1
|
Huang W, Xu S, Shen L, Chen D, Liu H, Tang Y, Liu X, Xiao W, Zhou Z, Zhang S, Li J, Fan X, Chu Y, Zhang L. DNA Subunit Vaccine and Recombinant BCG Based on Mycobacterial Lipoprotein LprO Enhance Anti-Tuberculosis Protection in the Lungs of Mice. Vaccines (Basel) 2025; 13:400. [PMID: 40333296 PMCID: PMC12031346 DOI: 10.3390/vaccines13040400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2025] [Revised: 03/29/2025] [Accepted: 04/09/2025] [Indexed: 05/09/2025] Open
Abstract
Background/Objectives: Over the past two centuries, tuberculosis (TB) has been responsible for approximately one billion deaths and continues to represent a significant global health challenge. Despite extensive research efforts, fully effective strategies for the prevention or eradication of TB remain elusive, highlighting the urgent demand for novel vaccines with enhanced safety profiles and efficacy. Lipoproteins, integral surface proteins of mycobacteria, are frequently associated with virulence and display notable immunogenicity, rendering them promising candidates for vaccine development. This study investigates the potential of the mycobacterial lipoprotein, LprO, as a vaccine antigen against TB. Methods: A pcDNA-lprO DNA vaccine was constructed, and its immunogenicity was evaluated using a murine model. Its protective efficacy was further assessed using a Mycobacterium marinum (M. marinum)-infected zebrafish model. Additionally, a recombinant BCG vaccine strain, BCG Japan::pNBV1-lprO, was generated. Its immunogenicity was tested in mice, and its safety was evaluated in SCID mice. Both vaccine candidates were further assessed in regard to their protective efficacy in a murine Mycobacterium tuberculosis (M. tb) infection model. Results: The pcDNA-lprO vaccine increased the M. tb-specific IFN-γ-secreting lymphocytes in murine spleens and prolonged the survival of zebrafish infected with M. marinum. The recombinant BCG Japan::pNBV1-lprO vaccine elicited M. tb-specific Th1-type immune responses in mice compared to the standard BCG Japan strain. Both vaccines effectively reduced the bacterial burden of M. tb in murine lungs, offering superior protection relative to the control groups. Conclusions: These findings establish LprO as a compelling candidate for TB vaccine development, with both LprO-based DNA and recombinant BCG vaccines demonstrating robust protective effects against TB.
Collapse
Affiliation(s)
- Weili Huang
- State Key Laboratory of Genetics and Development of Complex Phenotypes, Department of Microbiology, School of Life Sciences, Fudan University, Shanghai 200438, China; (W.H.); (S.X.); (L.S.); (D.C.); (H.L.); (Y.T.); (W.X.); (Z.Z.); (S.Z.); (J.L.)
| | - Shuqin Xu
- State Key Laboratory of Genetics and Development of Complex Phenotypes, Department of Microbiology, School of Life Sciences, Fudan University, Shanghai 200438, China; (W.H.); (S.X.); (L.S.); (D.C.); (H.L.); (Y.T.); (W.X.); (Z.Z.); (S.Z.); (J.L.)
| | - Lifang Shen
- State Key Laboratory of Genetics and Development of Complex Phenotypes, Department of Microbiology, School of Life Sciences, Fudan University, Shanghai 200438, China; (W.H.); (S.X.); (L.S.); (D.C.); (H.L.); (Y.T.); (W.X.); (Z.Z.); (S.Z.); (J.L.)
| | - Dan Chen
- State Key Laboratory of Genetics and Development of Complex Phenotypes, Department of Microbiology, School of Life Sciences, Fudan University, Shanghai 200438, China; (W.H.); (S.X.); (L.S.); (D.C.); (H.L.); (Y.T.); (W.X.); (Z.Z.); (S.Z.); (J.L.)
| | - Hanmei Liu
- State Key Laboratory of Genetics and Development of Complex Phenotypes, Department of Microbiology, School of Life Sciences, Fudan University, Shanghai 200438, China; (W.H.); (S.X.); (L.S.); (D.C.); (H.L.); (Y.T.); (W.X.); (Z.Z.); (S.Z.); (J.L.)
| | - Yuting Tang
- State Key Laboratory of Genetics and Development of Complex Phenotypes, Department of Microbiology, School of Life Sciences, Fudan University, Shanghai 200438, China; (W.H.); (S.X.); (L.S.); (D.C.); (H.L.); (Y.T.); (W.X.); (Z.Z.); (S.Z.); (J.L.)
| | - Xiaolin Liu
- National Heart & Lung Institute, Imperial College London, London SW3 6LY, UK;
| | - Wenxuan Xiao
- State Key Laboratory of Genetics and Development of Complex Phenotypes, Department of Microbiology, School of Life Sciences, Fudan University, Shanghai 200438, China; (W.H.); (S.X.); (L.S.); (D.C.); (H.L.); (Y.T.); (W.X.); (Z.Z.); (S.Z.); (J.L.)
| | - Ziwei Zhou
- State Key Laboratory of Genetics and Development of Complex Phenotypes, Department of Microbiology, School of Life Sciences, Fudan University, Shanghai 200438, China; (W.H.); (S.X.); (L.S.); (D.C.); (H.L.); (Y.T.); (W.X.); (Z.Z.); (S.Z.); (J.L.)
| | - Shifeng Zhang
- State Key Laboratory of Genetics and Development of Complex Phenotypes, Department of Microbiology, School of Life Sciences, Fudan University, Shanghai 200438, China; (W.H.); (S.X.); (L.S.); (D.C.); (H.L.); (Y.T.); (W.X.); (Z.Z.); (S.Z.); (J.L.)
| | - Jixi Li
- State Key Laboratory of Genetics and Development of Complex Phenotypes, Department of Microbiology, School of Life Sciences, Fudan University, Shanghai 200438, China; (W.H.); (S.X.); (L.S.); (D.C.); (H.L.); (Y.T.); (W.X.); (Z.Z.); (S.Z.); (J.L.)
| | - Xiaoyong Fan
- Shanghai Institute of Infectious Diseases and Biosecurity & Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China;
| | - Yuefeng Chu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou Veterinary Research Institute, Lanzhou University, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China
| | - Lu Zhang
- State Key Laboratory of Genetics and Development of Complex Phenotypes, Department of Microbiology, School of Life Sciences, Fudan University, Shanghai 200438, China; (W.H.); (S.X.); (L.S.); (D.C.); (H.L.); (Y.T.); (W.X.); (Z.Z.); (S.Z.); (J.L.)
- Shanghai Engineering Research Center of Industrial Microorganisms, Shanghai 200438, China
- MOE Engineering Research Center of Gene Technology, Shanghai 200438, China
| |
Collapse
|
2
|
Zenger M, Zellweger T, Belényesi Z, Kurz M. Urogenital infection with M. bovis BCG most probably as a result of BCG instillation 21 years ago. BMJ Case Rep 2025; 18:e260496. [PMID: 40132926 PMCID: PMC11937887 DOI: 10.1136/bcr-2024-260496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 01/03/2025] [Indexed: 03/27/2025] Open
Abstract
We present the case of a man in his late 70s who developed urogenital infection with M. bovis BCG most probably following BCG instillation for bladder cancer, a surprising 21 years after the BCG treatment had ended.The patient presented with an indolent testicular swelling initially presumed to be testicular cancer. After surgical exploration, the swelling proved to be a M. bovis BCG-infected granuloma. Treatment consists of ethambutol, rifampicin and isoniazid over several months, which can cause severe side effects.We conclude that any unclear lesion or tumour in a patient who has had BCG instillation should be tested for mycobacteria along standard histological and microbiological analyses.
Collapse
Affiliation(s)
- Michael Zenger
- Internal Medicine, St. Claraspital, Basel, BS, Switzerland
| | | | | | - Mario Kurz
- Internal Medicine, St. Claraspital, Basel, BS, Switzerland
| |
Collapse
|
3
|
Mathias K, Machado RS, Stork S, Martins CD, da Silva Kursancew AC, de Rezende VL, Gonçalves CL, Barichello T, Prophiro JS, Petronilho F. Bacillus Calmette-Guérin (BCG)-Induced Protection in Brain Disorders. Inflammation 2024; 47:1902-1917. [PMID: 38664351 DOI: 10.1007/s10753-024-02018-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 03/29/2024] [Accepted: 04/01/2024] [Indexed: 08/11/2024]
Abstract
The Bacille Calmette-Guerin (BCG) vaccine is one of the most widely used vaccines in the world for the prevention of tuberculosis. Its immunological capacity also includes epigenetic reprogramming, activation of T cells and inflammatory responses. Although the main usage of the vaccine is the prevention of tuberculosis, different works have shown that the effect of BCG can go beyond the peripheral immune response and be linked to the central nervous system by modulating the immune system at the level of the brain. This review therefore aims to describe the BCG vaccine, its origin, its relationship with the immune system, and its involvement at the brain level.
