1
|
Deyell M, Opuu V, Griffiths AD, Tans SJ, Nghe P. Global regulators enable bacterial adaptation to a phenotypic trade-off. iScience 2025; 28:111521. [PMID: 39811663 PMCID: PMC11731283 DOI: 10.1016/j.isci.2024.111521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 11/05/2024] [Accepted: 11/29/2024] [Indexed: 01/16/2025] Open
Abstract
Cellular fitness depends on multiple phenotypes that must be balanced during evolutionary adaptation. For instance, coordinating growth and motility is critical for microbial colonization and cancer invasiveness. In bacteria, these phenotypes are controlled by local regulators that target single operons, as well as by global regulators that impact hundreds of genes. However, how the different levels of regulation interact during evolution is unclear. Here, we measured in Escherichia coli how CRISPR-mediated knockdowns of global and local transcription factors impact growth and motility in three environments. We found that local regulators mostly modulate motility, whereas global regulators jointly modulate growth and motility. Simulated evolutionary trajectories indicate that local regulators are typically altered first to improve motility before global regulators adjust growth and motility following their trade-off. These findings highlight the role of pleiotropic regulators in the adaptation of multiple phenotypes.
Collapse
Affiliation(s)
- Matthew Deyell
- Laboratoire de Biochimie, UMR CNRS-ESPCI 8231 Chimie Biologie Innovation, PSL Research University, ESPCI Paris, 10 Rue Vauquelin, 75005 Paris, France
- Department of Physiology, Biophysics, and Systems Biology, Weill Cornell Medicine, New York, NY, USA
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
| | - Vaitea Opuu
- Laboratoire de Biophysique et Evolution, UMR CNRS-ESPCI 8231 Chimie Biologie Innovation, PSL Research University, ESPCI Paris, 10 Rue Vauquelin, 75005 Paris, France
| | - Andrew D. Griffiths
- Laboratoire de Biochimie, UMR CNRS-ESPCI 8231 Chimie Biologie Innovation, PSL Research University, ESPCI Paris, 10 Rue Vauquelin, 75005 Paris, France
| | - Sander J. Tans
- AMOLF, Science Park 104, XG, Amsterdam 1098, the Netherlands
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, the Netherlands
| | - Philippe Nghe
- Laboratoire de Biochimie, UMR CNRS-ESPCI 8231 Chimie Biologie Innovation, PSL Research University, ESPCI Paris, 10 Rue Vauquelin, 75005 Paris, France
- Laboratoire de Biophysique et Evolution, UMR CNRS-ESPCI 8231 Chimie Biologie Innovation, PSL Research University, ESPCI Paris, 10 Rue Vauquelin, 75005 Paris, France
| |
Collapse
|
2
|
Li T, Jia W, Peng S, Guo Y, Liu J, Zhang X, Li P, Zhang H, Xu R. Endogenous cAMP elevation in Brassica napus causes changes in phytohormone levels. PLANT SIGNALING & BEHAVIOR 2024; 19:2310963. [PMID: 38314783 PMCID: PMC10854363 DOI: 10.1080/15592324.2024.2310963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 01/22/2024] [Indexed: 02/07/2024]
Abstract
In higher plants, the regulatory roles of cAMP (cyclic adenosine 3',5'-monophosphate) signaling remain elusive until now. Cellular cAMP levels are generally much lower in higher plants than in animals and transiently elevated for triggering downstream signaling events. Moreover, plant adenylate cyclase (AC) activities are found in different moonlighting multifunctional proteins, which may pose additional complications in distinguishing a specific signaling role for cAMP. Here, we have developed rapeseed (Brassica napus L.) transgenic plants that overexpress an inducible plant-origin AC activity for generating high AC levels much like that in animal cells, which served the genetic model disturbing native cAMP signaling as a whole in plants. We found that overexpression of the soluble AC activity had significant impacts on the contents of indole-3-acetic acid (IAA) and stress phytohormones, i.e. jasmonic acid (JA), abscisic acid (ABA), and salicylic acid (SA) in the transgenic plants. Acute induction of the AC activity caused IAA overaccumulation, and upregulation of TAA1 and CYP83B1 in the IAA biosynthesis pathways, but also simultaneously the hyper-induction of PR4 and KIN2 expression indicating activation of JA and ABA signaling pathways. We observed typical overgrowth phenotypes related to IAA excess in the transgenic plants, including significant increases in plant height, internode length, width of leaf blade, petiole length, root length, and fresh shoot biomass, as well as the precocious seed development, as compared to wild-type plants. In addition, we identified a set of 1465 cAMP-responsive genes (CRGs), which are most significantly enriched in plant hormone signal transduction pathway, and function mainly in relevance to hormonal, abiotic and biotic stress responses, as well as growth and development. Collectively, our results support that cAMP elevation impacts phytohormone homeostasis and signaling, and modulates plant growth and development. We proposed that cAMP signaling may be critical in configuring the coordinated regulation of growth and development in higher plants.
Collapse
Affiliation(s)
- Tianming Li
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, Henan, China
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, China
- Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Wenjing Jia
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, Henan, China
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, China
| | - Song Peng
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, Henan, China
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, China
| | - Yanhui Guo
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, Henan, China
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, China
| | - Jinrui Liu
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, Henan, China
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, China
| | - Xue Zhang
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, Henan, China
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, China
| | - Panyu Li
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, Henan, China
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, China
| | - Hanfeng Zhang
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, Henan, China
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, China
| | - Ruqiang Xu
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, Henan, China
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
3
|
Choi AJ, Bennison DJ, Kulkarni E, Azar H, Sun H, Li H, Bradshaw J, Yeap HW, Lim N, Mishra V, Crespo-Puig A, Mills EA, Davies F, Sriskandan S, Shenoy AR. Aminoglycoside heteroresistance in Enterobacter cloacae is driven by the cell envelope stress response. mBio 2024; 15:e0169924. [PMID: 39475244 PMCID: PMC11633387 DOI: 10.1128/mbio.01699-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 10/02/2024] [Indexed: 12/12/2024] Open
Abstract
Enterobacter cloacae is a Gram-negative nosocomial pathogen of the ESKAPE (Enterococcus, Staphylococcus, Klebsiella, Acinetobacter, Pseudomonas, and Enterobacter spp.) priority group with increasing multi-drug resistance via the acquisition of resistance plasmids. However, E. cloacae can also display forms of antibiotic refractoriness, such as heteroresistance and tolerance. Here, we report that E. cloacae displays transient heteroresistance to aminoglycosides, which is accompanied with the formation of small colony variants (SCVs) with increased minimum inhibitor concentration (MIC) of gentamicin and other aminoglycosides used in the clinic, but not other antibiotic classes. To explore the underlying mechanisms, we performed RNA sequencing of heteroresistant bacteria, which revealed global gene expression changes and a signature of the CpxRA cell envelope stress response. Deletion of the cpxRA two-component system abrogated aminoglycoside heteroresistance and SCV formation, pointing to its indispensable role in these processes. The introduction of a constitutively active allele of cpxA led to high aminoglycoside MICs, consistent with cell envelope stress response driving these behaviors in E. cloacae. Cell envelope stress can be caused by environmental cues, including heavy metals. Indeed, bacterial exposure to copper increased gentamicin MIC in the wild-type but not in the ΔcpxRA mutant. Moreover, copper exposure also elevated the gentamicin MICs of clinical isolates from bloodstream infections, suggesting that CpxRA- and copper-dependent aminoglycoside resistance is broadly conserved in E. cloacae strains. Altogether, we establish that E. cloacae relies on transcriptional reprogramming via the envelope stress response pathway for transient resistance to a major class of frontline antibiotic.IMPORTANCEEnterobacter cloacae is a bacterium that belongs to the WHO high-priority group and an increasing threat worldwide due its multi-drug resistance. E. cloacae can also display heteroresistance, which has been linked to treatment failure. We report that E. cloacae shows heteroresistance to aminoglycoside antibiotics. These are important frontline microbicidal drugs used against Gram-negative bacterial infections; therefore, understanding how resistance develops among sensitive strains is important. We show that aminoglycoside resistance is driven by the activation of the cell envelope stress response and transcriptional reprogramming via the CpxRA two-component system. Furthermore, heterologous activation of envelope stress via copper, typically a heavy metal with antimicrobial actions, also increased aminoglycoside MICs of the E. cloacae type strain and clinical strains isolated from bloodstream infections. Our study suggests aminoglycoside recalcitrance in E. cloacae could be broadly conserved and cautions against the undesirable effects of copper.
Collapse
Affiliation(s)
- Ana J. Choi
- Department of Infectious Disease, Imperial College London, London, United Kingdom
- Centre for Bacterial Resistance Biology, Imperial College London, London, United Kingdom
| | - Daniel J. Bennison
- Department of Infectious Disease, Imperial College London, London, United Kingdom
- Centre for Bacterial Resistance Biology, Imperial College London, London, United Kingdom
| | - Esha Kulkarni
- Department of Infectious Disease, Imperial College London, London, United Kingdom
- Centre for Bacterial Resistance Biology, Imperial College London, London, United Kingdom
| | - Hibah Azar
- Department of Infectious Disease, Imperial College London, London, United Kingdom
- Centre for Bacterial Resistance Biology, Imperial College London, London, United Kingdom
| | - Haoyu Sun
- Department of Infectious Disease, Imperial College London, London, United Kingdom
- Centre for Bacterial Resistance Biology, Imperial College London, London, United Kingdom
| | - Hanqi Li
- Department of Infectious Disease, Imperial College London, London, United Kingdom
- Centre for Bacterial Resistance Biology, Imperial College London, London, United Kingdom
| | - Jonathan Bradshaw
- Department of Infectious Disease, Imperial College London, London, United Kingdom
- Centre for Bacterial Resistance Biology, Imperial College London, London, United Kingdom
| | - Hui Wen Yeap
- Department of Infectious Disease, Imperial College London, London, United Kingdom
- Centre for Bacterial Resistance Biology, Imperial College London, London, United Kingdom
| | - Nicholas Lim
- Department of Infectious Disease, Imperial College London, London, United Kingdom
- Centre for Bacterial Resistance Biology, Imperial College London, London, United Kingdom
| | - Vishwas Mishra
- Department of Infectious Disease, Imperial College London, London, United Kingdom
- Centre for Bacterial Resistance Biology, Imperial College London, London, United Kingdom
| | - Anna Crespo-Puig
- Department of Infectious Disease, Imperial College London, London, United Kingdom
- Centre for Bacterial Resistance Biology, Imperial College London, London, United Kingdom
| | - Ewurabena A. Mills
- NIHR Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance, Imperial College London, London, United Kingdom
| | - Frances Davies
- NIHR Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance, Imperial College London, London, United Kingdom
| | - Shiranee Sriskandan
- Department of Infectious Disease, Imperial College London, London, United Kingdom
- Centre for Bacterial Resistance Biology, Imperial College London, London, United Kingdom
- NIHR Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance, Imperial College London, London, United Kingdom
| | - Avinash R. Shenoy
- Department of Infectious Disease, Imperial College London, London, United Kingdom
- Centre for Bacterial Resistance Biology, Imperial College London, London, United Kingdom
- The Francis Crick Institute, London, United Kingdom
| |
Collapse
|
4
|
Wu S, Huang Y, Wu M, Chen H, Wang B, Amoah K, Cai J, Jian J. Identification of a cellular role of hemolysin co-regulatory protein (Hcp) in Vibrio alginolyticus modulating substrate metabolism and biofilm formation by cAMP-CRP. Int J Biol Macromol 2024; 282:136656. [PMID: 39423969 DOI: 10.1016/j.ijbiomac.2024.136656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 09/14/2024] [Accepted: 10/15/2024] [Indexed: 10/21/2024]
Abstract
Cyclic AMP (cAMP) and cAMP receptor protein (CRP) system controls catabolic enzyme expression based on metabolite concentrations in bacteria. Hemolysin co-regulatory protein (Hcp) is well known as a molecular chaperone for virulence factor secretion of the type VI secretion system (T6SS). However, the intracellular role of Hcp involving in bacterial physiological processes remains unknown. To clarify that, we constructed a single hcp mutant strain and analyzed their effects on the physiological processes of Vibrio alginolyticus. The omics results revealed the extensive involvement of Hcp in the catabolic metabolism in bacteria. Simultaneously, Hcp1 and Hcp2 played opposing regulatory roles on the bacterial growth, biofilm formation, and intracellular cAMP-CRP levels during cultivation in a glucose medium. Furthermore, the interacting protein screening and co-immunoprecipitation (Co-IP) assays confirmed that the glucose-specific phosphoenolpyruvate (PEP)-phosphotransferase system (PTS) enzyme IIA component (EIIAglc) was a key interacting partner with Hcp proteins as well as class I adenylyl cyclase (AC-I) in Vibrio alginolyticus. These results indicated that, to achieve cellular homeostasis, Hcp1 and Hcp2 might exert antagonistic and synergistic effects, respectively, on the interaction between EIIAglc and AC thus cooperatively regulating intracellular cAMP-CRP production.
