesis. The CTD was crosslinked to sequences flanking A2 and to the snoRNAs U3, U14, snR30, and snR10, which are required for cleavage at A0–A2. The NTD was crosslinked to sequences flanking A3 and to the RNA component of ribonuclease MRP, which cleaves site A3. Rrp5 could also be directly crosslinked to several large structural proteins and nucleoside triphosphatases. A key role in coordinating preribosomal assembly and processing was confirmed by chromatin spreads. Following depletion of Rrp5, cotranscriptional cleavage was lost and preribosome compaction greatly reduced. Rrp5 binds multiple dispersed sites in the pre-rRNA The NTD and CTD of Rrp5 each bind adjacent to sites of cleavages that require them Rrp5 directly binds large, structural proteins and NTPases Rrp5 is required for preribosome compaction
Collapse
Affiliation(s)
- Simon Lebaron
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Michael Swann Building, Kings Buildings, Mayfield Road, Edinburgh EH9 3JR, Scotland
| | - Asa Segerstolpe
- Department of Molecular Biosciences, WGI, Stockholm University, 106 91 Stockholm, Sweden
| | - Sarah L French
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia Health System, Charlottesville, VA 22908-0734, USA
| | - Tatiana Dudnakova
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Michael Swann Building, Kings Buildings, Mayfield Road, Edinburgh EH9 3JR, Scotland
| | - Flavia de Lima Alves
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Michael Swann Building, Kings Buildings, Mayfield Road, Edinburgh EH9 3JR, Scotland
| | - Sander Granneman
- SynthSys, JR Waddington Building, Kings Buildings, Mayfield Road, Edinburgh EH9 3JR, Scotland
| | - Juri Rappsilber
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Michael Swann Building, Kings Buildings, Mayfield Road, Edinburgh EH9 3JR, Scotland
| | - Ann L Beyer
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia Health System, Charlottesville, VA 22908-0734, USA
| | - Lars Wieslander
- Department of Molecular Biosciences, WGI, Stockholm University, 106 91 Stockholm, Sweden
| | - David Tollervey
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Michael Swann Building, Kings Buildings, Mayfield Road, Edinburgh EH9 3JR, Scotland.
| |
Collapse
|
6
|
Duch A, de Nadal E, Posas F. Dealing with transcriptional outbursts during S phase to protect genomic integrity. J Mol Biol 2013; 425:4745-55. [PMID: 24021813 DOI: 10.1016/j.jmb.2013.08.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Revised: 08/16/2013] [Accepted: 08/23/2013] [Indexed: 10/26/2022]
Abstract
Transcription during S phase needs to be spatially and temporally regulated to prevent collisions between the transcription and replication machineries. Cells have evolved a number of mechanisms to make both processes compatible under normal growth conditions. When conflict management fails, the head-on encounter between RNA and DNA polymerases results in genomic instability unless conflict resolution mechanisms are activated. Nevertheless, there are specific situations in which cells need to dramatically change their transcriptional landscape to adapt to environmental challenges. Signal transduction pathways, such as stress-activated protein kinases (SAPKs), serve to regulate gene expression in response to environmental insults. Prototypical members of SAPKs are the yeast Hog1 and mammalian p38. In response to stress, p38/Hog1 SAPKs control transcription and also regulate cell cycle progression. When yeast cells are stressed during S phase, Hog1 promotes gene induction and, remarkably, also delays replication by directly affecting early origin firing and fork progression. Therefore, by delaying replication, Hog1 plays a key role in preventing conflicts between RNA and DNA polymerases. In this review, we focus on the genomic determinants and mechanisms that make compatible transcription with replication during S phase to prevent genomic instability, especially in response to environmental changes.
Collapse
Affiliation(s)
- Alba Duch
- Cell Signaling Unit, Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, E-08003 Barcelona, Spain
| | | | | |
Collapse
|
7
|
RNAP-II molecules participate in the anchoring of the ORC to rDNA replication origins. PLoS One 2013; 8:e53405. [PMID: 23308214 PMCID: PMC3537633 DOI: 10.1371/journal.pone.0053405] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Accepted: 11/29/2012] [Indexed: 12/29/2022] Open
Abstract
The replication of genomic DNA is limited to a single round per cell cycle. The first component, which recognises and remains bound to origins from recognition until activation and replication elongation, is the origin recognition complex. How origin recognition complex (ORC) proteins remain associated with chromatin throughout the cell cycle is not yet completely understood. Several genome-wide studies have undoubtedly demonstrated that RNA polymerase II (RNAP-II) binding sites overlap with replication origins and with the binding sites of the replication components. RNAP-II is no longer merely associated with transcription elongation. Several reports have demonstrated that RNAP-II molecules affect chromatin structure, transcription, mRNA processing, recombination and DNA repair, among others. Most of these activities have been reported to directly depend on the interaction of proteins with the C-terminal domain (CTD) of RNAP-II. Two-dimensional gels results and ChIP analysis presented herein suggest that stalled RNAP-II molecules bound to the rDNA chromatin participate in the anchoring of ORC proteins to origins during the G1 and S-phases. The results show that in the absence of RNAP-II, Orc1p, Orc2p and Cdc6p do not bind to origins. Moreover, co-immunoprecipitation experiments suggest that Ser2P-CTD and hypophosphorylated RNAP-II interact with Orc1p. In the context of rDNA, cryptic transcription by RNAP-II did not negatively interfere with DNA replication. However, the results indicate that RNAP-II is not necessary to maintain the binding of ORCs to the origins during metaphase. These findings highlight for the first time the potential importance of stalled RNAP-II in the regulation of DNA replication.
Collapse
|
8
|
Phipps KR, Charette JM, Baserga SJ. The small subunit processome in ribosome biogenesis—progress and prospects. WILEY INTERDISCIPLINARY REVIEWS. RNA 2011; 2:1-21. [PMID: 21318072 PMCID: PMC3035417 DOI: 10.1002/wrna.57] [Citation(s) in RCA: 129] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The small subunit (SSU) processome is a 2.2-MDa ribonucleoprotein complex involved in the processing, assembly, and maturation of the SSU of eukaryotic ribosomes. The identities of many of the factors involved in SSU biogenesis have been elucidated over the past 40 years. However, as our understanding increases, so do the number of questions about the nature of this complicated process. Cataloging the components is the first step toward understanding the molecular workings of a system. This review will focus on how identifying components of ribosome biogenesis has led to the knowledge of how these factors, protein and RNA alike, associate with one another into subcomplexes, with a concentration on the small ribosomal subunit. We will also explore how this knowledge of subcomplex assembly has informed our understanding of the workings of the ribosome synthesis system as a whole.
