1
|
Shrikondawar AN, Chennoju K, Ghosh DK, Ranjan A. Mapping of Nuclear Localization Signal in Secreted Liver-Specific Protein 2 of Plasmodium falciparum. ACS Infect Dis 2024; 10:4369-4383. [PMID: 39601512 DOI: 10.1021/acsinfecdis.4c00715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
The secretory proteome of Plasmodium exhibits differential spatial and functional activity within host cells. Plasmodium secretes proteins that translocate into the human host cell nucleus. Liver-specific protein 2 of Plasmodium falciparum (Pf-LISP2) shows nuclear accumulation in human hepatocytes during the late liver stage of malaria parasite development. However, the nuclear translocation mechanism for Pf-LISP2 remains largely uncharacterized. Here, we identified a classical bipartite nuclear localization signal (NLS) located in the C-terminal region of Pf-LISP2. Phylogenetic analysis revealed that this NLS is unique to Plasmodium falciparum and its close relative Plasmodium reichenowi, suggesting an evolutionary adaptation linked to their shared primate hosts. Functional assays confirmed the NLS's nuclear import activity, as fusion constructs of the Pf-LISP2 NLS with Pf-aldolase (Pf-aldolase-NLS-EGFP) localized exclusively to the nucleus of HepG2 cells. Mutation analysis of key lysine and arginine residues in the bipartite NLS demonstrated that the basic amino acid clusters are essential for nuclear localization. Importin-α/β interaction was found to be crucial for Pf-LISP2 nuclear transport, as coexpression of the NLS constructs with the importin-α/β inhibitor mCherry-Bimax2 significantly blocked nuclear translocation. Specific interactions between the lysine and arginine residues of Pf-LISP2's NLS and the conserved tryptophan and asparagine residues of human importin-α1 facilitate the cytosol-to-nuclear translocation of Pf-LISP2. Additionally, LISP2 lacks any nuclear export signal. These results provide new insights into the mechanisms of nuclear transport in Plasmodium falciparum, potentially contributing to the understanding of its pathogenicity and host-cell interactions during liver-stage infection.
Collapse
Affiliation(s)
- Akshaykumar Nanaji Shrikondawar
- Computational and Functional Genomics Group, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, Telangana 500039, India
- Graduate Studies, Regional Centre for Biotechnology, Faridabad, Haryana 121001, India
| | - Kiranmai Chennoju
- Computational and Functional Genomics Group, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, Telangana 500039, India
- Graduate Studies, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Debasish Kumar Ghosh
- Kasturba Medical College, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Akash Ranjan
- Computational and Functional Genomics Group, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, Telangana 500039, India
| |
Collapse
|
2
|
Dos Santos BM, Pecenin MF, Borges-Pereira L, Springer E, Przyborski JM, Martins-Jr DC, Hashimoto RF, Garcia CRS. The genetically encoded calcium indicator GCaMP3 reveals spontaneous calcium oscillations at asexual stages of the human malaria parasite Plasmodium falciparum. Mol Biochem Parasitol 2024; 260:111650. [PMID: 39151473 DOI: 10.1016/j.molbiopara.2024.111650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 08/02/2024] [Accepted: 08/13/2024] [Indexed: 08/19/2024]
Abstract
Most protocols used to study the dynamics of calcium (Ca2+) in the malaria parasite are based on dyes, which are invasive and do not allow discrimination between the signal from the host cell and the parasite. To avoid this pitfall, we have generated a parasite line expressing the genetically encoded calcium sensor GCaMP3. The PfGCaMP3 parasite line is an innovative tool for studying spontaneous intracellular Ca2+ oscillations without external markers. Using this parasite line, we demonstrate the occurrence of spontaneous Ca2+ oscillations in the ring, trophozoite, and schizont stages in Plasmodium falciparum. Using the Fourier transform to fluorescence intensity data extracted from different experiments, we observe cytosolic Ca2+ fluctuations. These spontaneous cytosolic Ca2+ oscillations occur in the three intraerythrocytic stages of the parasite, with most oscillations occurring in the ring and trophozoite stages. A control parasite line expressing only a GFP control did not reveal such fluctuations, demonstrating the specificity of the observations. Our results clearly show dynamic, spontaneous Ca2+ oscillations during the asexual stage in P. falciparum, independent from external stimuli.
Collapse
Affiliation(s)
- Benedito M Dos Santos
- Department of Clinical and Toxicological Analysis, School of Pharmaceutical Sciences, University of São Paulo, São Paulo 05508-000, Brazil
| | - Mateus F Pecenin
- Department of Clinical and Toxicological Analysis, School of Pharmaceutical Sciences, University of São Paulo, São Paulo 05508-000, Brazil
| | - Lucas Borges-Pereira
- Department of Clinical and Toxicological Analysis, School of Pharmaceutical Sciences, University of São Paulo, São Paulo 05508-000, Brazil
| | - Eric Springer
- Department of Biochemistry and Molecular Biology, Interdisciplinary Research Center, Justus-Liebig University, Gießen 35390, Germany
| | - Jude M Przyborski
- Department of Biochemistry and Molecular Biology, Interdisciplinary Research Center, Justus-Liebig University, Gießen 35390, Germany
| | - David C Martins-Jr
- Center of Mathematics, Computing and Cognition, Federal University of ABC, Santo André 09606-045, Brazil
| | - Ronaldo F Hashimoto
- Institute of Mathematics and Statistics, University of São Paulo, São Paulo 05508-000, Brazil
| | - Célia R S Garcia
- Department of Clinical and Toxicological Analysis, School of Pharmaceutical Sciences, University of São Paulo, São Paulo 05508-000, Brazil.
| |
Collapse
|
3
|
Anderson DC, Peterson MS, Lapp SA, Galinski MR. Proteomes of plasmodium knowlesi early and late ring-stage parasites and infected host erythrocytes. J Proteomics 2024; 302:105197. [PMID: 38759952 PMCID: PMC11357705 DOI: 10.1016/j.jprot.2024.105197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 05/05/2024] [Accepted: 05/14/2024] [Indexed: 05/19/2024]
Abstract
The emerging malaria parasite Plasmodium knowlesi threatens the goal of worldwide malaria elimination due to its zoonotic spread in Southeast Asia. After brief ex-vivo culture we used 2D LC/MS/MS to examine the early and late ring stages of infected Macaca mulatta red blood cells harboring P. knowlesi. The M. mulatta clathrin heavy chain and T-cell and macrophage inhibitor ERMAP were overexpressed in the early ring stage; glutaredoxin 3 was overexpressed in the late ring stage; GO term differential enrichments included response to oxidative stress and the cortical cytoskeleton in the early ring stage. P. knowlesi clathrin heavy chain and 60S acidic ribosomal protein P2 were overexpressed in the late ring stage; GO term differential enrichments included vacuoles in the early ring stage, ribosomes and translation in the late ring stage, and Golgi- and COPI-coated vesicles, proteasomes, nucleosomes, vacuoles, ion-, peptide-, protein-, nucleocytoplasmic- and RNA-transport, antioxidant activity and glycolysis in both stages. SIGNIFICANCE: Due to its zoonotic spread, cases of the emerging human pathogen Plasmodium knowlesi in southeast Asia, and particularly in Malaysia, threaten regional and worldwide goals for malaria elimination. Infection by this parasite can be fatal to humans, and can be associated with significant morbidity. Due to zoonotic transmission from large macaque reservoirs that are untreatable by drugs, and outdoor biting mosquito vectors that negate use of preventive measures such as bed nets, its containment remains a challenge. Its biology remains incompletely understood. Thus we examine the expressed proteome of the early and late ex-vivo cultured ring stages, the first intraerythrocyte developmental stages after infection of host rhesus macaque erythrocytes. We used GO term enrichment strategies and differential protein expression to compare early and late ring stages. The early ring stage is characterized by the enrichment of P. knowlesi vacuoles, and overexpression of the M. mulatta clathrin heavy chain, important for clathrin-coated pits and vesicles, and clathrin-mediated endocytosis. The M. mulatta protein ERMAP was also overexpressed in the early ring stage, suggesting a potential role in early ring stage inhibition of T-cells and macrophages responding to P. knowlesi infection of reticulocytes. This could allow expansion of the host P. knowlesi cellular niche, allowing parasite adaptation to invasion of a wider age range of RBCs than the preferred young RBCs or reticulocytes, resulting in proliferation and increased pathogenesis in infected humans. Other GO terms differentially enriched in the early ring stage include the M. mulatta cortical cytoskeleton and response to oxidative stress. The late ring stage is characterized by overexpression of the P. knowlesi clathrin heavy chain. Combined with late ring stage GO term enrichment of Golgi-associated and coated vesicles, and enrichment of COPI-coated vesicles in both stages, this suggests the importance to P. knowlesi biology of clathrin-mediated endocytosis. P. knowlesi ribosomes and translation were also differentially enriched in the late ring stage. With expression of a variety of heat shock proteins, these results suggest production of folded parasite proteins is increasing by the late ring stage. M. mulatta endocytosis was differentially enriched in the late ring stage, as were clathrin-coated vesicles and endocytic vesicles. This suggests that M. mulatta clathrin-based endocytosis, perhaps in infected reticulocytes rather than mature RBC, may be an important process in the late ring stage. Additional ring stage biology from enriched GO terms includes M. mulatta proteasomes, protein folding and the chaperonin-containing T complex, actin and cortical actin cytoskeletons. P knowlesi biology also includes proteasomes, as well as nucleosomes, antioxidant activity, a variety of transport processes, glycolysis, vacuoles and protein folding. Mature RBCs have lost internal organelles, suggesting infection here may involve immature reticulocytes still retaining organelles. P. knowlesi parasite proteasomes and translational machinery may be ring stage drug targets for known selective inhibitors of these processes in other Plasmodium species. To our knowledge this is the first examination of more than one timepoint within the ring stage. Our results expand knowledge of both host and parasite proteins, pathways and organelles underlying P. knowlesi ring stage biology.
