1
|
Aoki K, Mutaguchi Y, Hemmi H, Yoshimura T, Ito T. Identification and Characterization of a Novel d-Branched-Chain Amino Acids Importer from Lactobacillus fermentum. Chembiochem 2025; 26:e202401075. [PMID: 39939291 PMCID: PMC11907396 DOI: 10.1002/cbic.202401075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 02/12/2025] [Accepted: 02/12/2025] [Indexed: 02/14/2025]
Abstract
Various lactic acid bacteria synthesize d-branched-chain amino acids (d-BCAA) during growth, but their physiological function remains largely elusive. The pyridoxal phosphate-dependent enzyme isoleucine 2-epimerase (ILEP) has been identified as the key enzyme responsible for d-BCAA biosynthesis. Comparative genomic analyses revealed that genes encoding ILEP and an uncharacterized amino acid-polyamine-organocation (APC) family transporter are adjacent in several d-BCAA-producing bacteria, suggesting a functional link between these two proteins in d-BCAA metabolism. In this study, we investigated the function of the APC family transporter from Lactobacillus fermentum (LfAAP). Using heterologous expression systems in Escherichia coli and Lactococcus lactis, we demonstrated that LfAAP functions as a non-stereospecific BCAA importer. Mutational analysis revealed that Ala119 and Met331 play critical roles in substrate recognition. Heterologous expression of LfAAP and/or LfILEP in a L. lactis strain, which lacks the ILEP-AAP genes operon, revealed that ILEP functions as both synthetic and catabolic enzyme for d-BCAA. Our findings suggest that the ILEP-AAP system contribute to storage and subsequent utilization of BCAA in a form that is less accessible by other organisms, providing a potential competitive advantage in microbial environments.
Collapse
Affiliation(s)
- Koichiro Aoki
- Department of Applied BiosciencesGraduate School of Bioagricultural SciencesNagoya UniversityFurou-chou, Chikusa, Nagoya, Aichi464–8601Japan
| | - Yuta Mutaguchi
- Department of BiotechnologyFaculty of Bioresource SciencesAkita Prefectural UniversityAkitaJapan
| | - Hisashi Hemmi
- Department of Applied BiosciencesGraduate School of Bioagricultural SciencesNagoya UniversityFurou-chou, Chikusa, Nagoya, Aichi464–8601Japan
| | - Tohru Yoshimura
- Department of Applied BiosciencesGraduate School of Bioagricultural SciencesNagoya UniversityFurou-chou, Chikusa, Nagoya, Aichi464–8601Japan
| | - Tomokazu Ito
- Department of Applied BiosciencesGraduate School of Bioagricultural SciencesNagoya UniversityFurou-chou, Chikusa, Nagoya, Aichi464–8601Japan
| |
Collapse
|
2
|
Aida H, Ying BW. Data-driven discovery of the interplay between genetic and environmental factors in bacterial growth. Commun Biol 2024; 7:1691. [PMID: 39719455 DOI: 10.1038/s42003-024-07347-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 12/02/2024] [Indexed: 12/26/2024] Open
Abstract
A complex interplay of genetic and environmental factors influences bacterial growth. Understanding these interactions is crucial for insights into complex living systems. This study employs a data-driven approach to uncover the principles governing bacterial growth changes due to genetic and environmental variation. A pilot survey is conducted across 115 Escherichia coli strains and 135 synthetic media comprising 45 chemicals, generating 13,944 growth profiles. Machine learning analyzes this dataset to predict the chemicals' priorities for bacterial growth. The primary gene-chemical networks are structured hierarchically, with glucose playing a pivotal role. Offset in bacterial growth changes is frequently observed across 1,445,840 combinations of strains and media, with its magnitude correlating to individual alterations in strains or media. This counterbalance in the gene-chemical interplay is supposed to be a general feature beneficial for bacterial population growth.
Collapse
Affiliation(s)
- Honoka Aida
- School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Bei-Wen Ying
- School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan.
| |
Collapse
|
3
|
Song T, Gupta S, Sorokin Y, Frenkel O, Cytryn E, Friedman J. A Burkholderia cenocepacia-like environmental isolate strongly inhibits the plant fungal pathogen Zymoseptoria tritici. Appl Environ Microbiol 2024; 90:e0222223. [PMID: 38624199 PMCID: PMC11107150 DOI: 10.1128/aem.02222-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 03/20/2024] [Indexed: 04/17/2024] Open
Abstract
Fungal phytopathogens cause significant reductions in agricultural yields annually, and overusing chemical fungicides for their control leads to environmental pollution and the emergence of resistant pathogens. Exploring natural isolates with strong antagonistic effects against pathogens can improve our understanding of their ecology and develop new treatments for the future. We isolated and characterized a novel bacterial strain associated with the species Burkholderia cenocepacia, termed APO9, which strongly inhibits Zymoseptoria tritici, a commercially important pathogenic fungus causing Septoria tritici blotch in wheat. Additionally, this strain exhibits inhibitory activity against four other phytopathogens. We found that physical contact plays a crucial role for APO9's antagonistic capacity. Genome sequencing of APO9 and biosynthetic gene cluster (BGC) analysis identified nine classes of BGCs and three types of secretion systems (types II, III, and IV), which may be involved in the inhibition of Z. tritici and other pathogens. To identify genes driving APO9's inhibitory activity, we screened a library containing 1,602 transposon mutants and identified five genes whose inactivation reduced inhibition efficiency. One such gene encodes for a diaminopimelate decarboxylase located in a terpenoid biosynthesis gene cluster. Phylogenetic analysis revealed that while some of these genes are also found across the Burkholderia genus, as well as in other Betaproteobacteria, the combination of these genes is unique to the Burkholderia cepacia complex. These findings suggest that the inhibitory capacity of APO9 is complex and not limited to a single mechanism, and may play a role in the interaction between various Burkholderia species and various phytopathogens within diverse plant ecosystems. IMPORTANCE The detrimental effects of fungal pathogens on crop yields are substantial. The overuse of chemical fungicides contributes not only to environmental pollution but also to the emergence of resistant pathogens. Investigating natural isolates with strong antagonistic effects against pathogens can improve our understanding of their ecology and develop new treatments for the future. We discovered and examined a unique bacterial strain that demonstrates significant inhibitory activity against several phytopathogens. Our research demonstrates that this strain has a wide spectrum of inhibitory actions against plant pathogens, functioning through a complex mechanism. This plays a vital role in the interactions between plant microbiota and phytopathogens.
Collapse
Affiliation(s)
- Tingting Song
- The Institute of Environmental Sciences, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Suyash Gupta
- The Institute of Environmental Sciences, The Hebrew University of Jerusalem, Rehovot, Israel
- Institute of Soil, Water and Environmental Sciences, Agricultural Research Organization, Rishon Lezion, Israel
- Institute of Plant Protection, Agricultural Research Organization, Rishon Lezion, Israel
| | - Yael Sorokin
- The Institute of Environmental Sciences, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Omer Frenkel
- Institute of Plant Protection, Agricultural Research Organization, Rishon Lezion, Israel
| | - Eddie Cytryn
- Institute of Soil, Water and Environmental Sciences, Agricultural Research Organization, Rishon Lezion, Israel
| | - Jonathan Friedman
- The Institute of Environmental Sciences, The Hebrew University of Jerusalem, Rehovot, Israel
| |
Collapse
|
4
|
Ruwe M, Persicke M, Busche T, Müller B, Kalinowski J. Physiology and Transcriptional Analysis of (p)ppGpp-Related Regulatory Effects in Corynebacterium glutamicum. Front Microbiol 2019; 10:2769. [PMID: 31849906 PMCID: PMC6892785 DOI: 10.3389/fmicb.2019.02769] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 11/13/2019] [Indexed: 12/20/2022] Open
Abstract
The alarmone species ppGpp and pppGpp are elementary components of bacterial physiology as they both coordinate the bacterial stress response and serve as fine-tuners of general metabolism during conditions of balanced growth. Since the regulation of (p)ppGpp metabolism and the effects of (p)ppGpp on cellular processes are highly complex and show massive differences between bacterial species, the underlying molecular mechanisms have so far only been insufficiently investigated for numerous microorganisms. In this study, (p)ppGpp physiology in the actinobacterial model organism Corynebacterium glutamicum was analyzed by phenotypic characterization and RNAseq-based transcriptome analysis. Total nutrient starvation was identified as the most effective method to induce alarmone production, whereas traditional induction methods such as the addition of serine hydroxamate (SHX) or mupirocin did not show a strong accumulation of (p)ppGpp. The predominant alarmone in C. glutamicum represents guanosine tetraphosphate, whose stress-associated production depends on the presence of the bifunctional RSH enzyme Rel. Interestingly, in addition to ppGpp, another substance yet not identified accumulated strongly under inducing conditions. A C. glutamicum triple mutant (Δrel,ΔrelS,ΔrelH) unable to produce alarmones [(p)ppGpp0 strain] exhibited unstable growth characteristics and interesting features such as an influence of illumination on its physiology, production of amino acids as well as differences in vitamin and carotenoid production. Differential transcriptome analysis using RNAseq provided numerous indications for the molecular basis of the observed phenotype. An evaluation of the (p)ppGpp-dependent transcriptional regulation under total nutrient starvation revealed a complex interplay with the involvement of ribosome-mediated transcriptional attenuation, the stress-responsive sigma factors σB and σH and transcription factors such as McbR, the master regulator of sulfur metabolism. In addition to the differential regulation of genes connected with various cell functions, the transcriptome analysis revealed conserved motifs within the promoter regions of (p)ppGpp-dependently and independently regulated genes. In particular, the representatives of translation-associated genes are both (p)ppGpp-dependent transcriptionally downregulated and show a highly conserved and so far unknown TTTTG motif in the -35 region, which is also present in other actinobacterial genera.
