1
|
Ma H, Li RF, Yu ZL. Micro/nanomotors in targeted drug delivery: Advances, challenges, and future directions. Int J Pharm 2025; 674:125471. [PMID: 40090636 DOI: 10.1016/j.ijpharm.2025.125471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 03/04/2025] [Accepted: 03/11/2025] [Indexed: 03/18/2025]
Abstract
The therapeutic efficacy of drugs is highly dependent on their successful delivery to the target site. However, achieving targeted drug delivery to diseased areas remains a significant challenge. Current drug delivery systems based on nanocarriers often suffer from inefficiencies due to their lack of intrinsic propulsion and active targeting capabilities. Micro/nanomotors (MNMs), which are miniature machines capable of converting chemical or external energy into mechanical energy, offer a promising solution. Unlike traditional nanoparticles (NPs) that rely on passive diffusion through blood circulation, MNMs exhibit active locomotion, providing a significant advantage in future drug delivery applications. This review primarily focuses on the progress in research of MNMs in the realm of drug delivery. We present a succinct overview of MNMs and subsequently classify them based on their modes of mobility. Then we comprehensively summarize the applications of micro/nanomotor-based drug delivery systems in the treatment of various diseases, including cancer, bacterial infections, cardiovascular diseases, and others. Based on the current research status, we summarize the potential challenges, possible solutions, and prospect several key directions for future studies in active-targeted drug delivery using MNMs. Future research should focus on improving motor delivery efficiency, biosafety measures, productivity, and maneuverability.
Collapse
Affiliation(s)
- Hui Ma
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, China
| | - Rui-Fang Li
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, China; Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Wuhan University, 430079 Wuhan, China.
| | - Zi-Li Yu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, China; Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Wuhan University, 430079 Wuhan, China.
| |
Collapse
|
2
|
Hou H, Huang S, Huang W, Huang L, Zhang Z, Liang L. Aldehyde Dehydrogenase 2 rs671 Polymorphism is Associated with Susceptibility of Coronary Atherosclerosis in Patients with Hypertension. Int J Gen Med 2025; 18:681-690. [PMID: 39959460 PMCID: PMC11827492 DOI: 10.2147/ijgm.s501396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 02/02/2025] [Indexed: 02/18/2025] Open
Abstract
Objective Predisposing factors for coronary atherosclerosis in hypertensive individuals are unclear. Atherosclerosis is a chronic inflammatory disease caused by lipid deposition in the blood vessels, and aldehyde dehydrogenase 2 (ALDH2) is involved in this process. The aim of this study was to assess the relationship between ALDH2 rs671 polymorphism, serum lipids, peripheral inflammation indices (pan-immune inflammation value (PIV), systemic immune inflammation index (SII), and system inflammation response index (SIRI)) and coronary atherosclerosis risk in hypertensive patients. Methods A total of 923 patients with hypertension (439 patients with coronary atherosclerosis, and 484 without) who were admitted to Meizhou People's Hospital between January 2019 and February 2024 were retrospectively analyzed. The relationship between ALDH2 rs671 polymorphism, serum lipid levels, and peripheral inflammation indices and the risk of coronary atherosclerosis was analyzed. Results There were 532 (57.6%), 337 (36.5%), and 54 (5.9%) individuals with ALDH2 rs671 G/G, G/A, and A/A genotype, respectively. The frequency of the ALDH2 rs671 G/A genotype, and the levels of TC, LDL-C, PIV, SII, and SIRI in patients with coronary atherosclerosis were higher than those in controls. Logistic analysis showed that body mass index (BMI) ≥24.0 kg/m2 (odds ratio (OR): 1.670, 95% confidence interval (CI): 1.185-2.352, p=0.003), history of smoking (OR: 2.024, 95% CI: 1.263-3.243, p=0.003), ALDH2 rs671 G/A genotype (OR: 1.821, 95% CI: 1.280-2.589, p=0.001), high TC (OR: 1.592, 95% CI: 1.021-2.485, p=0.040), high SII (OR: 2.290, 95% CI: 1.386-3.784, p=0.001), and high SIRI (OR: 1.727, 95% CI: 1.126-2.650, p=0.012) were associated with coronary atherosclerosis in patients with hypertension. Conclusion Overweight (BMI ≥24.0 kg/m2), history of smoking, ALDH2 rs671 G/A genotype, high TC, SII, and SIRI levels were associated risk factors for coronary atherosclerosis in patients with hypertension.
Collapse
Affiliation(s)
- Haisong Hou
- Department of Blood Transfusion, Meizhou People’s Hospital, Meizhou, People’s Republic of China
| | - Sina Huang
- Department of Cardiovascular Surgery, Meizhou People’s Hospital, Meizhou, People’s Republic of China
| | - Wenyi Huang
- Center for Surgical Operation, Meizhou People’s Hospital, Meizhou, People’s Republic of China
| | - Lingmei Huang
- Department of Blood Transfusion, Meizhou People’s Hospital, Meizhou, People’s Republic of China
| | - Zhouhua Zhang
- Center for Cardiovascular Diseases, Meizhou People’s Hospital, Meizhou, People’s Republic of China
| | - Liu Liang
- Department of Laboratory Medicine, Meizhou People’s Hospital, Meizhou, People’s Republic of China
| |
Collapse
|
3
|
Jang MA, Song JW, Kim RH, Kang DO, Kang U, Kim HJ, Kim JH, Park EJ, Park YH, Lee BH, Kim CK, Park K, Kim JW, Yoo H. Real-Time Imaging Assessment of Stress-Induced Vascular Inflammation Using Heartbeat-Synchronized Motion Compensation. Arterioscler Thromb Vasc Biol 2024; 44:2493-2506. [PMID: 39387121 DOI: 10.1161/atvbaha.124.321566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 09/19/2024] [Indexed: 10/12/2024]
Abstract
BACKGROUND Chronic mental stress accelerates atherosclerosis through complicated neuroimmune pathways, needing for advanced imaging techniques to delineate underlying cellular mechanisms. While histopathology, ex vivo imaging, and snapshots of in vivo images offer promising evidence, they lack the ability to capture real-time visualization of blood cell dynamics within pulsatile arteries in longitudinal studies. METHODS An electrically tunable lens was implemented in intravital optical microscopy, synchronizing the focal plane with heartbeats to follow artery movements. ApoE-/- mice underwent 2 weeks of restraint stress before baseline imaging followed by 2 weeks of stress exposure in the longitudinal imaging, while nonstressed mice remained undisturbed. The progression of vascular inflammation was assessed in the carotid arteries through intravital imaging and histological analyses. RESULTS A 4-fold reduction of motion artifact, assessed by interframe SD, and an effective temporal resolution of 25.2 Hz were achieved in beating murine carotid arteries. Longitudinal intravital imaging showed chronic stress led to a 6.09-fold (P=0.017) increase in myeloid cell infiltration compared with nonstressed mice. After 3 weeks, we observed that chronic stress intensified vascular inflammation, increasing adhered myeloid cells by 2.45-fold (P=0.031), while no significant changes were noted in nonstressed mice. Microcirculation imaging revealed increased circulating, rolling, and adhered cells in stressed mice's venules. Histological analysis of the carotid arteries confirmed the in vivo findings that stress augmented plaque area, myeloid cell and macrophage accumulation, and necrotic core volume while reducing fibrous cap thickness indicating accelerated plaque formation. We visualized the 3-dimensional structure of the carotid artery and 4-dimensional dynamics of the venules in the cremaster muscle. CONCLUSIONS Dynamic focusing motion compensation intravital microscopy enabled subcellular resolution in vivo imaging of blood cell dynamics in beating arteries under chronic restraint stress in real time. This novel technique emphasizes the importance of advanced in vivo imaging for understanding cardiovascular disease.