Collapse
Affiliation(s)
- D C Anderson
- Biosciences Division, SRI International, Harrisonburg, VA 22802, USA.
| | - Mariko S Peterson
- Emory Vaccine Center and Yerkes National Primate Research Center, Emory University, Atlanta, GA 30322, USA
| | - Stacey A Lapp
- Emory Vaccine Center and Yerkes National Primate Research Center, Emory University, Atlanta, GA 30322, USA
| | - Mary R Galinski
- Emory Vaccine Center and Yerkes National Primate Research Center, Emory University, Atlanta, GA 30322, USA; Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Emory University, Atlanta, GA 30322, USA
| |
Collapse
|
4
|
Jia LS, Liu Z, Zhu SH, Zhao QP, Han HY, Zhao HZ, Yu Y, Dong H. Quantitative phosphoproteomic analysis of chicken DF-1 cells infected with Eimeria tenella, using tandem mass tag (TMT) and parallel reaction monitoring (PRM) mass spectrometry. Parasite 2024; 31:23. [PMID: 38759153 PMCID: PMC11101204 DOI: 10.1051/parasite/2024027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 05/01/2024] [Indexed: 05/19/2024] Open
Abstract
Eimeria tenella is an obligate intracellular parasite which causes great harm to the poultry breeding industry. Protein phosphorylation plays a vital role in host cell-E. tenella interactions. However, no comprehensive phosphoproteomic analyses of host cells at various phases of E. tenella infection have been published. In this study, quantitative phosphoproteomic analysis of chicken embryo DF-1 fibroblasts that were uninfected (UI) or infected with E. tenella for 6 h (PI6, the early invasion phase) or 36 h (PI36, the trophozoite development phase) was conducted. A total of 10,122 phosphopeptides matched to 3,398 host cell phosphoproteins were identified and 13,437 phosphorylation sites were identified. Of these, 491, 1,253, and 275 differentially expressed phosphorylated proteins were identified in the PI6/UI, PI36/UI, and PI36/PI6 comparisons, respectively. KEGG pathway enrichment analysis showed that E. tenella modulated host cell processes through phosphorylation, including focal adhesion, regulation of the actin cytoskeleton, and FoxO signaling to support its early invasion phase, and modulating adherens junctions and the ErbB signaling pathway to favor its trophozoite development. These results enrich the data on the interaction between E. tenella and host cells and facilitate a better understanding of the molecular mechanisms underlying host-parasite relationships.
Collapse
Affiliation(s)
- Liu-Shu Jia
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology of Ministry of Agriculture Minhang Shanghai 200241 PR China
| | - Zhan Liu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology of Ministry of Agriculture Minhang Shanghai 200241 PR China
| | - Shun-Hai Zhu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology of Ministry of Agriculture Minhang Shanghai 200241 PR China
| | - Qi-Ping Zhao
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology of Ministry of Agriculture Minhang Shanghai 200241 PR China
| | - Hong-Yu Han
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology of Ministry of Agriculture Minhang Shanghai 200241 PR China
| | - Huan-Zhi Zhao
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology of Ministry of Agriculture Minhang Shanghai 200241 PR China
| | - Yu Yu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology of Ministry of Agriculture Minhang Shanghai 200241 PR China
| | - Hui Dong
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology of Ministry of Agriculture Minhang Shanghai 200241 PR China
| |
Collapse
|
5
|
Zheng K, Li Q, Jiang N, Zhang Y, Zheng Y, Zhang Y, Feng Y, Chen R, Sang X, Chen Q. Plasmodium falciparum selectively degrades α-spectrin of infected erythrocytes after invasion. mBio 2024; 15:e0351023. [PMID: 38470053 PMCID: PMC11005373 DOI: 10.1128/mbio.03510-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 02/22/2024] [Indexed: 03/13/2024] Open
Abstract
Remodeling the erythrocyte membrane and skeleton by the malarial parasite Plasmodium falciparum is closely associated with intraerythrocytic development. However, the mechanisms underlying this association remain unclear. In this study, we present evidence that erythrocytic α-spectrin, but not β-spectrin, was dynamically ubiquitinated and progressively degraded during the intraerythrocytic development of P. falciparum, from the ring to the schizont stage. We further observed an upregulated expression of P. falciparum phosphatidylinositol 3-kinase (PfPI3K) in the infected red blood cells during the intraerythrocytic development of the parasite. The data indicated that PfPI3K phosphorylated and activated erythrocytic ubiquitin-protein ligase, leading to increased α-spectrin ubiquitination and degradation during P. falciparum development. We further revealed that inhibition of the activity of PfPI3K impaired P. falciparum development in vitro and Plasmodium berghei infectivity in mice. These findings collectively unveil an important mechanism of PfPI3K-ubiquitin-mediated degradation of α-spectrin during the intraerythrocytic development of Plasmodium species. Proteins in the PfPI3K regulatory pathway are novel targets for effective treatment of severe malaria. IMPORTANCE Plasmodium falciparum is the causative agent of severe malaria that causes millions of deaths globally. The parasite invades human red blood cells and induces a cascade of alterations in erythrocytes for development and proliferation. Remodeling the host erythrocytic cytoskeleton is a necessary process during parasitization, but its regulatory mechanisms remain to be elucidated. In this study, we observed that erythrocytic α-spectrin is selectively degraded after P. falciparum invasion, while β-spectrin remained intact. We found that the α-spectrin chain was profoundly ubiquitinated by E3 ubiquitin ligase and degraded by the 26S proteasome. E3 ubiquitin ligase activity was regulated by P. falciparum phosphatidylinositol 3-kinase (PfPI3K) signaling. Additionally, blocking the PfPI3K-ubiquitin-proteasome pathway in P. falciparum-infected red blood cells reduced parasite proliferation and infectivity. This study deepens our understanding of the regulatory mechanisms of host and malarial parasite interactions and paves the way for the exploration of novel antimalarial drugs.
Collapse
Affiliation(s)
- Kexin Zheng
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
- Key Laboratory of Ruminant Infectious Disease Prevention and Control (East), Ministry of Agriculture and Rural Affairs, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
- Research Unit for Pathogenic Mechanisms of Zoonotic Parasites, Chinese Academy of Medical Sciences, Shenyang, China
- Engineering Research Center of Food Fermentation Technology, College of Food Science, Shenyang Agricultural University, Shenyang, China
| | - Qilong Li
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
- Key Laboratory of Ruminant Infectious Disease Prevention and Control (East), Ministry of Agriculture and Rural Affairs, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
- Research Unit for Pathogenic Mechanisms of Zoonotic Parasites, Chinese Academy of Medical Sciences, Shenyang, China
| | - Ning Jiang
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
- Key Laboratory of Ruminant Infectious Disease Prevention and Control (East), Ministry of Agriculture and Rural Affairs, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
- Research Unit for Pathogenic Mechanisms of Zoonotic Parasites, Chinese Academy of Medical Sciences, Shenyang, China
| | - Yanxin Zhang
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
- Key Laboratory of Ruminant Infectious Disease Prevention and Control (East), Ministry of Agriculture and Rural Affairs, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
- Research Unit for Pathogenic Mechanisms of Zoonotic Parasites, Chinese Academy of Medical Sciences, Shenyang, China
| | - Yuxin Zheng
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
- Key Laboratory of Ruminant Infectious Disease Prevention and Control (East), Ministry of Agriculture and Rural Affairs, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
- Research Unit for Pathogenic Mechanisms of Zoonotic Parasites, Chinese Academy of Medical Sciences, Shenyang, China
| | - Yiwei Zhang
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
- Key Laboratory of Ruminant Infectious Disease Prevention and Control (East), Ministry of Agriculture and Rural Affairs, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
- Research Unit for Pathogenic Mechanisms of Zoonotic Parasites, Chinese Academy of Medical Sciences, Shenyang, China
| | - Ying Feng
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
- Key Laboratory of Ruminant Infectious Disease Prevention and Control (East), Ministry of Agriculture and Rural Affairs, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
- Research Unit for Pathogenic Mechanisms of Zoonotic Parasites, Chinese Academy of Medical Sciences, Shenyang, China
| | - Ran Chen
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
- Key Laboratory of Ruminant Infectious Disease Prevention and Control (East), Ministry of Agriculture and Rural Affairs, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
- Research Unit for Pathogenic Mechanisms of Zoonotic Parasites, Chinese Academy of Medical Sciences, Shenyang, China
| | - Xiaoyu Sang
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
- Key Laboratory of Ruminant Infectious Disease Prevention and Control (East), Ministry of Agriculture and Rural Affairs, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
- Research Unit for Pathogenic Mechanisms of Zoonotic Parasites, Chinese Academy of Medical Sciences, Shenyang, China
| | - Qijun Chen
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
- Key Laboratory of Ruminant Infectious Disease Prevention and Control (East), Ministry of Agriculture and Rural Affairs, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
- Research Unit for Pathogenic Mechanisms of Zoonotic Parasites, Chinese Academy of Medical Sciences, Shenyang, China
| |
Collapse
|
6
|
Manata JP, Brochado M, Silva B, Chinchila J, Matos Costa J. Chronic Infection by Plasmodium falciparum. Cureus 2024; 16:e53589. [PMID: 38318275 PMCID: PMC10839545 DOI: 10.7759/cureus.53589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/04/2024] [Indexed: 02/07/2024] Open
Abstract
Malaria by Plasmodium falciparum (P. falciparum) usually does not exceed one year, but chronic infection, although rare, is a possibility. We present the clinical case of a 37-year-old male who came to the emergency department with intermittent fever, chills, and malaise. He had malaria more than 1 year ago while working in Huíla province, Angola. On admission, Plasmodium testing by light microscopy and antigens was negative. Doxycycline was started empirically, but on the third day of hospitalization, he had a new fever spike. Plasmodium DNA and antibodies were tested, confirming P. falciparum. The therapy with artemether-lumefantrine, already after discharge, allowed the consolidation of the treatment and eradicator of the parasite. Detection of parasite DNA by PCR should not be routine, but it is a more sensitive method, which confirmed this chronic infection by P. falciparum after one year.
