1
|
Kaltenpoth M, Flórez LV, Vigneron A, Dirksen P, Engl T. Origin and function of beneficial bacterial symbioses in insects. Nat Rev Microbiol 2025:10.1038/s41579-025-01164-z. [PMID: 40148601 DOI: 10.1038/s41579-025-01164-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/11/2025] [Indexed: 03/29/2025]
Abstract
Beneficial bacterial symbionts are widespread in insects and affect the fitness of their hosts by contributing to nutrition, digestion, detoxification, communication or protection from abiotic stressors or natural enemies. Decades of research have formed our understanding of the identity, localization and functional benefits of insect symbionts, and the increasing availability of genome sequences spanning a diversity of pathogens and beneficial bacteria now enables comparative approaches of their metabolic features and their phylogenetic affiliations, shedding new light on the origin and function of beneficial symbioses in insects. In this Review, we explore the symbionts' metabolic traits that can provide benefits to insect hosts and discuss the evolutionary paths to the formation of host-beneficial symbiotic associations. Phylogenetic analyses and molecular studies reveal that extracellular symbioses colonizing cuticular organs or the digestive tract evolved from a broad diversity of bacterial partners, whereas intracellular beneficial symbionts appear to be restricted to a limited number of lineages within the Gram-negative bacteria and probably originated from parasitic ancestors. To unravel the general principles underlying host-symbiont interactions and recapitulate the early evolutionary steps leading towards beneficial symbioses, future efforts should aim to establish more symbiotic systems that are amenable to genetic manipulation and experimental evolution.
Collapse
Affiliation(s)
- Martin Kaltenpoth
- Department of Insect Symbiosis, Max Planck Institute for Chemical Ecology, Jena, Germany.
- Evolutionary Ecology, Institute of Organismic and Molecular Evolution (iomE), Johannes Gutenberg University, Mainz, Germany.
| | - Laura V Flórez
- Evolutionary Ecology, Institute of Organismic and Molecular Evolution (iomE), Johannes Gutenberg University, Mainz, Germany
- Section for Organismal Biology, Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Aurélien Vigneron
- Department of Insect Symbiosis, Max Planck Institute for Chemical Ecology, Jena, Germany
- Evolutionary Ecology, Institute of Organismic and Molecular Evolution (iomE), Johannes Gutenberg University, Mainz, Germany
- Universite Claude Bernard Lyon 1, Laboratoire d'Ecologie Microbienne, UMR CNRS 5557, UMR INRAE 1418, VetAgro Sup, Villeurbanne, France
| | - Philipp Dirksen
- Department of Insect Symbiosis, Max Planck Institute for Chemical Ecology, Jena, Germany
- Evolutionary Ecology, Institute of Organismic and Molecular Evolution (iomE), Johannes Gutenberg University, Mainz, Germany
| | - Tobias Engl
- Department of Insect Symbiosis, Max Planck Institute for Chemical Ecology, Jena, Germany
- Evolutionary Ecology, Institute of Organismic and Molecular Evolution (iomE), Johannes Gutenberg University, Mainz, Germany
| |
Collapse
|
2
|
Contos P, Gibb H, Murphy NP, Jellinek S, Wood JL. Rebuilding microbiomes: Facilitating animal-microbe interactions through ecological restoration and rewilding. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 375:124344. [PMID: 39892258 DOI: 10.1016/j.jenvman.2025.124344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 01/21/2025] [Accepted: 01/25/2025] [Indexed: 02/03/2025]
Abstract
Restoring degraded ecosystems is a complex process that involves rebuilding myriad species interactions that make a functioning ecological community. Microorganisms are key to robust ecological restoration - their mutualisms with above-ground communities drive community assembly and increase host fitness. However, microbes are largely ignored during restoration and there is a significant knowledge gap regarding how to restore their interactions with above-ground communities. Here, we tested whether we could enhance interactions between microbes and their invertebrate hosts by reintroducing, or 'rewilding', leaf litter and soil from remnant sites containing species-rich microbial communities, into species poor and geographically isolated revegetated farmland sites. We sequenced both the soil microbiome and the gut microbiome of two dominant invertebrates: native Ecnolagria grandis beetles and introduced Ommatoiulus moreleti millipedes. We sampled 35 months after the initial reintroduction event in remnant (conservation area and source of litter and soil transplant), rewilding transplant (revegetation site with transplant), and control sites (revegetation with no transplant). We found that even ∼20 years after revegetation, restoration sites had distinct microbial communities compared to remnant areas. Although litter and soil transplants failed to increase soil microbial community similarity towards remnant sites, we found marked increases in the diversity and richness of E. grandis microbiomes and a greater degree of overlap with soil microbiomes within rewilding transplant sites relative to control sites. In contrast, there were few changes in O. moreleti microbiomes. Overall, our results suggest rewilding can recover some species interactions during restoration but may not influence all host-microbe systems.
