1
|
Yasmin S, Ansari MY. A detailed examination of coronavirus disease 2019 (COVID-19): Covering past and future perspectives. Microb Pathog 2025; 203:107398. [PMID: 39986548 DOI: 10.1016/j.micpath.2025.107398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 01/07/2025] [Accepted: 02/18/2025] [Indexed: 02/24/2025]
Abstract
The COVID-19 disease has spread rapidly across the world within just six months, affecting 169 million people and causing 3.5 million deaths globally (2021). The most affected countries include the USA, Brazil, India, and several European countries such as the UK and Russia. Healthcare professionals face new challenges in finding better ways to manage patients and save lives. In this regard, more comprehensive research is needed, including genomic and proteomic studies, personalized medicines and the design of suitable treatments. However, finding novel molecular entities (NME) using a standard or de novo strategy to drug development is a time-consuming and costly process. Another alternate strategy is discovering new therapeutic uses for old/existing/available medications, known as drug repurposing. There are a variety of computational repurposing methodologies, and some of them have been used to counter the coronavirus disease pandemic of 2019 (COVID-19). This review article compiles recently published data on the origin, transmission, pathogenesis, diagnosis, and management of the coronavirus by drug repurposing and vaccine development approach. We have attempted to screen probable drugs in clinical trials by using literature survey. This systematic review aims to create priorities for future research of drugs repurposed and vaccine development for COVID-19.
Collapse
Affiliation(s)
- Sabina Yasmin
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Khalid University, Abha, Saudi Arabia.
| | - Mohammad Yousuf Ansari
- MM College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana, 133207, India; Ibne Seena College of Pharmacy, Azmi Vidya Nagri Anjhi Shahabad, Hardoi, Uttar Pradesh (U.P.) 241124, India.
| |
Collapse
|
2
|
Padhiar JS, Rai U. Study on Gender-specific Population at Risk of Developing Dementia, Anxiety and Depression Following Exposure to COVID-19. Ann Neurosci 2025:09727531251319838. [PMID: 40115280 PMCID: PMC11920980 DOI: 10.1177/09727531251319838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 01/24/2025] [Accepted: 01/25/2025] [Indexed: 03/23/2025] Open
Abstract
Background The identification of COVID-19 first occurred in January 2020. The rapid transmission of this virus across human populations has led to the emergence of a global pandemic known as COVID-19. Dementia, anxiety and depression are neurological disorders that impact several higher cognitive functions, such as memory, cognition, orientation, understanding, computation, learning ability, language and decision-making. Purpose This study aims to examine the impact of demographic factors on the occurrence of dementia, anxiety and depression in individuals who have recovered from a COVID-19 infection. Methods This study aims to investigate individuals who are at risk of developing dementia, anxiety and depression following exposure to COVID-19. Ethics Committee approval was obtained from hospital (Ethics Committee-Unique Hospital, Surat, India) and University Research Ethics Committee approval was obtained from Dehradun Institute of Technology University, Dehradun, India (DITU/UREC/2022/04/6). Patients willingly participated in the study and signed the ICF as per their preferred language. Patient data was obtained from the hospital with the assistance of medical staff. The study included patients who met the specific criteria for participation, as determined by the inclusion and exclusion criteria. Patients who satisfy the eligibility conditions were obligated to complete the questionnaire. The data was examined based on the subject's responses. Results Exposure to COVID-19 has been linked to a heightened susceptibility to developing mental health issues, such as anxiety, depression and even dementia. Studies have demonstrated that persons who have acquired COVID-19 are more prone to developing various psychiatric disorders in comparison to those who have not been infected. Individuals with dementia encountered a decline in cognitive function and a rise in neuropsychiatric symptoms, including restlessness, confusion, irritability and lack of motivation, amidst the epidemic. Research has indicated that persons experiencing mild cognitive impairment or dementia exhibited elevated levels of despair and anxiety amongst the epidemic. Conclusion In this research study on the gender-specific effects of COVID-19 exposure on high-risk persons, development of dementia, anxiety and depression offers important new insights into the complex ways that the pandemic has affected mental health in different genders.
Collapse
Affiliation(s)
- Jigar S Padhiar
- School of Pharmaceutical & Population Health Informatics, DIT University, Dehradun, Uttarakhand, India
| | - Uddipak Rai
- School of Pharmaceutical & Population Health Informatics, DIT University, Dehradun, Uttarakhand, India
| |
Collapse
|
3
|
Ramasamy S, Quraishi M, Mukherjee S, Mahajan S, LaBella LC, Chothe SK, Jakka P, Gontu A, Misra S, Surendran-Nair M, Nissly RH, Kuchipudi SV. Serological Assays Reveal No Evidence of Natural SARS-CoV-2 Infection in US Cattle. Microorganisms 2025; 13:600. [PMID: 40142493 PMCID: PMC11944350 DOI: 10.3390/microorganisms13030600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 02/27/2025] [Accepted: 02/28/2025] [Indexed: 03/28/2025] Open
Abstract
Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) continues to pose a significant threat to public health. Notably, SARS-CoV-2 demonstrates the capacity to infect various non-human animal species, including both captive and free-living animals. Earlier experimental studies revealed low susceptibility of domestic cattle (Bos taurus) to ancestral B.1 lineage; however, recent experimental findings indicate greater permissiveness of cattle to SARS-CoV-2 Delta variant. While some studies detected evidence of SARS-CoV-2 infection in cattle in Italy, Germany, India, and Nigeria, currently, there is no evidence of SARS-CoV-2 infections in US cattle. We have investigated over 600 samples, including pre-pandemic and pandemic cattle sera collected from Pennsylvania for the presence of SARS-CoV-2 antibodies. Since serological tests have inherent problems of false positives and negatives, we conducted a comprehensive assessment of multiple serological assays. As there are no known SARS-CoV-2 positive cattle serum samples, we used hyperimmune serum raised in cattle with SARS-CoV-2-spike receptor binding domain (RBD) as positive control for the test validation. We found that pseudovirus neutralization assays with a luciferase reporter system can produce false positive results, and care must be taken to interpret serological diagnosis using these assays. We found no serological evidence of natural SARS-CoV-2 infection or transmission among cattle in the US. This study underscores the importance of robust evaluation when employing serological assays for SARS-CoV-2 detection in cattle populations.
Collapse
Affiliation(s)
- Santhamani Ramasamy
- Department of Infectious Diseases and Microbiology, University of Pittsburgh School of Public Health, Pittsburgh, PA 15261, USA; (S.R.); (S.M.); (L.C.L.); (S.K.C.); (S.M.)
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Meysoon Quraishi
- Animal Diagnostic Laboratory, Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA 16802, USA; (M.Q.); (S.M.); (P.J.); (A.G.); (M.S.-N.); (R.H.N.)
| | - Swastidipa Mukherjee
- Department of Infectious Diseases and Microbiology, University of Pittsburgh School of Public Health, Pittsburgh, PA 15261, USA; (S.R.); (S.M.); (L.C.L.); (S.K.C.); (S.M.)
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Sonalika Mahajan
- Animal Diagnostic Laboratory, Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA 16802, USA; (M.Q.); (S.M.); (P.J.); (A.G.); (M.S.-N.); (R.H.N.)
| | - Lindsey C. LaBella
- Department of Infectious Diseases and Microbiology, University of Pittsburgh School of Public Health, Pittsburgh, PA 15261, USA; (S.R.); (S.M.); (L.C.L.); (S.K.C.); (S.M.)
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Shubhada K. Chothe
- Department of Infectious Diseases and Microbiology, University of Pittsburgh School of Public Health, Pittsburgh, PA 15261, USA; (S.R.); (S.M.); (L.C.L.); (S.K.C.); (S.M.)
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Padmaja Jakka
- Animal Diagnostic Laboratory, Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA 16802, USA; (M.Q.); (S.M.); (P.J.); (A.G.); (M.S.-N.); (R.H.N.)
| | - Abhinay Gontu
- Animal Diagnostic Laboratory, Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA 16802, USA; (M.Q.); (S.M.); (P.J.); (A.G.); (M.S.-N.); (R.H.N.)
| | - Sougat Misra
- Department of Infectious Diseases and Microbiology, University of Pittsburgh School of Public Health, Pittsburgh, PA 15261, USA; (S.R.); (S.M.); (L.C.L.); (S.K.C.); (S.M.)
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Meera Surendran-Nair
- Animal Diagnostic Laboratory, Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA 16802, USA; (M.Q.); (S.M.); (P.J.); (A.G.); (M.S.-N.); (R.H.N.)
| | - Ruth H. Nissly
- Animal Diagnostic Laboratory, Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA 16802, USA; (M.Q.); (S.M.); (P.J.); (A.G.); (M.S.-N.); (R.H.N.)
| | - Suresh V. Kuchipudi
- Department of Infectious Diseases and Microbiology, University of Pittsburgh School of Public Health, Pittsburgh, PA 15261, USA; (S.R.); (S.M.); (L.C.L.); (S.K.C.); (S.M.)
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA 15261, USA
| |
Collapse
|
4
|
Ahmad S, Alafnan A, Alobaida A, Shahab U, Rehman S, Khan S, Khan MY, Puri P, Pandey RP, Ahmad I, Rafi Z. Decoding the SARS-CoV-2 infection process: Insights into origin, spread, and therapeutic approaches. Microb Pathog 2025; 200:107328. [PMID: 39863091 DOI: 10.1016/j.micpath.2025.107328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 10/29/2024] [Accepted: 01/22/2025] [Indexed: 01/27/2025]
Abstract
Globally, over 768 million confirmed cases and 6.9 million deaths had been documented as of July 17, 2023. Coronaviruses have a relatively large RNA genome. As with other viruses, SARS-CoV-2 does have an envelope film produced from host cells that are assisted by virally encoded glycoproteins that are required for infectivity, immunological assault, and viral particle production. Although the intermediate source of origin and transmission to humans is unexplained, rapid transmission from human to human has been established. This review focuses on the mechanistic framework for understanding the SARS-CoV-2 viral infection. Additionally, it discusses the origins and implications of COVID-19 using direct quotations from the published scientific literature to avoid misinterpretation of this catastrophic event that resulted in a massive loss of human life and impact on the global economy. The current available information unfolds large number of topics related with COVID-19 and/or the coronavirus (SARS-CoV-2) responsible of the disease. This review article also delves into the multifaceted aspects of COVID-19 and SARS-CoV-2, with a specific focus on a controversial yet essential issue: the possible association between SARS-CoV-2's origin and aldose reductase, an enzyme known for its role in diabetic retinopathy. Exploring this connection holds utmost significance, offering valuable insights into COVID-19's pathogenesis and unlocking new avenues for therapeutic interventions. It is important to trace back the evolution of coronaviruses and reveal the possible origin of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which causes the coronavirus disease 2019 (COVID-19).
Collapse
Affiliation(s)
- Saheem Ahmad
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Hail, 2440, Saudi Arabia.
| | - Ahmed Alafnan
- Department of Pharmacology, College of Pharmacy, University of Hail, Hail City, 2440, Saudi Arabia.
| | - Ahmed Alobaida
- Department of Pharmacology, College of Pharmacy, University of Hail, Hail City, 2440, Saudi Arabia.
| | - Uzma Shahab
- Department of Pharmacology, College of Pharmacy, University of Hail, Hail City, 2440, Saudi Arabia.
| | - Shahnawaz Rehman
- IIRC-1, Laboratory of Glycation Biology and Metabolic Disorders, Integral University, U.P., India.
| | - Saif Khan
- Department of Basic Dental and Medical Sciences, College of Dentistry, University of Hail, 2440, Hail, 2440, Saudi Arabia.
| | - Mohd Yasir Khan
- Department of Biotechnology, School of Applied & Life Science, Uttaranchal University Dehradun, India.
| | - Paridhi Puri
- University Centre for Research and Development, Chandigarh University, Mohali, Punjab, India.
| | - Ramendra Pati Pandey
- Department of Biotechnology, SRM University, Delhi-NCR, Sonepat, Haryana, 131029, India.
| | - Irfan Ahmad
- Central Labs, King Khalid University, AlQura'a, P.O. Box 960, Abha, Saudi Arabia; Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia.
| | - Zeeshan Rafi
- Department of Bioengineering, Faculty of Engineering, Integral University, Lucknow, 226026, India.
| |
Collapse
|
5
|
Wang W, Sun J, Gao Y, Jia XX, Ye Y, Ren S, Peng Y, Han D, Zhou H, Gao Z, Sun X. Ultra-sensitive detection of norovirus using a three-in-one CRISPR platform based on a DNA hydrogel and composite functional nanomaterials. JOURNAL OF HAZARDOUS MATERIALS 2025; 482:136523. [PMID: 39581026 DOI: 10.1016/j.jhazmat.2024.136523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 10/08/2024] [Accepted: 11/13/2024] [Indexed: 11/26/2024]
Abstract
The ultrasensitive sensor with three optical response mechanisms was proposed for the determination of trace amounts of norovirus using a 3-in-1 GCSNAs (a gap-containing spherical nucleic acid nanoparticles) probe. A simple and highly sensitive three-mode biosensor with Raman, colorimetric, and fluorescence functions was proposed and implemented using the GCSNAs probe and a DNA hydrogel for norovirus detection. When the virus exists, the trans-cleavage activity of CRISPR-Cas12a was activated by double-stranded dsDNA (dsDNA) generated by reverse transcription and recombinase polymerase isothermal amplification (RT-RPA) to degrade the DNA hydrogel/GCSNA composition and release the three-in-one (3-in-1) probe-GCSNA, realising the triple ultrasensitive detection of norovirus. The colorimetric sensing mode allows for semi-quantitative on-site detection, which is visible to the naked eye and the quantitative detection can be achieved by conducting grayscale analysis using the "Colour Grab" function of a smartphone. This new triple sensor achieved the successful quantification of norovirus at concentrations as low as the femtomolar scale with an excellent selectivity and accuracy. Considering the colorimetric properties of rolling circle amplification (RCA)-based DNA hydrogels and GCSNAs, the proposed method has a broad application prospect in virus on-site detection in food. It should be applicable for virus detection in a wide range of fields such, as environmental analysis, medical diagnosis, and food safety. It is anticipated that this mechanism will open new avenues for the development of multimodal analyses and multifunctional sensing platforms for various applications. We anticipate that this sensing mechanism will open up a new way for the development of food safety detection.
Collapse
Affiliation(s)
- Weiya Wang
- School of Food Science and Technology, International Joint Laboratory on Food Safety, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu 214122, China; Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Military Medical Sciences Academy, Tianjin 300050, China
| | - Jiadi Sun
- School of Food Science and Technology, International Joint Laboratory on Food Safety, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yifei Gao
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong 999077, China
| | - Xue Xia Jia
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Military Medical Sciences Academy, Tianjin 300050, China
| | - Yongli Ye
- School of Food Science and Technology, International Joint Laboratory on Food Safety, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Shuyue Ren
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Military Medical Sciences Academy, Tianjin 300050, China
| | - Yuan Peng
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Military Medical Sciences Academy, Tianjin 300050, China
| | - Dianpeng Han
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Military Medical Sciences Academy, Tianjin 300050, China
| | - Huanying Zhou
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Military Medical Sciences Academy, Tianjin 300050, China
| | - Zhixian Gao
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Military Medical Sciences Academy, Tianjin 300050, China.
| | - Xiulan Sun
- School of Food Science and Technology, International Joint Laboratory on Food Safety, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
6
|
Kanu GA, Mouselly A, Mohamed AA. Foundations and applications of computational genomics. DEEP LEARNING IN GENETICS AND GENOMICS 2025:59-75. [DOI: 10.1016/b978-0-443-27574-6.00007-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
7
|
Ko C, Cheng CC, Mistretta D, Ambike S, Sacherl J, Velkov S, Liao BH, Bester R, Gültan M, Polezhaeva O, Herrmann A, Jakwerth CA, Schmidt-Weber CB, Bugert JJ, Wölfel R, Grass V, Essbauer S, Schnepf D, Keppler OT, Vondran FWR, Pichlmair A, Mogler C, Ebert G, Protzer U. SARS-CoV-2 Productively Infects Human Hepatocytes and Induces Cell Death. J Med Virol 2025; 97:e70156. [PMID: 39760326 DOI: 10.1002/jmv.70156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 11/25/2024] [Accepted: 12/18/2024] [Indexed: 01/07/2025]
Abstract
SARS-CoV-2 infection is accompanied by elevated liver enzymes, and patients with pre-existing liver conditions experience more severe disease. While it was known that SARS-CoV-2 infects human hepatocytes, our study determines the mechanism of infection, demonstrates viral replication and spread, and highlights direct hepatocyte damage. Viral replication was readily detectable upon infection of primary human hepatocytes and hepatoma cells with the ancestral SARS-CoV-2, Delta, and Omicron variants. Hepatocytes express the SARS-CoV-2 receptor ACE2 and the host cell protease TMPRSS2, and knocking down ACE2 and TMPRSS2 impaired SARS-CoV-2 infection. Progeny viruses released from infected hepatocytes showed the typical coronavirus morphology by electron microscopy and proved infectious when transferred to fresh cells, indicating that hepatocytes can contribute to virus spread. Importantly, SARS-CoV-2 infection rapidly induced hepatocyte death in a replication-dependent fashion, with the Omicron variant showing faster onset but less extensive cell death. C57BL/6 wild-type mice infected with a mouse-adapted SARS-CoV-2 strain showed high levels of viral RNA in liver and lung tissues. ALT peaked when viral RNA was cleared from the liver. Liver histology revealed profound tissue damage and immune cell infiltration, indicating that direct cytopathic effects of SARS-CoV-2 and immune-mediated killing of infected hepatocytes contribute to liver pathology.