Collapse
Affiliation(s)
- Shuilong Wu
- Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, College of Fishery, Guangdong Ocean University, Zhanjiang 524088, China; Key Laboratory of Diseases Controlling for Aquatic Economic Animals of Guangdong Higher Education Institutions, College of Fishery, Guangdong Ocean University, Zhanjiang 524088, China
| | - Yu Huang
- Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, College of Fishery, Guangdong Ocean University, Zhanjiang 524088, China; Key Laboratory of Diseases Controlling for Aquatic Economic Animals of Guangdong Higher Education Institutions, College of Fishery, Guangdong Ocean University, Zhanjiang 524088, China
| | - Minhui Wu
- Zhanjiang Institute of Clinical Medicine, Central People's Hospital of Zhanjiang, Zhanjiang 524045, China
| | - Huapu Chen
- Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, College of Fishery, Guangdong Ocean University, Zhanjiang 524088, China; Key Laboratory of Diseases Controlling for Aquatic Economic Animals of Guangdong Higher Education Institutions, College of Fishery, Guangdong Ocean University, Zhanjiang 524088, China
| | - Bei Wang
- Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, College of Fishery, Guangdong Ocean University, Zhanjiang 524088, China; Key Laboratory of Diseases Controlling for Aquatic Economic Animals of Guangdong Higher Education Institutions, College of Fishery, Guangdong Ocean University, Zhanjiang 524088, China
| | - Kwaku Amoah
- Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, College of Fishery, Guangdong Ocean University, Zhanjiang 524088, China; Key Laboratory of Diseases Controlling for Aquatic Economic Animals of Guangdong Higher Education Institutions, College of Fishery, Guangdong Ocean University, Zhanjiang 524088, China
| | - Jia Cai
- Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, College of Fishery, Guangdong Ocean University, Zhanjiang 524088, China; Shenzhen Institute of Guangdong Ocean University, Shenzhen 518120, China; Key Laboratory of Diseases Controlling for Aquatic Economic Animals of Guangdong Higher Education Institutions, College of Fishery, Guangdong Ocean University, Zhanjiang 524088, China.
| | - Jichang Jian
- Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, College of Fishery, Guangdong Ocean University, Zhanjiang 524088, China; Key Laboratory of Diseases Controlling for Aquatic Economic Animals of Guangdong Higher Education Institutions, College of Fishery, Guangdong Ocean University, Zhanjiang 524088, China.
| |
Collapse
|
5
|
Kwon SJ, Park CB, Lee PC. Genomic Insights into the Role of cAMP in Carotenoid Biosynthesis: Enhancing β-Carotene Production in Escherichia coli via cyaA Deletion. Int J Mol Sci 2024; 25:12796. [PMID: 39684505 DOI: 10.3390/ijms252312796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 11/25/2024] [Accepted: 11/26/2024] [Indexed: 12/18/2024] Open
Abstract
The gamma-ray-induced random mutagenesis of an engineered β-carotene-producing Escherichia coli XL1-Blue resulted in the variant Ajou 45, which exhibits significantly enhanced β-carotene production. The whole-genome sequencing of Ajou 45 identified 55 mutations, notably including a reduction in the copy number of cyaA, encoding adenylate cyclase, a key enzyme regulating intracellular cyclic AMP (cAMP) levels. While the parental XL1-Blue strain harbors two copies of cyaA, Ajou 45 retains only one, potentially leading to reduced intracellular cAMP concentrations. This reduction may alleviate catabolite repression and redirect metabolic flux toward the β-carotene biosynthesis pathway. To validate this mechanistic insight, a targeted cyaA knockout was engineered in XL1-Blue, and its β-carotene production and growth phenotypes were compared with those of Ajou 45 and XL1-Blue. The findings demonstrated that a reduced cyaA copy number substantially enhances β-carotene biosynthesis by modulating cAMP-mediated regulatory networks. This study highlights the efficacy of integrating random mutagenesis with integrative genomic analysis for microbial strain engineering and presents a novel strategy for enhancing carotenoid production in E. coli.
Collapse
Affiliation(s)
- Soon-Jae Kwon
- Department of Molecular Science and Technology, Advanced College of Bio-Convergence Engineering, Ajou University, Woncheon-dong, Yeongtong-gu, Suwon 16499, Republic of Korea
| | - Chan Bae Park
- Department of Physiology, Ajou University School of Medicine, Suwon 16499, Republic of Korea
| | - Pyung Cheon Lee
- Department of Molecular Science and Technology, Advanced College of Bio-Convergence Engineering, Ajou University, Woncheon-dong, Yeongtong-gu, Suwon 16499, Republic of Korea
| |
Collapse
|
6
|
Yamamoto C, Takahashi F, Suetsugu N, Yamada K, Yoshikawa S, Kohchi T, Kasahara M. The cAMP signaling module regulates sperm motility in the liverwort Marchantia polymorpha. Proc Natl Acad Sci U S A 2024; 121:e2322211121. [PMID: 38593080 PMCID: PMC11032487 DOI: 10.1073/pnas.2322211121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 03/14/2024] [Indexed: 04/11/2024] Open
Abstract
Adenosine 3',5'-cyclic monophosphate (cAMP) is a universal signaling molecule that acts as a second messenger in various organisms. It is well established that cAMP plays essential roles across the tree of life, although the function of cAMP in land plants has long been debated. We previously identified the enzyme with both adenylyl cyclase (AC) and cAMP phosphodiesterase (PDE) activity as the cAMP-synthesis/hydrolysis enzyme COMBINED AC with PDE (CAPE) in the liverwort Marchantia polymorpha. CAPE is conserved in streptophytes that reproduce with motile sperm; however, the precise function of CAPE is not yet known. In this study, we demonstrate that the loss of function of CAPE in M. polymorpha led to male infertility due to impaired sperm flagellar motility. We also found that two genes encoding the regulatory subunits of cAMP-dependent protein kinase (PKA-R) were also involved in sperm motility. Based on these findings, it is evident that CAPE and PKA-Rs act as a cAMP signaling module that regulates sperm motility in M. polymorpha. Therefore, our results have shed light on the function of cAMP signaling and sperm motility regulators in land plants. This study suggests that cAMP signaling plays a common role in plant and animal sperm motility.
Collapse
Affiliation(s)
- Chiaki Yamamoto
- Department of Biotechnology, Graduate School of Life Sciences, Ritsumeikan University, Kusatsu525-8577, Japan
| | - Fumio Takahashi
- Department of Biotechnology, Graduate School of Life Sciences, Ritsumeikan University, Kusatsu525-8577, Japan
| | - Noriyuki Suetsugu
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo153-8902, Japan
| | - Kazumasa Yamada
- Department of Marine Science and Technology, Faculty of Marine Science and Technology, Fukui Prefectural University, Obama917-0003, Japan
| | - Shinya Yoshikawa
- Department of Marine Science and Technology, Faculty of Marine Science and Technology, Fukui Prefectural University, Obama917-0003, Japan
| | - Takayuki Kohchi
- Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Kyoto606-8502, Japan
| | - Masahiro Kasahara
- Department of Biotechnology, Graduate School of Life Sciences, Ritsumeikan University, Kusatsu525-8577, Japan
| |
Collapse
|
7
|
Liu C, Shi R, Jensen MS, Zhu J, Liu J, Liu X, Sun D, Liu W. The global regulation of c-di-GMP and cAMP in bacteria. MLIFE 2024; 3:42-56. [PMID: 38827514 PMCID: PMC11139211 DOI: 10.1002/mlf2.12104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 09/16/2023] [Accepted: 10/09/2023] [Indexed: 06/04/2024]
Abstract
Nucleotide second messengers are highly versatile signaling molecules that regulate a variety of key biological processes in bacteria. The best-studied examples are cyclic AMP (cAMP) and bis-(3'-5')-cyclic dimeric guanosine monophosphate (c-di-GMP), which both act as global regulators. Global regulatory frameworks of c-di-GMP and cAMP in bacteria show several parallels but also significant variances. In this review, we illustrate the global regulatory models of the two nucleotide second messengers, compare the different regulatory frameworks between c-di-GMP and cAMP, and discuss the mechanisms and physiological significance of cross-regulation between c-di-GMP and cAMP. c-di-GMP responds to numerous signals dependent on a great number of metabolic enzymes, and it regulates various signal transduction pathways through its huge number of effectors with varying activities. In contrast, due to the limited quantity, the cAMP metabolic enzymes and its major effector are regulated at different levels by diverse signals. cAMP performs its global regulatory function primarily by controlling the transcription of a large number of genes via cAMP receptor protein (CRP) in most bacteria. This review can help us understand how bacteria use the two typical nucleotide second messengers to effectively coordinate and integrate various physiological processes, providing theoretical guidelines for future research.
Collapse
Affiliation(s)
- Cong Liu
- Jiangsu Key Laboratory of Phylogenomics & Comparative Genomics, School of Life SciencesJiangsu Normal UniversityXuzhouChina
| | - Rui Shi
- Jiangsu Key Laboratory of Phylogenomics & Comparative Genomics, School of Life SciencesJiangsu Normal UniversityXuzhouChina
| | - Marcus S. Jensen
- Jiangsu Key Laboratory of Phylogenomics & Comparative Genomics, School of Life SciencesJiangsu Normal UniversityXuzhouChina
| | - Jingrong Zhu
- Jiangsu Key Laboratory of Phylogenomics & Comparative Genomics, School of Life SciencesJiangsu Normal UniversityXuzhouChina
| | - Jiawen Liu
- Jiangsu Key Laboratory of Phylogenomics & Comparative Genomics, School of Life SciencesJiangsu Normal UniversityXuzhouChina
| | - Xiaobo Liu
- Key Laboratory of Metabolic Engineering and Biosynthesis Technology, Ministry of Industry and Information TechnologyNanjing University of Science and TechnologyNanjingChina
| | - Di Sun
- Jiangsu Key Laboratory of Phylogenomics & Comparative Genomics, School of Life SciencesJiangsu Normal UniversityXuzhouChina
| | - Weijie Liu
- Jiangsu Key Laboratory of Phylogenomics & Comparative Genomics, School of Life SciencesJiangsu Normal UniversityXuzhouChina
| |
Collapse
|
8
|
Kashevarova NM, Khaova EA, Tkachenko AG. The regulatory effects of (p)ppGpp and indole on cAMP synthesis in Escherichia coli cells. Vavilovskii Zhurnal Genet Selektsii 2024; 28:15-23. [PMID: 38465243 PMCID: PMC10917672 DOI: 10.18699/vjgb-24-03] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 10/13/2023] [Accepted: 10/15/2023] [Indexed: 03/12/2024] Open
Abstract
Bacterial stress adaptive response is formed due to changes in the cell gene expression profile in response to alterations in environmental conditions through the functioning of regulatory networks. The mutual influence of network signaling molecules represented by cells' natural metabolites, including indole and second messengers (p) ppGpp and cAMP, is hitherto not well understood, being the aim of this study. E. coli parent strain BW25141 ((p) ppGpp+) and deletion knockout BW25141ΔrelAΔspoT which is unable to synthesize (p)ppGpp ((p)ppGpp0) were cultivated in M9 medium supplemented with different glucose concentrations (5.6 and 22.2 mM) in the presence of tryptophan as a substrate for indole synthesis and in its absence. The glucose content was determined with the glucose oxidase method; the indole content, by means of HPLC; and the cAMP concentration, by ELISA. The onset of an increase in initially low intracellular cAMP content coincided with the depletion of glucose in the medium. Maximum cAMP accumulation in the cells was proportional to the concentration of initially added glucose. At the same time, the (p) ppGpp0 mutant showed a decrease in maximum cAMP levels compared to the (p)ppGpp+ parent, which was the most pronounced in the medium with 22.2 mM glucose. So, (p)ppGpp was able to positively regulate cAMP formation. The promoter of the tryptophanase operon responsible for indole biosynthesis is known to be under the positive control of catabolic repression. Therefore, in the cells of the (p)ppGpp+ strain grown in the tryptophan-free medium that were characterized by a low rate of spontaneous indole formation, its synthesis significantly increased in response to the rising cAMP level just after glucose depletion. However, this was not observed in the (p)ppGpp0 mutant cells with reduced cAMP accumulation. When tryptophan was added to the medium, both of these strains demonstrated high indole production, which was accompanied by a decrease in cAMP accumulation compared to the tryptophan-free control. Thus, under glucose depletion, (p)ppGpp can positively regulate the accumulation of both cAMP and indole, while the latter, in its turn, has a negative effect on cAMP formation.