Collapse
Affiliation(s)
- P Contos
- Department of Environment and Genetics, La Trobe University, Bundoora, VIC, Australia; Conservation and Restoration Science Branch, Department of Climate Change, Energy, The Environment and Water, Sydney, NSW, Australia.
| | - H Gibb
- School of Life and Environmental Sciences, Deakin University, Burwood, VIC, Australia
| | - N P Murphy
- Department of Environment and Genetics, La Trobe University, Bundoora, VIC, Australia
| | - S Jellinek
- School of Agriculture, Food and Ecosystem Science, University of Melbourne and Melbourne Water, Burnley Campus, Melbourne, VIC, Australia
| | - J L Wood
- Department of Microbiology, Anatomy, Physiology and Pharmacology, La Trobe University, Bundoora, VIC, Australia
| |
Collapse
|
3
|
Marulanda-Gomez AM, Ribes M, Franzenburg S, Hentschel U, Pita L. Transcriptomic responses of Mediterranean sponges upon encounter with symbiont microbial consortia. BMC Genomics 2024; 25:674. [PMID: 38972970 PMCID: PMC11229196 DOI: 10.1186/s12864-024-10548-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 06/21/2024] [Indexed: 07/09/2024] Open
Abstract
BACKGROUND Sponges (phylum Porifera) constantly interact with microbes. They graze on microbes from the water column by filter-feeding and they harbor symbiotic partners within their bodies. In experimental setups, sponges take up symbionts at lower rates compared with seawater microbes. This suggests that sponges have the capacity to differentiate between microbes and preferentially graze in non-symbiotic microbes, although the underlying mechanisms of discrimination are still poorly understood. Genomic studies showed that, compared to other animal groups, sponges present an extended repertoire of immune receptors, in particular NLRs, SRCRs, and GPCRs, and a handful of experiments showed that sponges regulate the expression of these receptors upon encounter with microbial elicitors. We hypothesize that sponges may rely on differential expression of their diverse repertoire of poriferan immune receptors to sense different microbial consortia while filter-feeding. To test this, we characterized the transcriptomic response of two sponge species, Aplysina aerophoba and Dysidea avara, upon incubation with microbial consortia extracted from A. aerophoba in comparison with incubation with seawater microbes. The sponges were sampled after 1 h, 3 h, and 5 h for RNA-Seq differential gene expression analysis. RESULTS D. avara incubated with A. aerophoba-symbionts regulated the expression of genes related to immunity, ubiquitination, and signaling. Within the set of differentially-expressed immune genes we identified different families of Nucleotide Oligomerization Domain (NOD)-Like Receptors (NLRs). These results represent the first experimental evidence that different types of NLRs are involved in microbial discrimination in a sponge. In contrast, the transcriptomic response of A. aerophoba to its own symbionts involved comparatively fewer genes and lacked genes encoding for immune receptors. CONCLUSION Our work suggests that: (i) the transcriptomic response of sponges upon microbial exposure may imply "fine-tuning" of baseline gene expression as a result of their interaction with microbes, (ii) the differential response of sponges to microbial encounters varied between the species, probably due to species-specific characteristics or related to host's traits, and (iii) immune receptors belonging to different families of NLR-like genes played a role in the differential response to microbes, whether symbionts or food bacteria. The regulation of these receptors in sponges provides further evidence of the potential role of NLRs in invertebrate host-microbe interactions. The study of sponge responses to microbes exemplifies how investigating different animal groups broadens our knowledge of the evolution of immune specificity and symbiosis.