Collapse
Affiliation(s)
- Khiany Mathias
- Laboratory of Immunoparasitology, Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubãrao, Santa Catarina, Brazil
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciuma, Santa Catarina, Brazil
| | - Richard Simon Machado
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciuma, Santa Catarina, Brazil
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubãrao, Santa Catarina, Brazil
| | - Solange Stork
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciuma, Santa Catarina, Brazil
| | - Carla Damasio Martins
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciuma, Santa Catarina, Brazil
| | - Amanda Christine da Silva Kursancew
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciuma, Santa Catarina, Brazil
| | - Victória Linden de Rezende
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciuma, Santa Catarina, Brazil
| | - Cinara Ludvig Gonçalves
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciuma, Santa Catarina, Brazil
| | - Tatiana Barichello
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciuma, Santa Catarina, Brazil
- Translational Psychiatry Program, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, University of Texas Health Science Center at Houston (UTHealth), Houston, TX, 77054, USA
| | - Josiane Somariva Prophiro
- Laboratory of Immunoparasitology, Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubãrao, Santa Catarina, Brazil
| | - Fabricia Petronilho
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciuma, Santa Catarina, Brazil.
- Laboratory of Experimental Neurology, University of Extremo Sul Catarinense, Criciuma, SC, Brazil.
| |
Collapse
|
4
|
Takeishi A, Shaban AK, Kakihana T, Takihara H, Okuda S, Osada H, Suameitria Dewi DNS, Ozeki Y, Yoshida Y, Nishiyama A, Tateishi Y, Aizu Y, Chuma Y, Onishi K, Hayashi D, Yamamoto S, Mukai T, Ato M, Thai DH, Nhi HTT, Shirai T, Shibata S, Obata F, Fujii J, Yamayoshi S, Kiso M, Matsumoto S. Genetic engineering employing MPB70 and its promoter enables efficient secretion and expression of foreign antigen in bacillus Calmette Guérin (BCG) Tokyo. Microbiol Immunol 2024; 68:130-147. [PMID: 38294180 DOI: 10.1111/1348-0421.13116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 12/12/2023] [Accepted: 12/29/2023] [Indexed: 02/01/2024]
Abstract
Vaccination is an important factor in public health. The recombinant bacillus Calmette Guérin (rBCG) vaccine, which expresses foreign antigens, is expected to be a superior vaccine against infectious diseases. Here, we report a new recombination platform in which the BCG Tokyo strain is transformed with nucleotide sequences encoding foreign protein fused with the MPB70 immunogenic protein precursor. By RNA-sequencing, mpb70 was found to be the most transcribed among all known genes of BCG Tokyo. Small oligopeptide, namely, polyhistidine tag, was able to be expressed in and secreted from rBCG through a process in which polyhistidine tag fused with intact MPB70 were transcribed by an mpb70 promoter. This methodology was applied to develop an rBCG expressing the receptor binding domain (RBD) of severe acute respiratory syndrome coronavirus 2. Immunoblotting images and mass spectrometry data showed that RBD was also secreted from rBCG. Sera from mice vaccinated with the rBCG showed a tendency of weak neutralizing capacity. The secretion was retained even after a freeze-drying process. The freeze-dried rBCG was administered to and recovered from mice. Recovered rBCG kept secreting RBD. Collectively, our recombination platform offers stable secretion of foreign antigens and can be applied to the development of practical rBCGs.
Collapse
Affiliation(s)
- Atsuki Takeishi
- Department of Bacteriology, School of Medicine, Niigata University, Niigata, Japan
| | - Amina K Shaban
- Department of Bacteriology, School of Medicine, Niigata University, Niigata, Japan
| | - Taichi Kakihana
- Department of Virology, School of Medicine, Niigata University, Niigata, Japan
| | - Hayato Takihara
- Medical AI Center, School of Medicine, Niigata University, Niigata, Japan
| | - Shujiro Okuda
- Medical AI Center, School of Medicine, Niigata University, Niigata, Japan
| | - Hidekazu Osada
- Department of Bacteriology, School of Medicine, Niigata University, Niigata, Japan
- NIPPON ZENYAKU KOGYO CO., LTD, Fukushima, Japan
| | - Desak Nyoman Surya Suameitria Dewi
- Department of Bacteriology, School of Medicine, Niigata University, Niigata, Japan
- Microbiology, Universitas Ciputra, Surabaya, Indonesia
| | - Yuriko Ozeki
- Department of Bacteriology, School of Medicine, Niigata University, Niigata, Japan
| | - Yutaka Yoshida
- Department of Bacteriology, School of Medicine, Niigata University, Niigata, Japan
| | - Akihito Nishiyama
- Department of Bacteriology, School of Medicine, Niigata University, Niigata, Japan
| | - Yoshitaka Tateishi
- Department of Bacteriology, School of Medicine, Niigata University, Niigata, Japan
| | - Yuki Aizu
- Division of Research and Development, Japan BCG Laboratory, Tokyo, Japan
| | - Yasushi Chuma
- Division of Research and Development, Japan BCG Laboratory, Tokyo, Japan
| | - Kazuyo Onishi
- Division of Research and Development, Japan BCG Laboratory, Tokyo, Japan
| | - Daisuke Hayashi
- Division of Research and Development, Japan BCG Laboratory, Tokyo, Japan
| | - Saburo Yamamoto
- Division of Research and Development, Japan BCG Laboratory, Tokyo, Japan
- Department of Mycobacteriology, Leprosy Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Tetsu Mukai
- Department of Mycobacteriology, Leprosy Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Manabu Ato
- Department of Mycobacteriology, Leprosy Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Duong Huu Thai
- Institute of Vaccines and Medical Biologicals, Nha Trang, Vietnam
| | - Huynh Thi Thao Nhi
- Department of BCG production, Institute of Vaccines and Medical Biologicals, Nha Trang, Vietnam
| | - Tsuyoshi Shirai
- Department of Bioscience, Nagahama Institute of Bio-Science and Technology, Shiga, Japan
| | - Satoshi Shibata
- Department of Microbiology and Immunology, Division of Bacteriology, Faculty of Medicine, Tottori University, Tottori, Japan
| | - Fumiko Obata
- Department of Microbiology and Immunology, Division of Bacteriology, Faculty of Medicine, Tottori University, Tottori, Japan
| | - Jun Fujii
- Department of Microbiology and Immunology, Division of Bacteriology, Faculty of Medicine, Tottori University, Tottori, Japan
| | - Seiya Yamayoshi
- Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Maki Kiso
- Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Sohkichi Matsumoto
- Department of Bacteriology, School of Medicine, Niigata University, Niigata, Japan
- Department of Medical Microbiology, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
- Division of Research Aids, Hokkaido University Institute for Vaccine Research & Development, Sapporo, Hokkaido, Japan
| |
Collapse
|
5
|
Arce-Fonseca M, Mata-Espinosa D, Aranda-Fraustro A, Rosales-Encina JL, Flores-Valdez MA, Rodríguez-Morales O. Mycobacterium bovis BCG as immunostimulating agent prevents the severe form of chronic experimental Chagas disease. Front Immunol 2024; 15:1380049. [PMID: 38576607 PMCID: PMC10991741 DOI: 10.3389/fimmu.2024.1380049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 02/28/2024] [Indexed: 04/06/2024] Open
Abstract
Introduction There is currently no vaccine against Chagas disease (ChD), and the medications available confer multiple side effects. Mycobacterium bovis Bacillus Calmette-Guérin (BCG) produces balanced Th1, Th2, and Th17 modulatory immune responses and has improved efficacy in controlling chronic infections through nonspecific immunity. We aimed to improve the response to infection by inducing a stronger immune response and greater protection against the parasite by trained immunity. Methods BALB/c mice were immunized with BCG subcutaneously, and 60 days later, they were infected with Trypanosoma cruzi intraperitoneally. An evaluation of the progression of the disease from the acute to the chronic stage, analyzing various aspects such as parasitemia, survival, clinical status, and humoral and cellular immune response, as well as the appearance of visceral megas and the histopathological description of target organs, was performed. Results Vaccination reduced parasitemia by 70%, and 100% survival was achieved in the acute stage; although the presentation of clinical signs was reduced, there was no increase in the antibody titer or in the differential production of the isotypes. Conclusion Serum cytokine production indicated a proinflammatory response in infected animals, while in those who received BCG, the response was balanced by inducing Th1/Th2-type cytokines, with a better prognosis of the disease in the chronic stage.