Collapse
Affiliation(s)
| | - Marisa Brochado
- Internal Medicine, Hospital Distrital de Santarém, Santarém, PRT
| | - Bernardo Silva
- Internal Medicine, Hospital Distrital de Santarém, Santarém, PRT
| | | | - João Matos Costa
- Internal Medicine, Hospital Distrital de Santarém, Santarém, PRT
| |
Collapse
|
7
|
Alimohamadi H, Rangamani P. Effective cell membrane tension protects red blood cells against malaria invasion. PLoS Comput Biol 2023; 19:e1011694. [PMID: 38048346 PMCID: PMC10721198 DOI: 10.1371/journal.pcbi.1011694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 12/14/2023] [Accepted: 11/16/2023] [Indexed: 12/06/2023] Open
Abstract
A critical step in how malaria parasites invade red blood cells (RBCs) is the wrapping of the membrane around the egg-shaped merozoites. Recent experiments have revealed that RBCs can be protected from malaria invasion by high membrane tension. While cellular and biochemical aspects of parasite actomyosin motor forces during the malaria invasion have been well studied, the important role of the biophysical forces induced by the RBC membrane-cytoskeleton composite has not yet been fully understood. In this study, we use a theoretical model for lipid bilayer mechanics, cytoskeleton deformation, and membrane-merozoite interactions to systematically investigate the influence of effective RBC membrane tension, which includes contributions from the lipid bilayer tension, spontaneous tension, interfacial tension, and the resistance of cytoskeleton against shear deformation on the progression of membrane wrapping during the process of malaria invasion. Our model reveals that this effective membrane tension creates a wrapping energy barrier for a complete merozoite entry. We calculate the tension threshold required to impede the malaria invasion. We find that the tension threshold is a nonmonotonic function of spontaneous tension and undergoes a sharp transition from large to small values as the magnitude of interfacial tension increases. We also predict that the physical properties of the RBC cytoskeleton layer-particularly the resting length of the cytoskeleton-play key roles in specifying the degree of the membrane wrapping. We also found that the shear energy of cytoskeleton deformation diverges at the full wrapping state, suggesting the local disassembly of the cytoskeleton is required to complete the merozoite entry. Additionally, using our theoretical framework, we predict the landscape of myosin-mediated forces and the physical properties of the RBC membrane in regulating successful malaria invasion. Our findings on the crucial role of RBC membrane tension in inhibiting malaria invasion can have implications for developing novel antimalarial therapeutic or vaccine-based strategies.
Collapse
Affiliation(s)
- Haleh Alimohamadi
- Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, California, United States of America
| | - Padmini Rangamani
- Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, California, United States of America
| |
Collapse
|
8
|
Walker IS, Rogerson SJ. Pathogenicity and virulence of malaria: Sticky problems and tricky solutions. Virulence 2023; 14:2150456. [PMID: 36419237 PMCID: PMC9815252 DOI: 10.1080/21505594.2022.2150456] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 10/18/2022] [Accepted: 10/19/2022] [Indexed: 11/25/2022] Open
Abstract
Infections with Plasmodium falciparum and Plasmodium vivax cause over 600,000 deaths each year, concentrated in Africa and in young children, but much of the world's population remain at risk of infection. In this article, we review the latest developments in the immunogenicity and pathogenesis of malaria, with a particular focus on P. falciparum, the leading malaria killer. Pathogenic factors include parasite-derived toxins and variant surface antigens on infected erythrocytes that mediate sequestration in the deep vasculature. Host response to parasite toxins and to variant antigens is an important determinant of disease severity. Understanding how parasites sequester, and how antibody to variant antigens could prevent sequestration, may lead to new approaches to treat and prevent disease. Difficulties in malaria diagnosis, drug resistance, and specific challenges of treating P. vivax pose challenges to malaria elimination, but vaccines and other preventive strategies may offer improved disease control.
Collapse
Affiliation(s)
- Isobel S Walker
- Department of Infectious Diseases, The University of Melbourne, The Doherty Institute, Melbourne, Australia
| | - Stephen J Rogerson
- Department of Infectious Diseases, The University of Melbourne, The Doherty Institute, Melbourne, Australia
| |
Collapse
|
9
|
Othman B, Zeef L, Szestak T, Rchiad Z, Storm J, Askonas C, Satyam R, Madkhali A, Haley M, Wagstaff S, Couper K, Pain A, Craig A. Different PfEMP1-expressing Plasmodium falciparum variants induce divergent endothelial transcriptional responses during co-culture. PLoS One 2023; 18:e0295053. [PMID: 38033133 PMCID: PMC10688957 DOI: 10.1371/journal.pone.0295053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 11/14/2023] [Indexed: 12/02/2023] Open
Abstract
The human malaria parasite Plasmodium falciparum is responsible for the majority of mortality and morbidity caused by malaria infection and differs from other human malaria species in the degree of accumulation of parasite-infected red blood cells in the microvasculature, known as cytoadherence or sequestration. In P. falciparum, cytoadherence is mediated by a protein called PfEMP1 which, due to its exposure to the host immune system, undergoes antigenic variation resulting in the expression of different PfEMP1 variants on the infected erythrocyte membrane. These PfEMP1s contain various combinations of adhesive domains, which allow for the differential engagement of a repertoire of endothelial receptors on the host microvasculature, with specific receptor usage associated with severe disease. We used a co-culture model of cytoadherence incubating human brain microvascular endothelial cells with erythrocytes infected with two parasite lines expressing different PfEMP1s that demonstrate different binding profiles to vascular endothelium. We determined the transcriptional profile of human brain microvascular endothelial cells (HBMEC) following different incubation periods with infected erythrocytes, identifying different transcriptional profiles of pathways previously found to be involved in the pathology of severe malaria, such as inflammation, apoptosis and barrier integrity, induced by the two PfEMP1 variants.
Collapse
Affiliation(s)
- Basim Othman
- Tropical Disease Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, United Kingdom
| | - Leo Zeef
- Faculty of Biology, Medicine and Health, The Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, United Kingdom
| | - Tadge Szestak
- Tropical Disease Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, United Kingdom
| | - Zineb Rchiad
- Pathogen Genomics Laboratory, Bioscience Program, Biological and Environmental Sciences and Engineering (BESE) Division, King Abdullah University of Science and Technology, Thuwal, KSA
| | - Janet Storm
- Tropical Disease Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, United Kingdom
| | - Caroline Askonas
- Pathogen Genomics Laboratory, Bioscience Program, Biological and Environmental Sciences and Engineering (BESE) Division, King Abdullah University of Science and Technology, Thuwal, KSA
| | - Rohit Satyam
- Pathogen Genomics Laboratory, Bioscience Program, Biological and Environmental Sciences and Engineering (BESE) Division, King Abdullah University of Science and Technology, Thuwal, KSA
| | - Aymen Madkhali
- Tropical Disease Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, United Kingdom
| | - Michael Haley
- Faculty of Biology, Medicine and Health, The Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, United Kingdom
| | - Simon Wagstaff
- Tropical Disease Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, United Kingdom
| | - Kevin Couper
- Faculty of Biology, Medicine and Health, The Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, United Kingdom
| | - Arnab Pain
- Pathogen Genomics Laboratory, Bioscience Program, Biological and Environmental Sciences and Engineering (BESE) Division, King Abdullah University of Science and Technology, Thuwal, KSA
| | - Alister Craig
- Tropical Disease Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, United Kingdom
| |
Collapse
|
10
|
Feldman TP, Ryan Y, Egan ES. Plasmodium falciparum infection of human erythroblasts induces transcriptional changes associated with dyserythropoiesis. Blood Adv 2023; 7:5496-5509. [PMID: 37493969 PMCID: PMC10515311 DOI: 10.1182/bloodadvances.2023010844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/24/2023] [Accepted: 07/24/2023] [Indexed: 07/27/2023] Open
Abstract
During development down the erythroid lineage, hematopoietic stem cells undergo dramatic changes to cellular morphology and function in response to a complex and tightly regulated program of gene expression. In malaria infection, Plasmodium spp parasites accumulate in the bone marrow parenchyma, and emerging evidence suggests erythroblastic islands are a protective site for parasite development into gametocytes. Although it has been observed that Plasmodium falciparum infection in late-stage erythroblasts can delay terminal erythroid differentiation and enucleation, the mechanism(s) underlying this phenomenon are unknown. Here, we apply RNA sequencing after fluorescence-activated cell sorting of infected erythroblasts to identify transcriptional responses to direct and indirect interaction with P falciparum. Four developmental stages of erythroid cells were analyzed: proerythroblast, basophilic erythroblast, polychromatic erythroblast, and orthochromatic erythroblast. We found extensive transcriptional changes in infected erythroblasts compared with that in uninfected cells in the same culture, including dysregulation of genes involved in erythroid proliferation and developmental processes. Although some indicators of cellular oxidative and proteotoxic stress were common across all stages of erythropoiesis, many responses were specific to cellular processes associated with developmental stage. Together, our results evidence multiple possible avenues by which parasite infection can induce dyserythropoiesis at specific points along the erythroid continuum, advancing our understanding of the molecular determinants of malaria anemia.