Collapse
Affiliation(s)
- Minseok A Jang
- Department of Mechanical Engineering, KAIST (Korea Advanced Institute of Science and Technology), Daejeon, Korea (M.A.J., U.K., H.Y.)
| | - Joon Woo Song
- Multimodal Imaging and Theranostics Laboratory, Cardiovascular Center (J.W.S., R.H.K., D.O.K., H.J.K., J.H.K., E.J.P., Y.H.P., J.W.K.), Korea University Guro Hospital, Seoul
| | - Ryeong Hyun Kim
- Multimodal Imaging and Theranostics Laboratory, Cardiovascular Center (J.W.S., R.H.K., D.O.K., H.J.K., J.H.K., E.J.P., Y.H.P., J.W.K.), Korea University Guro Hospital, Seoul
| | - Dong Oh Kang
- Multimodal Imaging and Theranostics Laboratory, Cardiovascular Center (J.W.S., R.H.K., D.O.K., H.J.K., J.H.K., E.J.P., Y.H.P., J.W.K.), Korea University Guro Hospital, Seoul
| | - Ungyo Kang
- Department of Mechanical Engineering, KAIST (Korea Advanced Institute of Science and Technology), Daejeon, Korea (M.A.J., U.K., H.Y.)
| | - Hyun Jung Kim
- Multimodal Imaging and Theranostics Laboratory, Cardiovascular Center (J.W.S., R.H.K., D.O.K., H.J.K., J.H.K., E.J.P., Y.H.P., J.W.K.), Korea University Guro Hospital, Seoul
| | - Jin Hyuk Kim
- Multimodal Imaging and Theranostics Laboratory, Cardiovascular Center (J.W.S., R.H.K., D.O.K., H.J.K., J.H.K., E.J.P., Y.H.P., J.W.K.), Korea University Guro Hospital, Seoul
| | - Eun Jin Park
- Multimodal Imaging and Theranostics Laboratory, Cardiovascular Center (J.W.S., R.H.K., D.O.K., H.J.K., J.H.K., E.J.P., Y.H.P., J.W.K.), Korea University Guro Hospital, Seoul
| | - Ye Hee Park
- Multimodal Imaging and Theranostics Laboratory, Cardiovascular Center (J.W.S., R.H.K., D.O.K., H.J.K., J.H.K., E.J.P., Y.H.P., J.W.K.), Korea University Guro Hospital, Seoul
| | - Bo-Hyung Lee
- Department of Neurology (B.-H.L., C.K.K.), Korea University Guro Hospital, Seoul
| | - Chi Kyung Kim
- Department of Neurology (B.-H.L., C.K.K.), Korea University Guro Hospital, Seoul
| | - Kyeongsoon Park
- Department of Systems Biotechnology, Chung-Ang University, Anseong, Korea (K.P.)
| | - Jin Won Kim
- Multimodal Imaging and Theranostics Laboratory, Cardiovascular Center (J.W.S., R.H.K., D.O.K., H.J.K., J.H.K., E.J.P., Y.H.P., J.W.K.), Korea University Guro Hospital, Seoul
| | - Hongki Yoo
- Department of Mechanical Engineering, KAIST (Korea Advanced Institute of Science and Technology), Daejeon, Korea (M.A.J., U.K., H.Y.)
| |
Collapse
|
4
|
Fu M, Li Q, Qian H, Min X, Yang H, Liu Z, Wu W, Zhong J, Xu H, Mei A, Chen J. Exendin-4 intervention attenuates atherosclerosis severity by modulating myeloid-derived suppressor cells and inflammatory cytokines in ApoE -/- mice. Int Immunopharmacol 2024; 140:112844. [PMID: 39094363 DOI: 10.1016/j.intimp.2024.112844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/21/2024] [Accepted: 07/29/2024] [Indexed: 08/04/2024]
Abstract
OBJECTIVE To investigate the impact of the glucagon-like peptide-1 (GLP-1) receptor agonist Exendin-4 on the proportion of myeloid-derived suppressor cells (MDSCs) in male ApoE-/- mice, and investigate alterations in the concentrations of inflammatory factors in plasma and spleen tissues and assess their correlation with MDSCs. METHODS Thirty male ApoE-/- mice were randomly divided into five groups (n = 6 per group): control group (CON), model group (MOD), Exendin-4 intervention group (MOD/Ex-4), Exendin-9-39 intervention group (MOD/Ex-9-39), and Exendin-4 + Exendin-9-39 combined intervention group (MOD/Ex-4 + Ex-9-39). After 4 weeks of drug intervention, changes in aortic plaque were observed using Oil Red O staining and H&E staining. Flow cytometry was employed to detect the content of myeloid-derived suppressor cells (MDSCs) in bone marrow and peripheral blood. ELISA was utilized to measure the concentrations of inflammatory factors in mouse peripheral blood plasma, while RT-qPCR was employed to quantify the expression levels of inflammatory factors in the spleen. Pearson correlation analysis was conducted to assess the relationship between MDSCs and inflammatory factors. RESULTS Mice in the MOD group had significantly higher body weight compared to the CON group, with a statistically significant difference (P<0.05). Following Exendin-4 intervention, body weight was reduced compared to the MOD group (P<0.05). Additionally, Exendin-4 treatment led to a significant reduction in atherosclerotic plaque compared to the MOD group (P<0.001). After Exendin-4 intervention, the proportion of MDSCs in the bone marrow was higher than in the MOD group (P<0.001), and the proportion of MDSCs in peripheral blood was significantly higher than in the MOD group (P<0.05). Further investigation revealed that Exendin-4 could regulate lipid levels in mice, decreasing concentrations of TG (P<0.01), TC (P<0.0001), and LDL-C (P<0.0001), while increasing HDL-C concentrations (P<0.01). Moreover, after Exendin-4 treatment, the level of the cytokine IL-6 in peripheral plasma was significantly lower compared to the MOD group (P<0.0001), while levels of IL-10 and TGF-β were significantly higher compared to the MOD group (P<0.0001). In the spleen, levels of the cytokines IL-10 (P<0.0001) and TGF-β (P<0.001) were significantly increased compared to the MOD group. Pearson correlation analysis showed that the proportion of MDSCs in peripheral blood was positively correlated with IL-10 and TGF-β levels in both the spleen and peripheral blood. Additionally, the proportion of MDSCs in the bone marrow was positively correlated with IL-10 and TGF-β levels in the spleen and peripheral blood. CONCLUSION Exendin-4 alleviates the severity of atherosclerosis. This process may be achieved by promoting the secretion of myeloid-derived suppressor cells (MDSCs) in the bone marrow and peripheral blood of atherosclerotic ApoE-/- mice, regulating the ratio of inflammatory factors in the body, reducing mouse body weight, and lowering blood lipids.
Collapse
Affiliation(s)
- Miaoxin Fu
- Sinopharm Dongfeng General Hospital (Hubei Clinical Research Center of Hypertension), School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China
| | - Qingmei Li
- Sinopharm Dongfeng General Hospital (Hubei Clinical Research Center of Hypertension), School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China; Sheng Li OilField Central Hospital, Dong Ying, Shandong Province, China
| | - Hang Qian
- Sinopharm Dongfeng General Hospital (Hubei Clinical Research Center of Hypertension), School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China
| | - Xinwen Min
- Sinopharm Dongfeng General Hospital (Hubei Clinical Research Center of Hypertension), School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China
| | - Handong Yang
- Sinopharm Dongfeng General Hospital (Hubei Clinical Research Center of Hypertension), School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China
| | - Zhixin Liu
- Shiyan Key Laboratory of Virology, Hubei University of Medicine, Shiyan, China
| | - Wenwen Wu
- School of Public Health, Hubei University of Medicine, 442000 Shiyan, Hubei, China
| | - Jixin Zhong
- Department of Rheumatology and Immunology, Tongji Hospital, Huazhong University of Science and Technology, 430074 Wuhan, Hubei, China
| | - Hao Xu
- Sinopharm Dongfeng General Hospital (Hubei Clinical Research Center of Hypertension), School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China.
| | - Aihua Mei
- Sinopharm Dongfeng General Hospital (Hubei Clinical Research Center of Hypertension), School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China.
| | - Jun Chen
- Sinopharm Dongfeng General Hospital (Hubei Clinical Research Center of Hypertension), School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China; Shiyan Key Laboratory of Virology, Hubei University of Medicine, Shiyan, China.
| |
Collapse
|
5
|
Xiang D, Jiang L, Yuan Q, Yu Y, Liu R, Chen M, Kuai Z, Zhang W, Yang F, Wu T, He Z, Ke Z, Hong W, He P, Tan N, Sun Y, Shi Z, Wei X, Luo J, Tan X, Huo Y, Qin G, Zhang C. Leukocyte-Specific Morrbid Promotes Leukocyte Differentiation and Atherogenesis. RESEARCH (WASHINGTON, D.C.) 2023; 6:0187. [PMID: 37426471 PMCID: PMC10325668 DOI: 10.34133/research.0187] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 06/14/2023] [Indexed: 07/11/2023]
Abstract
Monocyte-to-M0/M1 macrophage differentiation with unclear molecular mechanisms is a pivotal cellular event in many cardiovascular diseases including atherosclerosis. Long non-coding RNAs (lncRNAs) are a group of protein expression regulators; however, the roles of monocyte-lncRNAs in macrophage differentiation and its related vascular diseases are still unclear. The study aims to investigate whether the novel leukocyte-specific lncRNA Morrbid could regulate macrophage differentiation and atherogenesis. We identified that Morrbid was increased in monocytes and arterial walls from atherosclerotic mouse and from patients with atherosclerosis. In cultured monocytes, Morrbid expression was markedly increased during monocyte to M0 macrophage differentiation with an additional increase during M0 macrophage-to-M1 macrophage differentiation. The differentiation stimuli-induced monocyte-macrophage differentiation and the macrophage activity were inhibited by Morrbid knockdown. Moreover, overexpression of Morrbid alone was sufficient to elicit the monocyte-macrophage differentiation. The role of Morrbid in monocyte-macrophage differentiation was also identified in vivo in atherosclerotic mice and was verified in Morrbid knockout mice. We identified that PI3-kinase/Akt was involved in the up-regulation of Morrbid expression, whereas s100a10 was involved in Morrbid-mediated effect on macrophage differentiation. To provide a proof of concept of Morrbid in pathogenesis of monocyte/macrophage-related vascular disease, we applied an acute atherosclerosis model in mice. The results revealed that overexpression of Morrbid enhanced but monocyte/macrophage-specific Morrbid knockout inhibited the monocytes/macrophages recruitment and atherosclerotic lesion formation in mice. The results suggest that Morrbid is a novel biomarker and a modulator of monocyte-macrophage phenotypes, which is involved in atherogenesis.
