1
|
Taggart J, Dierksheide K, LeBlanc H, Lalanne JB, Durand S, Braun F, Condon C, Li GW. A high-resolution view of RNA endonuclease cleavage in Bacillus subtilis. Nucleic Acids Res 2025; 53:gkaf030. [PMID: 39883015 PMCID: PMC11780869 DOI: 10.1093/nar/gkaf030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 01/03/2025] [Accepted: 01/17/2025] [Indexed: 01/31/2025] Open
Abstract
RNA endonucleases are the rate-limiting initiator of decay for many bacterial mRNAs. However, the positions of cleavage and their sequence determinants remain elusive even for the well-studied Bacillus subtilis. Here we present two complementary approaches-transcriptome-wide mapping of endoribonucleolytic activity and deep mutational scanning of RNA cleavage sites-that reveal distinct rules governing the specificity among B. subtilis endoribonucleases. Detection of RNA terminal nucleotides in both 5'- and 3'-exonuclease-deficient cells revealed >103 putative endonucleolytic cleavage sites with single-nucleotide resolution. We found a surprisingly weak consensus for RNase Y targets, a contrastingly strong primary sequence motif for EndoA targets, and long-range intramolecular secondary structures for RNase III targets. Deep mutational analysis of RNase Y cleavage sites showed that the specificity is governed by many disjointed sequence features. Our results highlight the delocalized nature of mRNA stability determinants and provide a strategy for elucidating endoribonuclease specificity in vivo.
Collapse
Affiliation(s)
- James C Taggart
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | | | - Hannah J LeBlanc
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Jean-Benoît Lalanne
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
- Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Sylvain Durand
- Expression Génétique Microbienne (EGM), CNRS, Université Paris Cité, Institut de Biologie Physico-Chimique, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | - Frédérique Braun
- Expression Génétique Microbienne (EGM), CNRS, Université Paris Cité, Institut de Biologie Physico-Chimique, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | - Ciarán Condon
- Expression Génétique Microbienne (EGM), CNRS, Université Paris Cité, Institut de Biologie Physico-Chimique, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | - Gene-Wei Li
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
- Howard Hughes Medical Institute, Cambridge, MA 02142, USA
| |
Collapse
|
2
|
Yang L, Wang L, Wang M, Bajinka O, Wu G, Qin L, Tan Y. Oligoribonuclease mediates high adaptability of P. aeruginosa through metabolic conversion. BMC Microbiol 2024; 24:25. [PMID: 38238663 PMCID: PMC10797966 DOI: 10.1186/s12866-023-03175-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 12/26/2023] [Indexed: 01/22/2024] Open
Abstract
BACKGROUND Oligoribonuclease (orn) of P. aeruginosa is a highly conserved exonuclease, which can regulate the global gene expression levels of bacteria through regulation of both the nanoRNA and c-di-GMP. NanoRNA can regulate the expression of the bacterial global genome as a transcription initiator, and c-di-GMP is the most widely second messenger in bacterial cells. OBJECTIVE This study seeks to elucidate on the regulation by orn on pathogenicity of P. aeruginosa. METHODS P. aeruginosa with orn deletion was constructed by suicide plasmid homologous recombination method. The possible regulatory process of orn was analyzed by TMT quantitative labeling proteomics. Then experiments were conducted to verify the changes of Δorn on bacterial motility, virulence and biofilm formation. Bacterial pathogenicity was further detected in cell and animal skin trauma models. ELISA detection c-di-GMP concentration and colony aggregation and biofilm formation were observed by scanning electron microscope. RESULTS orn deletion changed the global metabolism of P. aeruginosa and reduced intracellular energy metabolism. It leads to the disorder of the quorum sensing system, the reduction of bacterial motility and virulence factors pyocyanin and rhamnolipids. But, orn deletion enhanced pathogenicity in vitro and in vivo, a high level of c-di-GMP and biofilm development of P. aeruginosa. CONCLUSION orn regulates the ability of P. aeruginosa to adapt to the external environment.
Collapse
Affiliation(s)
- Lulu Yang
- Department of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, 410078, China
- Department of Medical Microbiology, Xiangya School of Medicine, Central South University, Changsha, Hunan, 410078, China
| | - Lili Wang
- Department of Medical Microbiology, Xiangya School of Medicine, Central South University, Changsha, Hunan, 410078, China
| | - Mengyu Wang
- Department of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, 410078, China
- Department of Medical Microbiology, Xiangya School of Medicine, Central South University, Changsha, Hunan, 410078, China
| | - Ousman Bajinka
- Department of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, 410078, China
- Department of Medical Microbiology, Xiangya School of Medicine, Central South University, Changsha, Hunan, 410078, China
| | - Guojun Wu
- Department of Medical Microbiology, Xiangya School of Medicine, Central South University, Changsha, Hunan, 410078, China
| | - Ling Qin
- Department of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, 410078, China.
| | - Yurong Tan
- Department of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, 410078, China.
- Department of Medical Microbiology, Xiangya School of Medicine, Central South University, Changsha, Hunan, 410078, China.
| |
Collapse
|
3
|
Wiegard JC, Damm K, Lechner M, Thölken C, Ngo S, Putzer H, Hartmann RK. Processing and decay of 6S-1 and 6S-2 RNAs in Bacillus subtilis. RNA (NEW YORK, N.Y.) 2023; 29:1481-1499. [PMID: 37369528 PMCID: PMC10578484 DOI: 10.1261/rna.079666.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023]
Abstract
Noncoding 6S RNAs regulate transcription by binding to the active site of bacterial RNA polymerase holoenzymes. Processing and decay of 6S-1 and 6S-2 RNA were investigated in Bacillus subtilis by northern blot and RNA-seq analyses using different RNase knockout strains, as well as by in vitro processing assays. For both 6S RNA paralogs, we identified a key-but mechanistically different-role of RNase J1. RNase J1 catalyzes 5'-end maturation of 6S-1 RNA, yet relatively inefficient and possibly via the enzyme's "sliding endonuclease" activity. 5'-end maturation has no detectable effect on 6S-1 RNA function, but rather regulates its decay: The generated 5'-monophosphate on matured 6S-1 RNA propels endonucleolytic cleavage in its apical loop region. The major 6S-2 RNA degradation pathway is initiated by endonucleolytic cleavage in the 5'-central bubble to trigger 5'-to-3'-exoribonucleolytic degradation of the downstream fragment by RNase J1. The four 3'-exonucleases of B. subtilis-RNase R, PNPase, YhaM, and particularly RNase PH-are involved in 3'-end trimming of both 6S RNAs, degradation of 6S-1 RNA fragments, and decay of abortive transcripts (so-called product RNAs, ∼14 nt in length) synthesized on 6S-1 RNA during outgrowth from stationary phase. In the case of the growth-retarded RNase Y deletion strain, we were unable to infer a specific role of RNase Y in 6S RNA decay. Yet, a participation of RNase Y in 6S RNA decay still remains possible, as evidence for such a function may have been obscured by overlapping substrate specificities of RNase Y, RNase J1, and RNase J2.
Collapse
Affiliation(s)
- Jana Christin Wiegard
- Philipps-Universität Marburg, Institut für Pharmazeutische Chemie, D-35037 Marburg, Germany
| | - Katrin Damm
- Philipps-Universität Marburg, Institut für Pharmazeutische Chemie, D-35037 Marburg, Germany
| | - Marcus Lechner
- Philipps-Universität Marburg, Center for Synthetic Microbiology (SYNMIKRO), Bioinformatics Core Facility, D-35032 Marburg, Germany
| | - Clemens Thölken
- Philipps-Universität Marburg, Center for Synthetic Microbiology (SYNMIKRO), Bioinformatics Core Facility, D-35032 Marburg, Germany
| | - Saravuth Ngo
- Expression Génétique Microbienne, CNRS, Université Paris Cité, Institut de Biologie Physico-Chimique, 75005 Paris, France
| | - Harald Putzer
- Expression Génétique Microbienne, CNRS, Université Paris Cité, Institut de Biologie Physico-Chimique, 75005 Paris, France
| | - Roland K Hartmann
- Philipps-Universität Marburg, Institut für Pharmazeutische Chemie, D-35037 Marburg, Germany
| |
Collapse
|
4
|
Shinjyo Y, Midorikawa N, Matsumoto T, Sugaya Y, Ozawa Y, Oana A, Horie C, Yoshikawa H, Takahashi Y, Hasegawa T, Asai K. Analysis of cell death in Bacillus subtilis caused by sesquiterpenes from Chrysopogon zizanioides (L.) Roberty. J GEN APPL MICROBIOL 2022; 68:62-70. [PMID: 35418537 DOI: 10.2323/jgam.2021.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Recently, the antibacterial effects of essential oils have been investigated in addition to their therapeutic purposes. Owing to their hydrophobic nature, they are thought to perturb the integrity of the bacterial cell membrane, leading to cell death. Against such antibiotic challenges, bacteria develop mechanisms for cell envelope stress responses (CESR). In Bacillus subtilis, a gram-positive sporulating soil bacterium, the extracytoplasmic function (ECF) sigma factor-mediated response system plays a pivotal role in CESR. Among them, σM is strongly involved in response to cell envelope stress, including a shortage of available bactoprenol. Vetiver essential oil, a product of Chrysopogon zizanioides (L.) Roberty root, is also known to possess bactericidal activity. σM was exclusively and strongly induced when the cells were exposed to Vetiver extract, and depletion of multi-ECF sigma factors (ΔsigM, ΔsigW, ΔsigX, and ΔsigV) enhanced sensitivity to it. From this quadruple mutant strain, the suppressor strains, which restored resistance to the bactericidal activity of Vetiver extract, emerged, although attempts to obtain resistant strains from the wild type did not succeed. Whole-genome resequencing of the suppressor strains and genetic analysis revealed inactivation of xseB or pnpA, which code for exodeoxyribonuclease or polynucleotide phosphorylase, respectively. This allowed the quadruple mutant strain to escape from cell death caused by Vetiver extract. Composition analysis suggested that the sesquiterpene, khusimol, might contribute to the bactericidal activity of the Vetiver extract.
Collapse
Affiliation(s)
- Yu Shinjyo
- Department of Biochemistry and Molecular Biology, Graduate School of Science and Engineering, Saitama University
| | - Naoya Midorikawa
- Department of Chemistry, Graduate School of Science and Engineering, Saitama University
| | - Takashi Matsumoto
- Genome Research Center, NODAI Research Institute, Tokyo University of Agriculture
| | - Yuki Sugaya
- Department of Biochemistry and Molecular Biology, Graduate School of Science and Engineering, Saitama University
| | - Yoshiki Ozawa
- Department of Biochemistry and Molecular Biology, Graduate School of Science and Engineering, Saitama University
| | - Ayumi Oana
- Department of Biochemistry and Molecular Biology, Graduate School of Science and Engineering, Saitama University
| | - Chiaki Horie
- Department of Biochemistry and Molecular Biology, Graduate School of Science and Engineering, Saitama University
| | - Hirofumi Yoshikawa
- Genome Research Center, NODAI Research Institute, Tokyo University of Agriculture.,Department of Bioscience, Tokyo University of Agriculture
| | - Yasuhiro Takahashi
- Department of Biochemistry and Molecular Biology, Graduate School of Science and Engineering, Saitama University
| | - Toshio Hasegawa
- Department of Chemistry, Graduate School of Science and Engineering, Saitama University
| | - Kei Asai
- Department of Biochemistry and Molecular Biology, Graduate School of Science and Engineering, Saitama University.,Department of Bioscience, Tokyo University of Agriculture
| |
Collapse
|
5
|
How Does Bacillus thuringiensis Crystallize Such a Large Diversity of Toxins? Toxins (Basel) 2021; 13:toxins13070443. [PMID: 34206796 PMCID: PMC8309854 DOI: 10.3390/toxins13070443] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 06/22/2021] [Accepted: 06/24/2021] [Indexed: 12/31/2022] Open
Abstract
Bacillus thuringiensis (Bt) is a natural crystal-making bacterium. Bt diversified into many subspecies that have evolved to produce crystals of hundreds of pesticidal proteins with radically different structures. Their crystalline form ensures stability and controlled release of these major virulence factors. They are responsible for the toxicity and host specificity of Bt, explaining its worldwide use as a biological insecticide. Most research has been devoted to understanding the mechanisms of toxicity of these toxins while the features driving their crystallization have long remained elusive, essentially due to technical limitations. The evolution of methods in structural biology, pushing back the limits in size of amenable protein crystals now allows access to be gained to structural information hidden within natural crystals of such toxins. In this review, we present the main parameters that have been identified as key drivers of toxin crystallization in Bt, notably in the light of recent discoveries driven by structural biology studies. Then, we develop how the future evolution of structural biology will hopefully unveil new mechanisms of Bt toxin crystallization, opening the door to their hijacking with the aim of developing a versatile in vivo crystallization platform of high academic and industrial interest.
