1
|
Jiang Y. Photosynthetic Bacteria: Light-Responsive Biomaterials for Anti-Tumor Photodynamic Therapy. Int J Nanomedicine 2025; 20:465-482. [PMID: 39811429 PMCID: PMC11730521 DOI: 10.2147/ijn.s500314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 12/31/2024] [Indexed: 01/16/2025] Open
Abstract
Photodynamic therapy (PDT) is a promising noninvasive tumor treatment modality that relies on generating reactive oxygen species (ROS) and requires an adequate oxygen supply to the target tissue. However, hypoxia is a common feature of solid tumors and profoundly restricts the anti-tumor efficacy of PDT. In recent years, scholars have focused on exploring nanomaterial-based strategies for oxygen supplementation and integrating non-oxygen-consuming treatment approaches to overcome the hypoxic limitations of PDT. Some scholars have harnessed the photosynthetic oxygen production of cyanobacteria under light irradiation to overcome tumor hypoxia and engineered them as carriers of photosensitizers instead of inorganic nanomaterials, resulting in photosynthetic bacteria (PSB) attracting significant attention. Recent studies have shown that light-triggered PSB can exhibit additional properties, such as photosynthetic hydrogen production, ROS generation, and photothermal conversion, facilitating their use as promising light-responsive biomaterials for enhancing the anti-tumor efficacy of PDT. Therefore, understanding PSB can provide new insights and ideas for future research. This review mainly introduces the characteristics of PSB and recent research on light-triggered PSB in anti-tumor PDT to enrich our knowledge in this area. Finally, the challenges and prospects of using PSB to enhance the anti-tumor efficacy of PDT were also discussed.
Collapse
Affiliation(s)
- Yuan Jiang
- Department of Rehabilitation Medicine, School of Clinical Medicine and The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, People’s Republic of China
| |
Collapse
|
2
|
Gunathilake C, Soliman I, Panthi D, Tandler P, Fatani O, Ghulamullah NA, Marasinghe D, Farhath M, Madhujith T, Conrad K, Du Y, Jaroniec M. A comprehensive review on hydrogen production, storage, and applications. Chem Soc Rev 2024; 53:10900-10969. [PMID: 39421882 DOI: 10.1039/d3cs00731f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
The transformation from combustion-based to renewable energy technologies is of paramount importance due to the rapid depletion of fossil fuels and the dramatic increase in atmospheric CO2 levels resulting from growing global energy demands. To achieve the Paris Agreement's long-term goal of carbon neutrality by 2050, the full implementation of clean and sustainable energy sources is essential. Consequently, there is an urgent demand for zero or low-carbon fuels with high energy density that can produce electricity and heat, power vehicles, and support global trade. This review presents the global motivation to reduce carbon dioxide by utilizing hydrogen technology, which is key to meeting future energy demands. It discusses the basic properties of hydrogen and its application in both prototype and large-scale efficient technologies. Hydrogen is a clean fuel and a versatile energy carrier; when used in fuel cells or combustion devices, the final product is water vapor. Hydrogen gas production methods are reviewed across renewable and non-renewable sources, with reaction processes categorized as green, blue, grey, black, pink, and turquoise, depending on the reaction pathway and CO2 emissions management. This review covers the applications of hydrogen technology in petroleum refining, chemical and metrological production, hydrogen fuel cell electric vehicles (HFCEVs), backup power generation, and its use in transportation, space, and aeronautics. It assesses physical and material-based hydrogen storage methods, evaluating their feasibility, performance, and safety, and comparing HFCEVs with battery and gasoline vehicles from environmental and economic perspectives. Finally, the prospects and challenges associated with hydrogen production, handling, storage, transportation, and safety are also discussed.
Collapse
Affiliation(s)
- Chamila Gunathilake
- Department of Applied Engineering & Technology, College of Aeronautics and Engineering, Kent State University, Kent, OH, 44242, USA.
- Department of Chemistry & Biochemistry, Kent State University, Kent, OH, 44242, USA.
- Department of Chemical & Process Engineering, Faculty of Engineering, University of Peradeniya, 20400, Sri Lanka
| | - Ibrahim Soliman
- Advanced Materials and Liquid Crystal Institute, Kent State University, Kent, OH 44240, USA
| | - Dhruba Panthi
- Department of Engineering Technology, Kent State University at Tuscarawas, New Philadelphia, OH 44663, USA
| | - Peter Tandler
- Department of Chemistry, Walsh University, North Canton, OH, 44720, USA
- Center for Scientific Excellence, Walsh University, North Canton, OH, 44720, USA
| | - Omar Fatani
- Department of Applied Engineering & Technology, College of Aeronautics and Engineering, Kent State University, Kent, OH, 44242, USA.
| | - Noman Alias Ghulamullah
- Department of Applied Engineering & Technology, College of Aeronautics and Engineering, Kent State University, Kent, OH, 44242, USA.
| | - Dinesh Marasinghe
- Department of Chemistry & Biochemistry, Kent State University, Kent, OH, 44242, USA.
- Department of Chemical & Process Engineering, Faculty of Engineering, University of Peradeniya, 20400, Sri Lanka
| | - Mohamed Farhath
- Department of Chemical Sciences, South Eastern University of Sri Lanka, Sammanthurai, 32200, Sri Lanka
| | - Terrence Madhujith
- Department of Food Science and Technology, Faculty of Agriculture, University of Peradeniya, 20400, Sri Lanka
| | - Kirt Conrad
- CEO/Executive Director, Stark Area Regional Transit Authority, 1600 Gateway Blvd SE., Canton, OH 44707, USA
| | - Yanhai Du
- Department of Applied Engineering & Technology, College of Aeronautics and Engineering, Kent State University, Kent, OH, 44242, USA.
- Materials Science, College of Arts & Sciences, Kent State University, Kent, OH, 44242, USA
| | - Mietek Jaroniec
- Department of Chemistry & Biochemistry, Kent State University, Kent, OH, 44242, USA.
| |
Collapse
|
3
|
Blahut MR, Dawson ME, Kisgeropoulos EC, Ledinina AE, Mulder DW, King PW. Functional roles of the [2Fe-2S] clusters in Synechocystis PCC 6803 Hox [NiFe]-hydrogenase reactivity with ferredoxins. J Biol Chem 2024; 300:107936. [PMID: 39476964 DOI: 10.1016/j.jbc.2024.107936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 10/07/2024] [Accepted: 10/21/2024] [Indexed: 12/01/2024] Open
Abstract
The HoxEFUYH complex of Synechocystis PCC 6803 (S. 6803) consists of a HoxEFU ferredoxin:NAD(P)H oxidoreductase subcomplex and a HoxYH [NiFe]-hydrogenase subcomplex that catalyzes reversible H2 oxidation. Prior studies have suggested that the presence of HoxE is required for reactivity with ferredoxin; however, it is unknown how HoxE is functionally integrated into the electron transfer network of the HoxEFU:ferredoxin complex. Deciphering electron transfer pathways is challenged by the rich iron-sulfur cluster content of HoxEFU, which includes a [2Fe-2S] cluster in each subunit, along with multiple [4Fe-4S] clusters and a flavin cofactor. To resolve the role of HoxE, we determined the biophysical and thermodynamic properties of each [2Fe-2S] cluster in HoxEFU using steady-state and potentiometric EPR analysis in combination with square wave voltammetry (SWV). The temperature-dependence of the EPR signal for HoxE confirmed the coordination of a single [2Fe-2S] cluster that was shown by SWV to have an Em = -424 mV (versus SHE). Strikingly, when the Em of the HoxE [2Fe-2S] cluster was analyzed in HoxEFU titrations, it was shifted by >100 mV to an Em < -525 mV (versus SHE). EPR titrations of HoxEFU gave an Em value for the [2Fe-2S] cluster of HoxF, Em = -419 mV and HoxU, Em = -349 mV. These values were used to re-analyze the diaphorase kinetics in reactions performed with ferredoxins with varying Em's. The results are formulated into a model of HoxEFU:ferredoxin reactivity and the role of HoxE in mediating electron transfer within the HoxEFU:ferredoxin complex.
Collapse
Affiliation(s)
- Matthew R Blahut
- Biosciences Center, National Renewable Energy Lab, Golden, Colorado, USA
| | - Michael E Dawson
- Biosciences Center, National Renewable Energy Lab, Golden, Colorado, USA
| | | | | | - David W Mulder
- Biosciences Center, National Renewable Energy Lab, Golden, Colorado, USA
| | - Paul W King
- Biosciences Center, National Renewable Energy Lab, Golden, Colorado, USA.
| |
Collapse
|
4
|
Wannicke N, Stüeken EE, Bauersachs T, Gehringer MM. Exploring the influence of atmospheric CO 2 and O 2 levels on the utility of nitrogen isotopes as proxy for biological N 2 fixation. Appl Environ Microbiol 2024; 90:e0057424. [PMID: 39320082 PMCID: PMC11497790 DOI: 10.1128/aem.00574-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 08/26/2024] [Indexed: 09/26/2024] Open
Abstract
Biological N2 fixation (BNF) is traced to the Archean. The nitrogen isotopic fractionation composition (δ15N) of sedimentary rocks is commonly used to reconstruct the presence of ancient diazotrophic ecosystems. While δ15N has been validated mostly using organisms grown under present-day conditions; it has not under the pre-Cambrian conditions, when atmospheric pO2 was lower and pCO2 was higher. Here, we explore δ15N signatures under three atmospheres with (i) elevated CO2 and no O2 (Archean), (ii) present-day CO2, and O2 and (iii) future elevated CO2, in marine and freshwater, heterocytous cyanobacteria. Additionally, we augment our data set from literature for more generalized dependencies of δ15N and the associated fractionation factor epsilon (ε = δ15Nbiomass - δ15NN2) during BNF in Archaea and Bacteria, including cyanobacteria, and habitats. The ε ranges between 3.70‰ and -4.96‰ with a mean ε value of -1.38 ± 0.95‰, for all bacteria, including cyanobacteria, across all tested conditions. The expanded data set revealed correlations of isotopic fractionation of BNF with CO2 concentrations, toxin production, and light, although within 1‰. Moreover, correlation showed significant dependency of ε to species type, C/N ratios and toxin production in cyanobacteria, albeit it within a small range (-1.44 ± 0.89‰). We therefore conclude that δ15N is likely robust when applied to the pre-Cambrian-like atmosphere, stressing the strong cyanobacterial bias. Interestingly, the increased fractionation (lower ε) observed in the toxin-producing Nodularia and Nostoc spp. suggests a heretofore unknown role of toxins in modulating nitrogen isotopic signals that warrants further investigation.IMPORTANCENitrogen is an essential element of life on Earth; however, despite its abundance, it is not biologically accessible. Biological nitrogen fixation is an essential process whereby microbes fix N2 into biologically usable NH3. During this process, the enzyme nitrogenase preferentially uses light 14N, resulting in 15N depleted biomass. This signature can be traced back in time in sediments on Earth, and possibly other planets. In this paper, we explore the influence of pO2 and pCO2 on this fractionation signal. We find the signal is stable, especially for the primary producers, cyanobacteria, with correlations to CO2, light, and toxin-producing status, within a small range. Unexpectedly, we identified higher fractionation signals in toxin-producing Nodularia and Nostoc species that offer insight into why some organisms produce these N-rich toxic secondary metabolites.
Collapse
Affiliation(s)
- Nicola Wannicke
- Leibniz Institute for Plasma Science and Technology e.V., Greifswald, Germany
| | - Eva E. Stüeken
- School of Earth & Environmental Sciences, University of St. Andrews, St. Andrews, United Kingdom
| | - Thorsten Bauersachs
- Institute of Organic Biochemistry in Geo-Systems, RWTH Aachen University, Aachen, Germany
| | - Michelle M. Gehringer
- Department of Microbiology, University of Kaiserslautern-Landau (RPTU), Kaiserslautern, Germany
| |
Collapse
|
5
|
Jahn M, Crang N, Gynnå AH, Kabova D, Frielingsdorf S, Lenz O, Charpentier E, Hudson EP. The energy metabolism of Cupriavidus necator in different trophic conditions. Appl Environ Microbiol 2024; 90:e0074824. [PMID: 39320125 PMCID: PMC11540253 DOI: 10.1128/aem.00748-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 08/29/2024] [Indexed: 09/26/2024] Open
Abstract
The "knallgas" bacterium Cupriavidus necator is attracting interest due to its extremely versatile metabolism. C. necator can use hydrogen or formic acid as an energy source, fixes CO2 via the Calvin-Benson-Bassham (CBB) cycle, and grows on organic acids and sugars. Its tripartite genome is notable for its size and duplications of key genes (CBB cycle, hydrogenases, and nitrate reductases). Little is known about which of these isoenzymes and their cofactors are actually utilized for growth on different substrates. Here, we investigated the energy metabolism of C. necator H16 by growing a barcoded transposon knockout library on succinate, fructose, hydrogen (H2/CO2), and formic acid. The fitness contribution of each gene was determined from enrichment or depletion of the corresponding mutants. Fitness analysis revealed that (i) some, but not all, molybdenum cofactor biosynthesis genes were essential for growth on formate and nitrate respiration. (ii) Soluble formate dehydrogenase (FDH) was the dominant enzyme for formate oxidation, not membrane-bound FDH. (iii) For hydrogenases, both soluble and membrane-bound enzymes were utilized for lithoautotrophic growth. (iv) Of the six terminal respiratory complexes in C. necator H16, only some are utilized, and utilization depends on the energy source. (v) Deletion of hydrogenase-related genes boosted heterotrophic growth, and we show that the relief from associated protein cost is responsible for this phenomenon. This study evaluates the contribution of each of C. necator's genes to fitness in biotechnologically relevant growth regimes. Our results illustrate the genomic redundancy of this generalist bacterium and inspire future engineering strategies.IMPORTANCEThe soil bacterium Cupriavidus necator can grow on gas mixtures of CO2, H2, and O2. It also consumes formic acid as carbon and energy source and various other substrates. This metabolic flexibility comes at a price, for example, a comparatively large genome (6.6 Mb) and a significant background expression of lowly utilized genes. In this study, we mutated every non-essential gene in C. necator using barcoded transposons in order to determine their effect on fitness. We grew the mutant library in various trophic conditions including hydrogen and formate as the sole energy source. Fitness analysis revealed which of the various energy-generating iso-enzymes are actually utilized in which condition. For example, only a few of the six terminal respiratory complexes are used, and utilization depends on the substrate. We also show that the protein cost for the various lowly utilized enzymes represents a significant growth disadvantage in specific conditions, offering a route to rational engineering of the genome. All fitness data are available in an interactive app at https://m-jahn.shinyapps.io/ShinyLib/.