Collapse
Affiliation(s)
- Di Xiang
- Department of Cardiology, Key Laboratory of Medical Electrophysiology, Ministry of Education, Institute of Cardiovascular Research, The Affiliated Hospital of Southwest Medical University, Southwest Medical University, Luzhou, Sichuan 646000, China
- Department of Biomedical Engineering, School of Medicine,
The University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Lei Jiang
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Provincial Institute of Geriatric Medicine, Guangdong General Hospital,
Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510100, China
| | - Qiong Yuan
- Department of Biomedical Engineering, School of Medicine,
The University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Yang Yu
- Department of Cardiology, Key Laboratory of Medical Electrophysiology, Ministry of Education, Institute of Cardiovascular Research, The Affiliated Hospital of Southwest Medical University, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Ruiming Liu
- Department of Biomedical Engineering, School of Medicine,
The University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Meiting Chen
- Department of Biomedical Engineering, School of Medicine,
The University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Zheng Kuai
- Department of Biomedical Engineering, School of Medicine,
The University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Wendy Zhang
- Department of Biomedical Engineering, School of Medicine,
The University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Fan Yang
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Provincial Institute of Geriatric Medicine, Guangdong General Hospital,
Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510100, China
| | - Tingting Wu
- Department of Biomedical Engineering, School of Medicine,
The University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Zhiyu He
- Department of Biomedical Engineering, School of Medicine,
The University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Zuhui Ke
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Provincial Institute of Geriatric Medicine, Guangdong General Hospital,
Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510100, China
| | - Wanzi Hong
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Provincial Institute of Geriatric Medicine, Guangdong General Hospital,
Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510100, China
| | - Pengcheng He
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Provincial Institute of Geriatric Medicine, Guangdong General Hospital,
Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510100, China
| | - Ning Tan
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Provincial Institute of Geriatric Medicine, Guangdong General Hospital,
Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510100, China
| | - Yeying Sun
- Department of Cardiology, Key Laboratory of Medical Electrophysiology, Ministry of Education, Institute of Cardiovascular Research, The Affiliated Hospital of Southwest Medical University, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Zhen Shi
- Department of Biomedical Engineering, School of Medicine,
The University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Xuebiao Wei
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Provincial Institute of Geriatric Medicine, Guangdong General Hospital,
Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510100, China
| | - Jianfang Luo
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Provincial Institute of Geriatric Medicine, Guangdong General Hospital,
Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510100, China
| | - Xiaoqiu Tan
- Department of Cardiology, Key Laboratory of Medical Electrophysiology, Ministry of Education, Institute of Cardiovascular Research, The Affiliated Hospital of Southwest Medical University, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Yuqing Huo
- Vascular Biology Center, Medical College of Georgia,
Augusta University, Augusta, GA 30912, USA
| | - Gangjian Qin
- Department of Biomedical Engineering, School of Medicine,
The University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Chunxiang Zhang
- Department of Cardiology, Key Laboratory of Medical Electrophysiology, Ministry of Education, Institute of Cardiovascular Research, The Affiliated Hospital of Southwest Medical University, Southwest Medical University, Luzhou, Sichuan 646000, China
| |
Collapse
|
6
|
Ruan Q, Guan P, Qi W, Li J, Xi M, Xiao L, Zhong S, Ma D, Ni J. Porphyromonas gingivalis regulates atherosclerosis through an immune pathway. Front Immunol 2023; 14:1103592. [PMID: 36999040 PMCID: PMC10043234 DOI: 10.3389/fimmu.2023.1103592] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 03/01/2023] [Indexed: 03/15/2023] Open
Abstract
Atherosclerosis (AS) is a chronic inflammatory disease, involving a pathological process of endothelial dysfunction, lipid deposition, plaque rupture, and arterial occlusion, and is one of the leading causes of death in the world population. The progression of AS is closely associated with several inflammatory diseases, among which periodontitis has been shown to increase the risk of AS. Porphyromonas gingivalis (P. gingivalis), presenting in large numbers in subgingival plaque biofilms, is the “dominant flora” in periodontitis, and its multiple virulence factors are important in stimulating host immunity. Therefore, it is significant to elucidate the potential mechanism and association between P. gingivalis and AS to prevent and treat AS. By summarizing the existing studies, we found that P. gingivalis promotes the progression of AS through multiple immune pathways. P. gingivalis can escape host immune clearance and, in various forms, circulate with blood and lymph and colonize arterial vessel walls, directly inducing local inflammation in blood vessels. It also induces the production of systemic inflammatory mediators and autoimmune antibodies, disrupts the serum lipid profile, and thus promotes the progression of AS. In this paper, we summarize the recent evidence (including clinical studies and animal studies) on the correlation between P. gingivalis and AS, and describe the specific immune mechanisms by which P. gingivalis promotes AS progression from three aspects (immune escape, blood circulation, and lymphatic circulation), providing new insights into the prevention and treatment of AS by suppressing periodontal pathogenic bacteria.
Collapse
Affiliation(s)
- Qijun Ruan
- Department of Periodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Peng Guan
- Department of Periodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Weijuan Qi
- Department of Periodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Jiatong Li
- Department of Periodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Mengying Xi
- Department of Periodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Limin Xiao
- Department of Periodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Sulan Zhong
- Department of Periodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Dandan Ma
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
- *Correspondence: Dandan Ma, ; Jia Ni,
| | - Jia Ni
- Department of Periodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
- *Correspondence: Dandan Ma, ; Jia Ni,
| |
Collapse
|
7
|
Yoon E, Zhang W, Cai Y, Peng C, Zhou D. Identification and Validation of Key Gene Modules and Pathways in Coronary Artery Disease Development and Progression. Crit Rev Eukaryot Gene Expr 2023; 33:81-90. [PMID: 37602455 DOI: 10.1615/critreveukaryotgeneexpr.2023039631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2023]
Abstract
The development and progression of atherosclerosis represent a chronic process involving complex molecular interactions. Therefore, identifying the potential hub genes and pathways contributing to coronary artery disease (CAD) development is essential for understanding its underlying molecular mechanisms. To this end, we performed transcriptome analysis of peripheral venous blood collected from 100 patients who were divided into four groups according to disease severity, including 27 patients in the atherosclerosis group, 22 patients in the stable angina group, 35 patients in the acute myocardial infarction group, and 16 controls. Weighted gene co-expression network analysis was performed using R programming. Significant module-trait correlations were identified according to module membership and genetic significance. Metascape was used for the functional enrichment of differentially expressed genes between groups, and the hub genes were identified via protein-protein interaction network analysis. The hub genes were further validated by analyzing Gene Expression Omnibus (GSE48060 and GSE141512) datasets. A total of 9,633 messenger ribonucleic acids were detected in three modules, among which the blue module was highly correlated with the Gensini score. The hub genes were significantly enriched in the myeloid leukocyte activation pathway, suggesting its important role in the progression of atherosclerosis. Among these genes, the Mediterranean fever gene (MEFV) may play a key role in the progression of atherosclerosis and CAD severity.
Collapse
Affiliation(s)
- Ewnji Yoon
- Fuwai Hospital Chinese Academy of Medical Sciences, Shenzhen, Guangdong, 518057, PR China; Research Center for Biomedical Information Technology, Shenzhen Institutes of Advanced Technologies, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, PR China
| | - Wenjing Zhang
- Fuwai Hospital Chinese Academy of Medical Sciences, Shenzhen, Guangdong, 518057, PR China
| | - Yunpeng Cai
- Research Center for Biomedical Information Technology, Shenzhen Institutes of Advanced Technologies, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, PR China
| | - Changnong Peng
- Fuwai Hospital Chinese Academy of Medical Sciences, Shenzhen, Guangdong, 518057, PR China
| | - Daxin Zhou
- Department of Cardiology, Shanghai Institute of Cardiovascular Disease, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
8
|
Stahr N, Galkina EV. Immune Response at the Crossroads of Atherosclerosis and Alzheimer's Disease. Front Cardiovasc Med 2022; 9:870144. [PMID: 35872901 PMCID: PMC9298512 DOI: 10.3389/fcvm.2022.870144] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 06/02/2022] [Indexed: 11/30/2022] Open
Abstract
Alzheimer's disease (AD) and cardiovascular disease (CVD) are pathologies that are characterized by common signatures of vascular dysfunction and chronic inflammation that are accelerated with aging. Importantly, epidemiological studies report an independent interaction between AD and CVD and data suggest that chronic inflammation in CVD may accelerate AD development. Atherosclerosis affects most large to medium sized arteries including those supplying the cerebral circulation. Vascular dysfunction caused by atherosclerosis results in blood brain barrier breakdown, inflammation, an impaired clearance of amyloid-beta (Aβ), and finally ends with neurovascular dysfunction. Numerous data indicate that innate and adaptive immune responses shape atherogenesis and increasing evidence suggests an implication of the immune response in AD progression. Currently, mechanisms by which these two diseases are interconnected with each other are not well-defined. In this review, we discuss the recent advances in our understanding of the intertwined role of the immune response in atherosclerosis and AD and the implications of these findings for human health.