Collapse
|
6
|
Vargas-Blanco DA, Shell SS. Regulation of mRNA Stability During Bacterial Stress Responses. Front Microbiol 2020; 11:2111. [PMID: 33013770 PMCID: PMC7509114 DOI: 10.3389/fmicb.2020.02111] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 08/11/2020] [Indexed: 12/12/2022] Open
Abstract
Bacteria have a remarkable ability to sense environmental changes, swiftly regulating their transcriptional and posttranscriptional machinery as a response. Under conditions that cause growth to slow or stop, bacteria typically stabilize their transcriptomes in what has been shown to be a conserved stress response. In recent years, diverse studies have elucidated many of the mechanisms underlying mRNA degradation, yet an understanding of the regulation of mRNA degradation under stress conditions remains elusive. In this review we discuss the diverse mechanisms that have been shown to affect mRNA stability in bacteria. While many of these mechanisms are transcript-specific, they provide insight into possible mechanisms of global mRNA stabilization. To that end, we have compiled information on how mRNA fate is affected by RNA secondary structures; interaction with ribosomes, RNA binding proteins, and small RNAs; RNA base modifications; the chemical nature of 5' ends; activity and concentration of RNases and other degradation proteins; mRNA and RNase localization; and the stringent response. We also provide an analysis of reported relationships between mRNA abundance and mRNA stability, and discuss the importance of stress-associated mRNA stabilization as a potential target for therapeutic development.
Collapse
Affiliation(s)
- Diego A Vargas-Blanco
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, MA, United States
| | - Scarlet S Shell
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, MA, United States.,Program in Bioinformatics and Computational Biology, Worcester Polytechnic Institute, Worcester, MA, United States
| |
Collapse
|
7
|
Corrêa GG, Lins MRDCR, Silva BF, de Paiva GB, Zocca VFB, Ribeiro NV, Picheli FP, Mack M, Pedrolli DB. A modular autoinduction device for control of gene expression in Bacillus subtilis. Metab Eng 2020; 61:326-334. [DOI: 10.1016/j.ymben.2020.03.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 03/24/2020] [Accepted: 03/30/2020] [Indexed: 01/28/2023]
|
8
|
Rational engineering of transcriptional riboswitches leads to enhanced metabolite levels in Bacillus subtilis. Metab Eng 2020; 61:58-68. [PMID: 32413407 DOI: 10.1016/j.ymben.2020.05.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 04/17/2020] [Accepted: 05/02/2020] [Indexed: 12/26/2022]
Abstract
Many metabolic pathways in bacteria are regulated by metabolite sensing riboswitches that exert their control at the level of transcription employing a termination-antitermination mechanism. These riboswitches represent engineering targets to modulate expression of genes and operons relevant for the biotechnological production of commercially relevant compounds. We show that removal of the transcriptional riboswitches that control purine biosynthesis and riboflavin biosynthesis in Bacillus subtilis leads to auxotrophic strains. As an alternative, we report a rational approach for engineering transcriptional riboswitches independently from the availability of structural data. This approach consists in the identification and deletion of a key nucleotide sequence exclusively involved in transcription termination without affecting formation of other secondary and tertiary structures, which can be involved in other functions. To demonstrate the efficacy of our approach, we tested it with regard to deregulation of the purine and the riboflavin biosynthetic pathways in B. subtilis. Following validation of the engineered transcriptional riboswitches using specialized reporter strains, our approach was implemented into a B. subtilis wild-type strain employing CRISPR-Cas9 genome editing. The resulting purine and riboflavin production strains were characterized at the level of gene expression, metabolite synthesis and growth, and a substantial enhancement was measured at each level. Moreover, applying our approach to deregulate the purine pathway of an industrial riboflavin overproducing strain with impaired growth led to an increase in biomass by 53%, which resulted in an enhanced total production of riboflavin in the culture.
Collapse
|
9
|
Farzand A, Moosa A, Zubair M, Khan AR, Ayaz M, Massawe VC, Gao X. Transcriptional Profiling of Diffusible Lipopeptides and Fungal Virulence Genes During Bacillus amyloliquefaciens EZ1509-Mediated Suppression of Sclerotinia sclerotiorum. PHYTOPATHOLOGY 2020; 110:317-326. [PMID: 31322486 DOI: 10.1094/phyto-05-19-0156-r] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Sclerotinia sclerotiorum is a devastating necrotrophic pathogen that infects multiple crops, and its control is an unremitting challenge. In this work, we attempted to gain insights into the pivotal role of lipopeptides (LPs) in the antifungal activity of Bacillus amyloliquefaciens EZ1509. In a comparative study involving five Bacillus strains, B. amyloliquefaciens EZ1509 harboring four LPs biosynthetic genes (viz. surfactin, iturin, fengycin, and bacilysin) exhibited promising antifungal activity against S. sclerotiorum in a dual-culture assay. Our data demonstrated a remarkable upsurge in LPs biosynthetic gene expression through quantitative reverse transcription PCR during in vitro interaction assay with S. sclerotiorum. Maximum upregulation in LPs biosynthetic genes was observed on the second and third days of in vitro interaction, with iturin and fengycin being the highly expressed genes. Subsequently, Matrix-assisted laser desorption/ionization-time of flight-mass spectrometry analysis confirmed the presence of LPs in the inhibition zone. Scanning electron microscope analysis showed disintegration, shrinkage, plasmolysis, and breakdown of fungal hyphae. During in planta evaluation, S. sclerotiorum previously challenged with EZ1509 showed significant suppression in pathogenicity on detached leaves of tobacco and rapeseed. The oxalic acid synthesis was also significantly reduced in S. sclerotiorum previously confronted with antagonistic bacterium. The expression of major virulence genes of S. sclerotiorum, including endopolygalacturonase-3, oxalic acid hydrolase, and endopolygalacturonase-6, was significantly downregulated during in vitro confrontation with EZ1509.
Collapse
Affiliation(s)
- Ayaz Farzand
- College of Plant Protection, Nanjing Agricultural University, Key Laboratory of Monitoring and Management of Crop Disease and Pest Insects, Ministry of Agriculture, Nanjing 210095, China
- Department of Plant Pathology, University of Agriculture, Faisalabad, Pakistan
| | - Anam Moosa
- Department of Plant Pathology, University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Zubair
- College of Plant Protection, Nanjing Agricultural University, Key Laboratory of Monitoring and Management of Crop Disease and Pest Insects, Ministry of Agriculture, Nanjing 210095, China
| | - Abdur Rashid Khan
- College of Plant Protection, Nanjing Agricultural University, Key Laboratory of Monitoring and Management of Crop Disease and Pest Insects, Ministry of Agriculture, Nanjing 210095, China
| | - Muhammad Ayaz
- College of Plant Protection, Nanjing Agricultural University, Key Laboratory of Monitoring and Management of Crop Disease and Pest Insects, Ministry of Agriculture, Nanjing 210095, China
| | - Venance Colman Massawe
- College of Plant Protection, Nanjing Agricultural University, Key Laboratory of Monitoring and Management of Crop Disease and Pest Insects, Ministry of Agriculture, Nanjing 210095, China
| | - Xuewen Gao
- College of Plant Protection, Nanjing Agricultural University, Key Laboratory of Monitoring and Management of Crop Disease and Pest Insects, Ministry of Agriculture, Nanjing 210095, China
| |
Collapse
|
10
|
Mora-Lugo R, Stegmüller J, Mack M. Metabolic engineering of roseoflavin-overproducing microorganisms. Microb Cell Fact 2019; 18:146. [PMID: 31451111 PMCID: PMC6709556 DOI: 10.1186/s12934-019-1181-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 07/30/2019] [Indexed: 12/20/2022] Open
Abstract
Background Roseoflavin, a promising broad-spectrum antibiotic, is naturally produced by the bacteria Streptomyces davaonensis and Streptomyces cinnabarinus. The key enzymes responsible for roseoflavin biosynthesis and the corresponding genes were recently identified. In this study we aimed to enhance roseoflavin production in S. davaonensis and to synthesize roseoflavin in the heterologous hosts Bacillus subtilis and Corynebacterium glutamicum by (over)expression of the roseoflavin biosynthesis genes. Results While expression of the roseoflavin biosynthesis genes from S. davaonensis was not observed in recombinant strains of B. subtilis, overexpression was successful in C. glutamicum and S. davaonensis. Under the culture conditions tested, a maximum of 1.6 ± 0.2 µM (ca. 0.7 mg/l) and 34.9 ± 5.2 µM (ca. 14 mg/l) roseoflavin was produced with recombinant strains of C. glutamicum and S. davaonensis, respectively. In S. davaonensis the roseoflavin yield was increased by 78%. Conclusions The results of this study provide a sound basis for the development of an economical roseoflavin production process. Electronic supplementary material The online version of this article (10.1186/s12934-019-1181-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Rodrigo Mora-Lugo
- Institute for Technical Microbiology, Mannheim University of Applied Sciences, Paul-Wittsack-Str. 10, 68163, Mannheim, Germany
| | - Julian Stegmüller
- Institute for Technical Microbiology, Mannheim University of Applied Sciences, Paul-Wittsack-Str. 10, 68163, Mannheim, Germany
| | - Matthias Mack
- Institute for Technical Microbiology, Mannheim University of Applied Sciences, Paul-Wittsack-Str. 10, 68163, Mannheim, Germany.
| |
Collapse
|
11
|
Steiner PA, De Corte D, Geijo J, Mena C, Yokokawa T, Rattei T, Herndl GJ, Sintes E. Highly variable mRNA half-life time within marine bacterial taxa and functional genes. Environ Microbiol 2019; 21:3873-3884. [PMID: 31298776 PMCID: PMC7379614 DOI: 10.1111/1462-2920.14737] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 07/08/2019] [Accepted: 07/09/2019] [Indexed: 02/04/2023]
Abstract
Messenger RNA can provide valuable insights into the variability of metabolic processes of microorganisms. However, due to uncertainties that include the stability of RNA, its application for activity profiling of environmental samples is questionable. We explored different factors affecting the decay rate of transcripts of three marine bacterial isolates using qPCR and determined mRNA half‐life time of specific bacterial taxa and of functional genes by metatranscriptomics of a coastal environmental prokaryotic community. The half‐life time of transcripts from 11 genes from bacterial isolates ranged from 1 to 46 min. About 80% of the analysed transcripts exhibited half‐live times shorter than 10 min. Significant differences were found in the half‐life time between mRNA and rRNA. The half‐life time of mRNA obtained from a coastal metatranscriptome ranged from 9 to 400 min. The shortest half‐life times of the metatranscriptome corresponded to transcripts from the same clusters of orthologous groups (COGs) in all bacterial classes. The prevalence of short mRNA half‐life time in genes related to defence mechanisms and motility indicate a tight connection of RNA decay rate to environmental stressors. The short half‐life time of RNA and its high variability needs to be considered when assessing metatranscriptomes especially in environmental samples.