Collapse
MESH Headings
- Animals
- Eukaryota/genetics
- Eukaryota/metabolism
- Humans
- Models, Biological
- Models, Molecular
- Nucleic Acid Conformation
- Protein Modification, Translational/genetics
- RNA, Ribosomal, 18S/chemistry
- RNA, Ribosomal, 18S/metabolism
- RNA, Small Nucleolar/chemistry
- RNA, Small Nucleolar/metabolism
- Ribonucleoproteins/chemistry
- Ribonucleoproteins/metabolism
- Ribosome Subunits, Small/metabolism
- Ribosomes/metabolism
Collapse
Affiliation(s)
- Kathleen R. Phipps
- Depts. of Molecular Biophysics & Biochemistry, Yale University School of Medicine, New Haven, CT 06520, USA
| | - J. Michael Charette
- Depts. of Molecular Biophysics & Biochemistry, Yale University School of Medicine, New Haven, CT 06520, USA
- Therapeutic Radiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Susan J. Baserga
- Depts. of Molecular Biophysics & Biochemistry, Yale University School of Medicine, New Haven, CT 06520, USA
- Therapeutic Radiology, Yale University School of Medicine, New Haven, CT 06520, USA
- Genetics, Yale University School of Medicine, New Haven, CT 06520, USA
| |
Collapse
|
9
|
Machín F, Torres-Rosell J, De Piccoli G, Carballo JA, Cha RS, Jarmuz A, Aragón L. Transcription of ribosomal genes can cause nondisjunction. J Cell Biol 2006; 173:893-903. [PMID: 16769819 PMCID: PMC2063915 DOI: 10.1083/jcb.200511129] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2005] [Accepted: 05/16/2006] [Indexed: 11/25/2022] Open
Abstract
Mitotic disjunction of the repetitive ribosomal DNA (rDNA) involves specialized segregation mechanisms dependent on the conserved phosphatase Cdc14. The reason behind this requirement is unknown. We show that rDNA segregation requires Cdc14 partly because of its physical length but most importantly because a fraction of ribosomal RNA (rRNA) genes are transcribed at very high rates. We show that cells cannot segregate rDNA without Cdc14 unless they undergo genetic rearrangements that reduce rDNA copy number. We then demonstrate that cells with normal length rDNA arrays can segregate rDNA in the absence of Cdc14 as long as rRNA genes are not transcribed. In addition, our study uncovers an unexpected role for the replication barrier protein Fob1 in rDNA segregation that is independent of Cdc14. These findings demonstrate that highly transcribed loci can cause chromosome nondisjunction.
Collapse
Affiliation(s)
- Felix Machín
- Cell Cycle Group, Medical Research Council Clinical Sciences Centre, Imperial College London, London W12 0NN, England, UK
| | | | | | | | | | | | | |
Collapse
|
10
|
Osheim YN, French SL, Keck KM, Champion EA, Spasov K, Dragon F, Baserga SJ, Beyer AL. Pre-18S Ribosomal RNA Is Structurally Compacted into the SSU Processome Prior to Being Cleaved from Nascent Transcripts in Saccharomyces cerevisiae. Mol Cell 2004; 16:943-54. [PMID: 15610737 DOI: 10.1016/j.molcel.2004.11.031] [Citation(s) in RCA: 221] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2004] [Revised: 11/11/2004] [Accepted: 11/12/2004] [Indexed: 12/01/2022]
Abstract
Recent studies have revealed multiple dynamic complexes that are precursors to eukaryotic ribosomes. EM visualization of nascent rRNA transcripts provides in vivo temporal and structural context for these events. In exponentially growing S. cerevisiae, pre-18S rRNA is dramatically compacted into a large particle (SSU processome) within seconds of completion of its transcription and is released cotranscriptionally by cleavage in ITS1. After cleavage, a new terminal knob is formed on the nascent large subunit rRNA, compacting it progressively in a 5'-3' direction. Depletion of individual components shows that cotranscriptional SSU processome formation is a sensitive indicator of the occurrence or timing of the early A0-A2 cleavages and depends on factors not isolated in preribosome complexes, as well as on favorable growth conditions. The results show that the approximately 40 components of the SSU processome/90S preribosome can complete their tasks within approximately 85 s in optimal conditions.
Collapse
Affiliation(s)
- Yvonne N Osheim
- Department of Microbiology, University of Virginia Health System, Charlottesville, VA 22908, USA
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Burkhalter MD, Sogo JM. rDNA enhancer affects replication initiation and mitotic recombination: Fob1 mediates nucleolytic processing independently of replication. Mol Cell 2004; 15:409-21. [PMID: 15304221 DOI: 10.1016/j.molcel.2004.06.024] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2004] [Revised: 05/18/2004] [Accepted: 05/24/2004] [Indexed: 02/04/2023]
Abstract
To investigate the influence of the ribosomal DNA enhancer on initiation of replication and recombination at the ribosomal array, we used yeast S. cerevisiae strains with adjacent, tagged rRNA genes. We found that the enhancer is an absolute requirement for replication fork barrier function, while it only modulates initiation of replication. Moreover, the formation of monomeric extrachromosomal ribosomal circles depends on this element. Our data indicate that DNA double-strand breaks occur at specific sites in the parental leading arm of replication forks stalled at the replication fork barrier. Additionally, nicks upstream of the replication fork barrier were visualized by nucleotide-resolution mapping. They coincide with essential sequences of the mitotic hyperrecombination site HOT1, which previously has been determined at ectopic sites. Interestingly, these nicks are strictly dependent on the replication fork blocking-protein (Fob1), but are replication independent, suggesting that intrachromosomal ribosomal DNA recombination may occur outside of S phase.