Collapse
|
9
|
Metabolism in atherosclerotic plaques: immunoregulatory mechanisms in the arterial wall. Clin Sci (Lond) 2022; 136:435-454. [PMID: 35348183 PMCID: PMC8965849 DOI: 10.1042/cs20201293] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 03/02/2022] [Accepted: 03/16/2022] [Indexed: 02/05/2023]
Abstract
Over the last decade, there has been a growing interest to understand the link between metabolism and the immune response in the context of metabolic diseases but also beyond, giving then birth to a new field of research. Termed 'immunometabolism', this interdisciplinary field explores paradigms of both immunology and metabolism to provided unique insights into different disease pathogenic processes, and the identification of new potential therapeutic targets. Similar to other inflammatory conditions, the atherosclerotic inflammatory process in the artery has been associated with a local dysregulated metabolic response. Thus, recent studies show that metabolites are more than just fuels in their metabolic pathways, and they can act as modulators of vascular inflammation and atherosclerosis. In this review article, we describe the most common immunometabolic pathways characterised in innate and adaptive immune cells, and discuss how macrophages' and T cells' metabolism may influence phenotypic changes in the plaque. Moreover, we discuss the potential of targeting immunometabolism to prevent and treat cardiovascular diseases (CVDs).
Collapse
|
10
|
Li RL, Wang LY, Liu S, Duan HX, Zhang Q, Zhang T, Peng W, Huang Y, Wu C. Natural Flavonoids Derived From Fruits Are Potential Agents Against Atherosclerosis. Front Nutr 2022; 9:862277. [PMID: 35399657 PMCID: PMC8987282 DOI: 10.3389/fnut.2022.862277] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 02/17/2022] [Indexed: 12/14/2022] Open
Abstract
Atherosclerosis, as a chronic inflammatory response, is one of the main causes of cardiovascular diseases. Atherosclerosis is induced by endothelial cell dysfunction, migration and proliferation of smooth muscle cells, accumulation of foam cells and inflammatory response, resulting in plaque accumulation, narrowing and hardening of the artery wall, and ultimately leading to myocardial infarction or sudden death and other serious consequences. Flavonoid is a kind of natural polyphenol compound widely existing in fruits with various structures, mainly including flavonols, flavones, flavanones, flavanols, anthocyanins, isoflavones, and chalcone, etc. Because of its potential health benefits, it is now used in supplements, cosmetics and medicines, and researchers are increasingly paying attention to its role in atherosclerosis. In this paper, we will focus on several important nodes in the development of atherosclerotic disease, including endothelial cell dysfunction, smooth muscle cell migration and proliferation, foam cell accumulation and inflammatory response. At the same time, through the classification of flavonoids from fruits, the role and potential mechanism of flavonoids in atherosclerosis were reviewed, providing a certain direction for the development of fruit flavonoids in the treatment of atherosclerosis drugs.
Collapse
Affiliation(s)
- Ruo-Lan Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ling-Yu Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shuqin Liu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hu-Xinyue Duan
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qing Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ting Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wei Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Wei Peng,
| | - Yongliang Huang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Yongliang Huang,
| | - Chunjie Wu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Chunjie Wu,
| |
Collapse
|
11
|
Xie L, Xiao Y, Tai S, Yang H, Zhou S, Zhou Z. Emerging Roles of Sodium Glucose Cotransporter 2 (SGLT-2) Inhibitors in Diabetic Cardiovascular Diseases: Focusing on Immunity, Inflammation and Metabolism. Front Pharmacol 2022; 13:836849. [PMID: 35295328 PMCID: PMC8920092 DOI: 10.3389/fphar.2022.836849] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 02/07/2022] [Indexed: 11/29/2022] Open
Abstract
Diabetes mellitus (DM) is one of the most fast evolving global issues characterized by hyperglycemia. Patients with diabetes are considered to face with higher risks of adverse cardiovascular events. Those are the main cause of mortality and disability in diabetes patients. There are novel antidiabetic agents that selectively suppress sodium-glucose cotransporter-2 (SGLT-2). They work by reducing proximal tubule glucose reabsorption. Although increasing evidence has shown that SGLT-2 inhibitors can contribute to a series of cardiovascular benefits in diabetic patients, including a reduced incidence of major adverse cardiovascular events and protection of extracardiac organs, the potential mechanisms of SGLT2 inhibitors’ cardiovascular protective effects are still not fully elucidated. Given the important role of inflammation and metabolism in diabetic cardiovascular diseases, this review is intended to rationally compile the multifactorial mechanisms of SGLT-2 inhibitors from the point of immunity, inflammation and metabolism, depicting the fundamental cellular and molecular processing of SGLT-2 inhibitors exerting regulating immunity, inflammation and metabolism. Finally, future directions and perspectives to prevent or delay cardiovascular complications in DM by SGLT-2 inhibitors are presented.
Collapse
Affiliation(s)
- Lingxiang Xie
- Key Laboratory of Diabetes Immunology, Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Diseases, Ministry of Education, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Yang Xiao
- Key Laboratory of Diabetes Immunology, Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Diseases, Ministry of Education, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Shi Tai
- Department of Cardiovascular Medicine, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Huijie Yang
- Key Laboratory of Diabetes Immunology, Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Diseases, Ministry of Education, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Shenghua Zhou
- Department of Cardiovascular Medicine, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Zhiguang Zhou
- Key Laboratory of Diabetes Immunology, Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Diseases, Ministry of Education, The Second Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
12
|
Baumer Y, McCurdy SG, Boisvert WA. Formation and Cellular Impact of Cholesterol Crystals in Health and Disease. Adv Biol (Weinh) 2021; 5:e2100638. [PMID: 34590446 PMCID: PMC11055929 DOI: 10.1002/adbi.202100638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 08/20/2021] [Indexed: 11/10/2022]
Abstract
Cholesterol crystals (CCs) were first discovered in atherosclerotic plaque tissue in the early 1900 and have since been observed and implicated in many diseases and conditions, including myocardial infarction, abdominal aortic aneurism, kidney disease, ocular diseases, and even central nervous system anomalies. Despite the widespread involvement of CCs in many pathologies, the mechanisms involved in their formation and their role in various diseases are still not fully understood. Current knowledge concerning the formation of CCs, as well as the molecular pathways activated upon cellular exposure to CCs, will be explored in this review. As CC formation is tightly associated with lipid metabolism, the role of cellular lipid homeostasis in the formation of CCs is highlighted, including the role of lysosomes. In addition, cellular pathways and processes known to be affected by CCs are described. In particular, CC-induced activation of the inflammasome and production of reactive oxygen species, along with the role of CCs in complement-mediated inflammation is discussed. Moreover, the clinical manifestation of embolized CCs is described with a focus on renal and skin diseases associated with CC embolism. Lastly, potential therapeutic measures that target either the formation of CCs or their impact on different cell types and tissues are highlighted.
Collapse
Affiliation(s)
- Yvonne Baumer
- Social Determinants of Obesity and Cardiovascular Risk Laboratory, National Heart, Lung, and Blood Institute, Building 10, 10 Center Drive, Bethesda, MD 20814, USA
| | - Sara G. McCurdy
- Dept. of Medicine, University of California San Diego, 9500 Gilman Street, La Jolla, CA 92093, USA
| | - William A. Boisvert
- Center for Cardiovascular Research, University of Hawaii, 651 Ilalo Street, Honolulu, HI 96813, USA
| |
Collapse
|
13
|
Ain QU, Sarfraz M, Prasesti GK, Dewi TI, Kurniati NF. Confounders in Identification and Analysis of Inflammatory Biomarkers in Cardiovascular Diseases. Biomolecules 2021; 11:biom11101464. [PMID: 34680097 PMCID: PMC8533132 DOI: 10.3390/biom11101464] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/27/2021] [Accepted: 09/29/2021] [Indexed: 02/08/2023] Open
Abstract
Proinflammatory biomarkers have been increasingly used in epidemiologic and intervention studies over the past decades to evaluate and identify an association of systemic inflammation with cardiovascular diseases. Although there is a strong correlation between the elevated level of inflammatory biomarkers and the pathology of various cardiovascular diseases, the mechanisms of the underlying cause are unclear. Identification of pro-inflammatory biomarkers such as cytokines, chemokines, acute phase proteins, and other soluble immune factors can help in the early diagnosis of disease. The presence of certain confounding factors such as variations in age, sex, socio-economic status, body mass index, medication and other substance use, and medical illness, as well as inconsistencies in methodological practices such as sample collection, assaying, and data cleaning and transformation, may contribute to variations in results. The purpose of the review is to identify and summarize the effect of demographic factors, epidemiological factors, medication use, and analytical and pre-analytical factors with a panel of inflammatory biomarkers CRP, IL-1b, IL-6, TNFa, and the soluble TNF receptors on the concentration of these inflammatory biomarkers in serum.
