1
|
Dorbani I, Armengaud J, Carlin F, Duport C. UV-C and hydration state drive pulsed light-induced proteome damage in Bacillus pumilus spores. Front Microbiol 2025; 16:1579161. [PMID: 40270826 PMCID: PMC12017682 DOI: 10.3389/fmicb.2025.1579161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Accepted: 03/13/2025] [Indexed: 04/25/2025] Open
Abstract
Introduction Pulsed light (PL) is a non-thermal processing technology that inactivates microorganisms through high-intensity pulses of polychromatic light, including ultraviolet-C (UV-C). While the germicidal effect of PL has been widely studied, its impact on microbial proteomes remains poorly understood. Here, we investigate the proteomic response of Bacillus pumilus DSM492 (ATCC 27142) spores to PL treatment, comparing it to conventional UV-C 254 nm exposure. Methods B. pumilus spores were either suspended in water or sprayed onto a polystyrene surface and exposed to PL or UV-C at fluences achieving a 5-log and a > 7-log reduction in viability. Proteomic changes were analyzed using mass spectrometry to identify proteins with decreased abundance after treatment. Results PL treatment induced a significantly greater proteomic alteration compared to UV-C, particularly in spores suspended in water, where the number of proteins with decreased abundance was ~6-fold higher than in spores sprayed on a polystyrene surface. Proteomic analysis revealed that the effect of PL in water was primarily due to UV-C 254 nm, whereas on polystyrene, UV-C 254 nm had no significant impact. Furthermore, proteins most affected by PL were enriched in photosensitive amino acids such as tryptophan, histidine, tyrosine, cysteine, and methionine, suggesting oxidation and photoreactivity as key degradation mechanisms. Discussion Although the overall inactivation rate could not be directly correlated with proteome damage, we identified that core proteins involved in DNA and RNA protection and repair were specifically targeted by PL. These findings provide new insights into the molecular mechanisms underlying PL-mediated microbial inactivation and highlight the role of protein photodamage in spore susceptibility.
Collapse
Affiliation(s)
- Imed Dorbani
- Avignon Université, INRAE, UMR SQPOV, Avignon, France
- Claranor SA, Avignon, France
| | - Jean Armengaud
- Département Médicaments et Technologies pour la Santé (DMTS), Université Paris Saclay, CEA, INRAE, Bagnols-sur-Cèze, France
| | | | | |
Collapse
|
2
|
D’Halluin A, Gilet L, Lablaine A, Pellegrini O, Serrano M, Tolcan A, Ventroux M, Durand S, Hamon M, Henriques A, Carballido-López R, Condon C. Embedding a ribonuclease in the spore crust couples gene expression to spore development in Bacillus subtilis. Nucleic Acids Res 2025; 53:gkae1301. [PMID: 39817517 PMCID: PMC11736430 DOI: 10.1093/nar/gkae1301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 12/16/2024] [Accepted: 01/14/2025] [Indexed: 01/18/2025] Open
Abstract
Faced with nutritional stress, some bacteria form endospores capable of enduring extreme conditions for long periods of time; yet the function of many proteins expressed during sporulation remains a mystery. We identify one such protein, KapD, as a 3'-exoribonuclease expressed under control of the mother cell-specific transcription factors SigE and SigK in Bacillus subtilis. KapD dynamically assembles over the spore surface through a direct interaction with the major crust protein CotY. KapD catalytic activity is essential for normal adhesiveness of spore surface layers. We identify the sigK mRNA as a key KapD substrate and and show that the stability of this transcript is regulated by CotY-mediated sequestration of KapD. SigK is tightly controlled through excision of a prophage-like element, transcriptional regulation and the removal of an inhibitory pro-sequence. Our findings uncover a fourth, post-transcriptional layer of control of sigK expression that couples late-stage gene expression in the mother cell to spore morphogenesis.
Collapse
Affiliation(s)
- Alexandre D’Halluin
- EGM CNRS, Université Paris-Cité,Institut de Biologie Physico-Chimique, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | - Laetitia Gilet
- EGM CNRS, Université Paris-Cité,Institut de Biologie Physico-Chimique, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | - Armand Lablaine
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350 Jouy-en-Josas, France
| | - Olivier Pellegrini
- EGM CNRS, Université Paris-Cité,Institut de Biologie Physico-Chimique, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | - Mónica Serrano
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, 2780-157Oeiras, Portugal
| | - Anastasia Tolcan
- EGM CNRS, Université Paris-Cité,Institut de Biologie Physico-Chimique, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | - Magali Ventroux
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350 Jouy-en-Josas, France
| | - Sylvain Durand
- EGM CNRS, Université Paris-Cité,Institut de Biologie Physico-Chimique, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | - Marion Hamon
- Proteomics platform, FR550 Institut de Biologie Physico-Chimique, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | - Adriano O Henriques
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, 2780-157Oeiras, Portugal
| | - Rut Carballido-López
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350 Jouy-en-Josas, France
| | - Ciarán Condon
- EGM CNRS, Université Paris-Cité,Institut de Biologie Physico-Chimique, 13 rue Pierre et Marie Curie, 75005 Paris, France
| |
Collapse
|
3
|
Castaldi S, Donadio G, Staiano I, Ricca E, Isticato R. The triterpenoid curcumene mediates the relative hydrophilicity of Bacillus subtilis spores. mBio 2025; 16:e0302424. [PMID: 39611687 PMCID: PMC11708026 DOI: 10.1128/mbio.03024-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 11/07/2024] [Indexed: 11/30/2024] Open
Abstract
Spores of Bacillus subtilis are surrounded and protected by the coat and the crust, multi-layered structures mainly made of proteins and polysaccharides. These polysaccharides are covalently linked to some of the coat and crust proteins and influence some spore properties, such as surface adhesion and hydrophilicity. This study reports that a mutant strain lacking the spsA-L operon, encoding 11 enzymes involved in the synthesis of spore surface polysaccharides, produced spores exposing on their surface hydrophobic molecules that were responsible for the drastic reduction of hydrophilicity of the mutant spores. Biochemical and genetic data support the identification of the C35-terpenoid curcumene, a precursor of the spore-associated lipid sporulene, as the highly hydrophobic molecule present on the surface of mutant spores.IMPORTANCEBacterial spores are the most resistant cell forms on Earth. The metabolically quiescent spores withstand conditions that would be lethal for other cells, maintaining the capacity to sense the environment and respond to the presence of favorable conditions by germinating. Such remarkable resistance is also due to the complex layers that surround the spore cytoplasm and protect it against damaging factors. Altogether, the spore surface layers form a complex cell structure composed of proteins, polysaccharides, and, as highlighted by this study, also of lipids. Understanding the complexity of the spore surface and the specific molecules involved in its structure is an essential step for unraveling the mechanisms underlying the spore's resistance to environmental assaults.
Collapse
Affiliation(s)
- Stefany Castaldi
- Department of Biology, Complesso Universitario Monte S. Angelo, University of Naples Federico II, Naples, Italy
| | - Giuliana Donadio
- Department of Biology, Complesso Universitario Monte S. Angelo, University of Naples Federico II, Naples, Italy
| | - Ivana Staiano
- Department of Biology, Complesso Universitario Monte S. Angelo, University of Naples Federico II, Naples, Italy
| | - Ezio Ricca
- Department of Biology, Complesso Universitario Monte S. Angelo, University of Naples Federico II, Naples, Italy
| | - Rachele Isticato
- Department of Biology, Complesso Universitario Monte S. Angelo, University of Naples Federico II, Naples, Italy
- NBFC, National Biodiversity Future Center, Palermo, Italy
| |
Collapse
|
4
|
Ramírez-Guadiana FH, Brogan AP, Rudner DZ. Identification and characterization of the Bacillus subtilis spore germination protein GerY. J Bacteriol 2024; 206:e0039924. [PMID: 39530705 PMCID: PMC11656775 DOI: 10.1128/jb.00399-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 10/14/2024] [Indexed: 11/16/2024] Open
Abstract
In response to starvation, endospore-forming bacteria differentiate into stress-resistant spores that can remain dormant for years yet rapidly germinate and resume growth when nutrients become available. To identify uncharacterized factors involved in the exit from dormancy, we performed a transposon-sequencing screen taking advantage of the loss of spore heat resistance that accompanies germination. We reasoned that transposon insertions that impair but do not block germination will lose resistance more slowly than wild type after exposure to nutrients and will therefore survive heat treatment. Using this approach, we identified most of the known germination genes and several new ones. We report an initial characterization of 15 of these genes and a more detailed analysis of one (ymaF). Spores lacking ymaF (renamed gerY) are impaired in germination in response to both L-alanine and L-asparagine, D-glucose, D-fructose, and K+. GerY is a soluble protein synthesized under σE control in the mother cell. A YFP-GerY fusion localizes around the developing and mature spore in a manner that depends on CotE and SafA, indicating that it is a component of the spore coat. Coat proteins encoded by the gerP operon and gerT are also required for efficient germination, and we show that spores lacking two or all three of these loci have more severe defects in the exit from dormancy. Our data are consistent with a model in which GerY, GerT, and the GerP proteins are required for efficient transit of nutrients through the coat to access the germination receptors, but each acts independently in this process. IMPORTANCE Pathogens in the orders Bacillales and Clostridiales resist sterilization by differentiating into stress-resistant spores. Spores are metabolically inactive and can remain dormant for decades, yet upon exposure to nutrients, they rapidly resume growth, causing food spoilage, food-borne illness, or life-threatening disease. The exit from dormancy, called germination, is a key target in combating these important pathogens. Here, we report a high-throughput genetic screen using transposon sequencing to identify novel germination factors that ensure the efficient exit from dormancy. We identify several new factors and characterize one in greater detail. This factor, renamed GerY, is part of the proteinaceous coat that encapsulates the dormant spore. Our data suggest that GerY enables efficient transit of nutrients through the coat to trigger germination.
Collapse
Affiliation(s)
| | - Anna P. Brogan
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
| | - David Z. Rudner
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
5
|
Riley EP, Lyda JA, Reyes-Matte O, Sugie J, Kasu IR, Enustun E, Armbruster E, Ravishankar S, Isaacson RL, Camp AH, Lopez-Garrido J, Pogliano K. Developmentally-regulated proteolysis by MdfA and ClpCP mediates metabolic differentiation during Bacillus subtilis sporulation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.26.625531. [PMID: 39651166 PMCID: PMC11623654 DOI: 10.1101/2024.11.26.625531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
Bacillus subtilis sporulation entails a dramatic transformation of the two cells required to assemble a dormant spore, with the larger mother cell engulfing the smaller forespore to produce the cell-within-a-cell structure that is a hallmark of endospore formation. Sporulation also entails metabolic differentiation, whereby key metabolic enzymes are depleted from the forespore but maintained in the mother cell. This reduces the metabolic potential of the forespore, which becomes dependent on mother-cell metabolism and the SpoIIQ-SpoIIIA channel to obtain metabolic building blocks necessary for development. We demonstrate that metabolic differentiation depends on the ClpCP protease and a forespore-produced protein encoded by the yjbA gene, which we have renamed MdfA (metabolic differentiation factor A). MdfA is conserved in aerobic endospore-formers and required for spore resistance to hypochlorite. Using mass spectrometry and quantitative fluorescence microscopy, we show that MdfA mediates the depletion of dozens of metabolic enzymes and key transcription factors from the forespore. An accompanying study by Massoni, Evans and collaborators demonstrates that MdfA is a ClpC adaptor protein that directly interacts with and stimulates ClpCP activity. Together, these results document a developmentally-regulated proteolytic pathway that reshapes forespore metabolism, reinforces differentiation, and is required to produce spores resistant to the oxidant hypochlorite.
Collapse
|
6
|
Perchat S, Nevers A, Kranzler M, Ehling-Schulz M, Lereclus D, Gohar M. The megaplasmid pCER270 of Bacillus cereus emetic strain affects the timing of the sporulation process, spore resistance properties, and germination. Appl Environ Microbiol 2024; 90:e0102924. [PMID: 39158315 PMCID: PMC11409700 DOI: 10.1128/aem.01029-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 07/22/2024] [Indexed: 08/20/2024] Open
Abstract
The Bacillus cereus group includes closely related spore-forming Gram-positive bacteria. In this group, plasmids play a crucial role in species differentiation and are essential for pathogenesis and adaptation to ecological niches. The B. cereus emetic strains are characterized by the presence of the pCER270 megaplasmid, which encodes the non-ribosomal peptide synthetase for the production of cereulide, the emetic toxin. This plasmid carries several genes that may be involved in the sporulation process. Furthermore, a transcriptomic analysis has revealed that pCER270 influences the expression of chromosome genes, particularly under sporulation conditions. In this study, we investigated the role of pCER270 on spore properties in different species of the B. cereus group. We showed that pCER270 plays a role in spore wet heat resistance and germination, with varying degrees of impact depending on the genetic background. In addition, pCER270 ensures that sporulation occurs at the appropriate time by delaying the expression of sporulation genes. This regulation of sporulation timing is controlled by the pCER270-borne Rap-Phr system, which likely regulates the phosphorylation state of Spo0A. Acquisition of the pCER270 plasmid by new strains could give them an advantage in adapting to new environments and lead to the emergence of new pathogenic strains. IMPORTANCE The acquisition of new mobile genetic elements, such as plasmids, is essential for the pathogenesis and adaptation of bacteria belonging to the Bacillus cereus group. This can confer new phenotypic traits and beneficial functions that enable bacteria to adapt to changing environments and colonize new ecological niches. Emetic B. cereus strains cause food poisoning linked to the production of cereulide, the emetic toxin whose synthesis is due to the presence of plasmid pCER270. In the environment, cereulide provides a competitive advantage in producing bacteria against various competitors or predators. This study demonstrates that pCER270 also regulates the sporulation process, resulting in spores with improved heat resistance and germination capacity. The transfer of plasmid pCER270 among different strains of the B. cereus group may enhance their adaptation to new environments. This raises the question of the emergence of new pathogenic strains, which could pose a serious threat to human health.