Collapse
Affiliation(s)
- Tamar P. Feldman
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA
| | - Yana Ryan
- Stanford Center for Genomics and Personalized Medicine, Stanford University School of Medicine, Stanford, CA
| | - Elizabeth S. Egan
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA
- Chan Zuckerberg Biohub, San Francisco, CA
| |
Collapse
|
11
|
Bekić V, Kilian N. Novel secretory organelles of parasite origin - at the center of host-parasite interaction. Bioessays 2023; 45:e2200241. [PMID: 37518819 DOI: 10.1002/bies.202200241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 06/26/2023] [Accepted: 06/28/2023] [Indexed: 08/01/2023]
Abstract
Reorganization of cell organelle-deprived host red blood cells by the apicomplexan malaria parasite Plasmodium falciparum enables their cytoadherence to endothelial cells that line the microvasculature. This increases the time red blood cells infected with mature developmental stages remain within selected organs such as the brain to avoid the spleen passage, which can lead to severe complications and cumulate in patient death. The Maurer's clefts are a novel secretory organelle of parasite origin established by the parasite in the cytoplasm of the host red blood cell in order to facilitate the establishment of cytoadherence by conducting the trafficking of immunovariant adhesins to the host cell surface. Another important function of the organelle is the sorting of other proteins the parasite traffics into its host cell. Although the organelle is of high importance for the pathology of malaria, additional putative functions, structure, and genesis remain shrouded in mystery more than a century after its discovery. In this review, we highlight our current knowledge about the Maurer's clefts and other novel secretory organelles established within the host cell cytoplasm by human-pathogenic malaria parasites and other parasites that reside within human red blood cells.
Collapse
Affiliation(s)
- Viktor Bekić
- School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Nicole Kilian
- Centre for Infectious Diseases, Parasitology, Heidelberg University Hospital, Heidelberg, Germany
- Department of Medical Biochemistry, Faculty of Basic Medical Sciences, Delta State University, Abraka, Nigeria
| |
Collapse
|
12
|
Wiser MF. Knobs, Adhesion, and Severe Falciparum Malaria. Trop Med Infect Dis 2023; 8:353. [PMID: 37505649 PMCID: PMC10385726 DOI: 10.3390/tropicalmed8070353] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 06/30/2023] [Accepted: 07/02/2023] [Indexed: 07/29/2023] Open
Abstract
Plasmodium falciparum can cause a severe disease with high mortality. A major factor contributing to the increased virulence of P. falciparum, as compared to other human malarial parasites, is the sequestration of infected erythrocytes in the capillary beds of organs and tissues. This sequestration is due to the cytoadherence of infected erythrocytes to endothelial cells. Cytoadherence is primarily mediated by a parasite protein expressed on the surface of the infected erythrocyte called P. falciparum erythrocyte membrane protein-1 (PfEMP1). PfEMP1 is embedded in electron-dense protuberances on the surface of the infected erythrocytes called knobs. These knobs are assembled on the erythrocyte membrane via exported parasite proteins, and the knobs function as focal points for the cytoadherence of infected erythrocytes to endothelial cells. PfEMP1 is a member of the var gene family, and there are approximately 60 antigenically distinct PfEMP1 alleles per parasite genome. Var gene expression exhibits allelic exclusion, with only a single allele being expressed by an individual parasite. This results in sequential waves of antigenically distinct infected erythrocytes and this antigenic variation allows the parasite to establish long-term chronic infections. A wide range of endothelial cell receptors can bind to the various PfEMP1 alleles, and thus, antigenic variation also results in a change in the cytoadherence phenotype. The cytoadherence phenotype may result in infected erythrocytes sequestering in different tissues and this difference in sequestration may explain the wide range of possible clinical manifestations associated with severe falciparum malaria.
Collapse
Affiliation(s)
- Mark F Wiser
- Department of Tropical Medicine and Infectious Disease, Tulane University School of Public Health and Tropical Medicine, 1440 Canal Street, New Orleans, LA 70112, USA
| |
Collapse
|
13
|
Abstract
Maintaining the correct number of healthy red blood cells (RBCs) is critical for proper oxygenation of tissues throughout the body. Therefore, RBC homeostasis is a tightly controlled balance between RBC production and RBC clearance, through the processes of erythropoiesis and macrophage hemophagocytosis, respectively. However, during the inflammation associated with infectious, autoimmune, or inflammatory diseases this homeostatic process is often dysregulated, leading to acute or chronic anemia. In each disease setting, multiple mechanisms typically contribute to the development of inflammatory anemia, impinging on both sides of the RBC production and RBC clearance equation. These mechanisms include both direct and indirect effects of inflammatory cytokines and innate sensing. Here, we focus on common innate and adaptive immune mechanisms that contribute to inflammatory anemias using examples from several diseases, including hemophagocytic lymphohistiocytosis/macrophage activation syndrome, severe malarial anemia during Plasmodium infection, and systemic lupus erythematosus, among others.
Collapse
Affiliation(s)
- Susan P Canny
- Center for Fundamental Immunology, Benaroya Research Institute, Seattle, Washington, USA; , , ,
- Department of Pediatrics, University of Washington, Seattle, Washington, USA
| | - Susana L Orozco
- Center for Fundamental Immunology, Benaroya Research Institute, Seattle, Washington, USA; , , ,
| | - Natalie K Thulin
- Center for Fundamental Immunology, Benaroya Research Institute, Seattle, Washington, USA; , , ,
- Department of Immunology, University of Washington, Seattle, Washington, USA
| | - Jessica A Hamerman
- Center for Fundamental Immunology, Benaroya Research Institute, Seattle, Washington, USA; , , ,
- Department of Immunology, University of Washington, Seattle, Washington, USA
| |
Collapse
|
14
|
Levray YS, Bana B, Tarr SJ, McLaughlin EJ, Rossi-Smith P, Waltho A, Charlton GH, Chiozzi RZ, Straton CR, Thalassinos K, Osborne AR. Formation of ER-lumenal intermediates during export of Plasmodium proteins containing transmembrane-like hydrophobic sequences. PLoS Pathog 2023; 19:e1011281. [PMID: 37000891 PMCID: PMC10096305 DOI: 10.1371/journal.ppat.1011281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 04/12/2023] [Accepted: 03/08/2023] [Indexed: 04/03/2023] Open
Abstract
During the blood stage of a malaria infection, malaria parasites export both soluble and membrane proteins into the erythrocytes in which they reside. Exported proteins are trafficked via the parasite endoplasmic reticulum and secretory pathway, before being exported across the parasitophorous vacuole membrane into the erythrocyte. Transport across the parasitophorous vacuole membrane requires protein unfolding, and in the case of membrane proteins, extraction from the parasite plasma membrane. We show that trafficking of the exported Plasmodium protein, Pf332, differs from that of canonical eukaryotic soluble-secreted and transmembrane proteins. Pf332 is initially ER-targeted by an internal hydrophobic sequence that unlike a signal peptide, is not proteolytically removed, and unlike a transmembrane segment, does not span the ER membrane. Rather, both termini of the hydrophobic sequence enter the ER-lumen and the ER-lumenal species is a productive intermediate for protein export. Furthermore, we show in intact cells, that two other exported membrane proteins, SBP1 and MAHRP2, assume a lumenal topology within the parasite secretory pathway. Although the addition of a C-terminal ER-retention sequence, recognised by the lumenal domain of the KDEL receptor, does not completely block export of SBP1 and MAHRP2, it does enhance their retention in the parasite ER. This indicates that a sub-population of each protein adopts an ER-lumenal state that is an intermediate in the export process. Overall, this suggests that although many exported proteins traverse the parasite secretory pathway as typical soluble or membrane proteins, some exported proteins that are ER-targeted by a transmembrane segment-like, internal, non-cleaved hydrophobic segment, do not integrate into the ER membrane, and form an ER-lumenal species that is a productive export intermediate. This represents a novel means, not seen in typical membrane proteins found in model systems, by which exported transmembrane-like proteins can be targeted and trafficked within the lumen of the secretory pathway.