Collapse
Affiliation(s)
- Michael Jahn
- School of Engineering
Sciences in Chemistry, Biotechnology and Health, Science for Life
Laboratory, KTH—Royal Institute of
Technology, Stockholm,
Sweden
- Max Planck Unit for
the Science of Pathogens,
Berlin, Germany
| | - Nick Crang
- School of Engineering
Sciences in Chemistry, Biotechnology and Health, Science for Life
Laboratory, KTH—Royal Institute of
Technology, Stockholm,
Sweden
| | - Arvid H. Gynnå
- School of Engineering
Sciences in Chemistry, Biotechnology and Health, Science for Life
Laboratory, KTH—Royal Institute of
Technology, Stockholm,
Sweden
| | - Deria Kabova
- Department of
Chemistry, Technical University Berlin,
Berlin, Germany
| | | | - Oliver Lenz
- Department of
Chemistry, Technical University Berlin,
Berlin, Germany
| | - Emmanuelle Charpentier
- Max Planck Unit for
the Science of Pathogens,
Berlin, Germany
- Humboldt-Universität
zu Berlin, Institute for Biology,
Berlin, Germany
| | - Elton P. Hudson
- School of Engineering
Sciences in Chemistry, Biotechnology and Health, Science for Life
Laboratory, KTH—Royal Institute of
Technology, Stockholm,
Sweden
| |
Collapse
|
6
|
Jiang X, Wang M, Yang S, He D, Fang F, Yang L. The response of structure and nitrogen removal function of the biofilm on submerged macrophytes to high ammonium in constructed wetlands. J Environ Sci (China) 2024; 142:129-141. [PMID: 38527879 DOI: 10.1016/j.jes.2023.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 06/27/2023] [Accepted: 07/04/2023] [Indexed: 03/27/2024]
Abstract
The ammonium exceedance discharge from sewage treatment plants has a great risk to the stable operation of subsequent constructed wetlands (CWs). The effects of high ammonium shocks on submerged macrophytes and epiphytic biofilms on the leaves of submerged macrophytes in CWs were rarely mentioned in previous studies. In this paper, the 16S rRNA sequencing method was used to investigate the variation of the microbial communities in biofilms on the leaves of Vallisneria natans plants while the growth characteristics of V. natans plants were measured at different initial ammonium concentrations. The results demonstrated that the total chlorophyll and soluble sugar synthesis of V. natans plants decreased by 51.45% and 57.16%, respectively, and malondialdehyde content increased threefold after 8 days if the initial NH4+-N concentration was more than 5 mg/L. Algal density, bacterial quantity, dissolved oxygen, and pH increased with high ammonium shocks. The average removal efficiencies of total nitrogen and NH4+-N reached 73.26% and 83.94%, respectively. The heat map and relative abundance analysis represented that the relative abundances of phyla Proteobacteria, Cyanobacteria, and Bacteroidetes increased. The numbers of autotrophic nitrifiers and heterotrophic nitrification aerobic denitrification (HNAD) bacteria expanded in biofilms. In particular, HNAD bacteria of Flavobacterium, Hydrogenophaga, Acidovorax, Acinetobacter, Pseudomonas, Aeromonas, and Azospira had higher abundances than autotrophic nitrifiers because there were organic matters secreted from declining leaves of V. natans plants. The analysis of the nitrogen metabolic pathway showed aerobic denitrification was the main nitrogen removal pathway. Thus, the nitrification and denitrification bacterial communities increased in epiphytic biofilms on submerged macrophytes in constructed wetlands while submerged macrophytes declined under ammonium shock loading.
Collapse
Affiliation(s)
- Xue Jiang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Mengmeng Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Shunqing Yang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Di He
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Fei Fang
- School of Resources and Environment, Anqing Normal University, Anqing 246133, China
| | - Liuyan Yang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
7
|
Panda P, Giri SJ, Sherman LA, Kihara D, Aryal UK. Proteomic changes orchestrate metabolic acclimation of a unicellular diazotrophic cyanobacterium during light-dark cycle and nitrogen fixation states. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.30.605809. [PMID: 39131303 PMCID: PMC11312527 DOI: 10.1101/2024.07.30.605809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Cyanobacteria have developed an impressive array of proteins and pathways, each tailored for specific metabolic attributes, to execute photosynthesis and biological nitrogen (N2)-fixation. An understanding of these biologically incompatible processes provides important insights into how they can be optimized for renewable energy. To expand upon our current knowledge, we performed label-free quantitative proteomic analysis of the unicellular diazotrophic cyanobacterium Crocosphaera subtropica ATCC 51142 grown with and without nitrate under 12-hour light-dark cycles. Results showed significant shift in metabolic activities including photosynthesis, respiration, biological nitrogen fixation (BNF), and proteostasis to different growth conditions. We identified 14 nitrogenase enzymes which were among the most highly expressed proteins in the dark under nitrogen-fixing conditions, emphasizing their importance in BNF. Nitrogenase enzymes were not expressed under non nitrogen fixing conditions, suggesting a regulatory mechanism based on nitrogen availability. The synthesis of key respiratory enzymes and uptake hydrogenase (HupSL) synchronized with the synthesis of nitrogenase indicating a coordinated regulation of processes involved in energy production and BNF. Data suggests alternative pathways that cells utilize, such as oxidative pentose phosphate (OPP) and 2-oxoglutarate (2-OG) pathways, to produce ATP and support bioenergetic BNF. Data also indicates the important role of uptake hydrogenase for the removal of O2 to support BNF. Overall, this study expands upon our knowledge regarding molecular responses of Crocosphaera 51142 to nitrogen and light-dark phases, shedding light on potential applications and optimization for renewable energy.
Collapse
Affiliation(s)
- Punyatoya Panda
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN 47907
| | - Swagarika J. Giri
- Department of Computer Science, Purdue University, West Lafayette, IN 47907
| | - Louis A. Sherman
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907
| | - Daisuke Kihara
- Department of Computer Science, Purdue University, West Lafayette, IN 47907
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907
| | - Uma K. Aryal
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN 47907
- Purdue Proteomics Facility, Bindley Bioscience Center, Purdue University, West Lafayette, IN 47907
| |
Collapse
|
8
|
Liu X, Tang K, Hu J. Application of Cyanobacteria as Chassis Cells in Synthetic Biology. Microorganisms 2024; 12:1375. [PMID: 39065143 PMCID: PMC11278661 DOI: 10.3390/microorganisms12071375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/30/2024] [Accepted: 07/02/2024] [Indexed: 07/28/2024] Open
Abstract
Synthetic biology is an exciting new area of research that combines science and engineering to design and build new biological functions and systems. Predictably, with the development of synthetic biology, more efficient and economical photosynthetic microalgae chassis will be successfully constructed, making it possible to break through laboratory research into large-scale industrial applications. The synthesis of a range of biochemicals has been demonstrated in cyanobacteria; however, low product titers are the biggest barrier to the commercialization of cyanobacterial biotechnology. This review summarizes the applied improvement strategies from the perspectives of cyanobacteria chassis cells and synthetic biology. The harvest advantages of cyanobacterial products and the latest progress in improving production strategies are discussed according to the product status. As cyanobacteria synthetic biology is still in its infancy, apart from the achievements made, the difficulties and challenges in the application and development of cyanobacteria genetic tool kits in biochemical synthesis, environmental monitoring, and remediation were assessed.
Collapse
Affiliation(s)
| | | | - Jinlu Hu
- School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China; (X.L.); (K.T.)
| |
Collapse
|
9
|
Sun C, Wang Z, Yu X, Zhang H, Cao J, Fang J, Wang J, Zhang L. The Phylogeny and Metabolic Potentials of an Aromatics-Degrading Marivivens Bacterium Isolated from Intertidal Seawater in East China Sea. Microorganisms 2024; 12:1308. [PMID: 39065077 PMCID: PMC11278965 DOI: 10.3390/microorganisms12071308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/16/2024] [Accepted: 06/18/2024] [Indexed: 07/28/2024] Open
Abstract
Lignocellulosic materials, made up of cellulose, hemicellulose, and lignin, constitute some of the most prevalent types of biopolymers in marine ecosystems. The degree to which marine microorganisms participate in the breakdown of lignin and their impact on the cycling of carbon in the oceans is not well understood. Strain LCG002, a novel Marivivens species isolated from Lu Chao Harbor's intertidal seawater, is distinguished by its ability to metabolize lignin and various aromatic compounds, including benzoate, 3-hydroxybenzoate, 4-hydroxybenzoate and phenylacetate. It also demonstrates a broad range of carbon source utilization, including carbohydrates, amino acids and carboxylates. Furthermore, it can oxidize inorganic gases, such as hydrogen and carbon monoxide, providing alternative energy sources in diverse marine environments. Its diversity of nitrogen metabolism is supported by nitrate/nitrite, urea, ammonium, putrescine transporters, as well as assimilatory nitrate reductase. For sulfur assimilation, it employs various pathways to utilize organic and inorganic substrates, including the SOX system and DSMP utilization. Overall, LCG002's metabolic versatility and genetic profile contribute to its ecological significance in marine environments, particularly in the degradation of lignocellulosic material and aromatic monomers.
Collapse
Affiliation(s)
- Chengwen Sun
- Shanghai Engineering Center of Hadal Science and Technology, College of Marine Sciences, Shanghai Ocean University, Shanghai 201306, China; (C.S.); (Z.W.); (X.Y.); (H.Z.); (J.C.); (J.F.)
| | - Zekai Wang
- Shanghai Engineering Center of Hadal Science and Technology, College of Marine Sciences, Shanghai Ocean University, Shanghai 201306, China; (C.S.); (Z.W.); (X.Y.); (H.Z.); (J.C.); (J.F.)
| | - Xi Yu
- Shanghai Engineering Center of Hadal Science and Technology, College of Marine Sciences, Shanghai Ocean University, Shanghai 201306, China; (C.S.); (Z.W.); (X.Y.); (H.Z.); (J.C.); (J.F.)
| | - Hongcai Zhang
- Shanghai Engineering Center of Hadal Science and Technology, College of Marine Sciences, Shanghai Ocean University, Shanghai 201306, China; (C.S.); (Z.W.); (X.Y.); (H.Z.); (J.C.); (J.F.)
| | - Junwei Cao
- Shanghai Engineering Center of Hadal Science and Technology, College of Marine Sciences, Shanghai Ocean University, Shanghai 201306, China; (C.S.); (Z.W.); (X.Y.); (H.Z.); (J.C.); (J.F.)
| | - Jiasong Fang
- Shanghai Engineering Center of Hadal Science and Technology, College of Marine Sciences, Shanghai Ocean University, Shanghai 201306, China; (C.S.); (Z.W.); (X.Y.); (H.Z.); (J.C.); (J.F.)
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Jiahua Wang
- Shanghai Engineering Center of Hadal Science and Technology, College of Marine Sciences, Shanghai Ocean University, Shanghai 201306, China; (C.S.); (Z.W.); (X.Y.); (H.Z.); (J.C.); (J.F.)
| | - Li Zhang
- Shanghai Engineering Center of Hadal Science and Technology, College of Marine Sciences, Shanghai Ocean University, Shanghai 201306, China; (C.S.); (Z.W.); (X.Y.); (H.Z.); (J.C.); (J.F.)
| |
Collapse
|
10
|
Prete V, Abate AC, Di Pietro P, De Lucia M, Vecchione C, Carrizzo A. Beneficial Effects of Spirulina Supplementation in the Management of Cardiovascular Diseases. Nutrients 2024; 16:642. [PMID: 38474769 DOI: 10.3390/nu16050642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 02/20/2024] [Accepted: 02/23/2024] [Indexed: 03/14/2024] Open
Abstract
In recent decades, as a result of rising mortality rates due to cardiovascular diseases (CVDs), there has been a growing urgency to find alternative approaches to conventional pharmaceutical treatment to prevent the onset of chronic diseases. Arthrospira platensis, commonly known as Spirulina, is a blue-green cyanobacterium, classified as a "superfood", used worldwide as a nutraceutical food supplement due to its remarkable nutritional value, lack of toxicity, and therapeutic effects. Several scientific studies have evaluated the cardioprotective role of Spirulina. This article presents a comprehensive review of the therapeutic benefits of Spirulina in improving cardio- and cerebrovascular health. It focuses on the latest experimental and clinical findings to evaluate its antihypertensive, antidiabetic, and antihyperlipidemic properties. The objective is to highlight its potential in preventing and managing risk factors associated with cardiovascular disease (CVD).
Collapse
Affiliation(s)
- Valeria Prete
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, 84081 Baronissi, Italy
| | - Angela Carmelita Abate
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, 84081 Baronissi, Italy
| | - Paola Di Pietro
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, 84081 Baronissi, Italy
| | | | - Carmine Vecchione
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, 84081 Baronissi, Italy
- Vascular Physiopathology Unit, IRCCS Neuromed, 86077 Pozzilli, Italy
| | - Albino Carrizzo
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, 84081 Baronissi, Italy
- Vascular Physiopathology Unit, IRCCS Neuromed, 86077 Pozzilli, Italy
| |
Collapse
|
11
|
Olivan-Muro I, Sarasa-Buisan C, Guio J, Arenas J, Sevilla E, Fillat MF. Unbalancing Zur (FurB)-mediated homeostasis in Anabaena sp. PCC7120: Consequences on metal trafficking, heterocyst development and biofilm formation. Environ Microbiol 2023; 25:2142-2162. [PMID: 37315963 DOI: 10.1111/1462-2920.16434] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 05/22/2023] [Indexed: 06/16/2023]
Abstract
Zinc is required for the activity of many enzymes and plays an essential role in gene regulation and redox homeostasis. In Anabaena (Nostoc) sp. PCC7120, the genes involved in zinc uptake and transport are controlled by the metalloregulator Zur (FurB). Comparative transcriptomics of a zur mutant (Δzur) with the parent strain unveiled unexpected links between zinc homeostasis and other metabolic pathways. A notable increase in the transcription of numerous desiccation tolerance-related genes, including genes involved in the synthesis of trehalose and the transference of saccharide moieties, among many others, was detected. Biofilm formation analysis under static conditions revealed a reduced capacity of Δzur filaments to form biofilms compared to the parent strain, and such capacity was enhanced when Zur was overexpressed. Furthermore, microscopy analysis revealed that zur expression is required for the correct formation of the envelope polysaccharide layer in the heterocyst, as Δzur cells showed reduced staining with alcian blue compared to Anabaena sp. PCC7120. We suggest that Zur is an important regulator of the enzymes involved in the synthesis and transport of the envelope polysaccharide layer, influencing heterocyst development and biofilm formation, both relevant processes for cell division and interaction with substrates in its ecological niche.