Collapse
Affiliation(s)
- Martin D Burkhalter
- Institute of Cell Biology, Department of Biology, ETH Hönggerberg, CH-8093 Zürich, Switzerland
| | | |
Collapse
|
12
|
Grandi P, Rybin V, Bassler J, Petfalski E, Strauss D, Marzioch M, Schäfer T, Kuster B, Tschochner H, Tollervey D, Gavin AC, Hurt E. 90S pre-ribosomes include the 35S pre-rRNA, the U3 snoRNP, and 40S subunit processing factors but predominantly lack 60S synthesis factors. Mol Cell 2002; 10:105-15. [PMID: 12150911 DOI: 10.1016/s1097-2765(02)00579-8] [Citation(s) in RCA: 380] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We report the characterization of early pre-ribosomal particles. Twelve TAP-tagged components each showed nucleolar localization, sedimented at approximately 90S on sucrose gradients, and coprecipitated both the 35S pre-rRNA and the U3 snoRNA. Thirty-five non-ribosomal proteins were coprecipitated, including proteins associated with U3 (Nop56p, Nop58p, Sof1p, Rrp9, Dhr1p, Imp3p, Imp4p, and Mpp10p) and other factors required for 18S rRNA synthesis (Nop14p, Bms1p, and Krr1p). Mutations in components of the 90S pre-ribosomes impaired 40S subunit assembly and export. Strikingly, few components of recently characterized pre-60S ribosomes were identified in the 90S pre-ribosomes. We conclude that the 40S synthesis machinery predominately associates with the 35S pre-rRNA factors, whereas factors required for 60S subunit synthesis largely bind later, showing an unexpected dichotomy in binding.
Collapse
Affiliation(s)
- Paola Grandi
- Cellzome AG, Meyerhofstrasse 1, 69117, Heidelberg, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Du YCN, Stillman B. Yph1p, an ORC-interacting protein: potential links between cell proliferation control, DNA replication, and ribosome biogenesis. Cell 2002; 109:835-48. [PMID: 12110181 DOI: 10.1016/s0092-8674(02)00773-0] [Citation(s) in RCA: 148] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Immunoprecipitation of the origin recognition complex (ORC) from yeast extracts identified Yph1p, an essential protein containing a BRCT domain. Two Yph1p complexes were characterized. Besides ORC, MCM proteins, cell-cycle regulatory proteins, checkpoint proteins, 60S ribosomal proteins, and preribosome particle proteins were found to be associated with Yph1p. Yph1p is predominantly nucleolar and is required for 60S ribosomal subunit biogenesis and possibly for translation on polysomes. Proliferating cells depleted of Yph1p arrest in G(1) or G(2), with no cells in S phase, or significantly delay S phase progression after release from a hydroxyurea arrest. Yph1p levels decline as cells commit to exit the cell cycle, and levels vary depending on energy source. Yph1p may link cell proliferation control to DNA replication, ribosome biogenesis, and translation on polysomes.
Collapse
Affiliation(s)
- Yi-Chieh Nancy Du
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA
| | | |
Collapse
|
14
|
Abstract
The past year has seen dramatic changes in our understanding of ribosome synthesis, fuelled largely by advances in proteomic analysis. It is now possible to outline the pathway of ribosome assembly, which is highly dynamic and involves a remarkable separation of the factors involved in the synthesis of the 40S and 60S ribosomal subunits. Around 140 identified, non-ribosomal proteins are currently implicated in post-transcriptional ribosome synthesis in yeast.
Collapse
Affiliation(s)
- Alessandro Fatica
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh EH9 3JR, Scotland, UK
| | | |
Collapse
|
15
|
Santamaría D, Hernández P, Martínez-Robles ML, Krimer DB, Schvartzman JB. Premature termination of DNA replication in plasmids carrying two inversely oriented ColE1 origins. J Mol Biol 2000; 300:75-82. [PMID: 10864499 DOI: 10.1006/jmbi.2000.3843] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In Escherichia coli plasmids carrying two inversely oriented ColE1 origins, DNA replication initiates at only one of the two potential origins. The other silent origin acts as a replication fork barrier. Whether this barrier is permanent or simply a pausing site remains unknown. Here, we used a repeated primer extension assay to map in vivo, at the nucleotide level, the 5' end of the nascent strand where initiation and blockage of replication forks occurs. Initiation occurred primarily at the previously defined origin, however, an alternative initiation site was detected 17 bp upstream. At the barrier, the lagging strand also terminated at the main initiation site. Therefore, the 5' end of the nascent strand at the barrier was identical to that generated during initiation. This observation strongly suggests that blockage of the replication fork at the silent origin is not just a pausing site but permanent, and leads to a premature termination event.
Collapse
Affiliation(s)
- D Santamaría
- Departamento de Biología Celular y del Desarrollo, CIB (CSIC), Velázquez 144, Madrid, 28006, Spain
| | | | | | | | | |
Collapse
|
16
|
Muller M, Lucchini R, Sogo JM. Replication of yeast rDNA initiates downstream of transcriptionally active genes. Mol Cell 2000; 5:767-77. [PMID: 10882113 DOI: 10.1016/s1097-2765(00)80317-2] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In the yeast S. cerevisiae, ARS (autonomously replicating sequence) elements located in the intergenic spacers of the rRNA gene locus are infrequently activated as origins of replication. We analyzed the rARS activation with a combination of neutral/neutral (N/N) two-dimensional (2D) gel electrophoresis and either the intercalating drug psoralen, which in vivo specifically marks the transcribing gene copies, or the selective accessibility of restriction sites in transcriptionally active genes. We found that initiation of replication starts at those rARSs placed immediately downstream of transcribing rRNA genes. This correlation between transcription and replication is consistent with the presence of nucleosome-free enhancers at each transcriptionally active gene copy and suggests that the transcription factor Abf1p is involved in replication initiation at the ARS in the rDNA gene locus.