Collapse
Affiliation(s)
- Stéphane Perchat
- Université Paris-Saclay, INRAe, AgroPariTech, Micalis Institute, Jouy-en-Josas, France
| | - Alicia Nevers
- Université Paris-Saclay, INRAe, AgroPariTech, Micalis Institute, Jouy-en-Josas, France
| | - Markus Kranzler
- Department of Biological Sciences and Pathobiology, Institute of Microbiology, University of Veterinary Medicine, Vienna, Austria
| | - Monika Ehling-Schulz
- Department of Biological Sciences and Pathobiology, Institute of Microbiology, University of Veterinary Medicine, Vienna, Austria
| | - Didier Lereclus
- Université Paris-Saclay, INRAe, AgroPariTech, Micalis Institute, Jouy-en-Josas, France
| | - Michel Gohar
- Université Paris-Saclay, INRAe, AgroPariTech, Micalis Institute, Jouy-en-Josas, France
| |
Collapse
|
7
|
Heydenreich R, Delbrück AI, Peternell C, Trunet C, Mathys A. Characterization of high-pressure-treated Bacillus subtilis spore populations using flow cytometry - Shedding light on spore superdormancy at 550 MPa. Int J Food Microbiol 2024; 422:110812. [PMID: 38970996 DOI: 10.1016/j.ijfoodmicro.2024.110812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 06/04/2024] [Accepted: 06/23/2024] [Indexed: 07/08/2024]
Abstract
Mild spore inactivation can be challenging in industry because of the remarkable resistance of bacterial spores. High pressure (HP) can trigger spore germination, which reduces the spore's resistance, and thereby allows mild spore inactivation. However, spore germination is heterogenous. Some slowly germinating or non-germinating spores called superdormant spores remain resistant and can survive. Therefore, superdormant spores need to be characterized to understand the causes of their germination deficiency. Bacillus subtilis spores were pressurized for 50 s - 6 min at a very high pressure (vHP) level of 550 MPa and 60 °C in buffer to trigger germination. For a rapid quantification of the remaining ungerminated superdormant spores, flow cytometry (FCM) analysis was validated using single cell sorting and growth analysis. FCM based on propidium iodide (PI) and SYTO16 can be used for 550 MPa-superdormant spores after short vHP treatments of ≤1 min and post-HP incubation at 37 °C or 60 °C. The need for a post-HP incubation is particular for vHP treatments. The incubation was successful to separate FCM signals from superdormant and germinated spores, thus allowing superdormant spore quantification. The SYTO16 and PI fluorescence levels did not necessarily indicate superdormancy or apparent viability. This highlights the general need for FCM validation for different HP treatment conditions. The ∼7 % of ungerminated, i.e., superdormant, spores were isolated after a vHP treatment (550 MPa, 60 °C, 43-52 s). This allowed the characterization of vHP superdormant spores for the first time. The superdormant spores had a similar dipicolinic acid content as spores of the initial dormant population. Descendants of superdormant spores had a normal vHP germination capacity. The causes of vHP superdormancy were thus unlikely linked to the dipicolinic acid content or a permanent genetic change. Isolated superdormant spores germinated better in a second vHP treatment compared to the initial spore population. This has not been observed for other germination stimuli so far. In addition, the germination capacity of the initial spore population was time-dependent. A vHP germination deficiency can therefore be lost over time and seems to be caused by transient factors. Permanent cellular properties played a minor role as causes of superdormancy under chosen HP treatment conditions. The study gained new fundamental insights in vHP superdormancy which are of applied interest. Understanding superdormancy helps to efficiently develop a strategy to avoid superdormant spores and hence to inactivate all spores. The development of a mild HP spore germination-inactivation process aims at better preserving the food quality.
Collapse
Affiliation(s)
- Rosa Heydenreich
- Sustainable Food Processing Laboratory, Institute of Food, Nutrition, and Health, Department of Health Science and Technology, ETH Zurich, Zurich, Switzerland
| | - Alessia I Delbrück
- Sustainable Food Processing Laboratory, Institute of Food, Nutrition, and Health, Department of Health Science and Technology, ETH Zurich, Zurich, Switzerland
| | - Christina Peternell
- Sustainable Food Processing Laboratory, Institute of Food, Nutrition, and Health, Department of Health Science and Technology, ETH Zurich, Zurich, Switzerland
| | - Clément Trunet
- Univ Brest, INRAE, Laboratoire Universitaire de Biodiversité et Écologie Microbienne, Quimper, France.
| | - Alexander Mathys
- Sustainable Food Processing Laboratory, Institute of Food, Nutrition, and Health, Department of Health Science and Technology, ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
8
|
Cheng Y, Kreutzberger MAB, Han J, Egelman EH, Cao Q. Molecular architecture of the assembly of Bacillus spore coat protein GerQ revealed by cryo-EM. Nat Commun 2024; 15:8091. [PMID: 39284816 PMCID: PMC11405398 DOI: 10.1038/s41467-024-52422-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 09/06/2024] [Indexed: 09/22/2024] Open
Abstract
Protein filaments are ubiquitous in nature and have diverse biological functions. Cryo-electron microscopy (cryo-EM) enables the determination of atomic structures, even from native samples, and is capable of identifying previously unknown filament species through high-resolution cryo-EM maps. In this study, we determine the structure of an unreported filament species from a cryo-EM dataset collected from Bacillus amyloiquefaciens biofilms. These filaments are composed of GerQ, a spore coat protein known to be involved in Bacillus spore germination. GerQ assembles into a structurally stable architecture consisting of rings containing nine subunits, which stacks to form filaments. Molecular dockings and model predictions suggest that this nine-subunit structure is suitable for binding CwlJ, a protein recruited by GerQ and essential for Ca2+-DPA induced spore germination. While the assembly state of GerQ within the spores and the direct interaction between GerQ and CwlJ have yet to be validated through further experiments, our findings provide valuable insights into the self-assembly of GerQ and enhance our understanding of its role in spore germination.
Collapse
Affiliation(s)
- Yijia Cheng
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Mark A B Kreutzberger
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA, 22903, USA
| | - Jianting Han
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Edward H Egelman
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA, 22903, USA.
| | - Qin Cao
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, 200030, China.
| |
Collapse
|
9
|
Khanal S, Kim TD, Begyn K, Duverger W, Kramer G, Brul S, Rajkovic A, Devlieghere F, Heyndrickx M, Schymkowitz J, Rousseau F, Broussolle V, Michiels C, Aertsen A. Mechanistic insights into the adaptive evolvability of spore heat resistance in Bacillus cereus sensu lato. Int J Food Microbiol 2024; 418:110709. [PMID: 38663147 DOI: 10.1016/j.ijfoodmicro.2024.110709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 03/09/2024] [Accepted: 04/13/2024] [Indexed: 05/27/2024]
Abstract
Wet heat treatment is a commonly applied method in the food and medical industries for the inactivation of microorganisms, and bacterial spores in particular. While many studies have delved into the mechanisms underlying wet heat killing and spore resistance, little attention has so far been dedicated to the capacity of spore-forming bacteria to tune their resistance through adaptive evolution. Nevertheless, a recent study from our group revealed that a psychrotrophic strain of the Bacillus cereus sensu lato group (i.e. Bacillus weihenstephanensis LMG 18989) could readily and reproducibly evolve to acquire enhanced spore wet heat resistance without compromising its vegetative cell growth ability at low temperatures. In the current study, we demonstrate that another B. cereus strain (i.e. the mesophilic B. cereus sensu stricto ATCC 14579) can acquire significantly increased spore wet heat resistance as well, and we subjected both the previously and currently obtained mutants to whole genome sequencing. This revealed that five out of six mutants were affected in genes encoding regulators of the spore coat and exosporium pathway (i.e. spoIVFB, sigK and gerE), with three of them being affected in gerE. A synthetically constructed ATCC 14579 ΔgerE mutant likewise yielded spores with increased wet heat resistance, and incurred a compromised spore coat and exosporium. Further investigation revealed significantly increased spore DPA levels and core dehydration as the likely causes for the observed enhanced spore wet heat resistance. Interestingly, deletion of gerE in Bacillus subtilis 168 did not impose increased spore wet heat resistance, underscoring potentially different adaptive evolutionary paths in B. cereus and B. subtilis.
Collapse
Affiliation(s)
- Sadhana Khanal
- Laboratory of Food Microbiology, Department of Microbial and Molecular Systems, Faculty of Bioscience Engineering, KU Leuven, Leuven, Belgium
| | - Tom Dongmin Kim
- Laboratory of Food Microbiology, Department of Microbial and Molecular Systems, Faculty of Bioscience Engineering, KU Leuven, Leuven, Belgium
| | - Katrien Begyn
- Research Unit Food Microbiology and Food Preservation (FMFP-UGent), Department of Food Technology, Safety and Health, Part of Food2Know, Faculty Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Wouter Duverger
- Switch Laboratory, VIB-KU Leuven Center for Brain & Disease Research, Herestraat 49, 3000 Leuven, Belgium; Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, box 802, 3000 Leuven, Belgium
| | - Gertjan Kramer
- Laboratory for Mass Spectrometry of Biomolecules, Swammerdam Institute for Life Sciences, University of Amsterdam, 1098XH Amsterdam, the Netherlands
| | - Stanley Brul
- Molecular Biology & Microbial Food Safety, Swammerdam Institute for Life Sciences, University of Amsterdam, 1098XH Amsterdam, the Netherlands
| | - Andreja Rajkovic
- Research Unit Food Microbiology and Food Preservation (FMFP-UGent), Department of Food Technology, Safety and Health, Part of Food2Know, Faculty Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Frank Devlieghere
- Research Unit Food Microbiology and Food Preservation (FMFP-UGent), Department of Food Technology, Safety and Health, Part of Food2Know, Faculty Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Marc Heyndrickx
- ILVO - Flanders Research Institute for Agriculture, Fisheries and Food, Technology and Food Science, Unit - Food Safety, Melle, Belgium; Department of Pathobiology, Pharmacology and Zoological Medicine, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Joost Schymkowitz
- Switch Laboratory, VIB-KU Leuven Center for Brain & Disease Research, Herestraat 49, 3000 Leuven, Belgium; Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, box 802, 3000 Leuven, Belgium
| | - Frederic Rousseau
- Switch Laboratory, VIB-KU Leuven Center for Brain & Disease Research, Herestraat 49, 3000 Leuven, Belgium; Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, box 802, 3000 Leuven, Belgium
| | | | - Chris Michiels
- Laboratory of Food Microbiology, Department of Microbial and Molecular Systems, Faculty of Bioscience Engineering, KU Leuven, Leuven, Belgium
| | - Abram Aertsen
- Laboratory of Food Microbiology, Department of Microbial and Molecular Systems, Faculty of Bioscience Engineering, KU Leuven, Leuven, Belgium..
| |
Collapse
|
10
|
Kasu IR, Reyes-Matte O, Bonive-Boscan A, Derman AI, Lopez-Garrido J. Catabolism of germinant amino acids is required to prevent premature spore germination in Bacillus subtilis. mBio 2024; 15:e0056224. [PMID: 38564667 PMCID: PMC11077977 DOI: 10.1128/mbio.00562-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 03/11/2024] [Indexed: 04/04/2024] Open
Abstract
Spores of Bacillus subtilis germinate in response to specific germinant molecules that are recognized by receptors in the spore envelope. Germinants signal to the dormant spore that the environment can support vegetative growth, so many germinants, such as alanine and valine, are also essential metabolites. As such, they are also required to build the spore. Here we show that these germinants cause premature germination if they are still present at the latter stages of spore formation and beyond, but that B. subtilis metabolism is configured to prevent this: alanine and valine are catabolized and cleared from wild-type cultures even when alternative carbon and nitrogen sources are present. Alanine and valine accumulate in the spent media of mutants that are unable to catabolize these amino acids, and premature germination is pervasive. Premature germination does not occur if the germinant receptor that responds to alanine and valine is eliminated, or if wild-type strains that are able to catabolize and clear alanine and valine are also present in coculture. Our findings demonstrate that spore-forming bacteria must fine-tune the concentration of any metabolite that can also function as a germinant to a level that is high enough to allow for spore development to proceed, but not so high as to promote premature germination. These results indicate that germinant selection and metabolism are tightly linked, and suggest that germinant receptors evolve in tandem with the catabolic priorities of the spore-forming bacterium. IMPORTANCE Many bacterial species produce dormant cells called endospores, which are not killed by antibiotics or common disinfection practices. Endospores pose critical challenges in the food industry, where endospore contaminations cause food spoilage, and in hospitals, where infections by pathogenic endospore formers threaten the life of millions every year. Endospores lose their resistance properties and can be killed easily when they germinate and exit dormancy. We have discovered that the enzymes that break down the amino acids alanine and valine are critical for the production of stable endospores. If these enzymes are absent, endospores germinate as they are formed or shortly thereafter in response to alanine, which can initiate the germination of many different species' endospores, or to valine. By blocking the activity of alanine dehydrogenase, the enzyme that breaks down alanine and is not present in mammals, it may be possible to inactivate endospores by triggering premature and unproductive germination.
Collapse
Affiliation(s)
- Iqra R. Kasu
- Max Planck Institute for Evolutionary Biology, Plön, Germany
| | | | | | - Alan I. Derman
- Max Planck Institute for Evolutionary Biology, Plön, Germany
| | | |
Collapse
|
11
|
Bauda E, Gallet B, Moravcova J, Effantin G, Chan H, Novacek J, Jouneau PH, Rodrigues CDA, Schoehn G, Moriscot C, Morlot C. Ultrastructure of macromolecular assemblies contributing to bacterial spore resistance revealed by in situ cryo-electron tomography. Nat Commun 2024; 15:1376. [PMID: 38355696 PMCID: PMC10867305 DOI: 10.1038/s41467-024-45770-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 02/02/2024] [Indexed: 02/16/2024] Open
Abstract
Bacterial spores owe their incredible resistance capacities to molecular structures that protect the cell content from external aggressions. Among the determinants of resistance are the quaternary structure of the chromosome and an extracellular shell made of proteinaceous layers (the coat), the assembly of which remains poorly understood. Here, in situ cryo-electron tomography on lamellae generated by cryo-focused ion beam micromachining provides insights into the ultrastructural organization of Bacillus subtilis sporangia. The reconstructed tomograms reveal that early during sporulation, the chromosome in the forespore adopts a toroidal structure harboring 5.5-nm thick fibers. At the same stage, coat proteins at the surface of the forespore form a stack of amorphous or structured layers with distinct electron density, dimensions and organization. By analyzing mutant strains using cryo-electron tomography and transmission electron microscopy on resin sections, we distinguish seven nascent coat regions with different molecular properties, and propose a model for the contribution of coat morphogenetic proteins.