Collapse
Grants
- This study was supported by the German Research Foundation (DFG) via SFB-TRR179 (project 272983813 to U.P.), TRR22 (project 398577603 to C.S.W.) and TRR353 (project 471011418 to G.E.), by the State of Bavaria via research network FOR-COVID and Bay-VOC, by the project "Virological and immunological determinants of COVID-19 pathogenesis-lessons to get prepared for future pandemics" (KA1-Co-02 "COVIPA" to U.P.) and "Airborne Transmission of SARS Coronavirus - From Fundamental Science to Efficient Air Cleaning Systems" (KA1-Co-06 "CORAERO" to G.E.), grants from the Helmholtz Association's Initiative and Networking Fund, by the European Commission FET Open Grant VIROFIGHT (grant no. 899619), by the State of Bavaria and the European Union via a grant for regional infrastructure development (EFRE - REACT, to U.P. and G.E.), by the State of Bavaria via research networks FOR-COVID and Bay-VOC (to U.P. and O.T.K.) by the Federal Ministry of Education and Research (project ESCAPE; 01KI20169A to C.S.W.), and by the Medical Biological Defense Research Program of the Bundeswehr Medical Service (to J.J.B.). In addition, this research was supported by intramural funds from KRICT (project KK2432-10 and BSF24-111 to C.K.).
Collapse
Affiliation(s)
- Chunkyu Ko
- Institute of Virology, Technical University of Munich/Helmholtz Munich, Munich, Germany
- Infectious Diseases Therapeutic Research Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon, South Korea
| | - Cho-Chin Cheng
- Institute of Virology, Technical University of Munich/Helmholtz Munich, Munich, Germany
| | - Daniele Mistretta
- Institute of Virology, Technical University of Munich/Helmholtz Munich, Munich, Germany
| | - Shubhankar Ambike
- Institute of Virology, Technical University of Munich/Helmholtz Munich, Munich, Germany
| | - Julia Sacherl
- Institute of Virology, Technical University of Munich/Helmholtz Munich, Munich, Germany
| | - Stoyan Velkov
- Institute of Virology, Technical University of Munich/Helmholtz Munich, Munich, Germany
| | - Bo-Hung Liao
- Institute of Virology, Technical University of Munich/Helmholtz Munich, Munich, Germany
| | - Romina Bester
- Institute of Virology, Technical University of Munich/Helmholtz Munich, Munich, Germany
| | - Merve Gültan
- Institute of Virology, Technical University of Munich/Helmholtz Munich, Munich, Germany
| | - Olga Polezhaeva
- Institute of Virology, Technical University of Munich/Helmholtz Munich, Munich, Germany
| | - Alexander Herrmann
- Institute of Virology, Technical University of Munich/Helmholtz Munich, Munich, Germany
| | - Constanze A Jakwerth
- Center of Allergy & Environment (ZAUM), Technical University of Munich/Helmholtz Munich, German Research Center for Environmental Health, Munich, Germany
| | - Carsten B Schmidt-Weber
- Center of Allergy & Environment (ZAUM), Technical University of Munich/Helmholtz Munich, German Research Center for Environmental Health, Munich, Germany
- German Center for Lung Research (DZL), Munich Partner Site, Munich, Germany
| | - Joachim J Bugert
- Department of Viruses and Intracellular Pathogens, Bundeswehr Institute of Microbiology, Munich, Germany
- German Centre for Infection Research (DZIF), Partner Sites Munich and Hannover-Braunschweig, Munich, Germany
| | - Roman Wölfel
- Department of Viruses and Intracellular Pathogens, Bundeswehr Institute of Microbiology, Munich, Germany
- German Centre for Infection Research (DZIF), Partner Sites Munich and Hannover-Braunschweig, Munich, Germany
| | - Vincent Grass
- Institute of Virology, Technical University of Munich/Helmholtz Munich, Munich, Germany
| | - Sandra Essbauer
- Department of Viruses and Intracellular Pathogens, Bundeswehr Institute of Microbiology, Munich, Germany
| | - Daniel Schnepf
- Institute of Virology, Medical Center University of Freiburg, Freiburg, Germany
- Immunoregulation Laboratory, The Francis Crick Institute, London, UK
| | - Oliver T Keppler
- German Centre for Infection Research (DZIF), Partner Sites Munich and Hannover-Braunschweig, Munich, Germany
- Max von Pettenkofer Institute & Gene Center, Faculty of Medicine, University of Munich, Munich, Germany
| | - Florian W R Vondran
- German Centre for Infection Research (DZIF), Partner Sites Munich and Hannover-Braunschweig, Munich, Germany
- ReMediES, Department of General, Visceral and Transplant Surgery, Hannover Medical School, Hannover, Germany
| | - Andreas Pichlmair
- Institute of Virology, Technical University of Munich/Helmholtz Munich, Munich, Germany
- German Centre for Infection Research (DZIF), Partner Sites Munich and Hannover-Braunschweig, Munich, Germany
| | - Carolin Mogler
- Institute of Pathology, Technical University of Munich, Munich, Germany
| | - Gregor Ebert
- Institute of Virology, Technical University of Munich/Helmholtz Munich, Munich, Germany
- German Centre for Infection Research (DZIF), Partner Sites Munich and Hannover-Braunschweig, Munich, Germany
| | - Ulrike Protzer
- Institute of Virology, Technical University of Munich/Helmholtz Munich, Munich, Germany
- German Centre for Infection Research (DZIF), Partner Sites Munich and Hannover-Braunschweig, Munich, Germany
| |
Collapse
|
8
|
Chio CC, Chien JC, Chan HW, Huang HI. Overview of the Trending Enteric Viruses and Their Pathogenesis in Intestinal Epithelial Cell Infection. Biomedicines 2024; 12:2773. [PMID: 39767680 PMCID: PMC11672972 DOI: 10.3390/biomedicines12122773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 11/08/2024] [Accepted: 12/03/2024] [Indexed: 01/11/2025] Open
Abstract
Enteric virus infection is a major public health issue worldwide. Enteric viruses have become epidemic infectious diseases in several countries. Enteric viruses primarily infect the gastrointestinal tract and complete their life cycle in intestinal epithelial cells. These viruses are transmitted via the fecal-oral route through contaminated food, water, or person to person and cause similar common symptoms, including vomiting, abdominal pain, and diarrhea. Diarrheal disease is the third leading cause of death in children under five years of age, accounting for approximately 1.7 billion cases and 443,832 deaths annually in this age group. Additionally, some enteric viruses can invade other tissues, leading to severe conditions and even death. The pathogenic mechanisms of enteric viruses are also unclear. In this review, we organized the research on trending enteric virus infections, including rotavirus, norovirus, adenovirus, Enterovirus-A71, Coxsackievirus A6, and Echovirus 11. Furthermore, we discuss the gastrointestinal effects and pathogenic mechanisms of SARS-CoV-2 in intestinal epithelial cells, given the gastrointestinal symptoms observed during the COVID-19 pandemic. We conducted a literature review on their pathogenic mechanisms, which serves as a guide for formulating future treatment strategies for enteric virus infections.
Collapse
Affiliation(s)
- Chi-Chong Chio
- Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Kwei-Shan, Taoyuan 33302, Taiwan; (C.-C.C.); (J.-C.C.); (H.-W.C.)
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Kwei-Shan, Taoyuan 33302, Taiwan
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Kwei-Shan, Taoyuan 33302, Taiwan
| | - Jou-Chun Chien
- Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Kwei-Shan, Taoyuan 33302, Taiwan; (C.-C.C.); (J.-C.C.); (H.-W.C.)
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Kwei-Shan, Taoyuan 33302, Taiwan
| | - Hio-Wai Chan
- Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Kwei-Shan, Taoyuan 33302, Taiwan; (C.-C.C.); (J.-C.C.); (H.-W.C.)
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Kwei-Shan, Taoyuan 33302, Taiwan
| | - Hsing-I Huang
- Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Kwei-Shan, Taoyuan 33302, Taiwan; (C.-C.C.); (J.-C.C.); (H.-W.C.)
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Kwei-Shan, Taoyuan 33302, Taiwan
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Kwei-Shan, Taoyuan 33302, Taiwan
- Department of Pediatrics, Linkou Chang Gung Memorial Hospital, Kwei-Shan, Taoyuan 33305, Taiwan
| |
Collapse
|
9
|
Blyden K, Thomas J, Emami-Naeini P, Fashina T, Conrady CD, Albini TA, Carag J, Yeh S. Emerging Infectious Diseases and the Eye: Ophthalmic Manifestations, Pathogenesis, and One Health Perspectives. Int Ophthalmol Clin 2024; 64:39-54. [PMID: 39480207 PMCID: PMC11512616 DOI: 10.1097/iio.0000000000000539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Infectious diseases may lead to ocular complications including uveitis, an ocular inflammatory condition with potentially sight-threatening sequelae, and conjunctivitis, inflammation of the conjunctiva. Emerging infectious pathogens with known ocular findings include Ebola virus, Zika virus, Avian influenza virus, Nipah virus, severe acute respiratory syndrome coronaviruses, and Dengue virus. Re-emerging pathogens with ocular findings include Toxoplasma gondii and Plasmodium species that lead to malaria. The concept of One Health involves a collaborative and interdisciplinary approach to achieve optimal health outcomes by combining human, animal, and environmental health factors. This approach examines the interconnected and often complex human-pathogen-intermediate host interactions in infectious diseases that may also result in ocular disease, including uveitis and conjunctivitis. Through a comprehensive review of the literature, we review the ophthalmic findings of emerging infectious diseases, pathogenesis, and One Health perspectives that provide further insight into the disease state. While eye care providers and vision researchers may often focus on key local aspects of disease process and management, additional perspective on host-pathogen-reservoir life cycles and transmission considerations, including environmental factors, may offer greater insight to improve outcomes for affected individuals and stakeholders.
Collapse
Affiliation(s)
- K’Mani Blyden
- Medical College of Georgia, Augusta University, Augusta, GA
| | - Joanne Thomas
- Emory Eye Center, Emory University School of Medicine, Atlanta, GA
- Emory University School of Medicine, Atlanta, GA
| | - Parisa Emami-Naeini
- Department of Ophthalmology, University of California, Davis, Sacramento, CA
| | - Tolulope Fashina
- Department of Ophthalmology, University of Nebraska Medical Center, Omaha, NE
| | - Christopher D. Conrady
- Department of Ophthalmology, University of Nebraska Medical Center, Omaha, NE
- Department of Pathology, Microbiology, and Immunology, University of Nebraska Medical Center, Omaha, NE
| | - Thomas A. Albini
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL
| | | | - Steven Yeh
- Department of Ophthalmology, University of Nebraska Medical Center, Omaha, NE
- Global Center for Health Security, University of Nebraska Medical Center, Omaha, NE
| |
Collapse
|
10
|
Jhanwar A, Sharma D, Das U. Unraveling the structural and functional dimensions of SARS-CoV2 proteins in the context of COVID-19 pathogenesis and therapeutics. Int J Biol Macromol 2024; 278:134850. [PMID: 39168210 DOI: 10.1016/j.ijbiomac.2024.134850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 08/14/2024] [Accepted: 08/16/2024] [Indexed: 08/23/2024]
Abstract
Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV2) has emerged as the causative agent behind the global pandemic of Coronavirus Disease 2019 (COVID-19). As the scientific community strives to comprehend the intricate workings of this virus, a fundamental aspect lies in deciphering the myriad proteins it expresses. This knowledge is pivotal in unraveling the complexities of the viral machinery and devising targeted therapeutic interventions. The proteomic landscape of SARS-CoV2 encompasses structural, non-structural, and open-reading frame proteins, each playing crucial roles in viral replication, host interactions, and the pathogenesis of COVID-19. This comprehensive review aims to provide an updated and detailed examination of the structural and functional attributes of SARS-CoV2 proteins. By exploring the intricate molecular architecture, we have highlighted the significance of these proteins in viral biology. Insights into their roles and interplay contribute to a deeper understanding of the virus's mechanisms, thereby paving the way for the development of effective therapeutic strategies. As the global scientific community strives to combat the ongoing pandemic, this synthesis of knowledge on SARS-CoV2 proteins serves as a valuable resource, fostering informed approaches toward mitigating the impact of COVID-19 and advancing the frontier of antiviral research.
Collapse
Affiliation(s)
- Aniruddh Jhanwar
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| | - Dipika Sharma
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| | - Uddipan Das
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India.
| |
Collapse
|
11
|
Hboub H, Ben Mrid R, Bouchmaa N, Oukkache N, El Fatimy R. An in-depth exploration of snake venom-derived molecules for drug discovery in advancing antiviral therapeutics. Heliyon 2024; 10:e37321. [PMID: 39323826 PMCID: PMC11422003 DOI: 10.1016/j.heliyon.2024.e37321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 07/20/2024] [Accepted: 09/01/2024] [Indexed: 09/27/2024] Open
Abstract
Snake venom is a cocktail and rich source of various bioactive compounds that have been extensively studied for their potential as pharmaceutical agents due to their diverse chemical structures and wide range of biological activities. In light of the emergency and the re-emergence of viral infectious diseases that threaten human health and economic systems, exploring new fertile and rich fields such as snake venom is an attractive path for anti-viral drug discovery, especially in the lack of effective vaccines. Although 85 % of reported antiviral molecules belong to the phospholipase A2 (PLA2) family, other protein families including L-amino acid oxidases (LAAO), disintegrins, metalloproteases (SVMPs), and cathelicidins have also shown antiviral activity. Thus, in this review, we have highlighted the antiviral properties of compounds derived from snake venom and their mechanisms of action against virus classes like HIV, Coronaviridae, Flaviviridae, and Paramyxoviridae. Although the initial research emphasis has been on Retroviridae (HIV) and Flaviviridae viruses, it is crucial to extend the exploration of the potential of these compounds to other viruses. The utilization of snake venom-derived compounds as antivirals shows significant promise for the development of novel therapeutics to address viral infections. However, a more in-depth investigation is necessary to fully assess the potential of these compounds against other viruses and unveil the mechanisms underlying their action.
Collapse
Affiliation(s)
- Hicham Hboub
- Institute of Biological Sciences (ISSB), Faculty of Medical Sciences (FMS), Mohammed VI Polytechnic University (UM6P), Ben Guerir, 43150, Morocco
| | - Reda Ben Mrid
- Institute of Biological Sciences (ISSB), Faculty of Medical Sciences (FMS), Mohammed VI Polytechnic University (UM6P), Ben Guerir, 43150, Morocco
| | - Najat Bouchmaa
- Institute of Biological Sciences (ISSB), Faculty of Medical Sciences (FMS), Mohammed VI Polytechnic University (UM6P), Ben Guerir, 43150, Morocco
| | - Naoual Oukkache
- Laboratory of Venoms and Toxins, Pasteur Institute of Morocco, Casablanca, 20360, Morocco
| | - Rachid El Fatimy
- Institute of Biological Sciences (ISSB), Faculty of Medical Sciences (FMS), Mohammed VI Polytechnic University (UM6P), Ben Guerir, 43150, Morocco
| |
Collapse
|
12
|
Monadhel H, Abbas A, Mohammed A. COVID-19 vaccinations and their side effects: a scoping systematic review. F1000Res 2024; 12:604. [PMID: 39512911 PMCID: PMC11541072 DOI: 10.12688/f1000research.134171.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/20/2024] [Indexed: 11/15/2024] Open
Abstract
Introduction: The COVID-19 virus has impacted people worldwide, causing significant changes in their lifestyles. Since the emergence of the epidemic, attempts have begun to prepare a vaccine that can eliminate the virus and restore balance to life in the entire world. Over the past two years, countries and specialized companies have competed to obtain a license from the World Health Organization for the vaccines that were discovered. After the appearance of vaccines in the health community, comparisons and fears of their side effects began, but people don't get an answer to the question of which is the best vaccine. Methods: IEEE Xplore, ScienceDirect, the New England Journal of Medicine, Google Scholar, and PubMed databases were searched for literature on the COVID-19 vaccine and its side effects. we surveyed the literature on the COVID-19 vaccine's side effects and the sorts of side effects observed after vaccination. Depending on data from the literature, we compared these vaccines in terms of side effects, then we analyzed the gaps and obstacles of previous studies and made proposals to process these gaps in future studies. Results: Overall, 17 studies were included in this scoping systematic review as they fulfilled the criteria specified, the majority of which were cross-sectional and retrospective cross-sectional studies. Most of the side effects were mild, self-limiting, and common. Thus, they usually resolve within 1-3 days after vaccination. Factors associated with higher side effects included advanced age, allergic conditions, those taking other medications (particularly immunosuppressive ones), those with a history of type II diabetes, heart disease, hypertension, COVID-19 infection, and female sex. Our meta-analyses also found that mRNA vaccines looked to be more effective, while inactivated vaccinations had fewer side effects. Conclusion: This review shows that the COVID-19 vaccine is safe to administer and induces protection.