Collapse
Affiliation(s)
- Matthias Ruwe
- Microbial Genomics and Biotechnology, Center for Biotechnology, Bielefeld University, Bielefeld, Germany
| | - Marcus Persicke
- Microbial Genomics and Biotechnology, Center for Biotechnology, Bielefeld University, Bielefeld, Germany
| | - Tobias Busche
- Microbial Genomics and Biotechnology, Center for Biotechnology, Bielefeld University, Bielefeld, Germany
| | | | - Jörn Kalinowski
- Microbial Genomics and Biotechnology, Center for Biotechnology, Bielefeld University, Bielefeld, Germany
| |
Collapse
|
5
|
Ito T, Hori R, Hemmi H, Downs DM, Yoshimura T. Inhibition of glycine cleavage system by pyridoxine 5'-phosphate causes synthetic lethality in glyA yggS and serA yggS in Escherichia coli. Mol Microbiol 2019; 113:270-284. [PMID: 31677193 DOI: 10.1111/mmi.14415] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/30/2019] [Indexed: 12/15/2022]
Abstract
The YggS/Ybl036c/PLPBP family includes conserved pyridoxal 5'-phosphate (PLP)-binding proteins that play a critical role in the homeostasis of vitamin B6 and amino acids. Disruption of members of this family causes pleiotropic effects in many organisms by unknown mechanisms. In Escherichia coli, conditional lethality of the yggS and glyA (encoding serine hydroxymethyltransferase) has been described, but the mechanism of lethality was not determined. Strains lacking yggS and serA (3-phosphoglycerate dehydrogenase) were conditionally lethality in the M9-glucose medium supplemented with Gly. Analyses of vitamin B6 pools found the high-levels of pyridoxine 5'-phosphate (PNP) in the two yggS mutants. Growth defects of the double mutants could be eliminated by overexpressing PNP/PMP oxidase (PdxH) to decrease the PNP levels. Further, a serA pdxH strain, which accumulates PNP in the presence of yggS, exhibited similar phenotype to serA yggS mutant. Together these data suggested the inhibition of the glycine cleavage (GCV) system caused the synthetic lethality. Biochemical assays confirmed that PNP disrupts the GCV system by competing with PLP in GcvP protein. Our data are consistent with a model in which PNP-dependent inhibition of the GCV system causes the conditional lethality observed in the glyA yggS or serA yggS mutants.
Collapse
Affiliation(s)
- Tomokazu Ito
- Department of Applied Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furou-chou, Chikusa, Nagoya, Aichi, 464-8601, Japan
| | - Ran Hori
- Department of Applied Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furou-chou, Chikusa, Nagoya, Aichi, 464-8601, Japan
| | - Hisashi Hemmi
- Department of Applied Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furou-chou, Chikusa, Nagoya, Aichi, 464-8601, Japan
| | - Diana M Downs
- Department of Microbiology, University of Georgia, Athens, GA, 30602, USA
| | - Tohru Yoshimura
- Department of Applied Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furou-chou, Chikusa, Nagoya, Aichi, 464-8601, Japan
| |
Collapse
|
6
|
Synergy of valine and threonine supplementation on poly(2-hydroxybutyrate-block-3-hydroxybutyrate) synthesis in engineered Escherichia coli expressing chimeric polyhydroxyalkanoate synthase. J Biosci Bioeng 2019; 129:302-306. [PMID: 31635918 DOI: 10.1016/j.jbiosc.2019.09.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 09/13/2019] [Accepted: 09/26/2019] [Indexed: 01/06/2023]
Abstract
The engineered chimeric polyhydroxyalkanoate (PHA) synthase PhaCAR is composed of N-terminal portion of Aeromonas caviae PHA synthase and C-terminal portion of Ralstonia eutropha (Cupriavidus necator) PHA synthase. PhaCAR has a unique and useful capacity to synthesize the block PHA copolymer poly(2-hydroxybutyrate-block-3-hydroxybutyrate) [P(2HB-b-3HB)] in engineered Escherichia coli from exogenous 2HB and 3HB. In the present study, we initially attempted to incorporate the amino acid-derived 2-hydroxyalkanoate (2HA) units using PhaCAR and the 2HA-CoA-supplying enzymes lactate dehydrogenase (LdhA) and CoA transferase (HadA). Cells harboring the genes for PhaCAR, LdhA, and HadA, as well as for the 3HB-CoA-supplying enzymes β-ketothiolase and acetoacetyl-CoA reductase, were cultivated with supplementation of four hydrophobic amino acids, i.e., leucine, valine (Val), isoleucine (Ile), and phenylalanine, in the medium. No hydrophobic amino acid-derived monomers were incorporated into the polymer, which was most likely because of the strict substrate specificity of PhaCAR; however, P(2HB-co-3HB) was unexpectedly produced with Val supplementation. The copolymer was likely P(2HB-b-3HB) based on proton nuclear magnetic resonance analysis. Based on the endogenous pathways in E. coli, 2HB units are likely derived from threonine (Thr) through deamination and dihydroxylation. In fact, dual supplementation with Thr and Val showed synergy on the 2HB fraction of the polymer. Val supplementation promoted the 2HB synthesis likely by inhibiting the metabolism of 2-ketobutyrate into Ile and/or activating Thr dehydratase. In conclusion, the LdhA/HadA/PhaCAR pathway served as the system for the synthesis of P(2HB-b-3HB) from biomass-derived carbon sources.
Collapse
|
7
|
Tachibana S, Watanabe K, Konishi M. Estimating effects of yeast extract compositions on Escherichia coli growth by a metabolomics approach. J Biosci Bioeng 2019; 128:468-474. [PMID: 30975565 DOI: 10.1016/j.jbiosc.2019.03.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 02/20/2019] [Accepted: 03/15/2019] [Indexed: 01/12/2023]
Abstract
Bioprocess stability depends on the variety of yeast extract, which varies from lot-to-lots and between brands, thereby leading to variable bacterial growth and productivity in manufacturing processes. As a model experiment for good stability of bioprocesses, Escherichia coli growth in media containing different brands of yeast extract was evaluated and predicted using component-profiling and multivariate data analysis (metabolomics approach). The components of yeast extract were extracted from media containing varying concentrations of yeast extract and analyzed using gas chromatography-mass spectrometer. The yeast extract was categorized into three clades by principal component analysis (PCA). The E. coli growth using yeast extract showed approximately 30% difference at equivalent amount of supplementation. The bacterial growth in the media was estimated for the component profiles by partial least squares regression analysis (PLS-R). A predictive model was developed from the relationship between bacterial growth (as subjective attributes) and component profiles (as objective attributes), and correlation coefficients were calculated. Most of the amino acids in the media stimulated growth; however, methionine had negative effect on growth. In a culture validation, Asp, Val, Glu, and Try stimulated the bacterial growth, but Met inhibited. The other amino acids tested, Ser, Ile, Asp, Lys, Phe, Leu, Thr, and Gly did not show significant effects on the growth. The results indicate that the metabolomics approach can provide useful feedback information to improve the cultivation.
Collapse
Affiliation(s)
- Seiga Tachibana
- Department of Biotechnology and Environmental Chemistry, Kitami Institute of Technology, 165 Koen-cho, Kitami, Hokkaido 090-8507, Japan
| | - Kazuki Watanabe
- Department of Biotechnology and Environmental Chemistry, Graduate School of Engineering, Kitami Institute of Technology, 165 Koen-cho, Kitami, Hokkaido 090-8507, Japan
| | - Masaaki Konishi
- Biotechnology and Food Chemistry Course Program, School of Regional Innovation and Social Design Engineering, Kitami Institute of Technology, 165 Koen-cho, Kitami, Hokkaido 090-8507, Japan.
| |
Collapse
|
8
|
Wong-Ng J, Celani A, Vergassola M. Exploring the function of bacterial chemotaxis. Curr Opin Microbiol 2018; 45:16-21. [DOI: 10.1016/j.mib.2018.01.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 01/10/2018] [Indexed: 10/18/2022]
|
9
|
Bonachela JA, Wortel MT, Stenseth NC. Eco-evolutionary Red Queen dynamics regulate biodiversity in a metabolite-driven microbial system. Sci Rep 2017; 7:17655. [PMID: 29247226 PMCID: PMC5732168 DOI: 10.1038/s41598-017-17774-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 11/29/2017] [Indexed: 01/18/2023] Open
Abstract
The Red Queen Hypothesis proposes that perpetual co-evolution among organisms can result from purely biotic drivers. After more than four decades, there is no satisfactory understanding as to which mechanisms trigger Red Queen dynamics or their implications for ecosystem features such as biodiversity. One reason for such a knowledge gap is that typical models are complicated theories where limit cycles represent an idealized Red Queen, and therefore cannot be used to devise experimental setups. Here, we bridge this gap by introducing a simple model for microbial systems able to show Red Queen dynamics. We explore diverse biotic sources that can drive the emergence of the Red Queen and that have the potential to be found in nature or to be replicated in the laboratory. Our model enables an analytical understanding of how Red Queen dynamics emerge in our setup, and the translation of model terms and phenomenology into general underlying mechanisms. We observe, for example, that in our system the Red Queen offers opportunities for the increase of biodiversity by facilitating challenging conditions for intraspecific dominance, whereas stasis tends to homogenize the system. Our results can be used to design and engineer experimental microbial systems showing Red Queen dynamics.