Collapse
|
15
|
Vijayan K, Arang N, Wei L, Morrison R, Geiger R, Parks KR, Lewis AJ, Mast FD, Douglass AN, Kain HS, Aitchison JD, Johnson JS, Aderem A, Kaushansky A. A genome-wide CRISPR-Cas9 screen identifies CENPJ as a host regulator of altered microtubule organization during Plasmodium liver infection. Cell Chem Biol 2022; 29:1419-1433.e5. [PMID: 35738280 PMCID: PMC9481707 DOI: 10.1016/j.chembiol.2022.06.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 02/03/2022] [Accepted: 06/01/2022] [Indexed: 11/30/2022]
Abstract
Prior to initiating symptomatic malaria, a single Plasmodium sporozoite infects a hepatocyte and develops into thousands of merozoites, in part by scavenging host resources, likely delivered by vesicles. Here, we demonstrate that host microtubules (MTs) dynamically reorganize around the developing liver stage (LS) parasite to facilitate vesicular transport to the parasite. Using a genome-wide CRISPR-Cas9 screen, we identified host regulators of cytoskeleton organization, vesicle trafficking, and ER/Golgi stress that regulate LS development. Foci of γ-tubulin localized to the parasite periphery; depletion of centromere protein J (CENPJ), a novel regulator identified in the screen, exacerbated this re-localization and increased infection. We demonstrate that the Golgi acts as a non-centrosomal MT organizing center (ncMTOC) by positioning γ-tubulin and stimulating MT nucleation at parasite periphery. Together, these data support a model where the Plasmodium LS recruits host Golgi to form MT-mediated conduits along which host organelles are recruited to PVM and support parasite development.
Collapse
Affiliation(s)
- Kamalakannan Vijayan
- Center for Infectious Disease Research, Seattle, WA, USA; Seattle Children's Research Institute, Seattle, WA, USA
| | - Nadia Arang
- Center for Infectious Disease Research, Seattle, WA, USA
| | - Ling Wei
- Seattle Children's Research Institute, Seattle, WA, USA
| | - Robert Morrison
- Center for Infectious Disease Research, Seattle, WA, USA; Seattle Children's Research Institute, Seattle, WA, USA
| | - Rechel Geiger
- MSTP Program, University of Washington, Seattle, WA, USA
| | - K Rachael Parks
- Department of Global Health, University of Washington, Seattle, WA, USA
| | - Adam J Lewis
- Center for Infectious Disease Research, Seattle, WA, USA
| | - Fred D Mast
- Center for Infectious Disease Research, Seattle, WA, USA; Seattle Children's Research Institute, Seattle, WA, USA
| | - Alyse N Douglass
- Department of Global Health, University of Washington, Seattle, WA, USA
| | - Heather S Kain
- Center for Infectious Disease Research, Seattle, WA, USA
| | - John D Aitchison
- Center for Infectious Disease Research, Seattle, WA, USA; Seattle Children's Research Institute, Seattle, WA, USA; Department of Biochemistry, University of Washington, Seattle, WA, USA; Department of Pediatrics, University of Washington, Seattle, WA, USA
| | | | - Alan Aderem
- Center for Infectious Disease Research, Seattle, WA, USA; Seattle Children's Research Institute, Seattle, WA, USA; Department of Pediatrics, University of Washington, Seattle, WA, USA
| | - Alexis Kaushansky
- Center for Infectious Disease Research, Seattle, WA, USA; Seattle Children's Research Institute, Seattle, WA, USA; Department of Global Health, University of Washington, Seattle, WA, USA; Department of Pediatrics, University of Washington, Seattle, WA, USA; Brotman Baty Institute for Precision Medicine, Seattle, WA, USA.
| |
Collapse
|
16
|
The impact of human complement on the clinical outcome of malaria infection. Mol Immunol 2022; 151:19-28. [PMID: 36063583 DOI: 10.1016/j.molimm.2022.08.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 08/19/2022] [Accepted: 08/25/2022] [Indexed: 11/21/2022]
Abstract
The tropical disease malaria remains a major cause of global morbidity. Once transmitted to the human by a blood-feeding mosquito, the unicellular malaria parasite comes into contact with the complement system and continues to interact with human complement during its intraerythrocytic replication cycles. In the course of infection, both the classical and the alternative pathway of complement are activated, leading to parasite opsonization and lysis as well as the induction of complement-binding antibodies. While complement activity can be linked to the severity of malaria, it remains to date unclear, whether human complement is beneficial for protective immunity or if extensive complement reactions may rather enhance pathogenesis. In addition, the parasite has evolved molecular strategies to circumvent attack by human complement and has even developed means to utilize complement factors as mediators of host cell infection. In this review, we highlight current knowledge on the role of human complement for the progression of malaria infection. We discuss the various types of interactions between malaria parasites and complement factors with regard to immunity and infection outcome and set a special emphasis on the dual role of complement in the context of parasite fitness.
Collapse
|
17
|
Shakya B, Kilili GK, Wang L, Nakayasu ES, LaCount DJ. Identification of Exported Plasmodium falciparum Proteins That Bind to the Erythrocyte Cytoskeleton. Microorganisms 2022; 10:1438. [PMID: 35889157 PMCID: PMC9320996 DOI: 10.3390/microorganisms10071438] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/11/2022] [Accepted: 07/13/2022] [Indexed: 11/28/2022] Open
Abstract
Plasmodium proteins are exported to the erythrocyte cytoplasm to create an environment that supports parasite replication. Although hundreds of proteins are predicted to be exported through Plasmodium export element (PEXEL)-dependent and -independent mechanisms, the functions of exported proteins are largely uncharacterized. In this study, we used a biochemical screening approach to identify putative exported P. falciparum proteins that bound to inside-out vesicles prepared from erythrocytes. Out of 69 P. falciparum PEXEL-motif proteins tested, 18 bound to inside-out vesicles (IOVs) in two or more independent assays. Using co-affinity purifications followed by mass spectrometry, pairwise co-purification experiments, and the split-luciferase assay, we identified 31 putative protein-protein interactions between erythrocyte cytoskeletal proteins and predicted exported P. falciparum proteins. We further showed that PF3D7_1401600 binds to the spectrin-binding domain of erythrocyte ankyrin via its MESA erythrocyte cytoskeleton binding (MEC) motif and to the N-terminal domains of ankyrin and 4.1R through a fragment that required an intact Plasmodium helical interspersed sub-telomeric (PHIST) domain. Introduction of PF3D7_1401600 into erythrocyte ghosts increased retention in the microsphiltration assay, consistent with previous data that reported a reduction of rigidity in red blood cells infected with PF3D7_1401600-deficient parasites.
Collapse
Affiliation(s)
- Bikash Shakya
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907, USA; (B.S.); (G.K.K.); (L.W.)
| | - Geoffrey Kimiti Kilili
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907, USA; (B.S.); (G.K.K.); (L.W.)
| | - Ling Wang
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907, USA; (B.S.); (G.K.K.); (L.W.)
| | - Ernesto S. Nakayasu
- Bindley Bioscience Center, Purdue University, West Lafayette, IN 47907, USA;
- Pacific Northwest National Laboratory, Biological Sciences Division, Richland, WA 99352, USA
| | - Douglas J. LaCount
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907, USA; (B.S.); (G.K.K.); (L.W.)
| |
Collapse
|
18
|
Kumari G, Jain R, Kumar Sah R, Kalia I, Vashistha M, Singh P, Prasad Singh A, Samby K, Burrows J, Singh S. Multistage and transmission-blocking tubulin targeting potent antimalarial discovered from the open access MMV pathogen box. Biochem Pharmacol 2022; 203:115154. [PMID: 35798201 DOI: 10.1016/j.bcp.2022.115154] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 06/08/2022] [Accepted: 06/23/2022] [Indexed: 11/28/2022]
Abstract
The development of resistance to current antimalarial therapies remains a significant source of concern. To address this risk,newdrugswithnoveltargetsin distinct developmental stages ofPlasmodiumparasites are required. In the current study,we have targetedP. falciparumTubulin(PfTubulin)proteins which represent some of thepotentialdrug targetsfor malaria chemotherapy. PlasmodialMicrotubules (MTs) play a crucial role during parasite proliferation, growth, and transmission, which render them highlydesirabletargets for the development ofnext-generation chemotherapeutics. Towards this,we have evaluated the antimalarial activity ofTubulintargetingcompounds received from theMedicines for Malaria Venture (MMV)"Pathogen Box"against the human malaria parasite,P. falciparumincluding 3D7 (chloroquine and artemisinin sensitive strain), RKL-9 (chloroquine-resistant strain), and R539T (artemisinin-resistant strain). At nanomolar concentrations, the filtered-out compounds exhibitedpronouncedmultistage antimalarialeffects across the parasite life cycle, including intra-erythrocytic blood stages, liver stage parasites, gametocytes, and ookinetes. Concomitantly, these compoundswere found toimpedemale gamete ex-flagellation, thus showingtheir transmission-blocking potential. Target mining of these potent compounds, by combining in silico, biochemical and biophysical assays,implicatedPfTubulinas their moleculartarget, which may possibly act bydisruptingMT assembly dynamics by binding at the interface of α-βTubulin-dimer.Further, the promising ADME profile of the parent scaffold supported its consideration as a lead compound for further development.Thus, our work highlights the potential of targetingPfTubulin proteins in discovering and developing next-generation, multistage antimalarial agents against Multi-Drug Resistant (MDR) malaria parasites.