Collapse
Affiliation(s)
- Hind Monadhel
- Computer Science, University of Technology-Iraq, Baghdad, 10053, Iraq
| | - Ayad Abbas
- Computer Science, University of Technology-Iraq, Baghdad, 10053, Iraq
| | - Athraa Mohammed
- Computer Science, University of Technology-Iraq, Baghdad, 10053, Iraq
| |
Collapse
|
13
|
Somberg NH, Sučec I, Medeiros-Silva J, Jo H, Beresis R, Syed AM, Doudna JA, Hong M. Oligomeric State and Drug Binding of the SARS-CoV-2 Envelope Protein Are Sensitive to the Ectodomain. J Am Chem Soc 2024; 146:24537-24552. [PMID: 39167680 DOI: 10.1021/jacs.4c07686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
The envelope (E) protein of SARS-CoV-2 is the smallest of the three structural membrane proteins of the virus. E mediates budding of the progeny virus in the endoplasmic reticulum Golgi intermediate compartment of the cell. It also conducts ions, and this channel activity is associated with the pathogenicity of SARS-CoV-2. The structural basis for these functions is still poorly understood. Biochemical studies of E in detergent micelles found a variety of oligomeric states, but recent 19F solid-state NMR data indicated that the transmembrane domain (ETM, residues 8-38) forms pentamers in lipid bilayers. Hexamethylene amiloride (HMA), an E inhibitor, binds the pentameric ETM at the lipid-exposed helix-helix interface. Here, we investigate the oligomeric structure and drug interaction of an ectodomain-containing E construct, ENTM (residues 1-41). Unexpectedly, 19F spin diffusion NMR data reveal that ENTM adopts an average oligomeric state of dimers instead of pentamers in lipid bilayers. A new amiloride inhibitor, AV-352, shows stronger inhibitory activity than HMA in virus-like particle assays. Distance measurements between 13C-labeled protein and a trifluoromethyl group of AV-352 indicate that the drug binds ENTM with a higher stoichiometry than ETM. We measured protein-drug contacts using a sensitivity-enhanced two-dimensional 13C-19F distance NMR technique. The results indicate that AV-352 binds the C-terminal half of the TM domain, similar to the binding region of HMA. These data provide evidence for the existence of multiple oligomeric states of E in lipid bilayers, which may carry out distinct functions and may be differentially targeted by antiviral drugs.
Collapse
Affiliation(s)
- Noah H Somberg
- Department of Chemistry, Massachusetts Institute of Technology, 170 Albany Street, Cambridge, Massachusetts 02139, United States
| | - Iva Sučec
- Department of Chemistry, Massachusetts Institute of Technology, 170 Albany Street, Cambridge, Massachusetts 02139, United States
| | - João Medeiros-Silva
- Department of Chemistry, Massachusetts Institute of Technology, 170 Albany Street, Cambridge, Massachusetts 02139, United States
| | - Hyunil Jo
- Department of Pharmaceutical Chemistry, University of California San Francisco, 555 Mission Bay Blvd. South, San Francisco, California 94158, United States
| | - Richard Beresis
- Department of Pharmaceutical Chemistry, University of California San Francisco, 555 Mission Bay Blvd. South, San Francisco, California 94158, United States
| | - Abdullah M Syed
- Gladstone Institute of Data Science and Biotechnology, San Francisco, California 94158, United States
- Innovative Genomics Institute, University of California Berkeley, Berkeley, California 94720, United States
| | - Jennifer A Doudna
- Gladstone Institute of Data Science and Biotechnology, San Francisco, California 94158, United States
- Innovative Genomics Institute, University of California Berkeley, Berkeley, California 94720, United States
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, California 94720, United States
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Howard Hughes Medical Institute, University of California Berkeley, Berkeley, California 94720, United States
- Department of Chemistry, University of California Berkeley, Berkeley, California 94720, United States
- California Institute for Quantitative Biosciences, University of California Berkeley, Berkeley, California 94720, United States
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, California 94158, United States
| | - Mei Hong
- Department of Chemistry, Massachusetts Institute of Technology, 170 Albany Street, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
14
|
Cymerys J, Bartak M, Słońska A, Lange A, Jaworski S, Chodkowski M, Ostrowska A, Wierzbicki M, Sawosz E, Bańbura MW. Antiviral Activity of Graphene Oxide-Silver Nanocomposites Against Murine Betacoronavirus. Int J Nanomedicine 2024; 19:9009-9033. [PMID: 39246425 PMCID: PMC11380865 DOI: 10.2147/ijn.s473448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 08/13/2024] [Indexed: 09/10/2024] Open
Abstract
Background The high infectivity of coronaviruses has led to increased interest in developing new strategies to prevent virus spread. Silver nanoparticles (AgNPs) and graphene oxide (GO) have attracted much attention in the antiviral field. We investigated the potential antiviral activity of GO and AgNPs combined in the nanocomposite GO-Ag against murine betacoronavirus MHV using an in vitro model. Methods GO, AgNPs, and GO-Ag characterization (size distribution, zeta potential, TEM visualization, FT-IR, and EDX analysis) and XTT assay were performed. The antiviral activity of GO-Ag nanocomposites was evaluated by RT-qPCR and TCID50 assays. The results were compared with free AgNPs and pure GO. Cell growth and morphology of MHV-infected hepatocytes treated with GO-Ag composites were analyzed by JuLI™Br. Immunofluorescence was used to visualize the cell receptor used by MHV. Ultrastructural SEM analysis was performed to examine cell morphology after MHV infection and GO-Ag composite treatment. Results A significant reduction in virus titer was observed for all nanocomposites tested, ranging from 3.2 to 7.3 log10 TCID50. The highest titer reduction was obtained for GO 5 µg/mL - Ag 25 µg/mL in the post-treatment method. These results were confirmed by RT-qPCR analysis. The results indicate that GO-Ag nanocomposites exhibited better antiviral activity compared to AgNPs and GO. Moreover, the attachment of AgNPs to the GO flake platform reduced their cytotoxicity. In addition, the GO-Ag composite modulates the distribution of the Ceacam1 cell receptor and can modulate cell morphology. Conclusion Graphene oxide sheets act as a stabilizing agent, inhibiting the accumulation of AgNPs and reducing their cellular toxicity. The GO-Ag composite can physically bind and inhibit murine betacoronavirus from entering cells. Furthermore, the constant presence of GO-Ag can inhibit MHV replication and significantly limit its extracellular release. In conclusion, GO-Ag shows promise as an antiviral coating on solid surfaces to minimize virus transmission and spread.
Collapse
Affiliation(s)
- Joanna Cymerys
- Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, Warsaw, Poland
| | - Michalina Bartak
- Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, Warsaw, Poland
| | - Anna Słońska
- Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, Warsaw, Poland
| | - Agata Lange
- Department of Nanobiotechnology, Institute of Biology, Warsaw University of Life Sciences, Warsaw, Poland
| | - Sławomir Jaworski
- Department of Nanobiotechnology, Institute of Biology, Warsaw University of Life Sciences, Warsaw, Poland
| | | | - Agnieszka Ostrowska
- Department of Nanobiotechnology, Institute of Biology, Warsaw University of Life Sciences, Warsaw, Poland
| | - Mateusz Wierzbicki
- Department of Nanobiotechnology, Institute of Biology, Warsaw University of Life Sciences, Warsaw, Poland
| | - Ewa Sawosz
- Department of Nanobiotechnology, Institute of Biology, Warsaw University of Life Sciences, Warsaw, Poland
| | - Marcin W Bańbura
- Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, Warsaw, Poland
| |
Collapse
|
15
|
Kasle G, Das Sarma J. The Role of Coronavirus Spike Protein in Inducing Optic Neuritis in Mice: Parallels to the SARS-CoV-2 Virus. J Neuroophthalmol 2024; 44:319-329. [PMID: 39164897 DOI: 10.1097/wno.0000000000002234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2024]
Abstract
BACKGROUND Optic neuritis (ON), one of the clinical manifestations of the human neurological disease multiple sclerosis (MS), was also reported in patients with COVID-19 infection, highlighting one potential neurological manifestation of SARS-CoV-2. However, the mechanism of ON in these patients is poorly understood. EVIDENCE ACQUISITION Insight may be gained by studying the neurotropic mouse hepatitis virus (MHV-A59), a β-coronavirus that belongs to the same family as SARS-CoV-2. RESULTS Mouse hepatitis virus-A59, or its isogenic spike protein recombinant strains, inoculation in mice provides an important experimental model to understand underpinning mechanisms of neuroinflammatory demyelination in association with acute stage optic nerve inflammation and chronic stage optic nerve demyelination concurrent with axonal loss. Spike is a surface protein that mediates viral binding and entry into host cells, as well as cell-cell fusion and viral spread. Studies have implicated spike-mediated mechanisms of virus-induced neuroinflammatory demyelination by comparing naturally occurring demyelinating (DM) and nondemyelinating (NDM) MHV strains. CONCLUSIONS Here, we summarize findings in MHV-induced experimental ON and myelitis, using natural DM and NDM strains as well as engineered recombinant strains of MHV to understand the role of spike protein in inducing ON and demyelinating disease pathology. Potential parallels in human coronavirus-mediated ON and demyelination, and insight into potential therapeutic strategies, are discussed.
Collapse
Affiliation(s)
- Grishma Kasle
- Department of Biological Sciences (GK, JDS), Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal, India; and Department of Ophthalmology (JDS), University of Pennsylvania, Philadelphia, Pennsylvania
| | | |
Collapse
|
16
|
Terada Y, Amarbayasgalan S, Matsuura Y, Kamitani W. Regulation viral RNA transcription and replication by higher-order RNA structures within the nsp1 coding region of MERS coronavirus. Sci Rep 2024; 14:19594. [PMID: 39179600 PMCID: PMC11343750 DOI: 10.1038/s41598-024-70601-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 08/19/2024] [Indexed: 08/26/2024] Open
Abstract
Coronavirus (CoV) possesses numerous functional cis-acting elements in its positive-strand genomic RNA. Although most of these RNA structures participate in viral replication, the functions of RNA structures in the genomic RNA of CoV in viral replication remain unclear. In this study, we investigated the functions of the higher-order RNA stem-loop (SL) structures SL5B, SL5C, and SL5D in the ORF1a coding region of Middle East respiratory syndrome coronavirus (MERS-CoV) in viral replication. Our approach, using reverse genetics of a bacterial artificial chromosome system, revealed that SL5B and SL5C play essential roles in the discontinuous transcription of MERS-CoV. In silico analyses predicted that SL5C interacts with a bulged stem-loop (BSL) in the 3' untranslated region, suggesting that the RNA structure of SL5C is important for viral RNA transcription. Conversely, SL5D did not affect transcription, but mediated the synthesis of positive-strand genomic RNA. Additionally, the RNA secondary structure of SL5 in the revertant virus of the SL5D mutant was similar to that of the wild-type, indicating that the RNA structure of SL5D can finely tune RNA replication in MERS-CoV. Our data indicate novel regulatory mechanisms of viral RNA transcription and replication by higher-order RNA structures in the MERS-CoV genomic RNA.
Collapse
Affiliation(s)
- Yutaka Terada
- Laboratory of Clinical Research on Infectious Diseases, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
- Center for Vaccine Research and Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Sodbayasgalan Amarbayasgalan
- Department of Infectious Diseases and Host Defense, Graduate School of Medicine, Gunma University, Maebashi, Japan
| | - Yoshiharu Matsuura
- Center for Infectious Disease Education and Research (CiDER), Suita, Japan
- Research Institute for Microbial Diseases (RIMD), Suita, Japan
- Center for Advanced Modalities and DDS (CAMaD), Osaka University, Suita, Japan
| | - Wataru Kamitani
- Laboratory of Clinical Research on Infectious Diseases, Research Institute for Microbial Diseases, Osaka University, Suita, Japan.
- Department of Infectious Diseases and Host Defense, Graduate School of Medicine, Gunma University, Maebashi, Japan.
| |
Collapse
|
17
|
Malireddi RKS, Kanneganti TD. Chromatin Regulator SMARCA4 Is Essential for MHV-Induced Inflammatory Cell Death, PANoptosis. Viruses 2024; 16:1261. [PMID: 39205235 PMCID: PMC11359047 DOI: 10.3390/v16081261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 08/04/2024] [Indexed: 09/04/2024] Open
Abstract
The innate immune system serves as the first line of defense against β-coronaviruses (β-CoVs), a family of viruses that includes SARS-CoV-2. Viral sensing via pattern recognition receptors triggers inflammation and cell death, which are essential components of the innate immune response that facilitate viral clearance. However, excessive activation of the innate immune system and inflammatory cell death can result in uncontrolled release of proinflammatory cytokines, resulting in cytokine storm and pathology. PANoptosis, innate immune, inflammatory cell death initiated by innate immune sensors and driven by caspases and RIPKs through PANoptosome complexes, has been implicated in the pathology of viral infections. Therefore, understanding the molecular mechanisms regulating PANoptosis in response to β-CoV infection is critical for identifying new therapeutic targets that can mitigate disease severity. In the current study, we analyzed findings from a cell death-based CRISPR screen with archetypal β-CoV mouse hepatitis virus (MHV) as the trigger to characterize host molecules required for inflammatory cell death. As a result, we identified SMARCA4, a chromatin regulator, as a putative host factor required for PANoptosis in response to MHV. Furthermore, we observed that gRNA-mediated deletion of Smarca4 inhibited MHV-induced PANoptotic cell death in macrophages. These findings have potential translational and clinical implications for the advancement of treatment strategies for β-CoVs and other infections.
Collapse
|
18
|
Zhang T, Yang D, Tang L, Hu Y. Current development of severe acute respiratory syndrome coronavirus 2 neutralizing antibodies (Review). Mol Med Rep 2024; 30:148. [PMID: 38940338 PMCID: PMC11228696 DOI: 10.3892/mmr.2024.13272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 05/21/2024] [Indexed: 06/29/2024] Open
Abstract
The coronavirus disease 2019 pandemic due to severe acute respiratory syndrome coronavirus 2 (SARS‑CoV‑2) seriously affected global public health security. Studies on vaccines, neutralizing antibodies (NAbs) and small molecule antiviral drugs are currently ongoing. In particular, NAbs have emerged as promising therapeutic agents due to their well‑defined mechanism, high specificity, superior safety profile, ease of large‑scale production and simultaneous application for both prevention and treatment of viral infection. Numerous NAb therapeutics have entered the clinical research stages, demonstrating promising therapeutic and preventive effects. These agents have been used for outbreak prevention and control under urgent authorization processes. The present review summarizes the molecular targets of SARS‑CoV‑2‑associated NAbs and screening and identification techniques for NAb development. Moreover, the current shortcomings and challenges that persist with the use of NAbs are discussed. The aim of the present review is to offer a reference for the development of NAbs for any future emergent infectious diseases, including SARS‑CoV‑2.
Collapse
Affiliation(s)
- Tong Zhang
- Department of Hematology, Wuhan Union Hospital, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Di Yang
- Department of Hematology, Wuhan Union Hospital, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Liang Tang
- Department of Hematology, Wuhan Union Hospital, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Yu Hu
- Department of Hematology, Wuhan Union Hospital, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| |
Collapse
|
19
|
Jiang Y, Cheng X, Gao M, Yu Y, Dou X, Shen H, Tang M, Zhou S, Peng D. Two mutations on S2 subunit were critical for Vero cell tropism expansion of infectious bronchitis virus HV80. Vet Microbiol 2024; 294:110134. [PMID: 38820725 DOI: 10.1016/j.vetmic.2024.110134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/23/2024] [Accepted: 05/27/2024] [Indexed: 06/02/2024]
Abstract
Infectious bronchitis virus (IBV) restricts cell tropism. Except for the Beaudette strain, other IBVs cannot infect mammalian cell lines. The limited cell tropism of other IBVs has hindered IBV vaccine development and research on the mechanisms of IBV infection. A novel Vero cell-adapted strain, HV80, has been previously reported. In this study, we constructed recombinants expressing the chimeric S glycoprotein, S1 or S2 subunit of strain H120 and demonstrated that mutations on S2 subunit are associated with the strain HV80 Vero cell adaptation. R687P or P687R substitution recombinants were constructed with the genome backbone of strains HV80 or H120. We found that the RRRR690/S motif at the S2' cleavage site is crucial to the Vero cell adaptation of strain HV80. Another six amino acid substitutions in the S2 subunit of the recombinants showed that the Q855H mutation induced syncytium formation. A transient transfection assay demonstrated the S glycoprotein with the PRRR690/S motif at the S2' cleavage site induced low-level cell-cell fusion, while H855Q substitution hindered cell-cell fusion and blocked cleavage event with S20 product. This study provides a basis for the construction of IBV recombinants capable of replicating in Vero cells, thus contributing to the advancement in the development of genetically engineered cell-based IBV vaccines.