Collapse
Affiliation(s)
- Minerva Arce-Fonseca
- Laboratory of Molecular Immunology and Proteomics, Department of Molecular Biology, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, Mexico
| | - Dulce Mata-Espinosa
- Laboratory of Experimental Pathology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Alberto Aranda-Fraustro
- Department of Pathology, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, Mexico
| | - José Luis Rosales-Encina
- Laboratory of Molecular Biology, Department of Infectomics and Molecular Pathogenesis, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| | - Mario Alberto Flores-Valdez
- Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, A. C., Guadalajara, Mexico
| | - Olivia Rodríguez-Morales
- Laboratory of Molecular Immunology and Proteomics, Department of Molecular Biology, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, Mexico
| |
Collapse
|
6
|
He F, Xiong P, Zhang H, Yang L, Qiu Y, Li P, Zhao G, Li N, Peng Y. Attenuated vaccine PmCQ2Δ4555-4580 effectively protects mice against Pasteurella multocida infection. BMC Vet Res 2024; 20:94. [PMID: 38461234 PMCID: PMC10924365 DOI: 10.1186/s12917-024-03948-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 02/20/2024] [Indexed: 03/11/2024] Open
Abstract
Pasteurella multocida type A (PmA) mainly causes respiratory diseases such as pneumonia in bovines, leading to great economic losses to the breeding industry. At present, there is still no effective commercial vaccine against PmA infection. In this study, a mutant strain (PmCQ2Δ4555-4580) with brand-new phenotypes was obtained after serially passaging at 42 °C. Whole genome resequencing and PCR analysis showed that PmCQ2Δ4555-4580 missed six genes, including PmCQ2_004555, PmCQ2_004560, PmCQ2_004565, PmCQ2_004570, PmCQ2_004575, and PmCQ2_004580. Importantly, the virulence of PmCQ2Δ4555-4580 was reduced by approximately 2.8 × 109 times in mice. Notably, live PmCQ2Δ4555-4580 could provide 100%, 100% and 40% protection against PmA, PmB and PmF, respectively; and inactivated PmCQ2Δ4555-4580 could provide 100% and 87.5% protection against PmA and PmB. Interestingly, immune protection-related proteins were significantly upregulated in PmCQ2Δ4555-4580 based on RNA-seq and bioinformatics analysis. Meaningfully, by in vitro expression, purification and in vivo immunization, 12 proteins had different degrees of immune protective effects. Among them, PmCQ2_008205, PmCQ2_010435, PmCQ2_008190, and PmCQ2_004170 had the best protective effect, the protection rates against PmA were 50%, 40%, 30%, and 30%, respectively, and the protective rates against PmB were 62.5%, 42.9%, 37.5%, and 28.6%, respectively. Collectively, PmCQ2Δ4555-4580 is a potential vaccine candidate for the prevention of Pasteurellosis involving in high expression of immune protective related proteins.
Collapse
Affiliation(s)
- Fang He
- College of Veterinary Medicine, Southwest University, Chongqing, 400715, China
| | - Pan Xiong
- College of Veterinary Medicine, Southwest University, Chongqing, 400715, China
| | - Huihui Zhang
- College of Veterinary Medicine, Southwest University, Chongqing, 400715, China
| | - Liu Yang
- College of Veterinary Medicine, Southwest University, Chongqing, 400715, China
| | - Yangyang Qiu
- College of Veterinary Medicine, Southwest University, Chongqing, 400715, China
| | - Pan Li
- Department of Environment and Safety Engineering, Taiyuan institute of technology, Taiyuan, 030008, China
| | - Guangfu Zhao
- College of Veterinary Medicine, Southwest University, Chongqing, 400715, China
| | - Nengzhang Li
- College of Veterinary Medicine, Southwest University, Chongqing, 400715, China.
| | - Yuanyi Peng
- College of Veterinary Medicine, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
7
|
Niu H, Cao Q, Zhang T, Du Y, He P, Jiao L, Wang B, Zhu B, Hu L, Zhang Y. Construction and evaluation of a novel multi-antigenic Mycobacterium tuberculosis subunit vaccine candidate BfrB-GrpE/DPC. Int Immunopharmacol 2023; 124:111060. [PMID: 37862738 DOI: 10.1016/j.intimp.2023.111060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 10/06/2023] [Accepted: 10/10/2023] [Indexed: 10/22/2023]
Abstract
Tuberculosis poses a significant threat to human health due to the lack of an effective vaccine. Although promising progress has been made in the development of tuberculosis vaccines, new vaccines that broaden the antigenic repertoire need to be developed to eradicate this illness. In this study, we used Mycobacterium tuberculosis ferritin BfrB and heat-shock protein GrpE to construct a novel multi-antigenic fusion protein, BfrB-GrpE (BG). BG protein was stably overexpressed in the soluble form in Escherichia coli at a high yield and purified via sequential salt fractionation and hydrophobic chromatography. Purified BG was emulsified in an adjuvant containing N, N'-dimethyl-N, N'-dioctadecylammonium bromide, polyinosinic-polycytidylic acid, and cholesterol (DPC) to construct the BG/DPC vaccine, which stimulated strong cellular and humoral immune responses in mice. Moreover, combination of BG with our previously developed vaccine, Mtb10.4-HspX (MH), containing antigens from both the proliferating and dormant stages, significantly reduced the bacterial counts in the lungs and spleens of M. tuberculosis-infected mice. Importantly, mice that received BG + MH/DPC after M. tuberculosis H37Rv infection survived slightly better (100% survival) than those that received the BCG vaccine (80% survival), although the difference was not statistically significant. Our findings can aid in the selection of antigens and optimization of vaccination regimens to improve the efficacy of tuberculosis vaccines.
Collapse
Affiliation(s)
- Hongxia Niu
- School of Basic Medical Sciences & Key Laboratory of Blood-stasis-toxin Syndrome of Zhejiang Province, Zhejiang Chinese Medical University, Hangzhou, China; School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Qianqian Cao
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Tingting Zhang
- Lanzhou Institute of Biological Products Co., Ltd., Lanzhou, China
| | - Yunjie Du
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Pu He
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Lei Jiao
- Lanzhou Institute of Biological Products Co., Ltd., Lanzhou, China
| | - Bingxiang Wang
- Lanzhou Institute of Biological Products Co., Ltd., Lanzhou, China
| | - Bingdong Zhu
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Lina Hu
- Lanzhou Institute of Biological Products Co., Ltd., Lanzhou, China.
| | - Ying Zhang
- The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
8
|
Zhao X, Xie N, Zhang H, Zhou W, Ding J. Bacterial Drug Delivery Systems for Cancer Therapy: "Why" and "How". Pharmaceutics 2023; 15:2214. [PMID: 37765183 PMCID: PMC10534357 DOI: 10.3390/pharmaceutics15092214] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 08/22/2023] [Accepted: 08/25/2023] [Indexed: 09/29/2023] Open
Abstract
Cancer is one of the major diseases that endanger human health. However, the use of anticancer drugs is accompanied by a series of side effects. Suitable drug delivery systems can reduce the toxic side effects of drugs and enhance the bioavailability of drugs, among which targeted drug delivery systems are the main development direction of anticancer drug delivery systems. Bacteria is a novel drug delivery system that has shown great potential in cancer therapy because of its tumor-targeting, oncolytic, and immunomodulatory properties. In this review, we systematically describe the reasons why bacteria are suitable carriers of anticancer drugs and the mechanisms by which these advantages arise. Secondly, we outline strategies on how to load drugs onto bacterial carriers. These drug-loading strategies include surface modification and internal modification of bacteria. We focus on the drug-loading strategy because appropriate strategies play a key role in ensuring the stability of the delivery system and improving drug efficacy. Lastly, we also describe the current state of bacterial clinical trials and discuss current challenges. This review summarizes the advantages and various drug-loading strategies of bacteria for cancer therapy and will contribute to the development of bacterial drug delivery systems.
Collapse
Affiliation(s)
- Xiangcheng Zhao
- Xiangya School of Pharmaceutical Science, Central South University, Changsha 410006, China; (X.Z.); (N.X.); (H.Z.)
| | - Nuli Xie
- Xiangya School of Pharmaceutical Science, Central South University, Changsha 410006, China; (X.Z.); (N.X.); (H.Z.)
| | - Hailong Zhang
- Xiangya School of Pharmaceutical Science, Central South University, Changsha 410006, China; (X.Z.); (N.X.); (H.Z.)
- Changsha Jingyi Pharmaceutical Technology Co., Ltd., Changsha 410006, China
| | - Wenhu Zhou
- Xiangya School of Pharmaceutical Science, Central South University, Changsha 410006, China; (X.Z.); (N.X.); (H.Z.)
| | - Jinsong Ding
- Xiangya School of Pharmaceutical Science, Central South University, Changsha 410006, China; (X.Z.); (N.X.); (H.Z.)
| |
Collapse
|
9
|
Baker MC, Vágó E, Tamang S, Horváth-Puhó E, Sørensen HT. Sarcoidosis rates in BCG-vaccinated and unvaccinated young adults: A natural experiment using Danish registers. Semin Arthritis Rheum 2023; 60:152205. [PMID: 37054583 PMCID: PMC10947408 DOI: 10.1016/j.semarthrit.2023.152205] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 03/30/2023] [Accepted: 04/03/2023] [Indexed: 04/09/2023]
Abstract
OBJECTIVES Sarcoidosis may have an infectious trigger, including Mycobacterium spp. The Bacille Calmette-Guérin (BCG) vaccine provides partial protection against tuberculosis and induces trained immunity. We examined the incidence rate (IR) of sarcoidosis in Danish individuals born during high BCG vaccine uptake (born before 1976) compared with individuals born during low BCG vaccine uptake (born in or after 1976). METHODS We performed a quasi-randomized registry-based incidence study using data from the Danish Civil Registration System and the Danish National Patient Registry between 1995 and 2016. We included individuals aged 25-35 years old and born between 1970 and 1981. Using Poisson regression models, we calculated the incidence rate ratio (IRR) of sarcoidosis in individuals born during low BCG vaccine uptake versus high BCG vaccine uptake, adjusting for age and calendar year (separately for men and women). RESULTS The IR of sarcoidosis was increased for individuals born during low BCG vaccine uptake compared with individuals born during high BCG vaccine uptake, which was largely attributed to men. The IRR of sarcoidosis for men born during low BCG vaccine uptake versus high BCG vaccine uptake was 1.22 (95% confidence interval [CI] 1.02-1.45). In women, the IRR was 1.08 (95% CI 0.88-1.31). CONCLUSION In this quasi-experimental study that minimizes confounding, the time period with high BCG vaccine uptake was associated with a lower incidence rate of sarcoidosis in men, with a similar effect seen in women that did not reach significance. Our findings support a potential protective effect of BCG vaccination against the development of sarcoidosis. Future interventional studies for high-risk individuals could be considered.