Collapse
Affiliation(s)
- Geeta Kumari
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi 110067, India
| | - Ravi Jain
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi 110067, India
| | - Raj Kumar Sah
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi 110067, India
| | | | - Manu Vashistha
- Advanced Instrumentation Research Facility, Jawaharlal Nehru University, New Delhi 110067, India
| | - Pooja Singh
- National Institute of Immunology, New Delhi 110067, India
| | | | | | | | - Shailja Singh
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi 110067, India.
| |
Collapse
|
19
|
Singh V, Hada RS, Jain R, Vashistha M, Kumari G, Singh S, Sharma N, Bansal M, Poonam, Zoltner M, Caffrey CR, Rathi B, Singh S. Designing and development of phthalimides as potent anti-tubulin hybrid molecules against malaria. Eur J Med Chem 2022; 239:114534. [PMID: 35749989 DOI: 10.1016/j.ejmech.2022.114534] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 06/06/2022] [Accepted: 06/11/2022] [Indexed: 11/03/2022]
Abstract
Constant emergence of drug-resistant Plasmodium falciparum warrants urgent need for effective and inexpensive drugs. Herein, phthalimide (Pht) analogs possessing the bioactive scaffolds, benzimidazole and 1,2,3-triazole, were evaluated for in vitro and in vivo anti-plasmodial activity without any apparent hemolysis, or cytotoxicity. Analogs 4(a-e) inhibited the growth of 3D7 and RKL-9 strains at submicromolar concentrations. Defects were observed during parasite egress from or invasion of the red blood cells. Mitochondrial membrane depolarization was measured as one of the causes of cell death. Phts 4(a-e) in combination with artemisinin exhibited two-to three-fold increased efficacy. Biophysical and biochemical analysis suggest that Pht analogs mediate plasmodial growth inhibition by interacting with tubulin protein of the parasite. Lastly, Phts 4(a-e) significantly decreased parasitemia and extended host survival in murine model Plasmodium berghei ANKA infection. Combined, the data indicate that Pht analogs should be further explored, which could offer novel value to the antimalarial drug development pipeline.
Collapse
Affiliation(s)
- Vigyasa Singh
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Rahul Singh Hada
- Department of Life Sciences, Shiv Nadar University, Gautam Buddha Nagar, UP, 201314, India
| | - Ravi Jain
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Manu Vashistha
- Advanced Instrumentation Research Facility, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Geeta Kumari
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Snigdha Singh
- Laboratory for Translational Chemistry and Drug Discovery, Department of Chemistry, Hansraj College, University of Delhi, Delhi, 110007, India
| | - Neha Sharma
- Laboratory for Translational Chemistry and Drug Discovery, Department of Chemistry, Hansraj College, University of Delhi, Delhi, 110007, India
| | - Meenakshi Bansal
- Laboratory for Translational Chemistry and Drug Discovery, Department of Chemistry, Hansraj College, University of Delhi, Delhi, 110007, India
| | - Poonam
- Department of Chemistry, Miranda House, University of Delhi, Delhi, 110007, India; Delhi School of Public Health, Institute of Eminence, University of Delhi, Delhi, 110007, India
| | - Martin Zoltner
- Drug Discovery and Evaluation Unit, Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Vestec, Czech Republic
| | - Conor R Caffrey
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Brijesh Rathi
- Laboratory for Translational Chemistry and Drug Discovery, Department of Chemistry, Hansraj College, University of Delhi, Delhi, 110007, India; Delhi School of Public Health, Institute of Eminence, University of Delhi, Delhi, 110007, India.
| | - Shailja Singh
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, 110067, India.
| |
Collapse
|
20
|
Rawat M, Kanyal A, Choubey D, Deshmukh B, Malhotra R, Mamatharani DV, Rao AG, Karmodiya K. Identification of Co-Existing Mutations and Gene Expression Trends Associated With K13-Mediated Artemisinin Resistance in Plasmodium falciparum. Front Genet 2022; 13:824483. [PMID: 35464842 PMCID: PMC9019836 DOI: 10.3389/fgene.2022.824483] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 02/08/2022] [Indexed: 11/13/2022] Open
Abstract
Plasmodium falciparum infects millions and kills thousands of people annually the world over. With the emergence of artemisinin and/or multidrug resistant strains of the pathogen, it has become even more challenging to control and eliminate the disease. Multiomics studies of the parasite have started to provide a glimpse into the confounding genetics and mechanisms of artemisinin resistance and identified mutations in Kelch13 (K13) as a molecular marker of resistance. Over the years, thousands of genomes and transcriptomes of artemisinin-resistant/sensitive isolates have been documented, supplementing the search for new genes/pathways to target artemisinin-resistant isolates. This meta-analysis seeks to recap the genetic landscape and the transcriptional deregulation that demarcate artemisinin resistance in the field. To explore the genetic territory of artemisinin resistance, we use genomic single-nucleotide polymorphism (SNP) datasets from 2,517 isolates from 15 countries from the MalariaGEN Network (The Pf3K project, pilot data release 4, 2015) to dissect the prevalence, geographical distribution, and co-existing patterns of genetic markers associated with/enabling artemisinin resistance. We have identified several mutations which co-exist with the established markers of artemisinin resistance. Interestingly, K13-resistant parasites harbor α-ß hydrolase and putative HECT domain-containing protein genes with the maximum number of SNPs. We have also explored the multiple, publicly available transcriptomic datasets to identify genes from key biological pathways whose consistent deregulation may be contributing to the biology of resistant parasites. Surprisingly, glycolytic and pentose phosphate pathways were consistently downregulated in artemisinin-resistant parasites. Thus, this meta-analysis highlights the genetic and transcriptomic features of resistant parasites to propel further exploratory studies in the community to tackle artemisinin resistance.
Collapse
Affiliation(s)
- Mukul Rawat
- Department of Biology, Indian Institute of Science Education and Research, Pune, India
| | - Abhishek Kanyal
- Department of Biology, Indian Institute of Science Education and Research, Pune, India
| | - Deepak Choubey
- Life Science Research Unit, Persistent Systems Limited, Pune, India
| | - Bhagyashree Deshmukh
- Department of Biology, Indian Institute of Science Education and Research, Pune, India
| | - Rashim Malhotra
- Department of Biology, Indian Institute of Science Education and Research, Pune, India
| | - D V Mamatharani
- Department of Biology, Indian Institute of Science Education and Research, Pune, India
| | - Anjani Gopal Rao
- Department of Biology, Indian Institute of Science Education and Research, Pune, India
| | - Krishanpal Karmodiya
- Department of Biology, Indian Institute of Science Education and Research, Pune, India
| |
Collapse
|
21
|
Jäger J, Patra P, Sanchez CP, Lanzer M, Schwarz US. A particle-based computational model to analyse remodelling of the red blood cell cytoskeleton during malaria infections. PLoS Comput Biol 2022; 18:e1009509. [PMID: 35394995 PMCID: PMC9020725 DOI: 10.1371/journal.pcbi.1009509] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 04/20/2022] [Accepted: 03/21/2022] [Indexed: 11/18/2022] Open
Abstract
Red blood cells can withstand the harsh mechanical conditions in the vasculature only because the bending rigidity of their plasma membrane is complemented by the shear elasticity of the underlying spectrin-actin network. During an infection by the malaria parasite Plasmodium falciparum, the parasite mines host actin from the junctional complexes and establishes a system of adhesive knobs, whose main structural component is the knob-associated histidine rich protein (KAHRP) secreted by the parasite. Here we aim at a mechanistic understanding of this dramatic transformation process. We have developed a particle-based computational model for the cytoskeleton of red blood cells and simulated it with Brownian dynamics to predict the mechanical changes resulting from actin mining and KAHRP-clustering. Our simulations include the three-dimensional conformations of the semi-flexible spectrin chains, the capping of the actin protofilaments and several established binding sites for KAHRP. For the healthy red blood cell, we find that incorporation of actin protofilaments leads to two regimes in the shear response. Actin mining decreases the shear modulus, but knob formation increases it. We show that dynamical changes in KAHRP binding affinities can explain the experimentally observed relocalization of KAHRP from ankyrin to actin complexes and demonstrate good qualitative agreement with experiments by measuring pair cross-correlations both in the computer simulations and in super-resolution imaging experiments. Malaria is one of the deadliest infectious diseases and its symptoms are related to the blood stage, when the parasite multiplies within red blood cells. In order to avoid clearance by the spleen, the parasite produces specific factors like the adhesion receptor PfEMP1 and the multifunctional protein KAHRP that lead to the formation of adhesive knobs on the surface of the red blood cells and thus increase residence time in the vasculature. We have developed a computational model for the parasite-induced remodelling of the actin-spectrin network to quantitatively predict the dynamical changes in the mechanical properties of the infected red blood cells and the spatial distribution of the different protein components of the membrane skeleton. Our simulations show that KAHRP can relocate to actin junctions due to dynamical changes in binding affinities, in good qualitative agreement with super-resolution imaging experiments. In the future, our simulation framework can be used to gain further mechanistic insight into the way malaria parasites attack the red blood cell cytoskeleton.