Collapse
Affiliation(s)
- Yi Jiang
- College of Veterinary Medicine, Yangzhou University, 225009, China; Jiangsu Institute of Poultry Sciences, Yangzhou 225125, China
| | - Xu Cheng
- Jiangsu Institute of Poultry Sciences, Yangzhou 225125, China
| | - Mingyan Gao
- Jiangsu Institute of Poultry Sciences, Yangzhou 225125, China
| | - Yan Yu
- Jiangsu Institute of Poultry Sciences, Yangzhou 225125, China
| | - Xinhong Dou
- Jiangsu Institute of Poultry Sciences, Yangzhou 225125, China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Haiyu Shen
- Jiangsu Institute of Poultry Sciences, Yangzhou 225125, China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Mengjun Tang
- Jiangsu Institute of Poultry Sciences, Yangzhou 225125, China
| | - Sheng Zhou
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao 266109, China.
| | - Daxin Peng
- College of Veterinary Medicine, Yangzhou University, 225009, China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
20
|
Sarfraz M, Ayyaz M, Rauf A, Yaqoob A, Tooba, Arif Ali M, Siddique SA, Qureshi AM, Sarfraz MH, Aljowaie RM, Almutairi SM, Arshad M. New Pyrimidinone Bearing Aminomethylenes and Schiff Bases as Potent Antioxidant, Antibacterial, SARS-CoV-2, and COVID-19 Main Protease M Pro Inhibitors: Design, Synthesis, Bioactivities, and Computational Studies. ACS OMEGA 2024; 9:25730-25747. [PMID: 38911743 PMCID: PMC11191110 DOI: 10.1021/acsomega.3c09393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 05/18/2024] [Accepted: 05/23/2024] [Indexed: 06/25/2024]
Abstract
New 2-thioxopyrimidinone derivatives (A1-A10) were synthesized in 87-96% yields via a simple three-component condensation reaction. These compounds were screened extensively through in vitro assays for antioxidant and antibacterial investigations. The DPPH assays resulted in the excellent potency of A6-A10 as antioxidants with IC50 values of 0.83 ± 0.125, 0.90 ± 0.77, 0.36 ± 0.063, 1.4 ± 0.07, and 1.18 ± 0.06 mg/mL, which were much better than 1.79 ± 0.045 mg/mL for the reference ascorbic acid. These compounds exhibited better antibacterial potency against Klebsiella with IC50 values of 2 ± 7, 1.32 ± 8.9, 1.19 ± 11, 1.1 ± 12, and 1.16 ± 11 mg/mL for A6-A10. High-throughput screenings (HTS) of these motifs were carried out including investigation of drug-like behaviors, physiochemical property evaluation, and structure-related studies involving DFT and metabolic transformation trends. The radical scavenging ability of the synthesized motifs was validated through molecular docking studies through ligand-protein binding against human inducible nitric oxide synthase (HINOS) PDB ID: 4NOS, and the results were promising. Furthermore, the antiviral capability of the compounds was examined by in silico studies using two viral proteins PDB ID: 6Y84 and PDB ID: 6LU7. Binding poses of ligands were discussed, and amino acids in the protein binding pockets were investigated, where the tested compounds showed much better binding affinities than the standard inhibitors, proving to be suitable leads for antiviral drug discovery. The stabilities of the molecular docked complexes in real systems were validated by molecular dynamics simulations.
Collapse
Affiliation(s)
- Muhammad Sarfraz
- Institute
of Chemistry, The Islamia University of
Bahawalpur, Bahawalpur 63100, Pakistan
| | - Muhammad Ayyaz
- Institute
of Chemistry, The Islamia University of
Bahawalpur, Bahawalpur 63100, Pakistan
| | - Abdul Rauf
- Institute
of Chemistry, The Islamia University of
Bahawalpur, Bahawalpur 63100, Pakistan
| | - Asma Yaqoob
- Institute
of Biochemistry, Biotechnology, and Bioinformatics. Department of
Biochemistry and Molecular Biology, The
Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Tooba
- Institute
of Biochemistry, Biotechnology, and Bioinformatics. Department of
Biochemistry and Molecular Biology, The
Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Muhammad Arif Ali
- Institute
of Chemistry, The Islamia University of
Bahawalpur, Bahawalpur 63100, Pakistan
| | - Sabir Ali Siddique
- Institute
of Chemistry, The Islamia University of
Bahawalpur, Bahawalpur 63100, Pakistan
| | - Ashfaq Mahmood Qureshi
- Department
of Chemistry, Government Sadiq College Women
University, Bahawalpur 63100, Pakistan
| | - Muhammad Hassan Sarfraz
- Nuffield
Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences,
Botnar Institute of Musculoskeletal Sciences, University of Oxford, OxfordOX3 7LD, United
Kingdom
| | - Reem M. Aljowaie
- Department
of Botany and Microbiology, College of Science, King Saud University, P O 2455 Riyadh 11451, Saudi Arabia
| | - Saeedah Musaed Almutairi
- Department
of Botany and Microbiology, College of Science, King Saud University, P O 2455 Riyadh 11451, Saudi Arabia
| | - Muhammad Arshad
- Institute
of Chemistry, The Islamia University of
Bahawalpur, Bahawalpur 63100, Pakistan
| |
Collapse
|
21
|
Aleem MT, Munir F, Shakoor A, Gao F. mRNA vaccines against infectious diseases and future direction. Int Immunopharmacol 2024; 135:112320. [PMID: 38788451 DOI: 10.1016/j.intimp.2024.112320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 04/28/2024] [Accepted: 05/19/2024] [Indexed: 05/26/2024]
Abstract
Vaccines are used for the control of infectious diseases of animals. Over other types of vaccinations like live attenuated or killed vaccines, mRNA-based vaccines have significant advantages. As only a small portion of the pathogen's genetic material is employed and the dose rate of mRNA-based vaccines is low, there is the least possibility that the pathogen will reverse itself. A carrier or vehicle that shields mRNA-based vaccines from the host's cellular RNases is necessary for their delivery. mRNA vaccines have been shown to be effective and to induce both a cell-mediated immune response and a humoral immune response in clinical trials against various infectious diseases (viral and parasitic) affecting the animals, including rabies, foot and mouth disease, toxoplasmosis, Zikavirus, leishmaniasis, and COVID-19. The current review aims to highlight the use of mRNA-based vaccines both in viral and parasitic diseases of animals.
Collapse
Affiliation(s)
- Muhammad Tahir Aleem
- Department of Pharmacology, Shantou University Medical College, Shantou 515041, China; Center for Gene Regulation in Health and Disease, Department of Biological, Geological, and Environmental Sciences, College of Sciences and Health Professions, Clevaland State University, Clevaland, OH 44115, USA.
| | - Furqan Munir
- Department of Parasitology, Faculty of Veterinary Science, University of Agriculture, Faisalabad 38040, Pakistan
| | - Amna Shakoor
- Department of Anatomy, Faculty of Veterinary Science, University of Agriculture, Faisalabad 38040, Pakistan
| | - Fenfei Gao
- Department of Pharmacology, Shantou University Medical College, Shantou 515041, China.
| |
Collapse
|
22
|
Wu G, Li Q, Dai J, Mao G, Ma Y. Design and Application of Biosafe Coronavirus Engineering Systems without Virulence. Viruses 2024; 16:659. [PMID: 38793541 PMCID: PMC11126016 DOI: 10.3390/v16050659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 04/15/2024] [Accepted: 04/18/2024] [Indexed: 05/26/2024] Open
Abstract
In the last twenty years, three deadly zoonotic coronaviruses (CoVs)-namely, severe acute respiratory syndrome coronavirus (SARS-CoV), Middle East respiratory syndrome coronavirus (MERS-CoV), and SARS-CoV-2-have emerged. They are considered highly pathogenic for humans, particularly SARS-CoV-2, which caused the 2019 CoV disease pandemic (COVID-19), endangering the lives and health of people globally and causing unpredictable economic losses. Experiments on wild-type viruses require biosafety level 3 or 4 laboratories (BSL-3 or BSL-4), which significantly hinders basic virological research. Therefore, the development of various biosafe CoV systems without virulence is urgently needed to meet the requirements of different research fields, such as antiviral and vaccine evaluation. This review aimed to comprehensively summarize the biosafety of CoV engineering systems. These systems combine virological foundations with synthetic genomics techniques, enabling the development of efficient tools for attenuated or non-virulent vaccines, the screening of antiviral drugs, and the investigation of the pathogenic mechanisms of novel microorganisms.
Collapse
Affiliation(s)
- Guoqiang Wu
- CAS Key Laboratory of Quantitative Engineering Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics and Shenzhen Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; (G.W.); (Q.L.); (J.D.)
- School of Pharmacy, Faculty of Medicine, Macau University of Science and Technology, Macau SAR 999078, China
| | - Qiaoyu Li
- CAS Key Laboratory of Quantitative Engineering Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics and Shenzhen Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; (G.W.); (Q.L.); (J.D.)
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Junbiao Dai
- CAS Key Laboratory of Quantitative Engineering Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics and Shenzhen Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; (G.W.); (Q.L.); (J.D.)
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Guobin Mao
- CAS Key Laboratory of Quantitative Engineering Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics and Shenzhen Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; (G.W.); (Q.L.); (J.D.)
| | - Yingxin Ma
- CAS Key Laboratory of Quantitative Engineering Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics and Shenzhen Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; (G.W.); (Q.L.); (J.D.)
| |
Collapse
|
23
|
Schatz C, Knabl L, Lee HK, Seeboeck R, von Laer D, Lafon E, Borena W, Mangge H, Prüller F, Qerimi A, Wilflingseder D, Posch W, Haybaeck J. Machine Learning to Identify Critical Biomarker Profiles in New SARS-CoV-2 Variants. Microorganisms 2024; 12:798. [PMID: 38674742 PMCID: PMC11052335 DOI: 10.3390/microorganisms12040798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/31/2024] [Accepted: 04/03/2024] [Indexed: 04/28/2024] Open
Abstract
The global dissemination of SARS-CoV-2 resulted in the emergence of several variants, including Alpha, Alpha + E484K, Beta, and Omicron. Our research integrated the study of eukaryotic translation factors and fundamental components in general protein synthesis with the analysis of SARS-CoV-2 variants and vaccination status. Utilizing statistical methods, we successfully differentiated between variants in infected individuals and, to a lesser extent, between vaccinated and non-vaccinated infected individuals, relying on the expression profiles of translation factors. Additionally, our investigation identified common causal relationships among the translation factors, shedding light on the interplay between SARS-CoV-2 variants and the host's translation machinery.
Collapse
Affiliation(s)
- Christoph Schatz
- Tyrolpath Obrist Brunhuber GmbH, 6311 Zams, Austria (L.K.)
- Institute of Pathology, Neuropathology and Molecular Pathology, Medical University of Innsbruck, Muellerstrasse 44, 6020 Innsbruck, Austria;
| | - Ludwig Knabl
- Tyrolpath Obrist Brunhuber GmbH, 6311 Zams, Austria (L.K.)
| | - Hye Kyung Lee
- Laboratory of Genetics and Physiology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA;
| | - Rita Seeboeck
- Department Life Sciences, IMC University of Applied Sciences Krems, 3500 Krems, Austria;
- Clinical Institute of Pathology, University Hospital St. Poelten, Karl Landsteiner University of Health Science, 3100 St. Poelten, Austria
| | - Dorothee von Laer
- Institute of Virology, Medical University of Innsbruck, Peter-Mayr-Strasse 4b, 6020 Innsbruck, Austria (W.B.)
| | - Eliott Lafon
- Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, Schöpfstrasse 41, 6020 Innsbruck, Austria (D.W.); (W.P.)
| | - Wegene Borena
- Institute of Virology, Medical University of Innsbruck, Peter-Mayr-Strasse 4b, 6020 Innsbruck, Austria (W.B.)
| | - Harald Mangge
- Clinical Institute for Medical and Chemical Laboratory Diagnosis (CIMCL), Medical University of Graz, Auenbruggerplatz 15, 8036 Graz, Austria
| | - Florian Prüller
- Clinical Institute for Medical and Chemical Laboratory Diagnosis (CIMCL), Medical University of Graz, Auenbruggerplatz 15, 8036 Graz, Austria
| | - Adelina Qerimi
- Institute of Pathology, Neuropathology and Molecular Pathology, Medical University of Innsbruck, Muellerstrasse 44, 6020 Innsbruck, Austria;
| | - Doris Wilflingseder
- Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, Schöpfstrasse 41, 6020 Innsbruck, Austria (D.W.); (W.P.)
- Department of Pathobiology, Infectiology, Veterinary University of Vienna, Veterinärplatz 1, 1210 Vienna, Austria
| | - Wilfried Posch
- Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, Schöpfstrasse 41, 6020 Innsbruck, Austria (D.W.); (W.P.)
| | - Johannes Haybaeck
- Department of Pathology, Saint Vincent Hospital Zams, 6511 Zams, Austria
- Diagnostic and Research Center for Molecular BioMedicine, Institute of Pathology, Medical University of Graz, 8010 Graz, Austria
- Department of Pathology, Laborteam, 9403 Goldach, Switzerland
- Department of Pathology, University Medical Centre Maribor, 2000 Maribor, Slovenia
| |
Collapse
|
24
|
Guo J, Lai Y, Yang Z, Song W, Zhou J, Li Z, Su W, Xiao S, Fang L. Coinfection and Nonrandom Recombination Drive the Evolution of Swine Enteric Coronaviruses. Emerg Microbes Infect 2024:2332653. [PMID: 38517703 DOI: 10.1080/22221751.2024.2332653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2024]
Abstract
Coinfection with multiple viruses is a common phenomenon in clinical settings and is a crucial driver of viral evolution. Although numerous studies have demonstrated viral recombination arising from coinfections of different strains of a specific species, the role of coinfections of different species or genera during viral evolution is rarely investigated. Here, we analyzed coinfections of and recombination events between four different swine enteric coronaviruses that infect the jejunum and ileum in pigs, including porcine epidemic diarrhea virus (PEDV), transmissible gastroenteritis virus (TGEV), and swine acute diarrhea syndrome coronavirus (SADS-CoV), and a deltacoronavirus, porcine deltacoronavirus (PDCoV). Various coinfection patterns were observed in 4,468 fecal and intestinal tissue samples collected from pigs in a 4-year survey. PEDV/PDCoV was the most frequent coinfection. However, recombination analyses have only detected events involving PEDV/TGEV and SADS-CoV/TGEV, indicating that inter-species recombination among coronaviruses is most likely to occur within the same genus. We also analyzed recombination events within the newly identified genus Deltacoronavirus and found that sparrows have played a unique host role in the recombination history of the deltacoronaviruses. The emerging virus PDCoV, which can infect humans, has a different recombination history. In summary, our study demonstrates that swine enteric coronaviruses are a valuable model for investigating the relationship between viral coinfection and recombination, which provide new insights into both inter- and intraspecies recombination events among swine enteric coronaviruses, and extend our understanding of the relationship between coronavirus coinfection and recombination.
Collapse
Affiliation(s)
- Jiahui Guo
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University. Wuhan, Hubei, 430070, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, 430070, China
| | - Yinan Lai
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University. Wuhan, Hubei, 430070, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, 430070, China
| | - Zhixiang Yang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University. Wuhan, Hubei, 430070, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, 430070, China
| | - Wenbo Song
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University. Wuhan, Hubei, 430070, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, 430070, China
| | - Junwei Zhou
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University. Wuhan, Hubei, 430070, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, 430070, China
| | - Zhuang Li
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University. Wuhan, Hubei, 430070, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, 430070, China
| | - Wen Su
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University. Wuhan, Hubei, 430070, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, 430070, China
- Hubei Hongshan Laboratory, Huazhong Agricultural University. Wuhan, Hubei, 430070, China
| | - Shaobo Xiao
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University. Wuhan, Hubei, 430070, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, 430070, China
| | - Liurong Fang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University. Wuhan, Hubei, 430070, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, 430070, China
| |
Collapse
|
25
|
Huecksteadt TP, Myers EJ, Aamodt SE, Trivedi S, Warren KJ. An Evaluation of Type 1 Interferon Related Genes in Male and Female-Matched, SARS-CoV-2 Infected Individuals Early in the COVID-19 Pandemic. Viruses 2024; 16:472. [PMID: 38543837 PMCID: PMC10975322 DOI: 10.3390/v16030472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 03/08/2024] [Accepted: 03/16/2024] [Indexed: 05/23/2024] Open
Abstract
SARS-CoV-2 infection has claimed just over 1.1 million lives in the US since 2020. Globally, the SARS-CoV-2 respiratory infection spread to 771 million people and caused mortality in 6.9 million individuals to date. Much of the early literature showed that SARS-CoV-2 immunity was defective in the early stages of the pandemic, leading to heightened and, sometimes, chronic inflammatory responses in the lungs. This lung-associated 'cytokine storm' or 'cytokine release syndrome' led to the need for oxygen supplementation, respiratory distress syndrome, and mechanical ventilation in a relatively high number of people. In this study, we evaluated circulating PBMC from non-hospitalized, male and female, COVID-19+ individuals over the course of infection, from the day of diagnosis (day 0) to one-week post diagnosis (day 7), and finally 4 weeks after diagnosis (day 28). In our early studies, we included hospitalized and critically care patient PBMC; however, most of these individuals were lymphopenic, which limited our assessments of their immune integrity. We chose a panel of 30 interferon-stimulated genes (ISG) to evaluate by PCR and completed flow analysis for immune populations present in those PBMC. Lastly, we assessed immune activation by stimulating PBMC with common TLR ligands. We identified changes in innate cells, primarily the innate lymphoid cells (ILC, NK cells) and adaptive immune cells (CD4+ and CD8+ T cells) over this time course of infection. We found that the TLR-7 agonist, Resiquimod, and the TLR-4 ligand, LPS, induced significantly better IFNα and IFNγ responses in the later phase (day 28) of SARS-CoV-2 infection in those non-hospitalized COVID-19+ individuals as compared to early infection (day 0 and day 7). We concluded that TLR-7 and TLR-4 agonists may be effective adjuvants in COVID-19 vaccines for mounting immunity that is long-lasting against SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Tom P. Huecksteadt
- Salt Lake City VA Medical Center, Salt Lake City, UT 84148, USA; (T.P.H.); (E.J.M.); (S.E.A.); (S.T.)
| | - Elizabeth J. Myers
- Salt Lake City VA Medical Center, Salt Lake City, UT 84148, USA; (T.P.H.); (E.J.M.); (S.E.A.); (S.T.)