Collapse
Affiliation(s)
- Elda Bauda
- Univ. Grenoble Alpes, CNRS, CEA, IBS, F-38000, Grenoble, France
| | - Benoit Gallet
- Univ. Grenoble Alpes, CNRS, CEA, IBS, F-38000, Grenoble, France
| | - Jana Moravcova
- CEITEC-Central European Institute of Technology, Masaryk University, 62500, Brno, Czech Republic
| | | | - Helena Chan
- University of Technology Sydney, 2007, Ultimo, NSW, Australia
| | - Jiri Novacek
- CEITEC-Central European Institute of Technology, Masaryk University, 62500, Brno, Czech Republic
| | | | | | - Guy Schoehn
- Univ. Grenoble Alpes, CNRS, CEA, IBS, F-38000, Grenoble, France
| | | | - Cecile Morlot
- Univ. Grenoble Alpes, CNRS, CEA, IBS, F-38000, Grenoble, France.
| |
Collapse
|
12
|
Chen J, Wang Y, Lin S, Yu Q, Qi Z, Jiang W, Zhao Q, Fu QB. Interaction between membrane curvature sensitive factors SpoVM and SpoIVA in Bicelle condition. Biochem Biophys Res Commun 2024; 694:149395. [PMID: 38141557 DOI: 10.1016/j.bbrc.2023.149395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/07/2023] [Accepted: 12/15/2023] [Indexed: 12/25/2023]
Abstract
SpoVM and SpoIVA are essential proteins for coat assembly in Bacillus subtilis. SpoVM is a membrane curvature sensor, specifically localized on the forespore membrane. SpoIVA is an ATP hydrolase that self-assembles by hydrolyzing ATP. In this work, SpoVM and its mutant SpoVMP9A were obtained by cyanogen bromide cleavage and reconstituted into bicelles. The purification of SpoIVA was achieved through a rigorous process involving Ni-NTA chromatography column and size exclusion chromatography. This study utilized Biacore to obtain a direct determination of the kinetic parameters of interaction between SpoVM (SpoVMP9A) and SpoIVA in Bicelle conditions.
Collapse
Affiliation(s)
- Jiali Chen
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China; Shanghai Institute of Materia Medica, Zhongshan Institute for Drug Discovery, Chinese Academy of Sciences, Zhongshan, 528400, China
| | - Yifan Wang
- Shanghai Institute of Materia Medica, Zhongshan Institute for Drug Discovery, Chinese Academy of Sciences, Zhongshan, 528400, China
| | - Shuru Lin
- Shanghai Institute of Materia Medica, Zhongshan Institute for Drug Discovery, Chinese Academy of Sciences, Zhongshan, 528400, China
| | - Quanxiang Yu
- Shanghai Institute of Materia Medica, Zhongshan Institute for Drug Discovery, Chinese Academy of Sciences, Zhongshan, 528400, China
| | - Zhengfei Qi
- Shanghai Institute of Materia Medica, Zhongshan Institute for Drug Discovery, Chinese Academy of Sciences, Zhongshan, 528400, China
| | - Wenqi Jiang
- Shanghai Institute of Materia Medica, Zhongshan Institute for Drug Discovery, Chinese Academy of Sciences, Zhongshan, 528400, China
| | - Qiang Zhao
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China; Shanghai Institute of Materia Medica, Zhongshan Institute for Drug Discovery, Chinese Academy of Sciences, Zhongshan, 528400, China.
| | - Qingshan Bill Fu
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China; Shanghai Institute of Materia Medica, Zhongshan Institute for Drug Discovery, Chinese Academy of Sciences, Zhongshan, 528400, China.
| |
Collapse
|
13
|
Serrano M, Martins D, Henriques AO. Clostridioides difficile Sporulation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1435:273-314. [PMID: 38175480 DOI: 10.1007/978-3-031-42108-2_13] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Some members of the Firmicutes phylum, including many members of the human gut microbiota, are able to differentiate a dormant and highly resistant cell type, the endospore (hereinafter spore for simplicity). Spore-formers can colonize virtually any habitat and, because of their resistance to a wide variety of physical and chemical insults, spores can remain viable in the environment for long periods of time. In the anaerobic enteric pathogen Clostridioides difficile the aetiologic agent is the oxygen-resistant spore, while the toxins produced by actively growing cells are the main cause of the disease symptoms. Here, we review the regulatory circuits that govern entry into sporulation. We also cover the role of spores in the infectious cycle of C. difficile in relation to spore structure and function and the main control points along spore morphogenesis.
Collapse
Affiliation(s)
- Mónica Serrano
- Instituto de Tecnologia Química e Biológica António Xavier, Oeiras, Portugal.
| | - Diogo Martins
- Instituto de Tecnologia Química e Biológica António Xavier, Oeiras, Portugal
| | - Adriano O Henriques
- Instituto de Tecnologia Química e Biológica António Xavier, Oeiras, Portugal
| |
Collapse
|
14
|
Li YQ, He L, Aryal M, Wicander J, Korza G, Setlow P. Thioflavin-T does not report on electrochemical potential and memory of dormant or germinating bacterial spores. mBio 2023; 14:e0222023. [PMID: 37830807 PMCID: PMC10653816 DOI: 10.1128/mbio.02220-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 08/24/2023] [Indexed: 10/14/2023] Open
Abstract
IMPORTANCE Bacillus and Clostridium spores cause food spoilage and disease because of spores' dormancy and resistance to microbicides. However, when spores "come back to life" in germination, their resistance properties are lost. Thus, understanding the mechanisms of spore germination could facilitate the development of "germinate to eradicate" strategies. One germination feature is the memory of a pulsed germinant stimulus leading to greater germination following a second pulse. Recent observations of increases in spore binding of the potentiometric dye thioflavin-T early in their germination of spores led to the suggestion that increasing electrochemical potential is how spores "remember" germinant pulses. However, new work finds no increased thioflavin-T binding in the physiological germination of Coatless spores or of intact spores germinating with dodecylamine, even though spore memory is seen in both cases. Thus, using thioflavin-T uptake by germinating spores to assess the involvement of electrochemical potential in memory of germinant exposure, as suggested recently, is questionable.
Collapse
Affiliation(s)
- Yong-qing Li
- School of Electrical Engineering and Intelligentization, Dongguan University of Technology, Dongguan, Guangdong, China
- Department of Physics, East Carolina University, Greenville, North Carolina, USA
| | - Lin He
- School of Electrical Engineering and Intelligentization, Dongguan University of Technology, Dongguan, Guangdong, China
| | - Makunda Aryal
- Department of Physics, East Carolina University, Greenville, North Carolina, USA
| | - James Wicander
- Department of Molecular Biology and Biophysics, UConn Health, Farmington, Connecticut, USA
| | - George Korza
- Department of Molecular Biology and Biophysics, UConn Health, Farmington, Connecticut, USA
| | - Peter Setlow
- Department of Molecular Biology and Biophysics, UConn Health, Farmington, Connecticut, USA
| |
Collapse
|
15
|
Nakaya Y, Uchiike M, Hattori M, Moriyama M, Abe K, Kim E, Eichenberger P, Imamura D, Sato T. Identification of CgeA as a glycoprotein that anchors polysaccharides to the spore surface in Bacillus subtilis. Mol Microbiol 2023; 120:384-396. [PMID: 37485949 DOI: 10.1111/mmi.15126] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 06/30/2023] [Accepted: 07/03/2023] [Indexed: 07/25/2023]
Abstract
The Bacillus subtilis spore is composed of a core, containing chromosomal DNA, surrounded by a cortex layer made of peptidoglycan, and a coat composed of concentric proteinaceous layers. A polysaccharide layer is added to the spore surface, and likely anchored to the crust, the coat outermost layer. However, the identity of the coat protein(s) to which the spore polysaccharides (SPS) are attached is uncertain. First, we showed that the crust proteins CotVWXYZ and CgeA were all contained in the peeled SPS layer obtained from a strain missing CotE, the outer coat morphogenetic protein, suggesting that the SPS is indeed bound to at least one of the spore surface proteins. Second, CgeA is known to be located at the most downstream position in the crust assembly pathway. An analysis of truncated variants of CgeA suggested that its N-terminal half is required for localization to the spore surface, while its C-terminal half is necessary for SPS addition. Third, an amino acid substitution strategy revealed that SPS was anchored at threonine 112 (T112), which constitutes a probable O-glycosylation site on CgeA. Our results indicated that CgeA is a glycoprotein required to initiate SPS assembly and serves as an anchor protein linking the crust and SPS layers.
Collapse
Affiliation(s)
- Yusei Nakaya
- Department of Frontier Bioscience, Hosei University, Koganei, Tokyo, Japan
| | - Miu Uchiike
- Department of Frontier Bioscience, Hosei University, Koganei, Tokyo, Japan
| | - Mayuko Hattori
- Department of Frontier Bioscience, Hosei University, Koganei, Tokyo, Japan
| | - Momoka Moriyama
- Department of Frontier Bioscience, Hosei University, Koganei, Tokyo, Japan
| | - Kimihiro Abe
- Research Center of Micro-Nano Technology, Hosei University, Koganei, Tokyo, Japan
| | - Ella Kim
- Department of Biology, New York University, New York, New York, USA
| | | | - Daisuke Imamura
- Department of Frontier Bioscience, Hosei University, Koganei, Tokyo, Japan
| | - Tsutomu Sato
- Department of Frontier Bioscience, Hosei University, Koganei, Tokyo, Japan
- Research Center of Micro-Nano Technology, Hosei University, Koganei, Tokyo, Japan
| |
Collapse
|
16
|
Hamiot A, Lemy C, Krzewinski F, Faille C, Dubois T. Sporulation conditions influence the surface and adhesion properties of Bacillus subtilis spores. Front Microbiol 2023; 14:1219581. [PMID: 37720141 PMCID: PMC10502511 DOI: 10.3389/fmicb.2023.1219581] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 08/14/2023] [Indexed: 09/19/2023] Open
Abstract
Spore-forming bacteria of the Bacillus subtilis group are responsible for recurrent contamination of processing lines in the food industry which can lead to food spoilage. The persistence of B. subtilis would be due to the high resistance of spores to extreme environmental condition and their propensity to contaminate surfaces. While it is well known that sporulation conditions modulate spore resistance properties, little is known about their effect on surface and adhesion properties. Here, we studied the impact of 13 sporulation conditions on the surface and adhesion properties of B. subtilis 168 spores. We showed that Ca2+ or Mg2+ depletion, lower oxygen availability, acidic pH as well as oxidative stresses during sporulation lead to the release of more hydrophobic and adherent spores. The consequences of these sporulation conditions on crust composition in carbohydrates and proteins were also evaluated. The crust glycans of spores produced in a sporulation medium depleted in Ca2+ or Mg2+ or oxygen-limited conditions were impaired and contained lower amounts of rhamnose and legionaminic acid. In addition, we showed that lower oxygen availability or addition of hydrogen peroxide during sporulation decreases the relative amount of two crust proteins (CgeA and CotY) and the changes observed in these conditions could be due to transcriptional repression of genes involved in crust synthesis in late stationary phase. The fact that sporulation conditions affect the ease with which spores can contaminate surfaces could explain the frequent and recurrent presence of B. subtilis spores in food processing lines.
Collapse
Affiliation(s)
- Audrey Hamiot
- Univ. Lille, CNRS, INRAE, Centrale Lille, UMR 8207 - UMET - Unité Matériaux et Transformations, Lille, France
| | - Christelle Lemy
- Univ. Lille, CNRS, INRAE, Centrale Lille, UMR 8207 - UMET - Unité Matériaux et Transformations, Lille, France
| | - Frederic Krzewinski
- Univ. Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| | - Christine Faille
- Univ. Lille, CNRS, INRAE, Centrale Lille, UMR 8207 - UMET - Unité Matériaux et Transformations, Lille, France
| | - Thomas Dubois
- Univ. Lille, CNRS, INRAE, Centrale Lille, UMR 8207 - UMET - Unité Matériaux et Transformations, Lille, France
| |
Collapse
|
17
|
Oh SY, Château A, Tomatsidou A, Elli D, Gula H, Schneewind O, Missiakas D. Modeling gastrointestinal anthrax disease. Res Microbiol 2023; 174:104026. [PMID: 36646261 PMCID: PMC10338639 DOI: 10.1016/j.resmic.2023.104026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/28/2022] [Accepted: 01/03/2023] [Indexed: 01/15/2023]
Abstract
Bacillus anthracis is a spore-forming microbe that persists in soil and causes anthrax disease. The most natural route of infection is ingestion by grazing animals. Gastrointestinal (GI) anthrax also occurs in their monogastric predators, including humans. Exposure of carcasses to oxygen triggers sporulation and contamination of the surrounding soil completing the unusual life cycle of this microbe. The pathogenesis of GI anthrax is poorly characterized. Here, we use B. anthracis carrying the virulence plasmids pXO1 and pXO2, to model gastrointestinal disease in Guinea pigs and mice. We find that spores germinate in the GI tract and precipitate disease in a dose-dependent manner. Inoculation of vegetative bacilli also results in GI anthrax. Virulence is impacted severely by the loss of capsule (pXO2-encoded) but only moderately in absence of toxins (pXO1-encoded). Nonetheless, the lack of toxins leads to reduced bacterial replication in infected hosts. B. cereus Elc4, a strain isolated from a fatal case of inhalational anthrax-like disease, was also found to cause GI anthrax. Because transmission to new hosts depends on the release of large numbers of spores in the environment, we propose that the acquisition of pXO1- and pXO2-like plasmids may promote the successful expansion of members of the Bacillus cereus sensu lato group able to cause anthrax-like disease.