Collapse
Affiliation(s)
- Matthew C Baker
- From the Division of Immunology and Rheumatology, Department of Medicine, Stanford University, Stanford, California (M.C.B. and S.T.), the Department of Clinical Epidemiology, Aarhus University Hospital and Department of Clinical Medicine, Aarhus University, Aarhus, Denmark (E.V., E.H.P., and H.T.S.), and the Clinical Excellence Science Center, Stanford University, Stanford, California (H.T.S.), United States of America.
| | - Emese Vágó
- From the Division of Immunology and Rheumatology, Department of Medicine, Stanford University, Stanford, California (M.C.B. and S.T.), the Department of Clinical Epidemiology, Aarhus University Hospital and Department of Clinical Medicine, Aarhus University, Aarhus, Denmark (E.V., E.H.P., and H.T.S.), and the Clinical Excellence Science Center, Stanford University, Stanford, California (H.T.S.), United States of America
| | - Suzanne Tamang
- From the Division of Immunology and Rheumatology, Department of Medicine, Stanford University, Stanford, California (M.C.B. and S.T.), the Department of Clinical Epidemiology, Aarhus University Hospital and Department of Clinical Medicine, Aarhus University, Aarhus, Denmark (E.V., E.H.P., and H.T.S.), and the Clinical Excellence Science Center, Stanford University, Stanford, California (H.T.S.), United States of America
| | - Erzsébet Horváth-Puhó
- From the Division of Immunology and Rheumatology, Department of Medicine, Stanford University, Stanford, California (M.C.B. and S.T.), the Department of Clinical Epidemiology, Aarhus University Hospital and Department of Clinical Medicine, Aarhus University, Aarhus, Denmark (E.V., E.H.P., and H.T.S.), and the Clinical Excellence Science Center, Stanford University, Stanford, California (H.T.S.), United States of America
| | - Henrik Toft Sørensen
- From the Division of Immunology and Rheumatology, Department of Medicine, Stanford University, Stanford, California (M.C.B. and S.T.), the Department of Clinical Epidemiology, Aarhus University Hospital and Department of Clinical Medicine, Aarhus University, Aarhus, Denmark (E.V., E.H.P., and H.T.S.), and the Clinical Excellence Science Center, Stanford University, Stanford, California (H.T.S.), United States of America
| |
Collapse
|
10
|
Chiok KR, Dhar N, Banerjee A. Mycobacterium tuberculosis and SARS-CoV-2 co-infections: The knowns and unknowns. iScience 2023; 26:106629. [PMID: 37091987 PMCID: PMC10082467 DOI: 10.1016/j.isci.2023.106629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2023] Open
Abstract
Health impacts of Mycobacterium tuberculosis (Mtb) and SARS-CoV-2 co-infections are not fully understood. Both pathogens modulate host responses and induce immunopathology with extensive lung damage. With a quarter of the world's population harboring latent TB, exploring the relationship between SARS-CoV-2 infection and its effect on the transition of Mtb from latent to active form is paramount to control this pathogen. The effects of active Mtb infection on establishment and severity of COVID-19 are also unknown, despite the ability of TB to orchestrate profound long-lasting immunopathologies in the lungs. Absence of mechanistic studies and co-infection models hinder the development of effective interventions to reduce the health impacts of SARS-CoV-2 and Mtb co-infection. Here, we highlight dysregulated immune responses induced by SARS-CoV-2 and Mtb, their potential interplay, and implications for co-infection in the lungs. As both pathogens master immunomodulation, we discuss relevant converging and diverging immune-related pathways underlying SARS-CoV-2 and Mtb co-infections.
Collapse
Affiliation(s)
- Kim R Chiok
- Vaccine and Infectious Disease Organization, University of Saskatchewan, Saskatoon, SK S7N 5E3, Canada
| | - Neeraj Dhar
- Vaccine and Infectious Disease Organization, University of Saskatchewan, Saskatoon, SK S7N 5E3, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
- Respiratory Research Centre, College of Medicine, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | - Arinjay Banerjee
- Vaccine and Infectious Disease Organization, University of Saskatchewan, Saskatoon, SK S7N 5E3, Canada
- Respiratory Research Centre, College of Medicine, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
- Department of Veterinary Microbiology, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada
- Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1, Canada
- Department of Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| |
Collapse
|
11
|
Khandelia P, Yadav S, Singh P. An overview of the BCG vaccine and its future scope. Indian J Tuberc 2023; 70 Suppl 1:S14-S23. [PMID: 38110255 DOI: 10.1016/j.ijtb.2023.05.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 05/15/2023] [Indexed: 12/20/2023]
Abstract
Despite intense elimination efforts, tuberculosis (TB) still poses a threat to world health, disproportionately affecting less developed and poorer countries. The Bacillus Calmette-Guérin (BCG) vaccine, the only anti-TB authorized vaccine can partially stop TB infection and transmission, however, its effectiveness ranges from 0 to 80%. As a result, there is an urgent need for a more potent TB vaccination given the widespread incidence of the disease. Enhancing BCG's effectiveness is also important due to the lack of other licensed vaccinations. Recently, fascinating research into BCG revaccination techniques by modulating its mode of action i.e., intravenous (IV) BCG delivery has yielded good clinical outcomes showing it still has a place in current vaccination regimens. We must thus go over the recent evidence that suggests trained immunity, and BCG vaccination techniques and describe how the vaccination confers protection against bacteria that cause both TB and non-tuberculosis. This review of the literature offers an updated summary and viewpoints on BCG-based TB immunization regimens (how it affects granulocytes at the epigenetic and hematopoietic stem cell levels which may be related to its efficacy), and also examines how the existing vaccine is being modified to be more effective, which may serve as an inspiration for future studies on the development of TB vaccines.
Collapse
Affiliation(s)
- Pallavi Khandelia
- Department of Biosciences, School of Basic and Applied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India
| | - Shikha Yadav
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India
| | - Pratichi Singh
- Department of Biosciences, School of Basic and Applied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India.
| |
Collapse
|
12
|
Asadian M, Hassanzadeh SM, Safarchi A, Douraghi M. The effect of in vitro consecutive passages and culture medium on the genetic variations in BCG Pasteur 1173P2 vaccine. PLoS One 2023; 18:e0280294. [PMID: 36689397 PMCID: PMC9870133 DOI: 10.1371/journal.pone.0280294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 12/24/2022] [Indexed: 01/24/2023] Open
Abstract
Since the introduction of the Bacillus Calmette-Guérin (BCG) vaccine, the genomes of vaccine strains have undergone variations due to repeated passages in different laboratories and vaccine production facilities. Genetic variations have been considered as one of the effective factors in the BCG variable protective efficacy. Consecutive subcultures have been shown to play an essential role in causing genetic variations in several microorganisms, including Mycobacterium bovis BCG. Therefore, the world health organization (WHO) recommendation to limit the passages of master seed lot in the BCG vaccine production should be considered. Besides, the role of other external variables such as quality of the raw ingredients of the culture media, the type of the culture medium and the cultivation methods in the vaccine production has been poorly studied. Here, the effect of passages and culture medium on genetic variations in a BCG seed lot was investigated during a year. The findings of this study revealed a total of 19 variants compared to seed lot while the passages were more than the number recommended by WHO. The first culture of seed lot in the Sauton broth and Middlebrook 7H9 media, and the last subculture in Sauton broth had the least and the most variants, respectively. The observation of the higher number of variants in the last cultures on Sauton broth and Middlebrook 7H9 in comparison to the first and the middle cultures may indicate the effect of passages on the genetic variations in BCG. Additionally, more variants in BCG grown in the Sauton broth do not necessarily represent the greater ability of this medium to cause genetic mutations. For a better conclusion, it is required to examine the medium components as independent variables.