- Department of Neurology, University of Utah, Salt Lake City, UT 84132, USA
| | - Samuel E. Aamodt
- Salt Lake City VA Medical Center, Salt Lake City, UT 84148, USA; (T.P.H.); (E.J.M.); (S.E.A.); (S.T.)
- Department of Internal Medicine, Pulmonary Division, University of Utah Health Science Center, Salt Lake City, UT 84132, USA
| | - Shubhanshi Trivedi
- Salt Lake City VA Medical Center, Salt Lake City, UT 84148, USA; (T.P.H.); (E.J.M.); (S.E.A.); (S.T.)
- Department of Internal Medicine, Pulmonary Division, University of Utah Health Science Center, Salt Lake City, UT 84132, USA
- Division of Infectious Diseases, University of Utah, Salt Lake City, UT 84132, USA
| | - Kristi J. Warren
- Salt Lake City VA Medical Center, Salt Lake City, UT 84148, USA; (T.P.H.); (E.J.M.); (S.E.A.); (S.T.)
- Department of Internal Medicine, Pulmonary Division, University of Utah Health Science Center, Salt Lake City, UT 84132, USA
| |
Collapse
|
26
|
Zhao Z, Zhang Y, Luo B. The role of pyroptosis in viral infection. Arch Virol 2024; 169:69. [PMID: 38456965 DOI: 10.1007/s00705-024-05978-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 12/17/2023] [Indexed: 03/09/2024]
Abstract
Pyroptosis, also known as inflammatory necrosis, is a form of programmed cell death, which is an important natural immune response. Pyroptosis plays a major role in combating pathogenic infections. The mechanism of pyroptosis is distinct from other forms of cell death and is characterized by its dependence on inflammatory caspases (mainly caspases 1, 4, 5, and 11). Activation of NOD-like receptor thermal protein domain associated protein 3 (NLRP3) inflammatory vesicles is involved in caspase-1 activation and cleavage, which in turn triggers cleavage and multimerization of multiple gasdermin family members, including gasdermin-D (GSDMD). This further leads to cell perforation and cellular distension, causing cell membrane rupture, resulting in a massive efflux of cell contents, which triggers inflammatory reactions. In recent years, detailed study of viral diseases, has demonstrated that pyroptosis is closely associated with the development of viral diseases. This article focuses on the mechanism of pyroptosis and the connection between pyroptosis and viral infection.
Collapse
Affiliation(s)
- Zhen Zhao
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Yan Zhang
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China.
- Department of Clinical Laboratory, Zibo Central Hospital, Zibo, 255036, China.
| | - Bing Luo
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China.
| |
Collapse
|
27
|
Nie J, Yang H, Liu X, Deng W, Fu B. Identification and validation of shared gene signature of kidney renal clear cell carcinoma and COVID-19. PeerJ 2024; 12:e16927. [PMID: 38464749 PMCID: PMC10921934 DOI: 10.7717/peerj.16927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 01/22/2024] [Indexed: 03/12/2024] Open
Abstract
Background COVID-19 is a severe infectious disease caused by the SARS-CoV-2 virus, and previous studies have shown that patients with kidney renal clear cell carcinoma (KIRC) are more susceptible to SARS-CoV-2 infection than the general population. Nevertheless, their co-pathogenesis remains incompletely elucidated. Methods We obtained shared genes between these two diseases based on public datasets, constructed a prognostic risk model consisting of hub genes, and validated the accuracy of the model using internal and external validation sets. We further analyzed the immune landscape of the prognostic risk model, investigated the biological functions of the hub genes, and detected their expression in renal cell carcinoma cells using qPCR. Finally, we searched the candidate drugs associated with hub gene-related targets from DSigDB and CellMiner databases. Results We obtained 156 shared genes between KIRC and COVID-19 and constructed a prognostic risk model consisting of four hub genes. Both shared genes and hub genes were highly enriched in immune-related functions and pathways. Hub genes were significantly overexpressed in COVID-19 and KIRC. ROC curves, nomograms, etc., showed the reliability and robustness of the risk model, which was validated in both internal and external datasets. Moreover, patients in the high-risk group showed a higher proportion of immune cells, higher expression of immune checkpoint genes, and more active immune-related functions. Finally, we identified promising drugs for COVID-19 and KIRC, such as etoposide, fulvestrant, and topotecan. Conclusion This study identified and validated four shared genes for KIRC and COVID-19. These genes are associated with immune functions and may serve as potential prognostic biomarkers for KIRC. The shared pathways and genes may provide new insights for further mechanistic research and treatment of comorbidities.
Collapse
Affiliation(s)
- Jianqiang Nie
- First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Hailang Yang
- First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xiaoqiang Liu
- First Affiliated Hospital of Nanchang University, Nanchang, China
- Jiangxi Institute of Urology, Nanchang, China
| | - Wen Deng
- First Affiliated Hospital of Nanchang University, Nanchang, China
- Jiangxi Institute of Urology, Nanchang, China
| | - Bin Fu
- First Affiliated Hospital of Nanchang University, Nanchang, China
- Jiangxi Institute of Urology, Nanchang, China
| |
Collapse
|
28
|
Gao Q, Feng Y, Gong T, Wu D, Zheng X, Luo Y, Yang Y, Song Z, Gong L, Zhang G. Porcine enteric alphacoronavirus infection increases lipid droplet accumulation to facilitate the virus replication. JOURNAL OF INTEGRATIVE AGRICULTURE 2024; 23:988-1005. [DOI: 10.1016/j.jia.2023.10.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
29
|
Kumari M, Gupta V, Kumar N, Arun RK. Microfluidics-Based Nanobiosensors for Healthcare Monitoring. Mol Biotechnol 2024; 66:378-401. [PMID: 37166577 PMCID: PMC10173227 DOI: 10.1007/s12033-023-00760-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 04/22/2023] [Indexed: 05/12/2023]
Abstract
Efficient healthcare management demands prompt decision-making based on fast diagnostics tools, astute data analysis, and informatics analysis. The rapid detection of analytes at the point of care is ensured using microfluidics in synergy with nanotechnology and biotechnology. The nanobiosensors use nanotechnology for testing, rapid disease diagnosis, monitoring, and management. In essence, nanobiosensors detect biomolecules through bioreceptors by modulating the physicochemical signals generating an optical and electrical signal as an outcome of the binding of a biomolecule with the help of a transducer. The nanobiosensors are sensitive and selective and play a significant role in the early identification of diseases. This article reviews the detection method used with the microfluidics platform for nanobiosensors and illustrates the benefits of combining microfluidics and nanobiosensing techniques by various examples. The fundamental aspects, and their application are discussed to illustrate the advancement in the development of microfluidics-based nanobiosensors and the current trends of these nano-sized sensors for point-of-care diagnosis of various diseases and their function in healthcare monitoring.
Collapse
Affiliation(s)
- Monika Kumari
- Department of Chemical Engineering, Indian Institute of Technology, NH-44, Jagti, PO Nagrota, Jammu, Jammu & Kashmir, 181221, India
| | - Verruchi Gupta
- School of Biotechnology, Shri Mata Vaishno Devi University, Kakryal, Katra, Jammu & Kashmir, 182320, India
| | - Natish Kumar
- Department of Chemical Engineering, Indian Institute of Technology, NH-44, Jagti, PO Nagrota, Jammu, Jammu & Kashmir, 181221, India
| | - Ravi Kumar Arun
- Department of Chemical Engineering, Indian Institute of Technology, NH-44, Jagti, PO Nagrota, Jammu, Jammu & Kashmir, 181221, India.
| |
Collapse
|
30
|
Deng M, Zhang C, Yan W, Chen L, He B, Li Y. Development of Fluorescence-Based Assays for Key Viral Proteins in the SARS-CoV-2 Infection Process and Lifecycle. Int J Mol Sci 2024; 25:2850. [PMID: 38474097 DOI: 10.3390/ijms25052850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/09/2024] [Accepted: 02/25/2024] [Indexed: 03/14/2024] Open
Abstract
Since the appearance of SARS-CoV-2 in 2019, the ensuing COVID-19 (Corona Virus Disease 2019) pandemic has posed a significant threat to the global public health system, human health, life, and economic well-being. Researchers worldwide have devoted considerable efforts to curb its spread and development. The latest studies have identified five viral proteins, spike protein (Spike), viral main protease (3CLpro), papain-like protease (PLpro), RNA-dependent RNA polymerase (RdRp), and viral helicase (Helicase), which play crucial roles in the invasion of SARS-CoV-2 into the human body and its lifecycle. The development of novel anti-SARS-CoV-2 drugs targeting these five viral proteins holds immense promise. Therefore, the development of efficient, high-throughput screening methodologies specifically designed for these viral proteins is of utmost importance. Currently, a plethora of screening techniques exists, with fluorescence-based assays emerging as predominant contenders. In this review, we elucidate the foundational principles and methodologies underpinning fluorescence-based screening approaches directed at these pivotal viral targets, hoping to guide researchers in the judicious selection and refinement of screening strategies, thereby facilitating the discovery and development of lead compounds for anti-SARS-CoV-2 pharmaceuticals.
Collapse
Affiliation(s)
- Mingzhenlong Deng
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Provincial Key Laboratory of Pharmaceutics, School of Pharmacy, Guizhou Medical University, Guiyang 550004, China
| | - Chuang Zhang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Provincial Key Laboratory of Pharmaceutics, School of Pharmacy, Guizhou Medical University, Guiyang 550004, China
| | - Wanli Yan
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Provincial Key Laboratory of Pharmaceutics, School of Pharmacy, Guizhou Medical University, Guiyang 550004, China
| | - Lei Chen
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Provincial Key Laboratory of Pharmaceutics, School of Pharmacy, Guizhou Medical University, Guiyang 550004, China
| | - Bin He
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Provincial Key Laboratory of Pharmaceutics, School of Pharmacy, Guizhou Medical University, Guiyang 550004, China
| | - Yan Li
- School of Basic Medical Science, Guizhou Medical University, Guiyang 550004, China
| |
Collapse
|
31
|
Wang W, Wang B, Li Q, Tian R, Lu X, Peng Y, Sun J, Bai J, Gao Z, Sun X. Ultrasensitive Detection Strategy of Norovirus Based on a Dual Enhancement Strategy: CRISPR-Responsive Self-Assembled SNA and Isothermal Amplification. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:4415-4425. [PMID: 38355417 DOI: 10.1021/acs.jafc.4c00557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
Spherical nucleic acids (SNAs) have been used to construct various nanobiosensors with gold nanoparticles (AuNPs) as nuclei. The SNAs play a critical role in biosensing due to their various physical and chemical properties, programmability, and specificity recognition ability. In this study, CRISPR-responsive self-assembled spherical nucleic acid (CRISPR-rsSNA) detection probes were constructed by conjugating fluorescein-labeled probes to the surface of AuNPs to improve the sensing performance. Also, the mechanism of ssDNA and the role of different fluorescent groups in the self-assembly process of CRISPR-rsSNA were explored. Then, CRISPR-rsSNA and reverse transcription-recombinase polymerase amplification (RT-RPA) were combined to develop an ultrasensitive fluorescence-detection strategy for norovirus. In the presence of the virus, the target RNA sequence of the virus was transformed and amplified by RT-RPA. The resulting dsDNA activated the trans-cleavage activity of CRISPR cas12a, resulting in disintegrating the outer nucleic acid structure of the CRISPR-rsSNA at a diffusible rate, which released reporter molecules. Norovirus was quantitated by fluorescence detection. This strategy facilitated the detection of the norovirus at the attomolar level. An RT-RPA kit for norovirus detected would be developed based on this method. The proposed method would be used for the detection of different viruses just by changing the target RNA and crRNA of the CRISPR cas12a system which provided a foundation for high-throughput detection of various substances.
Collapse
Affiliation(s)
- Weiya Wang
- School of Food Science and Technology, International Joint Laboratory on Food Safety, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi 214122, Jiangsu, P. R. China
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, P.R. of China
| | - Botao Wang
- School of Instrument Science and Optoelectronics Engineering, Beihang University, Beijing 100191, China
| | - Qiaofeng Li
- School of Food Science and Technology, International Joint Laboratory on Food Safety, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi 214122, Jiangsu, P. R. China
| | - Run Tian
- School of Food Science and Technology, International Joint Laboratory on Food Safety, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi 214122, Jiangsu, P. R. China
| | - Xin Lu
- School of Food Science and Technology, International Joint Laboratory on Food Safety, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi 214122, Jiangsu, P. R. China
| | - Yuan Peng
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, P.R. of China
| | - Jiadi Sun
- School of Food Science and Technology, International Joint Laboratory on Food Safety, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi 214122, Jiangsu, P. R. China
| | - Jialei Bai
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, P.R. of China
| | - Zhixian Gao
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, P.R. of China
| | - Xiulan Sun
- School of Food Science and Technology, International Joint Laboratory on Food Safety, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi 214122, Jiangsu, P. R. China
| |
Collapse
|
32
|
Li Z, Chen Y, Li L, Xue M, Feng L. Different Infectivity of Swine Enteric Coronaviruses in Cells of Various Species. Pathogens 2024; 13:174. [PMID: 38392912 PMCID: PMC10891669 DOI: 10.3390/pathogens13020174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/31/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
Swine enteric coronaviruses (SECoVs), including porcine deltacoronavirus (PDCoV), transmissible gastroenteritis virus (TGEV), porcine epidemic diarrhea virus (PEDV), and swine acute diarrhea syndrome coronavirus (SADS-CoV), have caused high mortality in piglets and, therefore, pose serious threats to the pork industry. Coronaviruses exhibit a trend of interspecies transmission, and understanding the host range of SECoVs is crucial for improving our ability to predict and control future epidemics. Here, the replication of PDCoV, TGEV, and PEDV in cells from different host species was compared by measuring viral genomic RNA transcription and protein synthesis. We demonstrated that PDCoV had a higher efficiency in infecting human lung adenocarcinoma cells (A549), Madin-Darby bovine kidney cells (MDBK), Madin-Darby canine kidney cells (MDCK), and chicken embryonic fibroblast cells (DF-1) than PEDV and TGEV. Moreover, trypsin can enhance the infectivity of PDCoV to MDCK cells that are nonsusceptible to TGEV. Additionally, structural analyses of the receptor ectodomain indicate that PDCoV S1 engages Aminopeptidase N (APN) via domain II, which is highly conserved among animal species of different vertebrates. Our findings provide a basis for understanding the interspecies transmission potential of these three porcine coronaviruses.
Collapse
Affiliation(s)
| | | | | | - Mei Xue
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Li Feng
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| |
Collapse
|
33
|
Xu J, Abdulsalam Khaleel R, Zaidan HK, Faisal Mutee A, Fahmi Fawy K, Gehlot A, Abbas AH, Arias Gonzáles JL, Amin AH, Ruiz-Balvin MC, Imannezhad S, Bahrami A, Akhavan-Sigari R. Discovery of common molecular signatures and drug repurposing for COVID-19/Asthma comorbidity: ACE2 and multi-partite networks. Cell Cycle 2024; 23:405-434. [PMID: 38640424 PMCID: PMC11529202 DOI: 10.1080/15384101.2024.2340859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 01/15/2024] [Accepted: 04/04/2024] [Indexed: 04/21/2024] Open
Abstract
Angiotensin-converting enzyme 2 (ACE2) is identified as the functional receptor for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of the ongoing global coronavirus disease-2019 (COVID-19) pandemic. This study aimed to elucidate potential therapeutic avenues by scrutinizing approved drugs through the identification of the genetic signature associated with SARS-CoV-2 infection in individuals with asthma. This exploration was conducted through an integrated analysis, encompassing interaction networks between the ACE2 receptor and common host (co-host) factors implicated in COVID-19/asthma comorbidity. The comprehensive analysis involved the identification of common differentially expressed genes (cDEGs) and hub-cDEGs, functional annotations, interaction networks, gene set variation analysis (GSVA), gene set enrichment analysis (GSEA), and module construction. Interaction networks were used to identify overlapping disease modules and potential drug targets. Computational biology and molecular docking analyzes were utilized to discern functional drug modules. Subsequently, the impact of the identified drugs on the expression of hub-cDEGs was experimentally validated using a mouse model. A total of 153 cDEGs or co-host factors associated with ACE2 were identified in the COVID-19 and asthma comorbidity. Among these, seven significant cDEGs and proteins - namely, HRAS, IFNG, JUN, CDH1, TLR4, ICAM1, and SCD-were recognized as pivotal host factors linked to ACE2. Regulatory network analysis of hub-cDEGs revealed eight top-ranked transcription factors (TFs) proteins and nine microRNAs as key regulatory factors operating at the transcriptional and post-transcriptional levels, respectively. Molecular docking simulations led to the proposal of 10 top-ranked repurposable drug molecules (Rapamycin, Ivermectin, Everolimus, Quercetin, Estradiol, Entrectinib, Nilotinib, Conivaptan, Radotinib, and Venetoclax) as potential treatment options for COVID-19 in individuals with comorbid asthma. Validation analysis demonstrated that Rapamycin effectively inhibited ICAM1 expression in the HDM-stimulated mice group (p < 0.01). This study unveils the common pathogenesis and genetic signature underlying asthma and SARS-CoV-2 infection, delineated by the interaction networks of ACE2-related host factors. These findings provide valuable insights for the design and discovery of drugs aimed at more effective therapeutics within the context of lung disease comorbidities.