Collapse
Affiliation(s)
- Qurrat Ul Ain
- Department of Pharmacology and Clinical Pharmacy, School of Pharmacy, Bandung Institute of Technology, Bandung 40132, Indonesia; (Q.U.A.); (G.K.P.)
| | - Mehak Sarfraz
- Department of Pharmacy, Comsats University Islamabad Abbottabad Campus, Abbottabad 22060, Pakistan;
| | - Gayuk Kalih Prasesti
- Department of Pharmacology and Clinical Pharmacy, School of Pharmacy, Bandung Institute of Technology, Bandung 40132, Indonesia; (Q.U.A.); (G.K.P.)
| | - Triwedya Indra Dewi
- Department of Cardiology and Vascular Medicine, Faculty of Medicine, Universitas Padjadjaran, Bandung 40124, Indonesia;
| | - Neng Fisheri Kurniati
- Department of Pharmacology and Clinical Pharmacy, School of Pharmacy, Bandung Institute of Technology, Bandung 40132, Indonesia; (Q.U.A.); (G.K.P.)
- Correspondence: ; +62-853-1582-6154
| |
Collapse
|
14
|
Rohde D, Nahrendorf M. Bad company: monocytes in HIV and atherosclerosis. Cardiovasc Res 2021; 117:993-994. [PMID: 33693568 DOI: 10.1093/cvr/cvab058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- David Rohde
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, 185 Cambridge Street, Boston, MA 02114, USA.,Department of Radiology, Massachusetts General Hospital and Harvard Medical School, 185 Cambridge Street, Boston, MA02114, USA
| | - Matthias Nahrendorf
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, 185 Cambridge Street, Boston, MA 02114, USA.,Department of Radiology, Massachusetts General Hospital and Harvard Medical School, 185 Cambridge Street, Boston, MA02114, USA.,Cardiovascular Research Center, Massachusetts General Hospital and Harvard Medical School, 185 Cambridge Street, Boston, MA02114, USA.,Department of Internal Medicine I, University Hospital Wuerzburg, Oberduerrbacher Str 6, 97080 Wuerzburg, Germany
| |
Collapse
|
15
|
Sagris M, Theofilis P, Antonopoulos AS, Tsioufis C, Oikonomou E, Antoniades C, Crea F, Kaski JC, Tousoulis D. Inflammatory Mechanisms in COVID-19 and Atherosclerosis: Current Pharmaceutical Perspectives. Int J Mol Sci 2021; 22:6607. [PMID: 34205487 PMCID: PMC8234423 DOI: 10.3390/ijms22126607] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 06/10/2021] [Accepted: 06/11/2021] [Indexed: 12/19/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19) caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been associated with excess mortality worldwide. The cardiovascular system is the second most common target of SARS-CoV-2, which leads to severe complications, including acute myocardial injury, myocarditis, arrhythmias, and venous thromboembolism, as well as other major thrombotic events because of direct endothelial injury and an excessive systemic inflammatory response. This review focuses on the similarities and the differences of inflammatory pathways involved in COVID-19 and atherosclerosis. Anti-inflammatory agents and immunomodulators have recently been assessed, which may constitute rational treatments for the reduction of cardiovascular events in both COVID-19 and atherosclerotic heart disease.
Collapse
Affiliation(s)
- Marios Sagris
- 1st Cardiology Department, ‘Hippokration’ General Hospital, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece; (M.S.); (P.T.); (A.S.A.); (C.T.); (E.O.)
| | - Panagiotis Theofilis
- 1st Cardiology Department, ‘Hippokration’ General Hospital, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece; (M.S.); (P.T.); (A.S.A.); (C.T.); (E.O.)
| | - Alexios S. Antonopoulos
- 1st Cardiology Department, ‘Hippokration’ General Hospital, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece; (M.S.); (P.T.); (A.S.A.); (C.T.); (E.O.)
| | - Costas Tsioufis
- 1st Cardiology Department, ‘Hippokration’ General Hospital, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece; (M.S.); (P.T.); (A.S.A.); (C.T.); (E.O.)
| | - Evangelos Oikonomou
- 1st Cardiology Department, ‘Hippokration’ General Hospital, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece; (M.S.); (P.T.); (A.S.A.); (C.T.); (E.O.)
| | - Charalambos Antoniades
- Radcliffe Department of Medicine, Division of Cardiovascular Medicine, University of Oxford, Oxford OX3 9DU, UK;
- Oxford Centre of Research Excellence, British Heart Foundation, Oxford OX3 9DU, UK
- Oxford Biomedical Research Centre, National Institute of Health Research, Oxford OX3 9DU, UK
| | - Filippo Crea
- Department of Cardiovascular and Thoracic Sciences, Catholic University, 00168 Rome, Italy;
| | - Juan Carlos Kaski
- Molecular and Clinical Sciences Research Institute, St George’s University of London, London SW17 0RE, UK;
| | - Dimitris Tousoulis
- 1st Cardiology Department, ‘Hippokration’ General Hospital, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece; (M.S.); (P.T.); (A.S.A.); (C.T.); (E.O.)
| |
Collapse
|
16
|
Kolypetri P, Liu S, Cox LM, Fujiwara M, Raheja R, Ghitza D, Song A, Daatselaar D, Willocq V, Weiner HL. Regulation of splenic monocyte homeostasis and function by gut microbial products. iScience 2021; 24:102356. [PMID: 33898947 PMCID: PMC8059056 DOI: 10.1016/j.isci.2021.102356] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/17/2021] [Accepted: 03/22/2021] [Indexed: 11/16/2022] Open
Abstract
Splenic Ly6Chigh monocytes are innate immune cells involved in the regulation of central nervous system-related diseases. Recent studies have reported the shaping of peripheral immune responses by the gut microbiome via mostly unexplored pathways. In this study, we report that a 4-day antibiotic treatment eliminates certain families of the Bacteroidetes, Firmicutes, Tenericutes, and Actinobacteria phyla in the gut and reduces the levels of multiple pattern recognition receptor (PRR) ligands in the serum. Reduction of PRR ligands was associated with reduced numbers and perturbed function of splenic Ly6Chigh monocytes, which acquired an immature phenotype producing decreased levels of inflammatory cytokines and exhibiting increased phagocytic and anti-microbial abilities. Addition of PRR ligands in antibiotic-treated mice restored the number and functions of splenic Ly6Chigh monocytes. Our data identify circulating PRR ligands as critical regulators of the splenic Ly6Chigh monocyte behavior and suggest possible intervention pathways to manipulate this crucial immune cell subset.
Collapse
Affiliation(s)
- Panayota Kolypetri
- Department of Neurology, Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
- Evergrande Center for Immunologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Shirong Liu
- Department of Neurology, Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
- Evergrande Center for Immunologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Laura M. Cox
- Department of Neurology, Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
- Evergrande Center for Immunologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Mai Fujiwara
- Department of Neurology, Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
- Evergrande Center for Immunologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Radhika Raheja
- Department of Neurology, Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
- Evergrande Center for Immunologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Dvora Ghitza
- Department of Neurology, Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
- Evergrande Center for Immunologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Anya Song
- Department of Neurology, Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
- Evergrande Center for Immunologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Dominique Daatselaar
- Department of Neurology, Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
- Evergrande Center for Immunologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Valerie Willocq
- Department of Neurology, Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
- Evergrande Center for Immunologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Howard L. Weiner
- Department of Neurology, Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
- Evergrande Center for Immunologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
17
|
Zhang H, Fan LJ, Liu J, Zhu JQ, Tan TT, Li M, Zhou YL. Safflor yellow A protects vascular endothelial cells from ox-LDL-mediated damage. J Recept Signal Transduct Res 2020; 42:52-59. [PMID: 33167774 DOI: 10.1080/10799893.2020.1843492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Atherosclerosis is a chronic disease of arteries, which constitutes the pathological basis of a series of cardiovascular diseases. The inflammatory response of vascular endothelial cells mediated by oxidized low density lipoprotein (ox-LDL) is the early behavior and main signal of atherosclerosis. In this study, the damage model of vascular endothelial cells treated with ox-LDL was used to reproduce the damage process of vascular endothelial cells in the process of atherosclerosis. Cell viability was detected by CCK-8. The release levels of reactive oxygen species, nitric oxide, and superoxide dismutase (SOD) were detected by commercial kits. EdU cell proliferation assay was used to detect cell proliferation, real-time fluorescent quantitative PCR and Western blot were used to detect the expression level of related genes. The results showed we successfully constructed a vascular endothelial injury model by incubating vascular endothelial cells with gradient concentrations of ox-LDL. The incubation of safflor yellow A (SYA) partially restored the loss of viability of vascular endothelial cells mediated by ox-LDL, and SYA could promote the proliferation of injured vascular endothelial cells. In addition, SYA may transmit related signals through the AMPK pathway to protect vascular endothelial cells from ox-LDL-mediated damage. All these results provide a further understanding of the occurrence and development of atherosclerosis, provide a theoretical basis for the use of SYA-related drugs in the treatment of cardiovascular diseases, and provide a reference paradigm for studying the pharmacology, toxicology, and mechanism of action of key active substances in TCM.