Collapse
Affiliation(s)
- N M Kashevarova
- Institute of Ecology and Genetics of Microorganisms of the Ural Branch of the Russian Academy of Sciences, Perm, Russia
| | - E A Khaova
- Institute of Ecology and Genetics of Microorganisms of the Ural Branch of the Russian Academy of Sciences, Perm, Russia
| | - A G Tkachenko
- Institute of Ecology and Genetics of Microorganisms of the Ural Branch of the Russian Academy of Sciences, Perm, Russia
| |
Collapse
|
9
|
Lopez Marin MA, Strejcek M, Uhlik O. Joining the bacterial conversation: increasing the cultivation efficiency of soil bacteria with acyl-homoserine lactones and cAMP. Microbiol Spectr 2023; 11:e0186023. [PMID: 37787516 PMCID: PMC10715134 DOI: 10.1128/spectrum.01860-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 08/17/2023] [Indexed: 10/04/2023] Open
Abstract
IMPORTANCE Microorganisms are a repository of interesting metabolites and functions. Therefore, accessing them is an important exercise for advancing not only basic questions about their physiology but also to advance technological applications. In this sense, increasing the culturability of environmental microorganisms remains an important endeavor for modern microbiology. Because microorganisms do not live in isolation in their environments, molecules can be added to the cultivation strategies to "inform them" that they are present in growth-permissive environmental conditions. Signaling molecules such as acyl-homoserine lactones and 3',5'-cyclic adenosine monophosphate belong to the plethora of molecules used by bacteria to communicate with each other in a phenomenon called quorum sensing. Therefore, including quorum sensing molecules can be an incentive for microorganisms, specifically soil bacteria, to increase their numbers on solid media.
Collapse
Affiliation(s)
- Marco A. Lopez Marin
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Faculty of Food and Biochemical Technology, Prague, Czech Republic
- Department of Water Technology and Environmental Engineering, University of Chemistry and Technology Prague, Prague, Czechia
| | - Michal Strejcek
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Faculty of Food and Biochemical Technology, Prague, Czech Republic
| | - Ondrej Uhlik
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Faculty of Food and Biochemical Technology, Prague, Czech Republic
| |
Collapse
|
10
|
Stanfill SB, Hecht SS, Joerger AC, González PJ, Maia LB, Rivas MG, Moura JJG, Gupta AK, Le Brun NE, Crack JC, Hainaut P, Sparacino-Watkins C, Tyx RE, Pillai SD, Zaatari GS, Henley SJ, Blount BC, Watson CH, Kaina B, Mehrotra R. From cultivation to cancer: formation of N-nitrosamines and other carcinogens in smokeless tobacco and their mutagenic implications. Crit Rev Toxicol 2023; 53:658-701. [PMID: 38050998 DOI: 10.1080/10408444.2023.2264327] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 09/20/2023] [Accepted: 09/20/2023] [Indexed: 12/07/2023]
Abstract
Tobacco use is a major cause of preventable morbidity and mortality globally. Tobacco products, including smokeless tobacco (ST), generally contain tobacco-specific N-nitrosamines (TSNAs), such as N'-nitrosonornicotine (NNN) and 4-(methylnitrosamino)-1-(3-pyridyl)-butanone (NNK), which are potent carcinogens that cause mutations in critical genes in human DNA. This review covers the series of biochemical and chemical transformations, related to TSNAs, leading from tobacco cultivation to cancer initiation. A key aim of this review is to provide a greater understanding of TSNAs: their precursors, the microbial and chemical mechanisms that contribute to their formation in ST, their mutagenicity leading to cancer due to ST use, and potential means of lowering TSNA levels in tobacco products. TSNAs are not present in harvested tobacco but can form due to nitrosating agents reacting with tobacco alkaloids present in tobacco during certain types of curing. TSNAs can also form during or following ST production when certain microorganisms perform nitrate metabolism, with dissimilatory nitrate reductases converting nitrate to nitrite that is then released into tobacco and reacts chemically with tobacco alkaloids. When ST usage occurs, TSNAs are absorbed and metabolized to reactive compounds that form DNA adducts leading to mutations in critical target genes, including the RAS oncogenes and the p53 tumor suppressor gene. DNA repair mechanisms remove most adducts induced by carcinogens, thus preventing many but not all mutations. Lastly, because TSNAs and other agents cause cancer, previously documented strategies for lowering their levels in ST products are discussed, including using tobacco with lower nornicotine levels, pasteurization and other means of eliminating microorganisms, omitting fermentation and fire-curing, refrigerating ST products, and including nitrite scavenging chemicals as ST ingredients.
Collapse
Affiliation(s)
- Stephen B Stanfill
- Tobacco and Volatiles Branch, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Stephen S Hecht
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Andreas C Joerger
- Structural Genomics Consortium (SGC), Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Pablo J González
- Department of Physics, Universidad Nacional Litoral, and CONICET, Santa Fe, Argentina
| | - Luisa B Maia
- Department of Chemistry, LAQV, REQUIMTE, NOVA School of Science and Technology (FCT NOVA), Caparica, Portugal
| | - Maria G Rivas
- Department of Physics, Universidad Nacional Litoral, and CONICET, Santa Fe, Argentina
| | - José J G Moura
- Department of Chemistry, LAQV, REQUIMTE, NOVA School of Science and Technology (FCT NOVA), Caparica, Portugal
| | | | - Nick E Le Brun
- School of Chemistry, Centre for Molecular and Structural Biochemistry, University of East Anglia, Norwich, UK
| | - Jason C Crack
- School of Chemistry, Centre for Molecular and Structural Biochemistry, University of East Anglia, Norwich, UK
| | - Pierre Hainaut
- Institute for Advanced Biosciences, Grenoble Alpes University, Grenoble, France
| | - Courtney Sparacino-Watkins
- University of Pittsburgh, School of Medicine, Division of Pulmonary Allergy and Critical Care Medicine, Vascular Medicine Institute, PA, USA
| | - Robert E Tyx
- Tobacco and Volatiles Branch, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Suresh D Pillai
- Department of Food Science & Technology, National Center for Electron Beam Research, Texas A&M University, College Station, TX, USA
| | - Ghazi S Zaatari
- Department of Pathology and Laboratory Medicine, American University of Beirut, Beirut, Lebanon
| | - S Jane Henley
- Division of Cancer Prevention and Control, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Benjamin C Blount
- Tobacco and Volatiles Branch, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Clifford H Watson
- Tobacco and Volatiles Branch, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Bernd Kaina
- Institute of Toxicology, University Medical Center, Mainz, Germany
| | - Ravi Mehrotra
- Centre for Health, Innovation and Policy Foundation, Noida, India
| |
Collapse
|
11
|
Pokorzynski ND, Groisman EA. How Bacterial Pathogens Coordinate Appetite with Virulence. Microbiol Mol Biol Rev 2023; 87:e0019822. [PMID: 37358444 PMCID: PMC10521370 DOI: 10.1128/mmbr.00198-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2023] Open
Abstract
Cells adjust growth and metabolism to nutrient availability. Having access to a variety of carbon sources during infection of their animal hosts, facultative intracellular pathogens must efficiently prioritize carbon utilization. Here, we discuss how carbon source controls bacterial virulence, with an emphasis on Salmonella enterica serovar Typhimurium, which causes gastroenteritis in immunocompetent humans and a typhoid-like disease in mice, and propose that virulence factors can regulate carbon source prioritization by modifying cellular physiology. On the one hand, bacterial regulators of carbon metabolism control virulence programs, indicating that pathogenic traits appear in response to carbon source availability. On the other hand, signals controlling virulence regulators may impact carbon source utilization, suggesting that stimuli that bacterial pathogens experience within the host can directly impinge on carbon source prioritization. In addition, pathogen-triggered intestinal inflammation can disrupt the gut microbiota and thus the availability of carbon sources. By coordinating virulence factors with carbon utilization determinants, pathogens adopt metabolic pathways that may not be the most energy efficient because such pathways promote resistance to antimicrobial agents and also because host-imposed deprivation of specific nutrients may hinder the operation of certain pathways. We propose that metabolic prioritization by bacteria underlies the pathogenic outcome of an infection.
Collapse
Affiliation(s)
- Nick D. Pokorzynski
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, Connecticut, USA
| | - Eduardo A. Groisman
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, Connecticut, USA
- Yale Microbial Sciences Institute, West Haven, Connecticut, USA
| |
Collapse
|
12
|
Purcell AB, Simpson BW, Trent MS. Impact of the cAMP-cAMP Receptor Protein Regulatory Complex on Lipopolysaccharide Modifications and Polymyxin B Resistance in Escherichia coli. J Bacteriol 2023; 205:e0006723. [PMID: 37070977 PMCID: PMC10210979 DOI: 10.1128/jb.00067-23] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 03/17/2023] [Indexed: 04/19/2023] Open
Abstract
Gram-negative bacteria have a unique cell surface that can be modified to maintain bacterial fitness in diverse environments. A well-defined example is the modification of the lipid A component of lipopolysaccharide (LPS), which promotes resistance to polymyxin antibiotics and antimicrobial peptides. In many organisms, such modifications include the addition of the amine-containing constituents 4-amino-4-deoxy-l-arabinose (l-Ara4N) and phosphoethanolamine (pEtN). Addition of pEtN is catalyzed by EptA, which uses phosphatidylethanolamine (PE) as its substrate donor, resulting in production of diacylglycerol (DAG). DAG is then quickly recycled into glycerophospholipid (GPL) synthesis by the DAG kinase A (DgkA) to produce phosphatidic acid, the major GPL precursor. Previously, we hypothesized that loss of DgkA recycling would be detrimental to the cell when LPS is heavily modified. Instead, we found that DAG accumulation inhibits EptA activity, preventing further degradation of PE, the predominant GPL of the cell. However, DAG inhibition of pEtN addition results in complete loss of polymyxin resistance. Here, we selected for suppressors to find a mechanism of resistance independent of DAG recycling or pEtN modification. Disrupting the gene encoding the adenylate cyclase, cyaA, fully restored antibiotic resistance without restoring DAG recycling or pEtN modification. Supporting this, disruptions of genes that reduce CyaA-derived cAMP formation (e.g., ptsI) or disruption of the cAMP receptor protein, Crp, also restored resistance. We found that loss of the cAMP-CRP regulatory complex was necessary for suppression and that resistance arises from a substantial increase in l-Ara4N-modified LPS, bypassing the need for pEtN modification. IMPORTANCE Gram-negative bacteria can alter the structure of their LPS to promote resistance to cationic antimicrobial peptides, including polymyxin antibiotics. Polymyxins are considered last-resort antibiotics for treatment against multidrug-resistant Gram-negative organisms. Here, we explore how changes in general metabolism and carbon catabolite repression pathways can alter LPS structure and influence polymyxin resistance.
Collapse
Affiliation(s)
- Alexandria B. Purcell
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| | - Brent W. Simpson
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| | - M. Stephen Trent
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
- Department of Microbiology, College of Arts and Sciences, University of Georgia, Athens, Georgia, USA
| |
Collapse
|
13
|
A Class IV Adenylate Cyclase, CyaB, Is Required for Capsule Polysaccharide Production and Biofilm Formation in Vibrio parahaemolyticus. Appl Environ Microbiol 2023; 89:e0187422. [PMID: 36602323 PMCID: PMC9888186 DOI: 10.1128/aem.01874-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Cyclic AMP (cAMP) receptor protein (CRP), encoded by crp, is a global regulator that is activated by cAMP, a second messenger synthesized by a class I adenylate cyclase (AC-I) encoded by cyaA in Escherichia coli. cAMP-CRP is required for growth on nonpreferred carbon sources and is a global regulator. We constructed in-frame nonpolar deletions of the crp and cyaA homologs in Vibrio parahaemolyticus and found that the Δcrp mutant did not grow in minimal media supplemented with nonpreferred carbon sources, but the ΔcyaA mutant grew similarly to the wild type. Bioinformatics analysis of the V. parahaemolyticus genome identified a 181-amino-acid protein annotated as a class IV adenylate cyclase (AC-IV) named CyaB, a member of the CYTH protein superfamily. AC-IV phylogeny showed that CyaB was present in Gammaproteobacteria and Alphaproteobacteria as well as Planctomycetes and Archaea. Only the bacterial CyaB proteins contained an N-terminal motif, HFxxxxExExK, indicative of adenylyl cyclase activity. Both V. parahaemolyticus cyaA and cyaB genes functionally complemented an E. coli ΔcyaA mutant. The Δcrp and ΔcyaB ΔcyaA mutants showed defects in growth on nonpreferred carbon sources and in swimming and swarming motility, indicating that cAMP-CRP is an activator. The ΔcyaA and ΔcyaB single mutants had no defects in these phenotypes, indicating that AC-IV complements AC-I. Capsule polysaccharide and biofilm production assays showed significant defects in the Δcrp, ΔcyaBΔcyaA, and ΔcyaB mutants, whereas the ΔcyaA strain behaved similarly to the wild type. This is consistent with a role of cAMP-CRP as an activator of these phenotypes and establishes a cellular role for AC-IV in capsule and biofilm formation, which to date has been unestablished. IMPORTANCE Here, we characterized the roles of CRP and CyaA in V. parahaemolyticus, showing that cAMP-CRP is an activator of metabolism, motility, capsule production, and biofilm formation. These results are in contrast to cAMP-CRP in V. cholerae, which represses capsule and biofilm formation. Previously, only an AC-I CyaA had been identified in Vibrio species. Our data showed that an AC-IV CyaB homolog is present in V. parahaemolyticus and is required for optimal growth. The data demonstrated that CyaB is essential for capsule production and biofilm formation, uncovering a physiological role of AC-IV in bacteria. The data showed that the cyaB gene was widespread among Vibrionaceae species and several other Gammaproteobacteria, but in general, its phylogenetic distribution was limited. Our phylogenetic analysis also demonstrated that in some species the cyaB gene was acquired by horizontal gene transfer.