Collapse
Affiliation(s)
- Irene Olivan-Muro
- Department of Biochemistry and Molecular and Cellular Biology, Faculty of Sciences and Institute of Bioinformatics and Physical of Complex Systems, University of Zaragoza, Zaragoza, Spain
| | - Cristina Sarasa-Buisan
- Department of Biochemistry and Molecular and Cellular Biology, Faculty of Sciences and Institute of Bioinformatics and Physical of Complex Systems, University of Zaragoza, Zaragoza, Spain
| | - Jorge Guio
- Department of Biochemistry and Molecular and Cellular Biology, Faculty of Sciences and Institute of Bioinformatics and Physical of Complex Systems, University of Zaragoza, Zaragoza, Spain
| | - Jesús Arenas
- Department of Animal Pathology, Unit of Microbiology and Immunology, Faculty of Veterinary, University of Zaragoza, Zaragoza, Spain
| | - Emma Sevilla
- Department of Biochemistry and Molecular and Cellular Biology, Faculty of Sciences and Institute of Bioinformatics and Physical of Complex Systems, University of Zaragoza, Zaragoza, Spain
| | - Maria F Fillat
- Department of Biochemistry and Molecular and Cellular Biology, Faculty of Sciences and Institute of Bioinformatics and Physical of Complex Systems, University of Zaragoza, Zaragoza, Spain
| |
Collapse
|
12
|
Demergasso C, Neilson JW, Tebes-Cayo C, Véliz R, Ayma D, Laubitz D, Barberán A, Chong-Díaz G, Maier RM. Hyperarid soil microbial community response to simulated rainfall. Front Microbiol 2023; 14:1202266. [PMID: 37779711 PMCID: PMC10537920 DOI: 10.3389/fmicb.2023.1202266] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 07/31/2023] [Indexed: 10/03/2023] Open
Abstract
The exceptionally long and protracted aridity in the Atacama Desert (AD), Chile, provides an extreme, terrestrial ecosystem that is ideal for studying microbial community dynamics under hyperarid conditions. Our aim was to characterize the temporal response of hyperarid soil AD microbial communities to ex situ simulated rainfall (5% g water/g dry soil for 4 weeks) without nutrient amendment. We conducted replicated microcosm experiments with surface soils from two previously well-characterized AD hyperarid locations near Yungay at 1242 and 1609 masl (YUN1242 and YUN1609) with distinct microbial community compositions and average soil relative humidity levels of 21 and 17%, respectively. The bacterial and archaeal response to soil wetting was evaluated by 16S rRNA gene qPCR, and amplicon sequencing. Initial YUN1242 bacterial and archaeal 16S rRNA gene copy numbers were significantly higher than for YUN1609. Over the next 4 weeks, qPCR results showed significant increases in viable bacterial abundance, whereas archaeal abundance decreased. Both communities were dominated by 10 prokaryotic phyla (Actinobacteriota, Proteobacteria, Chloroflexota, Gemmatimonadota, Firmicutes, Bacteroidota, Planctomycetota, Nitrospirota, Cyanobacteriota, and Crenarchaeota) but there were significant site differences in the relative abundances of Gemmatimonadota and Chloroflexota, and specific actinobacterial orders. The response to simulated rainfall was distinct for the two communities. The actinobacterial taxa in the YUN1242 community showed rapid changes while the same taxa in the YUN1609 community remained relatively stable until day 30. Analysis of inferred function of the YUN1242 microbiome response implied an increase in the relative abundance of known spore-forming taxa with the capacity for mixotrophy at the expense of more oligotrophic taxa, whereas the YUN1609 community retained a stable profile of oligotrophic, facultative chemolithoautotrophic and mixotrophic taxa. These results indicate that bacterial communities in extreme hyperarid soils have the capacity for growth in response to simulated rainfall; however, historic variations in long-term hyperaridity exposure produce communities with distinct putative metabolic capacities.
Collapse
Affiliation(s)
- Cecilia Demergasso
- Biotechnology Center “Profesor Alberto Ruíz”, Universidad Católica del Norte, Antofagasta, Chile
| | - Julia W. Neilson
- Department of Environmental Science, University of Arizona, Tucson, AZ, United States
| | - Cinthya Tebes-Cayo
- Biotechnology Center “Profesor Alberto Ruíz”, Universidad Católica del Norte, Antofagasta, Chile
- Department of Geology, Faculty of Engineering and Geological Sciences, Universidad Católica del Norte, Antofagasta, Chile
| | - Roberto Véliz
- Biotechnology Center “Profesor Alberto Ruíz”, Universidad Católica del Norte, Antofagasta, Chile
| | - Diego Ayma
- Department of Mathematics, Faculty of Sciences, Universidad Católica del Norte, Antofagasta, Chile
| | - Daniel Laubitz
- Steele Steele Children’s Research Center, Department of Pediatrics, University of Arizona, Tucson, AZ, United States
| | - Albert Barberán
- Department of Environmental Science, University of Arizona, Tucson, AZ, United States
| | - Guillermo Chong-Díaz
- Department of Geology, Faculty of Engineering and Geological Sciences, Universidad Católica del Norte, Antofagasta, Chile
| | - Raina M. Maier
- Department of Environmental Science, University of Arizona, Tucson, AZ, United States
| |
Collapse
|
13
|
Hania A, López-Adams R, PrášIl O, Eichner M. Protection of nitrogenase from photosynthetic O 2 evolution in Trichodesmium: methodological pitfalls and advances over 30 years of research. PHOTOSYNTHETICA 2023; 61:58-72. [PMID: 39650126 PMCID: PMC11515819 DOI: 10.32615/ps.2023.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 03/06/2023] [Indexed: 12/11/2024]
Abstract
The Trichodesmium genus comprises some of the most abundant N2-fixing organisms in oligotrophic marine ecosystems. Since nitrogenase, the key enzyme for N2 fixation, is irreversibly inhibited upon O2 exposure, these organisms have to coordinate their N2-fixing ability with simultaneous photosynthetic O2 production. Although being the principal object of many laboratory and field studies, the overall process of how Trichodesmium reconciles these two mutually exclusive processes remains unresolved. This is in part due to contradictory results that fuel the Trichodesmium enigma. In this review, we sift through methodological details that could potentially explain the discrepancy between findings related to Trichodesmium's physiology. In doing so, we exhaustively contrast studies concerning both spatial and temporal nitrogenase protective strategies, with particular attention to more recent insights. Finally, we suggest new experimental approaches for solving the complex orchestration of N2 fixation and photosynthesis in Trichodesmium.
Collapse
Affiliation(s)
- A. Hania
- Laboratory of Photosynthesis, Institute of Microbiology of the Czech Academy of Sciences, Centre Algatech, Novohradská 237 – Opatovický Mlýn, 37901 Třeboň, Czech Republic
- Faculty of Science, University of South Bohemia, Branišovská 1760, 37005 České Budějovice, Czech Republic
| | - R. López-Adams
- Laboratory of Photosynthesis, Institute of Microbiology of the Czech Academy of Sciences, Centre Algatech, Novohradská 237 – Opatovický Mlýn, 37901 Třeboň, Czech Republic
| | - O. PrášIl
- Laboratory of Photosynthesis, Institute of Microbiology of the Czech Academy of Sciences, Centre Algatech, Novohradská 237 – Opatovický Mlýn, 37901 Třeboň, Czech Republic
- Faculty of Science, University of South Bohemia, Branišovská 1760, 37005 České Budějovice, Czech Republic
| | - M. Eichner
- Laboratory of Photosynthesis, Institute of Microbiology of the Czech Academy of Sciences, Centre Algatech, Novohradská 237 – Opatovický Mlýn, 37901 Třeboň, Czech Republic
| |
Collapse
|
14
|
Sidabras JW, Stripp ST. A personal account on 25 years of scientific literature on [FeFe]-hydrogenase. J Biol Inorg Chem 2023; 28:355-378. [PMID: 36856864 DOI: 10.1007/s00775-023-01992-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 01/25/2023] [Indexed: 03/02/2023]
Abstract
[FeFe]-hydrogenases are gas-processing metalloenzymes that catalyze H2 oxidation and proton reduction (H2 release) in microorganisms. Their high turnover frequencies and lack of electrical overpotential in the hydrogen conversion reaction has inspired generations of biologists, chemists, and physicists to explore the inner workings of [FeFe]-hydrogenase. Here, we revisit 25 years of scientific literature on [FeFe]-hydrogenase and propose a personal account on 'must-read' research papers and review article that will allow interested scientists to follow the recent discussions on catalytic mechanism, O2 sensitivity, and the in vivo synthesis of the active site cofactor with its biologically uncommon ligands carbon monoxide and cyanide. Focused on-but not restricted to-structural biology and molecular biophysics, we highlight future directions that may inspire young investigators to pursue a career in the exciting and competitive field of [FeFe]-hydrogenase research.
Collapse
Affiliation(s)
- Jason W Sidabras
- Department of Biophysics, Medical College of Wisconsin, 8701 Watertown Plank Rd, Milwaukee, WI, USA, 53226.
| | - Sven T Stripp
- Department of Physics, Freie Universität Berlin, Arnimallee 14, 14195, Berlin, Germany.
| |
Collapse
|
15
|
Li C, Yu W, Wu Y, Li Y. Roles of Hydrogen Gas in Plants under Abiotic Stress: Current Knowledge and Perspectives. Antioxidants (Basel) 2022; 11:antiox11101999. [PMID: 36290722 PMCID: PMC9598357 DOI: 10.3390/antiox11101999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/28/2022] [Accepted: 10/08/2022] [Indexed: 11/16/2022] Open
Abstract
Hydrogen gas (H2) is a unique molecular messenger, which is known to be involved in diverse physiological processes in plants, from seed germination to seedling growth to regulation of environmental stresses. In this review, we focus on the role of H2 in plant responses to abiotic stresses, such as temperature, osmotic stress, light, paraquat (PQ)-induced oxidative stresses, and metal stresses. In general, H2 can alleviate environmental stresses by improving the antioxidant defense system, photosynthetic capacity, re-establishing ion homeostasis and glutathione homeostasis, maintaining nutrient element homeostasis, mediating glucose metabolism and flavonoid pathways, regulating heme oxygenase-1 (HO-1) signaling, and interaction between H2 and nitric oxide (NO), carbonic oxide (CO), or plant hormones. In addition, some genes modulated by H2 under abiotic stresses are also discussed. Detailed evidence of molecular mechanisms for H2-mediated particular pathways under abiotic stress, however, is scarce. Further studies regarding the regulatory roles of H2 in modulating abiotic stresses research should focus on the molecular details of the particular pathways that are activated in plants. More research work will improve knowledge concerning possible applications of hydrogen-rich water (HRW) to respond to abiotic stresses with the aim of enhancing crop quality and economic value.
Collapse
|
16
|
Wang Y, Cheng P, Zhao G, Li L, Shen W. Phytomelatonin and gasotransmitters: a crucial combination for plant physiological functions. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:5851-5862. [PMID: 35430633 DOI: 10.1093/jxb/erac159] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 04/13/2022] [Indexed: 05/05/2023]
Abstract
Melatonin, a molecule that was first identified in animal tissues, has been confirmed to be involved as a potential phytohormone in a variety of plant physiological responses. It is considered primarily as an antioxidant with important actions in controlling reactive oxygen and reactive nitrogen species. In addition to its role in regulating plant growth and development, phytomelatonin is involved in protection against abiotic and biotic stresses. The 'gasotransmitter'-that is, a gaseous signaling molecule-is a new concept that has been advanced in the past two decades, with functions in animal and plant physiological regulation. Gasotransmitters including nitric oxide, carbon monoxide, hydrogen sulfide, methane, and, more recently identified, hydrogen gas are critical and indispensable in a wide range of biological processes. This review investigates the interrelationship between phytomelatonin and the above-mentioned gasotransmitters from the perspective of biosynthetic origin and functions. Moreover, the potential future research directions for phytomelatonin and gasotransmitters interactions are discussed.
Collapse
Affiliation(s)
- Yueqiao Wang
- College of Life Sciences, Laboratory Center of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Pengfei Cheng
- College of Life Sciences, Laboratory Center of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Gan Zhao
- College of Life Sciences, Laboratory Center of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Longna Li
- College of Life Sciences, Laboratory Center of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Wenbiao Shen
- College of Life Sciences, Laboratory Center of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
17
|
Cabello-Yeves PJ, Callieri C, Picazo A, Schallenberg L, Huber P, Roda-Garcia JJ, Bartosiewicz M, Belykh OI, Tikhonova IV, Torcello-Requena A, De Prado PM, Puxty RJ, Millard AD, Camacho A, Rodriguez-Valera F, Scanlan DJ. Elucidating the picocyanobacteria salinity divide through ecogenomics of new freshwater isolates. BMC Biol 2022; 20:175. [PMID: 35941649 PMCID: PMC9361551 DOI: 10.1186/s12915-022-01379-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 07/26/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Cyanobacteria are the major prokaryotic primary producers occupying a range of aquatic habitats worldwide that differ in levels of salinity, making them a group of interest to study one of the major unresolved conundrums in aquatic microbiology which is what distinguishes a marine microbe from a freshwater one? We address this question using ecogenomics of a group of picocyanobacteria (cluster 5) that have recently evolved to inhabit geographically disparate salinity niches. Our analysis is made possible by the sequencing of 58 new genomes from freshwater representatives of this group that are presented here, representing a 6-fold increase in the available genomic data. RESULTS Overall, freshwater strains had larger genomes (≈2.9 Mb) and %GC content (≈64%) compared to brackish (2.69 Mb and 64%) and marine (2.5 Mb and 58.5%) isolates. Genomic novelties/differences across the salinity divide highlighted acidic proteomes and specific salt adaptation pathways in marine isolates (e.g., osmolytes/compatible solutes - glycine betaine/ggp/gpg/gmg clusters and glycerolipids glpK/glpA), while freshwater strains possessed distinct ion/potassium channels, permeases (aquaporin Z), fatty acid desaturases, and more neutral/basic proteomes. Sulfur, nitrogen, phosphorus, carbon (photosynthesis), or stress tolerance metabolism while showing distinct genomic footprints between habitats, e.g., different types of transporters, did not obviously translate into major functionality differences between environments. Brackish microbes show a mixture of marine (salt adaptation pathways) and freshwater features, highlighting their transitional nature. CONCLUSIONS The plethora of freshwater isolates provided here, in terms of trophic status preference and genetic diversity, exemplifies their ability to colonize ecologically diverse waters across the globe. Moreover, a trend towards larger and more flexible/adaptive genomes in freshwater picocyanobacteria may hint at a wider number of ecological niches in this environment compared to the relatively homogeneous marine system.