Collapse
Affiliation(s)
- Paul A Steiner
- Limnology and Bio-Oceanography, University of Vienna, Althanstrasse 14, 1090, Vienna, Austria
| | - Daniele De Corte
- Marine Functional Biology Group, Research and Development Center for Marine Biosciences, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Natushima 2-15, Yokosuka, Kanagawa, Japan
| | - Javier Geijo
- Department of Microbiology and Ecosystem Science, Division of Computational Systems Biology, University of Vienna, Althanstrasse 14, 1090, Vienna, Austria
| | - Catalina Mena
- Instituto Español de Oceanografia, Centre Oceanogràfic de les Balears, Moll de Ponent s/n, 07015, Palma, Spain
| | - Taichi Yokokawa
- Institute for Extra-cutting-edge Science and Technology Avant-garde Research (X-star), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Natushima 2-15, Yokosuka, Kanagawa, Japan
| | - Thomas Rattei
- Department of Microbiology and Ecosystem Science, Division of Computational Systems Biology, University of Vienna, Althanstrasse 14, 1090, Vienna, Austria
| | - Gerhard J Herndl
- Limnology and Bio-Oceanography, University of Vienna, Althanstrasse 14, 1090, Vienna, Austria.,Department of Marine Microbiology and Biogeochemistry, Royal Netherlands Institute for Sea Research, Utrecht University, PO Box 59, Alberta Den Burg, 1790, The Netherlands
| | - Eva Sintes
- Limnology and Bio-Oceanography, University of Vienna, Althanstrasse 14, 1090, Vienna, Austria.,Instituto Español de Oceanografia, Centre Oceanogràfic de les Balears, Moll de Ponent s/n, 07015, Palma, Spain
| |
Collapse
|
12
|
Lee CW, Park SH, Jeong CS, Cha SS, Park H, Lee JH. Structural basis of small RNA hydrolysis by oligoribonuclease (CpsORN) from Colwellia psychrerythraea strain 34H. Sci Rep 2019; 9:2649. [PMID: 30804410 PMCID: PMC6390093 DOI: 10.1038/s41598-019-39641-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 01/28/2019] [Indexed: 11/22/2022] Open
Abstract
Cells regulate their intracellular mRNA levels by using specific ribonucleases. Oligoribonuclease (ORN) is a 3'-5' exoribonuclease for small RNA molecules, important in RNA degradation and re-utilisation. However, there is no structural information on the ligand-binding form of ORNs. In this study, the crystal structures of oligoribonuclease from Colwellia psychrerythraea strain 34H (CpsORN) were determined in four different forms: unliganded-structure, thymidine 5'-monophosphate p-nitrophenyl ester (pNP-TMP)-bound, two separated uridine-bound, and two linked uridine (U-U)-bound forms. The crystal structures show that CpsORN is a tight dimer, with two separated active sites and one divalent metal cation ion in each active site. These structures represent several snapshots of the enzymatic reaction process, which allowed us to suggest a possible one-metal-dependent reaction mechanism for CpsORN. Moreover, the biochemical data support our suggested mechanism and identified the key residues responsible for enzymatic catalysis of CpsORN.
Collapse
Affiliation(s)
- Chang Woo Lee
- Unit of Polar Genomics, Korea Polar Research Institute, Incheon, 21990, Republic of Korea
- Department of Polar Sciences, University of Science and Technology, Incheon, 21990, Republic of Korea
| | - Sun-Ha Park
- Unit of Polar Genomics, Korea Polar Research Institute, Incheon, 21990, Republic of Korea
| | - Chang-Sook Jeong
- Unit of Polar Genomics, Korea Polar Research Institute, Incheon, 21990, Republic of Korea
- Department of Polar Sciences, University of Science and Technology, Incheon, 21990, Republic of Korea
| | - Sun-Shin Cha
- Department of Chemistry & Nanoscience, Ewha Woman's University, Seoul, 03760, Republic of Korea
| | - Hyun Park
- Unit of Polar Genomics, Korea Polar Research Institute, Incheon, 21990, Republic of Korea
- Department of Polar Sciences, University of Science and Technology, Incheon, 21990, Republic of Korea
| | - Jun Hyuck Lee
- Unit of Polar Genomics, Korea Polar Research Institute, Incheon, 21990, Republic of Korea.
- Department of Polar Sciences, University of Science and Technology, Incheon, 21990, Republic of Korea.
| |
Collapse
|
13
|
Orr MW, Weiss CA, Severin GB, Turdiev H, Kim SK, Turdiev A, Liu K, Tu BP, Waters CM, Winkler WC, Lee VT. A Subset of Exoribonucleases Serve as Degradative Enzymes for pGpG in c-di-GMP Signaling. J Bacteriol 2018; 200:e00300-18. [PMID: 30249708 PMCID: PMC6256023 DOI: 10.1128/jb.00300-18] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 09/10/2018] [Indexed: 11/21/2022] Open
Abstract
Bis-(3'-5')-cyclic dimeric GMP (c-di-GMP) is a bacterial second messenger that regulates processes, such as biofilm formation and virulence. During degradation, c-di-GMP is first linearized to 5'-phosphoguanylyl-(3',5')-guanosine (pGpG) and subsequently hydrolyzed to two GMPs by a previously unknown enzyme, which was recently identified in Pseudomonas aeruginosa as the 3'-to-5' exoribonuclease oligoribonuclease (Orn). Mutants of orn accumulated pGpG, which inhibited the linearization of c-di-GMP. This product inhibition led to elevated c-di-GMP levels, resulting in increased aggregate and biofilm formation. Thus, the hydrolysis of pGpG is crucial to the maintenance of c-di-GMP homeostasis. How species that utilize c-di-GMP signaling but lack an orn ortholog hydrolyze pGpG remains unknown. Because Orn is an exoribonuclease, we asked whether pGpG hydrolysis can be carried out by genes that encode protein domains found in exoribonucleases. From a screen of these genes from Vibrio cholerae and Bacillus anthracis, we found that only enzymes known to cleave oligoribonucleotides (orn and nrnA) rescued the P. aeruginosa Δorn mutant phenotypes to the wild type. Thus, we tested additional RNases with demonstrated activity against short oligoribonucleotides. These experiments show that only exoribonucleases previously reported to degrade short RNAs (nrnA, nrnB, nrnC, and orn) can also hydrolyze pGpG. A B. subtilisnrnA nrnB mutant had elevated c-di-GMP, suggesting that these two genes serve as the primary enzymes to degrade pGpG. These results indicate that the requirement for pGpG hydrolysis to complete c-di-GMP signaling is conserved across species. The final steps of RNA turnover and c-di-GMP turnover appear to converge at a subset of RNases specific for short oligoribonucleotides.IMPORTANCE The bacterial bis-(3'-5')-cyclic dimeric GMP (c-di-GMP) signaling molecule regulates complex processes, such as biofilm formation. c-di-GMP is degraded in two-steps, linearization into pGpG and subsequent cleavage to two GMPs. The 3'-to-5' exonuclease oligoribonuclease (Orn) serves as the enzyme that degrades pGpG in Pseudomonas aeruginosa Many phyla contain species that utilize c-di-GMP signaling but lack an Orn homolog, and the protein that functions to degrade pGpG remains uncharacterized. Here, systematic screening of genes encoding proteins containing domains found in exoribonucleases revealed a subset of genes encoded within the genomes of Bacillus anthracis and Vibrio cholerae that degrade pGpG to GMP and are functionally analogous to Orn. Feedback inhibition by pGpG is a conserved process, as strains lacking these genes accumulate c-di-GMP.
Collapse
Affiliation(s)
- Mona W Orr
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, USA
| | - Cordelia A Weiss
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, USA
| | - Geoffrey B Severin
- Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, Michigan, USA
| | - Husan Turdiev
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, USA
| | - Soo-Kyoung Kim
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, USA
| | - Asan Turdiev
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, USA
| | - Kuanqing Liu
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Benjamin P Tu
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Christopher M Waters
- Microbiology & Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
| | - Wade C Winkler
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, USA
| | - Vincent T Lee
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, USA
| |
Collapse
|
14
|
Walker FC, Chou-Zheng L, Dunkle JA, Hatoum-Aslan A. Molecular determinants for CRISPR RNA maturation in the Cas10-Csm complex and roles for non-Cas nucleases. Nucleic Acids Res 2018; 45:2112-2123. [PMID: 28204542 PMCID: PMC5389561 DOI: 10.1093/nar/gkw891] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 09/01/2016] [Accepted: 09/27/2016] [Indexed: 01/18/2023] Open
Abstract
CRISPR–Cas (Clustered regularly interspaced short palindromic repeats-CRISPR-associated proteins) is a prokaryotic immune system that destroys foreign nucleic acids in a sequence-specific manner using Cas nucleases guided by short RNAs (crRNAs). Staphylococcus epidermidis harbours a Type III-A CRISPR–Cas system that encodes the Cas10–Csm interference complex and crRNAs that are subjected to multiple processing steps. The final step, called maturation, involves a concerted effort between Csm3, a ruler protein in Cas10–Csm that measures six-nucleotide increments, and the activity of a nuclease(s) that remains unknown. Here, we elucidate the contributions of the Cas10–Csm complex toward maturation and explore roles of non-Cas nucleases in this process. Using genetic and biochemical approaches, we show that charged residues in Csm3 facilitate its self-assembly and dictate the extent of maturation cleavage. Additionally, acidic residues in Csm5 are required for efficient maturation, but recombinant Csm5 fails to cleave crRNAs in vitro. However, we detected cellular nucleases that co-purify with Cas10–Csm, and show that Csm5 regulates their activities through distinct mechanisms. Altogether, our results support roles for non-Cas nuclease(s) during crRNA maturation and establish a link between Type III-A CRISPR–Cas immunity and central nucleic acid metabolism.
Collapse
Affiliation(s)
- Forrest C Walker
- Department of Biological Sciences, University of Alabama, Tuscaloosa, AL 35487, USA
| | - Lucy Chou-Zheng
- Department of Biological Sciences, University of Alabama, Tuscaloosa, AL 35487, USA
| | - Jack A Dunkle
- Department of Chemistry, University of Alabama, Tuscaloosa, AL, 35487, USA
| | - Asma Hatoum-Aslan
- Department of Biological Sciences, University of Alabama, Tuscaloosa, AL 35487, USA
| |
Collapse
|
15
|
The special existences: nanoRNA and nanoRNase. Microbiol Res 2017; 207:134-139. [PMID: 29458847 DOI: 10.1016/j.micres.2017.11.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 11/23/2017] [Accepted: 11/25/2017] [Indexed: 12/21/2022]
Abstract
To adapt to a wide range of nutritional and environmental changes, cells must adjust their gene expression profiles. This process is completed by the frequent transcription and rapid degradation of mRNA. mRNA decay is initiated by a series of endo- and exoribonucleases. These enzymes leave behind 2- to 5-nt-long oligoribonucleotides termed "nanoRNAs" that are degraded by specific nanoRNases; the degradation of nanoRNA is essential because nanoRNA can mediate the priming of transcription initiation that is harmful for the cell via an unknown mechanism. Identified nanoRNases include Orn in E. coli, NrnA and NrnB in B. subtilis, and NrnC in Bartonella. Even though these nanoRNases can degrade nanoRNA specifically into mononucleotides, the biochemical features, structural features and functional mechanisms of these enzymes are different. Sequence analysis has identified homologs of these nanoRNases in different bacteria, including Gammaproteobacteria, Betaproteobacteria, Alphaproteobacteria, Firmicutes and Cyanobacteria. However, there are several bacteria, such as those belonging to the class Thermolithobacteria, that do not have homologs of these nanoRNases. In this paper, the source of nanoRNA, the features of different kinds of nanoRNases and the distribution of these enzymes in prokaryotes are described in detail.
Collapse
|
16
|
Miravet-Verde S, Lloréns-Rico V, Serrano L. Alternative transcriptional regulation in genome-reduced bacteria. Curr Opin Microbiol 2017; 39:89-95. [PMID: 29154025 DOI: 10.1016/j.mib.2017.10.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 10/26/2017] [Indexed: 12/11/2022]
Abstract
Transcription is a core process of bacterial physiology, and as such it must be tightly controlled, so that bacterial cells maintain steady levels of each RNA molecule in homeostasis and modify them in response to perturbations. The major regulators of transcription in bacteria (and in eukaryotes) are transcription factors. However, in genome-reduced bacteria, the limited number of these proteins is insufficient to explain the variety of responses shown upon changes in their environment. Thus, alternative regulators may play a central role in orchestrating RNA levels in these microorganisms. These alternative mechanisms rely on intrinsic features within DNA and RNA molecules, suggesting they are ancestral mechanisms shared among bacteria that could have an increased relevance on transcriptional regulation in minimal cells. In this review, we summarize the alternative elements that can regulate transcript abundance in genome-reduced bacteria and how they contribute to the RNA homeostasis at different levels.