Collapse
Affiliation(s)
- Jiajun Xu
- College of Veterinary & Life Sciences, the University of Glasgow, Glasgow, UK
| | | | | | | | - Khaled Fahmi Fawy
- Department of Chemistry, Faculty of Science, King Khalid University, Abha, Saudi Arabia
| | - Anita Gehlot
- Uttaranchal Institute of Technology, Uttaranchal University, Dehradun, India
| | | | - José Luis Arias Gonzáles
- Department of Social Sciences, Faculty of Social Studies, University of British Columbia, Vancouver, Canada
| | - Ali H Amin
- Zoology Department, Faculty of Science, Mansoura University, Mansoura, Egypt
| | | | - Shima Imannezhad
- Department of Pediatrics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Abolfazl Bahrami
- Biomedical Center for Systems Biology Science Munich, Ludwig-Maximilians-University, Munich, Germany
- Department of Animal Science, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Reza Akhavan-Sigari
- Department of Neurosurgery, University Medical Center Tuebingen, Tuebingen, Germany
- Department of Health Care Management and Clinical Research, Collegium Humanum, Warsaw, Poland
| |
Collapse
|
34
|
Chavda VP, Ghali ENHK, Balar PC, Chauhan SC, Tiwari N, Shukla S, Athalye M, Patravale V, Apostolopoulos V, Yallapu MM. Protein subunit vaccines: Promising frontiers against COVID-19. J Control Release 2024; 366:761-782. [PMID: 38219913 DOI: 10.1016/j.jconrel.2024.01.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 01/07/2024] [Accepted: 01/09/2024] [Indexed: 01/16/2024]
Abstract
The emergence of COVID-19 has posed an unprecedented global health crisis, challenging the healthcare systems worldwide. Amidst the rapid development of several vaccine formulations, protein subunit vaccines have emerged as a promising approach. This article provides an in-depth evaluation of the role of protein subunit vaccines in the management of COVID-19. Leveraging viral protein fragments, particularly the spike protein from SARS-CoV-2, these vaccines elicit a targeted immune response without the risk of inducing disease. Notably, the robust safety profile of protein subunit vaccines makes them a compelling candidate in the management of COVID-19. Various innovative approaches, including reverse vaccinology, virus like particles, and recombinant modifications are incorporated to develop protein subunit vaccines. In addition, the utilization of advanced manufacturing techniques facilitates large-scale production, ensuring widespread distribution. Despite these advancements, challenges persist, such as the requirement for cold-chain storage and the necessity for booster doses. This article evaluates the formulation and applications of protein subunit vaccines, providing a comprehensive overview of their clinical development and approvals in the context of COVID-19. By addressing the current status and challenges, this review aims to contribute to the ongoing discourse on optimizing protein subunit vaccines for effective pandemic control.
Collapse
Affiliation(s)
- Vivek P Chavda
- Department of Pharmaceutics and Pharmaceutical Technology, L. M. College of Pharmacy, Ahmedabad 380009, Gujarat, India.
| | - Eswara Naga Hanuma Kumar Ghali
- Department of Immunology and Microbiology, School of Medicine, The University of Texas Rio Grande Valley, McAllen, TX 78504, USA; South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA.
| | - Pankti C Balar
- Pharmacy Section, L. M. College of Pharmacy, Ahmedabad 380009, Gujarat, India
| | - Subhash C Chauhan
- Department of Immunology and Microbiology, School of Medicine, The University of Texas Rio Grande Valley, McAllen, TX 78504, USA; South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA.
| | - Nikita Tiwari
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai 400019, India
| | - Somanshi Shukla
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai 400019, India
| | - Mansi Athalye
- Department of Pharmaceutics and Pharmaceutical Technology, L. M. College of Pharmacy, Ahmedabad 380009, Gujarat, India
| | - Vandana Patravale
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai 400019, India
| | - Vasso Apostolopoulos
- Institute for Health and Sport, Immunology and Translational Research, Victoria University, Melbourne, VIC 3030, Australia; Immunology Program, Australian Institute for Musculoskeletal Science (AIMSS), Melbourne, VIC 3021, Australia.
| | - Murali M Yallapu
- Department of Immunology and Microbiology, School of Medicine, The University of Texas Rio Grande Valley, McAllen, TX 78504, USA; South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA.
| |
Collapse
|
35
|
Liu C, Huang W, He X, Feng Z, Chen Q. Research Advances on Swine Acute Diarrhea Syndrome Coronavirus. Animals (Basel) 2024; 14:448. [PMID: 38338091 PMCID: PMC10854734 DOI: 10.3390/ani14030448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/23/2024] [Accepted: 01/25/2024] [Indexed: 02/12/2024] Open
Abstract
Swine acute diarrhea syndrome coronavirus (SADS-CoV) is a virulent pathogen that causes acute diarrhea in piglets. The virus was first discovered in Guangdong Province, China, in 2017 and has since emerged in Jiangxi, Fujian, and Guangxi Provinces. The outbreak exhibited a localized and sporadic pattern, with no discernable temporal continuity. The virus can infect human progenitor cells and demonstrates considerable potential for cross-species transmission, representing a potential risk for zoonotic transmission. Therefore, continuous surveillance of and comprehensive research on SADS-CoV are imperative. This review provides an overview of the temporal and evolutionary features of SADS-CoV outbreaks, focusing on the structural characteristics of the virus, which serve as the basis for discussing its potential for interspecies transmission. Additionally, the review summarizes virus-host interactions, including the effects on host cells, as well as apoptotic and autophagic behaviors, and discusses prevention and treatment modalities for this viral infection.
Collapse
Affiliation(s)
- Chuancheng Liu
- College of Life Science, Fujian Normal University, Fuzhou 350117, China; (C.L.); (W.H.); (X.H.)
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, Fujian Normal University, Fuzhou 350117, China
| | - Weili Huang
- College of Life Science, Fujian Normal University, Fuzhou 350117, China; (C.L.); (W.H.); (X.H.)
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, Fujian Normal University, Fuzhou 350117, China
| | - Xinyan He
- College of Life Science, Fujian Normal University, Fuzhou 350117, China; (C.L.); (W.H.); (X.H.)
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, Fujian Normal University, Fuzhou 350117, China
| | - Zhihua Feng
- College of Life Science, Fujian Normal University, Fuzhou 350117, China; (C.L.); (W.H.); (X.H.)
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, Fujian Normal University, Fuzhou 350117, China
| | - Qi Chen
- College of Life Science, Fujian Normal University, Fuzhou 350117, China; (C.L.); (W.H.); (X.H.)
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, Fujian Normal University, Fuzhou 350117, China
| |
Collapse
|
36
|
Vu Thi H, Tran LT, Nguyen HQ, Chu DT. RNA therapeutics for respiratory diseases. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2024; 203:257-271. [PMID: 38360002 DOI: 10.1016/bs.pmbts.2023.12.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
It has become increasingly common to utilize RNA treatment to treat respiratory illnesses. Experimental research on both people and animals has advanced quickly since the turn of the twenty-first century in an effort to discover a treatment for respiratory ailments that could not be accomplished with earlier techniques, specifically in treating prevalent respiratory diseases such as lung cancer, chronic obstructive pulmonary disease (COPD), respiratory infections caused by viruses, and asthma. This chapter has provided a comprehensive overview of the scientific evidence in applying RNA therapy to treat respiratory diseases. The chapter describes the development of this therapy for respiratory diseases. At the same time, the types of RNA therapy for respiratory diseases have been highlighted. In addition, the mechanism of this therapy for respiratory diseases has also been covered. These insights are indispensable if this therapy is to be developed widely.
Collapse
Affiliation(s)
- Hue Vu Thi
- Center for Biomedicine and Community Health, International School, Vietnam National University, Hanoi, Vietnam; Faculty of Applied Sciences, International School, Vietnam National University, Hanoi, Vietnam
| | - Linh Thao Tran
- Center for Biomedicine and Community Health, International School, Vietnam National University, Hanoi, Vietnam
| | - Huy Quang Nguyen
- LMI DRISA, Department of Life Sciences, University of Science and Technology of Hanoi, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Dinh-Toi Chu
- Center for Biomedicine and Community Health, International School, Vietnam National University, Hanoi, Vietnam; Faculty of Applied Sciences, International School, Vietnam National University, Hanoi, Vietnam.
| |
Collapse
|
37
|
Bartak M, Bąska P, Chodkowski M, Tymińska B, Bańbura MW, Cymerys J. Neurons cytoskeletal architecture remodeling during the replication cycle of mouse coronavirus MHV-JHM: a morphological in vitro study. BMC Vet Res 2024; 20:18. [PMID: 38195523 PMCID: PMC10775625 DOI: 10.1186/s12917-023-03813-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 11/10/2023] [Indexed: 01/11/2024] Open
Abstract
Nowadays, the population is still struggling with a post-COVID19 syndrome known as long COVID, including a broad spectrum of neurological problems. There is an urgent need for a better understanding and exploration of the mechanisms of coronavirus neurotropism. For this purpose, the neurotropic strain of mouse hepatitis virus (MHV-JHM) originating from the beta-coronavirus genus, the same as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has been used. The role of the cytoskeleton during virus replication in neurons in vitro was determined to understand the mechanisms of MHV-JHM neuroinfection. We have described for the first time the changes of actin filaments during MHV-JHM infection. We also observed productive replication of MHV-JHM in neurons during 168 h p.i. and syncytial cytopathic effect. We discovered that the MHV-JHM strain modulated neuronal cytoskeleton during infection, which were manifested by: (i) condensation of actin filaments in the cortical layer of the cytoplasm, (ii) formation of microtubule cisternae structures containing viral antigen targeting viral replication site (iii) formation of tunneling nanotubes used by MHV-JHM for intercellular transport. Additionally, we demonstrated that the use of cytoskeletal inhibitors have reduced virus replication in neurons, especially noscapine and nocodazole, the microtubule shortening factors.
Collapse
Affiliation(s)
- Michalina Bartak
- Division of Microbiology, Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, Ciszewskiego 8 St., Warsaw, 02-786, Poland.
| | - Piotr Bąska
- Division of Pharmacology and Toxicology, Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences-SGGW, Ciszewskiego 8 St., Warsaw, 02-786, Poland
| | - Marcin Chodkowski
- Laboratory of Nanobiology and Biomaterials, Military Institute of Hygiene and Epidemiology, Kozielska 4 St., Warsaw, 01-063, Poland
| | - Beata Tymińska
- Division of Microbiology, Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, Ciszewskiego 8 St., Warsaw, 02-786, Poland
| | - Marcin W Bańbura
- Division of Microbiology, Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, Ciszewskiego 8 St., Warsaw, 02-786, Poland
| | - Joanna Cymerys
- Division of Microbiology, Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, Ciszewskiego 8 St., Warsaw, 02-786, Poland.
| |
Collapse
|
38
|
Khalil AM, Martinez-Sobrido L, Mostafa A. Zoonosis and zooanthroponosis of emerging respiratory viruses. Front Cell Infect Microbiol 2024; 13:1232772. [PMID: 38249300 PMCID: PMC10796657 DOI: 10.3389/fcimb.2023.1232772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 12/11/2023] [Indexed: 01/23/2024] Open
Abstract
Lung infections in Influenza-Like Illness (ILI) are triggered by a variety of respiratory viruses. All human pandemics have been caused by the members of two major virus families, namely Orthomyxoviridae (influenza A viruses (IAVs); subtypes H1N1, H2N2, and H3N2) and Coronaviridae (severe acute respiratory syndrome coronavirus 2, SARS-CoV-2). These viruses acquired some adaptive changes in a known intermediate host including domestic birds (IAVs) or unknown intermediate host (SARS-CoV-2) following transmission from their natural reservoirs (e.g. migratory birds or bats, respectively). Verily, these acquired adaptive substitutions facilitated crossing species barriers by these viruses to infect humans in a phenomenon that is known as zoonosis. Besides, these adaptive substitutions aided the variant strain to transmit horizontally to other contact non-human animal species including pets and wild animals (zooanthroponosis). Herein we discuss the main zoonotic and reverse-zoonosis events that occurred during the last two pandemics of influenza A/H1N1 and SARS-CoV-2. We also highlight the impact of interspecies transmission of these pandemic viruses on virus evolution and possible prophylactic and therapeutic interventions. Based on information available and presented in this review article, it is important to close monitoring viral zoonosis and viral reverse zoonosis of pandemic strains within a One-Health and One-World approach to mitigate their unforeseen risks, such as virus evolution and resistance to limited prophylactic and therapeutic interventions.
Collapse
Affiliation(s)
- Ahmed Magdy Khalil
- Disease Intervention & Prevention and Host Pathogen Interactions Programs, Texas Biomedical Research Institute, San Antonio, TX, United States
- Department of Zoonotic Diseases, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Luis Martinez-Sobrido
- Disease Intervention & Prevention and Host Pathogen Interactions Programs, Texas Biomedical Research Institute, San Antonio, TX, United States
| | - Ahmed Mostafa
- Disease Intervention & Prevention and Host Pathogen Interactions Programs, Texas Biomedical Research Institute, San Antonio, TX, United States
- Center of Scientific Excellence for Influenza Viruses, Water Pollution Research Department, Environment and Climate Change Research Institute, National Research Centre, Giza, Egypt
| |
Collapse
|
39
|
Ramachandran AK, Das S, Shenoy GG, Mudgal J, Joseph A. Relation between Apolipoprotein E in Alzheimer's Disease and SARS-CoV-2 and their Treatment Strategy: A Review. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2024; 23:9-20. [PMID: 36573058 DOI: 10.2174/1871527322666221226145141] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 10/27/2022] [Accepted: 11/01/2022] [Indexed: 12/28/2022]
Abstract
COVID-19, which primarily affects the pulmonary system, turned out to be a global pandemic, whereas the effects on other systems are still unknown. SARS-CoV-2, binds to angiotensinconverting enzyme 2 (ACE2) receptors in the lungs, causing pneumonia-like symptoms. The same ACE receptors are also present in organs other than the lungs. Therefore, there is a need to study the impact of coronavirus on other human body organs. Recently, UK Biobank reports on the genetic risk factor of the virus attack. A double mutation in the apolipoprotein E (APOE4) allele has shown a significant role in COVID-19. The same APOE4 mutation has already been proven to hold a key role in developing early-onset Alzheimer's disease (EOAD). Despite this data, Alzheimer's disease is believed to be a comorbidity of COVID-19. Previous virus attacks on the same viral family, Coronaviridae, produced neurological effects like neurodegeneration, neuronal inflammation, and other central nervous system-related dysfunctions. Since the long-term implications of COVID-19 are unknown, more research into the impact of the virus on the central nervous system is needed. Both COVID-19 and AD share a common genetic factor, so that AD patients may have a greater risk of SARS-CoV-2. Here, in this review, we have briefly discussed the role of APOE4 in the pathogenesis of AD and SARS-CoV-2, along with their treatment strategy, current scenario, and possible future directions.