Collapse
Affiliation(s)
- Pedro J Cabello-Yeves
- Evolutionary Genomics Group, Departamento de Producción Vegetal y Microbiología, Universidad Miguel, Hernández, San Juan de Alicante, Alicante, Spain.
| | - Cristiana Callieri
- National Research Council (CNR), Institute of Water Research (IRSA), Verbania, Italy
| | - Antonio Picazo
- Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia, E-46980, Paterna, Valencia, Spain
| | | | - Paula Huber
- Instituto Tecnológico de Chascomús (INTECH), UNSAM-CONICET, Av. Intendente Marino Km 8,200, (7130) Chascomús, Buenos Aires, Argentina.,Instituto Nacional de Limnología (INALI), CONICET-UNL, Ciudad Universitaria - Paraje el Pozo s/n, (3000), Santa Fé, Argentina
| | - Juan J Roda-Garcia
- Evolutionary Genomics Group, Departamento de Producción Vegetal y Microbiología, Universidad Miguel, Hernández, San Juan de Alicante, Alicante, Spain
| | - Maciej Bartosiewicz
- Department of Environmental Sciences, University of Basel, Basel, Switzerland
| | - Olga I Belykh
- Limnological Institute, Russian Academy of Sciences, P.O. Box 278, 664033, Irkutsk, Russia
| | - Irina V Tikhonova
- Limnological Institute, Russian Academy of Sciences, P.O. Box 278, 664033, Irkutsk, Russia
| | | | | | - Richard J Puxty
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
| | - Andrew D Millard
- Department of Genetics and Genome Biology, University of Leicester, Leicester, LE1 7RH, UK
| | - Antonio Camacho
- Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia, E-46980, Paterna, Valencia, Spain
| | - Francisco Rodriguez-Valera
- Evolutionary Genomics Group, Departamento de Producción Vegetal y Microbiología, Universidad Miguel, Hernández, San Juan de Alicante, Alicante, Spain.,Moscow Institute of Physics and Technology, Dolgoprudny, 141701, Russia
| | - David J Scanlan
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK.
| |
Collapse
|
18
|
Stripp ST, Duffus BR, Fourmond V, Léger C, Leimkühler S, Hirota S, Hu Y, Jasniewski A, Ogata H, Ribbe MW. Second and Outer Coordination Sphere Effects in Nitrogenase, Hydrogenase, Formate Dehydrogenase, and CO Dehydrogenase. Chem Rev 2022; 122:11900-11973. [PMID: 35849738 PMCID: PMC9549741 DOI: 10.1021/acs.chemrev.1c00914] [Citation(s) in RCA: 86] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Gases like H2, N2, CO2, and CO are increasingly recognized as critical feedstock in "green" energy conversion and as sources of nitrogen and carbon for the agricultural and chemical sectors. However, the industrial transformation of N2, CO2, and CO and the production of H2 require significant energy input, which renders processes like steam reforming and the Haber-Bosch reaction economically and environmentally unviable. Nature, on the other hand, performs similar tasks efficiently at ambient temperature and pressure, exploiting gas-processing metalloenzymes (GPMs) that bind low-valent metal cofactors based on iron, nickel, molybdenum, tungsten, and sulfur. Such systems are studied to understand the biocatalytic principles of gas conversion including N2 fixation by nitrogenase and H2 production by hydrogenase as well as CO2 and CO conversion by formate dehydrogenase, carbon monoxide dehydrogenase, and nitrogenase. In this review, we emphasize the importance of the cofactor/protein interface, discussing how second and outer coordination sphere effects determine, modulate, and optimize the catalytic activity of GPMs. These may comprise ionic interactions in the second coordination sphere that shape the electron density distribution across the cofactor, hydrogen bonding changes, and allosteric effects. In the outer coordination sphere, proton transfer and electron transfer are discussed, alongside the role of hydrophobic substrate channels and protein structural changes. Combining the information gained from structural biology, enzyme kinetics, and various spectroscopic techniques, we aim toward a comprehensive understanding of catalysis beyond the first coordination sphere.
Collapse
Affiliation(s)
- Sven T Stripp
- Freie Universität Berlin, Experimental Molecular Biophysics, Berlin 14195, Germany
| | | | - Vincent Fourmond
- Laboratoire de Bioénergétique et Ingénierie des Protéines, Institut de Microbiologie de la Méditerranée, Institut Microbiologie, Bioénergies et Biotechnologie, CNRS, Aix Marseille Université, Marseille 13402, France
| | - Christophe Léger
- Laboratoire de Bioénergétique et Ingénierie des Protéines, Institut de Microbiologie de la Méditerranée, Institut Microbiologie, Bioénergies et Biotechnologie, CNRS, Aix Marseille Université, Marseille 13402, France
| | - Silke Leimkühler
- University of Potsdam, Molecular Enzymology, Potsdam 14476, Germany
| | - Shun Hirota
- Nara Institute of Science and Technology, Division of Materials Science, Graduate School of Science and Technology, Nara 630-0192, Japan
| | - Yilin Hu
- Department of Molecular Biology & Biochemistry, University of California, Irvine, California 92697-3900, United States
| | - Andrew Jasniewski
- Department of Molecular Biology & Biochemistry, University of California, Irvine, California 92697-3900, United States
| | - Hideaki Ogata
- Nara Institute of Science and Technology, Division of Materials Science, Graduate School of Science and Technology, Nara 630-0192, Japan
- Hokkaido University, Institute of Low Temperature Science, Sapporo 060-0819, Japan
- Graduate School of Science, University of Hyogo, Hyogo 678-1297, Japan
| | - Markus W Ribbe
- Department of Molecular Biology & Biochemistry, University of California, Irvine, California 92697-3900, United States
- Department of Chemistry, University of California, Irvine, California 92697-2025, United States
| |
Collapse
|
19
|
Nayek A, Ahmed ME, Samanta S, Dinda S, Patra S, Dey SG, Dey A. Bioinorganic Chemistry on Electrodes: Methods to Functional Modeling. J Am Chem Soc 2022; 144:8402-8429. [PMID: 35503922 DOI: 10.1021/jacs.2c01842] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
One of the major goals of bioinorganic chemistry has been to mimic the function of elegant metalloenzymes. Such functional modeling has been difficult to attain in solution, in particular, for reactions that require multiple protons and multiple electrons (nH+/ne-). Using a combination of heterogeneous electrochemistry, electrode and molecule design one may control both electron transfer (ET) and proton transfer (PT) of these nH+/ne- reactions. Such control can allow functional modeling of hydrogenases (H+ + e- → 1/2 H2), cytochrome c oxidase (O2 + 4 e- + 4 H+ → 2 H2O), monooxygenases (RR'CH2 + O2 + 2 e- + 2 H+ → RR'CHOH + H2O) and dioxygenases (S + O2 → SO2; S = organic substrate) in aqueous medium and at room temperatures. In addition, these heterogeneous constructs allow probing unnatural bioinspired reactions and estimation of the inner- and outer-sphere reorganization energy of small molecules and proteins.
Collapse
Affiliation(s)
- Abhijit Nayek
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A Raja SC Mullick Road, Kolkata, WB India 700032
| | - Md Estak Ahmed
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A Raja SC Mullick Road, Kolkata, WB India 700032
| | - Soumya Samanta
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A Raja SC Mullick Road, Kolkata, WB India 700032
| | - Souvik Dinda
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A Raja SC Mullick Road, Kolkata, WB India 700032
| | - Suman Patra
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A Raja SC Mullick Road, Kolkata, WB India 700032
| | - Somdatta Ghosh Dey
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A Raja SC Mullick Road, Kolkata, WB India 700032
| | - Abhishek Dey
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A Raja SC Mullick Road, Kolkata, WB India 700032
| |
Collapse
|
20
|
Giri DD, Dwivedi H, Khalaf D Alsukaibi A, Pal DB, Otaibi AA, Areeshi MY, Haque S, Gupta VK. Sustainable production of algae-bacteria granular consortia based biological hydrogen: New insights. BIORESOURCE TECHNOLOGY 2022; 352:127036. [PMID: 35331885 DOI: 10.1016/j.biortech.2022.127036] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 03/15/2022] [Accepted: 03/17/2022] [Indexed: 06/14/2023]
Abstract
Microbes recycling nutrient and detoxifying ecosystems are capable to fulfil the future energy need by producing biohydrogen by due to the coupling of autotrophic and heterotrophic microbes. In granules microbes mutualy exchanging nutrients and electrons for hydrogen production. The consortial biohydrogen production depend upon constituent microbes, their interdependence, competition for resources, and other operating parameters while remediating a waste material in nature or bioreactor. The present review deals with development of granular algae-bacteria consortia, hydrogen yield in coculture, important enzymes and possible engineering for improved hydrogen production.
Collapse
Affiliation(s)
- Deen Dayal Giri
- Department of Botany, Maharaj Singh College, Saharanpur-247001,Uttar Pradesh, India
| | - Himanshu Dwivedi
- Department of Botany, Maharaj Singh College, Saharanpur-247001,Uttar Pradesh, India
| | | | - Dan Bahadur Pal
- Department of Chemical Engineering, Birla Institute of Technology, Mesra, Ranchi-835215, Jharkhand, India
| | - Ahmed Al Otaibi
- Department of Chemistry, College of Sciences, University of Ha'il, Ha'il 2440, Saudi Arabia
| | - Mohammed Y Areeshi
- Research and Scientific Studies Unit, College of Nursing, Jazan University, Jazan 45142, Saudi Arabia; Medical Laboratory Technology Department, College of Applied Medical Sciences, Jazan University, Jazan 45142, Saudi Arabia
| | - Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing, Jazan University, Jazan 45142, Saudi Arabia; Bursa Uludağ University Faculty of Medicine,Görükle Campus, 16059, Nilüfer, Bursa, Turkey
| | - Vijai Kumar Gupta
- Center for Safe and Improved Food, SRUC, Kings Buildings, West Mains Road, Edinburgh, EH9 3JG, UK; Biorefining and Advanced Materials Research Center, SRUC, Kings Buildings, West Mains Road, Edinburgh, EH9 3JG, UK.
| |
Collapse
|
21
|
Li S, Li F, Zhu X, Liao Q, Chang JS, Ho SH. Biohydrogen production from microalgae for environmental sustainability. CHEMOSPHERE 2022; 291:132717. [PMID: 34757051 DOI: 10.1016/j.chemosphere.2021.132717] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 10/09/2021] [Accepted: 10/25/2021] [Indexed: 06/13/2023]
Abstract
Hydrogen as a clean energy that is conducive to energy and environmental sustainability, playing a significant role in the alleviation of global climate change and energy crisis. Biohydrogen generation from microalgae has been reported as a highly attractive approach that can produce a benign clean energy carrier to achieve carbon neutrality and bioenergy sustainability. Thus, this review explored the mechanism of biohydrogen production from microalgae containing direct biophotolysis, indirect biophotolysis, photo fermentation, and dark fermentation. In general, dark fermentation of microalgae for biohydrogen production is relatively better than photo fermentation, biophotolysis, and microbial electrolysis, because it is able to consecutively generate hydrogen and is not reliant on energy supplied by natural sunlight. Besides, this review summarized potential algal strains for hydrogen production focusing on green microalgae and cyanobacteria. Moreover, a thorough review process was conducted to present hydrogen-producing enzymes targeting biosynthesis and localization of enzymes in microalgae. Notably, the most powerful hydrogen-producing enzymes are [Fe-Fe]-hydrogenases, which have an activity nearly 10-100 times better than [Ni-Fe]-hydrogenases and 1000 times better than nitrogenases. In addition, this work highlighted the major factors affecting low energy conversion efficiency and oxygen sensitivity of hydrogen-producing enzymes. Noting that the most practical pathway of biohydrogen generation was sulfur-deprivation compared with phosphorus, nitrogen, and magnesium deficiency. Further discussions in this work summarized the recent advancement in biohydrogen production from microalgae such as genetic engineering, microalgae-bacteria consortium, electro-bio-hydrogenation, and nanomaterials for developing enzyme stability and hydrolytic efficiency. More importantly, this review provided a summary of current limitations and future perspectives on the sustainable production of biohydrogen from microalgae.