Collapse
Affiliation(s)
- M Muller
- Institute of Cell Biology, ETH Hönggerberg, Zürich, Switzerland
| | | | | |
Collapse
|
17
|
Reppe S, Jemtland R, Oyen TB. Difference in strength of autonomously replicating sequences among repeats in the rDNA region of Saccharomyces cerevisiae. Biochem Biophys Res Commun 1999; 266:190-5. [PMID: 10581188 DOI: 10.1006/bbrc.1999.1811] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The rDNA region of Saccharomyces cerevisiae contains 100-200 tandemly repeated copies of a 9 kb unit, each with a potential replication origin. In the present studies of cloned fragments from the region involved in the regulation of replication of rDNA, we detected differences in autonomously replicating sequence (ARS) activity for clones from the same yeast strain. One clone, which showed very low ARS activity, carried a point mutation, a C instead of T, in position 9 of the essential 11 bp consensus ARS as compared to clones carrying the normal 10-of-11-bp match to the consensus. The mutation could be traced back to genomic rDNA where it represents about one-third of the rDNA units in that strain. Differences in ARS activity have implications for understanding the regulation of replication of rDNA, and the ratio of active to inactive ARS in the rDNA region may be important for potential generation of extrachromosomal copies.
Collapse
Affiliation(s)
- S Reppe
- Department of Biochemistry, University of Oslo, Oslo, Norway
| | | | | |
Collapse
|
18
|
Reeder RH. Regulation of RNA polymerase I transcription in yeast and vertebrates. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 1999; 62:293-327. [PMID: 9932458 DOI: 10.1016/s0079-6603(08)60511-5] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
This article focuses on what is currently known about the regulation of transcription by RNA polymerase I (pol I) in eukaryotic organisms at opposite ends of the evolutionary spectrum--a yeast, Saccharomyces cerevisiae, and vertebrates, including mice, frogs, and man. Contemporary studies that have defined the DNA sequence elements are described, as well as the majority of the basal transcription factors essential for pol I transcription. Situations in which pol I transcription is known to be regulated are reviewed and possible regulatory mechanisms are critically discussed. Some aspects of basal pol I transcription machinery appear to have been conserved from fungi to vertebrates, but other aspects have evolved, perhaps to meet the needs of a metazoan organism. Different parts of the pol I transcription machinery are regulatory targets depending on different physiological stimuli. This suggests that multiple signaling pathways may also be involved. The involvement of ribosomal genes and their transcripts in events such as mitosis, cancer, and aging is discussed.
Collapse
Affiliation(s)
- R H Reeder
- Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| |
Collapse
|
19
|
Zou H, Rothstein R. Holliday junctions accumulate in replication mutants via a RecA homolog-independent mechanism. Cell 1997; 90:87-96. [PMID: 9230305 DOI: 10.1016/s0092-8674(00)80316-5] [Citation(s) in RCA: 215] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The Holliday junction recombination intermediate, an X-shaped DNA molecule (xDNA), was analyzed at rDNA in mitotically growing yeast. In wild-type cells, xDNA is only detected at S phase, suggesting that recombination is stimulated to repair replication-related lesions. A search for mutations that increase the level of xDNA uncovered a gene encoding a subunit of DNA polymerase alpha. Systematic examination of replication mutants revealed that defects in polymerase alpha and delta but not the epsilon complex stimulate the level of xDNA. These xDNAs are Holliday junctions and not replication intermediates. The level of Holliday junctions is greatly reduced in rad52 mutants, but surprisingly, not in mutants defective in the three known mitotically expressed yeast RecA homologs.
Collapse
Affiliation(s)
- H Zou
- Department of Genetics and Development, College of Physicians and Surgeons, Columbia University, New York, New York 10032-2704, USA
| | | |
Collapse
|
20
|
Gögel E, Längst G, Grummt I, Kunkel E, Grummt F. Mapping of replication initiation sites in the mouse ribosomal gene cluster. Chromosoma 1996; 104:511-8. [PMID: 8625739 DOI: 10.1007/bf00352115] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
We have used nascent strand determination analysis to map start sites of DNA replication in the mouse ribosomal gene cluster in which individual copies of the ribosomal genes are separated by intergenic spacer regions. One origin of bidirectional replication (OBR) was localized within a 3 kb region centered about 1.6 kb upstream of the rDNA transcription start site. At least one additional initiation site is situated near the 3' end of the transcription unit. Adjacent to the OBR at the transcription start site are located two amplification-promoting sequences, i.e., APS1 and APS2. Nuclease-hypersensitive sites were identified in both of the two APSs as well as in the OBR region, thus indicating that these sequences have an altered chromatin structure. In the OBR an intrinsically bent region, a purine-rich element and other prospective initiation zone components are found.
Collapse
Affiliation(s)
- E Gögel
- Institut für Biochemie, Universität Würzburg, Biozentrum, D-97074 Würzburg, Germany
| | | | | | | | | |
Collapse
|
21
|
Brulé F, Venema J, Ségault V, Tollervey D, Branlant C. The yeast Hansenula wingei U3 snoRNA gene contains an intron and its coding sequence co-evolved with the 5' ETS region of the pre-ribosomal RNA. RNA (NEW YORK, N.Y.) 1996; 2:183-197. [PMID: 8601284 PMCID: PMC1369362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The 5' external transcribed spacer (ETS) region of the pre-rRNA in Saccharomyces cerevisiae contains a sequence with 10 bp of perfect complementarity to the U3 snoRNA. Base pairing between these sequences has been shown to be required for 18S rRNA synthesis, although interaction over the full 10 bp of complementarity is not required. We have identified the homologous sequence in the 5' ETS from the evolutionarily distant yeast Hansenula wingei; unexpectedly, this shows two sequence changes in the region predicted to base pair to U3. By PCR amplification and direct RNA sequencing, a single type of U3 snoRNA coding sequence was identified in H. wingei. As in the S. cerevisiae U3 snoRNA genes, it is interrupted by an intron with features characteristic of introns spliced in a spliceosome. Consequently, this unusual property is not restricted to the yeast genus Saccharomyces. The introns of the H. wingei and S. cerevisiae U3 genes show strong differences in length and sequence, but are located at the same position in the U3 sequence, immediately upstream of the phylogenetically conserved Box A region. The 3' domains of the H. wingei and S. cerevisiae U3 snoRNAs diverge strongly in primary sequence, but have very similar predicted secondary structures. The 5' domains, expected to play a direct role in pre-ribosomal RNA maturation, are more conserved. The sequence predicted to base pair to the pre-rRNA contains two nucleotide substitutions in H. wingei that restore 10 bp of perfect complementarity to the 5' ETS. This is a strong phylogenetic evidence for the importance of the U3/pre-rRNA interaction.