Collapse
|
14
|
Chauhan SS, Weinert EE. Generation of nucleotide-linked resins for identification of novel binding proteins. Methods Enzymol 2023; 679:323-330. [PMID: 36682867 DOI: 10.1016/bs.mie.2022.08.052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Organisms use numerous nucleotide-containing compounds as intracellular signals to control behavior. Identifying the biomolecules responsible to sensing and responding to changes in signaling molecule concentration is an important area of research. However, identifying the binding proteins can be challenging when there is no prior information available about binding motifs. In this chapter, we describe a straightforward method to generate nucleotide-linked resins for use in pull-down experiments to identify binding proteins. The protocol outlined in this chapter also can be adapted to generate custom resins linked to other molecules of interest.
Collapse
Affiliation(s)
- Shikha S Chauhan
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA, United States
| | - Emily E Weinert
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA, United States; Department of Chemistry, Pennsylvania State University, University Park, PA, United States.
| |
Collapse
|
15
|
Wilburn KM, Blaylock JB, Metcalfe KC, Hsueh BY, Tew DJ, Waters CM. Development of a 3’3’‐cyclic GMP‐AMP Enzyme Linked Immunoassay Reveals Phage Infection Reduces DncV Activity. Isr J Chem 2023. [DOI: 10.1002/ijch.202200084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Kaylee M. Wilburn
- Department of Microbiology and Molecular Genetics Michigan State University East Lansing Michigan USA 48824
- 5180 Biomedical and Physical Sciences 567 Wilson Road East Lansing MI 48824 USA
| | - Julianna B. Blaylock
- ELISA Research & Development Cayman Chemical Company, Inc. Ann Arbor Michigan USA 48108
| | - Kerry C. Metcalfe
- ELISA Research & Development Cayman Chemical Company, Inc. Ann Arbor Michigan USA 48108
| | - Brian Y. Hsueh
- Department of Microbiology and Molecular Genetics Michigan State University East Lansing Michigan USA 48824
- 5180 Biomedical and Physical Sciences 567 Wilson Road East Lansing MI 48824 USA
| | - Daniel J. Tew
- ELISA Research & Development Cayman Chemical Company, Inc. Ann Arbor Michigan USA 48108
| | - Christopher M. Waters
- Department of Microbiology and Molecular Genetics Michigan State University East Lansing Michigan USA 48824
- 5180 Biomedical and Physical Sciences 567 Wilson Road East Lansing MI 48824 USA
| |
Collapse
|
16
|
Kumagai H, Katayama T, Koyanagi T, Suzuki H. Research overview of L-DOPA production using a bacterial enzyme, tyrosine phenol-lyase. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2023; 99:75-101. [PMID: 36908174 PMCID: PMC10170061 DOI: 10.2183/pjab.99.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
L-DOPA is an amino acid that is used as a treatment for Parkinson's disease. A simple enzymatic synthesis method of L-DOPA had been developed using bacterial L-tyrosine phenol-lyase (Tpl). This review describes research on screening of bacterial strains, culture conditions, properties of the enzyme, reaction mechanism of the enzyme, and the reaction conditions for the production of L-DOPA. Furthermore, molecular bleeding of constitutively Tpl-overproducing strains is described, which were developed based on mutations in a DNA binding protein, TyrR, which controls the induction of tpl gene expression.
Collapse
|
17
|
Chakraborty S, Singh P, Seshasayee ASN. Understanding the Genome-Wide Transcription Response To Various cAMP Levels in Bacteria Using Phenomenological Models. mSystems 2022; 7:e0090022. [PMID: 36409084 PMCID: PMC9765429 DOI: 10.1128/msystems.00900-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 10/17/2022] [Indexed: 11/23/2022] Open
Abstract
Attempts to understand gene regulation by global transcription factors have largely been limited to expression studies under binary conditions of presence and absence of the transcription factor. Studies addressing genome-wide transcriptional responses to changing transcription factor concentration at high resolution are lacking. Here, we create a data set containing the entire Escherichia coli transcriptome in Luria-Bertani (LB) broth as it responds to 10 different cAMP concentrations spanning the biological range. We use the Hill's model to accurately summarize individual gene responses into three intuitively understandable parameters, Emax, n, and k, reflecting the sensitivity, nonlinearity, and midpoint of the dynamic range. Our data show that most cAMP-regulated genes have an n of >2, with their k values centered around the wild-type concentration of cAMP. Additionally, cAMP receptor protein (CRP) affinity to a promoter is correlated with Emax but not k, hinting that a high-affinity CRP promoter need not ensure transcriptional activation at lower cAMP concentrations and instead affects the magnitude of the response. Finally, genes belonging to different functional classes are tuned to have different k, n, and Emax values. We demonstrate that phenomenological models are a better alternative for studying gene expression trends than classical clustering methods, with the phenomenological constants providing greater insights into how genes are tuned in a regulatory network. IMPORTANCE Different genes may follow different trends in response to various transcription factor concentrations. In this study, we ask two questions: (i) what are the trends that different genes follow in response to changing transcription factor concentrations and (ii) what methods can be used to extract information from the gene trends so obtained. We demonstrate a method to analyze transcription factor concentration-dependent genome-wide expression data using phenomenological models. Conventional clustering methods and principal-component analysis (PCA) can be used to summarize trends in data but have limited interpretability. The use of phenomenological models greatly enhances the interpretability and thus utility of conventional clustering. Transformation of dose-response data into phenomenological constants opens up avenues to ask and answer many different kinds of question. We show that the phenomenological constants obtained from the model fits can be used to generate insights about network topology and allows integration of other experimental data such as chromatin immunoprecipitation sequencing (ChIP-seq) to understand the system in greater detail.
Collapse
Affiliation(s)
- Shweta Chakraborty
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, Karnataka, India
| | | | - Aswin Sai Narain Seshasayee
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, Karnataka, India
| |
Collapse
|
18
|
Wu RT, Chen JY, Liu S, Niu SH, Liao XD, Xing SC. Cyclic AMP and biofilms reveal the synergistic proliferation strategy of Pseudomonas aeruginosa and Escherichia coli under the costimulation of high concentrations of microplastics and enrofloxacin. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:156470. [PMID: 35660582 DOI: 10.1016/j.scitotenv.2022.156470] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/28/2022] [Accepted: 05/31/2022] [Indexed: 06/15/2023]
Abstract
Microplastics (MPs) provide attachment sites for biofilm formation of microorganisms, which can promote their resistance to environmental stress has been proved. However, the effect of MPs on synergy survival among microorganisms under antibiotic stress remains unclear. In the present study, the proliferation of Escherichia coli and Pseudomonas aeruginosa was assessed under enrofloxacin stress with the influence of MPs. Here, MPs reduced the growth speed of E. coli and enhanced that of P. aeruginosa, especially at 12 h, but the final value of OD600 and CFU of both bacteria not be influenced. E. coli was enrofloxacin sensitive (MIC = 0.25 μg/mL), and a high MP concentration in the presence of enrofloxacin notably enhanced the biofilm formation ability of P. aeruginosa, but proliferation decreased. In the coculture system, the proliferation of E. coli (increased 1.42-fold) and P. aeruginosa (increased 1.06-fold) both increased under enrofloxacin stress (0.25 μg/mL) with high-concentration MP addition. P. aeruginosa may provide the biofilm matrix for E. coli to resist the stress of enrofloxacin. The high concentration of cyclic AMP secreted by E. coli may slightly inhibited biofilm formation, leading to a decrease in the fitness cost of P. aeruginosa; thus, the proliferation of P. aeruginosa increased. The present study is the first to show that MP combined with antibiotics stimulates the metabolic cooperation of bacteria to promote proliferation.
Collapse
Affiliation(s)
- Rui-Ting Wu
- College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, China
| | - Jing-Yuan Chen
- College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, China
| | - Shuo Liu
- College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, China
| | - Shi-Hua Niu
- College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, China
| | - Xin-Di Liao
- College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry Agriculture, Guangzhou, 510642, Guangdong, China; National-Local Joint Engineering Research Center for Livestock Breeding, Guangzhou, 510642, Guangdong, China
| | - Si-Cheng Xing
- Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry Agriculture, Guangzhou, 510642, Guangdong, China; National-Local Joint Engineering Research Center for Livestock Breeding, Guangzhou, 510642, Guangdong, China.
| |
Collapse
|
19
|
Pal AK, Ghosh A. c-di-AMP signaling plays important role in determining antibiotic tolerance phenotypes of Mycobacterium smegmatis. Sci Rep 2022; 12:13127. [PMID: 35907936 PMCID: PMC9338955 DOI: 10.1038/s41598-022-17051-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 07/20/2022] [Indexed: 11/09/2022] Open
Abstract
In this study, we probe the role of secondary messenger c-di-AMP in drug tolerance, which includes both persister and resistant mutant characterization of Mycobacterium smegmatis. Specifically, with the use of c-di-AMP null and overproducing mutants, we showed how c-di-AMP plays a significant role in resistance mutagenesis against antibiotics with different mechanisms of action. We elucidated the specific molecular mechanism linking the elevated intracellular c-di-AMP level and high mutant generation and highlighted the significance of non-homology-based DNA repair. Further investigation enabled us to identify the unique mutational landscape of target and non-target mutation categories linked to intracellular c-di-AMP levels. Overall fitness cost of unique target mutations was estimated in different strain backgrounds, and then we showed the critical role of c-di-AMP in driving epistatic interactions between resistance genes, resulting in the evolution of multi-drug tolerance. Finally, we identified the role of c-di-AMP in persister cells regrowth and mutant enrichment upon cessation of antibiotic treatment.
Collapse
Affiliation(s)
- Aditya Kumar Pal
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, 560012, India
| | - Anirban Ghosh
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, 560012, India.
| |
Collapse
|
20
|
Hayashida Y, Yamamoto C, Takahashi F, Shibata A, Kasahara M. Characterization of the cAMP phosphodiesterase domain in plant adenylyl cyclase/cAMP phosphodiesterase CAPE from the liverwort Marchantia polymorpha. JOURNAL OF PLANT RESEARCH 2022; 135:137-144. [PMID: 34779957 DOI: 10.1007/s10265-021-01359-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 11/07/2021] [Indexed: 06/13/2023]
Abstract
Cyclic AMP (cAMP) acts as a second messenger and is involved in the regulation of various physiological responses. Recently, we identified the cAMP-synthesis/hydrolysis enzyme CAPE, which contains the two catalytic domains adenylyl cyclase (AC) and cAMP phosphodiesterase (PDE) from the liverwort Marchantia polymorpha. Here we characterize the PDE domain of M. polymorpha CAPE (MpCAPE-PDE) using the purified protein expressed in E. coli. The Km and Vmax of MpCAPE-PDE were 30 µM and 5.8 nmol min-1 mg-1, respectively. Further, we investigated the effect of divalent cations on PDE activity and found that Ca2+ enhanced PDE activity, suggesting that Ca2+ may be involved in cAMP signaling through the regulation of PDE activity of CAPE. Among the PDE inhibitors tested, only dipyridamole moderately inhibited PDE activity by approximately 40% at high concentrations. Conversely, 3-isobutyl-1-methylxanthine (IBMX) did not inhibit PDE activity.