Collapse
Affiliation(s)
- Hu Zhang
- Tianyou Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, Hubei, P. R. China
| | - Li-Juan Fan
- Tianyou Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, Hubei, P. R. China
| | - Jun Liu
- Tianyou Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, Hubei, P. R. China
| | - Jia-Qi Zhu
- Tianyou Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, Hubei, P. R. China
| | - Ting-Ting Tan
- Tianyou Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, Hubei, P. R. China
| | - Ming Li
- Tianyou Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, Hubei, P. R. China
| | - You-Li Zhou
- Tianyou Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, Hubei, P. R. China
| |
Collapse
|
18
|
Macrophage Long Non-Coding RNAs in Pathogenesis of Cardiovascular Disease. Noncoding RNA 2020; 6:ncrna6030028. [PMID: 32664594 PMCID: PMC7549353 DOI: 10.3390/ncrna6030028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/08/2020] [Accepted: 07/09/2020] [Indexed: 12/21/2022] Open
Abstract
Chronic inflammation is inextricably linked to cardiovascular disease (CVD). Macrophages themselves play important roles in atherosclerosis, as well as acute and chronic heart failure. Although the role of macrophages in CVD pathophysiology is well-recognized, little is known regarding the precise mechanisms influencing their function in these contexts. Long non-coding RNAs (lncRNAs) have emerged as significant regulators of macrophage function; as such, there is rising interest in understanding how these nucleic acids influence macrophage signaling, cell fate decisions, and activity in health and disease. In this review, we summarize current knowledge regarding lncRNAs in directing various aspects of macrophage function in CVD. These include foam cell formation, Toll-like receptor (TLR) and NF-kβ signaling, and macrophage phenotype switching. This review will provide a comprehensive understanding concerning previous, ongoing, and future studies of lncRNAs in macrophage functions and their importance in CVD.
Collapse
|
19
|
Ketelhuth DFJ. The immunometabolic role of indoleamine 2,3-dioxygenase in atherosclerotic cardiovascular disease: immune homeostatic mechanisms in the artery wall. Cardiovasc Res 2020; 115:1408-1415. [PMID: 30847484 DOI: 10.1093/cvr/cvz067] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Revised: 01/30/2019] [Accepted: 03/05/2019] [Indexed: 01/05/2023] Open
Abstract
Coronary heart disease and stroke, the two most common cardiovascular diseases worldwide, are triggered by complications of atherosclerosis. Atherosclerotic plaques are initiated by a maladaptive immune response triggered by accumulation of lipids in the artery wall. Hence, disease is influenced by several non-modifiable and modifiable risk factors, including dyslipidaemia, hypertension, smoking, and diabetes. Indoleamine 2,3-dioxygenase (IDO), the rate-limiting enzyme in the kynurenine pathway of tryptophan (Trp) degradation, is modulated by inflammation and regarded as a key molecule driving immunotolerance and immunosuppressive mechanisms. A large body of evidence indicates that IDO-mediated Trp metabolism is involved directly or indirectly in atherogenesis. This review summarizes evidence from basic and clinical research showing that IDO is a major regulatory enzyme involved in the maintenance of immunohomeostasis in the vascular wall, as well as current knowledge about promising targets for the development of new anti-atherosclerotic drugs.
Collapse
Affiliation(s)
- Daniel F J Ketelhuth
- Cardiovascular Medicine Unit, Center for Molecular Medicine, Department of Medicine, Karolinska Institute, Karolinska University Hospital, Stockholm, Sweden.,Department of Cardiovascular and Renal Research, Institute of Molecular Medicine, Univ. of Southern Denmark, J. B. Winsløws Vej 21(3), Odense C, Denmark
| |
Collapse
|
20
|
Libby P, Sidlow R, Lin AE, Gupta D, Jones LW, Moslehi J, Zeiher A, Jaiswal S, Schulz C, Blankstein R, Bolton KL, Steensma D, Levine RL, Ebert BL. Clonal Hematopoiesis: Crossroads of Aging, Cardiovascular Disease, and Cancer: JACC Review Topic of the Week. J Am Coll Cardiol 2019; 74:567-577. [PMID: 31345432 PMCID: PMC6681657 DOI: 10.1016/j.jacc.2019.06.007] [Citation(s) in RCA: 160] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 06/04/2019] [Accepted: 06/05/2019] [Indexed: 12/14/2022]
Abstract
A novel, common, and potent cardiovascular risk factor has recently emerged: clonal hematopoiesis of indeterminate potential (CHIP). CHIP arises from somatic mutations in hematopoietic stem cells that yield clonal progeny of mutant leukocytes in blood. Individuals with CHIP have a doubled risk of coronary heart disease and ischemic stroke, and worsened heart failure outcomes independent of traditional cardiovascular risk factors. The recognition of CHIP as a nontraditional risk factor challenges specialists in hematology/oncology and cardiovascular medicine alike. Should we screen for CHIP? If so, in whom? How should we assess cardiovascular risk in people with CHIP? How should we manage the excess cardiovascular risk in the absence of an evidence base? This review explains CHIP, explores the clinical quandaries, strives to provide reasonable recommendations for the multidisciplinary management of cardiovascular risk in individuals with CHIP, and highlights current knowledge gaps.
Collapse
Affiliation(s)
- Peter Libby
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts.
| | - Robert Sidlow
- Department of Medicine, Memorial Sloan Kettering Cancer Center, and Weill Cornell Medical College, New York, New York
| | - Amy E Lin
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts
| | - Dipti Gupta
- Department of Medicine, Memorial Sloan Kettering Cancer Center, and Weill Cornell Medical College, New York, New York
| | - Lee W Jones
- Department of Medicine, Memorial Sloan Kettering Cancer Center, and Weill Cornell Medical College, New York, New York
| | - Javid Moslehi
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Andreas Zeiher
- Department of Internal Medicine IV, Division of Cardiology, J.W. Goethe-University, Frankfurt, Germany
| | | | - Christian Schulz
- Department of Medicine I, University Hospital Munich, Ludwig Maximilian University, Munich, Germany
| | - Ron Blankstein
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts
| | - Kelly L Bolton
- Department of Medicine, Memorial Sloan Kettering Cancer Center, and Weill Cornell Medical College, New York, New York
| | - David Steensma
- Department of Medical Oncology, Dana Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Ross L Levine
- Department of Medicine, Memorial Sloan Kettering Cancer Center, and Weill Cornell Medical College, New York, New York
| | - Benjamin L Ebert
- Department of Medical Oncology, Dana Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
21
|
Chuong P, Wysoczynski M, Hellmann J. Do Changes in Innate Immunity Underlie the Cardiovascular Benefits of Exercise? Front Cardiovasc Med 2019; 6:70. [PMID: 31192231 PMCID: PMC6549037 DOI: 10.3389/fcvm.2019.00070] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 05/10/2019] [Indexed: 12/29/2022] Open
Affiliation(s)
- Phillip Chuong
- Division of Cardiovascular Medicine, Diabetes and Obesity Center, University of Louisville School of Medicine, Louisville, KY, United States
| | - Marcin Wysoczynski
- Division of Cardiovascular Medicine, Diabetes and Obesity Center, University of Louisville School of Medicine, Louisville, KY, United States
| | - Jason Hellmann
- Division of Cardiovascular Medicine, Diabetes and Obesity Center, University of Louisville School of Medicine, Louisville, KY, United States
| |
Collapse
|
22
|
Thiem K, Hoeke G, van den Berg S, Hijmans A, Jacobs CWM, Zhou E, Mol IM, Mouktaroudi M, Bussink J, Kanneganti TD, Lutgens E, Stienstra R, Tack CJ, Netea MG, Rensen PCN, Berbée JFP, van Diepen JA. Deletion of hematopoietic Dectin-2 or CARD9 does not protect against atherosclerotic plaque formation in hyperlipidemic mice. Sci Rep 2019; 9:4337. [PMID: 30867470 PMCID: PMC6416398 DOI: 10.1038/s41598-019-40663-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 02/21/2019] [Indexed: 01/12/2023] Open
Abstract
Inflammatory reactions activated by pattern recognition receptors (PRRs) on the membrane of innate immune cells play an important role in atherosclerosis. Whether the PRRs of the C-type lectin receptor (CLR) family including Dectin-2 may be involved in the pathogenesis of atherosclerosis remains largely unknown. Recently, the CLR-adaptor molecule caspase recruitment domain family member 9 (CARD9) has been suggested to play a role in cardiovascular pathologies as it provides the link between CLR activation and transcription of inflammatory cytokines as well as immune cell recruitment. We therefore evaluated whether hematopoietic deletion of Dectin-2 or CARD9 reduces inflammation and atherosclerosis development. Low-density lipoprotein receptor (Ldlr)-knockout mice were transplanted with bone marrow from wild-type, Dectin-2- or Card9-knockout mice and fed a Western-type diet containing 0.1% (w/w) cholesterol. After 10 weeks, lipid and inflammatory parameters were measured and atherosclerosis development was determined. Deletion of hematopoietic Dectin-2 or CARD9 did not influence plasma triglyceride and cholesterol levels. Deletion of hematopoietic Dectin-2 did not affect atherosclerotic lesion area, immune cell composition, ex vivo cytokine secretion by peritoneal cells or bone marrow derived macrophages. Unexpectedly, deletion of hematopoietic CARD9 increased atherosclerotic lesion formation and lesion severity. Deletion of hematopoietic CARD9 did also not influence circulating immune cell composition and peripheral cytokine secretion. Besides a tendency to a reduced macrophage content within these lesions, plasma MCP-1 levels decreased upon WTD feeding. Deletion of hematopoietic Dectin-2 did not influence atherosclerosis development in hyperlipidemic mice. The absence of CARD9 unexpectedly increased atherosclerotic lesion size and severity, suggesting that the presence of CARD9 may protect against initiation of atherosclerosis development.