Collapse
Affiliation(s)
- So Young Oh
- The University of Chicago, Department of Microbiology, Howard Taylor Ricketts Laboratory, Lemont, IL, USA
| | - Alice Château
- The University of Chicago, Department of Microbiology, Howard Taylor Ricketts Laboratory, Lemont, IL, USA
| | - Anastasia Tomatsidou
- The University of Chicago, Department of Microbiology, Howard Taylor Ricketts Laboratory, Lemont, IL, USA
| | - Derek Elli
- The University of Chicago, Department of Microbiology, Howard Taylor Ricketts Laboratory, Lemont, IL, USA
| | - Haley Gula
- The University of Chicago, Department of Microbiology, Howard Taylor Ricketts Laboratory, Lemont, IL, USA
| | - Olaf Schneewind
- The University of Chicago, Department of Microbiology, Howard Taylor Ricketts Laboratory, Lemont, IL, USA
| | - Dominique Missiakas
- The University of Chicago, Department of Microbiology, Howard Taylor Ricketts Laboratory, Lemont, IL, USA.
| |
Collapse
|
18
|
Setlow P, Christie G. New Thoughts on an Old Topic: Secrets of Bacterial Spore Resistance Slowly Being Revealed. Microbiol Mol Biol Rev 2023; 87:e0008022. [PMID: 36927044 PMCID: PMC10304885 DOI: 10.1128/mmbr.00080-22] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023] Open
Abstract
The quest for bacterial survival is exemplified by spores formed by some Firmicutes members. They turn up everywhere one looks, and their ubiquity reflects adaptations to the stresses bacteria face. Spores are impactful in public health, food safety, and biowarfare. Heat resistance is the hallmark of spores and is countered principally by a mineralized gel-like protoplast, termed the spore core, with reduced water which minimizes macromolecular movement/denaturation/aggregation. Dry heat, however, introduces mutations into spore DNA. Spores have countermeasures to extreme conditions that are multifactorial, but the fact that spore DNA is in a crystalline-like nucleoid in the spore core, likely due to DNA saturation with small acid-soluble spore proteins (SASPs), suggests that reduced macromolecular motion is also critical in spore dry heat resistance. SASPs are also central in the radiation resistance characteristic of spores, where the contributions of four spore features-SASP; Ca2+, with pyridine-2,6-dicarboxylic acid (CaDPA); photoproduct lyase; and low water content-minimize DNA damage. Notably, the spore environment steers UV photochemistry toward a product that germinated spores can repair without significant mutagenesis. This resistance extends to chemicals and macromolecules that could damage spores. Macromolecules are excluded by the spore coat which impedes the passage of moieties of ≥10 kDa. Additionally, damaging chemicals may be degraded or neutralized by coat enzymes/proteins. However, the principal protective mechanism here is the inner membrane, a compressed structure lacking lipid fluidity and presenting a barrier to the diffusion of chemicals into the spore core; SASP saturation of DNA also protects against genotoxic chemicals. Spores are also resistant to other stresses, including high pressure and abrasion. Regardless, overarching mechanisms associated with resistance seem to revolve around reduced molecular motion, a fine balance between rigidity and flexibility, and perhaps efficient repair.
Collapse
Affiliation(s)
- Peter Setlow
- Department of Molecular Biology and Biophysics, UConn Health, Farmington, Connecticut, USA
| | - Graham Christie
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
19
|
Korza G, DePratti S, Fairchild D, Wicander J, Kanaan J, Shames H, Nichols FC, Cowan A, Brul S, Setlow P. Expression of the 2Duf protein in wild-type Bacillus subtilis spores stabilizes inner membrane proteins and increases spore resistance to wet heat and hydrogen peroxide. J Appl Microbiol 2023; 134:lxad040. [PMID: 36841229 PMCID: PMC10035073 DOI: 10.1093/jambio/lxad040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 02/09/2023] [Accepted: 02/24/2023] [Indexed: 02/27/2023]
Abstract
AIMS This work aimed to characterize spore inner membrane (IM) properties and the mechanism of spore killing by wet heat and H2O2 with spores overexpressing the 2Duf protein, which is naturally encoded from a transposon found only in some Bacillus strains with much higher spore resistance than wild-type spores. METHODS AND RESULTS Killing of Bacillus subtilis spores by wet heat or hydrogen peroxide (H2O2) was slower when 2Duf was present, and Ca-dipicolinic acid release was slower than killing. Viabilities on rich plates of wet heat- or H2O2 -treated spores +/- 2Duf were lower when NaCl was added, but higher with glucose. Addition of glucose but not Casamino acids addition increased treated spores' viability on minimal medium plates. Spores with 2Duf required higher heat activation for germination, and their germination was more wet-heat resistant than that of wild-type spores, processes that involve IM proteins. IM permeability and lipid mobility were lower in spores with 2Duf, although IM phospholipid composition was similar in spores +/- 2Duf. CONCLUSIONS These results and previous work suggests that wet heat and H2O2 kill spores by damaging an IM enzyme or enzymes involved in oxidative phosphorylation.
Collapse
Affiliation(s)
- George Korza
- Department of Molecular Biology and Biophysics, Farmington, CT 06030-3305, USA
| | - Sarah DePratti
- Department of Molecular Biology and Biophysics, Farmington, CT 06030-3305, USA
| | - Daniel Fairchild
- Department of Molecular Biology and Biophysics, Farmington, CT 06030-3305, USA
| | - James Wicander
- Department of Molecular Biology and Biophysics, Farmington, CT 06030-3305, USA
| | - Julia Kanaan
- Department of Molecular Biology and Biophysics, Farmington, CT 06030-3305, USA
| | - Hannah Shames
- Department of Molecular Biology and Biophysics, Farmington, CT 06030-3305, USA
| | - Frank C Nichols
- Division of Periodontology, UConn Health, Farmington, CT 06030-3305, USA
| | - Ann Cowan
- Department of Molecular Biology and Biophysics, Farmington, CT 06030-3305, USA
| | - Stanley Brul
- Molecular Biology & Microbial Food Safety, Swammerdam Institute for Life Science, University of Amsterdam, 1098XH Amsterdam, UK
| | - Peter Setlow
- Department of Molecular Biology and Biophysics, Farmington, CT 06030-3305, USA
| |
Collapse
|
20
|
Romero-Rodríguez A, Ruiz-Villafán B, Martínez-de la Peña CF, Sánchez S. Targeting the Impossible: A Review of New Strategies against Endospores. Antibiotics (Basel) 2023; 12:antibiotics12020248. [PMID: 36830159 PMCID: PMC9951900 DOI: 10.3390/antibiotics12020248] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/13/2023] [Accepted: 01/20/2023] [Indexed: 01/27/2023] Open
Abstract
Endospore-forming bacteria are ubiquitous, and their endospores can be present in food, in domestic animals, and on contaminated surfaces. Many spore-forming bacteria have been used in biotechnological applications, while others are human pathogens responsible for a wide range of critical clinical infections. Due to their resistant properties, it is challenging to eliminate spores and avoid the reactivation of latent spores that may lead to active infections. Furthermore, endospores play an essential role in the survival, transmission, and pathogenesis of some harmful strains that put human and animal health at risk. Thus, different methods have been applied for their eradication. Nevertheless, natural products are still a significant source for discovering and developing new antibiotics. Moreover, targeting the spore for clinical pathogens such as Clostridioides difficile is essential to disease prevention and therapeutics. These strategies could directly aim at the structural components of the spore or their germination process. This work summarizes the current advances in upcoming strategies and the development of natural products against endospores. This review also intends to highlight future perspectives in research and applications.
Collapse
Affiliation(s)
- Alba Romero-Rodríguez
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
- Correspondence:
| | - Beatriz Ruiz-Villafán
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - Claudia Fabiola Martínez-de la Peña
- Centro de Investigaciones en Ciencias Microbiológicas, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Puebla 72592, Mexico
| | - Sergio Sánchez
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| |
Collapse
|
21
|
Rao L, Zhou B, Serruya R, Moussaieff A, Sinai L, Ben-Yehuda S. Glutamate catabolism during sporulation determines the success of the future spore germination. iScience 2022; 25:105242. [PMID: 36274945 PMCID: PMC9579013 DOI: 10.1016/j.isci.2022.105242] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 07/19/2022] [Accepted: 09/26/2022] [Indexed: 11/30/2022] Open
Abstract
Bacterial spores can preserve cellular dormancy for years, but still hold the remarkable ability to revive and recommence life. This cellular awakening begins with a rapid and irreversible event termed germination; however, the metabolic determinants required for its success have been hardly explored. Here, we show that at the onset of the process of sporulation, the metabolic enzyme RocG catabolizes glutamate, facilitating ATP production in the spore progenitor cell, and subsequently influencing the eventual spore ATP reservoir. Mutants displaying low RocG levels generate low ATP-containing spores that exhibit severe germination deficiency. Importantly, this phenotype could be complemented by expressing RocG at a specific window of time during the initiation of sporulation. Thus, we propose that despite its low abundance in dormant spores, ATP energizes spore germination, and its production, fueled by RocG, is coupled with the initial developmental phase of spore formation.
Collapse
Affiliation(s)
- Lei Rao
- The Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada (IMRIC), The Hebrew University-Hadassah Medical School, The Hebrew University of Jerusalem, POB 12272, 91120 Jerusalem, Israel
| | - Bing Zhou
- The Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada (IMRIC), The Hebrew University-Hadassah Medical School, The Hebrew University of Jerusalem, POB 12272, 91120 Jerusalem, Israel
| | - Raphael Serruya
- The Institute for Drug Research, The Hebrew University-Hadassah Medical School, The Hebrew University of Jerusalem, POB 12272, 91120 Jerusalem, Israel
| | - Arieh Moussaieff
- The Institute for Drug Research, The Hebrew University-Hadassah Medical School, The Hebrew University of Jerusalem, POB 12272, 91120 Jerusalem, Israel
| | - Lior Sinai
- The Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada (IMRIC), The Hebrew University-Hadassah Medical School, The Hebrew University of Jerusalem, POB 12272, 91120 Jerusalem, Israel
| | - Sigal Ben-Yehuda
- The Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada (IMRIC), The Hebrew University-Hadassah Medical School, The Hebrew University of Jerusalem, POB 12272, 91120 Jerusalem, Israel
| |
Collapse
|
22
|
Abstract
Transmission of bacterial endospores between the environment and people and the following germination in vivo play critical roles in both the deadly infections of some bacterial pathogens and the stabilization of the commensal microbiotas in humans. Our knowledge about the germination process of different bacteria in the mammalian gut, however, is still very limited due to the lack of suitable tools to visually monitor this process. We proposed a two-step labeling strategy that can image and quantify the endospores' germination in the recipient's intestines. Endospores collected from donor's gut microbiota were first labeled with fluorescein isothiocyanate and transplanted to mice via gavage. The recipient mice were then administered with Cyanine5-tagged D-amino acid to label all the viable bacteria, including the germinated endospores, in their intestines in situ. The germinated donor endospores could be distinguished by presenting two types of fluorescent signals simultaneously. The integrative use of cell-sorting, 16S rDNA sequencing, and fluorescence in situ hybridization (FISH) staining of the two-colored bacteria unveiled the taxonomic information of the donor endospores that germinated in the recipient's gut. Using this strategy, we investigated effects of different germinants and pre-treatment interventions on their germination, and found that germination of different commensal bacterial genera was distinctly affected by various types of germinants. This two-color labeling strategy shows its potential as a versatile tool for visually monitoring endospore germination in the hosts and screening for new interventions to improve endospore-based therapeutics.
Collapse
Affiliation(s)
- Ningning Xu
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Liyuan Lin
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yahui Du
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Key Laboratory for Chemical Biology of Fujian Province State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China
| | - Huibin Lin
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jia Song
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chaoyong Yang
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China,The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Key Laboratory for Chemical Biology of Fujian Province State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China,CONTACT Chaoyong Yang
| | - Wei Wang
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China,Wei Wang Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai200127, China
| |
Collapse
|
23
|
Role of the Spore Coat Proteins CotA and CotB, and the Spore Surface Protein CDIF630_02480, on the Surface Distribution of Exosporium Proteins in Clostridioides difficile 630 Spores. Microorganisms 2022; 10:microorganisms10101918. [DOI: 10.3390/microorganisms10101918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 09/17/2022] [Accepted: 09/19/2022] [Indexed: 11/16/2022] Open
Abstract
Clostridioides difficile is Gram-positive spore-former bacterium and the leading cause of nosocomial antibiotic-associated diarrhea. During disease, C. difficile forms metabolically dormant spores that persist in the host and contribute to recurrence of the disease. The outermost surface of C. difficile spores, termed the exosporium, plays an essential role in interactions with host surfaces and the immune system. The main exosporium proteins identified to date include three orthologues of the BclA family of collagen-like proteins, and three cysteine-rich proteins. However, how the underlying spore coat influences exosporium assembly remains unclear. In this work, we explore the contribution of spore coat proteins cotA and cotB, and the spore surface protein, CDIF630_02480, to the exosporium ultrastructure, formation of the polar appendage and the surface accessibility of exosporium proteins. Transmission electron micrographs of spores of insertional inactivation mutants demonstrate that while cotB contributes to the formation of thick-exosporium spores, cotA and CDIF630_02480 contribute to maintain proper thickness of the spore coat and exosporium layers, respectively. The effect of the absence of cotA, cotB and CDIF630_02480 on the surface accessibility of the exosporium proteins CdeA, CdeC, CdeM, BclA2 and BclA3 to antibodies was affected by the presence of the spore appendage, suggesting that different mechanisms of assembly of the exosporium layer might be implicated in each spore phenotype. Collectively, this work contributes to our understanding of the associations between spore coat and exosporium proteins, and how these associations affect the assembly of the spore outer layers. These results have implications for the development of anti-infecting agents targeting C. difficile spores.
Collapse
|
24
|
Zeng J, Wang H, Dong M, Tian GB. Clostridioides difficile spore: coat assembly and formation. Emerg Microbes Infect 2022; 11:2340-2349. [PMID: 36032037 PMCID: PMC9542656 DOI: 10.1080/22221751.2022.2119168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Clostridioides difficile (C. difficile) is a Gram-positive, spore-forming, toxin-producing, obligate anaerobic bacterium. C. difficile infection (CDI) is the leading cause of healthcare-associated infective diarrhoea. The infection is mediated by the spore, a metabolically inactive form of C. difficile. The spore coat acts as a physical barrier to defend against chemical insults from hosts and natural environments. The composition of spore coat has already been revealed; therefore, the interactive networks of spore coat proteins and the dynamic process of coat assembly are the keys to design strategies to control and cure CDI. This review gives a brief discussion of the signal processing and transcriptional regulation of C. difficile sporulation initiation. Following the discussion, the spore formation is also introduced. Finally, this review mainly focuses on the spore coat assembly, a poorly understood process in C. difficile, and important proteins that have been studied.