Collapse
Affiliation(s)
- Juan A Bonachela
- Marine Population Modeling Group, Department of Mathematics and Statistics, University of Strathclyde, Glasgow, G1 1XH, Scotland, UK.
- Department of Ecology, Evolution, and Natural Resources, 14 College Farm Rd, New Brunswick, NJ 08901, USA.
| | - Meike T Wortel
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, PO Box 1066 Blindern, Oslo, 0316, Norway
| | - Nils Chr Stenseth
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, PO Box 1066 Blindern, Oslo, 0316, Norway
| |
Collapse
|
10
|
|
11
|
Varik V, Oliveira SRA, Hauryliuk V, Tenson T. Composition of the outgrowth medium modulates wake-up kinetics and ampicillin sensitivity of stringent and relaxed Escherichia coli. Sci Rep 2016; 6:22308. [PMID: 26923949 PMCID: PMC4770409 DOI: 10.1038/srep22308] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 02/11/2016] [Indexed: 11/25/2022] Open
Abstract
The transition of Escherichia coli from the exponential into the stationary phase of growth induces the stringent response, which is mediated by the rapid accumulation of the alarmone nucleotide (p)ppGpp produced by the enzyme RelA. The significance of RelA’s functionality during the transition in the opposite direction, i.e. from the stationary phase into new exponential growth, is less well understood. Here we show that the relaxed strain, i.e. lacking the relA gene, displays a relative delay in regrowth during the new exponential growth phase in comparison with the isogenic wild type strain. The severity of the effect is a function of both the carbon source and amino acid composition of the outgrowth media. As a result, the loss of RelA functionality increases E. coli tolerance to the bactericidal antibiotic ampicillin during growth resumption in fresh media in a medium-specific way. Taken together, our data underscore the crucial role of medium composition and growth conditions for studies of the role of individual genes and regulatory networks in bacterial phenotypic tolerance to antibiotics.
Collapse
Affiliation(s)
- Vallo Varik
- University of Tartu, Institute of Technology, Nooruse 1, 50411 Tartu, Estonia.,Department of Molecular Biology, Umeå University, Building 6K, 6L University Hospital Area, SE-901 87 Umeå, Sweden.,Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Building 6K and 6L, University Hospital Area, SE-901 87 Umeå, Sweden
| | | | - Vasili Hauryliuk
- University of Tartu, Institute of Technology, Nooruse 1, 50411 Tartu, Estonia.,Department of Molecular Biology, Umeå University, Building 6K, 6L University Hospital Area, SE-901 87 Umeå, Sweden.,Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Building 6K and 6L, University Hospital Area, SE-901 87 Umeå, Sweden
| | - Tanel Tenson
- University of Tartu, Institute of Technology, Nooruse 1, 50411 Tartu, Estonia
| |
Collapse
|
12
|
Abstract
This review focuses on more recent studies concerning the systems biology of branched-chain amino acid biosynthesis, that is, the pathway-specific and global metabolic and genetic regulatory networks that enable the cell to adjust branched-chain amino acid synthesis rates to changing nutritional and environmental conditions. It begins with an overview of the enzymatic steps and metabolic regulatory mechanisms of the pathways and descriptions of the genetic regulatory mechanisms of the individual operons of the isoleucine-leucine-valine (ilv) regulon. This is followed by more-detailed discussions of recent evidence that global control mechanisms that coordinate the expression of the operons of this regulon with one another and the growth conditions of the cell are mediated by changes in DNA supercoiling that occur in response to changes in cellular energy charge levels that, in turn, are modulated by nutrient and environmental signals. Since the parallel pathways for isoleucine and valine biosynthesis are catalyzed by a single set of enzymes, and because the AHAS-catalyzed reaction is the first step specific for valine biosynthesis but the second step of isoleucine biosynthesis, valine inhibition of a single enzyme for this enzymatic step might compromise the cell for isoleucine or result in the accumulation of toxic intermediates. The operon-specific regulatory mechanisms of the operons of the ilv regulon are discussed in the review followed by a consideration and brief review of global regulatory proteins such as integration host factor (IHF), Lrp, and CAP (CRP) that affect the expression of these operons.
Collapse
|
13
|
Yang Y, M Pollard A, Höfler C, Poschet G, Wirtz M, Hell R, Sourjik V. Relation between chemotaxis and consumption of amino acids in bacteria. Mol Microbiol 2015; 96:1272-82. [PMID: 25807888 PMCID: PMC5008178 DOI: 10.1111/mmi.13006] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/19/2015] [Indexed: 11/28/2022]
Abstract
Chemotaxis enables bacteria to navigate chemical gradients in their environment, accumulating toward high concentrations of attractants and avoiding high concentrations of repellents. Although finding nutrients is likely to be an important function of bacterial chemotaxis, not all characterized attractants are nutrients. Moreover, even for potential nutrients, the exact relation between the metabolic value of chemicals and their efficiency as chemoattractants has not been systematically explored. Here we compare the chemotactic response of amino acids with their use by bacteria for two well‐established models of chemotactic behavior, Escherichia coli and Bacillus subtilis. We demonstrate that in E. coli chemotaxis toward amino acids indeed strongly correlates with their utilization. However, no such correlation is observed for B. subtilis, suggesting that in this case, the amino acids are not followed because of their nutritional value but rather as environmental cues.
Collapse
Affiliation(s)
- Yiling Yang
- Max Planck Institute for Terrestrial Microbiology & LOEWE Center for Synthetic Microbiology (SYNMIKRO), Marburg, Germany.,Zentrum für Molekulare Biologie der Universität Heidelberg, DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Abiola M Pollard
- Max Planck Institute for Terrestrial Microbiology & LOEWE Center for Synthetic Microbiology (SYNMIKRO), Marburg, Germany.,Zentrum für Molekulare Biologie der Universität Heidelberg, DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Carolin Höfler
- Zentrum für Molekulare Biologie der Universität Heidelberg, DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Gernot Poschet
- Centre for Organismal Studies (COS), Universität Heidelberg, Heidelberg, Germany
| | - Markus Wirtz
- Centre for Organismal Studies (COS), Universität Heidelberg, Heidelberg, Germany
| | - Rüdiger Hell
- Centre for Organismal Studies (COS), Universität Heidelberg, Heidelberg, Germany
| | - Victor Sourjik
- Max Planck Institute for Terrestrial Microbiology & LOEWE Center for Synthetic Microbiology (SYNMIKRO), Marburg, Germany.,Zentrum für Molekulare Biologie der Universität Heidelberg, DKFZ-ZMBH Alliance, Heidelberg, Germany
| |
Collapse
|
14
|
Scott M, Klumpp S, Mateescu EM, Hwa T. Emergence of robust growth laws from optimal regulation of ribosome synthesis. Mol Syst Biol 2014; 10:747. [PMID: 25149558 PMCID: PMC4299513 DOI: 10.15252/msb.20145379] [Citation(s) in RCA: 270] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Bacteria must constantly adapt their growth to changes in nutrient availability; yet despite
large-scale changes in protein expression associated with sensing, adaptation, and processing
different environmental nutrients, simple growth laws connect the ribosome abundance and the growth
rate. Here, we investigate the origin of these growth laws by analyzing the features of ribosomal
regulation that coordinate proteome-wide expression changes with cell growth in a variety of
nutrient conditions in the model organism Escherichia coli. We identify
supply-driven feedforward activation of ribosomal protein synthesis as the key regulatory motif
maximizing amino acid flux, and autonomously guiding a cell to achieve optimal growth in different
environments. The growth laws emerge naturally from the robust regulatory strategy underlying growth
rate control, irrespective of the details of the molecular implementation. The study highlights the
interplay between phenomenological modeling and molecular mechanisms in uncovering fundamental
operating constraints, with implications for endogenous and synthetic design of microorganisms.
Collapse
Affiliation(s)
- Matthew Scott
- Department of Applied Mathematics, University of Waterloo, Waterloo, ON, Canada
| | - Stefan Klumpp
- Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
| | - Eduard M Mateescu
- Department of Physics and Center for Theoretical Biological Physics, University of California, San Diego La Jolla, CA, USA
| | - Terence Hwa
- Department of Physics and Center for Theoretical Biological Physics, University of California, San Diego La Jolla, CA, USA Institute for Theoretical Studies, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
15
|
Abstract
Beyond fuelling cellular activities with building blocks and energy, metabolism also integrates environmental conditions into intracellular signals. The underlying regulatory network is complex and multifaceted: it ranges from slow interactions, such as changing gene expression, to rapid ones, such as the modulation of protein activity via post-translational modification or the allosteric binding of small molecules. In this Review, we outline the coordination of common metabolic tasks, including nutrient uptake, central metabolism, the generation of energy, the supply of amino acids and protein synthesis. Increasingly, a set of key metabolites is recognized to control individual regulatory circuits, which carry out specific functions of information input and regulatory output. Such a modular view of microbial metabolism facilitates an intuitive understanding of the molecular mechanisms that underlie cellular decision making.