Collapse
Affiliation(s)
- Yuta Hayashida
- Graduate School of Life Sciences, Ritsumeikan University, Kusatsu, Shiga, 525-8577, Japan
| | - Chiaki Yamamoto
- Graduate School of Life Sciences, Ritsumeikan University, Kusatsu, Shiga, 525-8577, Japan
| | - Fumio Takahashi
- Graduate School of Life Sciences, Ritsumeikan University, Kusatsu, Shiga, 525-8577, Japan
| | - Aika Shibata
- Graduate School of Life Sciences, Ritsumeikan University, Kusatsu, Shiga, 525-8577, Japan
| | - Masahiro Kasahara
- Graduate School of Life Sciences, Ritsumeikan University, Kusatsu, Shiga, 525-8577, Japan.
| |
Collapse
|
21
|
Bessaiah H, Anamalé C, Sung J, Dozois CM. What Flips the Switch? Signals and Stress Regulating Extraintestinal Pathogenic Escherichia coli Type 1 Fimbriae (Pili). Microorganisms 2021; 10:5. [PMID: 35056454 PMCID: PMC8777976 DOI: 10.3390/microorganisms10010005] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/13/2021] [Accepted: 12/15/2021] [Indexed: 12/18/2022] Open
Abstract
Pathogens are exposed to a multitude of harmful conditions imposed by the environment of the host. Bacterial responses against these stresses are pivotal for successful host colonization and pathogenesis. In the case of many E. coli strains, type 1 fimbriae (pili) are an important colonization factor that can contribute to diseases such as urinary tract infections and neonatal meningitis. Production of type 1 fimbriae in E. coli is dependent on an invertible promoter element, fimS, which serves as a phase variation switch determining whether or not a bacterial cell will produce type 1 fimbriae. In this review, we present aspects of signaling and stress involved in mediating regulation of type 1 fimbriae in extraintestinal E. coli; in particular, how certain regulatory mechanisms, some of which are linked to stress response, can influence production of fimbriae and influence bacterial colonization and infection. We suggest that regulation of type 1 fimbriae is potentially linked to environmental stress responses, providing a perspective for how environmental cues in the host and bacterial stress response during infection both play an important role in regulating extraintestinal pathogenic E. coli colonization and virulence.
Collapse
Affiliation(s)
- Hicham Bessaiah
- Institut National de Recherche Scientifique (INRS)-Centre Armand-Frappier Santé Biotechnologie, Laval, QC H7V 1B7, Canada; (H.B.); (C.A.); (J.S.)
- Centre de Recherche en Infectiologie Porcine et Avicole (CRIPA), Saint-Hyacinthe, QC J2S 2M2, Canada
- Department of Microbiology and Immunology, McGill University, Montreal, QC H3G 0B1, Canada
| | - Carole Anamalé
- Institut National de Recherche Scientifique (INRS)-Centre Armand-Frappier Santé Biotechnologie, Laval, QC H7V 1B7, Canada; (H.B.); (C.A.); (J.S.)
| | - Jacqueline Sung
- Institut National de Recherche Scientifique (INRS)-Centre Armand-Frappier Santé Biotechnologie, Laval, QC H7V 1B7, Canada; (H.B.); (C.A.); (J.S.)
- Department of Microbiology and Immunology, McGill University, Montreal, QC H3G 0B1, Canada
| | - Charles M. Dozois
- Institut National de Recherche Scientifique (INRS)-Centre Armand-Frappier Santé Biotechnologie, Laval, QC H7V 1B7, Canada; (H.B.); (C.A.); (J.S.)
- Centre de Recherche en Infectiologie Porcine et Avicole (CRIPA), Saint-Hyacinthe, QC J2S 2M2, Canada
| |
Collapse
|
22
|
You W, Peng W, Tian Z, Zheng M. Uranium bioremediation with U(VI)-reducing bacteria. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 798:149107. [PMID: 34325147 DOI: 10.1016/j.scitotenv.2021.149107] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 07/13/2021] [Accepted: 07/13/2021] [Indexed: 06/13/2023]
Abstract
Uranium (U) pollution is an environmental hazard caused by the development of the nuclear industry. Microbial reduction of hexavalent uranium (U(VI)) to tetravalent uranium (U(IV)) reduces U solubility and mobility and has been proposed as an effective method to remediate uranium contamination. In this review, U(VI) remediation with respect to U(VI)-reducing bacteria, mechanisms, influencing factors, products, and reoxidation are systematically summarized. Reportedly, some metal- and sulfate-reducing bacteria possess excellent U(VI) reduction capability through mechanisms involving c-type cytochromes, extracellular pili, electron shuttle, or thioredoxin reduction. In situ remediation has been demonstrated as an ideal strategy for large-scale degradation of uranium contaminants than ex situ. However, U(VI) reduction efficiency can be affected by various factors, including pH, temperature, bicarbonate, electron donors, and coexisting metal ions. Furthermore, it is noteworthy that the reduction products could be reoxidized when exposed to oxygen and nitrate, inevitably compromising the remediation effects, especially for non-crystalline U(IV) with weak stability.
Collapse
Affiliation(s)
- Wenbo You
- Key Laboratory of Regional Energy Systems Optimization, Ministry of Education, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Wanting Peng
- Key Laboratory of Regional Energy Systems Optimization, Ministry of Education, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Zhichao Tian
- Key Laboratory of Regional Energy Systems Optimization, Ministry of Education, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Maosheng Zheng
- Key Laboratory of Regional Energy Systems Optimization, Ministry of Education, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China.
| |
Collapse
|
23
|
Kim M, Kim W, Lee Y, Park W. Linkage between bacterial community-mediated hydrogen peroxide detoxification and the growth of Microcystis aeruginosa. WATER RESEARCH 2021; 207:117784. [PMID: 34731663 DOI: 10.1016/j.watres.2021.117784] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 09/30/2021] [Accepted: 10/13/2021] [Indexed: 06/13/2023]
Abstract
Microcystis aeruginosa, an important cyanobloom-forming cyanobacterium, is sensitive to the high light intensity and consequent oxidative stress. Based on our genomic and transcriptomic analyses of H2O2-treated cells, many genes involved in photosynthesis, Calvin cycle, and microcystin synthesis were downregulated, whereas several toxin-antitoxin genes, DNA repair genes, and H2O2-defense systems such as peroxiredoxins and glutathione synthesis were upregulated. Axenic M. aeruginosa was then co-cultured with synthetic bacterial communities collected from 15 different freshwater samples with exhibiting different degrees of H2O2-production and catalase activities. Our analyses indicated that H2O2-resistant bacterial communities favored the growth and photosynthetic activity of M. aeruginosa cells under either H2O2 treatment or high light conditions. Nanopore-based bacterial community analyses indicated that these growth-promoting effects were likely attributable to a high proportion of Alphaproteobacteria (e.g., Brevundimonas and Ochrobactrum species), which protected M. aeruginosa cells from H2O2 toxicity. Further, these bacterial communities exhibited higher catalase activity levels and faster O2 production rates upon H2O2 detoxification. Taken together, our findings newly suggest that the occurrence of catalase-less M. aeruginosa blooms is largely influenced by the surrounding microbiota during high light and organic-rich conditions.
Collapse
Affiliation(s)
- Minkyung Kim
- Laboratory of Molecular Environmental Microbiology, Department of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Wonjae Kim
- Laboratory of Molecular Environmental Microbiology, Department of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Yunho Lee
- Department of Food Science and Biotechnology, CHA University, Pocheon, Gyeonggi-do 11160, Republic of Korea
| | - Woojun Park
- Laboratory of Molecular Environmental Microbiology, Department of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea.
| |
Collapse
|
24
|
Braun F, Recalde A, Bähre H, Seifert R, Albers SV. Putative Nucleotide-Based Second Messengers in the Archaeal Model Organisms Haloferax volcanii and Sulfolobus acidocaldarius. Front Microbiol 2021; 12:779012. [PMID: 34880846 PMCID: PMC8646023 DOI: 10.3389/fmicb.2021.779012] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 11/01/2021] [Indexed: 12/16/2022] Open
Abstract
Research on nucleotide-based second messengers began in 1956 with the discovery of cyclic adenosine monophosphate (3',5'-cAMP) by Earl Wilbur Sutherland and his co-workers. Since then, a broad variety of different signaling molecules composed of nucleotides has been discovered. These molecules fulfill crucial tasks in the context of intracellular signal transduction. The vast majority of the currently available knowledge about nucleotide-based second messengers originates from model organisms belonging either to the domain of eukaryotes or to the domain of bacteria, while the archaeal domain is significantly underrepresented in the field of nucleotide-based second messenger research. For several well-stablished eukaryotic and/or bacterial nucleotide-based second messengers, it is currently not clear whether these signaling molecules are present in archaea. In order to shed some light on this issue, this study analyzed cell extracts of two major archaeal model organisms, the euryarchaeon Haloferax volcanii and the crenarchaeon Sulfolobus acidocaldarius, using a modern mass spectrometry method to detect a broad variety of currently known nucleotide-based second messengers. The nucleotides 3',5'-cAMP, cyclic guanosine monophosphate (3',5'-cGMP), 5'-phosphoadenylyl-3',5'-adenosine (5'-pApA), diadenosine tetraphosphate (Ap4A) as well as the 2',3'-cyclic isomers of all four RNA building blocks (2',3'-cNMPs) were present in both species. In addition, H. volcanii cell extracts also contain cyclic cytosine monophosphate (3',5'-cCMP), cyclic uridine monophosphate (3',5'-cUMP) and cyclic diadenosine monophosphate (3',5'-c-di-AMP). The widely distributed bacterial second messengers cyclic diguanosine monophosphate (3',5'-c-di-GMP) and guanosine (penta-)/tetraphosphate [(p)ppGpp] could not be detected. In summary, this study gives a comprehensive overview on the presence of a large set of currently established or putative nucleotide-based second messengers in an eury- and a crenarchaeal model organism.
Collapse
Affiliation(s)
- Frank Braun
- Molecular Biology of Archaea, Institute of Biology, University of Freiburg, Freiburg, Germany
| | - Alejandra Recalde
- Molecular Biology of Archaea, Institute of Biology, University of Freiburg, Freiburg, Germany
| | - Heike Bähre
- Research Core Unit Metabolomics, Hannover Medical School, Hanover, Germany
| | - Roland Seifert
- Research Core Unit Metabolomics, Hannover Medical School, Hanover, Germany
| | - Sonja-Verena Albers
- Molecular Biology of Archaea, Institute of Biology, University of Freiburg, Freiburg, Germany
| |
Collapse
|
25
|
Seok JY, Han YH, Yang JS, Yang J, Lim HG, Kim SG, Seo SW, Jung GY. Synthetic biosensor accelerates evolution by rewiring carbon metabolism toward a specific metabolite. Cell Rep 2021; 36:109589. [PMID: 34433019 DOI: 10.1016/j.celrep.2021.109589] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 06/01/2021] [Accepted: 08/02/2021] [Indexed: 12/29/2022] Open
Abstract
Proper carbon flux distribution between cell growth and production of a target compound is important for biochemical production because improper flux reallocation inhibits cell growth, thus adversely affecting production yield. Here, using a synthetic biosensor to couple production of a specific metabolite with cell growth, we spontaneously evolve cells under the selective condition toward the acquisition of genotypes that optimally reallocate cellular resources. Using 3-hydroxypropionic acid (3-HP) production from glycerol in Escherichia coli as a model system, we determine that mutations in the conserved regions of proteins involved in global transcriptional regulation alter the expression of several genes associated with central carbon metabolism. These changes rewire central carbon flux toward the 3-HP production pathway, increasing 3-HP yield and reducing acetate accumulation by alleviating overflow metabolism. Our study provides a perspective on adaptive laboratory evolution (ALE) using synthetic biosensors, thereby supporting future efforts in metabolic pathway optimization.