Collapse
Affiliation(s)
- Ji Zeng
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, Guangdong 510006, China
| | - Hao Wang
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, Guangdong 510006, China
| | - Min Dong
- Department of Microbiology, Harvard Medical School, Boston, MA, USA
- Department of Urology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Guo-Bao Tian
- Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangdong 510080, China
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
- Key Laboratory of Tropical Diseases Control (Sun Yat-sen University), Ministry of Education, Guangzhou 510080, China
- School of Medicine, Xizang Minzu University, Xianyang, Shaanxi 712082, China
| |
Collapse
|
25
|
Abstract
Clostridioides difficile spores are the infective form for this endospore-forming organism. The vegetative cells are intolerant to oxygen and poor competitors with a healthy gut microbiota. Therefore, in order for C. difficile to establish infection, the spores have to germinate in an environment that supports vegetative growth. To initiate germination, C. difficile uses Csp-type germinant receptors that consist of the CspC and CspA pseudoproteases as the bile acid and cogerminant receptors, respectively. CspB is a subtilisin-like protease that cleaves the inhibitory propeptide from the pro-SleC cortex lytic enzyme, thereby activating it and initiating cortex degradation. Though several locations have been proposed for where these proteins reside within the spore (i.e., spore coat, outer spore membrane, cortex, and inner spore membrane), these have been based, mostly, on hypotheses or prior data in Clostridium perfringens. In this study, we visualized the germination and outgrowth process using transmission electron microscopy (TEM) and scanning electron microscopy (SEM) and used immunogold labeling to visualize key germination regulators. These analyses localize these key regulators to the spore cortex region for the first time. IMPORTANCE Germination by C. difficile spores is the first step in the establishment of potentially life-threatening C. difficile infection (CDI). A deeper understanding of the mechanism by which spores germinate may provide insight for how to either prevent spore germination into a disease-causing vegetative form or trigger germination prematurely when the spore is either in the outside environment or in a host environment that does not support the establishment of colonization/disease.
Collapse
|
26
|
Conservation and Evolution of the Sporulation Gene Set in Diverse Members of the Firmicutes. J Bacteriol 2022; 204:e0007922. [PMID: 35638784 DOI: 10.1128/jb.00079-22] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The current classification of the phylum Firmicutes (new name, Bacillota) features eight distinct classes, six of which include known spore-forming bacteria. In Bacillus subtilis, sporulation involves up to 500 genes, many of which do not have orthologs in other bacilli and/or clostridia. Previous studies identified about 60 sporulation genes of B. subtilis that were shared by all spore-forming members of the Firmicutes. These genes are referred to as the sporulation core or signature, although many of these are also found in genomes of nonsporeformers. Using an expanded set of 180 firmicute genomes from 160 genera, including 76 spore-forming species, we investigated the conservation of the sporulation genes, in particular seeking to identify lineages that lack some of the genes from the conserved sporulation core. The results of this analysis confirmed that many small acid-soluble spore proteins (SASPs), spore coat proteins, and germination proteins, which were previously characterized in bacilli, are missing in spore-forming members of Clostridia and other classes of Firmicutes. A particularly dramatic loss of sporulation genes was observed in the spore-forming members of the families Planococcaceae and Erysipelotrichaceae. Fifteen species from diverse lineages were found to carry skin (sigK-interrupting) elements of different sizes that all encoded SpoIVCA-like recombinases but did not share any other genes. Phylogenetic trees built from concatenated alignments of sporulation proteins and ribosomal proteins showed similar topology, indicating an early origin and subsequent vertical inheritance of the sporulation genes. IMPORTANCE Many members of the phylum Firmicutes (Bacillota) are capable of producing endospores, which enhance the survival of important Gram-positive pathogens that cause such diseases as anthrax, botulism, colitis, gas gangrene, and tetanus. We show that the core set of sporulation genes, defined previously through genome comparisons of several bacilli and clostridia, is conserved in a wide variety of sporeformers from several distinct lineages of Firmicutes. We also detected widespread loss of sporulation genes in many organisms, particularly within the families Planococcaceae and Erysipelotrichaceae. Members of these families, such as Lysinibacillus sphaericus and Clostridium innocuum, could be excellent model organisms for studying sporulation mechanisms, such as engulfment, formation of the spore coat, and spore germination.
Collapse
|
27
|
Abe K, Kato H, Hasegawa Y, Yamamoto T, Nomura N, Obana N. Visualization and characterization of spore morphogenesis in Paenibacillus polymyxa ATCC39564. J GEN APPL MICROBIOL 2022; 68:79-86. [PMID: 35418538 DOI: 10.2323/jgam.2021.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Paenibacillus polymyxa is a spore-forming Gram-positive bacterial species. Both its sporulation process and the spore properties are poorly understood. Here, we investigated sporulation in P. polymyxa ATCC39564. When cultured at 37℃ for 24 h in sporulation medium, more than 80% of the total cells in the culture were spores. Time-lapse imaging revealed that cellular morphological changes during sporulation of P. polymyxa were highly similar to those of B. subtilis. We demonstrated that genetic deletion of spo0A, sigE, sigF, sigG, or sigK, which are highly conserved transcriptional regulators in spore forming bacteria, abolished spore formation. In P. polymyxa, spo0A was required for cell growth in sporulation medium, as well as for the initiation of sporulation. The sigE and sigF mutants formed abnormal multiple asymmetric septa during the early stage of sporulation. The sigG and sigK mutants formed forespores in the sporangium, but they did not become mature. Moreover, fluorescence reporter analysis confirmed compartment-specific gene expression of spoIID and spoVFA in the mother cell and spoIIQ and sspF in the forespore. Transmission electron microscopy imaging revealed that P. polymyxa produces multilayered endospores but lacking a balloon-shaped exosporium. Our results indicate that spore morphogenesis is conserved between P. polymyxa and B. subtilis. However, P. polymyxa genomes lack many homologues encoding spore-coat proteins that are found in B. subtills, suggesting that there are differences in the spore coat composition and surface structure between P. polymyxa and B. subtilis.
Collapse
Affiliation(s)
- Kimihiro Abe
- Faculty of Life and Environmental Sciences, University of Tsukuba
| | - Hiroko Kato
- Gradudate School of Life and Environmental Sciences, University of Tsukuba
| | - Yuta Hasegawa
- Gradudate School of Life and Environmental Sciences, University of Tsukuba
| | - Tatsuya Yamamoto
- Faculty of Life and Environmental Sciences, University of Tsukuba
| | - Nobuhiko Nomura
- Faculty of Life and Environmental Sciences, University of Tsukuba.,Microbiology Research Center for Sustainability, University of Tsukuba
| | - Nozomu Obana
- Microbiology Research Center for Sustainability, University of Tsukuba.,Transborder Medical Research Center, Faculty of Medicine, University of Tsukuba
| |
Collapse
|
28
|
Paredes-Sabja D, Cid-Rojas F, Pizarro-Guajardo M. Assembly of the exosporium layer in Clostridioides difficile spores. Curr Opin Microbiol 2022; 67:102137. [PMID: 35182899 DOI: 10.1016/j.mib.2022.01.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 01/14/2022] [Accepted: 01/20/2022] [Indexed: 02/07/2023]
Abstract
Clostridioides difficile is a Gram-positive, spore-forming obligate anaerobe and a major threat to the healthcare system world-wide. Because of its strict anaerobic requirements, the infectious and transmissible morphotype is the dormant spore. During infection, C. difficile produces spores that can persist in the host and are responsible for disease recurrence and transmission, especially between hospitalized patients. Although the C. difficile spore surface mediates critical interactions with host surfaces, this outermost layer, known as the exosporium, is poorly conserved when compared to members of the Bacillus genus. Notably, the exosporium has been shown to be important for the persistence of C. difficile in the host. In this review, the ultrastructural properties, composition, and morphogenesis of the exosporium will be discussed.
Collapse
Affiliation(s)
- Daniel Paredes-Sabja
- Department of Biology, Texas A&M University, College Station, TX, 77843, USA; ANID - Millennium Science Initiative Program - Millennium Nucleus in the Biology of the Intestinal Microbiota, Santiago, Chile.
| | - Francisca Cid-Rojas
- Department of Biology, Texas A&M University, College Station, TX, 77843, USA; ANID - Millennium Science Initiative Program - Millennium Nucleus in the Biology of the Intestinal Microbiota, Santiago, Chile
| | - Marjorie Pizarro-Guajardo
- Department of Biology, Texas A&M University, College Station, TX, 77843, USA; ANID - Millennium Science Initiative Program - Millennium Nucleus in the Biology of the Intestinal Microbiota, Santiago, Chile
| |
Collapse
|
29
|
Delerue T, Anantharaman V, Gilmore MC, Popham DL, Cava F, Aravind L, Ramamurthi KS. Bacterial developmental checkpoint that directly monitors cell surface morphogenesis. Dev Cell 2022; 57:344-360.e6. [PMID: 35065768 PMCID: PMC8991396 DOI: 10.1016/j.devcel.2021.12.021] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 11/15/2021] [Accepted: 12/20/2021] [Indexed: 01/05/2023]
Abstract
Bacillus subtilis spores are encased in two concentric shells: an outer proteinaceous "coat" and an inner peptidoglycan "cortex," separated by a membrane. Cortex assembly depends on coat assembly initiation, but how cells achieve this coordination across the membrane is unclear. Here, we report that the protein SpoVID monitors the polymerization state of the coat basement layer via an extension to a functional intracellular LysM domain that arrests sporulation when coat assembly is initiated improperly. Whereas extracellular LysM domains bind mature peptidoglycan, SpoVID LysM binds to the membrane-bound lipid II peptidoglycan precursor. We propose that improper coat assembly exposes the SpoVID LysM domain, which then sequesters lipid II and prevents cortex assembly. SpoVID defines a widespread group of firmicute proteins with a characteristic N-terminal domain and C-terminal peptidoglycan-binding domains that might combine coat and cortex assembly roles to mediate a developmental checkpoint linking the morphogenesis of two spatially separated supramolecular structures.
Collapse
Affiliation(s)
- Thomas Delerue
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Vivek Anantharaman
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20892, USA
| | - Michael C. Gilmore
- Laboratory for Molecular Infection Medicine Sweden (MIMS), Department of Molecular Biology, Umeå University, 90187 Umeå, Sweden
| | - David L. Popham
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| | - Felipe Cava
- Laboratory for Molecular Infection Medicine Sweden (MIMS), Department of Molecular Biology, Umeå University, 90187 Umeå, Sweden
| | - L. Aravind
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kumaran S. Ramamurthi
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA,Lead contact,Correspondence:
| |
Collapse
|
30
|
Insights into the Structure and Protein Composition of Moorella thermoacetica Spores Formed at Different Temperatures. Int J Mol Sci 2022; 23:ijms23010550. [PMID: 35008975 PMCID: PMC8745062 DOI: 10.3390/ijms23010550] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 12/22/2021] [Accepted: 12/23/2021] [Indexed: 02/01/2023] Open
Abstract
The bacterium Moorella thermoacetica produces the most heat-resistant spores of any spoilage-causing microorganism known in the food industry. Previous work by our group revealed that the resistance of these spores to wet heat and biocides was lower when spores were produced at a lower temperature than the optimal temperature. Here, we used electron microcopy to characterize the ultrastructure of the coat of the spores formed at different sporulation temperatures; we found that spores produced at 55 °C mainly exhibited a lamellar inner coat tightly associated with a diffuse outer coat, while spores produced at 45 °C showed an inner and an outer coat separated by a less electron-dense zone. Moreover, misarranged coat structures were more frequently observed when spores were produced at the lower temperature. We then analyzed the proteome of the spores obtained at either 45 °C or 55 °C with respect to proteins putatively involved in the spore coat, exosporium, or in spore resistance. Some putative spore coat proteins, such as CotSA, were only identified in spores produced at 55 °C; other putative exosporium and coat proteins were significantly less abundant in spores produced at 45 °C. Altogether, our results suggest that sporulation temperature affects the structure and protein composition of M. thermoacetica spores.
Collapse
|
31
|
Andryukov BG, Karpenko AA, Lyapun IN. Learning from Nature: Bacterial Spores as a Target for Current Technologies in Medicine (Review). Sovrem Tekhnologii Med 2021; 12:105-122. [PMID: 34795986 PMCID: PMC8596247 DOI: 10.17691/stm2020.12.3.13] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Indexed: 01/05/2023] Open
Abstract
The capability of some representatives of Clostridium spp. and Bacillus spp. genera to form spores in extreme external conditions long ago became a subject of medico-biological investigations. Bacterial spores represent dormant cellular forms of gram-positive bacteria possessing a high potential of stability and the capability to endure extreme conditions of their habitat. Owing to these properties, bacterial spores are recognized as the most stable systems on the planet, and spore-forming microorganisms became widely spread in various ecosystems. Spore-forming bacteria have been attracted increased interest for years due to their epidemiological danger. Bacterial spores may be in the quiescent state for dozens or hundreds of years but after they appear in the favorable conditions of a human or animal organism, they turn into vegetative forms causing an infectious process. The greatest threat among the pathogenic spore-forming bacteria is posed by the causative agents of anthrax (B. anthracis), food toxicoinfection (B. cereus), pseudomembranous colitis (C. difficile), botulism (C. botulinum), gas gangrene (C. perfringens). For the effective prevention of severe infectious diseases first of all it is necessary to study the molecular structure of bacterial spores and the biochemical mechanisms of sporulation and to develop innovative methods of detection and disinfection of dormant cells. There is another side of the problem: the necessity to investigate exo- and endospores from the standpoint of obtaining similar artificially synthesized models in order to use them in the latest medical technologies for the development of thermostable vaccines, delivery of biologically active substances to the tissues and intracellular structures. In recent years, bacterial spores have become an interesting object for the exploration from the point of view of a new paradigm of unicellular microbiology in order to study microbial heterogeneity by means of the modern analytical tools.