Collapse
Affiliation(s)
- Samuel Miravet-Verde
- EMBL/CRG Systems Biology Research Unit, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, 08003 Barcelona, Spain; Universitat Pompeu Fabra (UPF), Dr. Aiguader 88, 08003 Barcelona, Spain
| | - Verónica Lloréns-Rico
- EMBL/CRG Systems Biology Research Unit, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, 08003 Barcelona, Spain; Universitat Pompeu Fabra (UPF), Dr. Aiguader 88, 08003 Barcelona, Spain
| | - Luis Serrano
- EMBL/CRG Systems Biology Research Unit, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, 08003 Barcelona, Spain; Universitat Pompeu Fabra (UPF), Dr. Aiguader 88, 08003 Barcelona, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), Pg. Lluis Companys 23, 08010 Barcelona, Spain.
| |
Collapse
|
17
|
Li T, Ding Y, Zhang J, Jiao G, Sun L, Liu Z, Qiu L. Improving the expression of recombinant pullulanase by increasing mRNA stability in Escherichia coli. ELECTRON J BIOTECHN 2017. [DOI: 10.1016/j.ejbt.2017.07.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
18
|
Njire M, Wang N, Wang B, Tan Y, Cai X, Liu Y, Mugweru J, Guo J, Hameed HMA, Tan S, Liu J, Yew WW, Nuermberger E, Lamichhane G, Liu J, Zhang T. Pyrazinoic Acid Inhibits a Bifunctional Enzyme in Mycobacterium tuberculosis. Antimicrob Agents Chemother 2017; 61:e00070-17. [PMID: 28438933 PMCID: PMC5487608 DOI: 10.1128/aac.00070-17] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 04/01/2017] [Indexed: 11/20/2022] Open
Abstract
Pyrazinamide (PZA), an indispensable component of modern tuberculosis treatment, acts as a key sterilizing drug. While the mechanism of activation of this prodrug into pyrazinoic acid (POA) by Mycobacterium tuberculosis has been extensively studied, not all molecular determinants that confer resistance to this mysterious drug have been identified. Here, we report how a new PZA resistance determinant, the Asp67Asn substitution in Rv2783, confers M. tuberculosis resistance to PZA. Expression of the mutant allele but not the wild-type allele in M. tuberculosis recapitulates the PZA resistance observed in clinical isolates. In addition to catalyzing the metabolism of RNA and single-stranded DNA, Rv2783 also metabolized ppGpp, an important signal transducer involved in the stringent response in bacteria. All catalytic activities of the wild-type Rv2783 but not the mutant were significantly inhibited by POA. These results, which indicate that Rv2783 is a target of PZA, provide new insight into the molecular mechanism of the sterilizing activity of this drug and a basis for improving the molecular diagnosis of PZA resistance and developing evolved PZA derivatives to enhance its antituberculosis activity.
Collapse
Affiliation(s)
- Moses Njire
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Na Wang
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- School of Life Science, University of Science and Technology of China, Hefei, China
| | - Bangxing Wang
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Yaoju Tan
- State Key Laboratory of Respiratory Disease, Department of Clinical Laboratory, Guangzhou Chest Hospital, Guangzhou, China
| | - Xingshan Cai
- State Key Laboratory of Respiratory Disease, Department of Clinical Laboratory, Guangzhou Chest Hospital, Guangzhou, China
| | - Yanwen Liu
- State Key Laboratory of Respiratory Disease, Department of Clinical Laboratory, Guangzhou Chest Hospital, Guangzhou, China
| | - Julius Mugweru
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jintao Guo
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - H M Adnan Hameed
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Shouyong Tan
- State Key Laboratory of Respiratory Disease, Department of Clinical Laboratory, Guangzhou Chest Hospital, Guangzhou, China
| | - Jianxiong Liu
- State Key Laboratory of Respiratory Disease, Department of Clinical Laboratory, Guangzhou Chest Hospital, Guangzhou, China
| | - Wing Wai Yew
- Stanley Ho Centre for Emerging Infectious Diseases, the Chinese University of Hong Kong, Hong Kong, China
| | - Eric Nuermberger
- Center for Tuberculosis Research, Department of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Gyanu Lamichhane
- Center for Tuberculosis Research, Department of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Jinsong Liu
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Tianyu Zhang
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
19
|
Hohmann HP, van Dijl JM, Krishnappa L, Prágai Z. Host Organisms:Bacillus subtilis. Ind Biotechnol (New Rochelle N Y) 2016. [DOI: 10.1002/9783527807796.ch7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Affiliation(s)
- Hans-Peter Hohmann
- Nutrition Innovation Center R&D Biotechnology; DSM Nutritional Products Ltd; Wurmisweg 576 CH-4303 Kaiseraugst Switzerland
| | - Jan M. van Dijl
- University of Groningen, University Medical Center Groningen; Department of Medical Microbiology; Hanzeplein 1 9700 RB Groningen The Netherlands
| | - Laxmi Krishnappa
- University of Groningen, University Medical Center Groningen; Department of Medical Microbiology; Hanzeplein 1 9700 RB Groningen The Netherlands
| | - Zoltán Prágai
- Nutrition Innovation Center R&D Biotechnology; DSM Nutritional Products Ltd; Wurmisweg 576 CH-4303 Kaiseraugst Switzerland
| |
Collapse
|
20
|
Kim Y, Suk S, Lee JY, Choi JS, Shin H, Choi BS, Lee Y. RNA Motifs Required for Maintaining Metabolic Stability of M1 RNA. B KOREAN CHEM SOC 2016. [DOI: 10.1002/bkcs.10866] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Yool Kim
- Department of Chemistry; KAIST; Daejeon 34141 Korea
| | - Shinae Suk
- Department of Chemistry; KAIST; Daejeon 34141 Korea
| | - Ji Young Lee
- Department of Chemistry; KAIST; Daejeon 34141 Korea
| | - Jee Soo Choi
- Department of Chemistry; KAIST; Daejeon 34141 Korea
| | - Heegwon Shin
- Department of Chemistry; KAIST; Daejeon 34141 Korea
| | | | | |
Collapse
|
21
|
Comparative genome-scale modelling of Staphylococcus aureus strains identifies strain-specific metabolic capabilities linked to pathogenicity. Proc Natl Acad Sci U S A 2016; 113:E3801-9. [PMID: 27286824 DOI: 10.1073/pnas.1523199113] [Citation(s) in RCA: 167] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Staphylococcus aureus is a preeminent bacterial pathogen capable of colonizing diverse ecological niches within its human host. We describe here the pangenome of S. aureus based on analysis of genome sequences from 64 strains of S. aureus spanning a range of ecological niches, host types, and antibiotic resistance profiles. Based on this set, S. aureus is expected to have an open pangenome composed of 7,411 genes and a core genome composed of 1,441 genes. Metabolism was highly conserved in this core genome; however, differences were identified in amino acid and nucleotide biosynthesis pathways between the strains. Genome-scale models (GEMs) of metabolism were constructed for the 64 strains of S. aureus These GEMs enabled a systems approach to characterizing the core metabolic and panmetabolic capabilities of the S. aureus species. All models were predicted to be auxotrophic for the vitamins niacin (vitamin B3) and thiamin (vitamin B1), whereas strain-specific auxotrophies were predicted for riboflavin (vitamin B2), guanosine, leucine, methionine, and cysteine, among others. GEMs were used to systematically analyze growth capabilities in more than 300 different growth-supporting environments. The results identified metabolic capabilities linked to pathogenic traits and virulence acquisitions. Such traits can be used to differentiate strains responsible for mild vs. severe infections and preference for hosts (e.g., animals vs. humans). Genome-scale analysis of multiple strains of a species can thus be used to identify metabolic determinants of virulence and increase our understanding of why certain strains of this deadly pathogen have spread rapidly throughout the world.
Collapse
|
22
|
Zhao Y, Lu M, Zhang H, Hu J, Zhou C, Xu Q, Ul Hussain Shah AM, Xu H, Wang L, Hua Y. Structural insights into catalysis and dimerization enhanced exonuclease activity of RNase J. Nucleic Acids Res 2015; 43:5550-9. [PMID: 25940620 PMCID: PMC4477667 DOI: 10.1093/nar/gkv444] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2015] [Accepted: 04/24/2015] [Indexed: 01/26/2023] Open
Abstract
RNase J is a conserved ribonuclease that belongs to the β-CASP family of nucleases. It possesses both endo- and exo-ribonuclease activities, which play a key role in pre-rRNA maturation and mRNA decay. Here we report high-resolution crystal structures of Deinococcus radiodurans RNase J complexed with RNA or uridine 5′-monophosphate in the presence of manganese ions. Biochemical and structural studies revealed that RNase J uses zinc ions for two-metal-ion catalysis. One residue conserved among RNase J orthologues (motif B) forms specific electrostatic interactions with the scissile phosphate of the RNA that is critical for the catalysis and product stabilization. The additional manganese ion, which is coordinated by conserved residues at the dimer interface, is critical for RNase J dimerization and exonuclease activity. The structures may also shed light on the mechanism of RNase J exo- and endonucleolytic activity switch.
Collapse
Affiliation(s)
- Ye Zhao
- Key Laboratory of Chinese Ministry of Agriculture for Nuclear-Agricultural Sciences, Institute of Nuclear-Agricultural Sciences, Zhejiang University, China
| | - Meihua Lu
- Key Laboratory of Chinese Ministry of Agriculture for Nuclear-Agricultural Sciences, Institute of Nuclear-Agricultural Sciences, Zhejiang University, China
| | - Hui Zhang
- Key Laboratory of Chinese Ministry of Agriculture for Nuclear-Agricultural Sciences, Institute of Nuclear-Agricultural Sciences, Zhejiang University, China China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, China
| | - Jing Hu
- Key Laboratory of Chinese Ministry of Agriculture for Nuclear-Agricultural Sciences, Institute of Nuclear-Agricultural Sciences, Zhejiang University, China
| | - Congli Zhou
- Key Laboratory of Chinese Ministry of Agriculture for Nuclear-Agricultural Sciences, Institute of Nuclear-Agricultural Sciences, Zhejiang University, China
| | - Qiang Xu
- Zhejiang Provincial Key laboratory of Radiation Oncology, Zhejiang Cancer Research Institute, Zhejiang Cancer Hospital, Hangzhou, China
| | - Amir Miraj Ul Hussain Shah
- Key Laboratory of Chinese Ministry of Agriculture for Nuclear-Agricultural Sciences, Institute of Nuclear-Agricultural Sciences, Zhejiang University, China
| | - Hong Xu
- Key Laboratory of Chinese Ministry of Agriculture for Nuclear-Agricultural Sciences, Institute of Nuclear-Agricultural Sciences, Zhejiang University, China
| | - Liangyan Wang
- Key Laboratory of Chinese Ministry of Agriculture for Nuclear-Agricultural Sciences, Institute of Nuclear-Agricultural Sciences, Zhejiang University, China
| | - Yuejin Hua
- Key Laboratory of Chinese Ministry of Agriculture for Nuclear-Agricultural Sciences, Institute of Nuclear-Agricultural Sciences, Zhejiang University, China
| |
Collapse
|
23
|
Grosjean H, Breton M, Sirand-Pugnet P, Tardy F, Thiaucourt F, Citti C, Barré A, Yoshizawa S, Fourmy D, de Crécy-Lagard V, Blanchard A. Predicting the minimal translation apparatus: lessons from the reductive evolution of mollicutes. PLoS Genet 2014; 10:e1004363. [PMID: 24809820 PMCID: PMC4014445 DOI: 10.1371/journal.pgen.1004363] [Citation(s) in RCA: 102] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Accepted: 03/24/2014] [Indexed: 11/18/2022] Open
Abstract
Mollicutes is a class of parasitic bacteria that have evolved from a common Firmicutes ancestor mostly by massive genome reduction. With genomes under 1 Mbp in size, most Mollicutes species retain the capacity to replicate and grow autonomously. The major goal of this work was to identify the minimal set of proteins that can sustain ribosome biogenesis and translation of the genetic code in these bacteria. Using the experimentally validated genes from the model bacteria Escherichia coli and Bacillus subtilis as input, genes encoding proteins of the core translation machinery were predicted in 39 distinct Mollicutes species, 33 of which are culturable. The set of 260 input genes encodes proteins involved in ribosome biogenesis, tRNA maturation and aminoacylation, as well as proteins cofactors required for mRNA translation and RNA decay. A core set of 104 of these proteins is found in all species analyzed. Genes encoding proteins involved in post-translational modifications of ribosomal proteins and translation cofactors, post-transcriptional modifications of t+rRNA, in ribosome assembly and RNA degradation are the most frequently lost. As expected, genes coding for aminoacyl-tRNA synthetases, ribosomal proteins and initiation, elongation and termination factors are the most persistent (i.e. conserved in a majority of genomes). Enzymes introducing nucleotides modifications in the anticodon loop of tRNA, in helix 44 of 16S rRNA and in helices 69 and 80 of 23S rRNA, all essential for decoding and facilitating peptidyl transfer, are maintained in all species. Reconstruction of genome evolution in Mollicutes revealed that, beside many gene losses, occasional gains by horizontal gene transfer also occurred. This analysis not only showed that slightly different solutions for preserving a functional, albeit minimal, protein synthetizing machinery have emerged in these successive rounds of reductive evolution but also has broad implications in guiding the reconstruction of a minimal cell by synthetic biology approaches.