Collapse
Affiliation(s)
- Shengnan Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province 150090, China
| | - Fanghua Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province 150090, China.
| | - Xun Zhu
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing 400044, China; Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing 400044, China
| | - Qiang Liao
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing 400044, China; Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing 400044, China
| | - Jo-Shu Chang
- Department of Chemical Engineering, National Cheng Kung University, Tainan City 701, Taiwan, ROC; Department of Chemical and Materials Engineering, College of Engineering, Tunghai University, Taichung 407, Taiwan, ROC
| | - Shih-Hsin Ho
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province 150090, China.
| |
Collapse
|
22
|
Singh H, Paritosh K, Vivekanand V. Microorganism assisted biohydrogen production and bioreactors: an overview. Chem Eng Technol 2021. [DOI: 10.1002/ceat.202000561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Himanshi Singh
- Centre for converging technology University of Rajasthan Jaipur Rajasthan India
| | - Kunwar Paritosh
- Centre for Energy and Environment Malaviya National Institute of Technology Jaipur Rajasthan India
| | - Vivekanand Vivekanand
- Centre for Energy and Environment Malaviya National Institute of Technology Jaipur Rajasthan India
| |
Collapse
|
23
|
Proteogenomic Analysis Provides Novel Insight into Genome Annotation and Nitrogen Metabolism in Nostoc sp. PCC 7120. Microbiol Spectr 2021; 9:e0049021. [PMID: 34523988 PMCID: PMC8557916 DOI: 10.1128/spectrum.00490-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Cyanobacteria, capable of oxygenic photosynthesis, play a vital role in nitrogen and carbon cycles. Nostoc sp. PCC 7120 (Nostoc 7120) is a model cyanobacterium commonly used to study cell differentiation and nitrogen metabolism. Although its genome was released in 2002, a high-quality genome annotation remains unavailable for this model cyanobacterium. Therefore, in this study, we performed an in-depth proteogenomic analysis based on high-resolution mass spectrometry (MS) data to refine the genome annotation of Nostoc 7120. We unambiguously identified 5,519 predicted protein-coding genes and revealed 26 novel genes, 75 revised genes, and 27 different kinds of posttranslational modifications in Nostoc 7120. A subset of these novel proteins were further validated at both the mRNA and peptide levels. Functional analysis suggested that many newly annotated proteins may participate in nitrogen or cadmium/mercury metabolism in Nostoc 7120. Moreover, we constructed an updated Nostoc 7120 database based on our proteogenomic results and presented examples of how the updated database could be used to improve the annotation of proteomic data. Our study provides the most comprehensive annotation of the Nostoc 7120 genome thus far and will serve as a valuable resource for the study of nitrogen metabolism in Nostoc 7120. IMPORTANCE Cyanobacteria are a large group of prokaryotes capable of oxygenic photosynthesis and play a vital role in nitrogen and carbon cycles on Earth. Nostoc 7120 is a commonly used model cyanobacterium for studying cell differentiation and nitrogen metabolism. In this study, we presented the first comprehensive draft map of the Nostoc 7120 proteome and a wide range of posttranslational modifications. In addition, we constructed an updated database of Nostoc 7120 based on our proteogenomic results and presented examples of how the updated database could be used for system-level studies of Nostoc 7120. Our study provides the most comprehensive annotation of Nostoc 7120 genome and a valuable resource for the study of nitrogen metabolism in this model cyanobacterium.
Collapse
|
24
|
Wilson ST, Caffin M, White AE, Karl DM. Evaluation of argon-induced hydrogen production as a method to measure nitrogen fixation by cyanobacteria. JOURNAL OF PHYCOLOGY 2021; 57:863-873. [PMID: 33450056 DOI: 10.1111/jpy.13129] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 11/14/2020] [Accepted: 11/23/2020] [Indexed: 06/12/2023]
Abstract
The production of dihydrogen (H2 ) is an enigmatic yet obligate component of biological dinitrogen (N2 ) fixation. This study investigates the effect on H2 production by N2 fixing cyanobacteria when they are exposed to either air or a gas mixture consisting of argon, oxygen, and carbon dioxide (Ar:O2 :CO2 ). In the absence of N2 , nitrogenase diverts the flow of electrons to the production of H2 , which becomes a measure of Total Nitrogenase Activity (TNA). This method of argon-induced hydrogen production (AIHP) is much less commonly used to infer rates of N2 fixation than the acetylene reduction (AR) assay. We provide here a full evaluation of the AIHP method and demonstrate its ability to achieve high-resolution measurements of TNA in a gas exchange flow-through system. Complete diel profiles of H2 production were obtained for N2 fixing cyanobacteria despite the absence of N2 that broadly reproduced the temporal patterns observed by the AR assay. Comparison of H2 production under air versus Ar:O2 :CO2 revealed the efficiency of electron usage during N2 fixation and place these findings in the broader context of cell metabolism. Ultimately, AIHP is demonstrated to be a viable alternative to the AR assay with several additional merits that provide an insight into cell physiology and promise for successful field application.
Collapse
Affiliation(s)
- Samuel T Wilson
- Daniel K. Inouye Center for Microbial Oceanography: Research and Education (C-MORE), University of Hawai'i at Manoa, Honolulu, Hawai'i, USA
| | - Mathieu Caffin
- Daniel K. Inouye Center for Microbial Oceanography: Research and Education (C-MORE), University of Hawai'i at Manoa, Honolulu, Hawai'i, USA
| | - Angelicque E White
- Daniel K. Inouye Center for Microbial Oceanography: Research and Education (C-MORE), University of Hawai'i at Manoa, Honolulu, Hawai'i, USA
| | - David M Karl
- Daniel K. Inouye Center for Microbial Oceanography: Research and Education (C-MORE), University of Hawai'i at Manoa, Honolulu, Hawai'i, USA
| |
Collapse
|
25
|
Han P, Li J, Zhong H, Xie J, Zhang P, Lu Q, Li J, Xu P, Chen P, Leng L, Zhou W. Anti-oxidation properties and therapeutic potentials of spirulina. ALGAL RES 2021. [DOI: 10.1016/j.algal.2021.102240] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
26
|
Li L, Lou W, Kong L, Shen W. Hydrogen Commonly Applicable from Medicine to Agriculture: From Molecular Mechanisms to the Field. Curr Pharm Des 2021; 27:747-759. [PMID: 33290194 DOI: 10.2174/1381612826666201207220051] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 11/08/2020] [Indexed: 11/22/2022]
Abstract
The emerging field of hydrogen biology has to date mainly been applied in medicine. However, hydrogen biology can also enable positive outcomes in agriculture. Agriculture faces significant challenges resulting from a growing population, climate change, natural disasters, environmental pollution, and food safety issues. In fact, hydrogen agriculture is a practical application of hydrogen biology, which may assist in addressing many of these challenges. It has been demonstrated that hydrogen gas (H2) may enhance plant tolerance towards abiotic and biotic stresses, regulate plant growth and development, increase nutritional values, prolong the shelf life, and decrease the nitrite accumulation during the storage of vegetables, as well as increase the resilience of livestock to pathogens. Our field trials show that H2 may have a promising potential to increase yield and improve the quality of agricultural products. This review aims to elucidate mechanisms for a novel agricultural application of H2 in China. Future development of hydrogen agriculture is proposed as well. Obviously, hydrogen agriculture belongs to a low carbon economy, and has great potential to provide "safe, tasty, healthy, and high-yield" agricultural products so that it may improve the sustainability of agriculture.
Collapse
Affiliation(s)
- Longna Li
- College of Life Sciences, Laboratory Center of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Wang Lou
- College of Life Sciences, Laboratory Center of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Lingshuai Kong
- College of Life Sciences, Laboratory Center of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Wenbiao Shen
- College of Life Sciences, Laboratory Center of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
27
|
Coutinho FH, von Meijenfeldt FAB, Walter JM, Haro-Moreno JM, Lopéz-Pérez M, van Verk MC, Thompson CC, Cosenza CAN, Appolinario L, Paranhos R, Cabral A, Dutilh BE, Thompson FL. Ecogenomics and metabolic potential of the South Atlantic Ocean microbiome. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 765:142758. [PMID: 33183813 DOI: 10.1016/j.scitotenv.2020.142758] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/28/2020] [Accepted: 09/28/2020] [Indexed: 05/18/2023]
Abstract
The unique combination of depth, salinity, and water masses make the South Atlantic Ocean an ecosystem of special relevance within the global ocean. Yet, the microbiome of this ecosystem has received less attention than other regions of the global Ocean. This has hampered our understanding of the diversity and metabolic potential of the microorganisms that dwell in this habitat. To fill this knowledge gap, we analyzed a collection of 31 metagenomes from the Atlantic Ocean that spanned the epipelagic, mesopelagic and bathypelagic zones (surface to 4000 m). Read-centric and gene-centric analysis revealed the unique taxonomic and functional composition of metagenomes from each depth zone, which was driven by differences in physical and chemical parameters. In parallel, a total of 40 metagenome-assembled genomes were obtained, which recovered one third of the total community. Phylogenomic reconstruction revealed that many of these genomes are derived from poorly characterized taxa of Bacteria and Archaea. Genomes derived from heterotrophic bacteria of the aphotic zone displayed a large apparatus of genes suited for the utilization of recalcitrant organic compounds such as cellulose, chitin and alkanes. In addition, we found genomic evidence suggesting that mixotrophic bacteria from the bathypelagic zone could perform carbon fixation through the Calvin-Benson-Bassham cycle, fueled by sulfur oxidation. Finally, we found that the viral communities shifted throughout the water column regarding their targeted hosts and virus-to-microbe ratio, in response to shifts in the composition and functioning their microbial counterparts. Our findings shed light on the microbial and viral drivers of important biogeochemical processes that take place in the South Atlantic Ocean.
Collapse
Affiliation(s)
- F H Coutinho
- Instituto de Biologia (IB), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil; Centre for Molecular and Biomolecular Informatics (CMBI), Radboud University Medical Centre/Radboud Institute for Molecular Life Sciences, Nijmegen, the Netherlands; Theoretical Biology and Bioinformatics, Science for Life, Utrecht University (UU), Utrecht, the Netherlands; Evolutionary Genomics Group, Departamento de Producción Vegetal y Microbiología, Universidad Miguel Hernández, Alicante, Spain
| | - F A B von Meijenfeldt
- Theoretical Biology and Bioinformatics, Science for Life, Utrecht University (UU), Utrecht, the Netherlands
| | - J M Walter
- Instituto de Biologia (IB), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil; Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
| | - J M Haro-Moreno
- Evolutionary Genomics Group, Departamento de Producción Vegetal y Microbiología, Universidad Miguel Hernández, Alicante, Spain
| | - M Lopéz-Pérez
- Evolutionary Genomics Group, Departamento de Producción Vegetal y Microbiología, Universidad Miguel Hernández, Alicante, Spain
| | - M C van Verk
- Theoretical Biology and Bioinformatics, Science for Life, Utrecht University (UU), Utrecht, the Netherlands
| | - C C Thompson
- Instituto de Biologia (IB), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - C A N Cosenza
- COPPE/SAGE, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - L Appolinario
- Instituto de Biologia (IB), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - R Paranhos
- Instituto de Biologia (IB), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - A Cabral
- Instituto de Biologia (IB), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil; Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - B E Dutilh
- Centre for Molecular and Biomolecular Informatics (CMBI), Radboud University Medical Centre/Radboud Institute for Molecular Life Sciences, Nijmegen, the Netherlands; Theoretical Biology and Bioinformatics, Science for Life, Utrecht University (UU), Utrecht, the Netherlands
| | - F L Thompson
- Instituto de Biologia (IB), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil; COPPE/SAGE, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil.
| |
Collapse
|
28
|
Synthetic Biology Approaches To Enhance Microalgal Productivity. Trends Biotechnol 2021; 39:1019-1036. [PMID: 33541719 DOI: 10.1016/j.tibtech.2020.12.010] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 12/22/2020] [Accepted: 12/29/2020] [Indexed: 12/15/2022]
Abstract
The major bottleneck in commercializing biofuels and other commodities produced by microalgae is the high cost associated with phototrophic cultivation. Improving microalgal productivities could be a solution to this problem. Synthetic biology methods have recently been used to engineer the downstream production pathways in several microalgal strains. However, engineering upstream photosynthetic and carbon fixation metabolism to enhance growth, productivity, and yield has barely been explored in microalgae. We describe strategies to improve the generation of reducing power from light, as well as to improve the assimilation of CO2 by either the native Calvin cycle or synthetic alternatives. Overall, we are optimistic that recent technological advances will prompt long-awaited breakthroughs in microalgal research.
Collapse
|
29
|
Chen MY, Teng WK, Zhao L, Hu CX, Zhou YK, Han BP, Song LR, Shu WS. Comparative genomics reveals insights into cyanobacterial evolution and habitat adaptation. THE ISME JOURNAL 2021; 15:211-227. [PMID: 32943748 PMCID: PMC7852516 DOI: 10.1038/s41396-020-00775-z] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 08/31/2020] [Accepted: 09/04/2020] [Indexed: 02/07/2023]
Abstract
Cyanobacteria are photosynthetic prokaryotes that inhabit diverse aquatic and terrestrial environments. However, the evolutionary mechanisms involved in the cyanobacterial habitat adaptation remain poorly understood. Here, based on phylogenetic and comparative genomic analyses of 650 cyanobacterial genomes, we investigated the genetic basis of cyanobacterial habitat adaptation (marine, freshwater, and terrestrial). We show: (1) the expansion of gene families is a common strategy whereby terrestrial cyanobacteria cope with fluctuating environments, whereas the genomes of many marine strains have undergone contraction to adapt to nutrient-poor conditions. (2) Hundreds of genes are strongly associated with specific habitats. Genes that are differentially abundant in genomes of marine, freshwater, and terrestrial cyanobacteria were found to be involved in light sensing and absorption, chemotaxis, nutrient transporters, responses to osmotic stress, etc., indicating the importance of these genes in the survival and adaptation of organisms in specific habitats. (3) A substantial fraction of genes that facilitate the adaptation of Cyanobacteria to specific habitats are contributed by horizontal gene transfer, and such genetic exchanges are more frequent in terrestrial cyanobacteria. Collectively, our results further our understandings of the adaptations of Cyanobacteria to different environments, highlighting the importance of ecological constraints imposed by the environment in shaping the evolution of Cyanobacteria.
Collapse
Affiliation(s)
- Meng-Yun Chen
- School of Life Sciences, South China Normal University, Guangzhou, 510631, PR China
| | - Wen-Kai Teng
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, PR China
| | - Liang Zhao
- School of Life Sciences, South China Normal University, Guangzhou, 510631, PR China
| | - Chun-Xiang Hu
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Science, 430072, Hubei, PR China
| | - Yang-Kai Zhou
- Shenzhen Key Laboratory of Marine Archaea Geo-Omics, Southern University of Science and Technology, Shenzhen, 518055, PR China
- Department of Ocean Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, PR China
| | - Bo-Ping Han
- Department of Ecology and Institute of Hydrobiology, Jinan University, Guangzhou, 510632, PR China.
| | - Li-Rong Song
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Science, 430072, Hubei, PR China.
| | - Wen-Sheng Shu
- School of Life Sciences, South China Normal University, Guangzhou, 510631, PR China.
| |
Collapse
|
30
|
Amanullah S, Saha P, Nayek A, Ahmed ME, Dey A. Biochemical and artificial pathways for the reduction of carbon dioxide, nitrite and the competing proton reduction: effect of 2nd sphere interactions in catalysis. Chem Soc Rev 2021; 50:3755-3823. [DOI: 10.1039/d0cs01405b] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Reduction of oxides and oxoanions of carbon and nitrogen are of great contemporary importance as they are crucial for a sustainable environment.