Collapse
Affiliation(s)
- Joo Yeon Seok
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673, Korea
| | - Yong Hee Han
- Interdisciplinary Program in Bioengineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea
| | - Jae-Seong Yang
- Centre de Recerca en Agrigenòmica, Consortium CSIC-IRTA-UAB-UB, Cerdanyola del Vallès, 08193 Barcelona, Spain
| | - Jina Yang
- School of Chemical and Biological Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea; Institute of Chemical Processes, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea
| | - Hyun Gyu Lim
- Department of Chemical Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673, Korea
| | - Seong Gyeong Kim
- Department of Chemical Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673, Korea
| | - Sang Woo Seo
- Interdisciplinary Program in Bioengineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea; School of Chemical and Biological Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea; Institute of Chemical Processes, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea; Bio-MAX Institute, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea; Institute of Engineering Research, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea.
| | - Gyoo Yeol Jung
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673, Korea; Department of Chemical Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673, Korea.
| |
Collapse
|
26
|
Agarwal G, Gitaitis RD, Dutta B. Pan-Genome of Novel Pantoea stewartii subsp. indologenes Reveals Genes Involved in Onion Pathogenicity and Evidence of Lateral Gene Transfer. Microorganisms 2021; 9:1761. [PMID: 34442840 PMCID: PMC8399035 DOI: 10.3390/microorganisms9081761] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/11/2021] [Accepted: 08/12/2021] [Indexed: 11/16/2022] Open
Abstract
Pantoea stewartii subsp. indologenes (Psi) is a causative agent of leafspot on foxtail millet and pearl millet; however, novel strains were recently identified that are pathogenic on onions. Our recent host range evaluation study identified two pathovars; P. stewartii subsp. indologenes pv. cepacicola pv. nov. and P. stewartii subsp. indologenes pv. setariae pv. nov. that are pathogenic on onions and millets or on millets only, respectively. In the current study, we developed a pan-genome using the whole genome sequencing of newly identified/classified Psi strains from both pathovars [pv. cepacicola (n = 4) and pv. setariae (n = 13)]. The full spectrum of the pan-genome contained 7030 genes. Among these, 3546 (present in genomes of all 17 strains) were the core genes that were a subset of 3682 soft-core genes (present in ≥16 strains). The accessory genome included 1308 shell genes and 2040 cloud genes (present in ≤2 strains). The pan-genome showed a clear linear progression with >6000 genes, suggesting that the pan-genome of Psi is open. Comparative phylogenetic analysis showed differences in phylogenetic clustering of Pantoea spp. using PAVs/wgMLST approach in comparison with core genome SNPs-based phylogeny. Further, we conducted a horizontal gene transfer (HGT) study using Psi strains from both pathovars along with strains from other Pantoea species, namely, P. stewartii subsp. stewartii LMG 2715T, P. ananatis LMG 2665T, P. agglomerans LMG L15, and P. allii LMG 24248T. A total of 317 HGT events among four Pantoea species were identified with most gene transfer events occurring between Psi pv. cepacicola and Psi pv. setariae. Pan-GWAS analysis predicted a total of 154 genes, including seven gene-clusters, which were associated with the pathogenicity phenotype (necrosis on seedling) on onions. One of the gene-clusters contained 11 genes with known functions and was found to be chromosomally located.
Collapse
Affiliation(s)
- Gaurav Agarwal
- Department of Plant Pathology, Coastal Plain Experiment Station, University of Georgia, Tifton, GA 31793, USA;
| | | | - Bhabesh Dutta
- Department of Plant Pathology, Coastal Plain Experiment Station, University of Georgia, Tifton, GA 31793, USA;
| |
Collapse
|
27
|
Nadolinskaia NI, Zamakhaev MV, Shumkov MS, Armianinova DK, Karpov DS, Goncharenko AV. CRISPR Interference of Adenylate Cyclases from Mycobacterium tuberculosis. APPL BIOCHEM MICRO+ 2021; 57:421-425. [PMID: 34334794 PMCID: PMC8315726 DOI: 10.1134/s0003683821040128] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 01/20/2021] [Accepted: 02/22/2021] [Indexed: 11/25/2022]
Abstract
This work describes a modification of the pRH2521 vector of the pRH2502/pRH2521 system for CRISPR-dCas9-mediated RNA interference. The modification enabled an increase in the cloning efficiency of guide RNA spacers. The ability of the modified pRH2502/pRH2521 system to suppress the transcription of certain genes was evaluated with the use of genes of Mycobacterium tuberculosis adenylate cyclases. The results revealed the limitations of the pRH2502/pRH2521 system for CRISPR interference associated with the probability of the detection of a protospacer adjacent motif (PAM) in the gene promoter region.
Collapse
Affiliation(s)
- N I Nadolinskaia
- Bach Institute of Biochemistry, Fundamentals of Biotechnology Federal Research Center, Russian Academy of Sciences, 119071 Moscow, Russia
| | - M V Zamakhaev
- Bach Institute of Biochemistry, Fundamentals of Biotechnology Federal Research Center, Russian Academy of Sciences, 119071 Moscow, Russia
| | - M S Shumkov
- Bach Institute of Biochemistry, Fundamentals of Biotechnology Federal Research Center, Russian Academy of Sciences, 119071 Moscow, Russia
| | - D K Armianinova
- Bach Institute of Biochemistry, Fundamentals of Biotechnology Federal Research Center, Russian Academy of Sciences, 119071 Moscow, Russia
| | - D S Karpov
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - A V Goncharenko
- Bach Institute of Biochemistry, Fundamentals of Biotechnology Federal Research Center, Russian Academy of Sciences, 119071 Moscow, Russia
| |
Collapse
|
28
|
Ante VM, Farris LC, Saputra EP, Hall AJ, O'Bier NS, Oliva Chávez AS, Marconi RT, Lybecker MC, Hyde JA. The Borrelia burgdorferi Adenylate Cyclase, CyaB, Is Important for Virulence Factor Production and Mammalian Infection. Front Microbiol 2021; 12:676192. [PMID: 34113333 PMCID: PMC8186283 DOI: 10.3389/fmicb.2021.676192] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 04/16/2021] [Indexed: 12/21/2022] Open
Abstract
Borrelia burgdorferi, the causative agent of Lyme disease, traverses through vastly distinct environments between the tick vector and the multiple phases of the mammalian infection that requires genetic adaptation for the progression of pathogenesis. Borrelial gene expression is highly responsive to changes in specific environmental signals that initiate the RpoS regulon for mammalian adaptation, but the mechanism(s) for direct detection of environmental cues has yet to be identified. Secondary messenger cyclic adenosine monophosphate (cAMP) produced by adenylate cyclase is responsive to environmental signals, such as carbon source and pH, in many bacterial pathogens to promote virulence by altering gene regulation. B. burgdorferi encodes a single non-toxin class IV adenylate cyclase (bb0723, cyaB). This study investigates cyaB expression along with its influence on borrelial virulence regulation and mammalian infectivity. Expression of cyaB was specifically induced with co-incubation of mammalian host cells that was not observed with cultivated tick cells suggesting that cyaB expression is influenced by cellular factor(s) unique to mammalian cell lines. The 3′ end of cyaB also encodes a small RNA, SR0623, in the same orientation that overlaps with bb0722. The differential processing of cyaB and SR0623 transcripts may alter the ability to influence function in the form of virulence determinant regulation and infectivity. Two independent cyaB deletion B31 strains were generated in 5A4-NP1 and ML23 backgrounds and complemented with the cyaB ORF alone that truncates SR0623, cyaB with intact SR0623, or cyaB with a mutagenized full-length SR0623 to evaluate the influence on transcriptional and posttranscriptional regulation of borrelial virulence factors and infectivity. In the absence of cyaB, the expression and production of ospC was significantly reduced, while the protein levels for BosR and DbpA were substantially lower than parental strains. Infectivity studies with both independent cyaB mutants demonstrated an attenuated phenotype with reduced colonization of tissues during early disseminated infection. This work suggests that B. burgdorferi utilizes cyaB and potentially cAMP as a regulatory pathway to modulate borrelial gene expression and protein production to promote borrelial virulence and dissemination in the mammalian host.
Collapse
Affiliation(s)
- Vanessa M Ante
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, Bryan, TX, United States
| | - Lauren C Farris
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, Bryan, TX, United States
| | - Elizabeth P Saputra
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, Bryan, TX, United States
| | - Allie J Hall
- Department of Biology, University of Colorado at Colorado Springs, Colorado Springs, CO, United States
| | - Nathaniel S O'Bier
- Department of Microbiology and Immunology, Virginia Commonwealth University Medical Center, Richmond, VA, United States
| | - Adela S Oliva Chávez
- Department of Entomology, Texas A&M University, College Station, TX, United States
| | - Richard T Marconi
- Department of Microbiology and Immunology, Virginia Commonwealth University Medical Center, Richmond, VA, United States
| | - Meghan C Lybecker
- Department of Biology, University of Colorado at Colorado Springs, Colorado Springs, CO, United States
| | - Jenny A Hyde
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, Bryan, TX, United States
| |
Collapse
|
29
|
Kouzuma A. Molecular mechanisms regulating the catabolic and electrochemical activities of Shewanella oneidensis MR-1. Biosci Biotechnol Biochem 2021; 85:1572-1581. [PMID: 33998649 DOI: 10.1093/bbb/zbab088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 04/17/2021] [Indexed: 11/14/2022]
Abstract
Electrochemically active bacteria (EAB) interact electrochemically with electrodes via extracellular electron transfer (EET) pathways. These bacteria have attracted significant attention due to their utility in environmental-friendly bioelectrochemical systems (BESs), including microbial fuel cells and electrofermentation systems. The electrochemical activity of EAB is dependent on their carbon catabolism and respiration; thus, understanding how these processes are regulated will provide insights into the development of a more efficient BES. The process of biofilm formation by EAB on BES electrodes is also important for electric current generation because it facilitates physical and electrochemical interactions between EAB cells and electrodes. This article summarizes the current knowledge on EET-related metabolic and cellular functions of a model EAB, Shewanella oneidensis MR-1, focusing specifically on regulatory systems for carbon catabolism, EET pathways, and biofilm formation. Based on recent developments, the author also discusses potential uses of engineered S. oneidensis strains for various biotechnological applications.
Collapse
Affiliation(s)
- Atsushi Kouzuma
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, Japan
| |
Collapse
|
30
|
Distribution of adenylyl cyclase/cAMP phosphodiesterase gene, CAPE, in streptophytes reproducing via motile sperm. Sci Rep 2021; 11:10054. [PMID: 33980894 PMCID: PMC8115329 DOI: 10.1038/s41598-021-89539-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 04/28/2021] [Indexed: 02/03/2023] Open
Abstract
We recently isolated a novel adenylyl cyclase/cAMP phosphodiesterase gene from the liverwort, Marchantia polymorpha. The protein encoded by this gene has a class III adenylyl cyclase (AC) in the C-terminal domain and class I phosphodiesterase (PDE) in the N-terminal domain; therefore, we named it CAPE (COMBINED AC with PDE). CAPE protein is likely involved in spermatogenesis and sperm motility due to its tissue-specific expression pattern in M. polymorpha and the distribution of CAPE genes in streptophytes. However, little is known about the distribution of CAPE in gymnosperms that use motile sperm for fertilization, such as cycads and ginkgo. The present study aimed to isolate CAPE genes from the cycad, Cycas revoluta, the ginkgo, Ginkgo biloba, and the hornwort, Anthoceros agerestis. Sequences with high homology to CAPE were obtained from these species. Our analyses revealed that all plant taxonomic groups reproducing via motile sperm possessed CAPE, whereas those that do not produce motile sperm did not possess CAPE, with one exception in gymnosperm Cupressales. The phylogenic distribution of CAPE almost corresponds to the evolutionary history of motile sperm production and further suggests that CAPE may be involved in sexual reproduction process using motile sperm in streptophytes.
Collapse
|
31
|
mSphere of Influence: Surface Sensing in Biofilm Formation. mSphere 2021; 6:6/3/e00369-21. [PMID: 33980683 PMCID: PMC8125057 DOI: 10.1128/msphere.00369-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Kara B. De Leόn works in the field of microbial ecology, environmental biofilms, and microbial genetics. In this mSphere of Influence article, she reflects on how the paper "Multigenerational memory and adaptive adhesion in early bacterial biofilm communities" by C. K. Lee et al. (C. K. Lee, J. de Anda, A. E. Baker, R. R. Bennett, et al., Proc Natl Acad Sci U S A 115:4471-4476, 2018, https://dx.doi.org/10.1073/pnas.1720071115) made an impact on her by changing the way she thinks about initial cell attachment to a surface in an environment.
Collapse
|
32
|
Xu R, Guo Y, Peng S, Liu J, Li P, Jia W, Zhao J. Molecular Targets and Biological Functions of cAMP Signaling in Arabidopsis. Biomolecules 2021; 11:biom11050688. [PMID: 34063698 PMCID: PMC8147800 DOI: 10.3390/biom11050688] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/29/2021] [Accepted: 04/30/2021] [Indexed: 01/11/2023] Open
Abstract
Cyclic AMP (cAMP) is a pivotal signaling molecule existing in almost all living organisms. However, the mechanism of cAMP signaling in plants remains very poorly understood. Here, we employ the engineered activity of soluble adenylate cyclase to induce cellular cAMP elevation in Arabidopsis thaliana plants and identify 427 cAMP-responsive genes (CRGs) through RNA-seq analysis. Induction of cellular cAMP elevation inhibits seed germination, disturbs phytohormone contents, promotes leaf senescence, impairs ethylene response, and compromises salt stress tolerance and pathogen resistance. A set of 62 transcription factors are among the CRGs, supporting a prominent role of cAMP in transcriptional regulation. The CRGs are significantly overrepresented in the pathways of plant hormone signal transduction, MAPK signaling, and diterpenoid biosynthesis, but they are also implicated in lipid, sugar, K+, nitrate signaling, and beyond. Our results provide a basic framework of cAMP signaling for the community to explore. The regulatory roles of cAMP signaling in plant plasticity are discussed.