Collapse
Affiliation(s)
- F Brulé
- Laboratoire d'Enzymologie et de Génie Génétique, URA CNRS 457, Université de Nancy l, France
| | | | | | | | | |
Collapse
|
22
|
Affiliation(s)
- J F Diffley
- CRF Clare Hall Laboratories, South Mimms, U.K.
| |
Collapse
|
23
|
Wansink DG, Manders EE, van der Kraan I, Aten JA, van Driel R, de Jong L. RNA polymerase II transcription is concentrated outside replication domains throughout S-phase. J Cell Sci 1994; 107 ( Pt 6):1449-56. [PMID: 7962188 DOI: 10.1242/jcs.107.6.1449] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Transcription and replication are, like many other nuclear functions and components, concentrated in nuclear domains. Transcription domains and replication domains may play an important role in the coordination of gene expression and gene duplication in S-phase. We have investigated the spatial relationship between transcription and replication in S-phase nuclei after fluorescent labelling of nascent RNA and nascent DNA, using confocal immunofluorescence microscopy. Permeabilized human bladder carcinoma cells were labelled with 5-bromouridine 5′-triphosphate and digoxigenin-11-deoxyuridine 5′-triphosphate to visualize sites of RNA synthesis and DNA synthesis, respectively. Transcription by RNA polymerase II was localized in several hundreds of domains scattered throughout the nucleoplasm in all stages of S-phase. This distribution resembled that of nascent DNA in early S-phase. In contrast, replication patterns in late S-phase consisted of fewer, larger replication domains. In double-labelling experiments we found that transcription domains did not colocalize with replication domains in late S-phase nuclei. This is in agreement with the notion that late replicating DNA is generally not actively transcribed. Also in early S-phase nuclei, transcription domains and replication domains did not colocalize. We conclude that nuclear domains exist, large enough to be resolved by light microscopy, that are characterized by a high activity of either transcription or replication, but never both at the same time. This probably means that as soon as the DNA in a nuclear domain is being replicated, transcription of that DNA essentially stops until replication in the entire domain is completed.
Collapse
Affiliation(s)
- D G Wansink
- E.C. Slater Institute, University of Amsterdam, The Netherlands
| | | | | | | | | | | |
Collapse
|
24
|
Abstract
The packaging of regulatory DNA within the eukaryotic chromosome has considerable potential not only for modulating the transcriptional activity of genes, but also for propagating states that are permissive or restrictive for transcription. Sequence-specific transcription factors, histones and their modifications, chromodomain proteins and enzymes that modify histones, DNA methylation and proteins that recognize methylated DNA could all play independent or interrelated roles in regulating gene activity. They all also have the potential of propagating their interactions with nascent DNA following replication. However, observations on the phenomenon of X chromosome inactivation suggest that the formation and stability of specific histone-DNA interactions through replication may be central to the inheritance of chromatin states, and that other molecular mechanisms have supporting roles. The future offers the exciting prospect of reconstructing the propagation of stable active or repressed chromatin states in vitro, and consequently understanding the events occurring at the replication fork in molecular detail.
Collapse
Affiliation(s)
- A P Wolffe
- Laboratory of Molecular Embryology, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892
| |
Collapse
|
25
|
Brewer BJ, Lockshon D, Fangman WL. The arrest of replication forks in the rDNA of yeast occurs independently of transcription. Cell 1992; 71:267-76. [PMID: 1423594 DOI: 10.1016/0092-8674(92)90355-g] [Citation(s) in RCA: 217] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Replication forks, moving opposite to the direction of transcription, are arrested at the 3' ends of the 35S transcription units in the rDNA locus of S. cerevisiae. Because of its position and polarity, we tested the hypothesis that this replication fork barrier (RFB) results from the act of transcription. Three results contradict this hypothesis. First, the RFB persists in a strain containing a disruption of the gene for the 135 kd subunit of RNA polymerase I. Second, the RFB causes a polar arrest of replication forks when transplanted to a plasmid. Third, transcription by RNA polymerase II of a plasmid copy of the 35S transcription unit lacking the RFB does not generate a barrier. We propose that replication forks are arrested in a directional manner through the binding of one or more proteins to two closely spaced sites in the RFB.
Collapse
Affiliation(s)
- B J Brewer
- Department of Genetics, University of Washington, Seattle 98195
| | | | | |
Collapse
|
26
|
Abstract
The replicon hypothesis, first proposed in 1963 by Jacob and Brenner, states that DNA replication is controlled at sites called origins. Replication origins have been well studied in prokaryotes. However, the study of eukaryotic chromosomal origins has lagged behind, because until recently there has been no method for reliably determining the identity and location of origins from eukaryotic chromosomes. Here, we review a technique we developed with the yeast Saccharomyces cerevisiae that allows both the mapping of replication origins and an assessment of their activity. Two-dimensional agarose gel electrophoresis and Southern hybridization with total genomic DNA are used to determine whether a particular restriction fragment acquires the branched structure diagnostic of replication initiation. The technique has been used to localize origins in yeast chromosomes and assess their initiation efficiency. In some cases, origin activation is dependent upon the surrounding context. The technique is also being applied to a variety of eukaryotic organisms.
Collapse
MESH Headings
- Blotting, Southern
- Chromosome Mapping
- Chromosomes, Fungal/ultrastructure
- DNA Replication
- DNA, Circular/ultrastructure
- DNA, Fungal/genetics
- DNA, Fungal/ultrastructure
- DNA, Ribosomal/genetics
- Electrophoresis, Agar Gel
- RNA, Fungal/genetics
- RNA, Ribosomal/genetics
- Regulatory Sequences, Nucleic Acid
- Replicon
- Saccharomyces cerevisiae/genetics
Collapse
Affiliation(s)
- B J Brewer
- Department of Genetics, University of Washington, Seattle 98195
| | | |
Collapse
|
27
|
Abstract
From a "shotgun" collection of DNA fragments, isolated from Drosophila melanogaster, we selected sequences that function as autonomously replicating sequences (ARS) in the yeast Saccharomyces cerevisiae. To investigate the replicative potential of such sequences in Drosophila, five of these ARS elements and also the Adh gene of D. melanogaster, which has been described earlier to have ARS function in yeast, were microinjected into developing Drosophila eggs and analysed after reisolation from first instar larvae. As an assay for DNA replication, we determined the sensitivity of recovered plasmid DNA to restriction enzymes that discriminate between adenine methylation and non-methylation. Within the limits of detection our results show that none of the plasmids replicated two or more rounds. However, a fraction of all injected plasmid DNAs, including vector DNA, seems to replicate once. The same result was obtained for a DNA sequence from mouse that had been reported to have replication origin function in mouse tissue culture cells. We excluded the possibility that methylation of the plasmids is the reason for their inability to replicate. These results demonstrate that homologous and heterologous DNA sequences that drive replication of plasmids in cells of other species are not sufficient to fulfil this function in Drosophila embryos.