Collapse
Affiliation(s)
- Kathrin Thiem
- Department of Internal Medicine and Radboud Institute for Molecular Life Sciences, Radboud university medical center, Nijmegen, The Netherlands.
| | - Geerte Hoeke
- Department of Medicine, Div. of Endocrinology, Leiden University Medical Center, Leiden, The Netherlands.,Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Susan van den Berg
- Department of Medical Biochemistry, Div. of Experimental Vascular Biology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Anneke Hijmans
- Department of Internal Medicine and Radboud Institute for Molecular Life Sciences, Radboud university medical center, Nijmegen, The Netherlands
| | - Cor W M Jacobs
- Department of Internal Medicine and Radboud Institute for Molecular Life Sciences, Radboud university medical center, Nijmegen, The Netherlands
| | - Enchen Zhou
- Department of Medicine, Div. of Endocrinology, Leiden University Medical Center, Leiden, The Netherlands.,Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Isabel M Mol
- Department of Medicine, Div. of Endocrinology, Leiden University Medical Center, Leiden, The Netherlands.,Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Maria Mouktaroudi
- Department of Internal Medicine, National and Kapodistrian University of Athens, Medical School, Athens, Greece
| | - Johan Bussink
- Dept. of Radiation Oncology, Radboud University Medical Center, Nijmegen, The Netherlands
| | | | - Esther Lutgens
- Department of Medical Biochemistry, Div. of Experimental Vascular Biology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.,Institute for Cardiovascular Prevention, Ludwig Maximilians University of Munich, Munich, Germany
| | - Rinke Stienstra
- Department of Internal Medicine and Radboud Institute for Molecular Life Sciences, Radboud university medical center, Nijmegen, The Netherlands.,Div. of Human Nutrition, Wageningen University, Wageningen, The Netherlands
| | - Cees J Tack
- Department of Internal Medicine and Radboud Institute for Molecular Life Sciences, Radboud university medical center, Nijmegen, The Netherlands
| | - Mihai G Netea
- Department of Internal Medicine and Radboud Institute for Molecular Life Sciences, Radboud university medical center, Nijmegen, The Netherlands.,Department for Genomics & Immunoregulation, Life and Medical Sciences Institute (LIMES), University of Bonn, Bonn, Germany
| | - Patrick C N Rensen
- Department of Medicine, Div. of Endocrinology, Leiden University Medical Center, Leiden, The Netherlands.,Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Jimmy F P Berbée
- Department of Medicine, Div. of Endocrinology, Leiden University Medical Center, Leiden, The Netherlands.,Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Janna A van Diepen
- Department of Internal Medicine and Radboud Institute for Molecular Life Sciences, Radboud university medical center, Nijmegen, The Netherlands
| |
Collapse
|
23
|
Zheng Y, Li T. Concept Framework of Vaccines-Like Administration to Preatherosclerosis. Circ Res 2019; 124:488-490. [PMID: 30763210 DOI: 10.1161/circresaha.118.314633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Yue Zheng
- From the Department of Cardiology, Third Central Clinical College of Tianjin Medical University, China (Y.Z.)
- Department of Cardiology, Tianjin Key Laboratory of Artificial Cell (Y.Z., T.L.)
- Department of Cardiology, Artificial Cell Engineering Technology Research Center of Public Health Ministry, Tianjin, China (Y.Z., T.L.)
- Department of Cardiology, Tianjin Institute of Hepatobiliary Disease, China (Y.Z., T.L.)
| | - Tong Li
- Department of Cardiology, Third Central Hospital of Tianjin, China (T.L.)
- Department of Cardiology, Tianjin Key Laboratory of Artificial Cell (Y.Z., T.L.)
- Department of Cardiology, Artificial Cell Engineering Technology Research Center of Public Health Ministry, Tianjin, China (Y.Z., T.L.)
- Department of Cardiology, Tianjin Institute of Hepatobiliary Disease, China (Y.Z., T.L.)
| |
Collapse
|
24
|
Libby P, Loscalzo J, Ridker PM, Farkouh ME, Hsue PY, Fuster V, Hasan AA, Amar S. Inflammation, Immunity, and Infection in Atherothrombosis: JACC Review Topic of the Week. J Am Coll Cardiol 2018; 72:2071-2081. [PMID: 30336831 PMCID: PMC6196735 DOI: 10.1016/j.jacc.2018.08.1043] [Citation(s) in RCA: 403] [Impact Index Per Article: 57.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 08/01/2018] [Accepted: 08/06/2018] [Indexed: 12/13/2022]
Abstract
Observations on human and experimental atherosclerosis, biomarker studies, and now a large-scale clinical trial support the operation of immune and inflammatory pathways in this disease. The factors that incite innate and adaptive immune responses implicated in atherogenesis and in lesion complication include traditional risk factors such as protein and lipid components of native and modified low-density lipoprotein, angiotensin II, smoking, visceral adipose tissue, and dysmetabolism. Infectious processes and products of the endogenous microbiome might also modulate atherosclerosis and its complications either directly, or indirectly by eliciting local and systemic responses that potentiate disease expression. Trials with antibiotics have not reduced recurrent cardiovascular events, nor have vaccination strategies yet achieved clinical translation. However, anti-inflammatory interventions such as anticytokine therapy and colchicine have begun to show efficacy in this regard. Thus, inflammatory and immune mechanisms can link traditional and emerging risk factors to atherosclerosis, and offer novel avenues for therapeutic intervention.
Collapse
Affiliation(s)
- Peter Libby
- Department of Medicine, Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts.
| | - Joseph Loscalzo
- Department of Medicine, Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Paul M Ridker
- Department of Medicine, Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Michael E Farkouh
- Peter Munk Cardiac Centre and the Heart and Stroke Richard Lewar Centre, University of Toronto, Toronto, Ontario, Canada
| | - Priscilla Y Hsue
- University of California, San Francisco General Hospital, San Francisco, California
| | | | - Ahmed A Hasan
- The National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Salomon Amar
- Departments of Pharmacology, Immunology and Microbiology, New York Medical College, Valhalla, New York
| |
Collapse
|
25
|
Research Progress on the Relationship between Atherosclerosis and Inflammation. Biomolecules 2018; 8:biom8030080. [PMID: 30142970 PMCID: PMC6163673 DOI: 10.3390/biom8030080] [Citation(s) in RCA: 547] [Impact Index Per Article: 78.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 08/03/2018] [Accepted: 08/17/2018] [Indexed: 12/13/2022] Open
Abstract
Atherosclerosis is a chronic inflammatory disease; unstable atherosclerotic plaque rupture, vascular stenosis, or occlusion caused by platelet aggregation and thrombosis lead to acute cardiovascular disease. Atherosclerosis-related inflammation is mediated by proinflammatory cytokines, inflammatory signaling pathways, bioactive lipids, and adhesion molecules. This review discusses the effects of inflammation and the systemic inflammatory signaling pathway on atherosclerosis, the role of related signaling pathways in inflammation, the formation of atherosclerosis plaques, and the prospects of treating atherosclerosis by inhibiting inflammation.
Collapse
|
26
|
Gordts PLSM, Esko JD. The heparan sulfate proteoglycan grip on hyperlipidemia and atherosclerosis. Matrix Biol 2018; 71-72:262-282. [PMID: 29803939 DOI: 10.1016/j.matbio.2018.05.010] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 05/22/2018] [Accepted: 05/23/2018] [Indexed: 12/20/2022]
Abstract
Heparan sulfate proteoglycans are found at the cell surface and in the extracellular matrix, where they interact with a plethora of proteins involved in lipid homeostasis and inflammation. Over the last decade, new insights have emerged regarding the mechanism and biological significance of these interactions in the context of cardiovascular disease. The majority of cardiovascular disease-related deaths are caused by complications of atherosclerosis, a disease that results in narrowing of the arterial lumen, thereby reducing blood flow to critical levels in vital organs, such as the heart and brain. Here, we discuss novel insights into how heparan sulfate proteoglycans modulate risk factors such as hyperlipidemia and inflammation that drive the initiation and progression of atherosclerotic plaques to their clinical critical endpoint.