Collapse
Affiliation(s)
- Mahla Asadian
- Division of Microbiology, Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Azadeh Safarchi
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia
| | - Masoumeh Douraghi
- Division of Microbiology, Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
13
|
BCG Vaccine-associated Complications in a Large Cohort of Children With Combined Immunodeficiencies Affecting Cellular and Humoral Immunity. Pediatr Infect Dis J 2022; 41:933-937. [PMID: 36102730 DOI: 10.1097/inf.0000000000003678] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
AIMS To present the details of Bacillus Calmette-Guérin (BCG)-vaccine associated complications (VACs) in combined immunodeficiencies (CID) patients. METHODS Five centers participated in this retrospective study and completed a data form, which included general patients' information, clinical and laboratory data. RESULTS Among 236 CID patients, 127 were BCG vaccinated. 41.9% of patients with family history of CID and 17.1% who were diagnosed by screening were BCG vaccinated. Twenty-three patients (18.1%) developed BCG-VACs. The median age of VACs was 6 months and the median time from vaccination to complications was 6 months. The highest rate of BCG-VACs was recorded in patients receiving the Russian BCG strain compared to the Tokyo and Danish strains. Univariate analysis of T-lymphocyte subsets showed increased odds of BCG complications in patients with CD3+, CD4+, and CD8+ counts of ≤250 cells/µL. Only CD8 + count ≤250 cells/µL had increased such odds on multivariate analysis. VACs were disseminated in 13 and localized in 10 patients. Localized complication occurred earlier after vaccination (median: 4 months) compared with disseminated ones (median: 7 months). There were no significant associations between sex, administered vaccine strain, serum immunoglobulins levels, lymphocyte subsets counts, and the chance of having either localized or disseminated BCG-related complications. COCLUSIONS Although contraindicated, many patients with CID continue to be vaccinated with BCG. Low CD8 + count is a risk factor for BCG-related complications and localized complications occurred earlier than disseminated ones. Considerations should be undertaken by health care authorities especially in countries with high incidence of CID to implement newborn screening, delay the time of BCG vaccine administration beyond 6 months of age and to use the relatively safer strains like the Danish and Tokyo ones.
Collapse
|
14
|
Asadian M, Hassanzadeh SM, Safarchi A, Douraghi M. Genomic characteristics of two most widely used BCG vaccine strains: Danish 1331 and Pasteur 1173P2. BMC Genomics 2022; 23:609. [PMID: 35987561 PMCID: PMC9392950 DOI: 10.1186/s12864-022-08826-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 08/05/2022] [Indexed: 11/28/2022] Open
Abstract
Background Bacillus Calmette–Guérin (BCG) refers to a group of vaccine strains with unique genetic characteristics. BCG is the only available vaccine for preventing tuberculosis (TB). Genetic and biochemical variations among the BCG vaccine strains have been considered as one of the significant parameters affecting the variable protective efficacy of the vaccine against pulmonary tuberculosis. To track genetic variations, here two vaccine strains (Danish 1331 and Pasteur 1173P2) popularly used according to the BCG World Atlas were subjected to a comparative analysis against the Mycobacterium tuberculosis H37Rv, Mycobacterium bovis AF2122/97, and Mycobacterium tuberculosis variant bovis BCG str. Pasteur 1173P2 reference genomes. Besides, the presence or absence of the experimentally verified human T cell epitopes was examined. Results Only two variants were identified in BCG Danish 1331 that have not been reported previously in any BCG strains with the complete submitted genome yet. Furthermore, we identified a DU1-like 14,577 bp region in BCG Danish 1331; The duplication which was previously seemed to be exclusive to the BCG Pasteur. We also found that 35% of the T cell epitopes are absent from both strains, and epitope sequences are more conserved than the rest of the genome. Conclusions We provided a comprehensive catalog of single nucleotide polymorphisms (SNPs) and short insertions and deletions (indels) in BCG Danish 1331 and BCG Pasteur 1173P2. These findings may help determine the effect of genetic variations on the variable protective efficacy of BCG vaccine strains. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08826-9.
Collapse
|
15
|
Past, Present and Future of Bacillus Calmette-Guérin Vaccine Use in China. Vaccines (Basel) 2022; 10:vaccines10071157. [PMID: 35891320 PMCID: PMC9320669 DOI: 10.3390/vaccines10071157] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/18/2022] [Accepted: 07/19/2022] [Indexed: 02/04/2023] Open
Abstract
The BCG vaccine is prepared from a weakened strain of Mycobacterium bovis (M. bovis), a bacterium closely related to Mycobacterium tuberculosis (MTB), which causes tuberculosis (TB). The vaccine was developed over 13 years, from 1908 to 1921, in the French Institut Pasteur by Léon Charles Albert Calmette and Jean-Marie Camille Guérin, who named the product Bacillus Calmette–Guérin (BCG). BCG, the only licensed vaccine currently available to prevent TB, is given to infants at high risk of TB shortly after birth to protect infants and young children from pulmonary, meningeal, and disseminated TB. The BCG vaccine, one of the safest and most widely used live attenuated vaccines in the world, recently celebrated its 100th anniversary (from 1921 to 2021); its record of use in preventing TB in China is also approaching 100 years. In 2022, a new century of BCG vaccine immunization will begin. In this article, we briefly review the history of BCG vaccine use in China, describe its current status, and offer a preliminary outlook on the future of the vaccine, to provide BCG researchers with a clearer understanding of its use in China.
Collapse
|
16
|
Kestler B, Tyler SK. Latent Tuberculosis Testing Through the Ages: The Search for a Sleeping Killer. Am J Physiol Lung Cell Mol Physiol 2022; 322:L412-L419. [PMID: 35170334 PMCID: PMC8934672 DOI: 10.1152/ajplung.00217.2021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Tuberculosis has been present in the world’s population for as long as there has been written language. It is a disease known to the ancient Egyptians, Greeks, Romans, and Hebrews, but its etiology eluded the world for thousands of years. Even after the germ theory was accepted and early scientists hypothesized a pathogen as the cause, the identity of the sleeping killer in society remained a mystery. That is until Robert Koch was able to grow and visualize Mycobacterium tuberculosis. Koch introduced his Old Tuberculin solution as a diagnostic therapy of tuberculosis (TB), with the intent to reduce the number of infected persons and stop its spread. Old Tuberculin’s ability to treat TB proved minimal, but its diagnostic potential paved the way for more effective tests from von Pirquet, Calmette, Wolff-Eisner, and Mantoux. Florence Seibert set out to identify and purify the active principle in Koch’s Old Tuberculin and ended up creating purified protein derivative (PPD) tuberculin which is still used as the standard for the tuberculin skin test (TST). Interferon-γ release assays (IGRAs) are a more modern diagnostic tool for detecting latent TB infection that offer some benefits (and some disadvantages) to TST. TSTs and IGRAs can determine if an individual has been infected with M. tuberculosis but are equally unable to predict progression to active tuberculosis, the diagnosis of which relies on assessment of clinical symptoms, radiographic imaging, and sample culture.
Collapse
Affiliation(s)
- Bri Kestler
- Physiology and Cell Biology, University of South Alabama, Mobile, AL, United States
| | - Shannon K Tyler
- Department of Infectious Diseases, University of South Alabama Medical Center, Mobile, AL, United States
| |
Collapse
|
17
|
Ishikawa T, Okai M, Mochizuki E, Uchiyama T, Onodera M, Kawai T. Bacillus Calmette-Guérin (BCG) Infections at High Frequency in Both AR-CGD and X-CGD Patients Following BCG Vaccination. Clin Infect Dis 2021; 73:e2538-e2544. [PMID: 32712647 DOI: 10.1093/cid/ciaa1049] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Patients with chronic granulomatous disease (CGD) develop severe infections, including Bacillus Calmette-Guérin (BCG). Although the autosomal recessive CGD (AR-CGD) patients should hypothetically develop relatively fewer infections compared to the X-linked CGD (X-CGD) patients due to more residual reactive oxygen intermediates, the impacts of BCG vaccination on AR-CGD and X-CGD patients are unclear. Herein, we demonstrated the clinical features of BCG infections, treatments, and genetic factors in CGD patients after BCG vaccination under the Japanese immunization program. METHODS We collected data retrospectively from 43 patients with CGD and assessed their history of initial infection, age at diagnosis of CGD, BCG vaccination history, clinical course, treatment for BCG infections, and genetic mutations associated with CGD. RESULTS Fourteen CGD patients avoided BCG vaccination because of other preceding infections and family history. Of 29 patients with CGD who received BCG vaccination, 20 patients developed BCG infections. Although the age at onset of initial infection in X-CGD patients was significantly younger than that in AR-CGD patients (P < .01), the onset and frequency of BCG infections were similar in X-CGD and AR-CGD patients. In X-CGD patients, BCG infections equally developed in the patients carrying missense, insertion, deletion, nonsense, and splice mutations of CYBB. All CGD patients with BCG infections were successfully treated with anti-tuberculous drugs. CONCLUSIONS Although X-CGD patients develop severe infections at a younger age than AR-CGD patients, our data suggested that BCG infections develop at high frequency in both AR-CGD and X-CGD patients, regardless of genotype and mutant forms.