Collapse
Affiliation(s)
- G E Roth
- Institut für Genetik, Freie Universität Berlin, Federal Republic of Germany
| |
Collapse
|
28
|
Affiliation(s)
- J L Woolford
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213
| |
Collapse
|
29
|
Affiliation(s)
- J M Verdier
- Département de Biologie (SBCH), Centre d'Etudes Nucléaires de Saclay, Gif-Sur-Yvette, France
| |
Collapse
|
30
|
Cannon RD, Jenkinson HF, Shepherd MG. Isolation and nucleotide sequence of an autonomously replicating sequence (ARS) element functional in Candida albicans and Saccharomyces cerevisiae. MOLECULAR & GENERAL GENETICS : MGG 1990; 221:210-8. [PMID: 2196431 DOI: 10.1007/bf00261723] [Citation(s) in RCA: 65] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
An 8.6-kb fragment was isolated from an EcoRI digest of Candida albicans ATCC 10261 genomic DNA which conferred the property of autonomous replication in Saccharomyces cervisiae on the otherwise non-replicative plasmid pMK155 (5.6 kb). The DNA responsible for the replicative function was subcloned as a 1.2-kb fragment onto a non-replicative plasmid (pRC3915) containing the C. albicans URA3 and LEU2 genes to form plasmid pRC3920. This plasmid was capable of autonomous replication in both S. cerevisiae and C. albicans and transformed S. cerevisiae AH22 (leu2-) to Leu+ at a frequency of 2.15 x 10(3) transformants per microgram DNA, and transformed C. albicans SGY-243 (delta ura3) to Ura+ at a frequency of 1.91 x 10(3) transformants per microgram DNA. Sequence analysis of the cloned DNA revealed the presence of two identical regions of eleven base pairs (5'TTTTATGTTTT3') which agreed with the consensus of autonomously replicating sequence (ARS) cores functional in S. cerevisiae. In addition there were two 10/11 and numerous 9/11 matches to the core consensus. The two 11/11 matches to the consensus, CaARS1 and CaARS2, were located on opposite strands in a non-coding AT-rich region and were separated by 107 bp. Also present on the C. albicans DNA, 538 bp from the ARS cores, was a gene for 5S rRNA which showed sequence homology with several other yeast 5S rRNA genes.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- R D Cannon
- Department of Oral Biology and Oral Pathology, Faculty of Dentistry, University of Otago, Dunedin, New Zealand
| | | | | |
Collapse
|
31
|
Affiliation(s)
- J E Pérez-Ortin
- Departamento de Bioquímica y Biología Molecular, Facultades de Ciencias, Universitat de València, Burjassot, Spain
| | | | | |
Collapse
|
32
|
Abstract
A general approach for assaying the in vivo direction of replication for any DNA segment has been developed. This technique allows the scanning of genomic regions to detect bidirectional tail-to-tail replication, indicating the presence of a functional origin. By this criterion we identified the approximate positions of two origin sites downstream of the Chinese hamster DHFR gene. Further mapping revealed areas of head-to-head replication, signifying locations of replication termination and thus defining the landmarks of a complete animal cell replicon. Genetic proof for the existence of the DHFR origin was obtained by showing that this region serves as a bidirectional DNA synthesis initiation point following its integration into other sites in the genome by transfection. To show the general applicability of this methodology, we studied the APRT domain. Replication mapping together with the use of deletion mutants allowed the identification of an origin at a far-upstream locus.
Collapse
Affiliation(s)
- S Handeli
- Department of Cellular Biochemistry Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | | | | | | |
Collapse
|
33
|
Kim RA, Wang JC. A subthreshold level of DNA topoisomerases leads to the excision of yeast rDNA as extrachromosomal rings. Cell 1989; 57:975-85. [PMID: 2544296 DOI: 10.1016/0092-8674(89)90336-x] [Citation(s) in RCA: 155] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
In a yeast DNA topoisomerase double mutant TG205 (delta top1 top2-4), over half of the rDNA is present as extrachromosomal rings containing one 9 kb unit of the rDNA gene or tandem repeats of it. Expression of a plasmid-borne TOP1 or TOP2 gene in the strain leads to the integation of the extrachromosomal rDNA rings back into the chromosomal rDNA cluster. When the plasmid-borne topoisomerase gene is expressed from an inducible promoter of the GAL1 gene, repression of the gene by dextrose leads to reappearance of the extrachromosomal rDNA rings. The DNA topoisomerase-dependent excision/integration of rDNA is discussed in terms of the possibility of rDNA supercoiling by transcription and the effects of DNA topology on intra- and interchromosomal recombination.