Collapse
Affiliation(s)
| | - Marta Ribes
- Institut de Ciències del Mar, ICM - CSIC, Barcelona, Spain
| | - Sören Franzenburg
- Research Group Genetics and Bioinformatics/Systems Immunology, Institute of Clinical Molecular Biology, Christian-Albrechts-Universität Kiel, Kiel, Germany
| | - Ute Hentschel
- RD3 Marine Ecology, RU Marine Symbioses, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
- Christian-Albrechts-Universität Kiel, Kiel, Germany
| | - Lucia Pita
- Institut de Ciències del Mar, ICM - CSIC, Barcelona, Spain.
| |
Collapse
|
4
|
Cerqueira AES, Lima HS, Silva LCF, Veloso TGR, de Paula SO, Santana WC, da Silva CC. Melipona stingless bees and honey microbiota reveal the diversity, composition, and modes of symbionts transmission. FEMS Microbiol Ecol 2024; 100:fiae063. [PMID: 38650068 PMCID: PMC11217820 DOI: 10.1093/femsec/fiae063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 12/08/2023] [Accepted: 04/19/2024] [Indexed: 04/25/2024] Open
Abstract
The Melipona gut microbiota differs from other social bees, being characterized by the absence of crucial corbiculate core gut symbionts and a high occurrence of environmental strains. We studied the microbial diversity and composition of three Melipona species and their honey to understand which strains are obtained by horizontal transmission (HT) from the pollination environment, represent symbionts with HT from the hive/food stores or social transmission (ST) between nestmates. Bees harbored higher microbial alpha diversity and a different and more species-specific bacterial composition than honey. The fungal communities of bee and honey samples are also different but less dissimilar. As expected, the eusocial corbiculate core symbionts Snodgrassella and Gilliamella were absent in bees that had a prevalence of Lactobacillaceae - including Lactobacillus (formerly known as Firm-5), Bifidobacteriaceae, Acetobacteraceae, and Streptococcaceae - mainly strains close to Floricoccus, a putative novel symbiont acquired from flowers. They might have co-evolved with these bees via ST, and along with environmental Lactobacillaceae and Pectinatus (Veillonellaceae) strains obtained by HT, and Metschnikowia and Saccharomycetales yeasts acquired by HT from honey or the pollination environment, including plants/flowers, possibly compose the Melipona core microbiota. This work contributes to the understanding of Melipona symbionts and their modes of transmission.
Collapse
Affiliation(s)
- Alan Emanuel Silva Cerqueira
- Laboratorio de Microbiologia Ambiental Aplicada, Departamento de Microbiologia, Universidade Federal de Viçosa, Av. P.H. Rolfs, s/n – Campus Universitário, Edifício Chotaro Shimoya – sala 318, Viçosa – Minas Gerais, Brazil
- Department of Integrative Biology, The University of Texas at Austin, 2506 Speedway, NMS 4.216, Austin, TX, United States
| | - Helena Santiago Lima
- Laboratorio de Microbiologia Ambiental Aplicada, Departamento de Microbiologia, Universidade Federal de Viçosa, Av. P.H. Rolfs, s/n – Campus Universitário, Edifício Chotaro Shimoya – sala 318, Viçosa – Minas Gerais, Brazil
| | - Lívia Carneiro Fidélis Silva
- Laboratorio de Microbiologia Ambiental Aplicada, Departamento de Microbiologia, Universidade Federal de Viçosa, Av. P.H. Rolfs, s/n – Campus Universitário, Edifício Chotaro Shimoya – sala 318, Viçosa – Minas Gerais, Brazil
| | - Tomás Gomes Reis Veloso
- Laboratorio de Associações Micorrízicas, Universidade Federal de Viçosa, Departamento de Microbiologia, Av. P.H. Rolfs, s/n – Campus Universitário, Bioagro – sala 313, Viçosa – Minas Gerais, Brazil
| | - Sérgio Oliveira de Paula
- Laboratório de Imunovirologia Molecular, Departamento de Biologia Geral, Universidade Federal de Viçosa, Av. P.H. Rolfs, s/n – Campus Universitário, Edifício Chotaro Shimoya – sala 241, Viçosa – Minas Gerais, Brazil
| | - Weyder Cristiano Santana
- Instituto de Ciências Biológicas e da Saúde, Universidade Federal de Viçosa, Rod. MG 230 Km 08 - Campus Universitário, Rio Paranaíba – Minas Gerais, Brazil
- Departamento de Entomologia, Universidade Federal de Viçosa,Av. P.H. Rolfs, s/n – Campus Universitário, Viçosa – Minas Gerais, Brazil
| | - Cynthia Canêdo da Silva
- Laboratorio de Microbiologia Ambiental Aplicada, Departamento de Microbiologia, Universidade Federal de Viçosa, Av. P.H. Rolfs, s/n – Campus Universitário, Edifício Chotaro Shimoya – sala 318, Viçosa – Minas Gerais, Brazil
| |
Collapse
|
5
|
Torres M, Paszti S, Eberl L. Shedding light on bacteria-host interactions with the aid of TnSeq approaches. mBio 2024; 15:e0039024. [PMID: 38722161 PMCID: PMC11237515 DOI: 10.1128/mbio.00390-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2024] Open
Abstract
Bacteria are highly adaptable and grow in diverse niches, where they often interact with eukaryotic organisms. These interactions with different hosts span the entire spectrum from symbiosis to pathogenicity and thus determine the lifestyle of the bacterium. Knowledge of the genetic determinants involved in animal and plant host colonization by pathogenic and mutualistic bacteria is not only crucial to discover new drug targets for disease management but also for developing novel biostimulant strategies. In the last decades, significant progress in genome-wide high-throughput technologies such as transposon insertion sequencing has led to the identification of pathways that enable efficient host colonization. However, the extent to which similar genes play a role in this process in different bacteria is yet unclear. This review highlights the commonalities and specificities of bacterial determinants important for bacteria-host interaction.