Collapse
Affiliation(s)
- Henri Grosjean
- Centre de Génétique Moléculaire, UPR 3404, CNRS, Université Paris-Sud, FRC 3115, Gif-sur-Yvette, France
| | - Marc Breton
- INRA, UMR 1332 de Biologie du Fruit et Pathologie, Villenave d'Ornon, France
- Univ. Bordeaux, UMR 1332 de Biologie du Fruit et Pathologie, Villenave d'Ornon, France
| | - Pascal Sirand-Pugnet
- INRA, UMR 1332 de Biologie du Fruit et Pathologie, Villenave d'Ornon, France
- Univ. Bordeaux, UMR 1332 de Biologie du Fruit et Pathologie, Villenave d'Ornon, France
| | - Florence Tardy
- Anses, Laboratoire de Lyon, UMR Mycoplasmoses des Ruminants, Lyon, France
- Université de Lyon, VetAgro Sup, UMR Mycoplasmoses des Ruminants, Marcy L'Etoile, France
| | - François Thiaucourt
- Centre International de Recherche en Agronomie pour le Développement, UMR CMAEE, Montpellier, France
| | - Christine Citti
- INRA, UMR1225, Ecole Nationale Vétérinaire de Toulouse, Toulouse, France
- Université de Toulouse, INP-ENVT, UMR1225, Ecole Nationale Vétérinaire de Toulouse, Toulouse, France
| | - Aurélien Barré
- Univ. Bordeaux, Centre de bioinformatique et de génomique fonctionnelle, CBiB, Bordeaux, France
| | - Satoko Yoshizawa
- Centre de Génétique Moléculaire, UPR 3404, CNRS, Université Paris-Sud, FRC 3115, Gif-sur-Yvette, France
| | - Dominique Fourmy
- Centre de Génétique Moléculaire, UPR 3404, CNRS, Université Paris-Sud, FRC 3115, Gif-sur-Yvette, France
| | - Valérie de Crécy-Lagard
- Department of Microbiology and Cell Science, University Florida, Gainesville, Florida, United States of America
| | - Alain Blanchard
- INRA, UMR 1332 de Biologie du Fruit et Pathologie, Villenave d'Ornon, France
- Univ. Bordeaux, UMR 1332 de Biologie du Fruit et Pathologie, Villenave d'Ornon, France
- * E-mail:
| |
Collapse
|
24
|
Cardenas PP, Gándara C, Alonso JC. DNA double strand break end-processing and RecA induce RecN expression levels in Bacillus subtilis. DNA Repair (Amst) 2013; 14:1-8. [PMID: 24373815 DOI: 10.1016/j.dnarep.2013.12.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Revised: 11/21/2013] [Accepted: 12/03/2013] [Indexed: 12/15/2022]
Abstract
Bacillus subtilis cells respond to double strand breaks (DSBs) with an ordered recruitment of repair proteins to the site lesion, being RecN one of the first responders. In B. subtilis, one of the responses to DSBs is to increase RecN expression rather than modifying its turnover rate. End-processing activities and the RecA protein itself contribute to increase RecN levels after DNA DSBs. RecO is required for RecA filament formation and full SOS induction, but its absence did not significantly affect RecN expression. Neither the absence of LexA nor the phosphorylation state of RecA or SsbA significantly affect RecN expression levels. These findings identify two major mechanisms (SOS and DSB response) used to respond to DSBs, with LexA required for one of them (SOS response). The DSB response, which requires end-processing and RecA or short RecO-independent RecA filaments, highlights the importance of guarding genome stability by modulating the DNA damage responses.
Collapse
Affiliation(s)
- Paula P Cardenas
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología, CSIC, Darwin 3, 28049 Madrid, Spain
| | - Carolina Gándara
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología, CSIC, Darwin 3, 28049 Madrid, Spain
| | - Juan C Alonso
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología, CSIC, Darwin 3, 28049 Madrid, Spain.
| |
Collapse
|
25
|
Construction of a 5′-controllable stabilizing element (CoSE) for over-production of heterologous proteins at high levels in Bacillus subtilis. J Biotechnol 2013; 168:32-9. [DOI: 10.1016/j.jbiotec.2013.07.031] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Revised: 07/24/2013] [Accepted: 07/24/2013] [Indexed: 01/26/2023]
|
26
|
Rochat T, Bouloc P, Repoila F. Gene expression control by selective RNA processing and stabilization in bacteria. FEMS Microbiol Lett 2013; 344:104-13. [PMID: 23617839 DOI: 10.1111/1574-6968.12162] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Accepted: 04/22/2013] [Indexed: 11/27/2022] Open
Abstract
RNA maturation is a key event regulating genes at post-transcriptional level. In bacteria, it is employed to adjust the amounts of proteins and functional RNAs, often in response to environmental constraints. During the process of RNA maturation, enzymes and factors that would otherwise promote RNA degradation convert a labile RNA into a stable and biologically functional molecule.
Collapse
Affiliation(s)
- Tatiana Rochat
- INRA, UR892, Virologie et Immunologie Moléculaires, Jouy-en-Josas, France
| | | | | |
Collapse
|
27
|
Multiple roles of RNase Y in Streptococcus pyogenes mRNA processing and degradation. J Bacteriol 2013; 195:2585-94. [PMID: 23543715 DOI: 10.1128/jb.00097-13] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Control over mRNA stability is an essential part of gene regulation that involves both endo- and exoribonucleases. RNase Y is a recently identified endoribonuclease in Gram-positive bacteria, and an RNase Y ortholog has been identified in Streptococcus pyogenes (group A streptococcus [GAS]). In this study, we used microarray and Northern blot analyses to determine the S. pyogenes mRNA half-life of the transcriptome and to understand the role of RNase Y in global mRNA degradation and processing. We demonstrated that S. pyogenes has an unusually high mRNA turnover rate, with median and mean half-lives of 0.88 min and 1.26 min, respectively. A mutation of the RNase Y-encoding gene (rny) led to a 2-fold increase in overall mRNA stability. RNase Y was also found to play a significant role in the mRNA processing of virulence-associated genes as well as in the rapid degradation of rnpB read-through transcripts. From these results, we conclude that RNase Y is a pleiotropic regulator required for mRNA stability, mRNA processing, and removal of read-through transcripts in S. pyogenes.
Collapse
|
28
|
Intracellular ribonucleases involved in transcript processing and decay: precision tools for RNA. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2013; 1829:491-513. [PMID: 23545199 DOI: 10.1016/j.bbagrm.2013.03.009] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Revised: 03/19/2013] [Accepted: 03/22/2013] [Indexed: 12/15/2022]
Abstract
In order to adapt to changing environmental conditions and regulate intracellular events such as division, cells are constantly producing new RNAs while discarding old or defective transcripts. These functions require the coordination of numerous ribonucleases that precisely cleave and trim newly made transcripts to produce functional molecules, and rapidly destroy unnecessary cellular RNAs. In recent years our knowledge of the nature, functions and structures of these enzymes in bacteria, archaea and eukaryotes has dramatically expanded. We present here a synthetic overview of the recent development in this dynamic area which has seen the identification of many new endoribonucleases and exoribonucleases. Moreover, the increasing pace at which the structures of these enzymes, or of their catalytic domains, have been solved has provided atomic level detail into their mechanisms of action. Based on sequence conservation and structural data, these proteins have been grouped into families, some of which contain only ribonuclease members, others including a variety of nucleolytic enzymes that act upon DNA and/or RNA. At the other extreme some ribonucleases belong to families of proteins involved in a wide variety of enzymatic reactions. Functional characterization of these fascinating enzymes has provided evidence for the extreme diversity of their biological functions that include, for example, removal of poly(A) tails (deadenylation) or poly(U) tails from eukaryotic RNAs, processing of tRNA and mRNA 3' ends, maturation of rRNAs and destruction of unnecessary mRNAs. This article is part of a Special Issue entitled: RNA Decay mechanisms.
Collapse
|
29
|
Dominski Z, Carpousis AJ, Clouet-d'Orval B. Emergence of the β-CASP ribonucleases: highly conserved and ubiquitous metallo-enzymes involved in messenger RNA maturation and degradation. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2013; 1829:532-51. [PMID: 23403287 DOI: 10.1016/j.bbagrm.2013.01.010] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Revised: 01/18/2013] [Accepted: 01/22/2013] [Indexed: 01/05/2023]
Abstract
The β-CASP ribonucleases, which are found in the three domains of life, have in common a core of 460 residues containing seven conserved sequence motifs involved in the tight binding of two catalytic zinc ions. A hallmark of these enzymes is their ability to catalyze both endo- and exo-ribonucleolytic degradation. Exo-ribonucleolytic degradation proceeds in the 5' to 3' direction and is sensitive to the phosphorylation state of the 5' end of a transcript. Recent phylogenomic analyses have shown that the β-CASP ribonucleases can be partitioned into two major subdivisions that correspond to orthologs of eukaryal CPSF73 and bacterial RNase J. We discuss the known functions of the CPSF73 and RNase J orthologs, their association into complexes, and their structure as it relates to mechanism of action. Eukaryal CPSF73 is part of a large multiprotein complex that is involved in the maturation of the 3' end of RNA Polymerase II transcripts and the polyadenylation of messenger RNA. RNase J1 and J2 are paralogs in Bacillus subtilis that are involved in the degradation of messenger RNA and the maturation of non-coding RNA. RNase J1 and J2 co-purify as a heteromeric complex and there is recent evidence that they interact with other enzymes to form a bacterial RNA degradosome. Finally, we speculate on the evolutionary origin of β-CASP ribonucleases and on their functions in Archaea. Orthologs of CPSF73 with endo- and exo-ribonuclease activity are strictly conserved throughout the archaea suggesting a role for these enzymes in the maturation and/or degradation of messenger RNA. This article is part of a Special Issue entitled: RNA Decay mechanisms.
Collapse
Affiliation(s)
- Zbigniew Dominski
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC, USA
| | | | | |
Collapse
|
30
|
Attack from both ends: mRNA degradation in the crenarchaeon Sulfolobus solfataricus. Biochem Soc Trans 2013; 41:379-83. [DOI: 10.1042/bst20120282] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
RNA stability control and degradation are employed by cells to control gene expression and to adjust the level of protein synthesis in response to physiological needs. In all domains of life, mRNA decay can commence in the 5′–3′ as well as in the 3′–5′-direction. Consequently, mechanisms are in place conferring protection on mRNAs at both ends. Upon deprotection, dedicated enzymes/enzyme complexes access either end and trigger 5′–3′ or 3′–5′-directional decay. In the present paper, we first briefly review the general mRNA decay pathways in Bacteria and Eukarya, and then focus on 5′–3′ and 3′–5′-directional decay in the crenarchaeon Sulfolobus solfataricus, which is executed by a RNase J-like ribonuclease and the exosome complex respectively. In addition, we describe mechanisms that stabilize mRNAs at the 5′- as well as at the 3′-end.