Collapse
Affiliation(s)
- Takashi Ishikawa
- Division of Immunology, National Center for Child Health and Development, Tokyo, Japan.,Department of Pediatrics, The Jikei University School of Medicine, Tokyo, Japan
| | - Masashi Okai
- Division of Immunology, National Center for Child Health and Development, Tokyo, Japan.,Department of Pediatrics, The Jikei University School of Medicine, Tokyo, Japan
| | - Emi Mochizuki
- Department of Human Genetics, National Center for Child Health and Development, Tokyo, Japan
| | - Toru Uchiyama
- Division of Immunology, National Center for Child Health and Development, Tokyo, Japan.,Department of Human Genetics, National Center for Child Health and Development, Tokyo, Japan
| | - Masafumi Onodera
- Division of Immunology, National Center for Child Health and Development, Tokyo, Japan.,Department of Human Genetics, National Center for Child Health and Development, Tokyo, Japan
| | - Toshinao Kawai
- Division of Immunology, National Center for Child Health and Development, Tokyo, Japan.,Department of Pediatrics, The Jikei University School of Medicine, Tokyo, Japan
| |
Collapse
|
18
|
Cho T, Khatchadourian C, Nguyen H, Dara Y, Jung S, Venketaraman V. A review of the BCG vaccine and other approaches toward tuberculosis eradication. Hum Vaccin Immunother 2021; 17:2454-2470. [PMID: 33769193 PMCID: PMC8475575 DOI: 10.1080/21645515.2021.1885280] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 01/29/2021] [Indexed: 02/02/2023] Open
Abstract
Despite aggressive eradication efforts, Tuberculosis (TB) remains a global health burden, one that disproportionally affects poorer, less developed nations. The only vaccine approved for TB, the Bacillus of Calmette and Guérin (BCG) vaccine remains controversial because it's stated efficacy has been cited as anywhere from 0 to 80%. Nevertheless, there have been exciting discoveries about the mechanism of action of the BCG vaccine that suggests it has a role in immunization schedules today. We review recent data suggesting the vaccine imparts protection against both tuberculosis and non-tuberculosis pathogens via a newly discovered immune system called trained immunity. BCG's efficacy also appears to be tied to its affect on granulocytes at the epigenetic and hematopoietic stem cell levels, which we discuss in this article at length. We also write about how the different strains of the BCG vaccine elicit different immune responses, suggesting that certain BCG strains are more immunogenic than others. Finally, our review delves into how the current vaccine is being reformulated to be more efficacious, and track the development of the next generation vaccines against TB.
Collapse
Affiliation(s)
- Thomas Cho
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA, USA
| | | | - Huy Nguyen
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA, USA
| | - Yash Dara
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA, USA
| | - Shuna Jung
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA, USA
| | - Vishwanath Venketaraman
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA, USA
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA, USA
| |
Collapse
|
19
|
Ylösmäki E, Fusciello M, Martins B, Feola S, Hamdan F, Chiaro J, Ylösmäki L, Vaughan MJ, Viitala T, Kulkarni PS, Cerullo V. Novel personalized cancer vaccine platform based on Bacillus Calmette-Guèrin. J Immunother Cancer 2021; 9:jitc-2021-002707. [PMID: 34266884 PMCID: PMC8286790 DOI: 10.1136/jitc-2021-002707] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/15/2021] [Indexed: 12/03/2022] Open
Abstract
Background Intratumoral BCG therapy, one of the earliest immunotherapies, can lead to infiltration of immune cells into a treated tumor. However, an increase in the number of BCG-induced tumor-specific T cells in the tumor microenvironment could lead to enhanced therapeutic effects. Methods Here, we have developed a novel cancer vaccine platform based on BCG that can broaden BCG-induced immune responses to include tumor antigens. By physically attaching tumor-specific peptides onto the mycobacterial outer membrane, we were able to induce strong systemic and intratumoral T cell-specific immune responses toward the attached tumor antigens. These therapeutic peptides can be efficiently attached to the mycobacterial outer membrane using a poly-lysine sequence N-terminally fused to the tumor-specific peptides. Results Using two mouse models of melanoma and a mouse model of colorectal cancer, we observed that the antitumor immune responses of BCG could be improved by coating the BCG with tumor-specific peptides. In addition, by combining this novel cancer vaccine platform with anti-programmed death 1 (anti-PD-1) immune checkpoint inhibitor (ICI) therapy, the number of responders to anti-PD-1 immunotherapy was markedly increased. Conclusions This study shows that intratumoral BCG immunotherapy can be improved by coating the bacteria with modified tumor-specific peptides. In addition, this improved BCG immunotherapy can be combined with ICI therapy to obtain enhanced tumor growth control. These results warrant clinical testing of this novel cancer vaccine platform.
Collapse
Affiliation(s)
- Erkko Ylösmäki
- Laboratory of Immunovirotherapy, Drug Research Program, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland.,TRIMM, Translational Immunology Research Program, University of Helsinki, Helsinki, Finland
| | - Manlio Fusciello
- Laboratory of Immunovirotherapy, Drug Research Program, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland.,TRIMM, Translational Immunology Research Program, University of Helsinki, Helsinki, Finland
| | - Beatriz Martins
- Laboratory of Immunovirotherapy, Drug Research Program, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland.,TRIMM, Translational Immunology Research Program, University of Helsinki, Helsinki, Finland
| | - Sara Feola
- Laboratory of Immunovirotherapy, Drug Research Program, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland.,TRIMM, Translational Immunology Research Program, University of Helsinki, Helsinki, Finland
| | - Firas Hamdan
- Laboratory of Immunovirotherapy, Drug Research Program, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland.,TRIMM, Translational Immunology Research Program, University of Helsinki, Helsinki, Finland
| | - Jacopo Chiaro
- Laboratory of Immunovirotherapy, Drug Research Program, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland.,TRIMM, Translational Immunology Research Program, University of Helsinki, Helsinki, Finland
| | - Leena Ylösmäki
- Laboratory of Immunovirotherapy, Drug Research Program, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland.,TRIMM, Translational Immunology Research Program, University of Helsinki, Helsinki, Finland.,Valo Therapeutics Oy, Helsinki, Finland
| | | | - Tapani Viitala
- Pharmaceutical Biophysics Research Group, Drug Research Program, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | | | - Vincenzo Cerullo
- Laboratory of Immunovirotherapy, Drug Research Program, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland .,TRIMM, Translational Immunology Research Program, University of Helsinki, Helsinki, Finland.,iCAN Digital Precision Cancer Medicine Flagship, University of Helsinki, Helsinki, Finland.,Department of Molecular Medicine and Medical Biotechnology and CEINGE, Naples University 24 Federico II, Naples, Italy
| |
Collapse
|
20
|
Singh AK, Netea MG, Bishai WR. BCG turns 100: its nontraditional uses against viruses, cancer, and immunologic diseases. J Clin Invest 2021; 131:e148291. [PMID: 34060492 DOI: 10.1172/jci148291] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
First administered to a human subject as a tuberculosis (TB) vaccine on July 18, 1921, Bacillus Calmette-Guérin (BCG) has a long history of use for the prevention of TB and later the immunotherapy of bladder cancer. For TB prevention, BCG is given to infants born globally across over 180 countries and has been in use since the late 1920s. With about 352 million BCG doses procured annually and tens of billions of doses having been administered over the past century, it is estimated to be the most widely used vaccine in human history. While its roles for TB prevention and bladder cancer immunotherapy are widely appreciated, over the past century, BCG has been also studied for nontraditional purposes, which include (a) prevention of viral infections and nontuberculous mycobacterial infections, (b) cancer immunotherapy aside from bladder cancer, and (c) immunologic diseases, including multiple sclerosis, type 1 diabetes, and atopic diseases. The basis for these heterologous effects lies in the ability of BCG to alter immunologic set points via heterologous T cell immunity, as well as epigenetic and metabolomic changes in innate immune cells, a process called "trained immunity." In this Review, we provide an overview of what is known regarding the trained immunity mechanism of heterologous protection, and we describe the current knowledge base for these nontraditional uses of BCG.
Collapse
Affiliation(s)
- Alok K Singh
- Department of Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Mihai G Netea
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands.,Department of Immunology and Metabolism, Life and Medical Sciences Institute, University of Bonn, Bonn, Germany
| | - William R Bishai
- Department of Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
21
|
Ahmed A, Rakshit S, Adiga V, Dias M, Dwarkanath P, D'Souza G, Vyakarnam A. A century of BCG: Impact on tuberculosis control and beyond. Immunol Rev 2021; 301:98-121. [PMID: 33955564 DOI: 10.1111/imr.12968] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/13/2021] [Accepted: 03/13/2021] [Indexed: 12/14/2022]
Abstract
BCG turns 100 this year and while it might not be the perfect vaccine, it has certainly contributed significantly towards eradication and prevention of spread of tuberculosis (TB). The search for newer and better vaccines for TB is an ongoing endeavor and latest results from trials of candidate TB vaccines such as M72AS01 look promising. However, recent encouraging data from BCG revaccination trials in adults combined with studies on mucosal and intravenous routes of BCG vaccination in non-human primate models have renewed interest in BCG for TB prevention. In addition, several well-demonstrated non-specific effects of BCG, for example, prevention of viral and respiratory infections, give BCG an added advantage. Also, BCG vaccination is currently being widely tested in human clinical trials to determine whether it protects against SARS-CoV-2 infection and/or death with detailed analyses and outcomes from several ongoing trials across the world awaited. Through this review, we attempt to bring together information on various aspects of the BCG-induced immune response, its efficacy in TB control, comparison with other candidate TB vaccines and strategies to improve its efficiency including revaccination and alternate routes of administration. Finally, we discuss the future relevance of BCG use especially in light of its several heterologous benefits.