Collapse
Affiliation(s)
- Sk Amanullah
- School of Chemical Sciences
- Indian Association for the Cultivation of Science
- Kolkata
- India
| | - Paramita Saha
- School of Chemical Sciences
- Indian Association for the Cultivation of Science
- Kolkata
- India
| | - Abhijit Nayek
- School of Chemical Sciences
- Indian Association for the Cultivation of Science
- Kolkata
- India
| | - Md Estak Ahmed
- School of Chemical Sciences
- Indian Association for the Cultivation of Science
- Kolkata
- India
| | - Abhishek Dey
- School of Chemical Sciences
- Indian Association for the Cultivation of Science
- Kolkata
- India
| |
Collapse
|
31
|
Mollaei M, Timmers PHA, Suarez-Diez M, Boeren S, van Gelder AH, Stams AJM, Plugge CM. Comparative proteomics of Geobacter sulfurreducens PCA T in response to acetate, formate and/or hydrogen as electron donor. Environ Microbiol 2020; 23:299-315. [PMID: 33185968 PMCID: PMC7894505 DOI: 10.1111/1462-2920.15311] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 10/19/2020] [Accepted: 11/06/2020] [Indexed: 12/11/2022]
Abstract
Geobacter sulfurreducens is a model bacterium to study the degradation of organic compounds coupled to the reduction of Fe(III). The response of G. sulfurreducens to the electron donors acetate, formate, hydrogen and a mixture of all three with Fe(III) citrate as electron acceptor was studied using comparative physiological and proteomic approaches. Variations in the supplied electron donors resulted in differential abundance of proteins involved in the citric acid cycle (CAC), gluconeogenesis, electron transport, and hydrogenases and formate dehydrogenase. Our results provided new insights into the electron donor metabolism of G. sulfurreducens. Remarkably, formate was the preferred electron donor compared to acetate, hydrogen, or acetate plus hydrogen. When hydrogen was the electron donor, formate was formed, which was associated with a high abundance of formate dehydrogenase. Notably, abundant proteins of two CO2 fixation pathways (acetyl-CoA pathway and the reversed oxidative CAC) corroborated chemolithoautotrophic growth of G. sulfurreducens with formate or hydrogen and CO2 , and provided novel insight into chemolithoautotrophic growth of G. sulfurreducens.
Collapse
Affiliation(s)
- Monir Mollaei
- Wetsus, European Centre of Excellence for Sustainable Water Technology, Leeuwarden, The Netherlands.,Laboratory of Microbiology, Wageningen University & Research, Wageningen, The Netherlands
| | - Peer H A Timmers
- Wetsus, European Centre of Excellence for Sustainable Water Technology, Leeuwarden, The Netherlands.,Laboratory of Microbiology, Wageningen University & Research, Wageningen, The Netherlands
| | - Maria Suarez-Diez
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Wageningen, The Netherlands
| | - Sjef Boeren
- Laboratory of Biochemistry, Wageningen University & Research, Wageningen, The Netherlands
| | - Antonie H van Gelder
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, The Netherlands
| | - Alfons J M Stams
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, The Netherlands.,Centre of Biological Engineering, University of Minho, Braga, Portugal
| | - Caroline M Plugge
- Wetsus, European Centre of Excellence for Sustainable Water Technology, Leeuwarden, The Netherlands.,Laboratory of Microbiology, Wageningen University & Research, Wageningen, The Netherlands
| |
Collapse
|
32
|
Jordaan K, Lappan R, Dong X, Aitkenhead IJ, Bay SK, Chiri E, Wieler N, Meredith LK, Cowan DA, Chown SL, Greening C. Hydrogen-Oxidizing Bacteria Are Abundant in Desert Soils and Strongly Stimulated by Hydration. mSystems 2020; 5:e01131-20. [PMID: 33203691 PMCID: PMC7677003 DOI: 10.1128/msystems.01131-20] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 10/29/2020] [Indexed: 01/19/2023] Open
Abstract
How the diverse bacterial communities inhabiting desert soils maintain energy and carbon needs is much debated. Traditionally, most bacteria are thought to persist by using organic carbon synthesized by photoautotrophs following transient hydration events. Recent studies focused on Antarctic desert soils have revealed, however, that some bacteria use atmospheric trace gases, such as hydrogen (H2), to conserve energy and fix carbon independently of photosynthesis. In this study, we investigated whether atmospheric H2 oxidation occurs in four nonpolar desert soils and compared this process to photosynthesis. To do so, we first profiled the distribution, expression, and activities of hydrogenases and photosystems in surface soils collected from the South Australian desert over a simulated hydration-desiccation cycle. Hydrogenase-encoding sequences were abundant in the metagenomes and metatranscriptomes and were detected in actinobacterial, acidobacterial, and cyanobacterial metagenome-assembled genomes. Native dry soil samples mediated H2 oxidation, but rates increased 950-fold following wetting. Oxygenic and anoxygenic phototrophs were also detected in the community but at lower abundances. Hydration significantly stimulated rates of photosynthetic carbon fixation and, to a lesser extent, dark carbon assimilation. Hydrogenase genes were also widespread in samples from three other climatically distinct deserts, the Namib, Gobi, and Mojave, and atmospheric H2 oxidation was also greatly stimulated by hydration at these sites. Together, these findings highlight that H2 is an important, hitherto-overlooked energy source supporting bacterial communities in desert soils. Contrary to our previous hypotheses, however, H2 oxidation occurs simultaneously rather than alternately with photosynthesis in such ecosystems and may even be mediated by some photoautotrophs.IMPORTANCE Desert ecosystems, spanning a third of the earth's surface, harbor remarkably diverse microbial life despite having a low potential for photosynthesis. In this work, we reveal that atmospheric hydrogen serves as a major previously overlooked energy source for a large proportion of desert bacteria. We show that both chemoheterotrophic and photoautotrophic bacteria have the potential to oxidize hydrogen across deserts sampled across four continents. Whereas hydrogen oxidation was slow in native dry deserts, it increased by three orders of magnitude together with photosynthesis following hydration. This study revealed that continual harvesting of atmospheric energy sources may be a major way that desert communities adapt to long periods of water and energy deprivation, with significant ecological and biogeochemical ramifications.
Collapse
Affiliation(s)
- Karen Jordaan
- School of Biological Sciences, Monash University, Clayton, VIC, Australia
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
| | - Rachael Lappan
- School of Biological Sciences, Monash University, Clayton, VIC, Australia
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Xiyang Dong
- School of Marine Sciences, Sun Yat-Sen University, Zhuhai, China
| | - Ian J Aitkenhead
- School of Biological Sciences, Monash University, Clayton, VIC, Australia
| | - Sean K Bay
- School of Biological Sciences, Monash University, Clayton, VIC, Australia
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Eleonora Chiri
- School of Biological Sciences, Monash University, Clayton, VIC, Australia
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | | | - Laura K Meredith
- School of Natural Resources and the Environment, University of Arizona, Tucson, Arizona, USA
| | - Don A Cowan
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
| | - Steven L Chown
- School of Biological Sciences, Monash University, Clayton, VIC, Australia
| | - Chris Greening
- School of Biological Sciences, Monash University, Clayton, VIC, Australia
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| |
Collapse
|
33
|
Di Cesare A, Dzhembekova N, Cabello-Yeves PJ, Eckert EM, Slabakova V, Slabakova N, Peneva E, Bertoni R, Corno G, Salcher MM, Kamburska L, Bertoni F, Rodriguez-Valera F, Moncheva S, Callieri C. Genomic Comparison and Spatial Distribution of Different Synechococcus Phylotypes in the Black Sea. Front Microbiol 2020; 11:1979. [PMID: 32903389 PMCID: PMC7434838 DOI: 10.3389/fmicb.2020.01979] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 07/27/2020] [Indexed: 11/24/2022] Open
Abstract
Picocyanobacteria of the genus Synechococcus are major contributors to global primary production and nutrient cycles due to their oxygenic photoautotrophy, their abundance, and the extensive distribution made possible by their wide-ranging biochemical capabilities. The recent recovery and isolation of strains from the deep euxinic waters of the Black Sea encouraged us to expand our analysis of their adaptability also beyond the photic zone of aquatic environments. To this end, we quantified the total abundance and distribution of Synechococcus along the whole vertical profile of the Black Sea by flow cytometry, and analyzed the data obtained in light of key environmental factors. Furthermore, we designed phylotype-specific primers using the genomes of two new epipelagic coastal strains – first described here – and of two previously described mesopelagic strains, analyzed their presence/abundance by qPCR, and tested this parameter also in metagenomes from two stations at different depths. Together, whole genome sequencing, metagenomics and qPCR techniques provide us with a higher resolution of Synechococcus dynamics in the Black Sea. Both phylotypes analyzed are abundant and successful in epipelagic coastal waters; but while the newly described epipelagic strains are specifically adapted to this environment, the strains previously isolated in mesopelagic waters are able, in low numbers, to withstand the aphotic and oxygen depleted conditions of deep layers. This heterogeneity allows different Synechococcus phylotypes to occupy different niches and underscores the importance of a more detailed characterization of the abundance, distribution, and dynamics of individual populations of these picocyanobacteria.
Collapse
Affiliation(s)
- Andrea Di Cesare
- National Research Council (CNR), Institute of Water Research (IRSA), Verbania, Italy
| | - Nina Dzhembekova
- Institute of Oceanology "Fridtjof Nansen" - Bulgarian Academy of Sciences, Varna, Bulgaria
| | - Pedro J Cabello-Yeves
- Evolutionary Genomics Group, Departamento de Producción Vegetal y Microbiología, Universidad Miguel Hernández, San Juan de Alicante, Spain
| | - Ester M Eckert
- National Research Council (CNR), Institute of Water Research (IRSA), Verbania, Italy
| | - Violeta Slabakova
- Institute of Oceanology "Fridtjof Nansen" - Bulgarian Academy of Sciences, Varna, Bulgaria
| | - Nataliya Slabakova
- Institute of Oceanology "Fridtjof Nansen" - Bulgarian Academy of Sciences, Varna, Bulgaria
| | - Elisaveta Peneva
- Faculty of Physics, Sofia University "St. Kliment Ohridski", Sofia, Bulgaria
| | - Roberto Bertoni
- National Research Council (CNR), Institute of Water Research (IRSA), Verbania, Italy
| | - Gianluca Corno
- National Research Council (CNR), Institute of Water Research (IRSA), Verbania, Italy
| | - Michaela M Salcher
- Biology Centre Czech Academy of Science (CAS), Institute of Hydrobiology, Czechia
| | - Lyudmila Kamburska
- National Research Council (CNR), Institute of Water Research (IRSA), Verbania, Italy
| | | | - Francisco Rodriguez-Valera
- Evolutionary Genomics Group, Departamento de Producción Vegetal y Microbiología, Universidad Miguel Hernández, San Juan de Alicante, Spain.,Laboratory for Theoretical and Computer Studies of Biological Macromolecules and Genomes, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Snejana Moncheva
- Institute of Oceanology "Fridtjof Nansen" - Bulgarian Academy of Sciences, Varna, Bulgaria
| | - Cristiana Callieri
- National Research Council (CNR), Institute of Water Research (IRSA), Verbania, Italy
| |
Collapse
|
34
|
Mona S, Kumar SS, Kumar V, Parveen K, Saini N, Deepak B, Pugazhendhi A. Green technology for sustainable biohydrogen production (waste to energy): A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 728:138481. [PMID: 32361358 DOI: 10.1016/j.scitotenv.2020.138481] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 04/03/2020] [Accepted: 04/03/2020] [Indexed: 06/11/2023]
Abstract
Perceiving and detecting a sustainable source of energy is very critical issue for current modern society. Hydrogen on combustion releases energy and water as a byproduct and has been considered as an environmental pollution free energy carrier. From the last decade, most of the researchers have recommended hydrogen as one of the cleanest fuels and its demand is rising ever since. Hydrogen having the highest energy density is more advantageous than any other fuel. Hydrogen obtained from the fossil fuels produces carbon dioxide as a byproduct and creates environment negative effect. Therefore, biohydrogen production from green algae and cyanobacteria is an attractive option that generates a benign renewable energy carrier. Microalgal feedstocks show a high potential for the generation of fuel such as biohydrogen, bioethanol and biodiesel. This article has reviewed the different methods of biohydrogen production while also trying to find out the most economical and ecofriendly method for its production. A thorough review process has been carried out to study the methods, enzymes involved, factors affecting the rate of hydrogen production, dual nature of algae, challenges and commercialization potential of algal biohydrogen.