Collapse
Affiliation(s)
- B G Andryukov
- Leading Researcher, Laboratory of Molecular Microbiology; G.P. Somov Institute of Epidemiology and Microbiology, 1 Selskaya St., Vladivostok, 690087, Russia; Professor, Department of Fundamental Sciences; Far Eastern Federal University, 10 Village Ayaks, Island Russkiy, Vladivostok, 690922, Russia
| | - A A Karpenko
- Senior Researcher, Laboratory of Cell Biophysics; A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch of the Russian Academy of Sciences, 17 Palchevskogo St., Vladivostok, 690041, Russia
| | - I N Lyapun
- Researcher, Laboratory of Molecular Microbiology G.P. Somov Institute of Epidemiology and Microbiology, 1 Selskaya St., Vladivostok, 690087, Russia
| |
Collapse
|
32
|
Zegeye ED, Pradhan B, Llarena AK, Aspholm M. Enigmatic Pilus-Like Endospore Appendages of Bacillus cereus Group Species. Int J Mol Sci 2021; 22:12367. [PMID: 34830248 PMCID: PMC8619143 DOI: 10.3390/ijms222212367] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/11/2021] [Accepted: 11/12/2021] [Indexed: 11/16/2022] Open
Abstract
The endospores (spores) of many Bacillus cereus sensu lato species are decorated with multiple hair/pilus-like appendages. Although they have been observed for more than 50 years, all efforts to characterize these fibers in detail have failed until now, largely due to their extraordinary resilience to proteolytic digestion and chemical solubilization. A recent structural analysis of B. cereus endospore appendages (Enas) using cryo-electron microscopy has revealed the structure of two distinct fiber morphologies: the longer and more abundant "Staggered-type" (S-Ena) and the shorter "Ladder-like" type (L-Ena), which further enabled the identification of the genes encoding the S-Ena. Ena homologs are widely and uniquely distributed among B. cereus sensu lato species, suggesting that appendages play important functional roles in these species. The discovery of ena genes is expected to facilitate functional studies involving Ena-depleted mutant spores to explore the role of Enas in the interaction between spores and their environment. Given the importance of B. cereus spores for the food industry and in medicine, there is a need for a better understanding of their biological functions and physicochemical properties. In this review, we discuss the current understanding of the Ena structure and the potential roles these remarkable fibers may play in the adhesion of spores to biotic and abiotic surfaces, aggregation, and biofilm formation.
Collapse
Affiliation(s)
- Ephrem Debebe Zegeye
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences (NMBU), P.O. Box 5003, 1432 Ås, Norway; (E.D.Z.); (A.-K.L.)
| | - Brajabandhu Pradhan
- Structural and Molecular Microbiology, VIB-VUB Center for Structural Biology, VIB, 1050 Brussels, Belgium;
- Department of Bioengineering Sciences, Structural Biology Brussels, Vrije Universiteit Brussel, 1050 Brussels, Belgium
| | - Ann-Katrin Llarena
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences (NMBU), P.O. Box 5003, 1432 Ås, Norway; (E.D.Z.); (A.-K.L.)
| | - Marina Aspholm
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences (NMBU), P.O. Box 5003, 1432 Ås, Norway; (E.D.Z.); (A.-K.L.)
| |
Collapse
|
33
|
Shen A. Clostridioides difficile Spore Formation and Germination: New Insights and Opportunities for Intervention. Annu Rev Microbiol 2021; 74:545-566. [PMID: 32905755 DOI: 10.1146/annurev-micro-011320-011321] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Spore formation and germination are essential for the bacterial pathogen Clostridioides difficile to transmit infection. Despite the importance of these developmental processes to the infection cycle of C. difficile, the molecular mechanisms underlying how this obligate anaerobe forms infectious spores and how these spores germinate to initiate infection were largely unknown until recently. Work in the last decade has revealed that C. difficile uses a distinct mechanism for sensing and transducing germinant signals relative to previously characterized spore formers. The C. difficile spore assembly pathway also exhibits notable differences relative to Bacillus spp., where spore formation has been more extensively studied. For both these processes, factors that are conserved only in C. difficile or the related Peptostreptococcaceae family are employed, and even highly conserved spore proteins can have differential functions or requirements in C. difficile compared to other spore formers. This review summarizes our current understanding of the mechanisms controlling C. difficile spore formation and germination and describes strategies for inhibiting these processes to prevent C. difficile infection and disease recurrence.
Collapse
Affiliation(s)
- Aimee Shen
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts 02111, USA;
| |
Collapse
|
34
|
Levels and Characteristics of mRNAs in Spores of Firmicute Species. J Bacteriol 2021; 203:e0001721. [PMID: 33972352 DOI: 10.1128/jb.00017-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Spores of firmicute species contain 100s of mRNAs, whose major function in Bacillus subtilis is to provide ribonucleotides for new RNA synthesis when spores germinate. To determine if this is a general phenomenon, RNA was isolated from spores of multiple firmicute species and relative mRNA levels determined by transcriptome sequencing (RNA-seq). Determination of RNA levels in single spores allowed calculation of RNA nucleotides/spore, and assuming mRNA is 3% of spore RNA indicated that only ∼6% of spore mRNAs were present at >1/spore. Bacillus subtilis, Bacillus atrophaeus, and Clostridioides difficile spores had 49, 42, and 51 mRNAs at >1/spore, and numbers of mRNAs at ≥1/spore were ∼10 to 50% higher in Geobacillus stearothermophilus and Bacillus thuringiensis Al Hakam spores and ∼4-fold higher in Bacillus megaterium spores. In all species, some to many abundant spore mRNAs (i) were transcribed by RNA polymerase with forespore-specific σ factors, (ii) encoded proteins that were homologs of those encoded by abundant B. subtilis spore mRNAs and are proteins in dormant spores, and (iii) were likely transcribed in the mother cell compartment of the sporulating cell. Analysis of the coverage of RNA-seq reads on mRNAs from all species suggested that abundant spore mRNAs were fragmented, as was confirmed by reverse transcriptase quantitative PCR (RT-qPCR) analysis of abundant B. subtilis and C. difficile spore mRNAs. These data add to evidence indicating that the function of at least the great majority of mRNAs in all firmicute spores is to be degraded to generate ribonucleotides for new RNA synthesis when spores germinate. IMPORTANCE Only ∼6% of mRNAs in spores of six firmicute species are at ≥1 molecule/spore, many abundant spore mRNAs encode proteins similar to B. subtilis spore proteins, and some abundant B. subtilis and C. difficile spore mRNAs were fragmented. Most of the abundant B. subtilis and other Bacillales spore mRNAs are transcribed under the control of the forespore-specific RNA polymerase σ factors, F or G, and these results may stimulate transcription analyses in developing spores of species other than B. subtilis. These findings, plus the absence of key nucleotide biosynthetic enzymes in spores, suggest that firmicute spores' abundant mRNAs are not translated when spores germinate but instead are degraded to generate ribonucleotides for new RNA synthesis by the germinated spore.
Collapse
|
35
|
Updegrove TB, Harke J, Anantharaman V, Yang J, Gopalan N, Wu D, Piszczek G, Stevenson DM, Amador-Noguez D, Wang JD, Aravind L, Ramamurthi KS. Reformulation of an extant ATPase active site to mimic ancestral GTPase activity reveals a nucleotide base requirement for function. eLife 2021; 10:65845. [PMID: 33704064 PMCID: PMC7952092 DOI: 10.7554/elife.65845] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 02/05/2021] [Indexed: 12/23/2022] Open
Abstract
Hydrolysis of nucleoside triphosphates releases similar amounts of energy. However, ATP hydrolysis is typically used for energy-intensive reactions, whereas GTP hydrolysis typically functions as a switch. SpoIVA is a bacterial cytoskeletal protein that hydrolyzes ATP to polymerize irreversibly during Bacillus subtilis sporulation. SpoIVA evolved from a TRAFAC class of P-loop GTPases, but the evolutionary pressure that drove this change in nucleotide specificity is unclear. We therefore reengineered the nucleotide-binding pocket of SpoIVA to mimic its ancestral GTPase activity. SpoIVAGTPase functioned properly as a GTPase but failed to polymerize because it did not form an NDP-bound intermediate that we report is required for polymerization. Further, incubation of SpoIVAGTPase with limiting ATP did not promote efficient polymerization. This approach revealed that the nucleotide base, in addition to the energy released from hydrolysis, can be critical in specific biological functions. We also present data suggesting that increased levels of ATP relative to GTP at the end of sporulation was the evolutionary pressure that drove the change in nucleotide preference in SpoIVA.
Collapse
Affiliation(s)
- Taylor B Updegrove
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, United States
| | - Jailynn Harke
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, United States
| | - Vivek Anantharaman
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, United States
| | - Jin Yang
- Department of Bacteriology, University of Wisconsin, Madison, United States
| | - Nikhil Gopalan
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, United States
| | - Di Wu
- Biophysics Core Facility, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, United States
| | - Grzegorz Piszczek
- Biophysics Core Facility, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, United States
| | - David M Stevenson
- Department of Bacteriology, University of Wisconsin, Madison, United States
| | | | - Jue D Wang
- Department of Bacteriology, University of Wisconsin, Madison, United States
| | - L Aravind
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, United States
| | - Kumaran S Ramamurthi
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, United States
| |
Collapse
|
36
|
Ursem R, Swarge B, Abhyankar WR, Buncherd H, de Koning LJ, Setlow P, Brul S, Kramer G. Identification of Native Cross-Links in Bacillus subtilis Spore Coat Proteins. J Proteome Res 2021; 20:1809-1816. [PMID: 33596081 PMCID: PMC7944565 DOI: 10.1021/acs.jproteome.1c00025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The resistance properties of the bacterial spores are partially due to spore surface proteins, ∼30% of which are said to form an insoluble protein fraction. Previous research has also identified a group of spore coat proteins affected by spore maturation, which exhibit an increased level of interprotein cross-linking. However, the proteins and the types of cross-links involved, previously proposed based on indirect evidence, have yet to be confirmed experimentally. To obtain more insight into the structural basis of the proteinaceous component of the spore coat, we attempted to identify coat cross-links and the proteins involved using new peptide fractionation and bioinformatic methods. Young (day 1) and matured (day 5) Bacillus subtilis spores of wild-type and transglutaminase mutant strains were digested with formic acid and trypsin, and cross-linked peptides were enriched using strong cation exchange chromatography. The enriched cross-linked peptide fractions were subjected to Fourier-transform ion cyclotron resonance tandem mass spectrometry, and the high-quality fragmentation data obtained were analyzed using two specialized software tools, pLink2 and XiSearch, to identify cross-links. This analysis identified specific disulfide bonds between coat proteins CotE-CotE and CotJA-CotJC, obtained evidence of disulfide bonds in the spore crust proteins CotX, CotY, and CotZ, and identified dityrosine and ε-(γ)-glutamyl-lysine cross-linked coat proteins. The findings in this Letter are the first direct biochemical data on protein cross-linking in the spore coat and the first direct evidence of the cross-linked building blocks of the highly ordered and resistant structure called the spore coat.
Collapse
Affiliation(s)
| | | | | | - Hansuk Buncherd
- Faculty of Medical Technology, Prince of Songkla University, Songkhla 90110, Thailand
| | | | - Peter Setlow
- Department of Molecular Biology and Biophysics, UConn Health, Farmington, Connecticut 06030-3305, United States
| | | | | |
Collapse
|
37
|
Sun G, Yang M, Jiang L, Huang M. Regulation of pro-σ K activation: a key checkpoint in Bacillus subtilis sporulation. Environ Microbiol 2021; 23:2366-2373. [PMID: 33538382 DOI: 10.1111/1462-2920.15415] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 01/27/2021] [Accepted: 01/28/2021] [Indexed: 11/30/2022]
Abstract
The Gram-positive bacterium Bacillus subtilis initiates the sporulation process under conditions of nutrient limitation. Here, we review related work in this field, focusing on the protein processing of the pro-σK activation. The purpose of this review is to illustrate the mechanism of pro-σK activation and provide structural insights into the regulation of spore production. Sporulation is not only important in basic science but also provides mechanistic insight for bacterial control in applications in, e.g., food industry.
Collapse
Affiliation(s)
- Gaohui Sun
- College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350016, China
| | - Moua Yang
- Division of Hemostasis and Thrombosis, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Longguang Jiang
- College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350016, China.,Fujian Key Laboratory of Marine Enzyme Engineering, Fuzhou University, Fuzhou, Fujian, 350116, China
| | - Mingdong Huang
- College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350016, China
| |
Collapse
|
38
|
Krajčíková D, Bugárová V, Barák I. Interactions of Bacillus subtilis Basement Spore Coat Layer Proteins. Microorganisms 2021; 9:microorganisms9020285. [PMID: 33573199 PMCID: PMC7911427 DOI: 10.3390/microorganisms9020285] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/07/2021] [Accepted: 01/25/2021] [Indexed: 11/16/2022] Open
Abstract
Bacillus subtilis endospores are exceptionally resistant cells encircled by two protective layers: a petidoglycan layer, termed the cortex, and the spore coat, a proteinaceous layer. The formation of both structures depends upon the proper assembly of a basement coat layer, which is composed of two proteins, SpoIVA and SpoVM. The present work examines the interactions of SpoIVA and SpoVM with coat proteins recruited to the spore surface during the early stages of coat assembly. We showed that the alanine racemase YncD associates with two morphogenetic proteins, SpoIVA and CotE. Mutant spores lacking the yncD gene were less resistant against wet heat and germinated to a greater extent than wild-type spores in the presence of micromolar concentrations of l-alanine. In seeking a link between the coat and cortex formation, we investigated the interactions between SpoVM and SpoIVA and the proteins essential for cortex synthesis and found that SpoVM interacts with a penicillin-binding protein, SpoVD, and we also demonstrated that SpoVM is crucial for the proper localization of SpoVD. This study shows that direct contacts between coat morphogenetic proteins with a complex of cortex-synthesizing proteins could be one of the tools by which bacteria couple cortex and coat formation.
Collapse
|
39
|
Ricca E, Baccigalupi L, Isticato R. Spore-adsorption: Mechanism and applications of a non-recombinant display system. Biotechnol Adv 2020; 47:107693. [PMID: 33387640 DOI: 10.1016/j.biotechadv.2020.107693] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 12/22/2020] [Accepted: 12/23/2020] [Indexed: 12/18/2022]
Abstract
Surface display systems have been developed to express target molecules on almost all types of biological entities from viruses to mammalian cells and on a variety of synthetic particles. Various approaches have been developed to achieve the display of many different target molecules, aiming at several technological and biomedical applications. Screening of libraries, delivery of drugs or antigens, bio-catalysis, sensing of pollutants and bioremediation are commonly considered as fields of potential application for surface display systems. In this review, the non-recombinant approach to display antigens and enzymes on the surface of bacterial spores is discussed. Examples of molecules displayed on the spore surface and their potential applications are summarized and a mechanism of display is proposed.