Collapse
Affiliation(s)
- Julia Jäger
- Institute for Theoretical Physics, Heidelberg University, Heidelberg, Germany
- BioQuant-Center for Quantitative Biology, Heidelberg University, Heidelberg, Germany
| | - Pintu Patra
- Institute for Theoretical Physics, Heidelberg University, Heidelberg, Germany
- BioQuant-Center for Quantitative Biology, Heidelberg University, Heidelberg, Germany
| | - Cecilia P. Sanchez
- Center of Infectious Diseases, Parasitology, University Hospital Heidelberg, Heidelberg, Germany
| | - Michael Lanzer
- Center of Infectious Diseases, Parasitology, University Hospital Heidelberg, Heidelberg, Germany
- * E-mail: (ML); (USS)
| | - Ulrich S. Schwarz
- Institute for Theoretical Physics, Heidelberg University, Heidelberg, Germany
- BioQuant-Center for Quantitative Biology, Heidelberg University, Heidelberg, Germany
- * E-mail: (ML); (USS)
| |
Collapse
|
22
|
Shang X, Wang C, Shen L, Sheng F, He X, Wang F, Fan Y, He X, Jiang M. PfAP2-EXP2, an Essential Transcription Factor for the Intraerythrocytic Development of Plasmodium falciparum. Front Cell Dev Biol 2022; 9:782293. [PMID: 35083215 PMCID: PMC8785209 DOI: 10.3389/fcell.2021.782293] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 12/09/2021] [Indexed: 12/13/2022] Open
Abstract
Plasmodium falciparum undergoes a series of asexual replications in human erythrocytes after infection, which are effective targets for combatting malaria. Here, we report roles of an ApiAP2 transcription factor PfAP2-EXP2 (PF3D7_0611200) in the intraerythrocytic developmental cycle of P. falciparum. PfAP2-EXP2 conditional knockdown resulted in an asexual growth defect but without an appreciable effect on parasite morphology. Further ChIP-seq analysis revealed that PfAP2-EXP2 targeted genes related to virulence and interaction between erythrocytes and parasites. Especially, PfAP2-EXP2 regulation of euchromatic genes does not depend on recognizing specific DNA sequences, while a CCCTAAACCC motif is found in its heterochromatic binding sites. Combined with transcriptome profiling, we suggest that PfAP2-EXP2 is participated in the intraerythrocytic development by affecting the expression of genes related to cell remodeling at the schizont stage. In summary, this study explores an ApiAP2 member plays an important role for the P. falciparum blood-stage replication, which suggests a new perspective for malaria elimination.
Collapse
Affiliation(s)
- Xiaomin Shang
- Department of Medical Genetics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China.,Department of Parasitology, Xiangya School of Medicine, Central South University, Changsha, China
| | - Changhong Wang
- Department of Medical Genetics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Li Shen
- Department of Medical Genetics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Fei Sheng
- Department of Medical Genetics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xiaohui He
- Department of Medical Genetics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China.,National Health Commission Key Laboratory of Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Institute of Parasitic Diseases, Wuxi, China
| | - Fei Wang
- Department of Medical Genetics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yanting Fan
- Department of Medical Genetics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xiaoqin He
- National Health Commission Key Laboratory of Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Institute of Parasitic Diseases, Wuxi, China
| | - Mei Jiang
- Department of Medical Genetics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
23
|
Liu Z, Geng X, Zhao Q, Zhu S, Han H, Yu Y, Huang W, Yao Y, Huang B, Dong H. Effects of host vimentin on Eimeria tenella sporozoite invasion. Parasit Vectors 2022; 15:8. [PMID: 34983604 PMCID: PMC8729122 DOI: 10.1186/s13071-021-05107-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 11/19/2021] [Indexed: 12/23/2022] Open
Abstract
Background Chicken coccidiosis is a parasitic disease caused by Eimeria of Apicomplexa, which has caused great economic loss to the poultry breeding industry. Host vimentin is a key protein in the process of infection of many pathogens. In an earlier phosphorylation proteomics study, we found that the phosphorylation level of host vimentin was significantly regulated after Eimeria tenella sporozoite infection. Therefore, we explored the role of host vimentin in the invasion of host cells by sporozoites. Methods Chicken vimentin protein was cloned and expressed. We used qPCR, western blotting, and indirect immunofluorescence to detect levels of mRNA transcription, translation, and phosphorylation, and changes in the distribution of vimentin after E. tenella sporozoite infection. The sporozoite invasion rate in DF-1 cells treated with vimentin polyclonal antibody or with small interfering RNA (siRNA), which downregulated vimentin expression, was assessed by an in vitro invasion test. Results The results showed that vimentin transcription and translation levels increased continually at 6–72 h after E. tenella sporozoite infection, and the total phosphorylation levels of vimentin also changed. About 24 h after sporozoite infection, vimentin accumulated around sporozoites in DF-1 cells. Treating DF-1 cells with vimentin polyclonal antibody or downregulating vimentin expression by siRNA significantly improved the invasion efficiency of sporozoites. Conclusion In this study, we showed that vimentin played an inhibitory role during the invasion of sporozoites. These data provided a foundation for clarifying the relationship between Eimeria and the host. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13071-021-05107-4.
Collapse
Affiliation(s)
- Zhan Liu
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Minhang, 200241, Shanghai, People's Republic of China
| | - Xiangfei Geng
- Beijing YuanDa Spark Medicine Technology Co., Ltd, Beijing, 100088, People's Republic of China
| | - Qiping Zhao
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Minhang, 200241, Shanghai, People's Republic of China
| | - Shunhai Zhu
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Minhang, 200241, Shanghai, People's Republic of China
| | - Hongyu Han
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Minhang, 200241, Shanghai, People's Republic of China
| | - Yu Yu
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Minhang, 200241, Shanghai, People's Republic of China
| | - Wenhao Huang
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Minhang, 200241, Shanghai, People's Republic of China
| | - Yawen Yao
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Minhang, 200241, Shanghai, People's Republic of China
| | - Bing Huang
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Minhang, 200241, Shanghai, People's Republic of China
| | - Hui Dong
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Minhang, 200241, Shanghai, People's Republic of China.
| |
Collapse
|
24
|
Kreutzfeld O, Grützke J, Ingmundson A, Müller K, Matuschewski K. Absence of PEXEL-Dependent Protein Export in Plasmodium Liver Stages Cannot Be Restored by Gain of the HSP101 Protein Translocon ATPase. Front Genet 2021; 12:742153. [PMID: 34956312 PMCID: PMC8693896 DOI: 10.3389/fgene.2021.742153] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 10/18/2021] [Indexed: 11/13/2022] Open
Abstract
Host cell remodeling is critical for successful Plasmodium replication inside erythrocytes and achieved by targeted export of parasite-encoded proteins. In contrast, during liver infection the malarial parasite appears to avoid protein export, perhaps to limit exposure of parasite antigens by infected liver cells. HSP101, the force-generating ATPase of the protein translocon of exported proteins (PTEX) is the only component that is switched off during early liver infection. Here, we generated transgenic Plasmodium berghei parasite lines that restore liver stage expression of HSP101. HSP101 expression in infected hepatocytes was achieved by swapping the endogenous promoter with the ptex150 promoter and by inserting an additional copy under the control of the elongation one alpha (ef1α) promoter. Both promoters drive constitutive and, hence, also pre-erythrocytic expression. Transgenic parasites were able to complete the life cycle, but failed to export PEXEL-proteins in early liver stages. Our results suggest that PTEX-dependent early liver stage export cannot be restored by addition of HSP101, indicative of alternative export complexes or other functions of the PTEX core complex during liver infection.
Collapse
Affiliation(s)
- Oriana Kreutzfeld
- Molecular Parasitology, Institute of Biology/Faculty for Life Sciences, Humboldt Universität zu Berlin, Berlin, Germany.,Parasitology Unit, Max Planck Institute for Infection Biology, Berlin, Germany.,Department of Medicine, University of California, San Francisco, San Francisco, CA, United States
| | - Josephine Grützke
- Molecular Parasitology, Institute of Biology/Faculty for Life Sciences, Humboldt Universität zu Berlin, Berlin, Germany.,Parasitology Unit, Max Planck Institute for Infection Biology, Berlin, Germany.,Department of Biological Safety, Federal Institute for Risk Assessment, Berlin, Germany
| | - Alyssa Ingmundson
- Molecular Parasitology, Institute of Biology/Faculty for Life Sciences, Humboldt Universität zu Berlin, Berlin, Germany.,Parasitology Unit, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Katja Müller
- Molecular Parasitology, Institute of Biology/Faculty for Life Sciences, Humboldt Universität zu Berlin, Berlin, Germany.,Parasitology Unit, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Kai Matuschewski
- Molecular Parasitology, Institute of Biology/Faculty for Life Sciences, Humboldt Universität zu Berlin, Berlin, Germany.,Parasitology Unit, Max Planck Institute for Infection Biology, Berlin, Germany
| |
Collapse
|
25
|
Sanchez CP, Patra P, Chang SYS, Karathanasis C, Hanebutte L, Kilian N, Cyrklaff M, Heilemann M, Schwarz US, Kudryashev M, Lanzer M. KAHRP dynamically relocalizes to remodeled actin junctions and associates with knob spirals in Plasmodium falciparum-infected erythrocytes. Mol Microbiol 2021; 117:274-292. [PMID: 34514656 DOI: 10.1111/mmi.14811] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/06/2021] [Accepted: 09/07/2021] [Indexed: 11/28/2022]
Abstract
The knob-associated histidine-rich protein (KAHRP) plays a pivotal role in the pathophysiology of Plasmodium falciparum malaria by forming membrane protrusions in infected erythrocytes, which anchor parasite-encoded adhesins to the membrane skeleton. The resulting sequestration of parasitized erythrocytes in the microvasculature leads to severe disease. Despite KAHRP being an important virulence factor, its physical location within the membrane skeleton is still debated, as is its function in knob formation. Here, we show by super-resolution microscopy that KAHRP initially associates with various skeletal components, including ankyrin bridges, but eventually colocalizes with remnant actin junctions. We further present a 35 Å map of the spiral scaffold underlying knobs and show that a KAHRP-targeting nanoprobe binds close to the spiral scaffold. Single-molecule localization microscopy detected ~60 KAHRP molecules/knob. We propose a dynamic model of KAHRP organization and a function of KAHRP in attaching other factors to the spiral scaffold.