Collapse
Affiliation(s)
- Sharma Mona
- Department of Environmental Science and Engineering, Guru Jambheshwar University of Science & Technology, Hisar 125001, Haryana, India
| | - Smita S Kumar
- Centre for Rural Development & Technology, Indian Institute of Technology Delhi, Hauz Khas, 110016 Delhi, India; Department of Environmental Studies, J.C. Bose University of Science and Technology, YMCA, Faridabad 121006, Haryana, India
| | - Vivek Kumar
- Centre for Rural Development & Technology, Indian Institute of Technology Delhi, Hauz Khas, 110016 Delhi, India
| | - Khalida Parveen
- Department of Environmental Sciences, University of Jammu, J&K, India
| | - Neha Saini
- Department of Environmental Science and Engineering, Guru Jambheshwar University of Science & Technology, Hisar 125001, Haryana, India
| | | | - Arivalagan Pugazhendhi
- Innovative Green Product Synthesis and Renewable Environment Development Research Group, Faculty of Environment and Labour Safety, Ton Duc Thang University, Ho Chi Minh City, Viet Nam.
| |
Collapse
|
35
|
A widely distributed hydrogenase oxidises atmospheric H 2 during bacterial growth. ISME JOURNAL 2020; 14:2649-2658. [PMID: 32647310 PMCID: PMC7784904 DOI: 10.1038/s41396-020-0713-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 06/25/2020] [Accepted: 06/30/2020] [Indexed: 11/09/2022]
Abstract
Diverse aerobic bacteria persist by consuming atmospheric hydrogen (H2) using group 1h [NiFe]-hydrogenases. However, other hydrogenase classes are also distributed in aerobes, including the group 2a [NiFe]-hydrogenase. Based on studies focused on Cyanobacteria, the reported physiological role of the group 2a [NiFe]-hydrogenase is to recycle H2 produced by nitrogenase. However, given this hydrogenase is also present in various heterotrophs and lithoautotrophs lacking nitrogenases, it may play a wider role in bacterial metabolism. Here we investigated the role of this enzyme in three species from different phylogenetic lineages and ecological niches: Acidithiobacillus ferrooxidans (phylum Proteobacteria), Chloroflexus aggregans (phylum Chloroflexota), and Gemmatimonas aurantiaca (phylum Gemmatimonadota). qRT-PCR analysis revealed that the group 2a [NiFe]-hydrogenase of all three species is significantly upregulated during exponential growth compared to stationary phase, in contrast to the profile of the persistence-linked group 1h [NiFe]-hydrogenase. Whole-cell biochemical assays confirmed that all three strains aerobically respire H2 to sub-atmospheric levels, and oxidation rates were much higher during growth. Moreover, the oxidation of H2 supported mixotrophic growth of the carbon-fixing strains C. aggregans and A. ferrooxidans. Finally, we used phylogenomic analyses to show that this hydrogenase is widely distributed and is encoded by 13 bacterial phyla. These findings challenge the current persistence-centric model of the physiological role of atmospheric H2 oxidation and extend this process to two more phyla, Proteobacteria and Gemmatimonadota. In turn, these findings have broader relevance for understanding how bacteria conserve energy in different environments and control the biogeochemical cycling of atmospheric trace gases.
Collapse
|
36
|
Li C, Huang D, Wang C, Wang N, Yao Y, Li W, Liao W. NO is involved in H 2-induced adventitious rooting in cucumber by regulating the expression and interaction of plasma membrane H +-ATPase and 14-3-3. PLANTA 2020; 252:9. [PMID: 32602044 DOI: 10.1007/s00425-020-03416-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 06/23/2020] [Indexed: 05/27/2023]
Abstract
NO was involved in H2-induced adventitious rooting by regulating the protein and gene expressions of PM H+-ATPase and 14-3-3. Simultaneously, the interaction of PM H+-ATPase and 14-3-3 protein was also involved in this process. Hydrogen gas (H2) and nitric oxide (NO) have been shown to be involved in plant growth and development. The results in this study revealed that NO was involved in H2-induced adventitious root formation. Western blot (WB) analysis showed that the protein abundances of plasma membrane H+-ATPase (PM H+-ATPase) and 14-3-3 protein were increased after H2, NO, H2 plus NO treatments, whereas their protein abundances were down regulated when NO scavenger carboxy-2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (cPTI O) was added. Moreover, the mRNA abundances of the HA3 and 14-3-3(7) gene as well as the activities of PM H+-ATPase (EC 3.6.1.35) and H+ pump were in full agreement with the changes of protein abundance. Phosphorylation of PM H+-ATPase and the interaction of PM H+-ATPase and 14-3-3 protein were detected by co-immunoprecipitation analysis. H2 and NO significantly up regulated the phosphorylation of PM H+-ATPase and the interaction of PM H+-ATPase and 14-3-3 protein. Conversely, the stimulation of PM H+-ATPase phosphorylation and protein interaction were significantly diminished by cPTIO. Protein interaction activator fusicoccin (FC) and inhibitor adenosine monophosphate (AMP) of PM H+-ATPase and 14-3-3 were used in this study, and the results showed that FC significantly increased the abundances of PM H+-ATPase and 14-3-3, while AMP showed opposite trends. We further proved the critical roles of PM H+-ATPase and 14-3-3 protein interaction in NO-H2-induced adventitious root formation. Taken together, our results suggested that NO might be involved in H2-induced adventitious rooting by regulating the expression and the interaction of PM H+-ATPase and 14-3-3 protein.
Collapse
Affiliation(s)
- Changxia Li
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, People's Republic of China
| | - Dengjing Huang
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, People's Republic of China
| | - Chunlei Wang
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, People's Republic of China
| | - Ni Wang
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, People's Republic of China
| | - Yandong Yao
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, People's Republic of China
| | - Weifang Li
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, People's Republic of China
| | - Weibiao Liao
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, People's Republic of China.
| |
Collapse
|
37
|
Artz JH, Tokmina-Lukaszewska M, Mulder DW, Lubner CE, Gutekunst K, Appel J, Bothner B, Boehm M, King PW. The structure and reactivity of the HoxEFU complex from the cyanobacterium Synechocystis sp. PCC 6803. J Biol Chem 2020; 295:9445-9454. [PMID: 32409585 PMCID: PMC7363133 DOI: 10.1074/jbc.ra120.013136] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 05/11/2020] [Indexed: 11/19/2022] Open
Abstract
Cyanobacterial Hox is a [NiFe] hydrogenase that consists of the hydrogen (H2)-activating subunits HoxYH, which form a complex with the HoxEFU assembly to mediate reactions with soluble electron carriers like NAD(P)H and ferredoxin (Fdx), thereby coupling photosynthetic electron transfer to energy-transforming catalytic reactions. Researchers studying the HoxEFUYH complex have observed that HoxEFU can be isolated independently of HoxYH, leading to the hypothesis that HoxEFU is a distinct functional subcomplex rather than an artifact of Hox complex isolation. Moreover, outstanding questions about the reactivity of Hox with natural substrates and the site(s) of substrate interactions and coupling of H2, NAD(P)H, and Fdx remain to be resolved. To address these questions, here we analyzed recombinantly produced HoxEFU by electron paramagnetic resonance spectroscopy and kinetic assays with natural substrates. The purified HoxEFU subcomplex catalyzed electron transfer reactions among NAD(P)H, flavodoxin, and several ferredoxins, thus functioning in vitro as a shuttle among different cyanobacterial pools of reducing equivalents. Both Fdx1-dependent reductions of NAD+ and NADP+ were cooperative. HoxEFU also catalyzed the flavodoxin-dependent reduction of NAD(P)+, Fdx2-dependent oxidation of NADH and Fdx4- and Fdx11-dependent reduction of NAD+. MS-based mapping identified an Fdx1-binding site at the junction of HoxE and HoxF, adjacent to iron-sulfur (FeS) clusters in both subunits. Overall, the reactivity of HoxEFU observed here suggests that it functions in managing peripheral electron flow from photosynthetic electron transfer, findings that reveal detailed insights into how ubiquitous cellular components may be used to allocate energy flow into specific bioenergetic products.
Collapse
Affiliation(s)
- Jacob H Artz
- Biosciences Center, National Renewable Energy Laboratory, Golden, Colorado, USA
| | | | - David W Mulder
- Biosciences Center, National Renewable Energy Laboratory, Golden, Colorado, USA
| | - Carolyn E Lubner
- Biosciences Center, National Renewable Energy Laboratory, Golden, Colorado, USA
| | | | - Jens Appel
- Botanical Institute, Christian-Albrechts-University, Kiel, Germany
| | - Brian Bothner
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana, USA
| | - Marko Boehm
- Botanical Institute, Christian-Albrechts-University, Kiel, Germany
| | - Paul W King
- Biosciences Center, National Renewable Energy Laboratory, Golden, Colorado, USA
| |
Collapse
|
38
|
Khetkorn W, Lindblad P, Incharoensakdi A. Enhanced H2 production with efficient N2-fixation by fructose mixotrophically grown Anabaena sp. PCC 7120 strain disrupted in uptake hydrogenase. ALGAL RES 2020. [DOI: 10.1016/j.algal.2020.101823] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
39
|
Hu X, Kerckhof FM, Ghesquière J, Bernaerts K, Boeckx P, Clauwaert P, Boon N. Microbial Protein out of Thin Air: Fixation of Nitrogen Gas by an Autotrophic Hydrogen-Oxidizing Bacterial Enrichment. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:3609-3617. [PMID: 32125831 DOI: 10.1021/acs.est.9b06755] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
For the production of edible microbial protein (MP), ammonia generated by the Haber-Bosch process or reclaimed ammonia from waste streams is typically considered as the nitrogen source. These processes for ammonia production are highly energy intensive. In this study, the potential for using nitrogen gas (N2) as a direct nitrogen source for MP production by hydrogen-oxidizing bacteria (HOB) was evaluated. The use of N2 versus ammonium as nitrogen source during the enrichment process resulted in differentiation of the bacterial community composition of the enrichments. A few previously unknown potential N2-fixing HOB taxa (i.e., representatives of the genus Azonexus and the family Comamonadaceae) dominated the enrichments. The biomass yield of a N2-fixing HOB enrichment was 30-50% lower than that of the ammonium-based HOB enrichment from the same inoculum source. The dried biomass of N2-fixing HOB had a high protein content (62.0 ± 6.3%) and an essential amino acid profile comparable to MP from ammonium-based HOB. MP from N2-fixing HOB could potentially be produced in situ without entailing the emissions caused by ammonia production and transportation by conventional means. It could be a promising substitute for N2-fixing protein-rich soybean because it has 70% higher protein content and double energy conversion efficiency from solar energy to biomass.
Collapse
Affiliation(s)
- Xiaona Hu
- Center for Microbial Ecology and Technology (CMET), Ghent University, Coupure Links 653, 9000 Gent, Belgium
| | - Frederiek-Maarten Kerckhof
- Center for Microbial Ecology and Technology (CMET), Ghent University, Coupure Links 653, 9000 Gent, Belgium
| | - Justien Ghesquière
- Bio- and Chemical Systems Technology, Reactor Engineering, and Safety (CREaS) Division, Department of Chemical Engineering, KU Leuven, Celestijnenlaan 200F (box 2424), 3001 Leuven, Belgium
| | - Kristel Bernaerts
- Bio- and Chemical Systems Technology, Reactor Engineering, and Safety (CREaS) Division, Department of Chemical Engineering, KU Leuven, Celestijnenlaan 200F (box 2424), 3001 Leuven, Belgium
| | - Pascal Boeckx
- Isotope Bioscience Laboratory (ISOFYS), Ghent University, Coupure Links 653, 9000 Gent, Belgium
| | - Peter Clauwaert
- Center for Microbial Ecology and Technology (CMET), Ghent University, Coupure Links 653, 9000 Gent, Belgium
| | - Nico Boon
- Center for Microbial Ecology and Technology (CMET), Ghent University, Coupure Links 653, 9000 Gent, Belgium
| |
Collapse
|
40
|
The hydrogen gas bio-based economy and the production of renewable building block chemicals, food and energy. N Biotechnol 2020; 55:12-18. [DOI: 10.1016/j.nbt.2019.09.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 09/17/2019] [Accepted: 09/17/2019] [Indexed: 12/25/2022]
|
41
|
Reaño RL. Assessment of environmental impact and energy performance of rice husk utilization in various biohydrogen production pathways. BIORESOURCE TECHNOLOGY 2020; 299:122590. [PMID: 31865153 DOI: 10.1016/j.biortech.2019.122590] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Revised: 12/06/2019] [Accepted: 12/08/2019] [Indexed: 06/10/2023]
Abstract
This work aimed to compare the environmental impact and energy performance of rice husk utilization for biohydrogen production via different pathways using parameters and processes applicable in Southeast Asian countries. Six scenarios were developed by combining each selected biohydrogen production process - electrolysis, gasification and dark fermentation, with different energy production technology. The emission values and energy demand varies depending on the scenarios studied, highlighting the effect of different efficiencies of each biohydrogen production technology. The dark fermentation route has the least environmental impact and the highest energy conversion efficiency. Rice husk used in a co-generation plant to supply process energy creates a purely green technology. Biomass energy ratio provides a basis for the performance of each pathway in terms of the conversion efficiency, emissions and energy demand. The sensitivity analysis is used to identify key parameters and processes to improve the dark fermentation technology.
Collapse
Affiliation(s)
- Resmond Lat Reaño
- Department of Engineering Science, College of Engineering and Agro-Industrial Technology, University of the Philippines Los Baños, Los Baños, Laguna 4031, Philippines.
| |
Collapse
|
42
|
Malek Shahkouhi A, Motamedian E. Reconstruction of a regulated two-cell metabolic model to study biohydrogen production in a diazotrophic cyanobacterium Anabaena variabilis ATCC 29413. PLoS One 2020; 15:e0227977. [PMID: 31978122 PMCID: PMC6980584 DOI: 10.1371/journal.pone.0227977] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Accepted: 01/03/2020] [Indexed: 12/21/2022] Open
Abstract
Anabaena variabilis is a diazotrophic filamentous cyanobacterium that differentiates to heterocysts and produces hydrogen as a byproduct. Study on metabolic interactions of the two differentiated cells provides a better understanding of its metabolism especially for improving hydrogen production. To this end, a genome-scale metabolic model for Anabaena variabilis ATCC 29413, iAM957, was reconstructed and evaluated in this research. Then, the model and transcriptomic data of the vegetative and heterocyst cells were applied to construct a regulated two-cell metabolic model. The regulated model improved prediction for biomass in high radiation levels. The regulated model predicts that heterocysts provide an oxygen-free environment and then, this model was used to find strategies for improving hydrogen production in heterocysts. The predictions indicate that the removal of uptake hydrogenase improves hydrogen production which is consistent with previous empirical research. Furthermore, the regulated model proposed activation of some reactions to provide redox cofactors which are required for improving hydrogen production up to 60% by bidirectional hydrogenase.