Collapse
Affiliation(s)
- Ezio Ricca
- Department of Biology, Federico II University of Naples, Italy.
| | - Loredana Baccigalupi
- Department of Molecular Medicine and Medical Biotechnology, Federico II University of Naples, Italy
| | | |
Collapse
|
40
|
Zhyvoloup A, Yu BYK, Baković J, Davis-Lunn M, Tossounian MA, Thomas N, Tsuchiya Y, Peak-Chew SY, Wigneshweraraj S, Filonenko V, Skehel M, Setlow P, Gout I. Analysis of disulphide bond linkage between CoA and protein cysteine thiols during sporulation and in spores of Bacillus species. FEMS Microbiol Lett 2020; 367:fnaa174. [PMID: 33206970 PMCID: PMC8127865 DOI: 10.1093/femsle/fnaa174] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 10/24/2020] [Indexed: 12/17/2022] Open
Abstract
Spores of Bacillus species have novel properties, which allow them to lie dormant for years and then germinate under favourable conditions. In the current work, the role of a key metabolic integrator, coenzyme A (CoA), in redox regulation of growing cells and during spore formation in Bacillus megaterium and Bacillus subtilis is studied. Exposing these growing cells to oxidising agents or carbon deprivation resulted in extensive covalent protein modification by CoA (termed protein CoAlation), through disulphide bond formation between the CoA thiol group and a protein cysteine. Significant protein CoAlation was observed during sporulation of B. megaterium, and increased largely in parallel with loss of metabolism in spores. Mass spectrometric analysis identified four CoAlated proteins in B. subtilis spores as well as one CoAlated protein in growing B. megaterium cells. All five of these proteins have been identified as moderately abundant in spores. Based on these findings and published studies, protein CoAlation might be involved in facilitating establishment of spores' metabolic dormancy, and/or protecting sensitive sulfhydryl groups of spore enzymes.
Collapse
Affiliation(s)
- Alexander Zhyvoloup
- Department of Structural and Molecular Biology, University College London, Gower St., London WC1E 6BT, UK
| | - Bess Yi Kun Yu
- Department of Structural and Molecular Biology, University College London, Gower St., London WC1E 6BT, UK
| | - Jovana Baković
- Department of Structural and Molecular Biology, University College London, Gower St., London WC1E 6BT, UK
| | - Mathew Davis-Lunn
- Department of Structural and Molecular Biology, University College London, Gower St., London WC1E 6BT, UK
| | - Maria-Armineh Tossounian
- Department of Structural and Molecular Biology, University College London, Gower St., London WC1E 6BT, UK
| | - Naam Thomas
- Department of Structural and Molecular Biology, University College London, Gower St., London WC1E 6BT, UK
| | - Yugo Tsuchiya
- Department of Structural and Molecular Biology, University College London, Gower St., London WC1E 6BT, UK
| | - Sew Yeu Peak-Chew
- Biological Mass Spectrometry & Proteomics Cell Biology, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Trumpington, Cambridge CB2 0QH, UK
| | - Sivaramesh Wigneshweraraj
- Section of Microbiology, Faculty of Medicine and MRC Centre for Molecular Bacteriology and Infection, Imperial College London, Flowers Building, Imperial College Road, London SW7 2AZ, UK
| | - Valeriy Filonenko
- Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, 150 Zabolotnogo St., Kyiv 03680, Ukraine
| | - Mark Skehel
- Biological Mass Spectrometry & Proteomics Cell Biology, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Trumpington, Cambridge CB2 0QH, UK
| | - Peter Setlow
- Department of Molecular Biology and Biophysics, UConn Health, 263 Farmington Avenue, Farmington, CT 06030-3305, USA
| | - Ivan Gout
- Department of Structural and Molecular Biology, University College London, Gower St., London WC1E 6BT, UK
- Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, 150 Zabolotnogo St., Kyiv 03680, Ukraine
| |
Collapse
|
41
|
A dynamic, ring-forming MucB / RseB-like protein influences spore shape in Bacillus subtilis. PLoS Genet 2020; 16:e1009246. [PMID: 33315869 PMCID: PMC7769602 DOI: 10.1371/journal.pgen.1009246] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 12/28/2020] [Accepted: 11/03/2020] [Indexed: 01/17/2023] Open
Abstract
How organisms develop into specific shapes is a central question in biology. The maintenance of bacterial shape is connected to the assembly and remodelling of the cell envelope. In endospore-forming bacteria, the pre-spore compartment (the forespore) undergoes morphological changes that result in a spore of defined shape, with a complex, multi-layered cell envelope. However, the mechanisms that govern spore shape remain poorly understood. Here, using a combination of fluorescence microscopy, quantitative image analysis, molecular genetics and transmission electron microscopy, we show that SsdC (formerly YdcC), a poorly-characterized new member of the MucB / RseB family of proteins that bind lipopolysaccharide in diderm bacteria, influences spore shape in the monoderm Bacillus subtilis. Sporulating cells lacking SsdC fail to adopt the typical oblong shape of wild-type forespores and are instead rounder. 2D and 3D-fluorescence microscopy suggest that SsdC forms a discontinuous, dynamic ring-like structure in the peripheral membrane of the mother cell, near the mother cell proximal pole of the forespore. A synthetic sporulation screen identified genetic relationships between ssdC and genes involved in the assembly of the spore coat. Phenotypic characterization of these mutants revealed that spore shape, and SsdC localization, depend on the coat basement layer proteins SpoVM and SpoIVA, the encasement protein SpoVID and the inner coat protein SafA. Importantly, we found that the ΔssdC mutant produces spores with an abnormal-looking cortex, and abolishing cortex synthesis in the mutant largely suppresses its shape defects. Thus, SsdC appears to play a role in the proper assembly of the spore cortex, through connections to the spore coat. Collectively, our data suggest functional diversification of the MucB / RseB protein domain between diderm and monoderm bacteria and identify SsdC as an important factor in spore shape development. Cell shape is an important cellular attribute linked to cellular function and environmental adaptation. Bacterial endospores are one of the toughest cell types on Earth, with a defined shape and complex, highly-resistant, multi-layered cell envelope. Although decades of research have focused on defining the composition and assembly of the multi-layered spore envelope, little is known about how these layers contribute to spore shape. Here, we identify SsdC, a poorly-characterized new member of the MucB / RseB family of proteins that bind lipopolysaccharide in diderm bacteria. We show that SsdC is an important factor in spore shape development in the monoderm, model organism Bacillus subtilis. Our data suggest that SsdC influences the assembly of the spore cortex, through connections to the spore coat, by forming an intriguing, dynamic ring-like structure adjacent to the developing spore. Furthermore, our identification of SsdC suggests evolutionary diversification of the MucB /RseB protein domain between diderm and monoderm bacteria.
Collapse
|
42
|
Freitas C, Plannic J, Isticato R, Pelosi A, Zilhão R, Serrano M, Baccigalupi L, Ricca E, Elsholz AKW, Losick R, O. Henriques A. A protein phosphorylation module patterns the Bacillus subtilis spore outer coat. Mol Microbiol 2020; 114:934-951. [PMID: 32592201 PMCID: PMC7821199 DOI: 10.1111/mmi.14562] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Revised: 06/17/2020] [Indexed: 01/09/2023]
Abstract
Assembly of the Bacillus subtilis spore coat involves over 80 proteins which self-organize into a basal layer, a lamellar inner coat, a striated electrodense outer coat and a more external crust. CotB is an abundant component of the outer coat. The C-terminal moiety of CotB, SKRB , formed by serine-rich repeats, is polyphosphorylated by the Ser/Thr kinase CotH. We show that another coat protein, CotG, with a central serine-repeat region, SKRG , interacts with the C-terminal moiety of CotB and promotes its phosphorylation by CotH in vivo and in a heterologous system. CotG itself is phosphorylated by CotH but phosphorylation is enhanced in the absence of CotB. Spores of a strain producing an inactive form of CotH, like those formed by a cotG deletion mutant, lack the pattern of electrondense outer coat striations, but retain the crust. In contrast, deletion of the SKRB region, has no major impact on outer coat structure. Thus, phosphorylation of CotG by CotH is a key factor establishing the structure of the outer coat. The presence of the cotB/cotH/cotG cluster in several species closely related to B. subtilis hints at the importance of this protein phosphorylation module in the morphogenesis of the spore surface layers.
Collapse
Affiliation(s)
- Carolina Freitas
- Instituto de Tecnologia Química e BiológicaUniversidade Nova de LisboaOeirasPortugal
- Present address:
Department of EcophysiologyMax‐Planck Institute for Terrestrial MicrobiologyKarl‐von‐Frisch‐Str. 10MarburgD‐35043Germany
| | - Jarnaja Plannic
- Instituto de Tecnologia Química e BiológicaUniversidade Nova de LisboaOeirasPortugal
- University of LjubljanaLjubljanaSlovenia
| | | | | | - Rita Zilhão
- Instituto de Tecnologia Química e BiológicaUniversidade Nova de LisboaOeirasPortugal
- Departamento de Biologia VegetalUniversidade de LisboaLisboaPortugal
| | - Mónica Serrano
- Instituto de Tecnologia Química e BiológicaUniversidade Nova de LisboaOeirasPortugal
| | | | - Ezio Ricca
- Department of BiologyUniversity Federico IINaplesItaly
| | - Alexander K. W. Elsholz
- Biological LaboratoriesHarvard UniversityCambridgeMAUSA
- Present address:
Max Planck Unit for the Science of PathogensCharitèplatz 1Berlin10117Germany
| | | | - Adriano O. Henriques
- Instituto de Tecnologia Química e BiológicaUniversidade Nova de LisboaOeirasPortugal
| |
Collapse
|
43
|
Bodík M, Krajčíková D, Hagara J, Majkova E, Barák I, Šiffalovič P. Diffraction pattern of Bacillus subtilis CotY spore coat protein 2D crystals. Colloids Surf B Biointerfaces 2020; 197:111425. [PMID: 33099149 DOI: 10.1016/j.colsurfb.2020.111425] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 10/08/2020] [Accepted: 10/11/2020] [Indexed: 11/15/2022]
Abstract
Bacillus subtilis spore coat is a bacterial proteinaceous structure with amazing characteristics of self-organization, unique resiliency, toughness and flexibility in the same time. The spore coat represents a complex multilayered protein structure which is composed of over 80 coat proteins. Some of these proteins form two dimensional crystal structures who's low resolution ternary structure as was determined by electron microscopy. However, there are no 3D structure of these proteins known, due to a problem of preparing 3D crystals which could be analyzed by synchrotron X-ray sources. In the present study, Grazing-Incidence Wide-Angle X-ray Scattering (GIWAXS) was applied to investigate a diffraction pattern of CotY 2D crystals formed on Langmuir monolayer films. We observed two distinct diffraction rings and their position corresponds to a structure with the lattice spacing of 10.6 Å and 5.0 Å, respectively. Obtaining diffractions of 2D crystals pave the way to determination of 3D structure of coat proteins by using strong X-ray sources.
Collapse
Affiliation(s)
- Michal Bodík
- Institute of Physics, Slovak Academy of Sciences, Dúbravská cesta 9, 845 11 Bratislava, Slovakia; Centre for Advanced Material Application, Slovak Academy of Sciences, Dúbravská cesta 9, 845 11 Bratislava, Slovakia.
| | - Daniela Krajčíková
- Department of Microbial Genetics, Institute of Molecular Biology, Slovak Academy of Sciences, Dúbravská cesta 21, 845 51 Bratislava, Slovakia
| | - Jakub Hagara
- Institute of Physics, Slovak Academy of Sciences, Dúbravská cesta 9, 845 11 Bratislava, Slovakia
| | - Eva Majkova
- Institute of Physics, Slovak Academy of Sciences, Dúbravská cesta 9, 845 11 Bratislava, Slovakia; Centre for Advanced Material Application, Slovak Academy of Sciences, Dúbravská cesta 9, 845 11 Bratislava, Slovakia
| | - Imrich Barák
- Department of Microbial Genetics, Institute of Molecular Biology, Slovak Academy of Sciences, Dúbravská cesta 21, 845 51 Bratislava, Slovakia.
| | - Peter Šiffalovič
- Institute of Physics, Slovak Academy of Sciences, Dúbravská cesta 9, 845 11 Bratislava, Slovakia; Centre for Advanced Material Application, Slovak Academy of Sciences, Dúbravská cesta 9, 845 11 Bratislava, Slovakia
| |
Collapse
|
44
|
Secaira-Morocho H, Castillo JA, Driks A. Diversity and evolutionary dynamics of spore-coat proteins in spore-forming species of Bacillales. Microb Genom 2020; 6. [PMID: 33052805 PMCID: PMC7725329 DOI: 10.1099/mgen.0.000451] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Among members of the Bacillales order, there are several species capable of forming a structure called an endospore. Endospores enable bacteria to survive under unfavourable growth conditions and germinate when environmental conditions are favourable again. Spore-coat proteins are found in a multilayered proteinaceous structure encasing the spore core and the cortex. They are involved in coat assembly, cortex synthesis and germination. Here, we aimed to determine the diversity and evolutionary processes that have influenced spore-coat genes in various spore-forming species of Bacillales using an in silico approach. For this, we used sequence similarity searching algorithms to determine the diversity of coat genes across 161 genomes of Bacillales. The results suggest that among Bacillales, there is a well-conserved core genome, composed mainly by morphogenetic coat proteins and spore-coat proteins involved in germination. However, some spore-coat proteins are taxa-specific. The best-conserved genes among different species may promote adaptation to changeable environmental conditions. Because most of the Bacillus species harbour complete or almost complete sets of spore-coat genes, we focused on this genus in greater depth. Phylogenetic reconstruction revealed eight monophyletic groups in the Bacillus genus, of which three are newly discovered. We estimated the selection pressures acting over spore-coat genes in these monophyletic groups using classical and modern approaches and detected horizontal gene transfer (HGT) events, which have been further confirmed by scanning the genomes to find traces of insertion sequences. Although most of the genes are under purifying selection, there are several cases with individual sites evolving under positive selection. Finally, the HGT results confirm that sporulation is an ancestral feature in Bacillus.