Collapse
Affiliation(s)
- Anu Kunnath Ramachandran
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Subham Das
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
- Manipal McGill Centre for Infectious Diseases, Prasanna School of Public Health, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Gurupur Gautham Shenoy
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Jayesh Mudgal
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Alex Joseph
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| |
Collapse
|
40
|
Arumugam M, Shanmugavel B, Sellppan M, Pavadai P. In silico evaluation of some commercially available terpenoids as spike glycoprotein of SARS-CoV-2 - inhibitors using molecular dynamic approach. J Biomol Struct Dyn 2024; 42:1072-1078. [PMID: 37139540 DOI: 10.1080/07391102.2023.2201848] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 03/28/2023] [Indexed: 05/05/2023]
Abstract
Coronavirus, an extremely contagious infections disease had a harmful effect on the world's population. It is a family of enveloped, single-stranded, positive-strand RNA viruses of Nidovirales order belongs to coroviridae family. At present, worldwide several lakhs of deaths and several billions of infections have been reported. Hence, the focus of the present study was to assess the SARS-CoV-2 enzyme inhibitory potential of certain commercially available terpenoids using Lamarckian genetic algorithm as a working principle and molecular dynamic studies was also performed. AutoDock 4.2 software was used to perform the computational docking calculations of terpenoids against SARS-CoV-2 enzyme. The terpenoids such as, Andrographolide, Betulonic acid, Erythrodiol, Friedelin, Mimuscopic acid, Moronic acid, and Retinol were selected based on the drug likeness properties. Remdesivir a well-known anti-viral drug was selected as the standard drug. Molecular dynamic simulation studies were carried using Desmond module of Schrodinger Suite. In the current study we observed that, Friedelin was exhibited excellent SARS-CoV-2 enzyme inhibitory potential than the standard drug and other selected terpenoids. Friedelin and the standard Remdesivir was undergone the molecular dynamic studies and Friedelin showed a good number of hydrogen bonds over the simulation time of 100 ns. Based on the in silico computational evaluation, it can be concluded that Friedelin could be worthwhile terpenoid against SARS-CoV-2 spike protein. A further study on Friedelin is required to develop a potential chemical entity against the management of COVID disease.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Madeswaran Arumugam
- Department of Pharmacology, Karpagam College of Pharmacy, Affiliated to The Tamil Nadu Dr. M.G.R. Medical University, Coimbatore, Tamil Nadu, India
| | - Brahmasundari Shanmugavel
- Department of Pharmacology, Sri Ramakrishna Institute of Paramedical Sciences, Affiliated to The Tamil Nadu Dr. M.G.R. Medical University, Coimbatore, Tamil Nadu, India
| | - Mohan Sellppan
- Karpagam College of Pharmacy, Affiliated to The Tamil Nadu Dr. M.G.R. Medical University, Coimbatore, Tamil Nadu, India
| | - Parasuraman Pavadai
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, M.S. Ramaiah University of Applied Sciences, Bengaluru, Karnataka, India
| |
Collapse
|
41
|
Zhang S, Cao Y, Xu C, Wang G, Huang Y, Bao W, Zhang S. Integrated metabolomics and transcriptomics analyses reveal metabolic responses to TGEV infection in porcine intestinal epithelial cells. J Gen Virol 2023; 104. [PMID: 38116760 DOI: 10.1099/jgv.0.001942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023] Open
Abstract
Transmissible gastroenteritis virus (TGEV) is a coronavirus that infects piglets with severe diarrhoea, vomiting, dehydration, and even death, causing huge economic losses to the pig industry. The underlying pathogenesis of TGEV infection and the effects of TGEV infection on host metabolites remain poorly understood. To investigate the critical metabolites and regulatory factors during TGEV infection in intestinal porcine epithelial cells (IPEC-J2), we performed metabolomic and transcriptomic analyses of TGEV-infected IPEC-J2 cells by LC/MS and RNA-seq techniques. A total of 87 differential metabolites and 489 differentially expressed genes were detected. A series of metabolites and candidate genes from glutathione metabolism and AMPK signalling pathway were examined through combined analysis of metabolome and transcriptome. We found glutathione peroxidase 3 (GPX3) is markedly reduced after TGEV infection, and a significant negative correlation between AMPK signalling pathway and TGEV infection. Exogenous addition of the AMPK activator COH-SR4 significantly downregulates stearoyl coenzyme A (SCD1) mRNA and inhibits TGEV replication; while exogenous GSK-690693 significantly promotes TGEV infection by inhibiting AMPK signalling pathway. In summary, our study provides insights into the key metabolites and regulators for TGEV infection from the metabolome and transcriptome perspective, which will offer promising antiviral metabolic and molecular targets and enrich the understanding of the existence of a similar mechanism in the host.
Collapse
Affiliation(s)
- Shuoshuo Zhang
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, PR China
| | - Yanan Cao
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, PR China
| | - Chao Xu
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, PR China
| | - Guangzheng Wang
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, PR China
| | - Yanjie Huang
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, PR China
| | - Wenbin Bao
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, PR China
- Joint International Research Laboratory of Agriculture and Agri-product Safety, Yangzhou University, Yangzhou 225009, PR China
| | - Shuai Zhang
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, PR China
| |
Collapse
|
42
|
Marc MS, Rosca D, Bratosin F, Fira-Mladinescu O, Oancea C, Pescaru CC, Velescu D, Wellmann N, Motofelea AC, Ciuca IM, Saracin K, Manolescu D. The Effect of Comorbidities and Complications on COVID-19 Mortality: A Detailed Retrospective Study in Western Romania. J Pers Med 2023; 13:1552. [PMID: 38003867 PMCID: PMC10672588 DOI: 10.3390/jpm13111552] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/24/2023] [Accepted: 10/27/2023] [Indexed: 11/26/2023] Open
Abstract
COVID-19 continues to impact global health systems even after being declared over, with some patients exhibiting severe complications linked to pre-existing conditions. This study aimed to investigate the association between comorbidities, complications, and survival outcomes among COVID-19 survivors in Western Romania. Our hypothesis posited that comorbidities and complications significantly influence survival rates. We conducted a retrospective analysis of 1948 COVID-19 survivors admitted from January to December 2021, with 192 selected for detailed analysis based on inclusion and exclusion criteria. The severity of COVID-19 was classified according to WHO guidelines, and conditions like hypertension and obesity were defined using criteria from the European Society of Hypertension (ESH), the European Society of Cardiology (ESC), and WHO, respectively. Among the 192 patients, 33 had mild, 62 had moderate, and 97 had severe COVID-19. The median age across the severity groups was 63.2 years. Patients undergoing tracheostomy had a mortality rate of 83.3% versus 22.2% for non-tracheostomy patients (p < 0.001) and presented with significantly higher lung injury, hospitalization duration, and complications. Remarkably, tracheostomized patients were 17.50 times more likely to succumb to the disease (95% CI 4.39-116.91, p < 0.001). Furthermore, pneumothorax increased the mortality risk significantly (OR 22.11, 95% CI 5.72-146.03, p < 0.001). Intriguingly, certain conditions like grade I hypertension and grade II obesity showed a protective effect against mortality, whereas type 2 diabetes mellitus increased mortality risk (univariate OR 2.89, p = 0.001). The presence of certain comorbidities and complications significantly impacts the survival rates of COVID-19 patients in Western Romania. Notably, tracheostomy, pneumothorax, and T2DM were associated with increased mortality. This study underscores the importance of personalized patient care and provides insights for healthcare policymakers in Western Romania to improve clinical management strategies.
Collapse
Affiliation(s)
- Monica Steluta Marc
- Center for Research and Innovation in Precision Medicine of Respiratory Diseases, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square 2, 300041 Timisoara, Romania; (M.S.M.); (O.F.-M.); (C.O.); (C.C.P.); (D.V.); (D.M.)
- Department of Infectious Diseases, Discipline of Pulmonology, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square 2, 300041 Timisoara, Romania
| | - Daniela Rosca
- Doctoral School, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square 2, 300041 Timisoara, Romania; (F.B.); (N.W.)
| | - Felix Bratosin
- Doctoral School, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square 2, 300041 Timisoara, Romania; (F.B.); (N.W.)
- Discipline of Infectious Diseases, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square 2, 300041 Timisoara, Romania
| | - Ovidiu Fira-Mladinescu
- Center for Research and Innovation in Precision Medicine of Respiratory Diseases, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square 2, 300041 Timisoara, Romania; (M.S.M.); (O.F.-M.); (C.O.); (C.C.P.); (D.V.); (D.M.)
- Department of Infectious Diseases, Discipline of Pulmonology, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square 2, 300041 Timisoara, Romania
| | - Cristian Oancea
- Center for Research and Innovation in Precision Medicine of Respiratory Diseases, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square 2, 300041 Timisoara, Romania; (M.S.M.); (O.F.-M.); (C.O.); (C.C.P.); (D.V.); (D.M.)
- Department of Infectious Diseases, Discipline of Pulmonology, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square 2, 300041 Timisoara, Romania
| | - Camelia Corina Pescaru
- Center for Research and Innovation in Precision Medicine of Respiratory Diseases, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square 2, 300041 Timisoara, Romania; (M.S.M.); (O.F.-M.); (C.O.); (C.C.P.); (D.V.); (D.M.)
- Department of Infectious Diseases, Discipline of Pulmonology, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square 2, 300041 Timisoara, Romania
| | - Diana Velescu
- Center for Research and Innovation in Precision Medicine of Respiratory Diseases, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square 2, 300041 Timisoara, Romania; (M.S.M.); (O.F.-M.); (C.O.); (C.C.P.); (D.V.); (D.M.)
- Department of Infectious Diseases, Discipline of Pulmonology, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square 2, 300041 Timisoara, Romania
| | - Norbert Wellmann
- Doctoral School, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square 2, 300041 Timisoara, Romania; (F.B.); (N.W.)
| | - Alexandru Catalin Motofelea
- Department of Internal Medicine, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square 2, 300041 Timisoara, Romania;
| | - Ioana Mihaiela Ciuca
- Department of Pediatrics, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square 2, 300041 Timisoara, Romania;
- Pediatric Pulmonology Unit, Clinical County Hospital, Evliya Celebi 1-3, 300226 Timisoara, Romania
| | - Karina Saracin
- Emergency County Hospital Craiova, Strada Tabaci 1, 200642 Craiova, Romania;
| | - Diana Manolescu
- Center for Research and Innovation in Precision Medicine of Respiratory Diseases, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square 2, 300041 Timisoara, Romania; (M.S.M.); (O.F.-M.); (C.O.); (C.C.P.); (D.V.); (D.M.)
- Department of Radiology, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square 2, 300041 Timisoara, Romania
| |
Collapse
|
43
|
Sharma G, Kumar N, Sharma CS, Mishra SS. In silico guided screening of active components of C. lanceolata as 3-chymotrypsin-like protease inhibitors of novel coronavirus. 3 Biotech 2023; 13:324. [PMID: 37663751 PMCID: PMC10471561 DOI: 10.1007/s13205-023-03745-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 08/14/2023] [Indexed: 09/05/2023] Open
Abstract
Despite the intense worldwide efforts towards the identification of potential anti-CoV therapeutics, no antiviral drugs have yet been discovered. Numerous vaccines are now approved for use, but they all serve as preventative measures. To effectively treat viral infections, it is crucial to find new antiviral drugs that are derived from natural sources. Various compounds with potential activity against 3 chymotrypsin-like protease (3CLpro) were reported and some are validated by bioassay studies. Therefore, we performed the computational screening of phytoconstituents of Codonopsis lanceolata to search for potential antiviral hit candidates. The curated compounds of the plant C. lanceolata were collected and downloaded from the literature. The binding affinity of the curated datasets was predicted for the target 3CLpro. Stigmasterol exhibits the highest docking score for the 3CLpro target. In addition, molecular dynamics (MD) simulations were conducted for the validation of docking results using root mean square deviation and root mean square fluctuation plots. The MD results indicated that the docked complex was stable and retained hydrogen bonding and non-bonding interactions. Furthermore, the calculation of pharmacokinetic parameters and Lipinski's rule of five suggest that C. lanceolata has the potential for drug-likeness. In order to develop new medicines for this debilitating disease, we will focus on the primary virus-based and host-based targets that can direct medicinal chemists to identify novel treatments to produce new drugs for it. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-023-03745-2.
Collapse
Affiliation(s)
- Ganesh Sharma
- Department of Pharmaceutical Chemistry, Bhupal Nobles’ College of Pharmacy, Bhupal Nobles’ University, Udaipur, 313002 India
| | - Neeraj Kumar
- Department of Pharmaceutical Chemistry, Bhupal Nobles’ College of Pharmacy, Bhupal Nobles’ University, Udaipur, 313002 India
| | - Chandra Shekhar Sharma
- Department of Pharmaceutical Chemistry, Bhupal Nobles’ College of Pharmacy, Bhupal Nobles’ University, Udaipur, 313002 India
| | - Shashank Shekher Mishra
- Faculty of Pharmacy, School of Pharmaceutical and Populations Health Informatics, DIT University, Dehradun, 248009 India
| |
Collapse
|
44
|
Wang W, Zhou L, Ge X, Han J, Guo X, Zhang Y, Yang H. Analysis of codon usage patterns of porcine enteric alphacoronavirus and its host adaptability. Virology 2023; 587:109879. [PMID: 37677987 DOI: 10.1016/j.virol.2023.109879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/20/2023] [Accepted: 08/31/2023] [Indexed: 09/09/2023]
Abstract
Porcine enteric alphacoronavirus (PEAV) is a newly emerging swine enteropathogen that poses a threat to the swine industry. To understand the PEAV genome evolution, we performed a comprehensive analysis of the codon usage patterns in fifty-nine PEAV strains currently available. Phylogenetic analysis showed that PEAV can be divided into six lineages. Effective number of codons analysis demonstrated that the PEAV genome exhibits a low codon usage bias (CUB). Nucleotide composition analysis indicated that the PEAV genome has the most abundant nucleotide U content, with GC content (39.37% ± 0.08%) much lower than AU content (60.63% ± 0.08%). Neutrality and effective number of codons plot analyses suggested that natural selection rather than mutation pressure dominates the CUB of PEAV. Host adaptation analysis revealed that PEAV fits the codon usage pattern of non-human primates, humans and mice better than that of pigs. Our data enriches information on PEAV evolution, host adaptability, and cross-species transmission.
Collapse
Affiliation(s)
- Wenlong Wang
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Lei Zhou
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Xinna Ge
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Jun Han
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Xin Guo
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Yongning Zhang
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, People's Republic of China.
| | - Hanchun Yang
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, People's Republic of China
| |
Collapse
|
45
|
Tayal S, Bhatnagar S. Role of molecular mimicry in the SARS-CoV-2-human interactome for pathogenesis of cardiovascular diseases: An update to ImitateDB. Comput Biol Chem 2023; 106:107919. [PMID: 37463554 DOI: 10.1016/j.compbiolchem.2023.107919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 06/13/2023] [Accepted: 07/06/2023] [Indexed: 07/20/2023]
Abstract
Mimicry of host proteins is a strategy employed by pathogens to hijack host functions. Domain and motif mimicry was explored in the experimental and predicted SARS-CoV-2-human interactome. The host first interactor proteins were also added to capture the continuum of the interactions. The domains and motifs of the proteins were annotated using NCBI CD Search and ScanProsite, respectively. Host and pathogen proteins with a common host interactor and similar domain/motif constitute a mimicry pair indicating global structural similarity (domain mimicry pair; DMP) or local sequence similarity (motif mimicry pair; MMP). 593 DMPs and 7,02,472 MMPs were determined. AAA, DEXDc and Macro domains were frequent among DMPs whereas glycosylation, myristoylation and RGD motifs were abundant among MMP. The proteins involved in mimicry were visualised as a SARS-CoV-2 mimicry interaction network. The host proteins were enriched in multiple CVD pathways indicating the role of mimicry in COVID-19 associated CVDs. Bridging nodes were identified as potential drug targets. Approved antihypertensive and anti-inflammatory drugs are proposed for repurposing against COVID-19 associated CVDs. The SARS-CoV-2 mimicry data has been updated in ImitateDB (http://imitatedb.sblab-nsit.net/SARSCoV2Mimicry). Determination of key mechanisms, proteins, pathways, drug targets and repurposing candidates is critical for developing therapeutics for SARS CoV-2 associated CVDs.