Collapse
Affiliation(s)
- Marta Torres
- Department of Plant and Microbial Biology, University of Zurich, Zürich, Switzerland
| | - Sarah Paszti
- Department of Plant and Microbial Biology, University of Zurich, Zürich, Switzerland
| | - Leo Eberl
- Department of Plant and Microbial Biology, University of Zurich, Zürich, Switzerland
| |
Collapse
|
6
|
Noh S, Peck RF, Larson ER, Covitz RM, Chen A, Roy P, Hamilton MC, Dettmann RA. Facultative symbiont virulence determines horizontal transmission rate without host specificity in Dictyostelium discoideum social amoebas. Evol Lett 2024; 8:437-447. [PMID: 38818420 PMCID: PMC11134466 DOI: 10.1093/evlett/qrae001] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 01/08/2024] [Accepted: 01/15/2024] [Indexed: 06/01/2024] Open
Abstract
In facultative symbioses, only a fraction of hosts are associated with symbionts. Specific host and symbiont pairings may be the result of host-symbiont coevolution driven by reciprocal selection or priority effects pertaining to which potential symbiont is associated with a host first. Distinguishing between these possibilities is important for understanding the evolutionary forces that affect facultative symbioses. We used the social amoeba, Dictyostelium discoideum, and its symbiont, Paraburkholderia bonniea, to determine whether ongoing coevolution affects which host-symbiont strain pairs naturally cooccur within a facultative symbiosis. Relative to other Paraburkholderia, including another symbiont of D. discoideum, P. bonniea features a reduced genome size that indicates a significant history of coevolution with its host. We hypothesized that ongoing host-symbiont coevolution would lead to higher fitness for naturally cooccurring (native) host and symbiont pairings compared to novel pairings. We show for the first time that P. bonniea symbionts can horizontally transmit to new amoeba hosts when hosts aggregate together during the social stage of their life cycle. Here we find evidence for a virulence-transmission trade-off without host specificity. Although symbiont strains were significantly variable in virulence and horizontal transmission rate, hosts and symbionts responded similarly to associations in native and novel pairings. We go on to identify candidate virulence factors in the genomes of P. bonniea strains that may contribute to variation in virulence. We conclude that ongoing coevolution is unlikely for D. discoideum and P. bonniea. The system instead appears to represent a stable facultative symbiosis in which naturally cooccurring P. bonniea host and symbiont pairings are the result of priority effects.
Collapse
Affiliation(s)
- Suegene Noh
- Biology Department, Colby College, Waterville, ME, United States
| | - Ron F Peck
- Biology Department, Colby College, Waterville, ME, United States
| | - Emily R Larson
- Biology Department, Colby College, Waterville, ME, United States
| | - Rachel M Covitz
- Department of Developmental, Molecular, and Chemical Biology, Tufts University School of Medicine, Boston, MA, United States
| | - Anna Chen
- Biology Department, Colby College, Waterville, ME, United States
| | - Prachee Roy
- Biology Department, Colby College, Waterville, ME, United States
| | - Marisa C Hamilton
- University Program in Genetics and Genomics, Duke University, Durham, NC, United States
| | - Robert A Dettmann
- Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| |
Collapse
|
7
|
Sun L, Wang D, Feng K, Zhang JA, Gao W, Zhang L. Cell membrane-coated nanoparticles for targeting carcinogenic bacteria. Adv Drug Deliv Rev 2024; 209:115320. [PMID: 38643841 DOI: 10.1016/j.addr.2024.115320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 04/09/2024] [Accepted: 04/18/2024] [Indexed: 04/23/2024]
Abstract
The etiology of cancers is multifactorial, with certain bacteria established as contributors to carcinogenesis. As the understanding of carcinogenic bacteria deepens, interest in cancer treatment through bacterial eradication is growing. Among emerging antibacterial platforms, cell membrane-coated nanoparticles (CNPs), constructed by enveloping synthetic substrates with natural cell membranes, exhibit significant promise in overcoming challenges encountered by traditional antibiotics. This article reviews recent advancements in developing CNPs for targeting carcinogenic bacteria. It first summarizes the mechanisms of carcinogenic bacteria and the status of cancer treatment through bacterial eradication. Then, it reviews engineering strategies for developing highly functional and multitasking CNPs and examines the emerging applications of CNPs in combating carcinogenic bacteria. These applications include neutralizing virulence factors to enhance bacterial eradication, exploiting bacterium-host binding for precise antibiotic delivery, and modulating antibacterial immunity to inhibit bacterial growth. Overall, this article aims to inspire technological innovations in developing CNPs for effective cancer treatment through oncogenic bacterial targeting.