Collapse
Affiliation(s)
- Ruqiang Xu
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; (Y.G.); (S.P.); (J.L.); (P.L.); (W.J.); (J.Z.)
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 450001, China
- Correspondence: ; Tel.: +86-0371-6778-5095
| | - Yanhui Guo
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; (Y.G.); (S.P.); (J.L.); (P.L.); (W.J.); (J.Z.)
| | - Song Peng
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; (Y.G.); (S.P.); (J.L.); (P.L.); (W.J.); (J.Z.)
| | - Jinrui Liu
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; (Y.G.); (S.P.); (J.L.); (P.L.); (W.J.); (J.Z.)
| | - Panyu Li
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; (Y.G.); (S.P.); (J.L.); (P.L.); (W.J.); (J.Z.)
| | - Wenjing Jia
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; (Y.G.); (S.P.); (J.L.); (P.L.); (W.J.); (J.Z.)
| | - Junheng Zhao
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; (Y.G.); (S.P.); (J.L.); (P.L.); (W.J.); (J.Z.)
| |
Collapse
|
33
|
Yoon SH, Waters CM. The ever-expanding world of bacterial cyclic oligonucleotide second messengers. Curr Opin Microbiol 2021; 60:96-103. [PMID: 33640793 DOI: 10.1016/j.mib.2021.01.017] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 01/27/2021] [Accepted: 01/30/2021] [Indexed: 01/08/2023]
Abstract
Cyclic dinucleotide (cdN) second messengers are essential for bacteria to sense and adapt to their environment. These signals were first discovered with the identification of 3'-5', 3'-5' cyclic di-GMP (c-di-GMP) in 1987, a second messenger that is now known to be the linchpin signaling pathway modulating bacterial motility and biofilm formation. In the past 15 years, three more cdNs were uncovered: 3'-5', 3'-5' cyclic di-AMP (c-di-AMP) and 3'-5', 3'-5' cyclic GMP-AMP (3',3' cGAMP) in bacteria and 2'-5', 3'-5' cyclic GMP-AMP (2',3' cGAMP) in eukaryotes. We now appreciate that bacteria can synthesize many varieties of cdNs from every ribonucleotide, and even cyclic trinucleotide (ctN) second messengers have been discovered. Here we highlight our current understanding of c-di-GMP and c-di-AMP in bacterial physiology and focus on recent advances in 3',3' cGAMP signaling effectors, its role in bacterial phage response, and the diversity of its synthase family.
Collapse
Affiliation(s)
- Soo Hun Yoon
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, 48824 USA
| | - Christopher M Waters
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, 48824 USA.
| |
Collapse
|
34
|
Hengge R. High-Specificity Local and Global c-di-GMP Signaling. Trends Microbiol 2021; 29:993-1003. [PMID: 33640237 DOI: 10.1016/j.tim.2021.02.003] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/31/2021] [Accepted: 02/01/2021] [Indexed: 11/26/2022]
Abstract
The striking multiplicity, signal input diversity, and output specificity of c-di-GMP signaling proteins in many bacteria has brought second messenger signaling back onto the agenda of contemporary microbiology. How can several signaling pathways act in parallel in a specific manner if all of them use the same diffusible second messenger present at a certain global cellular concentration? Recent research has now shown that bacteria achieve this by flexibly combining modes of local and global c-di-GMP signaling in complex signaling networks. Three criteria have to be met to define local c-di-GMP signaling: specific knockout phenotypes, direct interactions between proteins involved, and actual cellular c-di-GMP levels remaining below the Kd of effectors. Adaptive changes in signaling network architecture can further enhance signaling flexibility.
Collapse
Affiliation(s)
- Regine Hengge
- Institut für Biologie/Mikrobiologie, Humboldt-Universität zu Berlin, 10115 Berlin, Germany.
| |
Collapse
|
35
|
Angeloni J, Dong Y, Wang Z, Cao M. Bacterial second messenger 3',5'-cyclic diguanylate attracts Caenorhabditis elegans and suppresses its immunity. Commun Biol 2020; 3:700. [PMID: 33219258 PMCID: PMC7679379 DOI: 10.1038/s42003-020-01436-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 10/26/2020] [Indexed: 11/29/2022] Open
Abstract
Cyclic di-nucleotides are important secondary signaling molecules in bacteria that regulate a wide range of processes. In this study, we found that Caenorhabditis elegans can detect and are attracted to multiple signal molecules produced by Vibrio cholerae, specifically the 3′,5′-cyclic diguanylate (c-di-GMP), even though this bacterium kills the host at a high rate. C-di-GMP is sensed through C. elegans olfactory AWC neurons, which then evokes a series of signal transduction pathways that lead to reduced activity of two key stress response transcription factors, SKN-1 and HSF-1, and weakened innate immunity. Taken together, our study elucidates the role of c-di-GMP in interkingdom communication. For C. elegans, bacterial c-di-GMP may serve as a cue that they can use to detect food. On the other hand, preexposure to low concentrations of c-di-GMP may impair their immune response, which could facilitate bacterial invasion and survival. Joseph Angeloni et al. show that Caenorhabditis elegans can detect and are attracted to multiple signal molecules produced by the bacterium Vibrio cholerae, specifically the 3′,5′-cyclic diguanylate (c-di-GMP), even though this bacterium kills the host at a high rate. This study reveals how bacterial c-di-GMP may serve as a cue for C. elegans that they can use to detect food or alternatively, impair their immune response, which could facilitate bacterial invasion and survival.
Collapse
Affiliation(s)
- Joseph Angeloni
- Department of Biological Sciences, Clemson University, 132 Long Hall, Clemson, SC, 29634, USA
| | - Yuqing Dong
- Department of Biological Sciences, Clemson University, 132 Long Hall, Clemson, SC, 29634, USA.,Institute for Engaged Aging, Clemson University, 2037 Barre Hall, Clemson, SC, 29634, USA
| | - Zeneng Wang
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Ave, Cleveland, OH, 44195, USA
| | - Min Cao
- Department of Biological Sciences, Clemson University, 132 Long Hall, Clemson, SC, 29634, USA. .,Institute for Engaged Aging, Clemson University, 2037 Barre Hall, Clemson, SC, 29634, USA.
| |
Collapse
|
36
|
Diversity and classification of cyclic-oligonucleotide-based anti-phage signalling systems. Nat Microbiol 2020; 5:1608-1615. [PMID: 32839535 DOI: 10.1038/s41564-020-0777-y] [Citation(s) in RCA: 153] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 07/16/2020] [Indexed: 02/07/2023]
Abstract
Cyclic-oligonucleotide-based anti-phage signalling systems (CBASS) are a family of defence systems against bacteriophages (hereafter phages) that share ancestry with the cGAS-STING innate immune pathway in animals. CBASS systems are composed of an oligonucleotide cyclase, which generates signalling cyclic oligonucleotides in response to phage infection, and an effector that is activated by the cyclic oligonucleotides and promotes cell death. Cell death occurs before phage replication is completed, therefore preventing the spread of phages to nearby cells. Here, we analysed 38,000 bacterial and archaeal genomes and identified more than 5,000 CBASS systems, which have diverse architectures with multiple signalling molecules, effectors and ancillary genes. We propose a classification system for CBASS that groups systems according to their operon organization, signalling molecules and effector function. Four major CBASS types were identified, sharing at least six effector subtypes that promote cell death by membrane impairment, DNA degradation or other means. We observed evidence of extensive gain and loss of CBASS systems, as well as shuffling of effector genes between systems. We expect that our classification and nomenclature scheme will guide future research in the developing CBASS field.
Collapse
|
37
|
A MARTX Toxin rtxA Gene Is Controlled by Host Environmental Signals through a CRP-Coordinated Regulatory Network in Vibrio vulnificus. mBio 2020; 11:mBio.00723-20. [PMID: 32723914 PMCID: PMC7387792 DOI: 10.1128/mbio.00723-20] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
A MARTX toxin, RtxA, is an essential virulence factor of many pathogens, including Vibrio species. H-NS and HlyU repress and derepress, respectively, rtxA expression of a life-threatening pathogen, Vibrio vulnificus. We found that Lrp directly activates rtxA independently of H-NS and HlyU, and leucine inhibits the Lrp-mediated activation of rtxA. Furthermore, we demonstrated that CRP represses rtxA but derepresses in the presence of exogenous glucose. CRP represses rtxA not only directly by binding to upstream of rtxA but also indirectly by repressing lrp and hlyU. This is the first report of a regulatory network comprising CRP, Lrp, H-NS, and HlyU, which coordinates the rtxA expression in response to environmental signals such as leucine and glucose during infection. This elaborate regulatory network will enhance the fitness of V. vulnificus and contribute to its successful infection within the host. A multifunctional autoprocessing repeats-in-toxin (MARTX) toxin plays an essential role in the virulence of many pathogens, including a fulminating human pathogen Vibrio vulnificus. H-NS and HlyU repress and derepress expression of the MARTX toxin gene rtxA in V. vulnificus, respectively. However, little is known about other regulatory proteins and environmental signals involved in rtxA regulation. In this study, we found that a leucine-responsive regulatory protein (Lrp) activates rtxA by binding directly and specifically to the rtxA promoter, PrtxA. Phased hypersensitivity resulting from DNase I cleavage of the PrtxA regulatory region suggests that Lrp probably induces DNA bending in PrtxA. Lrp activates PrtxA independently of H-NS and HlyU, and leucine inhibits Lrp binding to PrtxA and reduces the Lrp-mediated activation. Furthermore, a cyclic AMP receptor protein (CRP) represses PrtxA, and exogenous glucose relieves the CRP-mediated repression. Biochemical and mutational analyses demonstrated that CRP binds directly and specifically to the upstream region of PrtxA, which presumably alters the DNA conformation in PrtxA and thus represses rtxA. Moreover, CRP represses expression of lrp and hlyU by binding directly to their upstream regions, forming coherent feed-forward loops with Lrp and HlyU. In conclusion, expression of rtxA is controlled by a regulatory network comprising CRP, Lrp, H-NS, and HlyU in response to changes in host environmental signals such as leucine and glucose. This collaborative regulation enables the elaborate expression of rtxA, thereby enhancing the fitness and pathogenesis of V. vulnificus during the course of infection.
Collapse
|
38
|
Joshi SR, Jagtap S, Basu B, Deobagkar DD, Ghosh P. Construction, analysis and validation of co-expression network to understand stress adaptation in Deinococcus radiodurans R1. PLoS One 2020; 15:e0234721. [PMID: 32579573 PMCID: PMC7314050 DOI: 10.1371/journal.pone.0234721] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 06/02/2020] [Indexed: 01/12/2023] Open
Abstract
Systems biology based approaches have been effectively utilized to mine high throughput data. In the current study, we have performed system-level analysis for Deinococcus radiodurans R1 by constructing a gene co-expression network based on several microarray datasets available in the public domain. This condition-independent network was constructed by Weighted Gene Co-expression Network Analysis (WGCNA) with 61 microarray samples from 9 different experimental conditions. We identified 13 co-expressed modules, of which, 11 showed functional enrichments of one or more pathway/s or biological process. Comparative analysis of differentially expressed genes and proteins from radiation and desiccation stress studies with our co-expressed modules revealed the association of cyan with radiation response. Interestingly, two modules viz darkgreen and tan was associated with radiation as well as desiccation stress responses. The functional analysis of these modules showed enrichment of pathways important for adaptation of radiation or desiccation stress. To decipher the regulatory roles of these stress responsive modules, we identified transcription factors (TFs) and then calculated a Biweight mid correlation between modules hub gene and the identified TFs. We obtained 7 TFs for radiation and desiccation responsive modules. The expressions of 3 TFs were validated in response to gamma radiation using qRT-PCR. Along with the TFs, selected close neighbor genes of two important TFs, viz., DR_0997 (CRP) and DR_2287 (AsnC family transcriptional regulator) in the darkgreen module were also validated. In our network, among 13 hub genes associated with 13 modules, the functionality of 5 hub genes which are annotated as hypothetical proteins (hypothetical hub genes) in D. radiodurans genome has been revealed. Overall the study provided a better insight of pathways and regulators associated with relevant DNA damaging stress response in D. radiodurans.