Collapse
Affiliation(s)
- Asma Ahmed
- Laboratory of Immunology of HIV-TB co-infection, Centre for Infectious Disease Research, Indian Institute of Science, Bangalore, India
| | - Srabanti Rakshit
- Laboratory of Immunology of HIV-TB co-infection, Centre for Infectious Disease Research, Indian Institute of Science, Bangalore, India
| | - Vasista Adiga
- Laboratory of Immunology of HIV-TB co-infection, Centre for Infectious Disease Research, Indian Institute of Science, Bangalore, India
| | - Mary Dias
- Division of Infectious Diseases, St John's Research Institute, Bangalore, India
| | | | - George D'Souza
- Division of Infectious Diseases, St John's Research Institute, Bangalore, India.,Department of Pulmonary Medicine, St John's Medical College, Bangalore, India
| | - Annapurna Vyakarnam
- Laboratory of Immunology of HIV-TB co-infection, Centre for Infectious Disease Research, Indian Institute of Science, Bangalore, India.,Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, Faculty of Life Sciences and Medicine, Guy's Hospital, King's College London, London, UK
| |
Collapse
|
22
|
Sisco MC, Gomes da Silva M, Distasio de Carvalho L, Dias Campos CE, De Souza Caldas PC, Lopez B, Argüelles C, Carvalho AC, de Waard J, Suffys P, Silva Duarte R. Phenotypic and Genotypic Drug Susceptibility Assessment of Mycobacterium bovis Bacillus Calmette-Guérin Clinical Strains. Infect Drug Resist 2021; 14:459-466. [PMID: 33574685 PMCID: PMC7872933 DOI: 10.2147/idr.s248096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Accepted: 06/18/2020] [Indexed: 11/28/2022] Open
Abstract
PURPOSE Mycobacterium bovis Bacillus Calmette-Guérin (BCG) is the only vaccine licensed against tuberculosis. Despite the protection offered by the vaccine, in some circumstances children and immunocompromised individuals can develop associated infections, known as BCGitis. Drug susceptibility patterns of BCG clinical strains have rarely been described. We aimed to describe the susceptibility pattern of BCG clinical strains isolated in two different countries. METHODS We performed culture-based drug susceptibility testing of thirty one BCG strains isolated from patients in Brazil (n=5, 16%) and Argentina (n=26, 84%) using the broth micro-dilution method (phenotypic method). Final antibiotic concentrations for susceptibility testing ranged from 0.5 to 16 mg/L for amikacin, 0.3125 to 10 mg/L for ethambutol, 0.05 to 1.6 mg/L for isoniazid and 0.25 to 8 mg/L for rifampicin, streptomycin and ofloxacin. Additionally, we compared the results with genetic data obtained by whole genome sequencing. RESULTS By using the phenotypic method we detected one strain resistant to ethambutol, three strains resistant to rifampicin and one resistant to isoniazid. Additionally, two strains that were phenotypically resistant to both isoniazid and rifampicin carried mutations in the katG and rpoB genes simultaneously. CONCLUSION There is evidence of the emergence of BCG-resistant strains isolated from vaccine-related complications. We recommend drug susceptibility testing of the BCG strain causing the infection in order to prevent treatment failure.
Collapse
Affiliation(s)
- Maria Carolina Sisco
- Laboratório de Micobactérias, Departamento de Microbiologia Médica, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Laboratório de Biologia Molecular Aplicada às Micobactérias, Instituto Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Marlei Gomes da Silva
- Laboratório de Micobactérias, Departamento de Microbiologia Médica, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Luciana Distasio de Carvalho
- Laboratório de Referência Nacional Para Tuberculose e Micobacterioses, Centro de Referência Professor Hélio Fraga, Escola Nacional de Saúde Pública, Rio de Janeiro, Brazil
| | - Carlos Eduardo Dias Campos
- Laboratório de Referência Nacional Para Tuberculose e Micobacterioses, Centro de Referência Professor Hélio Fraga, Escola Nacional de Saúde Pública, Rio de Janeiro, Brazil
| | - Paulo Cesar De Souza Caldas
- Laboratório de Referência Nacional Para Tuberculose e Micobacterioses, Centro de Referência Professor Hélio Fraga, Escola Nacional de Saúde Pública, Rio de Janeiro, Brazil
| | - Beatriz Lopez
- Instituto Nacional de Enfermedades Infecciosas, Buenos Aires, Argentina
| | - Claudia Argüelles
- Instituto Nacional de Producción de Biológicos – ANLIS Carlos G Malbrán, Buenos Aires, Argentina
| | - Ana Carolina Carvalho
- Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Campus Macaé, Rio de Janeiro, Brazil
| | - Jacobus de Waard
- Departamento de Tuberculosis, Instituto Autónomo de Biomedicina Dr. Jacinto Convit, Caracas, Venezuela
- One Health Research Group, Facultad de Ciencias de La Salud, Universidad de Las Américas, Quito, Ecuador
| | - Philip Suffys
- Laboratório de Biologia Molecular Aplicada às Micobactérias, Instituto Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Rafael Silva Duarte
- Laboratório de Micobactérias, Departamento de Microbiologia Médica, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
23
|
PE_PGRS33, an Important Virulence Factor of Mycobacterium tuberculosis and Potential Target of Host Humoral Immune Response. Cells 2021; 10:cells10010161. [PMID: 33467487 PMCID: PMC7830552 DOI: 10.3390/cells10010161] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 01/04/2021] [Accepted: 01/12/2021] [Indexed: 01/16/2023] Open
Abstract
PE_PGRS proteins are surface antigens of Mycobacterium tuberculosis (Mtb) and a few other pathogenic mycobacteria. The PE_PGRS33 protein is among the most studied PE_PGRSs. It is known that the PE domain of PE_PGRS33 is required for the protein translocation through the mycobacterial cell wall, where the PGRS domain remains available for interaction with host receptors. Interaction with Toll like receptor 2 (TLR2) promotes secretion of inflammatory chemokines and cytokines, which are key in the immunopathogenesis of tuberculosis (TB). In this review, we briefly address some key challenges in the development of a TB vaccine and attempt to provide a rationale for the development of new vaccines aimed at fostering a humoral response against Mtb. Using PE_PGRS33 as a model for a surface-exposed antigen, we exploit the availability of current structural data using homology modeling to gather insights on the PGRS domain features. Our study suggests that the PGRS domain of PE_PGRS33 exposes four PGII sandwiches on the outer surface, which, we propose, are directly involved through their loops in the interactions with the host receptors and, as such, are promising targets for a vaccination strategy aimed at inducing a humoral response.
Collapse
|
24
|
Kilapandal Venkatraman SM, Sivanandham R, Pandrea I, Apetrei C. BCG Vaccination and Mother-to-Infant Transmission of HIV. J Infect Dis 2020; 222:1-3. [PMID: 31605531 DOI: 10.1093/infdis/jiz385] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 07/22/2019] [Indexed: 11/13/2022] Open
Affiliation(s)
- Sindhuja Murali Kilapandal Venkatraman
- Department of Pathology, Department of Medicine, School of Medicine, University of Pittsburgh, Pennsylvania.,Division of Infectious Diseases, Department of Medicine, School of Medicine, University of Pittsburgh, Pennsylvania
| | - Ranjit Sivanandham
- Department of Pathology, Department of Medicine, School of Medicine, University of Pittsburgh, Pennsylvania.,Division of Infectious Diseases, Department of Medicine, School of Medicine, University of Pittsburgh, Pennsylvania
| | - Ivona Pandrea
- Department of Pathology, Department of Medicine, School of Medicine, University of Pittsburgh, Pennsylvania
| | - Cristian Apetrei
- Division of Infectious Diseases, Department of Medicine, School of Medicine, University of Pittsburgh, Pennsylvania
| |
Collapse
|
25
|
Sisco MC, Silva MG, Lopez B, Arguelles C, Mendonça-Lima L, de Waard JH, Duarte RS, Suffys PN. Newly sequenced genomes of four Bacillus Calmette Guerin vaccines. Mem Inst Oswaldo Cruz 2020; 115:e190401. [PMID: 32401897 PMCID: PMC7212995 DOI: 10.1590/0074-02760190401] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 04/13/2020] [Indexed: 11/24/2022] Open
Abstract
Bacillus Calmette Guerin (BCG) vaccines comprise a family of related strains. Whole genome sequencing has allowed the better characterisation of the differences between many of the BCG vaccines. As sequencing technologies improve, updating of publicly available sequence data becomes common practice. We hereby announce the draft genome of four commonly used BCG vaccines in Brazil, Argentina and Venezuela.