Collapse
Affiliation(s)
- Lei Sun
- Department of NanoEngineering, Chemical Engineering Program, Shu and K.C. Chien and Peter Farrell Collaboratory, University of California San Diego, La Jolla, CA 92093, USA
| | - Dan Wang
- Department of NanoEngineering, Chemical Engineering Program, Shu and K.C. Chien and Peter Farrell Collaboratory, University of California San Diego, La Jolla, CA 92093, USA
| | - Kailin Feng
- Department of NanoEngineering, Chemical Engineering Program, Shu and K.C. Chien and Peter Farrell Collaboratory, University of California San Diego, La Jolla, CA 92093, USA
| | - Jiayuan Alex Zhang
- Department of NanoEngineering, Chemical Engineering Program, Shu and K.C. Chien and Peter Farrell Collaboratory, University of California San Diego, La Jolla, CA 92093, USA
| | - Weiwei Gao
- Department of NanoEngineering, Chemical Engineering Program, Shu and K.C. Chien and Peter Farrell Collaboratory, University of California San Diego, La Jolla, CA 92093, USA.
| | - Liangfang Zhang
- Department of NanoEngineering, Chemical Engineering Program, Shu and K.C. Chien and Peter Farrell Collaboratory, University of California San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
8
|
Wierz JC, Dirksen P, Kirsch R, Krüsemer R, Weiss B, Pauchet Y, Engl T, Kaltenpoth M. Intracellular symbiont Symbiodolus is vertically transmitted and widespread across insect orders. THE ISME JOURNAL 2024; 18:wrae099. [PMID: 38874172 PMCID: PMC11322605 DOI: 10.1093/ismejo/wrae099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/05/2024] [Accepted: 06/05/2024] [Indexed: 06/15/2024]
Abstract
Insects engage in manifold interactions with bacteria that can shift along the parasitism-mutualism continuum. However, only a small number of bacterial taxa managed to successfully colonize a wide diversity of insects, by evolving mechanisms for host-cell entry, immune evasion, germline tropism, reproductive manipulation, and/or by providing benefits to the host that stabilize the symbiotic association. Here, we report on the discovery of an Enterobacterales endosymbiont (Symbiodolus, type species Symbiodolus clandestinus) that is widespread across at least six insect orders and occurs at high prevalence within host populations. Fluorescence in situ hybridization in several Coleopteran and one Dipteran species revealed Symbiodolus' intracellular presence in all host life stages and across tissues, with a high abundance in female ovaries, indicating transovarial vertical transmission. Symbiont genome sequencing across 16 host taxa revealed a high degree of functional conservation in the eroding and transposon-rich genomes. All sequenced Symbiodolus genomes encode for multiple secretion systems, alongside effectors and toxin-antitoxin systems, which likely facilitate host-cell entry and interactions with the host. However, Symbiodolus-infected insects show no obvious signs of disease, and biosynthetic pathways for several amino acids and cofactors encoded by the bacterial genomes suggest that the symbionts may also be able to provide benefits to the hosts. A lack of host-symbiont cospeciation provides evidence for occasional horizontal transmission, so Symbiodolus' success is likely based on a mixed transmission mode. Our findings uncover a hitherto undescribed and widespread insect endosymbiont that may present valuable opportunities to unravel the molecular underpinnings of symbiosis establishment and maintenance.