Collapse
|
16
|
de Muinck EJ, Stenseth NC, Sachse D, vander Roost J, Rønningen KS, Rudi K, Trosvik P. Context-dependent competition in a model gut bacterial community. PLoS One 2013; 8:e67210. [PMID: 23922635 PMCID: PMC3683063 DOI: 10.1371/journal.pone.0067210] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Accepted: 05/15/2013] [Indexed: 01/19/2023] Open
Abstract
Understanding the ecological processes that generate complex community structures may provide insight into the establishment and maintenance of a normal microbial community in the human gastrointestinal tract, yet very little is known about how biotic interactions influence community dynamics in this system. Here, we use natural strains of Escherichia coli and a simplified model microbiota to demonstrate that the colonization process on the strain level can be context dependent, in the sense that the outcome of intra-specific competition may be determined by the composition of the background community. These results are consistent with previous models for competition between organisms where one competitor has adapted to low resource environments whereas the other is optimized for rapid reproduction when resources are abundant. The genomic profiles of E. coli strains representing these differing ecological strategies provide clues for deciphering the genetic underpinnings of niche adaptation within a single species. Our findings extend the role of ecological theory in understanding microbial systems and the conceptual toolbox for describing microbial community dynamics. There are few, if any, concrete examples of context-dependent competition on a single trophic level. However, this phenomenon can have potentially dramatic effects on which bacteria will successfully establish and persist in the gastrointestinal system, and the principle should be equally applicable to other microbial ecosystems.
Collapse
Affiliation(s)
- Eric J. de Muinck
- Center for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, Oslo, Norway
- Division of Epidemiology, Norwegian Institute of Public Health, Oslo, Norway
- NOFIMA The Norwegian Institute of Food, Fisheries and Aquaculture Research, Ås, Norway
| | - Nils Chr. Stenseth
- Center for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, Oslo, Norway
| | - Daniel Sachse
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway
| | - Jan vander Roost
- Center for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, Oslo, Norway
| | | | - Knut Rudi
- Department of Chemistry, Biotechnology and Food Science, University of Life Sciences, Ås, Norway
| | - Pål Trosvik
- Center for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, Oslo, Norway
- * E-mail:
| |
Collapse
|
17
|
Kubo I, Hosoda K, Suzuki S, Yamamoto K, Kihara K, Mori K, Yomo T. Construction of bacteria-eukaryote synthetic mutualism. Biosystems 2013; 113:66-71. [PMID: 23711432 DOI: 10.1016/j.biosystems.2013.05.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2013] [Revised: 05/14/2013] [Accepted: 05/16/2013] [Indexed: 01/07/2023]
Abstract
Mutualism is ubiquitous in nature but is known to be intrinsically vulnerable with regard to both population dynamics and evolution. Synthetic ecology has indicated that it is feasible for organisms to establish novel mutualism merely through encountering each other by showing that it is feasible to construct synthetic mutualism between organisms. However, bacteria-eukaryote mutualism, which is ecologically important, has not yet been constructed. In this study, we synthetically constructed mutualism between a bacterium and a eukaryote by using two model organisms. We mixed a bacterium, Escherichia coli (a genetically engineered glutamine auxotroph), and an amoeba, Dictyostelium discoideum, in 14 sets of conditions in which each species could not grow in monoculture but potentially could grow in coculture. Under a single condition in which the bacterium and amoeba mutually compensated for the lack of required nutrients (lipoic acid and glutamine, respectively), both species grew continuously through several subcultures, essentially establishing mutualism. Our results shed light on the establishment of bacteria-eukaryote mutualism and indicate that a bacterium and eukaryote pair in nature also has a non-negligible possibility of establishing novel mutualism if the organisms are potentially mutualistic.
Collapse
Affiliation(s)
- Isao Kubo
- Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University, 1-5 Yamadaoka, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | | | |
Collapse
|
18
|
Aromatic amino acid auxotrophs constructed by recombinant marker exchange in Methylophilus methylotrophus AS1 cells expressing the aroP-encoded transporter of Escherichia coli. Appl Environ Microbiol 2009; 76:75-83. [PMID: 19880640 DOI: 10.1128/aem.02217-09] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The isolation of auxotrophic mutants, which is a prerequisite for a substantial genetic analysis and metabolic engineering of obligate methylotrophs, remains a rather complicated task. We describe a novel method of constructing mutants of the bacterium Methylophilus methylotrophus AS1 that are auxotrophic for aromatic amino acids. The procedure begins with the Mu-driven integration of the Escherichia coli gene aroP, which encodes the common aromatic amino acid transporter, into the genome of M. methylotrophus. The resulting recombinant strain, with improved permeability to certain amino acids and their analogues, was used for mutagenesis. Mutagenesis was carried out by recombinant substitution of the target genes in the chromosome by linear DNA using the FLP-excisable marker flanked with cloned homologous arms longer than 1,000 bp. M. methylotrophus AS1 genes trpE, tyrA, pheA, and aroG were cloned in E. coli, sequenced, disrupted in vitro using a Kmr marker, and electroporated into an aroP carrier recipient strain. This approach led to the construction of a set of marker-less M. methylotrophus AS1 mutants auxotrophic for aromatic amino acids. Thus, introduction of foreign amino acid transporter genes appeared promising for the following isolation of desired auxotrophs on the basis of different methylotrophic bacteria.
Collapse
|
19
|
Abstract
Biofilms are structured communities characterized by distinctive gene expression patterns and profound physiological changes compared to those of planktonic cultures. Here, we show that many gram-negative bacterial biofilms secrete high levels of a small-molecular-weight compound, which inhibits the growth of only Escherichia coli K-12 and a rare few other natural isolates. We demonstrate both genetically and biochemically that this molecule is the amino acid valine, and we provide evidence that valine production within biofilms results from metabolic changes occurring within high-density biofilm communities when carbon sources are not limiting. This finding identifies a natural environment in which bacteria can encounter high amounts of valine, and we propose that in-biofilm valine secretion may be the long-sought reason for widespread but unexplained valine resistance found in most enterobacteria. Our results experimentally validate the postulated production of metabolites that is characteristic of the conditions associated with some biofilm environments. The identification of such molecules may lead to new approaches for biofilm monitoring and control.
Collapse
|
20
|
Nelson DR, Duxbury T. The distribution of acetohydroxyacid synthase in soil bacteria. Antonie Van Leeuwenhoek 2007; 93:123-32. [PMID: 17624809 DOI: 10.1007/s10482-007-9186-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2007] [Accepted: 06/18/2007] [Indexed: 11/26/2022]
Abstract
Most bacteria possess the enzyme acetohydroxyacid synthase, which is used to produce branched-chain amino acids. Enteric bacteria contain several isozymes suited to different conditions, but the distribution of acetohydroxyacid synthase in soil bacteria is largely unknown. Growth experiments confirmed that Escherichia coli, Salmonella enterica serotype Typhimurium, and Enterobacter aerogenes contain isozymes of acetohydroxyacid synthase, allowing the bacteria to grow in the presence of valine (which causes feedback inhibition of AHAS I) or the sulfonylurea herbicide triasulfuron (which inhibits AHAS II) although a slight lag phase was observed in growth in the latter case. Several common soil isolates were inhibited by triasulfuron, but Pseudomonas fluorescens and Rhodococcus erythropolis were not inhibited by any combination of triasulfuron and valine. The extent of sulfonylurea-sensitive acetohydroxyacid synthase in soil was revealed when 21 out of 27 isolated bacteria in pure culture were inhibited by triasulfuron, the addition of isoleucine and/or valine reversing the effect in 19 cases. Primers were designed to target the genes encoding the large subunits (ilvB, ilvG and ilvI) of acetohydroxyacid synthase from available sequence data and a approximately 355 bp fragment in Bacillus subtilis, Arthrobacter globiformis, E. coli and S. enterica was subsequently amplified. The primers were used to create a small clone library of sequences from an agricultural soil. Phylogenetic analysis revealed significant sequence variation, but all 19 amino acid sequences were most closely related to published large subunit acetohydroxyacid synthase amino acid sequences within several phyla including the Proteobacteria and Actinobacteria. The results suggested the majority of soil microorganisms contain only one functional acetohydroxyacid synthase enzyme sensitive to sulfonylurea herbicides.
Collapse
Affiliation(s)
- Darryl R Nelson
- School of Molecular and Microbial Biosciences, University of Sydney, Sydney, NSW, 2006, Australia.
| | | |
Collapse
|
21
|
Bodini S, Nunziangeli L, Santori F. Influence of amino acids on low-density Escherichia coli responses to nutrient downshifts. J Bacteriol 2007; 189:3099-105. [PMID: 17293414 PMCID: PMC1855831 DOI: 10.1128/jb.01753-06] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A vast bibliography on nutrient effects on high-density cultures exists, while it has been overlooked that low densities of starving cells are often the rule in natural environments. By means of a novel sensitive beta-galactosidase assay, we examined Escherichia coli transitions to minimal media when the cell concentration was 100 to 10,000 cells per ml. As in high-density cultures, the enzyme activity depended on amino acid availability and was subject to catabolite repression and stringent control. In all conditions tested, despite the presence of other nutrient sources, the relationship between beta-galactosidase activity and the l-amino acid pool was hyperbolic. The affinity constant when the amino acid pool was the only nutrient source averaged 14 muM after 90 min and increased up to 222 muM after 4.5 h. While investigating the transition from lag phase to exponential phase, we observed that the cells did not enter into starvation mode in the presence of amino acids, even when the nutrient amount was insufficient to support full survival. Based on these premises, the switch from starvation to hunger was investigated in relation to the amino acid pools. A critical range of concentrations at which E. coli linearly synthesized beta-galactosidase despite, at the same time, suffering a large decrease in cell viability was then recognized. Since both beta-galactosidase production and the dilution rate were reduced by more than half in the absence of leucine, we examined the contribution of leucine to cell recovery capabilities.