Collapse
Affiliation(s)
- Maria Carolina Sisco
- Universidade Federal do Rio de Janeiro, Instituto de Microbiologia Paulo de Góes, Departamento de Microbiologia Médica, Laboratório de Micobactérias, Rio de Janeiro, RJ, Brasil
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Biologia Molecular Aplicada às Micobactérias, Rio de Janeiro, RJ, Brasil
| | - Marlei Gomés Silva
- Universidade Federal do Rio de Janeiro, Instituto de Microbiologia Paulo de Góes, Departamento de Microbiologia Médica, Laboratório de Micobactérias, Rio de Janeiro, RJ, Brasil
| | - Beatriz Lopez
- Instituto Nacional de Enfermedades Infecciosas, Buenos Aires, Argentina
| | - Claudia Arguelles
- Instituto Nacional de Producción de Biológicos Carlos G Malbrán, Buenos Aires, Argentina
| | - Leila Mendonça-Lima
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Genômica Funcional e Bioinformática, Rio de Janeiro, RJ, Brasil
| | - Jacobus H de Waard
- Servicio Autónomo Instituto de Biomedicina Dr Jacinto Convit, Caracas, Venezuela
- One Health Research Group, Universidad de Las Américas, Facultad de Ciencias de la Salud, Quito, Ecuador
| | - Rafael Silva Duarte
- Universidade Federal do Rio de Janeiro, Instituto de Microbiologia Paulo de Góes, Departamento de Microbiologia Médica, Laboratório de Micobactérias, Rio de Janeiro, RJ, Brasil
| | - Philip Noel Suffys
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Biologia Molecular Aplicada às Micobactérias, Rio de Janeiro, RJ, Brasil
| |
Collapse
|
26
|
Palatnik-de-Sousa CB, Nico D. The Delay in the Licensing of Protozoal Vaccines: A Comparative History. Front Immunol 2020; 11:204. [PMID: 32210953 PMCID: PMC7068796 DOI: 10.3389/fimmu.2020.00204] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 01/27/2020] [Indexed: 11/13/2022] Open
Abstract
Although viruses and bacteria have been known as agents of diseases since 1546, 250 years went by until the first vaccines against these pathogens were developed (1796 and 1800s). In contrast, Malaria, which is a protozoan-neglected disease, has been known since the 5th century BCE and, despite 2,500 years having passed since then, no human vaccine has yet been licensed for Malaria. Additionally, no modern human vaccine is currently licensed against Visceral or Cutaneous leishmaniasis. Vaccination against Malaria evolved from the inoculation of irradiated sporozoites through the bite of Anopheles mosquitoes in 1930's, which failed to give protection, to the use of controlled human Malaria infection (CHMI) provoked by live sporozoites of Plasmodium falciparum and curtailed with specific chemotherapy since 1940's. Although the use of CHMI for vaccination was relatively efficacious, it has some ethical limitations and was substituted by the use of injected recombinant vaccines expressing the main antigens of the parasite cycle, starting in 1980. Pre-erythrocytic (PEV), Blood stage (BSV), transmission-blocking (TBV), antitoxic (AT), and pregnancy-associated Malaria vaccines are under development. Currently, the RTS,S-PEV vaccine, based on the circumsporozoite protein, is the only one that has arrived at the Phase III trial stage. The "R" stands for the central repeat region of Plasmodium (P.) falciparum circumsporozoite protein (CSP); the "T" for the T-cell epitopes of the CSP; and the "S" for hepatitis B surface antigen (HBsAg). In Africa, this latter vaccine achieved only 36.7% vaccine efficacy (VE) in 5-7 years old children and was associated with an increase in clinical cases in one assay. Therefore, in spite of 35 years of research, there is no currently licensed vaccine against Malaria. In contrast, more progress has been achieved regarding prevention of leishmaniasis by vaccine, which also started with the use of live vaccines. For ethical reasons, these were substituted by second-generation subunit or recombinant DNA and protein vaccines. Currently, there is one live vaccine for humans licensed in Uzbekistan, and four licensed veterinary vaccines against visceral leishmaniasis: Leishmune® (76-80% VE) and CaniLeish® (68.4% VE), which give protection against strong endpoints (severe disease and deaths under natural conditions), and, under less severe endpoints (parasitologically and PCR-positive cases), Leishtec® developed 71.4% VE in a low infective pressure area but only 35.7% VE and transient protection in a high infective pressure area, while Letifend® promoted 72% VE. A human recombinant vaccine based on the Nucleoside hydrolase NH36 of Leishmania (L.) donovani, the main antigen of the Leishmune® vaccine, and the sterol 24-c-methyltransferase (SMT) from L. (L.) infantum has reached the Phase I clinical trial phase but has not yet been licensed against the disease. This review describes the history of vaccine development and is focused on licensed formulations that have been used in preventive medicine. Special attention has been given to the delay in the development and licensing of human vaccines against Protozoan infections, which show high incidence worldwide and still remain severe threats to Public Health.
Collapse
MESH Headings
- Adult
- Animals
- Child
- Child, Preschool
- Female
- History, 17th Century
- History, 18th Century
- History, 19th Century
- History, 20th Century
- History, 21st Century
- Humans
- Leishmania donovani/immunology
- Leishmaniasis Vaccines/history
- Leishmaniasis Vaccines/immunology
- Leishmaniasis, Visceral/parasitology
- Leishmaniasis, Visceral/prevention & control
- Leishmaniasis, Visceral/veterinary
- Licensure/history
- Malaria Vaccines/history
- Malaria Vaccines/immunology
- Malaria, Falciparum/parasitology
- Malaria, Falciparum/prevention & control
- Mass Vaccination/history
- Mass Vaccination/methods
- Plasmodium falciparum/immunology
- Pregnancy
- Vaccines, Attenuated/history
- Vaccines, Attenuated/immunology
- Vaccines, Live, Unattenuated/history
- Vaccines, Live, Unattenuated/immunology
- Vaccines, Synthetic/history
- Vaccines, Synthetic/immunology
Collapse
Affiliation(s)
- Clarisa Beatriz Palatnik-de-Sousa
- Institute of Microbiology Paulo de Góes, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Institute for Research in Immunology, Faculty of Medicine, University of São Paulo, São Paulo, Brazil
| | - Dirlei Nico
- Institute of Microbiology Paulo de Góes, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
27
|
Gonzalo-Asensio J, Marinova D, Martin C, Aguilo N. MTBVAC: Attenuating the Human Pathogen of Tuberculosis (TB) Toward a Promising Vaccine against the TB Epidemic. Front Immunol 2017; 8:1803. [PMID: 29326700 PMCID: PMC5736532 DOI: 10.3389/fimmu.2017.01803] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 11/30/2017] [Indexed: 12/30/2022] Open
Abstract
Bacille Calmette-Guérin (BCG) is a live-attenuated strain of Mycobacterium bovis developed a century ago by repeated subculture. It remains the only vaccine against tuberculosis (TB) in use today, and it offers variable protection against the respiratory forms of TB responsible for transmission. The principal genetic basis for BCG attenuation is the loss of the region of difference 1 (RD1) that includes the genes codifying for production and export of the major virulence factor ESAT6. Today more than 13 TB vaccine candidates are in clinical evaluation. One of these candidates is MTBVAC, which is based on a rationally attenuated Mycobacterium tuberculosis clinical isolate belonging to modern lineage 4, one of the most widespread lineages among humans. MTBVAC conserves most of the T cell epitopes described for TB including the major immunodominant antigens ESAT6 and CFP10 of the RD1, deleted in BCG. After almost 20 years of discovery and preclinical development, MTBVAC is the only live attenuated vaccine based on a human pathogen that has successfully entered clinical trials as a preventive vaccine in newborns, aiming to replace BCG, and as a preventive vaccine in adolescents and adults (BCG-vaccinated at birth). Our recent preclinical studies have demonstrated that MTBVAC-induced immunity to ESAT6 and CFP10 correlate with improved efficacy relative to BCG encouraging exploration of these responses in human clinical trials as potential biomarkers and identification of these antigens as possible correlates of vaccine-induced protection. Such data would be extremely valuable as they would greatly accelerate clinical development to efficacy trials.
Collapse
Affiliation(s)
- Jesus Gonzalo-Asensio
- Grupo de Genética de Micobacterias, Departamento Microbiología, Medicina Preventiva y Salud Pública, Universidad de Zaragoza, Zaragoza, Spain.,CIBER Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
| | - Dessislava Marinova
- Grupo de Genética de Micobacterias, Departamento Microbiología, Medicina Preventiva y Salud Pública, Universidad de Zaragoza, Zaragoza, Spain.,CIBER Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
| | - Carlos Martin
- Grupo de Genética de Micobacterias, Departamento Microbiología, Medicina Preventiva y Salud Pública, Universidad de Zaragoza, Zaragoza, Spain.,CIBER Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain.,Servicio de Microbiología, Hospital Universitario Miguel Servet, Instituto de Investigación Sanitaria Aragón (IIS Aragón), Zaragoza, Spain
| | - Nacho Aguilo
- Grupo de Genética de Micobacterias, Departamento Microbiología, Medicina Preventiva y Salud Pública, Universidad de Zaragoza, Zaragoza, Spain.,CIBER Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|