Collapse
Affiliation(s)
- Jürgen C Wierz
- Department of Insect Symbiosis, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany
| | - Philipp Dirksen
- Department of Insect Symbiosis, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany
- Department of Evolutionary Ecology, Institute of Organismic and Molecular Evolution, Johannes Gutenberg University, 55128 Mainz, Germany
| | - Roy Kirsch
- Department of Insect Symbiosis, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany
| | - Ronja Krüsemer
- Department of Insect Symbiosis, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany
| | - Benjamin Weiss
- Department of Insect Symbiosis, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany
| | - Yannick Pauchet
- Department of Insect Symbiosis, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany
| | - Tobias Engl
- Department of Insect Symbiosis, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany
| | - Martin Kaltenpoth
- Department of Insect Symbiosis, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany
| |
Collapse
|
9
|
González Porras MÁ, Pons I, García-Lozano M, Jagdale S, Emmerich C, Weiss B, Salem H. Extracellular symbiont colonizes insect during embryo development. ISME COMMUNICATIONS 2024; 4:ycae005. [PMID: 38439943 PMCID: PMC10910848 DOI: 10.1093/ismeco/ycae005] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/11/2024] [Accepted: 01/17/2024] [Indexed: 03/06/2024]
Abstract
Insects typically acquire their beneficial microbes early in development. Endosymbionts housed intracellularly are commonly integrated during oogenesis or embryogenesis, whereas extracellular microbes are only known to be acquired after hatching by immature instars such as larvae or nymphs. Here, however, we report on an extracellular symbiont that colonizes its host during embryo development. Tortoise beetles (Chrysomelidae: Cassidinae) host their digestive bacterial symbiont Stammera extracellularly within foregut symbiotic organs and in ovary-associated glands to ensure its vertical transmission. We outline the initial stages of symbiont colonization and observe that although the foregut symbiotic organs develop 3 days prior to larval emergence, they remain empty until the final 24 h of embryo development. Infection by Stammera occurs during that timeframe and prior to hatching. By experimentally manipulating symbiont availability to embryos in the egg, we describe a 12-h developmental window governing colonization by Stammera. Symbiotic organs form normally in aposymbiotic larvae, demonstrating that these Stammera-bearing structures develop autonomously. In adults, the foregut symbiotic organs are already colonized following metamorphosis and host a stable Stammera population to facilitate folivory. The ovary-associated glands, however, initially lack Stammera. Symbiont abundance subsequently increases within these transmission organs, thereby ensuring sufficient titers at the onset of oviposition ~29 days following metamorphosis. Collectively, our findings reveal that Stammera colonization precedes larval emergence, where its proliferation is eventually decoupled in adult beetles to match the nutritional and reproductive requirements of its host.
Collapse
Affiliation(s)
| | - Inès Pons
- Mutualisms Research Group, Max Planck Institute for Biology, Tübingen 72076, Germany
| | - Marleny García-Lozano
- Mutualisms Research Group, Max Planck Institute for Biology, Tübingen 72076, Germany
| | - Shounak Jagdale
- Mutualisms Research Group, Max Planck Institute for Biology, Tübingen 72076, Germany
| | - Christiane Emmerich
- Mutualisms Research Group, Max Planck Institute for Biology, Tübingen 72076, Germany
| | - Benjamin Weiss
- Department of Insect Symbiosis, Max Planck Institute for Chemical Ecology, Jena 07745, Germany
| | - Hassan Salem
- Mutualisms Research Group, Max Planck Institute for Biology, Tübingen 72076, Germany
- Smithsonian Tropical Research Institute, Panama City 0843-03092, Republic of Panama
| |
Collapse
|
10
|
Guckes KR, Yount TA, Steingard CH, Miyashiro TI. Quorum sensing inhibits interference competition among bacterial symbionts within a host. Curr Biol 2023; 33:4244-4251.e4. [PMID: 37689064 PMCID: PMC10592073 DOI: 10.1016/j.cub.2023.08.051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 06/20/2023] [Accepted: 08/16/2023] [Indexed: 09/11/2023]
Abstract
The symbioses that animals form with bacteria play important roles in health and disease, but the molecular details underlying how bacterial symbionts initially assemble within a host remain unclear.1,2,3 The bioluminescent bacterium Vibrio fischeri establishes a light-emitting symbiosis with the Hawaiian bobtail squid Euprymna scolopes by colonizing specific epithelium-lined crypt spaces within a symbiotic organ called the light organ.4 Competition for these colonization sites occurs between different strains of V. fischeri, with the lancet-like type VI secretion system (T6SS) facilitating strong competitive interference that results in strain incompatibility within a crypt space.5,6 Although recent studies have identified regulators of this T6SS, how the T6SS is controlled as symbionts assemble in vivo remains unknown.7,8 Here, we show that T6SS activity is suppressed by N-octanoyl-L-homoserine lactone (C8 HSL), which is a signaling molecule that facilitates quorum sensing in V. fischeri and is important for efficient symbiont assembly.9,10 We find that this signaling depends on the quorum-sensing regulator LitR, which lowers expression of the needle subunit Hcp, a key component of the T6SS, by repressing transcription of the T6SS regulator VasH. We show that LitR-dependent quorum sensing inhibits strain incompatibility within the squid light organ. Collectively, these results provide new insights into the mechanisms by which regulatory networks that promote symbiosis also control competition among symbionts, which in turn may affect the overall symbiont diversity that assembles within a host.