Collapse
Affiliation(s)
- R A Kim
- Department of Biochemistry and Molecular Biology, Harvard University, Cambridge, Massachusetts 02138
| | | |
Collapse
|
34
|
Osheim YN, Beyer AL. Electron microscopy of ribonucleoprotein complexes on nascent RNA using Miller chromatin spreading method. Methods Enzymol 1989; 180:481-509. [PMID: 2482429 DOI: 10.1016/0076-6879(89)80119-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
35
|
Passmore S, Maine GT, Elble R, Christ C, Tye BK. Saccharomyces cerevisiae protein involved in plasmid maintenance is necessary for mating of MAT alpha cells. J Mol Biol 1988; 204:593-606. [PMID: 3066908 DOI: 10.1016/0022-2836(88)90358-0] [Citation(s) in RCA: 241] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
We previously reported the isolation of yeast mutants that seem to affect the function of certain autonomously replicating sequences (ARSs). These mutants are known as mcm for their defect in the maintenance of minichromosomes. We have now characterized in more detail one ARS-specific mutation, mcm1-1. This Mcm1 mutant has a second phenotype; MAT alpha mcm1-1 strains are sterile. MCM1 is non-allelic to other known alpha-specific sterile mutations and, unlike most genes required for mating, it is essential for growth. The alpha-specific sterile phenotype of the mcm1-1 mutant is manifested by its failure to produce a normal amount of the mating pheromone, alpha-factor. In addition, transcripts of the MF alpha 1 and STE3 genes, which encode the alpha-factor precursor and the alpha-factor receptor, respectively, are greatly reduced in this mutant. These and other properties of the mcm1-1 mutant suggest that the MCM1 protein may act as a transcriptional activator of alpha-specific genes. We have cloned, mapped and sequenced the wild-type and mutant alleles of MCM1, which is located on the right arm of chromosome XIII near LYS7. The MCM1 gene product is a protein of 286 amino acid residues and contains an unusual region in which 19 out of 20 residues are either aspartic or glutamic acid, followed by a series of glutamine tracts. MCM1 has striking homology to ARG80, a regulatory gene of the arginine metabolic pathway located about 700 base-pairs upstream from MCM1. A substitution of leucine for proline at amino acid position 97, immediately preceding the polyanionic region, was shown to be responsible for both the alpha-specific sterile and minichromosome-maintenance defective phenotypes of the mcm1-1 mutant.
Collapse
Affiliation(s)
- S Passmore
- Section of Biochemistry, Molecular and Cell Biology Cornell University, Ithaca, NY 14853
| | | | | | | | | |
Collapse
|
36
|
|
37
|
Abstract
Replication of the approximately 200 tandem copies of yeast ribosomal RNA genes (rDNA) is known to be initiated within a subset of the repeats, with transcription continuing during the replication process. To examine replication fork movement in this gene cluster, we used a two-dimensional (2D) agarose gel electrophoresis procedure that distinguishes molecules with different branched structures. Replication forks move through most of the rDNA in the same direction in which RNA polymerase I transcribes the 35S rRNA precursor: the 3' end of this transcription unit acts as a barrier to replication forks moving in the direction opposite to RNA polymerase I. The replication fork barrier (RFB) is observed as the accumulation of branched intermediates of specific size. We propose that the act of transcription may influence the movement of replication forks, creating barriers at the 3' ends of actively transcribed genes.
Collapse
Affiliation(s)
- B J Brewer
- Department of Genetics, University of Washington, Seattle 98195
| | | |
Collapse
|
38
|
|
39
|
Hernández P, Bjerknes CA, Lamm SS, Van't Hof J. Proximity of an ARS consensus sequence to a replication origin of pea (Pisum sativum). PLANT MOLECULAR BIOLOGY 1988; 10:413-422. [PMID: 24277589 DOI: 10.1007/bf00014947] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/1987] [Accepted: 01/12/1988] [Indexed: 06/02/2023]
Abstract
The replication origin (ori-r9) of the 9.0 kb rDNA repeats of pea (Pisum sativum, cv. Alaska) was cloned and found to reside in a 1.5 kb fragment of the non-transcribed spacer region located between the 25 S and 18 S genes. Labeled rDNA rich in replication forks, from cells positioned at the G1/S phase boundary, was used to map ori-r9 by hybridization procedures. Ori-r9 is in a 210-base fragment that is 1.6 kb from the 5' end of the 18 S gene and about 1.5 kb from the 3' end of the 25 S gene. The same procedures, using labeled synthetic ARS consensus sequence as a probe, showed than an ARS consensus sequence is located 3' to ori-r9 in a 710-base fragment. An ARS consensus sequence is, therefore, adjacent to ori-r9 but not coincidental with it.
Collapse
Affiliation(s)
- P Hernández
- Centro de Investigaciones Biológicas, C.S.I.C., Madrid, Spain
| | | | | | | |
Collapse
|
40
|
Kearsey SE, Edwards J. Mutations that increase the mitotic stability of minichromosomes in yeast: characterization of RAR1. MOLECULAR & GENERAL GENETICS : MGG 1987; 210:509-17. [PMID: 3323847 DOI: 10.1007/bf00327205] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
In an attempt to identify proteins involved in the initiation of DNA replication, we have isolated a series of Saccharomyces cerevisiae mutants in which the function of putative replication origins is affected. The phenotype of these Rar- (regulation of autonomous replication) mutants is to increase the mitotic stability of plasmids whose replication is dependent on weak ARS elements. These mutations are generally recessive and complementation analysis shows that mutations in several genes may improve the ability of weak ARS elements to function. One mutation (rar1-1) also confers temperature-sensitive growth, and thus an essential gene is affected. We have determined the DNA sequence of the RAR1 gene, which reveals an open reading frame for a 48.5 kDa protein. The RAR1 gene is linked to rna1 on chromosome XIII.
Collapse
|
41
|
Huberman JA, Spotila LD, Nawotka KA, el-Assouli SM, Davis LR. The in vivo replication origin of the yeast 2 microns plasmid. Cell 1987; 51:473-81. [PMID: 3311385 DOI: 10.1016/0092-8674(87)90643-x] [Citation(s) in RCA: 385] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
We have used two-dimensional neutral/alkaline agarose gel electrophoresis to separate the nascent strands of replicating yeast 2 micron plasmid DNA molecules according to extent of replication, away from nonreplicating molecules and parental strands. Analysis of the lengths of nascent strands by sequential hybridization with short probes shows that replication proceeds bidirectionally from a single origin at map position 3700 +/- 100, coincident with the genetically mapped ARS element. The two recombinational isomers of 2 microns plasmid (forms A and B) replicate with equal efficiency. These results suggest that ARS elements may prove to be replication origins for chromosomal DNA.