Collapse
|
31
|
Manhart CM, McHenry CS. The PriA replication restart protein blocks replicase access prior to helicase assembly and directs template specificity through its ATPase activity. J Biol Chem 2012; 288:3989-99. [PMID: 23264623 DOI: 10.1074/jbc.m112.435966] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The PriA protein serves as an initiator for the restart of DNA replication on stalled replication forks and as a checkpoint protein that prevents the replicase from advancing in a strand displacement reaction on forks that do not contain a functional replicative helicase. We have developed a primosomal protein-dependent fluorescence resonance energy transfer (FRET) assay using a minimal fork substrate composed of synthetic oligonucleotides. We demonstrate that a self-loading reaction, which proceeds at high helicase concentrations, occurs by threading of a preassembled helicase over free 5'-ends, an event that can be blocked by attaching a steric block to the 5'-end or coating DNA with single-stranded DNA binding protein. The specificity of PriA for replication forks is regulated by its intrinsic ATPase. ATPase-defective PriA K230R shows a strong preference for substrates that contain no gap between the leading strand and the duplex portion of the fork, as demonstrated previously. Wild-type PriA prefers substrates with larger gaps, showing maximal activity on substrates on which PriA K230R is inactive. We demonstrate that PriA blocks replicase function on forks by blocking its binding.
Collapse
Affiliation(s)
- Carol M Manhart
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80303, USA
| | | |
Collapse
|
32
|
O'Farrell HC, Rife JP. Staphylococcus aureus and Escherichia coli have disparate dependences on KsgA for growth and ribosome biogenesis. BMC Microbiol 2012; 12:244. [PMID: 23095113 PMCID: PMC3534330 DOI: 10.1186/1471-2180-12-244] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Accepted: 10/11/2012] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND The KsgA methyltransferase has been conserved throughout evolution, methylating two adenosines in the small subunit rRNA in all three domains of life as well as in eukaryotic organelles that contain ribosomes. Understanding of KsgA's important role in ribosome biogenesis has been recently expanded in Escherichia coli; these studies help explain why KsgA is so highly conserved and also suggest KsgA's potential as an antimicrobial drug target. RESULTS We have analyzed KsgA's contribution to ribosome biogenesis and cell growth in Staphylococcus aureus. We found that deletion of ksgA in S. aureus led to a cold-sensitive growth phenotype, although KsgA was not as critical for ribosome biogenesis as it was shown to be in E. coli. Additionally, the ksgA knockout strain showed an increased sensitivity to aminoglycoside antibiotics. Overexpression of a catalytically inactive KsgA mutant was deleterious in the knockout strain but not the wild-type strain; this negative phenotype disappeared at low temperature. CONCLUSIONS This work extends the study of KsgA, allowing comparison of this aspect of ribosome biogenesis between a Gram-negative and a Gram-positive organism. Our results in S. aureus are in contrast to results previously described in E. coli, where the catalytically inactive protein showed a negative phenotype in the presence or absence of endogenous KsgA.
Collapse
Affiliation(s)
- Heather C O'Farrell
- Department of Physiology and Molecular Biophysics, Virginia Commonwealth University, Richmond, VA, USA
| | | |
Collapse
|
33
|
Kidane D, Ayora S, Sweasy JB, Graumann PL, Alonso JC. The cell pole: the site of cross talk between the DNA uptake and genetic recombination machinery. Crit Rev Biochem Mol Biol 2012; 47:531-55. [PMID: 23046409 DOI: 10.3109/10409238.2012.729562] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Natural transformation is a programmed mechanism characterized by binding of free double-stranded (ds) DNA from the environment to the cell pole in rod-shaped bacteria. In Bacillus subtilis some competence proteins, which process the dsDNA and translocate single-stranded (ss) DNA into the cytosol, recruit a set of recombination proteins mainly to one of the cell poles. A subset of single-stranded binding proteins, working as "guardians", protects ssDNA from degradation and limit the RecA recombinase loading. Then, the "mediators" overcome the inhibitory role of guardians, and recruit RecA onto ssDNA. A RecA·ssDNA filament searches for homology on the chromosome and, in a process that is controlled by "modulators", catalyzes strand invasion with the generation of a displacement loop (D-loop). A D-loop resolvase or "resolver" cleaves this intermediate, limited DNA replication restores missing information and a DNA ligase seals the DNA ends. However, if any step fails, the "rescuers" will repair the broken end to rescue chromosomal transformation. If the ssDNA does not share homology with resident DNA, but it contains information for autonomous replication, guardian and mediator proteins catalyze plasmid establishment after inhibition of RecA. DNA replication and ligation reconstitute the molecule (plasmid transformation). In this review, the interacting network that leads to a cross talk between proteins of the uptake and genetic recombination machinery will be placed into prospective.
Collapse
Affiliation(s)
- Dawit Kidane
- Departments of Therapeutic Radiology and Genetics, Yale University School of Medicine, New Haven, CT, USA
| | | | | | | | | |
Collapse
|
34
|
Lehnik-Habrink M, Lewis RJ, Mäder U, Stülke J. RNA degradation in Bacillus subtilis: an interplay of essential endo- and exoribonucleases. Mol Microbiol 2012; 84:1005-17. [PMID: 22568516 DOI: 10.1111/j.1365-2958.2012.08072.x] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
RNA processing and degradation are key processes in the control of transcript accumulation and thus in the control of gene expression. In Escherichia coli, the underlying mechanisms and components of RNA decay are well characterized. By contrast, Gram-positive bacteria do not possess several important players of E. coli RNA degradation, most notably the essential enzyme RNase E. Recent research on the model Gram-positive organism, Bacillus subtilis, has identified the essential RNases J1 and Y as crucial enzymes in RNA degradation. While RNase J1 is the first bacterial exoribonuclease with 5'-to-3' processivity, RNase Y is the founding member of a novel class of endoribonucleases. Both RNase J1 and RNase Y have a broad impact on the stability of B. subtilis mRNAs; a depletion of either enzyme affects more than 25% of all mRNAs. RNases J1 and Y as well as RNase J2, the polynucleotide phosphorylase PNPase, the RNA helicase CshA and the glycolytic enzymes enolase and phosphofructokinase have been proposed to form a complex, the RNA degradosome of B. subtilis. This review presents a model, based on recent published data, of RNA degradation in B. subtilis. Degradation is initiated by RNase Y-dependent endonucleolytic cleavage, followed by processive exoribonucleolysis of the generated fragments both in 3'-to-5' and in 5'-to-3' directions. The implications of these findings for pathogenic Gram-positive bacteria are also discussed.
Collapse
Affiliation(s)
- Martin Lehnik-Habrink
- Department of General Microbiology, Georg-August-University Göttingen, Grisebachstr. 8, D-37077 Göttingen, Germany
| | | | | | | |
Collapse
|
35
|
Alluri RK, Li Z. Novel one-step mechanism for tRNA 3'-end maturation by the exoribonuclease RNase R of Mycoplasma genitalium. J Biol Chem 2012; 287:23427-33. [PMID: 22605341 DOI: 10.1074/jbc.m111.324970] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mycoplasma genitalium is expected to metabolize RNA using unique pathways because its minimal genome encodes very few ribonucleases. In this work, we report that the only exoribonuclease identified in M. genitalium, RNase R, is able to remove tRNA 3'-trailers and generate mature 3'-ends. Several sequence and structural features of a tRNA precursor determine its precise processing at the 3'-end by RNase R in a purified system. The aminoacyl-acceptor stem plays a major role in stopping RNase R digestion at the mature 3'-end. Disruption of the stem causes partial or complete degradation of the pre-tRNA by RNase R, whereas extension of the stem results in the formation of a product terminating downstream at the new mature 3'-end. In addition, the 3'-terminal CCA sequence and the discriminator residue influence the ability of RNase R to stop at the mature 3'-end. RNase R-mediated generation of the mature 3'-end prefers a sequence of RCCN at the 3' terminus of tRNA. Variations of this sequence may cause RNase R to trim further and remove terminal CA residues from the mature 3'-end. Therefore, M. genitalium RNase R can precisely remove the 3'-trailer of a tRNA precursor by recognizing features in the terminal domains of tRNA, a process requiring multiple RNases in most bacteria.
Collapse
Affiliation(s)
- Ravi K Alluri
- Department of Biomedical Science, Charles E Schmidt College of Medicine, Florida Atlantic University, Boca Raton, Florida 33431, USA
| | | |
Collapse
|
36
|
Xiao L, Zhang L, Wang HH. Critical issues in detecting viable Listeria monocytogenes cells by real-time reverse transcriptase PCR. J Food Prot 2012; 75:512-7. [PMID: 22410225 DOI: 10.4315/0362-028x.jfp-11-346] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Rapid and specific detection of viable Listeria monocytogenes cells, particularly in processed foods, is a major challenge in the food industry. To assess the suitability of using RNA-based detection methods to detect viable cells, several sets of PCR primers and florescent probes were designed targeting the 16S rRNA, internalin A, and ribosomal protein L4 genes. One-step real-time reverse transcriptase (RT) PCR assays were conducted using RNAs extracted from control and heat-treated L. monocytogenes samples. The cycle threshold values were significantly higher in heat-treated cells than in controls. However, real-time RT-PCR amplification signals were still detected even in samples stored at room temperature for 24 h after lethal treatments, and the intensity of the signals was correlated with the cell population. The 16S rRNA molecules were the most stable of the three targets evaluated, and the impact on detection efficacy of the relative positions of the PCR primers within the target genes was limited under the experimental conditions. These results suggest that real-time RT-PCR assays have advantages over conventional PCR assays for assessing viable L. monocytogenes cells, but the results are affected by the stability of the RNA molecules targeted. These findings could have a major impact on interpretation of RNA-based detection data and gene expression studies.
Collapse
Affiliation(s)
- Linlin Xiao
- Department of Food Science, The Ohio State University, 2015 Fyffe Court, Columbus, Ohio 43210, USA
| | | | | |
Collapse
|
37
|
A VapBC toxin-antitoxin module is a posttranscriptional regulator of metabolic flux in mycobacteria. J Bacteriol 2012; 194:2189-204. [PMID: 22366418 DOI: 10.1128/jb.06790-11] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The largest family of toxin-antitoxin (TA) modules are encoded by the vapBC operons, but their roles in bacterial physiology remain enigmatic. Microarray analysis in Mycobacterium smegmatis overexpressing VapC/VapBC revealed a high percentage of downregulated genes with annotated roles in carbon transport and metabolism, suggesting that VapC was targeting specific metabolic mRNA transcripts. To validate this hypothesis, purified VapC was used to identify the RNA cleavage site in vitro. VapC had RNase activity that was sequence specific, cleaving single-stranded RNA substrates at AUAU and AUAA in vitro and in vivo (viz., MSMEG_2121 to MSMEG_2124). A bioinformatic analysis of these regions suggested that an RNA hairpin 3' of the AUA(U/A) motif is also required for efficient cleavage. VapC-mediated regulation in vivo was demonstrated by showing that MSMEG_2124 (dhaF) and MSMEG_2121 (dhaM) were upregulated in a ΔvapBC mutant growing on glycerol. The ΔvapBC mutant had a specific rate of glycerol consumption that was 2.4-fold higher than that of the wild type during exponential growth. This increased rate of glycerol consumption was not used for generating bacterial biomass, suggesting that metabolism by the ΔvapBC mutant was uncoupled from growth. These data suggest a model in which VapC regulates the rate of glycerol utilization to match the anabolic demands of the cell, allowing for fine-tuning of the catabolic rate at a posttranscriptional level.
Collapse
|
38
|
Molecular basis for the recognition and cleavage of RNA by the bifunctional 5'-3' exo/endoribonuclease RNase J. Structure 2011; 19:1252-61. [PMID: 21893286 DOI: 10.1016/j.str.2011.06.018] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2011] [Revised: 06/07/2011] [Accepted: 06/25/2011] [Indexed: 11/23/2022]
Abstract
RNase J is a key member of the β-CASP family of metallo-β-lactamases involved in the maturation and turnover of RNAs in prokaryotes. The B. subtilis enzyme possesses both 5'-3' exoribonucleolytic and endonucleolytic activity, an unusual property for a ribonuclease. Here, we present the crystal structure of T. thermophilus RNase J bound to a 4 nucleotide RNA. The structure reveals an RNA-binding channel that illustrates how the enzyme functions in 5'-3' exoribonucleolytic mode and how it can function as an endonuclease. A second, negatively charged tunnel leads from the active site, and is ideally located to evacuate the cleaved nucleotide in 5'-3' exonucleolytic mode. We show that B. subtilis RNase J1, which shows processive behavior on long RNAs, behaves distributively for substrates less than 5 nucleotides in length. We propose a model involving the binding of the RNA to the surface of the β-CASP domain to explain the enzyme's processive action.