Collapse
Affiliation(s)
- Kirsten R Guckes
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Taylor A Yount
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Caroline H Steingard
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Tim I Miyashiro
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA; The One Health Microbiome Center, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA.
| |
Collapse
|
11
|
Cecere AG, Cook RA, Miyashiro TI. A case study assessing the impact of mating frequency on the reproductive performance of the Hawaiian bobtail squid Euprymna scolopes. Lab Anim Res 2023; 39:17. [PMID: 37507806 PMCID: PMC10375782 DOI: 10.1186/s42826-023-00168-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 07/21/2023] [Accepted: 07/24/2023] [Indexed: 07/30/2023] Open
Abstract
BACKGROUND The symbiosis between the Hawaiian bobtail squid Euprymna scolopes and bacterium Vibrio fischeri serves as a model for investigating the molecular mechanisms that promote the initial formation of animal-bacterial symbioses. Research with this system frequently depends on freshly hatched E. scolopes, but the husbandry factors that promote hatchling production in a mariculture facility remain underreported. Here we report on the reproductive performance of E. scolopes in response to decreased mating frequency. RESULTS One animal cohort was maintained in a mariculture facility for 107 days, with females assigned to either a control group (mating once every 14 days) or an experimental group (mating once every 21 days). No differences between the groups were observed in survival, the number of egg clutches laid, or hatchling counts. Each group featured multiple females that were hyper-reproductive, i.e., they generated more than 8 egg clutches while in captivity. Examination of the distributions for daily hatchling counts of individual egg clutches revealed significant variation in the hatching patterns among clutches that was independent of mating frequency. Finally, an assessment of hatchling production showed that 93.5% of total hatchlings produced by the cohort were derived from egg clutches laid within the first 70 days. CONCLUSIONS These results suggest a lower mating frequency does not impede hatchling production. Furthermore, the variation in hatchling production among egg clutches provides new insight into the reproductive performance of E. scolopes as a lab animal for microbiology research.
Collapse
Affiliation(s)
- Andrew G Cecere
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, USA
| | - Rachel A Cook
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, USA
| | - Tim I Miyashiro
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, USA.
- The One Health Microbiome Center, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, USA.
| |
Collapse
|
12
|
Ganesan R, Janke RS, Kaltenpoth M, Flórez LV. Colonization dynamics of a defensive insect ectosymbiont. Biol Lett 2023; 19:20230100. [PMID: 37161294 PMCID: PMC10170204 DOI: 10.1098/rsbl.2023.0100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 04/13/2023] [Indexed: 05/11/2023] Open
Abstract
Beneficial symbionts are horizontally or vertically transmitted to offspring, relying on host- or microbe-mediated mechanisms for colonization. While multiple studies on symbionts transmitted internally or by feeding highlight host adaptations and dynamics of symbiont colonization, less is known for beneficial microbes colonizing host external surfaces, such as the insect cuticle. Here, we investigate the colonization dynamics of a bacterial symbiont that protects eggs and larvae of Lagria villosa beetles against pathogens. After maternal application to the egg surface, symbionts colonize specialized cuticular invaginations on the dorsal surface of larvae. We assessed the colonization time point and investigated the involvement of the host during this process. Symbionts remain on the egg surface before hatching, providing protection. Immediately after hatching, cells from the egg surface colonize the larvae and horizontal acquisition can occur, yet efficiency decreases with increasing larval age. Additionally, passive or host-aided translocation likely supports colonization of the larval symbiotic organs. This may be especially important for the dominant non-motile symbiont strain, while motility of additional strains in the symbiont community might also play a role. Our findings provide insights into the colonization dynamics of cuticle-associated defensive symbionts and suggest alternate or complementary strategies used by different strains for colonization.