Collapse
Affiliation(s)
- Sergio Bodini
- ISRIM Scarl, Località Pentima Bassa, 21, 05100 Terni, Italy.
| | | | | |
Collapse
|
22
|
Tuite NL, Fraser KR, O'Byrne CP. Homocysteine toxicity in Escherichia coli is caused by a perturbation of branched-chain amino acid biosynthesis. J Bacteriol 2005; 187:4362-71. [PMID: 15968045 PMCID: PMC1151774 DOI: 10.1128/jb.187.13.4362-4371.2005] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In Escherichia coli the sulfur-containing amino acid homocysteine (Hcy) is the last intermediate on the methionine biosynthetic pathway. Supplementation of a glucose-based minimal medium with Hcy at concentrations greater than 0.2 mM causes the growth of E. coli Frag1 to be inhibited. Supplementation of Hcy-treated cultures with combinations of branched-chain amino acids containing isoleucine or with isoleucine alone reversed the inhibitory effects of Hcy on growth. The last intermediate of the isoleucine biosynthetic pathway, alpha-keto-beta-methylvalerate, could also alleviate the growth inhibition caused by Hcy. Analysis of amino acid pools in Hcy-treated cells revealed that alanine, valine, and glutamate levels are depleted. Isoleucine could reverse the effects of Hcy on the cytoplasmic pools of valine and alanine. Supplementation of the culture medium with alanine gave partial relief from the inhibitory effects of Hcy. Enzyme assays revealed that the first step of the isoleucine biosynthetic pathway, catalyzed by threonine deaminase, was sensitive to inhibition by Hcy. The gene encoding threonine deaminase, ilvA, was found to be transcribed at higher levels in the presence of Hcy. Overexpression of the ilvA gene from a plasmid could overcome Hcy-mediated growth inhibition. Together, these data indicate that in E. coli Hcy toxicity is caused by a perturbation of branched-chain amino acid biosynthesis that is caused, at least in part, by the inhibition of threonine deaminase.
Collapse
Affiliation(s)
- Nina L. Tuite
- Department of Microbiology, National University of Ireland-Galway, Galway, Ireland
| | - Katy R. Fraser
- Department of Microbiology, National University of Ireland-Galway, Galway, Ireland
| | - Conor P. O'Byrne
- Department of Microbiology, National University of Ireland-Galway, Galway, Ireland
- Corresponding author. Mailing address: Department of Microbiology, National University of Ireland-Galway, Galway, Ireland. Phone: (353) 91-512342. Fax: (353) 91-525700. E-mail:
| |
Collapse
|
23
|
Lange C, Rittmann D, Wendisch VF, Bott M, Sahm H. Global expression profiling and physiological characterization of Corynebacterium glutamicum grown in the presence of L-valine. Appl Environ Microbiol 2003; 69:2521-32. [PMID: 12732517 PMCID: PMC154540 DOI: 10.1128/aem.69.5.2521-2532.2003] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Addition of L-valine (50 to 200 mM) to glucose minimal medium had no effect on the growth of wild-type Corynebacterium glutamicum ATCC 13032 but inhibited the growth of the derived valine production strain VAL1 [13032 DeltailvA DeltapanBC(pJC1ilvBNCD)] in a concentration-dependent manner. In order to explore this strain-specific valine effect, genomewide expression profiling was performed using DNA microarrays, which showed that valine caused an increased ilvBN mRNA level in VAL1 but not in the wild type. This unexpected result was confirmed by an increased cellular level of the ilvB protein product, i.e., the large subunit of acetohydroxyacid synthase (AHAS), and by an increased AHAS activity of valine-treated VAL1 cells. The conclusion that valine caused the limitation of another branched-chain amino acid was confirmed by showing that high concentrations of L-isoleucine could relieve the valine effect on VAL1 whereas L-leucine had the same effect as valine. The valine-caused isoleucine limitation was supported by the finding that the inhibitory valine effect was linked to the ilvA deletion that results in isoleucine auxotrophy. Taken together, these results implied that the valine effect is caused by competition for uptake of isoleucine by the carrier BrnQ, which transports all branched-chained amino acids. Indeed, valine inhibition could also be relieved by supplementing VAL1 with the dipeptide isoleucyl-isoleucine, which is taken up by a dipeptide transport system rather than by BrnQ. Interestingly, addition of external valine stimulated valine production by VAL1. This effect is most probably due to a reduced carbon usage for biomass production and to the increased expression of ilvBN, indicating that AHAS activity may still be a limiting factor for valine production in the VAL1 strain.
Collapse
Affiliation(s)
- C Lange
- Institut für Biotechnologie 1, Forschungszentrum Jülich, D-52425 Jülich, Germany
| | | | | | | | | |
Collapse
|
24
|
Schaaper RM, Dunn RL. The antimutator phenotype of E. coli mud is only apparent and results from delayed appearance of mutants. Mutat Res 2001; 480-481:71-5. [PMID: 11506800 DOI: 10.1016/s0027-5107(01)00170-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Antimutator strains are strains that have a lower mutation rate than the wild-type strain. We have reexamined the properties of one reported antimutator strain of Escherichia coli, termed mud [Mol. Gen. Genet. 153 (1977) 87]. This strain contains a temperature-sensitive mutation in the purB gene, leading to adenine-dependent growth at higher temperature. When grown at permissive or semi-permissive temperature in the absence of adenine it displays large reductions in the number of both spontaneous and mutagen-induced mutants (e.g. several hundred-fold for valine-resistant mutants). However, our studies show that strains containing the purB allele generate mutations at the same level as the wild-type strain, and that the apparent antimutator effect is the consequence of the delayed appearance of mutants on the selective plates. This delay likely results from the combined stress exerted by the adenine deficiency and the presence of the selective agent (i.e. valine).
Collapse
Affiliation(s)
- R M Schaaper
- Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences, P.O. Box 12233, 111 TW Alexander Drive, Research Triangle Park, NC 27709, USA.
| | | |
Collapse
|
25
|
Abstract
Cryptic genes have been defined as phenotypically silent DNA sequences, usually not expressed during the life cycle of a microorganism, but capable of expression in a few members of a large population by mutation, recombination, insertion processes, or other genetic mechanisms. Recently, the crypticity of several genetic systems has been questioned. It appears that in many cases cryptic genes are silent only under the experimental conditions analysed and that their expression can be induced in the natural environment. Therefore, we propose that cryptic genes might not be a peculiar class of uniquely regulated genes, but rather genes encoding unusual functions.
Collapse
Affiliation(s)
- E Tamburini
- Department of Animal Biology and Genetics Leo Pardi, Florence, Italy
| | | |
Collapse
|
26
|
Gallant JA, Lindsley D. Ribosomes can slide over and beyond "hungry" codons, resuming protein chain elongation many nucleotides downstream. Proc Natl Acad Sci U S A 1998; 95:13771-6. [PMID: 9811876 PMCID: PMC24895 DOI: 10.1073/pnas.95.23.13771] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/1998] [Accepted: 09/09/1998] [Indexed: 11/18/2022] Open
Abstract
In cells subjected to moderate aminoacyl-tRNA limitation, the peptidyl-tRNA-ribosome complex stalled at the "hungry" codon can slide well beyond it on the messenger RNA and resume translation further downstream. This behavior is proved by unequivocal amino acid sequence data, showing a protein that lacks the bypassed sequence encoded between the hungry codon and specific landing sites. The landing sites are codons cognate to the anticodon of the peptidyl-tRNA. The efficiency of this behavior can be as high as 10-20% but declines with the length of the slide. Interposition of "trap" sites (nonproductive landing sites) in the bypassed region reduces the frequency of successful slides, confirming that the ribosome-peptidyl-tRNA complex passes through the untranslated region of the message. This behavior appears to be quite general: it can occur at the two kinds of hungry codons tested, AUA and AAG; the sliding peptidyl-tRNA can be any of three species tested, phenylalanine, tyrosine, or leucine tRNA; the peptidyl component can be either of two very different peptide sequences; and translation can resume at any of the three codons tested.
Collapse
Affiliation(s)
- J A Gallant
- Department of Genetics, University of Washington, Box 357360, Seattle, WA 98195-7360, USA
| | | |
Collapse
|
27
|
Navarro F, Robin A, D'Ari R, Joseleau-Petit D. Analysis of the effect of ppGpp on the ftsQAZ operon in Escherichia coli. Mol Microbiol 1998; 29:815-23. [PMID: 9723920 DOI: 10.1046/j.1365-2958.1998.00974.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Escherichia coli loses its rod shape by inactivation of PBP2 (penicillin-binding protein 2), target of the beta-lactam mecillinam. Under these conditions, cell division is blocked in rich medium. Division in the absence of PBP2 activity is restored (and resistance to mecillinam is conferred) when the three cell division proteins FtsQ, FtsA and FtsZ are overproduced, but not when only one or two of them are overproduced. Division in the absence of PBP2 activity is also restored by a doubling in the ppGpp pool, as in the argS201 mutant. However, the nucleotide ppGpp, a transcriptional regulator of many operons, does not govern any of the five promoters of the ftsQAZoperon, as shown by S1 mapping of ftsQAZ mRNA 5' ends in exponentially growing wild-type cells in the mecillinam-resistant argS201 mutant (intermediate ppGpp level) or during the stringent response elicited by isoleucine starvation (high ppGpp level). Furthermore, the concentration of FtsZ protein is not increased in exponentially growing mecillinam-resistant argS201 cells. These results show that the ftsQAZ operon is not the ppGpp target responsible for mecillinam resistance. We are currently trying to identify those targets that, at intermediate ppGpp levels, allow cells to divide as spheres in the absence of PBP2.