Collapse
|
39
|
From conformational chaos to robust regulation: the structure and function of the multi-enzyme RNA degradosome. Q Rev Biophys 2011; 45:105-45. [DOI: 10.1017/s003358351100014x] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
AbstractThe RNA degradosome is a massive multi-enzyme assembly that occupies a nexus in RNA metabolism and post-transcriptional control of gene expression inEscherichia coliand many other bacteria. Powering RNA turnover and quality control, the degradosome serves also as a machine for processing structured RNA precursors during their maturation. The capacity to switch between destructive and processing modes involves cooperation between degradosome components and is analogous to the process of RNA surveillance in other domains of life. Recruitment of components and cellular compartmentalisation of the degradosome are mediated through small recognition domains that punctuate a natively unstructured segment within a scaffolding core. Dynamic in conformation, variable in composition and non-essential under certain laboratory conditions, the degradosome has nonetheless been maintained throughout the evolution of many bacterial species, due most likely to its diverse contributions in global cellular regulation. We describe the role of the degradosome and its components in RNA decay pathways inE. coli, and we broadly compare these pathways in other bacteria as well as archaea and eukaryotes. We discuss the modular architecture and molecular evolution of the degradosome, its roles in RNA degradation, processing and quality control surveillance, and how its activity is regulated by non-coding RNA. Parallels are drawn with analogous machinery in organisms from all life domains. Finally, we conjecture on roles of the degradosome as a regulatory hub for complex cellular processes.
Collapse
|
40
|
Lehnik-Habrink M, Newman J, Rothe FM, Solovyova AS, Rodrigues C, Herzberg C, Commichau FM, Lewis RJ, Stülke J. RNase Y in Bacillus subtilis: a Natively disordered protein that is the functional equivalent of RNase E from Escherichia coli. J Bacteriol 2011; 193:5431-41. [PMID: 21803996 PMCID: PMC3187381 DOI: 10.1128/jb.05500-11] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2011] [Accepted: 07/21/2011] [Indexed: 12/12/2022] Open
Abstract
The control of mRNA stability is an important component of regulation in bacteria. Processing and degradation of mRNAs are initiated by an endonucleolytic attack, and the cleavage products are processively degraded by exoribonucleases. In many bacteria, these RNases, as well as RNA helicases and other proteins, are organized in a protein complex called the RNA degradosome. In Escherichia coli, the RNA degradosome is assembled around the essential endoribonuclease E. In Bacillus subtilis, the recently discovered essential endoribonuclease RNase Y is involved in the initiation of RNA degradation. Moreover, RNase Y interacts with other RNases, the RNA helicase CshA, and the glycolytic enzymes enolase and phosphofructokinase in a degradosome-like complex. In this work, we have studied the domain organization of RNase Y and the contribution of the domains to protein-protein interactions. We provide evidence for the physical interaction between RNase Y and the degradosome partners in vivo. We present experimental and bioinformatic data which indicate that the RNase Y contains significant regions of intrinsic disorder and discuss the possible functional implications of this finding. The localization of RNase Y in the membrane is essential both for the viability of B. subtilis and for all interactions that involve RNase Y. The results presented in this study provide novel evidence for the idea that RNase Y is the functional equivalent of RNase E, even though the two enzymes do not share any sequence similarity.
Collapse
Affiliation(s)
- Martin Lehnik-Habrink
- Department of General Microbiology, Institute of Microbiology and Genetics, Georg-August University Göttingen, Göttingen, Germany
| | - Joseph Newman
- Institute for Cell and Molecular Biosciences, University of Newcastle, Newcastle upon Tyne NE2 4HH, United Kingdom
| | - Fabian M. Rothe
- Department of General Microbiology, Institute of Microbiology and Genetics, Georg-August University Göttingen, Göttingen, Germany
| | - Alexandra S. Solovyova
- Institute for Cell and Molecular Biosciences, University of Newcastle, Newcastle upon Tyne NE2 4HH, United Kingdom
| | - Cecilia Rodrigues
- Institute for Cell and Molecular Biosciences, University of Newcastle, Newcastle upon Tyne NE2 4HH, United Kingdom
| | - Christina Herzberg
- Department of General Microbiology, Institute of Microbiology and Genetics, Georg-August University Göttingen, Göttingen, Germany
| | - Fabian M. Commichau
- Department of General Microbiology, Institute of Microbiology and Genetics, Georg-August University Göttingen, Göttingen, Germany
| | - Richard J. Lewis
- Institute for Cell and Molecular Biosciences, University of Newcastle, Newcastle upon Tyne NE2 4HH, United Kingdom
| | - Jörg Stülke
- Department of General Microbiology, Institute of Microbiology and Genetics, Georg-August University Göttingen, Göttingen, Germany
| |
Collapse
|
41
|
Cardenas PP, Carzaniga T, Zangrossi S, Briani F, Garcia-Tirado E, Dehò G, Alonso JC. Polynucleotide phosphorylase exonuclease and polymerase activities on single-stranded DNA ends are modulated by RecN, SsbA and RecA proteins. Nucleic Acids Res 2011; 39:9250-61. [PMID: 21859751 PMCID: PMC3241651 DOI: 10.1093/nar/gkr635] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Bacillus subtilis pnpA gene product, polynucleotide phosphorylase (PNPase), is involved in double-strand break (DSB) repair via homologous recombination (HR) or non-homologous end-joining (NHEJ). RecN is among the first responders to localize at the DNA DSBs, with PNPase facilitating the formation of a discrete RecN focus per nucleoid. PNPase, which co-purifies with RecA and RecN, was able to degrade single-stranded (ss) DNA with a 3′ → 5′ polarity in the presence of Mn2+ and low inorganic phosphate (Pi) concentration, or to extend a 3′-OH end in the presence dNDP·Mn2+. Both PNPase activities were observed in evolutionarily distant bacteria (B. subtilis and Escherichia coli), suggesting conserved functions. The activity of PNPase was directed toward ssDNA degradation or polymerization by manipulating the Pi/dNDPs concentrations or the availability of RecA or RecN. In its dATP-bound form, RecN stimulates PNPase-mediated polymerization. ssDNA phosphorolysis catalyzed by PNPase is stimulated by RecA, but inhibited by SsbA. Our findings suggest that (i) the PNPase degradative and polymerizing activities might play a critical role in the transition from DSB sensing to end resection via HR and (ii) by blunting a 3′-tailed duplex DNA, in the absence of HR, B. subtilis PNPase might also contribute to repair via NHEJ.
Collapse
Affiliation(s)
- Paula P Cardenas
- Centro Nacional de Biotecnología-CSIC, Darwin 3, 28049 Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
42
|
Burger A, Whiteley C, Boshoff A. Current perspectives of the Escherichia coli RNA degradosome. Biotechnol Lett 2011; 33:2337-50. [DOI: 10.1007/s10529-011-0713-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2011] [Accepted: 07/20/2011] [Indexed: 11/29/2022]
|
43
|
Identification of Rgg binding sites in the Streptococcus pyogenes chromosome. J Bacteriol 2011; 193:4933-42. [PMID: 21764942 DOI: 10.1128/jb.00429-11] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Streptococcus pyogenes Rgg is a regulatory protein that controls the transcription of 588 genes in strain NZ131 during the post-exponential phase of growth, including the virulence-associated genes encoding the extracellular SpeB protease, pullulanase A (PulA), and two extracellular nucleases (SdaB and Spd-3). Rgg binds to DNA proximally to the speB promoter (PspeB) to activate transcription; however, it is not known if Rgg binds to the promoters of other genes to influence expression, or if the perturbation of other global regulons accounts for the genome-wide changes in expression associated with the mutant. To address this issue, chromatin immunoprecipitation followed by DNA microarray analysis (ChIP-chip) was used to identify the DNA binding sites of Rgg. Rgg bound to 65 sites in the chromosome. Thirty-five were within noncoding DNA, and 43% of these were adjacent to genes previously identified as regulated by Rgg. Electrophoretic mobility shift assays were used to assess the binding of Rgg to a subset of sites bound in vivo, including the noncoding DNA upstream of speB, the genes encoding PulA, Spd-3, and a transcriptional regulator (SPY49_1113), and prophage-associated genes encoding a putative integrase (SPY49_0746) and a surface antigen (SPY49_0396). Rgg bound to all target DNAs in vitro, consistent with the in vivo results. Finally, analyses with a transcriptional reporter system showed that the DNA bound by Rgg contained an active promoter that was regulated by Rgg. Overall, the results indicate that Rgg binds specifically to multiple sites in the chromosome, including prophage DNA, to influence gene expression.
Collapse
|
44
|
Moraru C, Lam P, Fuchs BM, Kuypers MMM, Amann R. GeneFISH--an in situ technique for linking gene presence and cell identity in environmental microorganisms. Environ Microbiol 2011; 12:3057-73. [PMID: 20629705 DOI: 10.1111/j.1462-2920.2010.02281.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Our knowledge concerning the metabolic potentials of as yet to be cultured microorganisms has increased tremendously with the advance of sequencing technologies and the consequent discoveries of novel genes. On the other hand, it is often difficult to reliably assign a particular gene to a phylogenetic clade, because these sequences are usually found on genomic fragments that carry no direct marker of cell identity, such as rRNA genes. Therefore, the aim of the present study was to develop geneFISH - a protocol for linking gene presence with cell identity in environmental samples, the signals of which can be visualized at a single cell level. This protocol combines rRNA-targeted catalysed reporter deposition - fluorescence in situ hybridization and in situ gene detection. To test the protocol, it was applied to seawater samples from the Benguela upwelling system. For gene detection, a polynucleotide probe mix was used, which was designed based on crenarchaeotal amoA clone libraries prepared from each seawater sample. Each probe in the mix was selected to bind to targets with up to 5% mismatches. To determine the hybridization parameters, the T(m) of probes, targets and hybrids was estimated based on theoretical calculations and in vitro measurements. It was shown that at least 30%, but potentially the majority of the Crenarchaeota present in these samples harboured the amoA gene and were therefore likely to be catalysing the oxidation of ammonia.
Collapse
Affiliation(s)
- Cristina Moraru
- Max Planck Institute for Marine Microbiology, Celsiusstrasse 1, D-28359 Bremen, Germany
| | | | | | | | | |
Collapse
|
45
|
Olson PD, Kuechenmeister LJ, Anderson KL, Daily S, Beenken KE, Roux CM, Reniere ML, Lewis TL, Weiss WJ, Pulse M, Nguyen P, Simecka JW, Morrison JM, Sayood K, Asojo OA, Smeltzer MS, Skaar EP, Dunman PM. Small molecule inhibitors of Staphylococcus aureus RnpA alter cellular mRNA turnover, exhibit antimicrobial activity, and attenuate pathogenesis. PLoS Pathog 2011; 7:e1001287. [PMID: 21347352 PMCID: PMC3037362 DOI: 10.1371/journal.ppat.1001287] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2010] [Accepted: 01/10/2011] [Indexed: 11/23/2022] Open
Abstract
Methicillin-resistant Staphylococcus aureus is estimated to cause more U.S. deaths annually than HIV/AIDS. The emergence of hypervirulent and multidrug-resistant strains has further amplified public health concern and accentuated the need for new classes of antibiotics. RNA degradation is a required cellular process that could be exploited for novel antimicrobial drug development. However, such discovery efforts have been hindered because components of the Gram-positive RNA turnover machinery are incompletely defined. In the current study we found that the essential S. aureus protein, RnpA, catalyzes rRNA and mRNA digestion in vitro. Exploiting this activity, high through-put and secondary screening assays identified a small molecule inhibitor of RnpA-mediated in vitro RNA degradation. This agent was shown to limit cellular mRNA degradation and exhibited antimicrobial activity against predominant methicillin-resistant S. aureus (MRSA) lineages circulating throughout the U.S., vancomycin intermediate susceptible S. aureus (VISA), vancomycin resistant S. aureus (VRSA) and other Gram-positive bacterial pathogens with high RnpA amino acid conservation. We also found that this RnpA-inhibitor ameliorates disease in a systemic mouse infection model and has antimicrobial activity against biofilm-associated S. aureus. Taken together, these findings indicate that RnpA, either alone, as a component of the RNase P holoenzyme, and/or as a member of a more elaborate complex, may play a role in S. aureus RNA degradation and provide proof of principle for RNA catabolism-based antimicrobial therapy. The last decade has witnessed a mass downsizing in pharmaceutical antibiotic drug discovery initiatives. This has posed a major healthcare issue that will likely worsen with time; antibiotic resistant bacteria continue to emerge while advances in new therapeutic options languish. In the current body of work, we show that agents that limit bacterial RNA turnover have potential as a new class of antibiotics. More specifically, our findings indicate the essential bacterial protein, RnpA, exhibits in vitro ribonuclease activity and either alone and/or as a member of the RNase P holoenzyme, may contribute to the RNA degradation properties of Staphylococcus aureus, a predominant cause of hospital and community bacterial infections. Accordingly, using high throughput screening we identified small molecule inhibitors of RnpA's in vitro RNA degradation activity. One of these agents, RNPA1000, was shown to limit S. aureus mRNA turnover and growth. RNPA1000 also limited growth of other important Gram-positive bacterial pathogens, exhibited antimicrobial efficacy against biofilm associated S. aureus and protected against the S. aureus pathogenesis in an animal model of infection. When taken together, our results illustrate that components of the bacterial RNA degradation machinery have utility as antibiotic drug-discovery targets and that RNPA1000 may represent a progenitor of this new class of antibiotics.