Collapse
Affiliation(s)
- J A Huberman
- Department of Molecular and Cellular Biology, Roswell Park Memorial Institute, Buffalo, New York 14263
| | | | | | | | | |
Collapse
|
42
|
Delidakis C, Kafatos FC. Amplification of a chorion gene cluster in Drosophila is subject to multiple cis-regulatory elements and to long-range position effects. J Mol Biol 1987; 197:11-26. [PMID: 2824792 DOI: 10.1016/0022-2836(87)90605-x] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
We have used P-element transformation to study cis-acting elements involved in the control of amplification of the third chromosome chorion gene cluster (66D12-15) in Drosophila melanogaster. To reduce position effects large fragments (5.7 to 12 kb; kb = 10(3) bases) of chorion DNA and the 7.2 kb ry+ fragment were used to "buffer" these putative elements from sequences at the insertion site. Nevertheless, even the longest constructs were profoundly affected by the insertion sites and showed amplification levels ranging from undetectable to higher than in the endogenous locus. Any amplification was tissue and temporally correct and extended into the neighboring ry+ sequences. Analysis of amplification levels at various points along two constructs bearing the same 10 kb chorion insert in opposite orientations showed maximal levels occurring at one end of the chorion fragment, irrespective of whether that end was buffered at the middle of the transposon or exposed close to the insertion site. The maximally amplifying region encompasses the amplification control element (ACE), which has been shown to be necessary for amplification, in agreement with its putative role as a replication origin. We have additionally identified amplification-enhancing elements present elsewhere in the 10 kb chorion fragment, which are needed for attainment of high copy number. These elements, distinct from the ACE, have been only coarsely localized within two 2.25 to 2.3 kb regions. Some interesting sequence similarities between these two regions and the ACE element are pointed out.
Collapse
Affiliation(s)
- C Delidakis
- Department of Cellular and Developmental Biology, Harvard University, Cambridge, MA 02138
| | | |
Collapse
|
43
|
Van't Hof J, Hernández P, Bjerknes CA, Lamm SS. Location of the replication origin in the 9-kb repeat size class of rDNA in pea (Pisum sativum). PLANT MOLECULAR BIOLOGY 1987; 9:87-95. [PMID: 24276898 DOI: 10.1007/bf00015641] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/1987] [Accepted: 04/10/1987] [Indexed: 06/02/2023]
Abstract
The replication origin of the 9-kb rDNA repeat size class of pea (Pisum sativum cv. Alaska) was identified by benzoylated naphthoylated DEAE-cellulose column chromatography and Southern blotting procedures. The origin is located at or near a 0.19-kb EcoR I fragment in the non-transcribed spacer region between the 25S and 18S rRNA genes. Identification of the origin was based on three criteria: (i) an enrichment of the 0.19-kb fragment in replicating rDNA from asynchronously dividing root meristematic cells, (ii) the scarcity of the 0.19-kb fragment in rDNA from non-dividing carbohydrate starved cells, and (iii) a 60-min periodic enrichment of the 0.19-kb fragment in replicating rDNA that temporally coincides with the sequential initiation of replication of replicon families in synchronized pea root cells.
Collapse
Affiliation(s)
- J Van't Hof
- Biology Department, Brookhaven National Laboratory, 11973, Upton, New York, USA
| | | | | | | |
Collapse
|
44
|
|
45
|
Sinha P, Chang V, Tye BK. A mutant that affects the function of autonomously replicating sequences in yeast. J Mol Biol 1986; 192:805-14. [PMID: 3295255 DOI: 10.1016/0022-2836(86)90030-6] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
We previously reported the isolation of a series of mcm mutants that are defective in the maintenance of minichromosomes in yeast. These minichromosomes are circular plasmids, each containing an autonomously replicating sequence (ARS) and a centromere. One of the mcm mutants, mcm2, has the following phenotype: at room temperature it affects the stability of only some minichromosomes depending on the ARS present, while at high temperature it affects all minichromosomes tested irrespective of the ARS present. Here we show that the mcm defect as well as its temperature-dependent specificity for ARSs can be demonstrated with circular as well as linear plasmids that do not contain centromeric sequences. Larger chromosomes containing multiple ARSs are also unstable in this mutant. Further analyses indicate that the mcm2 mutation causes the loss, rather than the aberrant segregation, of the circular minichromosomes. In addition, this mutation appears to stimulate mitotic recombination frequencies. These properties of the mcm2 mutant are consistent with the idea that the mcm2 mutation results in a defect in the initiation of DNA replication at ARSs, the putative chromosomal replication origins in yeast.
Collapse
|
46
|
Abstract
DNA fragments that show retarded electrophoretic mobility through polyacrylamide gels have been found in both prokaryotes and eukaryotes. In the case of kinetoplast DNA, evidence has been presented that the DNA is curved or 'bent'. Bent DNA has previously been found at the lambda and simian virus 40 (SV40) DNA replication origins. Here we show the existence of bent DNA at a yeast autonomously replicating sequence (ARS1), a putative replication origin. The bent DNA has been localized to a 40-55 base pair (bp) segment and contains six (A)3-5 stretches (that is, six poly(A) stretches, three to five nucleotides in length) phased approximately every 10.5 bp. This region contains a DNA binding site for a yeast protein factor. This site lies at the 3' end of the TRP1 gene, in a region devoid of nucleosomes, and is positioned 80 bp away from the ARS consensus sequence; removal of this region impairs ARS function in vivo. The bent DNA may be involved in transcription termination or the prevention of nucleosome assembly in this region.
Collapse
|
47
|
Abstract
Replication of the Xenopus laevis 5S RNA gene in vitro is unimpeded by the presence of a complete transcription complex assembled on the internal control region of the gene. The transcription complex is disrupted by passage of the replication fork, specific transcription factors are displaced, and the daughter 5S RNA genes are inactivated. We have been unable to demonstrate that any "memory" of the preexisting transcription complex is transmitted to the daughter DNA duplexes following replication.
Collapse
|
48
|
Tye BK, Sinha P, Surosky R, Gibson S, Maine G, Eisenberg S. Host factors in nuclear plasmid maintenance in Saccharomyces cerevisiae. BASIC LIFE SCIENCES 1986; 40:499-510. [PMID: 3551921 DOI: 10.1007/978-1-4684-5251-8_38] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
In yeast, the initiation of DNA replication on chromosomes is believed to occur at specific sequences known as autonomously replicating sequences (ARSs). We previously isolated a number of mutants that are defective in the maintenance of minichromosomes. Analysis of these mutants suggests that although ARSs differ greatly from one another in their primary sequences, they appear to share a common enzyme complex for the initiation of DNA replication. However, this initiation enzyme complex probably binds with differential affinity to different ARSs. This idea is corroborated by our identification of an ARS-binding protein that binds to different ARSs with different efficiencies.
Collapse
|