Collapse
Affiliation(s)
- F Navarro
- Institut Jacques Monod (CNRS, Université Paris 6, Université Paris 7, France
| | | | | | | |
Collapse
|
28
|
Sacco M, Ricca E, Marasco R, Paradiso R, De Felice M. A stereospecific alignment between the promoter and the cis-acting sequence is required for Lrp-dependent activation of ilvIH transcription in Escherichia coli. FEMS Microbiol Lett 1993; 107:331-6. [PMID: 8472914 DOI: 10.1111/j.1574-6968.1993.tb06053.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The leucine-responsive regulatory protein (Lrp) is a DNA binding protein that affects, either positively or negatively, the expression of several E. coli genes. The ilvIH operon is positively regulated by Lrp and leucine counteracts this effect reducing 5- to 10-fold the efficiency of ilvIH transcription. An investigation of the mechanism of transcription activation of the ilvIH operon by Lrp indicated that: (i) a stereospecific alignment between the ilvIH promoter and the cis-acting sequence upstream of it is required for activation; (ii) a correct distance between the promoter and the adjacent cis-acting sequence is needed for leucine to counteract the positive role of Lrp; (iii) Lrp fails to activate transcription when the cis-acting region is placed several hundred base pairs upstream of the ilvIH promoter.
Collapse
Affiliation(s)
- M Sacco
- International Institute of Genetics and Biophysics, CNR, Naples, Italy
| | | | | | | | | |
Collapse
|
29
|
Abstract
When populations of microorganisms are subjected to certain nonlethal selections, useful mutants arise among the nongrowing cells whereas useless mutants do not. This phenomenon, known as adaptive, directed, or selection-induced mutation, challenges the long-held belief that mutations only arise at random and without regard for utility. In recent years a growing number of studies have examined adaptive mutation in both bacteria and yeast. Although conflicts and controversies remain, the weight of the evidence indicates that adaptive mutation cannot be explained by trivial artifacts and that nondividing cells accumulate mutations in the absence of genomic replication. Because this process tends to produce only useful mutations, the cells appear to have a mechanism for preventing useless genetic changes from occurring or for eliminating them after they occur. The model that most readily explains the evidence is that cells under stress produce genetic variants continuously and at random, but these variants are immortalized as mutations only if they allow the cell to grow.
Collapse
Affiliation(s)
- P L Foster
- Department of Environmental Health, Boston University School of Public Health, Massachusetts 02118
| |
Collapse
|
30
|
Abstract
All living cells must conduct protein synthesis with a high degree of accuracy maintained in the transmission and flow of information from gene to finished protein product. One crucial "quality control" point in maintaining a high level of accuracy is the selectivity by which aminoacyl-tRNA synthetases furnish correctly activated amino acids, attached to tRNA species, as the building blocks for growing protein chains. During selection of amino acids, synthetases very often have to distinguish the cognate substrate from a homolog having just one fewer methyl group in its structure. The binding energy of a methyl group is estimated to contribute only a factor of 100 to the specificity of binding, yet synthetases distinguish such closely related amino acids with a discrimination factor of 10,000 to 100,000. Examples of this include methionine versus homocysteine, isoleucine versus valine, alanine versus glycine, and threonine versus serine. Many investigators have demonstrated in vitro the ability of certain aminoacyl-tRNA synthetases to edit, that is, correct or prevent incorrect attachment of amino acids to tRNA molecules. Several major editing pathways are now established from in vitro data. Further, at least some aminoacyl-tRNA synthetases have recently been shown to carry out the editing function in vivo. Editing has been demonstrated to occur in both Escherichia coli and Saccharomyces cerevisiae. Significant energy is expended by the cell for editing of misactivated amino acids, which can be reflected in the growth rate. Because of this, cellular levels of aminoacyl-tRNA synthetases, as well as amino acid biosynthetic pathways which yield competing substrates for protein synthesis, must be carefully regulated to prevent excessive editing. High-level expression of recombinant proteins imposes a strain on the biosynthetic capacity of the cell which frequently results in misincorporation of abnormal or wrong amino acids owing in part to limited editing by synthetases. Unbalanced amino acid pools associated with some genetic disorders in humans may also lead to errors in tRNA aminoacylation. The availability of X-ray crystallographic structures of some synthetases, combined with site-directed mutagenesis, allows insights into molecular details of the extraordinary selectivity of synthetases, including the editing function.
Collapse
Affiliation(s)
- H Jakubowski
- Department of Microbiology and Molecular Genetics, New Jersey Medical School, University of Medicine & Dentistry of New Jersey, Newark 07103
| | | |
Collapse
|
31
|
Riccardi G, De Rossi E, Milano A, Forlani G, De Felice M. Molecular cloning and expression of Spirulina platensis acetohydroxy acid synthase genes in Escherichia coli. Arch Microbiol 1991; 155:360-5. [PMID: 1904703 DOI: 10.1007/bf00243456] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The coding sequence for Spirulina platensis acetohydroxy acid synthase (AHAS, EC 4.1.3.18) is shown to be contained within a 4.2 Kb ClaI fragment (ilvX) that has been cloned from a recombinant lambda library. This fragment was able to complement a suitable mutant of Escherichia coli when inserted into the ClaI site of plasmid pAT153 in either orientation, demonstrating that transcription of ilvX originated within the cloned fragment. The probe used for hybridization experiments was the corresponding gene from Anabaena sp. PCC7120. The same probe allowed us to identify a second putative gene encoding AHAS in the S. platensis genomic library.
Collapse
Affiliation(s)
- G Riccardi
- Dipartimento di Genetica e Microbiologia A. Buzzati Traverso, Pavia, Italy
| | | | | | | | | |
Collapse
|
32
|
Ricca E, Limauro D, Lago CT, de Felice M. Enhanced acetohydroxy acid synthase III activity in an ilvH mutant of Escherichia coli K-12. J Bacteriol 1988; 170:5197-9. [PMID: 3053650 PMCID: PMC211590 DOI: 10.1128/jb.170.11.5197-5199.1988] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The acetohydroxy acid synthase III isozyme, which catalyzes the first common step in the biosynthesis of isoleucine, leucine, and valine in Escherichia coli K-12, is composed of two subunits, the ilvI and ilvH gene products. A missense mutation in ilvH (ilvH612), which reduced the sensitivity of the enzyme to the end product inhibition by valine, also increased its specific activity and lowered the Km for alpha-acetolactate synthesis. The mutation increased the sensitivity of acetohydroxy acid synthase III to dialysis and heat treatment and reduced the requirement for thiamine pyrophosphate addition to the assay mixture for activity. A strain carrying the ilvH612 mutation grew better than a homologous ilvH+ strain in the presence of leucine. The data indicate that this is a consequence of a more active acetohydroxy acid synthase III isozyme rather than the result of an alteration of the leucine-mediated repression of the ilvIH operon.
Collapse
Affiliation(s)
- E Ricca
- International Institute of Genetics and Biophysics, Naples, Italy
| | | | | | | |
Collapse
|
33
|
Chang YY, Cronan JE. Common ancestry of Escherichia coli pyruvate oxidase and the acetohydroxy acid synthases of the branched-chain amino acid biosynthetic pathway. J Bacteriol 1988; 170:3937-45. [PMID: 3045082 PMCID: PMC211393 DOI: 10.1128/jb.170.9.3937-3945.1988] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
A number of enzymes require flavin for their catalytic activity, although the reaction catalyzed involves no redox reaction. The best studied of these enigmatic nonredox flavoproteins are the acetohydroxy acid synthases (AHAS), which catalyze early steps in the synthesis of branched-chain amino acids in bacteria, yeasts, and plants. Previously, work from our laboratory showed strong amino acid sequence homology between these enzymes and Escherichia coli pyruvate oxidase, a classical flavoprotein dehydrogenase that catalyzes the decarboxylation of pyruvate to acetate. We have now shown this homology (i) to also be present in the DNA sequences and (ii) to represent functional homology in that pyruvate oxidase has AHAS activity and a protein consisting of the amino-terminal half of pyruvate oxidase and the carboxy-terminal half of E. coli AHAS I allows native E. coli AHAS I to function without added flavin. The hybrid protein contains tightly bound flavin, which is essential for the flavin substitution activity. These data, together with the sequence homologies and identical cofactors and substrates, led us to propose that the AHAS enzymes are descended from pyruvate oxidase (or a similar protein) and, thus, that the flavin requirement of the AHAS enzymes is a vestigial remnant, which may have been conserved to play a structural rather than a chemical function.