Collapse
Affiliation(s)
- Patrick D. Olson
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Lisa J. Kuechenmeister
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Kelsi L. Anderson
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Sonja Daily
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| | - Karen E. Beenken
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| | - Christelle M. Roux
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Michelle L. Reniere
- Department of Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Tami L. Lewis
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - William J. Weiss
- Department of Molecular Biology and Immunology, University of North Texas Health Science Center, Fort Worth, Texas, United States of America
| | - Mark Pulse
- Department of Molecular Biology and Immunology, University of North Texas Health Science Center, Fort Worth, Texas, United States of America
| | - Phung Nguyen
- Department of Molecular Biology and Immunology, University of North Texas Health Science Center, Fort Worth, Texas, United States of America
| | - Jerry W. Simecka
- Department of Molecular Biology and Immunology, University of North Texas Health Science Center, Fort Worth, Texas, United States of America
| | - John M. Morrison
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Khalid Sayood
- Department of Electrical Engineering, University of Nebraska, Lincoln, Nebraska, United States of America
| | - Oluwatoyin A. Asojo
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Mark S. Smeltzer
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| | - Eric P. Skaar
- Department of Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Paul M. Dunman
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
- Department of Microbiology and Immunology, University of Rochester, Rochester, New York, United States of America
- * E-mail:
| |
Collapse
|
46
|
Hasenöhrl D, Konrat R, Bläsi U. Identification of an RNase J ortholog in Sulfolobus solfataricus: implications for 5'-to-3' directional decay and 5'-end protection of mRNA in Crenarchaeota. RNA (NEW YORK, N.Y.) 2011; 17:99-107. [PMID: 21115637 PMCID: PMC3004070 DOI: 10.1261/rna.2418211] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/17/2010] [Accepted: 10/07/2010] [Indexed: 05/29/2023]
Abstract
In both Bacteria and Eukaryotes, degradation is known to start at the 5' and at the 3' extremities of mRNAs. Until the recent discovery of 5'-to-3' exoribonucleases in hyperthermophilic Euryarchaeota, the exosome was assumed to be the key enzyme in mRNA degradation in Archaea. By means of zymogram assays and bioinformatics, we have identified a 5'-to-3' exoribonuclease activity in the crenarchaeum Sulfolobus solfataricus (Sso), which is affected by the phosphorylation state of the 5'-end of the mRNA. The protein comprises typical signature motifs of the β-CASP family of metallo-β-lactamases and was termed Sso-RNAse J. Thus, our study provides the first evidence for a 5'-to-3' directional mRNA decay pathway in the crenarchaeal clade of Archaea. In Bacteria the 5'-end of mRNAs is often protected by a tri-phosphorylated 5'-terminus and/or by stem-loop structures, while in Eukaryotes the cap-binding complex is responsible for this task. Here, we show that binding of translation initiation factor a/eIF2(γ) to the 5'-end of mRNA counteracts the 5'-to-3' exoribonucleolytic activity of Sso-RNase J in vitro. Hence, 5'-to-3' directional decay and 5'-end protection appear to be conserved features of mRNA turnover in all kingdoms of life.
Collapse
Affiliation(s)
- David Hasenöhrl
- Max F. Perutz Laboratories, Department of Microbiology, Immunobiology and Genetics, University of Vienna, 1030 Vienna, Austria
| | | | | |
Collapse
|
47
|
Ramirez-Peña E, Treviño J, Liu Z, Perez N, Sumby P. The group A Streptococcus small regulatory RNA FasX enhances streptokinase activity by increasing the stability of the ska mRNA transcript. Mol Microbiol 2010; 78:1332-47. [PMID: 21143309 PMCID: PMC3071709 DOI: 10.1111/j.1365-2958.2010.07427.x] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Small RNA molecules play key regulatory roles in many bacterial species. However, little mechanistic data exists for the action of small regulatory RNAs in the human pathogen group A Streptococcus (GAS). Here, we analysed the relationship between a putative GAS sRNA and production of the secreted virulence factor streptokinase (SKA). SKA promotes GAS dissemination by activating conversion of host plasminogen into the fibrin-degrading protease plasmin. Homologues of the putative sRNA-encoding gene fibronectin/fibrinogen-binding/haemolytic-activity/streptokinase-regulator-X (fasX) were identified in four different pyogenic streptococcal species. However, despite 79% fasX nucleotide identity, a fasX allele from the animal pathogen Streptococcus zooepidemicus failed to complement a GAS fasX mutant. Using a series of precisely constructed fasX alleles we discovered that FasX is a bona-fide sRNA that post-transcriptionally regulates SKA production in GAS. By base-pairing to the 5' end of ska mRNA, FasX enhances ska transcript stability, resulting in a ∼10-fold increase in SKA activity. Our data provide new insights into the mechanisms used by small regulatory RNAs to activate target mRNAs, and enhances our understanding of the regulation of a key GAS virulence factor.
Collapse
MESH Headings
- Bacterial Proteins/chemistry
- Bacterial Proteins/genetics
- Bacterial Proteins/metabolism
- Base Sequence
- Gene Expression Regulation, Bacterial
- Gene Expression Regulation, Enzymologic
- Humans
- Molecular Sequence Data
- Nucleic Acid Conformation
- RNA Stability
- RNA, Bacterial/chemistry
- RNA, Bacterial/genetics
- RNA, Bacterial/metabolism
- RNA, Messenger/chemistry
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Small Untranslated/chemistry
- RNA, Small Untranslated/genetics
- RNA, Small Untranslated/metabolism
- Streptococcal Infections/microbiology
- Streptococcus pyogenes/chemistry
- Streptococcus pyogenes/enzymology
- Streptococcus pyogenes/genetics
- Streptococcus pyogenes/metabolism
- Streptokinase/chemistry
- Streptokinase/genetics
- Streptokinase/metabolism
- Virulence Factors/chemistry
- Virulence Factors/genetics
- Virulence Factors/metabolism
Collapse
Affiliation(s)
- Esmeralda Ramirez-Peña
- Center for Molecular and Translational Human Infectious Diseases Research, Department of Pathology, The Methodist Hospital Research Institute, Houston, TX 77030, USA
| | - Jeanette Treviño
- Center for Molecular and Translational Human Infectious Diseases Research, Department of Pathology, The Methodist Hospital Research Institute, Houston, TX 77030, USA
| | - Zhuyun Liu
- Center for Molecular and Translational Human Infectious Diseases Research, Department of Pathology, The Methodist Hospital Research Institute, Houston, TX 77030, USA
| | - Nataly Perez
- Center for Molecular and Translational Human Infectious Diseases Research, Department of Pathology, The Methodist Hospital Research Institute, Houston, TX 77030, USA
| | - Paul Sumby
- Center for Molecular and Translational Human Infectious Diseases Research, Department of Pathology, The Methodist Hospital Research Institute, Houston, TX 77030, USA
| |
Collapse
|
48
|
Kosmidis C, DeMarco CE, Frempong-Manso E, Seo SM, Kaatz GW. In silico genetic correlations of multidrug efflux pump gene expression in Staphylococcus aureus. Int J Antimicrob Agents 2010; 36:222-9. [PMID: 20598861 DOI: 10.1016/j.ijantimicag.2010.05.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2010] [Revised: 05/27/2010] [Accepted: 05/28/2010] [Indexed: 10/19/2022]
Abstract
Regulatory mechanisms for chromosomal genes encoding multidrug resistance (MDR) efflux pumps (EPs) in Staphylococcus aureus are poorly defined. Microbiological, quantitative gene expression, mRNA half-life and genome data for 11 strains of S. aureus combined with bioinformatic analyses were used to identify correlates of increased MDR EP gene expression. The presence of qacA/B and/or increased expression of one to two MDR EP genes were identified in eight strains. Microbiological and gene expression data correlated in four instances, existing knowledge of the substrate specificity of NorC resulted in correlation in two others, and a transcriptional/translational disconnect is possible for the remaining two. In silico analyses and mRNA half-life determinations linked insertions of nucleotide repeats 3' to the -10 motif of the norA promoter with increased promoter activity. Mutations in the 5'-untranslated and/or coding regions were identified that may affect transcription efficiency. Substitutions of residues in the helix-turn-helix (HTH) motif of NorG may augment its positive regulation of norB. The correlations proposed provide a guide for further experimentation leading to a better understanding of MDR EP gene expression in this important pathogen.
Collapse
Affiliation(s)
- Christos Kosmidis
- Department of Medicine, Division of Infectious Diseases, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | | | | | | | | |
Collapse
|
49
|
Jones GH. RNA degradation and the regulation of antibiotic synthesis in Streptomyces. Future Microbiol 2010; 5:419-29. [PMID: 20210552 DOI: 10.2217/fmb.10.14] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Streptomyces are Gram-positive, soil-dwelling bacteria that are prolific producers of antibiotics. Most of the antibiotics used in clinical and veterinary medicine worldwide are produced as natural products by members of the genus Streptomyces. The regulation of antibiotic production in Streptomyces is complex and there is a hierarchy of regulatory systems that extends from the level of individual biosynthetic pathways to global regulators that, at least in some streptomycetes, control the production of all the antibiotics produced by that organism. Ribonuclease III, a double-strand specific endoribonuclease, appears to be a global regulator of antibiotic production in Streptomyces coelicolor, the model organism for the study of streptomycete biology. In this review, the enzymology of RNA degradation in Streptomyces is reviewed in comparison with what is known about the degradation pathways in Escherichia coli and other bacteria. The evidence supporting a role for RNase III as a global regulator of antibiotic production in S. coelicolor is reviewed and possible mechanisms by which this regulation is accomplished are considered.
Collapse
Affiliation(s)
- George H Jones
- Department of Biology, Emory University, Atlanta, GA 30319, USA.
| |
Collapse
|
50
|
Initiation of decay of Bacillus subtilis rpsO mRNA by endoribonuclease RNase Y. J Bacteriol 2010; 192:3279-86. [PMID: 20418391 DOI: 10.1128/jb.00230-10] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
rpsO mRNA, a small monocistronic mRNA that encodes ribosomal protein S15, was used to study aspects of mRNA decay initiation in Bacillus subtilis. Decay of rpsO mRNA in a panel of 3'-to-5' exoribonuclease mutants was analyzed using a 5'-proximal oligonucleotide probe and a series of oligonucleotide probes that were complementary to overlapping sequences starting at the 3' end. The results provided strong evidence that endonuclease cleavage in the body of the message, rather than degradation from the native 3' end, is the rate-determining step for mRNA decay. Subsequent to endonuclease cleavage, the upstream products were degraded by polynucleotide phosphorylase (PNPase), and the downstream products were degraded by the 5' exonuclease activity of RNase J1. The rpsO mRNA half-life was unchanged in a strain that had decreased RNase J1 activity and no RNase J2 activity, but it was 2.3-fold higher in a strain with decreased activity of RNase Y, a recently discovered RNase of B. subtilis encoded by the ymdA gene. Accumulation of full-length rpsO mRNA and its decay intermediates was analyzed using a construct in which the rpsO transcription unit was under control of a bacitracin-inducible promoter. The results were consistent with RNase Y-mediated initiation of decay. This is the first report of a specific mRNA whose stability is determined by RNase Y.
Collapse
|