Collapse
Affiliation(s)
- Philip L S M Gordts
- Department of Medicine, Division of Endocrinology and Metabolism, University of California, San Diego, La Jolla, CA, USA; Glycobiology Research and Training Center, University of California, San Diego, La Jolla, CA, USA.
| | - Jeffrey D Esko
- Glycobiology Research and Training Center, University of California, San Diego, La Jolla, CA, USA; Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
27
|
Atherosclerosis and clonal hematopoyesis: A new risk factor. CLINICA E INVESTIGACION EN ARTERIOSCLEROSIS 2018; 30:133-136. [PMID: 29699715 DOI: 10.1016/j.arteri.2018.03.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 02/23/2018] [Accepted: 03/05/2018] [Indexed: 01/08/2023]
Abstract
Recent research has revealed that clonal hematopoyesis of indeterminate potential (CHIP) characterized by the acquisition of somatic mutations in hematopoietic stem cells, is not only a common age-related disorder and a premalignant condition, but it is also associated with the development of atherosclerotic vascular diseases. Mutations in DNMT3A, TET2 and ASXL1 were each individually associated with coronary heart disease, stroke and coronary calcification. Therefore, CHIP emerges as a new risk factor for atherosclerotic vascular pathologies and its detection may be relevant as a new therapeutic target in order to modify the natural course of the disease.
Collapse
|
28
|
Sessile Innate Immune Cells. DAMAGE-ASSOCIATED MOLECULAR PATTERNS IN HUMAN DISEASES 2018. [PMCID: PMC7123606 DOI: 10.1007/978-3-319-78655-1_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In this chapter, sessile cells of the innate immune system are briefly introduced. Defined as cells equipped with diverse pattern recognition molecules capable of detecting MAMPs and DAMPs, they encompass cells such as epithelial cells, fibroblasts, vascular cells, chondrocytes, osteoblasts, and adipocytes. Located at the body surfaces, epithelial cells represent the first line of innate immune defense against invading microbial pathogens. They are significant contributors to innate mucosal immunity and generate various antimicrobial defense mechanisms. Also, epithelial cells critically contribute to tissue repair via the phenomenon of re-epithelialization. Fibroblasts operate as classical sentinel cells of the innate immune system dedicated to responding to MAMPs and DAMPs emitted upon any tissue injury. Typically, fibroblasts synthesize most of the extracellular matrix of connective tissues, thereby playing a crucial role in tissue repair processes. Vascular cells of the innate immune system represent an evolutionarily developed first-line defense against any inciting insult hitting the vessel walls from the luminal side including bacteria, viruses, microbial toxins, and chemical noxa such as nicotine. Upon such insults and following recognition of MAMPs and DAMPs, vascular cells react with an innate immune response to create an acute inflammatory milieu in the vessel wall aimed at curing the vascular injury concerned. Chondrocytes, osteoblasts, and osteoclasts represent other vital cells of the skeletal system acting as cells of the innate immune system in its wider sense. These cells mediate injury-promoted DAMP-induced inflammatory and regenerative processes specific for the skeletal systems. Finally, adipocytes are regarded as highly active cells of the innate immune system. As white, brown, and beige adipocytes, they operate as a dynamic metabolic organ that can secrete certain bioactive molecules which have endocrine, paracrine, and autocrine actions.
Collapse
|
29
|
Libby P. Interleukin-1 Beta as a Target for Atherosclerosis Therapy: Biological Basis of CANTOS and Beyond. J Am Coll Cardiol 2017; 70:2278-2289. [PMID: 29073957 DOI: 10.1016/j.jacc.2017.09.028] [Citation(s) in RCA: 457] [Impact Index Per Article: 57.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 09/07/2017] [Accepted: 09/10/2017] [Indexed: 02/07/2023]
Abstract
Inflammatory pathways drive atherogenesis and link conventional risk factors to atherosclerosis and its complications. One inflammatory mediator has come to the fore as a therapeutic target in cardiovascular disease. The experimental and clinical evidence reviewed here support interleukin-1 beta (IL-1β) as both a local vascular and systemic contributor in this regard. Intrinsic vascular wall cells and lesional leukocytes alike can produce this cytokine. Local stimuli in the plaque favor the generation of active IL-1β through the action of a molecular assembly known as the inflammasome. Clinically applicable interventions that interfere with IL-1 action can improve cardiovascular outcomes, ushering in a new era of anti-inflammatory therapies for atherosclerosis. The translational path described here illustrates how advances in basic vascular biology may transform therapy. Biomarker-directed application of anti-inflammatory interventions promises to help us achieve a more precise and personalized allocation of therapy for our cardiovascular patients.
Collapse
Affiliation(s)
- Peter Libby
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
30
|
Identification of Key Pathways and Genes in Advanced Coronary Atherosclerosis Using Bioinformatics Analysis. BIOMED RESEARCH INTERNATIONAL 2017; 2017:4323496. [PMID: 29226137 PMCID: PMC5684517 DOI: 10.1155/2017/4323496] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 09/17/2017] [Indexed: 01/02/2023]
Abstract
Background Coronary artery atherosclerosis is a chronic inflammatory disease. This study aimed to identify the key changes of gene expression between early and advanced carotid atherosclerotic plaque in human. Methods Gene expression dataset GSE28829 was downloaded from Gene Expression Omnibus (GEO), including 16 advanced and 13 early stage atherosclerotic plaque samples from human carotid. Differentially expressed genes (DEGs) were analyzed. Results 42,450 genes were obtained from the dataset. Top 100 up- and downregulated DEGs were listed. Functional enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) identification were performed. The result of functional and pathway enrichment analysis indicted that the immune system process played a critical role in the progression of carotid atherosclerotic plaque. Protein-protein interaction (PPI) networks were performed either. Top 10 hub genes were identified from PPI network and top 6 modules were inferred. These genes were mainly involved in chemokine signaling pathway, cell cycle, B cell receptor signaling pathway, focal adhesion, and regulation of actin cytoskeleton. Conclusion The present study indicated that analysis of DEGs would make a deeper understanding of the molecular mechanisms of atherosclerosis development and they might be used as molecular targets and diagnostic biomarkers for the treatment of atherosclerosis.
Collapse
|
31
|
Abstract
Macrophages are present in all vertebrate tissues, from mid-gestation throughout life, constituting a widely dispersed organ system. They promote homeostasis by responding to internal and external changes within the body, not only as phagocytes in defence against microbes and in clearance of dead and senescent cells, but also through trophic, regulatory and repair functions. In this review, we describe macrophage phenotypic heterogeneity in different tissue environments, drawing particular attention to organ-specific functions.
Collapse
Affiliation(s)
- Siamon Gordon
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan City, 33302, Taiwan. .,Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK.
| | - Annette Plüddemann
- Nuffield Department of Primary Care Health Sciences, University of Oxford, Woodstock Road, Oxford, OX2 6GG, UK
| |
Collapse
|
32
|
Welsh P, Grassia G, Botha S, Sattar N, Maffia P. Targeting inflammation to reduce cardiovascular disease risk: a realistic clinical prospect? Br J Pharmacol 2017; 174:3898-3913. [PMID: 28409825 PMCID: PMC5660005 DOI: 10.1111/bph.13818] [Citation(s) in RCA: 110] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 03/28/2017] [Accepted: 03/30/2017] [Indexed: 12/16/2022] Open
Abstract
Data from basic science experiments is overwhelmingly supportive of the causal role of immune-inflammatory response(s) at the core of atherosclerosis, and therefore, the theoretical potential to manipulate the inflammatory response to prevent cardiovascular events. However, extrapolation to humans requires care and we still lack definitive evidence to show that interfering in immune-inflammatory processes may safely lessen clinical atherosclerosis. In this review, we discuss key therapeutic targets in the treatment of vascular inflammation, placing basic research in a wider clinical perspective, as well as identifying outstanding questions. LINKED ARTICLES This article is part of a themed section on Targeting Inflammation to Reduce Cardiovascular Disease Risk. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v174.22/issuetoc and http://onlinelibrary.wiley.com/doi/10.1111/bcp.v82.4/issuetoc.
Collapse
Affiliation(s)
- Paul Welsh
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Gianluca Grassia
- Centre for Immunobiology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Shani Botha
- Hypertension in Africa Research Team (HART), North-West University, Potchefstroom campus, South Africa
| | - Naveed Sattar
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Pasquale Maffia
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK.,Centre for Immunobiology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK.,Department of Pharmacy, University of Naples Federico II, Naples, Italy
| |
Collapse
|