Collapse
Affiliation(s)
- Y Y Chang
- Department of Microbiology, University of Illinois, Urbana 61801
| | | |
Collapse
|
34
|
Sing BK, Stidham MA, Shaner DL. Separation and characterization of two forms of acetohydroxy acid synthase from black mexican sweet corn cells. J Chromatogr A 1988. [DOI: 10.1016/s0021-9673(01)94028-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
35
|
Riccardi G, Rossi E, Milano A, Felice M. Mutants ofSpirulina platensisresistant to valine inhibition. FEMS Microbiol Lett 1988. [DOI: 10.1111/j.1574-6968.1988.tb02675.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
36
|
|
37
|
Xing RY, Whitman WB. Sulfometuron methyl-sensitive and -resistant acetolactate synthases of the archaebacteria Methanococcus spp. J Bacteriol 1987; 169:4486-92. [PMID: 3654579 PMCID: PMC213812 DOI: 10.1128/jb.169.10.4486-4492.1987] [Citation(s) in RCA: 32] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The herbicide sulfometuron methyl (SM) inhibited growth of some methanococci. Of 28 strains tested, the growth of 7 was completely inhibited by 0.55 mM SM. Growth of an additional 14 strains was partially inhibited, and the growth of 7 strains was unaffected by this concentration of SM. In some cases, the branched-chain amino acids protected growth. Growth inhibition was correlated with the Ki for SM of acetolactate synthase (ALS). For the enzymes from bacteria representative of the sensitive, partially resistant, and resistant methanococci (Methanococcus aeolicus, Methanococcus maripaludis, and Methanococcus voltae, respectively), the Ki for SM was 0.0012, 0.34, and greater than 1.0 mM, respectively. Inhibition was uncompetitive with respect to pyruvate. Based on these observations, ALS appeared to be the major if not the sole site of action of SM in the methanococci. The sensitivity of the ALS from these three methanococci to feedback inhibition by branched-chain amino acids was also quite different. Although all three were sensitive to feedback inhibition by valine, the Ki varied 20-fold, from 0.01 to 0.22 mM. Moreover, only the ALS from M. maripaludis was sensitive to inhibition by leucine, and the Ki was 1.8 mM. The Ki for isoleucine for the ALS from both M. maripaludis and M. voltae was about 0.1 mM. The ALS from M. aeolicus was not inhibited by isoleucine. In other respects, the ALSs from the methanococci were very similar. After dialysis, thiamine pyrophosphate but not FAD and Mg2+ was required for maximal activity, and they were all rapidly inactivated by oxygen. Although the methanococcal ALSs exhibited diverse properties, the range of catalytic and regulatory properties closely resembled those of the eubacterial enzymes.
Collapse
Affiliation(s)
- R Y Xing
- Department of Microbiology, University of Georgia, Athens 30602
| | | |
Collapse
|
38
|
Silverman PM, Eoyang L. Alkylation of acetohydroxyacid synthase I from Escherichia coli K-12 by 3-bromopyruvate: evidence for a single active site catalyzing acetolactate and acetohydroxybutyrate synthesis. J Bacteriol 1987; 169:2494-9. [PMID: 3294793 PMCID: PMC212102 DOI: 10.1128/jb.169.6.2494-2499.1987] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Acetohydroxyacid synthase I (AHAS I) purified from Escherichia coli K-12 was irreversibly inactivated by incubation with 3-bromopyruvate. Inactivation was specific, insofar as bromoacetate and iodoacetate were much less effective than bromopyruvate. Inactivation was accompanied by incorporation of radioactivity from 3-bromo[2-14C]pyruvate into acid-insoluble material. More than 95% of the incorporated radioactivity coelectrophoresed with the 60-kilodalton IlvB subunit of the enzyme through a sodium dodecyl sulfate-polyacrylamide gel; less than 5% coelectrophoresed with the 11.2-kilodalton IlvN subunit. The stoichiometry of incorporation at nearly complete inactivation was 1 mol of 14C per mol of IlvB polypeptide. These data indicate that bromopyruvate inactivates AHAS I by alkylating an amino acid at or near a single active site located in the IlvB subunit of the enzyme. We confirmed that this alkylation inactivated both AHAS reactions normally catalyzed by AHAS I. These results provide the first direct evidence that AHAS I catalyzes both acetohydroxybutyrate and acetolactate synthesis from the same active site.
Collapse
|
39
|
Ishiguro EE, Vanderwel D, Kusser W. Control of lipopolysaccharide biosynthesis and release by Escherichia coli and Salmonella typhimurium. J Bacteriol 1986; 168:328-33. [PMID: 3531174 PMCID: PMC213455 DOI: 10.1128/jb.168.1.328-333.1986] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The influence of the relA gene on lipopolysaccharide (LPS) biosynthesis and release by Escherichia coli and Salmonella typhimurium was investigated. Similar results were obtained with both species. The incorporation of [3H]galactose into LPS by galE mutants was inhibited by at least 50% (as compared with normal growing controls) during amino acid deprivation of relA+ strains. This inhibition could be prevented by the treatment of the amino acid-deprived relA+ bacteria with chloramphenicol, a known antagonist of the stringent control mechanism. Furthermore, LPS biosynthesis was not inhibited during amino acid deprivation of isogenic relA mutant strains. These results indicate that LPS synthesis is regulated by the stringent control mechanism. Normal growing cells of both relA+ and relA strains released LPS into the culture fluid at low rates. Amino acid deprivation stimulated the rate of LPS release by relA mutants but not by relA+ bacteria. Chloramphenicol treatment markedly stimulated the release of cell-bound LPS by amino acid-deprived relA+ cells. Thus, a low rate of LPS release was characteristic of normal growth and could be increased in nongrowing cells by relaxing the control of LPS synthesis.
Collapse
|
40
|
Grabau C, Cronan JE. Nucleotide sequence and deduced amino acid sequence of Escherichia coli pyruvate oxidase, a lipid-activated flavoprotein. Nucleic Acids Res 1986; 14:5449-60. [PMID: 3016647 PMCID: PMC311552 DOI: 10.1093/nar/14.13.5449] [Citation(s) in RCA: 36] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The entire nucleotide sequence of the poxB (pyruvate oxidase) gene of Escherichia coli K-12 has been determined by the dideoxynucleotide (Sanger) sequencing of fragments of the gene cloned into a phage M13 vector. The gene is 1716 nucleotides in length and has an open reading frame which encodes a protein of Mr 62,018. This open reading frame was shown to encode pyruvate oxidase by alignment of the amino acid sequences deduced for the amino and carboxy termini and several internal segments of the mature protein with sequences obtained by amino acid sequence analysis. The deduced amino acid sequence of the oxidase was not unusually rich in hydrophobic sequences despite the peripheral membrane location and lipid binding properties of the protein. The codon usage of the oxidase gene was typical of a moderately expressed protein. The deduced amino acid sequence shares homology with the large subunits of the acetohydroxy acid synthase isozymes I, II, and III, encoded by the ilvB, ilvG, and ilvI genes of E. coli.
Collapse
|
41
|
Williams AL, Barnett RS. Evidence for cAMP-mediated control of isoleucyl-tRNA synthetase formation in Escherichia coli K-12. Arch Microbiol 1985; 142:190-3. [PMID: 2994589 DOI: 10.1007/bf00447066] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The ability of cAMP to inhibit isoleucyl-tRNA synthetase (IRS) formation has been demonstrated in wild type K-12 Escherichia coli and two adenyl-cyclase (cya) mutants. cAMP appeared not to have any effect on either the valyl- or arginyl-tRNA synthetase (VRS and ARS respectively). Addition of cAMP led to a reduction in rate of IRS synthesis but not VRS or ARS. Furthermore, derepression of IRS and VRS by isoleucine limitation was completely prevented by cAMP.
Collapse
|
42
|
Wek RC, Hauser CA, Hatfield GW. The nucleotide sequence of the ilvBN operon of Escherichia coli: sequence homologies of the acetohydroxy acid synthase isozymes. Nucleic Acids Res 1985; 13:3995-4010. [PMID: 2989782 PMCID: PMC341292 DOI: 10.1093/nar/13.11.3995] [Citation(s) in RCA: 74] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Three acetohydroxy acid synthase isozymes, AHAS I (ilvBN), AHAS II (ilvGM) and AHAS III (ilvIH) catalyze the first step of the parallel isoleucine-valine biosynthetic pathway in Escherichia coli. Previous DNA sequence and protein purification data have shown that AHAS II and AHAS III are composed of large and small subunits encoded in the ilvGMEDA and ilvIH operons, respectively. Recent protein purification and characterization data have demonstrated that the AHAS I isozyme is also composed of large and small subunits (L. Eoyang, L. and P. M. Silverman [1984] J. Bacteriol. 157:184-189). Now the complete DNA sequence of the operon encoding the AHAS I isozyme has been determined. These data show that both AHAS I subunits (Mr 60,400 and Mr 11,100) are encoded in this operon. The coordinant regulation of both genes of the ilvBN operon has also been demonstrated. Comparisons of the DNA sequences of the genes encoding all three AHAS isozymes have been performed. Conserved homologies were observed between both the large and small subunits of all three isozymes. The closest homology was seen between the AHAS I and AHAS II isozymes. On the basis of these comparisons a rationale for the evolution of the AHAS isozymes in E. coli has been proposed.
Collapse
|
43
|
Physical analysis of deletion mutations in the ilvGEDA operon of Escherichia coli K-12. J Bacteriol 1985; 162:598-606. [PMID: 2985538 PMCID: PMC218890 DOI: 10.1128/jb.162.2.598-606.1985] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
DNA-DNA hybridization of cloned segments of the Escherichia coli K-12 ilvGEDA operon to genomic blots was used to determine the physical dimensions of a series of deletion mutations of the ilvGEDA operon. The smallest mutation resulted from the deletion of approximately 200 base pairs from within ilvD, whereas the largest mutation resulted from the deletion of 17 kilobases including the rep gene. The structure of three of these mutants indicates that formation of the deletions was mediated by Tn5 (or Tn5-131) that is retained in the chromosome. This is the first observation of this type of Tn5-mediated event. Our analysis of the total acetohydroxy acid synthase activity of strains containing deletions of ilvG indicates that the truncated ilvG polypeptide of wild-type E. coli K-12 lacks enzyme activity. The small 200-base-pair deletion of ilvD confirms the presence of a strong polar site 5' to ilvA. The detailed structure of these deletions should prove useful for the investigation of other genes in this region. This genomic analysis demonstrates that the ilv restriction site map that was established previously by the analysis of recombinant bacteriophage and plasmids is identical to that on the genome.