Collapse
Affiliation(s)
- Henry Secaira-Morocho
- School of Biological Sciences and Engineering, Yachay Tech University, San Miguel de Urcuquí, Imbabura, Ecuador
| | - José A Castillo
- School of Biological Sciences and Engineering, Yachay Tech University, San Miguel de Urcuquí, Imbabura, Ecuador
| | - Adam Driks
- Department of Microbiology and Immunology, Loyola University Chicago, Chicago, IL, USA
| |
Collapse
|
45
|
Role of SpoIVA ATPase Motifs during Clostridioides difficile Sporulation. J Bacteriol 2020; 202:JB.00387-20. [PMID: 32817091 PMCID: PMC7549369 DOI: 10.1128/jb.00387-20] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 08/04/2020] [Indexed: 01/04/2023] Open
Abstract
The major pathogen Clostridioides difficile depends on its spore form to transmit disease. However, the mechanism by which C. difficile assembles spores remains poorly characterized. We previously showed that binding between the spore morphogenetic proteins SpoIVA and SipL regulates assembly of the protective coat layer around the forespore. In this study, we determined that mutations in the C. difficile SpoIVA ATPase motifs result in relatively minor defects in spore formation, in contrast with Bacillus subtilis. Nevertheless, our data suggest that SipL preferentially recognizes the ATP-bound form of SpoIVA and identify a specific residue in the SipL C-terminal LysM domain that is critical for recognizing the ATP-bound form of SpoIVA. These findings advance our understanding of how SpoIVA-SipL interactions regulate C. difficile spore assembly. The nosocomial pathogen Clostridioides difficile is a spore-forming obligate anaerobe that depends on its aerotolerant spore form to transmit infections. Functional spore formation depends on the assembly of a proteinaceous layer known as the coat around the developing spore. In C. difficile, coat assembly depends on the conserved spore protein SpoIVA and the clostridial-organism-specific spore protein SipL, which directly interact. Mutations that disrupt their interaction cause the coat to mislocalize and impair spore formation. In Bacillus subtilis, SpoIVA is an ATPase that uses ATP hydrolysis to drive its polymerization around the forespore. Loss of SpoIVA ATPase activity impairs B. subtilis SpoIVA encasement of the forespore and activates a quality control mechanism that eliminates these defective cells. Since this mechanism is lacking in C. difficile, we tested whether mutations in the C. difficile SpoIVA ATPase motifs impact functional spore formation. Disrupting C. difficile SpoIVA ATPase motifs resulted in phenotypes that were typically >104-fold less severe than the equivalent mutations in B. subtilis. Interestingly, mutation of ATPase motif residues predicted to abrogate SpoIVA binding to ATP decreased the SpoIVA-SipL interaction, whereas mutation of ATPase motif residues predicted to disrupt ATP hydrolysis but maintain ATP binding enhanced the SpoIVA-SipL interaction. When a sipL mutation known to reduce binding to SpoIVA was combined with a spoIVA mutation predicted to prevent SpoIVA binding to ATP, spore formation was severely exacerbated. Since this phenotype is allele specific, our data imply that SipL recognizes the ATP-bound form of SpoIVA and highlight the importance of this interaction for functional C. difficile spore formation. IMPORTANCE The major pathogen Clostridioides difficile depends on its spore form to transmit disease. However, the mechanism by which C. difficile assembles spores remains poorly characterized. We previously showed that binding between the spore morphogenetic proteins SpoIVA and SipL regulates assembly of the protective coat layer around the forespore. In this study, we determined that mutations in the C. difficile SpoIVA ATPase motifs result in relatively minor defects in spore formation, in contrast with Bacillus subtilis. Nevertheless, our data suggest that SipL preferentially recognizes the ATP-bound form of SpoIVA and identify a specific residue in the SipL C-terminal LysM domain that is critical for recognizing the ATP-bound form of SpoIVA. These findings advance our understanding of how SpoIVA-SipL interactions regulate C. difficile spore assembly.
Collapse
|
46
|
Petrillo C, Castaldi S, Lanzilli M, Saggese A, Donadio G, Baccigalupi L, Ricca E, Isticato R. The temperature of growth and sporulation modulates the efficiency of spore-display in Bacillus subtilis. Microb Cell Fact 2020; 19:185. [PMID: 33004043 PMCID: PMC7528486 DOI: 10.1186/s12934-020-01446-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 09/25/2020] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Bacterial spores displaying heterologous antigens or enzymes have long been proposed as mucosal vaccines, functionalized probiotics or biocatalysts. Two main strategies have been developed to display heterologous molecules on the surface of Bacillus subtilis spores: (i) a recombinant approach, based on the construction of a gene fusion between a gene coding for a coat protein (carrier) and DNA coding for the protein to be displayed, and (ii) a non-recombinant approach, based on the spontaneous and stable adsorption of heterologous molecules on the spore surface. Both systems have advantages and drawbacks and the selection of one or the other depends on the protein to be displayed and on the final use of the activated spore. It has been recently shown that B. subtilis builds structurally and functionally different spores when grown at different temperatures; based on this finding B. subtilis spores prepared at 25, 37 or 42 °C were compared for their efficiency in displaying various model proteins by either the recombinant or the non-recombinant approach. RESULTS Immune- and fluorescence-based assays were used to analyze the display of several model proteins on spores prepared at 25, 37 or 42 °C. Recombinant spores displayed different amounts of the same fusion protein in response to the temperature of spore production. In spores simultaneously displaying two fusion proteins, each of them was differentially displayed at the various temperatures. The display by the non-recombinant approach was only modestly affected by the temperature of spore production, with spores prepared at 37 or 42 °C slightly more efficient than 25 °C spores in adsorbing at least some of the model proteins tested. CONCLUSION Our results indicate that the temperature of spore production allows control of the display of heterologous proteins on spores and, therefore, that the spore-display strategy can be optimized for the specific final use of the activated spores by selecting the display approach, the carrier protein and the temperature of spore production.
Collapse
Affiliation(s)
- Claudia Petrillo
- Department of Biology, Federico II University complesso universitario di Monte Sant' Angelo via Cinthia, 80126, Napoli, Italy
| | - Stefany Castaldi
- Department of Biology, Federico II University complesso universitario di Monte Sant' Angelo via Cinthia, 80126, Napoli, Italy
| | - Mariamichela Lanzilli
- Department of Biology, Federico II University complesso universitario di Monte Sant' Angelo via Cinthia, 80126, Napoli, Italy
- Institute of Biomolecular Chemistry, National Research Council of Italy, Pozzuoli (Naples), Italy
| | - Anella Saggese
- Department of Biology, Federico II University complesso universitario di Monte Sant' Angelo via Cinthia, 80126, Napoli, Italy
| | - Giuliana Donadio
- Department of Biology, Federico II University complesso universitario di Monte Sant' Angelo via Cinthia, 80126, Napoli, Italy
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Fisciano (SA), Italy
| | - Loredana Baccigalupi
- Department of Molecular Medicine and Medical Biotechnology, Federico II University of Naples, Napoli, Italy
| | - Ezio Ricca
- Department of Biology, Federico II University complesso universitario di Monte Sant' Angelo via Cinthia, 80126, Napoli, Italy.
| | - Rachele Isticato
- Department of Biology, Federico II University complesso universitario di Monte Sant' Angelo via Cinthia, 80126, Napoli, Italy
| |
Collapse
|
47
|
Player JK, Despain JT, Robison RA. Correlations between available primary amines, endospore coat thickness, and alkaline glutaraldehyde sensitivity for spores of select Bacillus species. Microbiologyopen 2020; 9:e1117. [PMID: 32996289 PMCID: PMC7658453 DOI: 10.1002/mbo3.1117] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 08/12/2020] [Accepted: 08/18/2020] [Indexed: 11/13/2022] Open
Abstract
Alkaline glutaraldehyde (GTA) is a high‐level chemical disinfectant/sterilant and has a broad microbial kill spectrum. The precise antimicrobial mechanism of GTA remains debated. GTA kill times are extremely variable across different organisms, illustrating the need for a better understanding of GTA kill mechanisms related to different organisms. A commonly proposed GTA kill mechanism suggests that it works by cross‐linking accessible primary amines on important surface proteins. If true, the antimicrobial activity of GTA may directly correlate to the number of these available functional groups. Bacillus species form highly resistant bacterial endospores that are commonly used as one of the most stringent test organisms for disinfection and sterilization. In this study, we compared the log reduction times of alkaline GTA on spores from 4 Bacillus species to fluorescent profiles generated using Alexa Fluor™ amine‐reactive dyes. GTA kill times were also compared to mean spore coat thicknesses as measured with scanning electron microscopy (SEM). Fluorescence values generated from bound amine‐reactive dye showed a strong, positive correlation to GTA susceptibility, as measured by GTA 6‐log10 reduction times. Spore coat thickness also showed a strong, positive correlation to reduction time values. Results support the hypothesis that GTA kill times are directly related to the number of available primary amines on bacterial endospores. Results also indicated that the killing efficacy of GTA may be influenced by its ability to penetrate the spore coat to reach additional targets, suggesting that damaging important biomolecules beyond surface proteins may be involved in GTA killing mechanisms.
Collapse
Affiliation(s)
- Jacob Kent Player
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT, USA
| | - Justen Thalmus Despain
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT, USA
| | - Richard A Robison
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT, USA
| |
Collapse
|
48
|
The sps Genes Encode an Original Legionaminic Acid Pathway Required for Crust Assembly in Bacillus subtilis. mBio 2020; 11:mBio.01153-20. [PMID: 32817102 PMCID: PMC7439481 DOI: 10.1128/mbio.01153-20] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The crust is the outermost spore layer of most Bacillus strains devoid of an exosporium. This outermost layer, composed of both proteins and carbohydrates, plays a major role in the adhesion and spreading of spores into the environment. Recent studies have identified several crust proteins and have provided insights about their organization at the spore surface. However, although carbohydrates are known to participate in adhesion, little is known about their composition, structure, and localization. In this study, we showed that the spore surface of Bacillus subtilis is covered with legionaminic acid (Leg), a nine-carbon backbone nonulosonic acid known to decorate the flagellin of the human pathogens Helicobacter pylori and Campylobacter jejuni We demonstrated that the spsC, spsD, spsE, spsG, and spsM genes of Bacillus subtilis are required for Leg biosynthesis during sporulation, while the spsF gene is required for Leg transfer from the mother cell to the surface of the forespore. We also characterized the activity of SpsM and highlighted an original Leg biosynthesis pathway in B. subtilis Finally, we demonstrated that Leg is required for the assembly of the crust around the spores, and we showed that in the absence of Leg, spores were more adherent to stainless steel probably because of their reduced hydrophilicity and charge.IMPORTANCE Bacillus species are a major economic and food safety concern of the food industry because of their food spoilage-causing capability and persistence. Their persistence is mainly due to their ability to form highly resistant spores adhering to the surfaces of industrial equipment. Spores of the Bacillus subtilis group are surrounded by the crust, a superficial layer which plays a key role in their adhesion properties. However, knowledge of the composition and structure of this layer remains incomplete. Here, for the first time, we identified a nonulosonic acid (Leg) at the surfaces of bacterial spores (B. subtilis). We uncovered a novel Leg biosynthesis pathway, and we demonstrated that Leg is required for proper crust assembly. This work contributes to the description of the structure and composition of Bacillus spores which has been under way for decades, and it provides keys to understanding the importance of carbohydrates in Bacillus adhesion and persistence in the food industry.
Collapse
|
49
|
Applications of Bacillus subtilis Spores in Biotechnology and Advanced Materials. Appl Environ Microbiol 2020; 86:AEM.01096-20. [PMID: 32631858 DOI: 10.1128/aem.01096-20] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The bacterium Bacillus subtilis has long been an important subject for basic studies. However, this organism has also had industrial applications due to its easy genetic manipulation, favorable culturing characteristics for large-scale fermentation, superior capacity for protein secretion, and generally recognized as safe (GRAS) status. In addition, as the metabolically dormant form of B. subtilis, its spores have attracted great interest due to their extreme resistance to many environmental stresses, which makes spores a novel platform for a variety of applications. In this review, we summarize both conventional and emerging applications of B. subtilis spores, with a focus on how their unique characteristics have led to innovative applications in many areas of technology, including generation of stable and recyclable enzymes, synthetic biology, drug delivery, and material sciences. Ultimately, this review hopes to inspire the scientific community to leverage interdisciplinary approaches using spores to address global concerns about food shortages, environmental protection, and health care.
Collapse
|
50
|
Moore JH, Salahi A, Honrado C, Warburton C, Warren CA, Swami NS. Quantifying bacterial spore germination by single-cell impedance cytometry for assessment of host microbiota susceptibility to Clostridioides difficile infection. Biosens Bioelectron 2020; 166:112440. [PMID: 32745926 DOI: 10.1016/j.bios.2020.112440] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 06/18/2020] [Accepted: 07/08/2020] [Indexed: 12/11/2022]
Abstract
The germination of ingested spores is often a necessary first step required for enabling bacterial outgrowth and host colonization, as in the case of Clostridioides difficile (C. difficile) infection. Spore germination rate in the colon depends on microbiota composition and its level of disruption by antibiotic treatment since secretions by commensal bacteria modulate primary to secondary bile salt levels to control germination. Assessment of C. difficile spore germination typically requires measurement of colony-forming units, which is labor intensive and takes at least 24 h to perform but is regularly required due to the high recurrence rates of nosocomial antibiotic-associated diarrhea. We present a rapid method to assess spore germination by using high throughput single-cell impedance cytometry (>300 events/s) to quantify live bacterial cells, by gating for their characteristic electrophysiology versus spores, so that germination can be assessed after just 4 h of culture at a detection limit of ~100 live cells per 50 μL sample. To detect the phenotype of germinated C. difficile bacteria, we utilize its characteristically higher net conductivity versus that of spore aggregates and non-viable C. difficile forms, which causes a distinctive high-frequency (10 MHz) impedance phase dispersion within moderately conductive media (0.8 S/m). In this manner, we can detect significant differences in spore germination rates within just 4 h, with increasing primary bile salt levels in vitro and using ex vivo microbiota samples from an antibiotic-treated mouse model to assess susceptibility to C. difficile infection. We envision a rapid diagnostic tool for assessing host microbiota susceptibility to bacterial colonization after key antibiotic treatments.
Collapse
Affiliation(s)
- John H Moore
- Electrical & Computer Engineering, University of Virginia, Charlottesville, VA, 22904, USA
| | - Armita Salahi
- Electrical & Computer Engineering, University of Virginia, Charlottesville, VA, 22904, USA
| | - Carlos Honrado
- Electrical & Computer Engineering, University of Virginia, Charlottesville, VA, 22904, USA
| | | | - Cirle A Warren
- Infectious Diseases, School of Medicine, University of Virginia, VA, 22904, USA
| | - Nathan S Swami
- Electrical & Computer Engineering, University of Virginia, Charlottesville, VA, 22904, USA.
| |
Collapse
|