Collapse
Affiliation(s)
- Ali Malek Shahkouhi
- Department of Biotechnology, Faculty of Chemical Engineering, Tarbiat Modares University, Tehran, Iran
| | - Ehsan Motamedian
- Department of Biotechnology, Faculty of Chemical Engineering, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
43
|
Zhang HT, Zhang MT. The Application of Pincer Ligand in Catalytic Water Splitting. TOP ORGANOMETAL CHEM 2020. [DOI: 10.1007/3418_2020_71] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
44
|
Aerobic nitrogen-fixing bacteria for hydrogen and ammonium production: current state and perspectives. Appl Microbiol Biotechnol 2019; 104:1383-1399. [PMID: 31879824 DOI: 10.1007/s00253-019-10210-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 10/16/2019] [Accepted: 10/20/2019] [Indexed: 10/25/2022]
Abstract
Biological nitrogen fixation (BNF) is accomplished through the action of the oxygen-sensitive enzyme nitrogenase. One unique caveat of this reaction is the inclusion of hydrogen gas (H2) evolution as a requirement of the reaction mechanism. In the absence of nitrogen gas as a substrate, nitrogenase will reduce available protons to become a directional ATP-dependent hydrogenase. Aerobic nitrogen-fixing microbes are of particular interest, because these organisms have evolved to perform these reactions with oxygen-sensitive enzymes in an environment surrounded by oxygen. The ability to maintain a functioning nitrogenase in aerobic conditions facilitates the application of these organisms under conditions where most anaerobic nitrogen fixers are excluded. In recent years, questions related to the potential yields of the nitrogenase-derived products ammonium and H2 have grown more approachable to experimentation based on efforts to construct increasingly more complicated strains of aerobic nitrogen fixers such as the obligate aerobe Azotobacter vinelandii. This mini-review provides perspectives of recent and historical efforts to understand and quantify the yields of ammonium and H2 that can be obtained through the model aerobe A. vinelandii, and outstanding questions that remain to be answered to fully realize the potential of nitrogenase in these applications with model aerobic bacteria.
Collapse
|
45
|
Islam ZF, Cordero PRF, Greening C. Putative Iron-Sulfur Proteins Are Required for Hydrogen Consumption and Enhance Survival of Mycobacteria. Front Microbiol 2019; 10:2749. [PMID: 31824474 PMCID: PMC6883350 DOI: 10.3389/fmicb.2019.02749] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 11/12/2019] [Indexed: 01/01/2023] Open
Abstract
Aerobic soil bacteria persist by scavenging molecular hydrogen (H2) from the atmosphere. This key process is the primary sink in the biogeochemical hydrogen cycle and supports the productivity of oligotrophic ecosystems. In Mycobacterium smegmatis, atmospheric H2 oxidation is catalyzed by two phylogenetically distinct [NiFe]-hydrogenases, Huc (group 2a) and Hhy (group 1h). However, it is currently unresolved how these enzymes transfer electrons derived from H2 oxidation into the aerobic respiratory chain. In this work, we used genetic approaches to confirm that two putative iron-sulfur cluster proteins encoded on the hydrogenase structural operons, HucE and HhyE, are required for H2 consumption in M. smegmatis. Sequence analysis show that these proteins, while homologous, fall into distinct phylogenetic clades and have distinct metal-binding motifs. H2 oxidation was reduced when the genes encoding these proteins were deleted individually and was eliminated when they were deleted in combination. In turn, the growth yield and long-term survival of these deletion strains was modestly but significantly reduced compared to the parent strain. In both biochemical and phenotypic assays, the mutant strains lacking the putative iron-sulfur proteins phenocopied those of hydrogenase structural subunit mutants. We hypothesize that these proteins mediate electron transfer between the catalytic subunits of the hydrogenases and the menaquinone pool of the M. smegmatis respiratory chain; however, other roles (e.g., in maturation) are also plausible and further work is required to resolve their role. The conserved nature of these proteins within most Hhy- or Huc-encoding organisms suggests that these proteins are important determinants of atmospheric H2 oxidation.
Collapse
Affiliation(s)
| | | | - Chris Greening
- School of Biological Sciences, Monash University, Clayton, VIC, Australia
| |
Collapse
|
46
|
Kourpa K, Manarolaki E, Lyratzakis A, Strataki V, Rupprecht F, Langer JD, Tsiotis G. Proteome Analysis of Enriched Heterocysts from Two Hydrogenase Mutants fromAnabaenasp. PCC 7120. Proteomics 2019; 19:e1800332. [DOI: 10.1002/pmic.201800332] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 07/12/2019] [Indexed: 11/08/2022]
Affiliation(s)
- Katerina Kourpa
- Division of BiochemistryDepartment of ChemistryUniversity of Crete P.O. Box 2208, GR‐71003 Voutes Greece
| | - Eftychia Manarolaki
- Division of BiochemistryDepartment of ChemistryUniversity of Crete P.O. Box 2208, GR‐71003 Voutes Greece
| | - Alexandros Lyratzakis
- Division of BiochemistryDepartment of ChemistryUniversity of Crete P.O. Box 2208, GR‐71003 Voutes Greece
| | - Vasso Strataki
- Division of BiochemistryDepartment of ChemistryUniversity of Crete P.O. Box 2208, GR‐71003 Voutes Greece
| | - Fiona Rupprecht
- Max Planck Institute for Brain Research Max‐von‐Laue‐Straße 4 D‐60438 Frankfurt am Main Germany
| | - Julian D. Langer
- Max Planck Institute for Brain Research Max‐von‐Laue‐Straße 4 D‐60438 Frankfurt am Main Germany
- Max Planck Institute for Biophysics Max‐von‐Laue‐Straße 3 D‐60438 Frankfurt am Main Germany
| | - Georgios Tsiotis
- Division of BiochemistryDepartment of ChemistryUniversity of Crete P.O. Box 2208, GR‐71003 Voutes Greece
| |
Collapse
|
47
|
Abinandan S, Subashchandrabose SR, Venkateswarlu K, Megharaj M. Soil microalgae and cyanobacteria: the biotechnological potential in the maintenance of soil fertility and health. Crit Rev Biotechnol 2019; 39:981-998. [PMID: 31455102 DOI: 10.1080/07388551.2019.1654972] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The soil microbiota plays a major role in maintaining the nutrient balance, carbon sink, and soil health. Numerous studies reported on the function of microbiota such as plant growth-promoting bacteria and fungi in soil. Although microalgae and cyanobacteria are ubiquitous in soil, very less attention has been paid on the potential of these microorganisms. The indiscriminate use of various chemicals to enhance agricultural productivity led to serious consequences like structure instability, accumulation of toxic contaminants, etc., leading to an ecological imbalance between soil, plant, and microbiota. However, the significant role of microalgae and cyanobacteria in crop productivity and other potential options has been so far undermined. The intent of the present critical review is to highlight the significance of this unique group of microorganisms in terms of maintaining soil fertility and soil health. Beneficial soil ecological applications of these two groups in enhancing plant growth, establishing interrelationships among other microbes, and detoxifying chemical agents such as insecticides, herbicides, etc. through mutualistic cooperation by synthesizing enzymes and phytohormones are presented. Since recombinant technology involving genomic integration favors the development of useful traits in microalgae and cyanobacteria for their potential application in improvement of soil fertility and health, the merits and demerits of various such advanced methodologies associated in harnessing the biotechnological potential of these photosynthetic microorganisms for sustainable agriculture were also discussed.
Collapse
Affiliation(s)
- Sudharsanam Abinandan
- Global Centre for Environmental Remediation (GCER), Faculty of Science, University of Newcastle , Callaghan , Australia
| | - Suresh R Subashchandrabose
- Global Centre for Environmental Remediation (GCER), Faculty of Science, University of Newcastle , Callaghan , Australia.,Cooperative Research Centre for Contamination Assessment and Remediation of Environment (CRC CARE), University of Newcastle , Callaghan , Australia
| | | | - Mallavarapu Megharaj
- Global Centre for Environmental Remediation (GCER), Faculty of Science, University of Newcastle , Callaghan , Australia.,Cooperative Research Centre for Contamination Assessment and Remediation of Environment (CRC CARE), University of Newcastle , Callaghan , Australia
| |
Collapse
|
48
|
Eichner M, Basu S, Gledhill M, de Beer D, Shaked Y. Hydrogen Dynamics in Trichodesmium Colonies and Their Potential Role in Mineral Iron Acquisition. Front Microbiol 2019; 10:1565. [PMID: 31354665 PMCID: PMC6636555 DOI: 10.3389/fmicb.2019.01565] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 06/24/2019] [Indexed: 12/14/2022] Open
Abstract
N2-fixing cyanobacteria mediate H2 fluxes through the opposing processes of H2 evolution, which is a by-product of the N2 fixation reaction, and H2 uptake, which is driven by uptake hydrogenases. Here, we used microelectrodes to characterize H2 and O2 dynamics in single natural colonies of the globally important N2 fixer Trichodesmium collected from the Gulf of Eilat. We observed gradually changing H2 dynamics over the course of the day, including both net H2 evolution and net H2 uptake, as well as large differences in H2 fluxes between individual colonies. Net H2 uptake was observed in colonies amended with H2 in both light and dark. Net H2 evolution was recorded in the light only, reflecting light-dependent N2 fixation coupled to H2 evolution. Both net H2 evolution and H2 uptake rates were higher before 2 pm than later in the day. These pronounced H2 dynamics in the morning coincided with strong net O2 uptake and the previously reported diel peak in N2 fixation. Later in the afternoon, when photosynthesis rates determined by O2 measurements were highest, and N2 fixation rates decrease according to previous studies, the H2 dynamics were also less pronounced. Thus, the observed diel variations in H2 dynamics reflect diel changes in the rates of O2 consumption and N2 fixation. Remarkably, the presence of H2 strongly stimulated the uptake of mineral iron by natural colonies. The magnitude of this effect was dependent on the time of day, with the strongest response in incubations that started before 2 pm, i.e., the period that covered the time of highest uptake hydrogenase activity. Based on these findings, we propose that by providing an electron source for mineral iron reduction in N2-fixing cells, H2 may contribute to iron uptake in Trichodesmium colonies.
Collapse
Affiliation(s)
- Meri Eichner
- Microsensor Group, Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Subhajit Basu
- The Freddy & Nadine Herrmann Institute of Earth Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
- The Interuniversity Institute for Marine Sciences in Eilat, Eilat, Israel
| | - Martha Gledhill
- GEOMAR Helmholtz Center for Ocean Research Kiel, Kiel, Germany
| | - Dirk de Beer
- Microsensor Group, Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Yeala Shaked
- The Freddy & Nadine Herrmann Institute of Earth Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
- The Interuniversity Institute for Marine Sciences in Eilat, Eilat, Israel
| |
Collapse
|
49
|
Khan AZ, Bilal M, Mehmood S, Sharma A, Iqbal HMN. State-of-the-Art Genetic Modalities to Engineer Cyanobacteria for Sustainable Biosynthesis of Biofuel and Fine-Chemicals to Meet Bio-Economy Challenges. Life (Basel) 2019; 9:54. [PMID: 31252652 PMCID: PMC6789541 DOI: 10.3390/life9030054] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 06/15/2019] [Accepted: 06/26/2019] [Indexed: 02/07/2023] Open
Abstract
In recent years, metabolic engineering of microorganisms has attained much research interest to produce biofuels and industrially pertinent chemicals. Owing to the relatively fast growth rate, genetic malleability, and carbon neutral production process, cyanobacteria has been recognized as a specialized microorganism with a significant biotechnological perspective. Metabolically engineering cyanobacterial strains have shown great potential for the photosynthetic production of an array of valuable native or non-native chemicals and metabolites with profound agricultural and pharmaceutical significance using CO2 as a building block. In recent years, substantial improvements in developing and introducing novel and efficient genetic tools such as genome-scale modeling, high throughput omics analyses, synthetic/system biology tools, metabolic flux analysis and clustered regularly interspaced short palindromic repeats (CRISPR)-associated nuclease (CRISPR/cas) systems have been made for engineering cyanobacterial strains. Use of these tools and technologies has led to a greater understanding of the host metabolism, as well as endogenous and heterologous carbon regulation mechanisms which consequently results in the expansion of maximum productive ability and biochemical diversity. This review summarizes recent advances in engineering cyanobacteria to produce biofuel and industrially relevant fine chemicals of high interest. Moreover, the development and applications of cutting-edge toolboxes such as the CRISPR-cas9 system, synthetic biology, high-throughput "omics", and metabolic flux analysis to engineer cyanobacteria for large-scale cultivation are also discussed.
Collapse
Affiliation(s)
- Aqib Zafar Khan
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China.
| | - Shahid Mehmood
- Bio-X Institute, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200030, China
| | - Ashutosh Sharma
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Queretaro, Epigmenio Gonzalez 500, Queretaro CP 76130, Mexico
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey CP 64849, N.L., Mexico.
| |
Collapse
|
50
|
Pernil R, Schleiff E. Metalloproteins in the Biology of Heterocysts. Life (Basel) 2019; 9:E32. [PMID: 30987221 PMCID: PMC6616624 DOI: 10.3390/life9020032] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 03/18/2019] [Accepted: 03/28/2019] [Indexed: 12/15/2022] Open
Abstract
Cyanobacteria are photoautotrophic microorganisms present in almost all ecologically niches on Earth. They exist as single-cell or filamentous forms and the latter often contain specialized cells for N₂ fixation known as heterocysts. Heterocysts arise from photosynthetic active vegetative cells by multiple morphological and physiological rearrangements including the absence of O₂ evolution and CO₂ fixation. The key function of this cell type is carried out by the metalloprotein complex known as nitrogenase. Additionally, many other important processes in heterocysts also depend on metalloproteins. This leads to a high metal demand exceeding the one of other bacteria in content and concentration during heterocyst development and in mature heterocysts. This review provides an overview on the current knowledge of the transition metals and metalloproteins required by heterocysts in heterocyst-forming cyanobacteria. It discusses the molecular, physiological, and physicochemical properties of metalloproteins involved in N₂ fixation, H₂ metabolism, electron transport chains, oxidative stress management, storage, energy metabolism, and metabolic networks in the diazotrophic filament. This provides a detailed and comprehensive picture on the heterocyst demands for Fe, Cu, Mo, Ni, Mn, V, and Zn as cofactors for metalloproteins and highlights the importance of such metalloproteins for the biology of cyanobacterial heterocysts.
Collapse
Affiliation(s)
- Rafael Pernil
- Institute for Molecular Biosciences, Goethe University Frankfurt, Max-von-Laue-Straβe 9, 60438 Frankfurt am Main, Germany.
| | - Enrico Schleiff
- Institute for Molecular Biosciences, Goethe University Frankfurt, Max-von-Laue-Straβe 9, 60438 Frankfurt am Main, Germany.
- Frankfurt Institute for Advanced Studies, Ruth-Moufang-Straße 1, 60438 Frankfurt am Main, Germany.
- Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Max-von-Laue-Straβe 15, 60438 Frankfurt am Main, Germany.
| |
Collapse
|