Collapse
|
44
|
Abstract
The composition of the outer membrane channels formed by the OmpF and OmpC porins is important in peptide permeation, and elimination of these proteins from the Escherichia coli outer membrane results in a cell in which the primary means for peptide permeation through this cell structure has been lost. E. coli peptide transport mutants which harbor defects in genes other than the ompF/ompC genes have been isolated on the basis of their resistance to toxic tripeptides. The genetic defects carried by these oligopeptide permease-negative (Opp-) strains were found to map in two distinct chromosomal locations. One opp locus was trp linked and mapped to the interval between att phi 80 and galU. Complementation studies with F'123 opp derivatives indicated that this peptide transport locus resembles that characterized in Salmonella typhimurium as a tetracistronic operon (B. G. Hogarth and C. F. Higgins, J. Bacteriol. 153:1548-1551, 1983). The second opp locus, which we have designated oppE, was mapped to the interval between dnaC and hsd at 98.5 min on the E. coli chromosome. The differences in peptide utilization, sensitivity and resistance to toxic peptides, and the L-[U-14C]alanyl-L-alanyl-L-alanine transport properties observed with these Opp-E. coli strains demonstrated that the transport systems encoded by the trp-linked opp genes and by the oppE gene(s) have different substrate preferences. Mutants harboring defects in both peptide transport loci defined in this study would not grow on nutritional peptides except for tri-L-methionine, were totally resistant to toxic peptides, and would not actively transport L-[U-14C]alanyl-L-alanyl-L-alanine.
Collapse
|
45
|
Bouvier J, Patte JC, Stragier P. Multiple regulatory signals in the control region of the Escherichia coli carAB operon. Proc Natl Acad Sci U S A 1984; 81:4139-43. [PMID: 6377309 PMCID: PMC345384 DOI: 10.1073/pnas.81.13.4139] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The first reaction in pyrimidine and arginine biosynthesis in Escherichia coli is catalyzed by a single enzyme, carbamoyl-phosphate synthetase (EC 6.3.5.5), the product of the carAB operon. Expression of this operon is cumulatively repressed by arginine and pyrimidines. The nucleotide sequence of the carAB control region was determined and transcriptional starts were localized. Two adjacent promoters, 70 base pairs apart, appear to be used in vivo, the downstream one overlapping a typical arginine operator. The absence of any attenuation-like sequence excludes such a mechanism for pyrimidine-mediated repression. Various fragments of the carA promoter-proximal region were fused in vitro with the lacZ gene. Results obtained with these fusions indicate that (i) translation of the carA gene can be initiated in vivo without an AUG codon but very likely with an UUG or an AUU codon; (ii) the carAB downstream promoter is repressed by arginine; and (iii) the carAB upstream promoter is repressed by pyrimidines and subject to stringent control. When carried by a multicopy plasmid the carAB control region escapes repression by arginine and pyrimidines. The existence of a pyrimidine repressor, present in limiting amounts in the cell, is therefore postulated.
Collapse
|
46
|
Friedman DI, Olson EJ, Carver D, Gellert M. Synergistic effect of himA and gyrB mutations: evidence that him functions control expression of ilv and xyl genes. J Bacteriol 1984; 157:484-9. [PMID: 6229530 PMCID: PMC215273 DOI: 10.1128/jb.157.2.484-489.1984] [Citation(s) in RCA: 74] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
We have constructed Escherichia coli strains containing mutations at two different loci, both originally selected for failure to support lambda site-specific recombination: himA and gyrB-him(Ts). Although the gyrB-him(Ts) mutations by themselves reduce supercoiling at high temperature, the double mutants show a far greater effect on supercoiling. Our studies show that growth of phage lambda is severely inhibited and that maintenance of plasmid pBR322 is extremely unstable in the double mutants. Physiological studies also reveal that the double mutants are isoleucine auxotrophs at 42 degrees C. The fact that himA mutants are isoleucine auxotrophs at 42 degrees C in the presence of leucine suggests that a significant component of the isoleucine auxotrophy of the double mutants is a result of the himA mutation. The himA gene encodes the alpha subunit of a protein called the integration host factor. Since mutations in the hip or himD gene encoding beta, the other subunit of the integration host factor, also result in isoleucine auxotrophy in the presence of leucine, we suggest that the integration host factor regulates the synthesis of at least one of the enzymes in the ilv pathway, acetohydroxyacid synthase I, which is encoded by the ilvB gene. Studies of the utilization of various sugars as the sole carbon source suggest that the integration host factor controls expression of some gene(s) involved in the utilization of xylose.
Collapse
|
47
|
Abstract
In Escherichia coli K-12, the ilvHI locus codes for one of two acetohydroxy acid synthase isoenzymes. A region of the Salmonella typhimurium genome adjacent to the leucine operon was cloned on plasmid pBR322, yielding plasmids pCV47 and pCV49 (a shortened version of pCV47). This region contains DNA homologous to the E. coli ilvHI locus, as judged by hybridization experiments. Plasmid pCV47 did not confer isoleucine-valine prototrophy upon either E. coli or S. typhimurium strains lacking acetohydroxy acid synthase activity, suggesting that S. typhimurium lacks a functional ilvHI locus. However, isoleucine-valine prototrophs were readily isolated from such strains after mutagenesis with nitrosoguanidine. In one case we found that the Ilv+ phenotype resulted from an alteration in bacterial DNA on the plasmid (new plasmid designated pCV50). Furthermore, a new acetohydroxy acid synthase activity was observed in Ilv+ revertants; this enzyme was similar to E. coli acetohydroxy acid synthase III in its lack of activity at low pH. This new activity was correlated with the appearance in minicells of a new polypeptide having an approximate molecular weight of 61,000. Strains carrying either pCV49 or pCV50 produced a substantial amount of ilvHI-specific mRNA. These results, together with results from other laboratories, suggest that S. typhimurium has functional ilvB and ilvG genes and a cryptic ilvHI locus. E. coli K-12, on the other hand, has functional ilvB and ilvHI genes and a cryptic ilvG locus.
Collapse
|
48
|
Cysteine starvation, isoleucyl-tRNAIle, and the regulation of the ilvGEDA operon of Escherichia coli. J Biol Chem 1983. [DOI: 10.1016/s0021-9258(18)32232-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
49
|
Daniel J, Dondon L, Danchin A. 2-Ketobutyrate: a putative alarmone of Escherichia coli. MOLECULAR & GENERAL GENETICS : MGG 1983; 190:452-8. [PMID: 6348482 DOI: 10.1007/bf00331076] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
2-ketobutyrate is synthesized from threonine by threonine deaminase (dehydratase) in E. coli. The effects of 2-ketobutyrate as a regulatory metabolite were studied in vivo. 2-ketobutyrate was shown to inhibit the phosphoenolpyruvate (PEP): sugar phosphotransferase system resulting in aspartate starvation, elevation of ppGpp endogenous pools, and cessation of growth in E. coli grown in glucose and related carbon sources. Accordingly, we propose that 2-ketobutyrate might serve as an alarmone whose concentration precisely governs the shift from anaerobic growth to aerobic growth in E. coli. Such shifts are common phenomena among the Enterobacteriaceae.
Collapse
|
50
|
Turnbough CL. Regulation of Escherichia coli aspartate transcarbamylase synthesis by guanosine tetraphosphate and pyrimidine ribonucleoside triphosphates. J Bacteriol 1983; 153:998-1007. [PMID: 6337130 PMCID: PMC221724 DOI: 10.1128/jb.153.2.998-1007.1983] [Citation(s) in RCA: 37] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The effects of guanosine tetraphosphate (ppGpp) and pyrimidine ribonucleoside triphosphates on Escherichia coli aspartate transcarbamylase (ATCase) synthesis were examined. To determine the effect of ppGpp, a stringent (relA+) and relaxed (relA) isogenic pair of E. coli K-12 strains was starved for isoleucine, and the residual rate of synthesis of this enzyme was measured. It was necessary to starve the strains for uracil before the isoleucine limitation to maintain similar, low levels of UTP, the putative pyrimidine effector of ATCase synthesis. The isoleucine starvation of the stringent strain caused an immediate 10-fold increase in the intracellular concentration of ppGpp, which was coincident with the cessation of the synthesis of the enzyme. The elevated level of ppGpp then decayed until it reached an intracellular concentration similar to that found in unstarved cells. Enzyme synthesis resumed at this time. In the relaxed strain, the intracellular concentration of ppGpp did not increase upon isoleucine starvation and synthesis of the enzyme was not repressed. These experiments strongly indicated that ppGpp acts as a negative effector of ATCase synthesis. The repression of ATCase synthesis by ppGpp was demonstrated directly by using a Salmonella typhimurium (relA) in vitro coupled transcription-translation system with a lambda specialized transducing phage carrying the E. coli K-12 operon encoding the subunits of this enzyme (pyrBI) as a source of DNA. This in vitro system was also used to measure the effects of UTP and CTP on ATCase synthesis. Increasing the concentration of UTP in the in vitro reaction mixture resulted in strong repression of this synthesis, whereas increasing the CTP concentration did not affect synthesis significantly. Possible mechanisms for the regulation of pyr gene expression, including attenuation control, are discussed.
Collapse
|