Collapse
Affiliation(s)
- Sonali Tayal
- Computational and Structural Biology Laboratory, Department of Biological Sciences and Engineering, Netaji Subhas University of Technology, Dwarka, New Delhi 110078, India
| | - Sonika Bhatnagar
- Computational and Structural Biology Laboratory, Department of Biological Sciences and Engineering, Netaji Subhas University of Technology, Dwarka, New Delhi 110078, India.
| |
Collapse
|
46
|
Liu Y, Chen D, Wang Y, Li X, Qiu Y, Zheng M, Song Y, Li G, Song C, Liu T, Zhang Y, Guo JT, Lin H, Zhao X. Characterization of CCoV-HuPn-2018 spike protein-mediated viral entry. J Virol 2023; 97:e0060123. [PMID: 37676001 PMCID: PMC10537617 DOI: 10.1128/jvi.00601-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 07/25/2023] [Indexed: 09/08/2023] Open
Abstract
Canine coronavirus-human pneumonia-2018 (CCoV-HuPn-2018) was recently isolated from a child with pneumonia. This novel human pathogen resulted from cross-species transmission of a canine coronavirus. It has been known that CCoV-HuPn-2018 uses aminopeptidase N (APN) from canines, felines, and porcines, but not humans, as functional receptors for cell entry. The molecular mechanism of cell entry in CCoV-HuPn-2018 remains poorly understood. In this study, we demonstrated that among the nine APN orthologs tested, the APN of the Mexican free-tailed bat could also efficiently support CCoV-HuPn-2018 spike (S) protein-mediated entry, raising the possibility that bats may also be an alternative host epidemiologically important for the transmission of this virus. The glycosylation at residue N747 of canine APN is critical for its receptor activity. The gain of glycosylation at the corresponding residues in human and rabbit APNs converted them to functional receptors for CCoV-HuPn-2018. Interestingly, the CCoV-HuPn-2018 spike protein pseudotyped virus infected multiple human cancer cell lines in a human APN-independent manner, whereas sialic acid appeared to facilitate the entry of the pseudotyped virus into human cancer cells. Moreover, while host cell surface proteases trypsin and TMPRSS2 did not promote the entry of CCoV-HuPn-2018, endosomal proteases cathepsin L and B are required for the entry of CCoV-HuPn-2018 in a pH-dependent manner. IFITMs and LY6E are host restriction factors for the CCoV-HuPn-2018 entry. Our results thus suggest that CCoV-HuPn-2018 has not yet evolved to be an efficient human pathogen. Collectively, this study helps us understand the cell tropism, receptor usage, cross-species transmission, natural reservoir, and pathogenesis of this potential human coronavirus. IMPORTANCE Viral entry is driven by the interaction between the viral spike protein and its specific cellular receptor, which determines cell tropism and host range and is the major constraint to interspecies transmission of coronaviruses. Aminopeptidase N (APN; also called CD13) is a cellular receptor for HCoV-229E, the newly discovered canine coronavirus-human pneumonia-2018 (CCoV-HuPn-2018), and many other animal alphacoronaviruses. We examined the receptor activity of nine APN orthologs and found that CCoV-HuPn-2018 utilizes APN from a broad range of animal species, including bats but not humans, to enter host cells. To our surprise, we found that CCoV-HuPn-2018 spike protein pseudotyped viral particles successfully infected multiple human hepatoma-derived cell lines and a lung cancer cell line, which is independent of the expression of human APN. Our findings thus provide mechanistic insight into the natural hosts and interspecies transmission of CCoV-HuPn-2018-like coronaviruses.
Collapse
Affiliation(s)
- Yongmei Liu
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Infectious Diseases, Beijing, China
- National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, Beijing, China
| | - Danying Chen
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Infectious Diseases, Beijing, China
- National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, Beijing, China
| | - Yuanyuan Wang
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Peking University Ditan Teaching Hospital, Beijing, China
| | - Xinglin Li
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Infectious Diseases, Beijing, China
- National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, Beijing, China
| | - Yaruo Qiu
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Peking University Ditan Teaching Hospital, Beijing, China
| | - Mei Zheng
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, Beijing, China
| | - Yanjun Song
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Infectious Diseases, Beijing, China
- National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, Beijing, China
| | - Guoli Li
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Infectious Diseases, Beijing, China
- National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, Beijing, China
| | - Chuan Song
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Infectious Diseases, Beijing, China
- National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, Beijing, China
| | - Tingting Liu
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Infectious Diseases, Beijing, China
- National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, Beijing, China
| | - Yuanyuan Zhang
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Infectious Diseases, Beijing, China
- National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, Beijing, China
| | - Ju-Tao Guo
- Baruch S. Blumberg Institute, Hepatitis B Foundation, Doylestown, Pennsylvania, USA
| | - Hanxin Lin
- Department of Medical Genetics, University of Alberta, Edmonton, Alberta, Canada
- Molecular Genetics Laboratory, Alberta Precision Laboratories, Edmonton, Alberta, Canada
| | - Xuesen Zhao
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Infectious Diseases, Beijing, China
- National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, Beijing, China
| |
Collapse
|
47
|
Dave B, Shah KC, Chorawala MR, Shah N, Patel P, Patel S, Shah P. Molnupiravir: an antiviral drug against COVID-19. Arch Virol 2023; 168:252. [PMID: 37710056 DOI: 10.1007/s00705-023-05881-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 05/28/2023] [Indexed: 09/16/2023]
Abstract
SARS-CoV-2, the virus responsible for COVID-19, has caused numerous deaths worldwide and poses significant challenges. Researchers have recently studied a new antiviral drug called molnupiravir for treating COVID-19. This review examines the causes and immunopathogenesis of COVID-19, as well as the role of molnupiravir in its treatment. Molnupiravir is a prodrug of β-D-N4-hydroxyctytidine (NHC) and has demonstrated activity against various viruses, including MERS-CoV, SARS-CoV, SARS-CoV-2, and influenza virus. The active form of molnupiravir, NHC triphosphate, acts as a nucleoside analog that disrupts viral replication by causing mutations in the viral RNA, thereby inhibiting viral growth. This review summarizes the results of multiple clinical trials that have evaluated the effectiveness of molnupiravir against SARS-CoV-2 and its variants. Animal studies have also shown that molnupiravir significantly reduces the viral load and prevents transmission to other animals. Overall, molnupiravir has demonstrated strong efficacy and reasonable safety, reducing hospitalization rates by nearly 50% among COVID-19-positive individuals at risk of complications. Patients in clinical settings have tolerated molnupiravir well and experienced positive outcomes, such as clearance of viral RNA, decreased viral load, and reduced hospitalization rates. Additionally, compared to a placebo, molnupiravir has been associated with lower mortality rates. Therefore, molnupiravir can be a beneficial drug to treat patients suffering from SARS-CoV-2, and further studies can provide more information about its safety and efficacy.
Collapse
Affiliation(s)
- Bhavarth Dave
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Opp. Gujarat University, Navrangpura, Ahmedabad, Gujarat, 380 009, India
| | - Kashvi C Shah
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Opp. Gujarat University, Navrangpura, Ahmedabad, Gujarat, 380 009, India
| | - Mehul R Chorawala
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Opp. Gujarat University, Navrangpura, Ahmedabad, Gujarat, 380 009, India.
| | - Nirav Shah
- Department of Pharmaceutics, SAL Institute of Pharmacy, Sola, Ahmedabad, Gujarat, 380015, India
| | - Pranjal Patel
- Department of Pharmaceutics, SAL Institute of Pharmacy, Sola, Ahmedabad, Gujarat, 380015, India
| | - Suzan Patel
- Department of Pharmaceutics, SAL Institute of Pharmacy, Sola, Ahmedabad, Gujarat, 380015, India
| | - Palak Shah
- Department of Pharmacology and Pharmacy Practice, K. B. Institute of Pharmaceutical Education and Research, Gh-6, Sector-23, Gandhinagar, Gujarat, 382023, India
| |
Collapse
|
48
|
Al-Momani H, Mashal S, Al Balawi D, Almasri M, Al-Shudifat AE, Khasawneh AI, Pearson J, Ward C. A prospective study of extraesophageal reflux and potential microaspiration in patients hospitalized with COVID-19 in Jordan. BMC Pulm Med 2023; 23:341. [PMID: 37697259 PMCID: PMC10496175 DOI: 10.1186/s12890-023-02638-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 09/07/2023] [Indexed: 09/13/2023] Open
Abstract
BACKGROUND Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) lung infection has represented a global challenge. Intriguingly, it has been shown that the alveolar lung epithelium expresses little Angiotensin Converting Enzyme receptor protein (ACE2), the entry receptor for SARS-CoV-2. Upper airway establishment of infection and translocation to the lung is well documented but other anatomical niches may be relevant to potentially serious lung infection. ACE2 is heavily expressed in the gastrointestinal tract and gastrointestinal symptoms support a clinical diagnosis of Coronavirus disease 2019 (COVID-19). This suggests a research question and the need to gather patient data exploring potential aerodigestive links in SARS-CoV-2 tranlocation and infection which may be relevant in the peripheral lung. This recognizes anatomical proximity and concepts of bi-directional movement between the Gastrointestinal and lung systems in normal physiology and disease. We have therefore explored the potential for gastro oesophageal reflux disease (GORD) micro aspiration and aeorodigestive pathophysiology in a novel prospective investigation of patients hospitalized with COVID-19. METHODS This is a prospective descriptive cohort study of 210 patients who were hospitalized with a confirmed diagnosis of COVID-19. The cohort was divided into three groups of patients based on symptom severity and radiological results. The Reflux Symptom Index (RSI) was used to evaluate the presence and severity of GOR. An RSI greater than 13 is considered to be abnormal. Patients' saliva samples were tested using enzyme-linked immunosorbent assay (ELISA) to determine the level of salivary pepsin among the cohort of patients. RESULTS A total of 210 patients with COVID-19 were enrolled in the study with 55.2% (116/210) classified as mildly ill, 31.9% (67/210) moderately ill and 12.9% (27/210) as severely ill. 34% (72/210) of the patients had an RSI score of over 13 and a median salivary pepsin value of 54 ± 29 ng/ml which suggested an incidence of extraesophageal reflux (EOR) in around a third of patients. The presence of respiratory comorbid conditions, an RSI score of over 13 and a salivary pepsin level of > 76ng/ml increased the risk of developing a more severe COVID-19 infection. CONCLUSION The study showed a high prevalence of EOR among the study cohort and provide the first prospective evidence suggesting the potential for aerodigestive pathophysiology including microaspiration in COVID-19 disease. We believe that the results of our study support the need for more extensive research.
Collapse
Affiliation(s)
- Hafez Al-Momani
- Department of Microbiology, Pathology and Forensic medicine, Faculty of Medicine, The Hashemite University, Zarqa, 13133, Jordan.
| | - Safaa Mashal
- Department of Microbiology, Pathology and Forensic medicine, Faculty of Medicine, The Hashemite University, Zarqa, 13133, Jordan
| | - Dua'a Al Balawi
- Faculty of Applied Medical Sciences, The Hashemite University, Zarqa, 13133, Jordan
| | - Muna Almasri
- Faculty of Applied Medical Sciences, The Hashemite University, Zarqa, 13133, Jordan
| | - Abdel-Ellah Al-Shudifat
- Department of Internal and family Medicine, Faculty of Medicine, The Hashemite University, Zarqa, 13133, Jordan
| | - Ashraf I Khasawneh
- Department of Microbiology, Pathology and Forensic medicine, Faculty of Medicine, The Hashemite University, Zarqa, 13133, Jordan
| | - Jeffrey Pearson
- Translational and clinical research and Biosciences institutes, Newcastle University Medical School, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Christopher Ward
- Translational and clinical research and Biosciences institutes, Newcastle University Medical School, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| |
Collapse
|
49
|
Misra G, Manzoor A, Chopra M, Upadhyay A, Katiyar A, Bhushan B, Anvikar A. Genomic epidemiology of SARS-CoV-2 from Uttar Pradesh, India. Sci Rep 2023; 13:14847. [PMID: 37684328 PMCID: PMC10491582 DOI: 10.1038/s41598-023-42065-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 09/05/2023] [Indexed: 09/10/2023] Open
Abstract
The various strains and mutations of SARS-CoV-2 have been tracked using several forms of genomic classification systems. The present study reports high-throughput sequencing and analysis of 99 SARS-CoV-2 specimens from Western Uttar Pradesh using sequences obtained from the GISAID database, followed by phylogeny and clade classification. Phylogenetic analysis revealed that Omicron lineages BA-2-like (55.55%) followed by Delta lineage-B.1.617.2 (45.5%) were predominantly circulating in this area Signature substitution at positions S: N501Y, S: D614G, S: T478K, S: K417N, S: E484A, S: P681H, and S: S477N were commonly detected in the Omicron variant-BA-2-like, however S: D614G, S: L452R, S: P681R and S: D950N were confined to Delta variant-B.1.617.2. We have also identified three escape variants in the S gene at codon position 19 (T19I/R), 484 (E484A/Q), and 681 (P681R/H) during the fourth and fifth waves in India. Based on the phylogenetic diversification studies and similar changes in other lineages, our analysis revealed indications of convergent evolution as the virus adjusts to the shifting immunological profile of its human host. To the best of our knowledge, this study is an approach to comprehensively map the circulating SARS-CoV-2 strains from Western Uttar Pradesh using an integrated approach of whole genome sequencing and phylogenetic analysis. These findings will be extremely valuable in developing a structured approach toward pandemic preparedness and evidence-based intervention plans in the future.
Collapse
Affiliation(s)
- Gauri Misra
- Molecular Diagnostics and COVID-19 Kit Testing Laboratory, National Institute of Biologicals (Ministry of Health and Family Welfare), A-32, Sector-62, Institutional Area, Noida, UP, 201309, India.
| | - Ashrat Manzoor
- Molecular Diagnostics and COVID-19 Kit Testing Laboratory, National Institute of Biologicals (Ministry of Health and Family Welfare), A-32, Sector-62, Institutional Area, Noida, UP, 201309, India
| | - Meenu Chopra
- National Dairy Research Institute, Karnal, Haryana, India
| | - Archana Upadhyay
- Molecular Diagnostics and COVID-19 Kit Testing Laboratory, National Institute of Biologicals (Ministry of Health and Family Welfare), A-32, Sector-62, Institutional Area, Noida, UP, 201309, India
| | - Amit Katiyar
- Bioinformatics Facility, Centralized Core Research Facility, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110029, India
| | - Brij Bhushan
- Molecular Diagnostics and COVID-19 Kit Testing Laboratory, National Institute of Biologicals (Ministry of Health and Family Welfare), A-32, Sector-62, Institutional Area, Noida, UP, 201309, India
| | - Anup Anvikar
- Molecular Diagnostics and COVID-19 Kit Testing Laboratory, National Institute of Biologicals (Ministry of Health and Family Welfare), A-32, Sector-62, Institutional Area, Noida, UP, 201309, India
| |
Collapse
|
50
|
George U, George O, Oguzie J, Osasona O, Motayo B, Kamani J, Eromon P, Folarin O, Happi A, Komolafe I, Happi C. Genomic characterization of Alphacoronavirus from Mops condylurus bats in Nigeria. Virus Res 2023; 334:199174. [PMID: 37467933 PMCID: PMC10392604 DOI: 10.1016/j.virusres.2023.199174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 07/12/2023] [Accepted: 07/15/2023] [Indexed: 07/21/2023]
Abstract
Coronaviruses (CoVs) are responsible for sporadic, epidemic and pandemic respiratory diseases worldwide. Bats have been identified as the reservoir for CoVs. To increase the number of complete coronavirus genomes in Africa and to comprehend the molecular epidemiology of bat Alphacoronaviruses (AlphaCoVs), we used deep metagenomics shotgun sequencing to obtain three (3) near-complete genomes of AlphaCoVs from Mops condylurus (Angolan free-tailed) bat in Nigeria. Phylogenetic and pairwise identity analysis of open reading frame 1ab (ORF1ab), spike (S), envelope (E), membrane (M) and nucleocapsid (N) genes of AlphaCoV in this study to previously described AlphaCoVs subgenera showed that the Nigerian AlphaCoVs may be members of potentially unique AlphaCoV subgenera circulating exclusively in bats in the Molossidae bat family. Recombination events were detected, suggesting the evolution of AlphaCoVs within the Molossidae family. The pairwise identity of the S gene in this study and previously published S gene sequences of other AlphaCoVs indicate that the Nigerian strains may have a genetically unique spike protein that is distantly related to other AlphaCoVs. Variations involving non-polar to polar amino acid substitution in both the Heptad Repeat (HR) regions 1 and 2 were observed. Further monitoring of bats to understand the host receptor use requirements of CoVs and interspecies CoV transmission in Africa is necessary to identify and prevent the potential danger that bat CoVs pose to public health.
Collapse
Affiliation(s)
- Uwem George
- African Centre of Excellence for Genomics of Infectious Diseases, Redeemer's University, Ede, Osun State, Nigeria; Department of Biological Sciences, Faculty of Natural Sciences, Redeemer's University, Ede, Osun State, Nigeria
| | | | - Judith Oguzie
- African Centre of Excellence for Genomics of Infectious Diseases, Redeemer's University, Ede, Osun State, Nigeria; Department of Biological Sciences, Faculty of Natural Sciences, Redeemer's University, Ede, Osun State, Nigeria
| | - Oluwadamilola Osasona
- African Centre of Excellence for Genomics of Infectious Diseases, Redeemer's University, Ede, Osun State, Nigeria; Department of Biological Sciences, Faculty of Natural Sciences, Redeemer's University, Ede, Osun State, Nigeria
| | - Babatunde Motayo
- Department of Medical Microbiology, Federal Medical Centre, Abeokuta, Nigeria
| | - Joshua Kamani
- Parasitology Division National Veterinary Research Institute NVRI PMB 01, Vom, Plateau state Nigeria
| | - Philomena Eromon
- African Centre of Excellence for Genomics of Infectious Diseases, Redeemer's University, Ede, Osun State, Nigeria
| | - Onikepe Folarin
- African Centre of Excellence for Genomics of Infectious Diseases, Redeemer's University, Ede, Osun State, Nigeria; Department of Biological Sciences, Faculty of Natural Sciences, Redeemer's University, Ede, Osun State, Nigeria
| | - Anise Happi
- African Centre of Excellence for Genomics of Infectious Diseases, Redeemer's University, Ede, Osun State, Nigeria
| | - Isaac Komolafe
- Department of Biological Sciences, Faculty of Natural Sciences, Redeemer's University, Ede, Osun State, Nigeria
| | - Christian Happi
- African Centre of Excellence for Genomics of Infectious Diseases, Redeemer's University, Ede, Osun State, Nigeria; Department of Biological Sciences, Faculty of Natural Sciences, Redeemer's University, Ede, Osun State, Nigeria.
| |
Collapse
|