Collapse
Affiliation(s)
- Cecilia P Sanchez
- Center of Infectious Diseases, Parasitology, Universitätsklinikum Heidelberg, Heidelberg, Germany
| | - Pintu Patra
- Institute for Theoretical Physics, Heidelberg University, Heidelberg, Germany.,BioQuant-Center for Quantitative Biology, Heidelberg University, Heidelberg, Germany
| | - Shih-Ying Scott Chang
- Max Planck Institute for Biophysics and Buchmann Institute for Molecular Life Sciences (BMLS), Goethe University of Frankfurt, Frankfurt, Germany
| | - Christos Karathanasis
- Institute for Physical and Theoretical Chemistry, Goethe-University Frankfurt, Frankfurt, Germany
| | - Lukas Hanebutte
- Center of Infectious Diseases, Parasitology, Universitätsklinikum Heidelberg, Heidelberg, Germany
| | - Nicole Kilian
- Center of Infectious Diseases, Parasitology, Universitätsklinikum Heidelberg, Heidelberg, Germany
| | - Marek Cyrklaff
- Center of Infectious Diseases, Parasitology, Universitätsklinikum Heidelberg, Heidelberg, Germany
| | - Mike Heilemann
- BioQuant-Center for Quantitative Biology, Heidelberg University, Heidelberg, Germany.,Institute for Physical and Theoretical Chemistry, Goethe-University Frankfurt, Frankfurt, Germany
| | - Ulrich S Schwarz
- Institute for Theoretical Physics, Heidelberg University, Heidelberg, Germany.,BioQuant-Center for Quantitative Biology, Heidelberg University, Heidelberg, Germany
| | - Mikhail Kudryashev
- Max Planck Institute for Biophysics and Buchmann Institute for Molecular Life Sciences (BMLS), Goethe University of Frankfurt, Frankfurt, Germany
| | - Michael Lanzer
- Center of Infectious Diseases, Parasitology, Universitätsklinikum Heidelberg, Heidelberg, Germany
| |
Collapse
|
26
|
Wiser MF. Unique Endomembrane Systems and Virulence in Pathogenic Protozoa. Life (Basel) 2021; 11:life11080822. [PMID: 34440567 PMCID: PMC8401336 DOI: 10.3390/life11080822] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/10/2021] [Accepted: 08/10/2021] [Indexed: 02/06/2023] Open
Abstract
Virulence in pathogenic protozoa is often tied to secretory processes such as the expression of adhesins on parasite surfaces or the secretion of proteases to assisted in tissue invasion and other proteins to avoid the immune system. This review is a broad overview of the endomembrane systems of pathogenic protozoa with a focus on Giardia, Trichomonas, Entamoeba, kinetoplastids, and apicomplexans. The focus is on unique features of these protozoa and how these features relate to virulence. In general, the basic elements of the endocytic and exocytic pathways are present in all protozoa. Some of these elements, especially the endosomal compartments, have been repurposed by the various species and quite often the repurposing is associated with virulence. The Apicomplexa exhibit the most unique endomembrane systems. This includes unique secretory organelles that play a central role in interactions between parasite and host and are involved in the invasion of host cells. Furthermore, as intracellular parasites, the apicomplexans extensively modify their host cells through the secretion of proteins and other material into the host cell. This includes a unique targeting motif for proteins destined for the host cell. Most notable among the apicomplexans is the malaria parasite, which extensively modifies and exports numerous proteins into the host erythrocyte. These modifications of the host erythrocyte include the formation of unique membranes and structures in the host erythrocyte cytoplasm and on the erythrocyte membrane. The transport of parasite proteins to the host erythrocyte involves several unique mechanisms and components, as well as the generation of compartments within the erythrocyte that participate in extraparasite trafficking.
Collapse
Affiliation(s)
- Mark F Wiser
- Department of Tropical Medicine, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA 70112, USA
| |
Collapse
|
27
|
Creative interior design by Plasmodium falciparum: Lipid metabolism and the parasite's secret chamber. Parasitol Int 2021; 83:102369. [PMID: 33905815 DOI: 10.1016/j.parint.2021.102369] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 04/06/2021] [Accepted: 04/20/2021] [Indexed: 11/21/2022]
Abstract
Malaria parasites conceal themselves within host erythrocytes and establish a necessary logistics system through the three-membrane layered structures of these cells. To establish this system, lipid metabolism is needed for the de novo synthesis of lipids and the recycling of extracellular lipids and erythrocyte lipid components. Cholesterol supply depends on its uptake from the extracellular environment and erythrocyte cytoplasm, but phospholipids can be synthesized on their own. This differential production of lipid species creates unique modifications in the lipid profile of parasitized erythrocytes, which in turn may influence the biophysical and/or mechanical properties of organelles and vesicles and communication among them. Variations in local membrane properties possibly influence the transportation of various molecules such as parasite-derived proteins, because efficiencies in secretion, vesicle fusion and budding are partly determined by the lipid profiles. Comprehensive understanding of the parasite's lipid metabolism and the biophysics of lipid membranes provides fundamental knowledge about these pathogenic organisms and could lead to new anti-malarials.
Collapse
|
28
|
Tandoh KZ, Wilson MD, Quashie NB, Duah-Quashie NO. Implicating extracellular vesicles in Plasmodium falciparum artemisinin resistance development. Traffic 2021; 22:194-200. [PMID: 33860593 DOI: 10.1111/tra.12787] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 04/10/2021] [Accepted: 04/13/2021] [Indexed: 01/08/2023]
Abstract
Plasmodium falciparum malaria remains a disease of significant public health impact today. With the risk of emerging artemisinin resistance stalling malaria control efforts, the need to deepen our understanding of the parasite's biology is dire. Extracellular vesicles (EVs) are vital to the biology of P. falciparum and play a role in the pathogenesis of malaria. Recent studies have also shown that EVs may play a role in the development of artemisinin resistance in P. falciparum. Here, we highlight evidence on EVs in P. falciparum biology and malaria pathogenesis and argue that there is sufficient ground to propose a role for EVs in the development of P. falciparum artemisinin resistance. We suggest that EVs are actively secreted functional organelles that contribute to cellular homeostasis in P. falciparum-infected red blood cells under artemisinin pressure. Further exploration of this hypothesized EVs-based molecular mechanism of artemisinin resistance will aid the discovery of novel antimalarial therapies.
Collapse
Affiliation(s)
- Kwesi Z Tandoh
- West African Centre for Cell Biology of Infectious Pathogens, Department of Biochemistry, Cell and Molecular Biology, College of Basic and Applied Sciences, University of Ghana, Accra, Ghana
| | - Michael D Wilson
- Department of Parasitology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Neils B Quashie
- Department of Epidemiology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra, Ghana.,Centre for Tropical Clinical Pharmacology and Therapeutics, School of Medicine and Dentistry, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Nancy O Duah-Quashie
- Department of Epidemiology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra, Ghana
| |
Collapse
|
29
|
Musa KA, Ridzwan NFW, Mohamad SB, Tayyab S. Exploring the combination characteristics of lumefantrine, an antimalarial drug and human serum albumin through spectroscopic and molecular docking studies. J Biomol Struct Dyn 2020; 39:691-702. [PMID: 31913089 DOI: 10.1080/07391102.2020.1713215] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Binding of lumefantrine (LUM), an antimalarial drug to human serum albumin (HSA), the main carrier protein in human blood circulation was investigated using fluorescence quenching titration, UV-vis absorption and circular dichroism (CD) spectroscopy as well as molecular docking. LUM-induced quenching of the protein (HSA) fluorescence was characterized as static quenching, as revealed by the decrease in the value of the Stern-Volmer quenching constant, Ksv with increasing temperature, thus suggesting LUM-HSA complex formation. This was also confirmed from the UV-vis absorption spectral results. Values of the association constant, Ka for LUM-HSA interaction were found to be within the range, 7.27-5.01 × 104 M-1 at three different temperatures, i.e. 288 K, 298 K and 308 K, which indicated moderate binding affinity between LUM and HSA. The LUM-HSA complex was stabilized by hydrophobic interactions, H-bonds, as well as van der Waals forces, as predicted from the thermodynamic data (ΔS = +50.34 J mol-1 K-1 and ΔH = -12.3 kJ mol-1) of the binding reaction. Far-UV and near-UV CD spectral results demonstrated smaller changes in both secondary and tertiary structures of HSA upon LUM binding, while three-dimensional fluorescence spectra suggested alterations in the microenvironment around protein fluorophores (Trp and Tyr). LUM binding to HSA offered stability to the protein against thermal stress. Competitive drug displacement results designated Sudlow's Site I, located in subdomain IIA of HSA as the preferred binding site of LUM on HSA, which was well supported by molecular docking analysis.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Kabiru Abubakar Musa
- Biomolecular Research Group, Biochemistry Programme, Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| | - Nor Farrah Wahidah Ridzwan
- Bioinformatics Programme, Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| | - Saharuddin B Mohamad
- Bioinformatics Programme, Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia.,Centre of Research for Computational Sciences and Informatics for Biology, Bioindustry, Environment, Agriculture and Healthcare, University of Malaya, Kuala Lumpur, Malaysia
| | - Saad Tayyab
- Biomolecular Research Group, Biochemistry Programme, Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia.,Centre of Research for Computational Sciences and Informatics for Biology, Bioindustry, Environment, Agriculture and Healthcare, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|