Collapse
Affiliation(s)
- Ramya Ganesan
- Department of Evolutionary Ecology, Institute of Organismic and Molecular Evolution, Johannes Gutenberg University, 55128 Mainz, Germany
- Department of Insect Symbiosis, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany
| | - Rebekka S. Janke
- Department of Evolutionary Ecology, Institute of Organismic and Molecular Evolution, Johannes Gutenberg University, 55128 Mainz, Germany
- Department of Symbiosis, Max Planck Institute for Marine Microbiology, 28359 Bremen, Germany
| | - Martin Kaltenpoth
- Department of Evolutionary Ecology, Institute of Organismic and Molecular Evolution, Johannes Gutenberg University, 55128 Mainz, Germany
- Department of Insect Symbiosis, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany
| | - Laura V. Flórez
- Department of Evolutionary Ecology, Institute of Organismic and Molecular Evolution, Johannes Gutenberg University, 55128 Mainz, Germany
- Department of Plant and Environmental Sciences, Section for Organismal Biology, University of Copenhagen, 1871 Frederiksberg C, Denmark
| |
Collapse
|
13
|
Hammer TJ, Kueneman J, Argueta-Guzmán M, McFrederick QS, Grant L, Wcislo W, Buchmann S, Danforth BN. Bee breweries: The unusually fermentative, lactobacilli-dominated brood cell microbiomes of cellophane bees. Front Microbiol 2023; 14:1114849. [PMID: 37089560 PMCID: PMC10113673 DOI: 10.3389/fmicb.2023.1114849] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 03/13/2023] [Indexed: 04/09/2023] Open
Abstract
Pathogens and parasites of solitary bees have been studied for decades, but the microbiome as a whole is poorly understood for most taxa. Comparative analyses of microbiome features such as composition, abundance, and specificity, can shed light on bee ecology and the evolution of host–microbe interactions. Here we study microbiomes of ground-nesting cellophane bees (Colletidae: Diphaglossinae). From a microbial point of view, the diphaglossine genus Ptiloglossa is particularly remarkable: their larval provisions are liquid and smell consistently of fermentation. We sampled larval provisions and various life stages from wild nests of Ptiloglossa arizonensis and two species of closely related genera: Caupolicana yarrowi and Crawfordapis luctuosa. We also sampled nectar collected by P. arizonensis. Using 16S rRNA gene sequencing, we find that larval provisions of all three bee species are near-monocultures of lactobacilli. Nectar communities are more diverse, suggesting ecological filtering. Shotgun metagenomic and phylogenetic data indicate that Ptiloglossa culture multiple species and strains of Apilactobacillus, which circulate among bees and flowers. Larval lactobacilli disappear before pupation, and hence are likely not vertically transmitted, but rather reacquired from flowers as adults. Thus, brood cell microbiomes are qualitatively similar between diphaglossine bees and other solitary bees: lactobacilli-dominated, environmentally acquired, and non-species-specific. However, shotgun metagenomes provide evidence of a shift in bacterial abundance. As compared with several other bee species, Ptiloglossa have much higher ratios of bacterial to plant biomass in larval provisions, matching the unusually fermentative smell of their brood cells. Overall, Ptiloglossa illustrate a path by which hosts can evolve quantitatively novel symbioses: not by acquiring or domesticating novel symbionts, but by altering the microenvironment to favor growth of already widespread and generalist microbes.
Collapse
Affiliation(s)
- Tobin J. Hammer
- Department of Ecology and Evolutionary Biology, University of California, Irvine, Irvine, CA, United States
- *Correspondence: Tobin J. Hammer,
| | - Jordan Kueneman
- Department of Entomology, Cornell University, Ithaca, NY, United States
- Smithsonian Tropical Research Institute, Panama City, Panama
| | - Magda Argueta-Guzmán
- Department of Entomology, University of California, Riverside, Riverside, CA, United States
| | - Quinn S. McFrederick
- Department of Entomology, University of California, Riverside, Riverside, CA, United States
| | - Lady Grant
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, CO, United States
| | - William Wcislo
- Smithsonian Tropical Research Institute, Panama City, Panama
| | - Stephen Buchmann
- Department of Entomology, The University of Arizona, Tucson, AZ, United States
- Department of Ecology and Evolutionary Biology, The University of Arizona, Tucson, AZ, United States
| | - Bryan N. Danforth
- Department of Entomology, Cornell University, Ithaca, NY, United States
| |
Collapse
|