Collapse
Affiliation(s)
- Suraj R. Joshi
- Bioinformatics Centre, Savitribai Phule Pune University, Pune, India
- Molecular Biology Research Laboratory, Department of Zoology, Savitribai Phule Pune University, Pune, India
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, India
| | - Surabhi Jagtap
- Bioinformatics Centre, Savitribai Phule Pune University, Pune, India
| | - Bhakti Basu
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, India
| | - Deepti D. Deobagkar
- Molecular Biology Research Laboratory, Department of Zoology, Savitribai Phule Pune University, Pune, India
| | - Payel Ghosh
- Bioinformatics Centre, Savitribai Phule Pune University, Pune, India
- * E-mail: ,
| |
Collapse
|
39
|
Phenotype, Virulence and Immunogenicity of Edwardsiella piscicida Cyclic AMP Receptor Protein (Crp) Mutants in Catfish Host. Microorganisms 2020; 8:microorganisms8040517. [PMID: 32260465 PMCID: PMC7232391 DOI: 10.3390/microorganisms8040517] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 03/23/2020] [Accepted: 04/02/2020] [Indexed: 11/29/2022] Open
Abstract
Edwardsiella piscicida, a facultative aerobic pathogen belonging to the Enterobacteriaceae family, is the etiological agent of edwardsiellosis that causes significant economic loses in the aquaculture industry. cAMP receptor protein (CRP) is one of the most important transcriptional regulators, which can regulate large quantities of operons in different bacteria. Here we characterize the crp gene and report the effect of a crp deletion in E. piscicida. The crp-deficient mutant lost the capacity to utilize maltose, and showed significantly reduced motility due to the lack of flagella synthesis. We further constructed a ΔPcrp mutant to support that the phenotype above was caused by the crp deletion. Evidence obtained in fish serum killing assay and competitive infection assay strongly indicated that the inactivation of crp impaired the ability of E. piscicida to evade host immune clearance. More importantly, the virulence of the crp mutant was attenuated in both zebrafish and channel catfish, with reductions in mortality rates. In the end, we found that crp mutant could confer immune protection against E. piscicida infection to zebrafish and channel catfish, indicating its potential as a live attenuated vaccine.
Collapse
|
40
|
McLean K, Lee D, Holmes EA, Penewit K, Waalkes A, Ren M, Lee SA, Gasper J, Manoil C, Salipante SJ. Genomic Analysis Identifies Novel Pseudomonas aeruginosa Resistance Genes under Selection during Inhaled Aztreonam Therapy In Vivo. Antimicrob Agents Chemother 2019; 63:e00866-19. [PMID: 31285231 PMCID: PMC6709462 DOI: 10.1128/aac.00866-19] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 06/28/2019] [Indexed: 12/13/2022] Open
Abstract
Inhaled aztreonam is increasingly used for chronic Pseudomonas aeruginosa suppression in patients with cystic fibrosis (CF), but the potential for that organism to evolve aztreonam resistance remains incompletely explored. Here, we performed genomic analysis of clonally related pre- and posttreatment CF clinical isolate pairs to identify genes that are under positive selection during aztreonam therapy in vivo We identified 16 frequently mutated genes associated with aztreonam resistance, the most prevalent being ftsI and ampC, and 13 of which increased aztreonam resistance when introduced as single gene transposon mutants. Several previously implicated aztreonam resistance genes were found to be under positive selection in clinical isolates even in the absence of inhaled aztreonam exposure, indicating that other selective pressures in the cystic fibrosis airway can promote aztreonam resistance. Given its potential to confer plasmid-mediated resistance, we further characterized mutant ampC alleles and performed artificial evolution of ampC for maximal activity against aztreonam. We found that naturally occurring ampC mutants conferred variably increased resistance to aztreonam (2- to 64-fold) and other β-lactam agents but that its maximal evolutionary capacity for hydrolyzing aztreonam was considerably higher (512- to 1,024-fold increases) and was achieved while maintaining or increasing resistance to other drugs. These studies implicate novel chromosomal aztreonam resistance determinants while highlighting that different mutations are favored during selection in vivo and in vitro, show that ampC has a high maximal potential to hydrolyze aztreonam, and provide an approach to disambiguate mutations promoting specific resistance phenotypes from those more generally increasing bacterial fitness in vivo.
Collapse
Affiliation(s)
- Kathryn McLean
- Department of Laboratory Medicine, University of Washington School of Medicine, Seattle, Washington, USA
| | - Duankun Lee
- Department of Laboratory Medicine, University of Washington School of Medicine, Seattle, Washington, USA
| | - Elizabeth A Holmes
- Department of Laboratory Medicine, University of Washington School of Medicine, Seattle, Washington, USA
| | - Kelsi Penewit
- Department of Laboratory Medicine, University of Washington School of Medicine, Seattle, Washington, USA
| | - Adam Waalkes
- Department of Laboratory Medicine, University of Washington School of Medicine, Seattle, Washington, USA
| | - Mingxin Ren
- Department of Laboratory Medicine, University of Washington School of Medicine, Seattle, Washington, USA
| | - Samuel A Lee
- Department of Genome Sciences, University of Washington, Seattle, Washington, USA
| | - Joseph Gasper
- Department of Genome Sciences, University of Washington, Seattle, Washington, USA
| | - Colin Manoil
- Department of Genome Sciences, University of Washington, Seattle, Washington, USA
| | - Stephen J Salipante
- Department of Laboratory Medicine, University of Washington School of Medicine, Seattle, Washington, USA
| |
Collapse
|
41
|
Saleh S, Van Puyvelde S, Staes A, Timmerman E, Barbé B, Jacobs J, Gevaert K, Deborggraeve S. Salmonella Typhi, Paratyphi A, Enteritidis and Typhimurium core proteomes reveal differentially expressed proteins linked to the cell surface and pathogenicity. PLoS Negl Trop Dis 2019; 13:e0007416. [PMID: 31125353 PMCID: PMC6553789 DOI: 10.1371/journal.pntd.0007416] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 06/06/2019] [Accepted: 04/28/2019] [Indexed: 12/18/2022] Open
Abstract
Background Salmonella enterica subsp. enterica contains more than 2,600 serovars of which four are of major medical relevance for humans. While the typhoidal serovars (Typhi and Paratyphi A) are human-restricted and cause enteric fever, non-typhoidal Salmonella serovars (Typhimurium and Enteritidis) have a broad host range and predominantly cause gastroenteritis. Methodology/Principle findings We compared the core proteomes of Salmonella Typhi, Paratyphi A, Typhimurium and Enteritidis using contemporary proteomics. For each serovar, five clinical isolates (covering different geographical origins) and one reference strain were grown in vitro to the exponential phase. Levels of orthologous proteins quantified in all four serovars and within the typhoidal and non-typhoidal groups were compared and subjected to gene ontology term enrichment and inferred regulatory interactions. Differential expression of the core proteomes of the typhoidal serovars appears mainly related to cell surface components and, for the non-typhoidal serovars, to pathogenicity. Conclusions/Significance Our comparative proteome analysis indicated differences in the expression of surface proteins between Salmonella Typhi and Paratyphi A, and in pathogenesis-related proteins between Salmonella Typhimurium and Enteritidis. Our findings may guide future development of novel diagnostics and vaccines, as well as understanding of disease progression. With an estimated 20 million typhoid cases and an even higher number of non-typhoid cases the health burden caused by salmonellosis is huge. Salmonellosis is caused by the bacterial species Salmonella enterica and over 2500 different serovars exist, of which four are of major medical relevance for humans: Typhi and Paratyphi A cause typhoid fever while Typhimurium and Enteritidis are the dominant cause of non-typhoidal Salmonella infections. The proteome is the entire set of proteins that is expressed by a genome and the core proteome are all orthologous proteins detected in a given sample set. In this study we have investigated differential expression of the core proteomes of the Salmonella serovars Typhi, Paratyphi A, Typhimurium and Enteritidis, as well as the regulating molecules. Our comparative proteome analysis indicated differences in the expression of surface proteins between the serovars Typhi and Paratyphi A, and in pathogenesis-related proteins between Typhimurium and Enteritidis. Our findings in proteome-wide expression may guide the development of novel diagnostics and vaccines for Salmonella, as well as understanding of disease.
Collapse
Affiliation(s)
- Sara Saleh
- Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
- VIB Center for Medical Biotechnology, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Sandra Van Puyvelde
- Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - An Staes
- VIB Center for Medical Biotechnology, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Evy Timmerman
- VIB Center for Medical Biotechnology, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Barbara Barbé
- Department of Clinical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Jan Jacobs
- Department of Clinical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
- Department of Microbiology and Immunology, KU Leuven, Leuven, Belgium
| | - Kris Gevaert
- VIB Center for Medical Biotechnology, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Stijn Deborggraeve
- Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
- * E-mail:
| |
Collapse
|
42
|
Kasai T, Tomioka Y, Kouzuma A, Watanabe K. Overexpression of the adenylate cyclase gene cyaC facilitates current generation by Shewanella oneidensis in bioelectrochemical systems. Bioelectrochemistry 2019; 129:100-105. [PMID: 31153124 DOI: 10.1016/j.bioelechem.2019.05.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 05/18/2019] [Accepted: 05/19/2019] [Indexed: 12/26/2022]
Abstract
Electrochemically active bacteria (EAB) are capable of electrochemical interactions with electrodes via extracellular electron transfer (EET) pathways and serve as essential components in bioelectrochemical systems. Previous studies have suggested that EAB, such as Shewanella oneidensis MR-1, use cyclic AMP (cAMP) receptor proteins to coordinately regulate the expression of catabolic and EET-related genes, prompting us to hypothesize that the intracellular cAMP concentration is an important factor determining the electrochemical activities of EAB. The present study constructed an MR-1 mutant, cyaC-OE, that overexpressed cyaC, a gene encoding a membrane-bound class III adenylate cyclase, and examined its electrochemical and transcriptomic characteristics. We show that the intracellular cAMP concentration in cyaC-OE is more than five times that in wild-type MR-1, and that cya-OE generates approximately two-fold higher current in BES than the wild-type strain. In addition, the expression of genes involved in EET and anaerobic carbon catabolism is up-regulated in cya-OE compared to that in the wild-type strain. These results suggest that increasing the intracellular cAMP level is a promising approach for constructing EAB with high catabolic and electrochemical activities.
Collapse
Affiliation(s)
- Takuya Kasai
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Yuki Tomioka
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Atsushi Kouzuma
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan.
| | - Kazuya Watanabe
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| |
Collapse
|
43
|
Christensen DG, Baumgartner JT, Xie X, Jew KM, Basisty N, Schilling B, Kuhn ML, Wolfe AJ. Mechanisms, Detection, and Relevance of Protein Acetylation in Prokaryotes. mBio 2019; 10:e02708-18. [PMID: 30967470 PMCID: PMC6456759 DOI: 10.1128/mbio.02708-18] [Citation(s) in RCA: 107] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Posttranslational modification of a protein, either alone or in combination with other modifications, can control properties of that protein, such as enzymatic activity, localization, stability, or interactions with other molecules. N-ε-Lysine acetylation is one such modification that has gained attention in recent years, with a prevalence and significance that rival those of phosphorylation. This review will discuss the current state of the field in bacteria and some of the work in archaea, focusing on both mechanisms of N-ε-lysine acetylation and methods to identify, quantify, and characterize specific acetyllysines. Bacterial N-ε-lysine acetylation depends on both enzymatic and nonenzymatic mechanisms of acetylation, and recent work has shed light into the regulation of both mechanisms. Technological advances in mass spectrometry have allowed researchers to gain insight with greater biological context by both (i) analyzing samples either with stable isotope labeling workflows or using label-free protocols and (ii) determining the true extent of acetylation on a protein population through stoichiometry measurements. Identification of acetylated lysines through these methods has led to studies that probe the biological significance of acetylation. General and diverse approaches used to determine the effect of acetylation on a specific lysine will be covered.
Collapse
Affiliation(s)
- D G Christensen
- Department of Microbiology and Immunology, Loyola University Chicago, Health Sciences Division, Stritch School of Medicine, Maywood, Illinois, USA
| | - J T Baumgartner
- Department of Chemistry and Biochemistry, San Francisco State University, San Francisco, California, USA
| | - X Xie
- Buck Institute for Research on Aging, Novato, California, USA
| | - K M Jew
- Department of Chemistry and Biochemistry, San Francisco State University, San Francisco, California, USA
| | - N Basisty
- Buck Institute for Research on Aging, Novato, California, USA
| | - B Schilling
- Buck Institute for Research on Aging, Novato, California, USA
| | - M L Kuhn
- Department of Chemistry and Biochemistry, San Francisco State University, San Francisco, California, USA
| | - A J Wolfe
- Department of Microbiology and Immunology, Loyola University Chicago, Health Sciences Division, Stritch School of Medicine, Maywood, Illinois, USA
| |
Collapse
|
44
|
Sycrp2 Is Essential for Twitching Motility in the Cyanobacterium Synechocystis sp. Strain PCC 6803. J Bacteriol 2018; 200:JB.00436-18. [PMID: 30104238 DOI: 10.1128/jb.00436-18] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 08/10/2018] [Indexed: 01/13/2023] Open
Abstract
Two cAMP receptor proteins (CRPs), Sycrp1 (encoded by sll1371) and Sycrp2 (encoded by sll1924), exist in the cyanobacterium Synechocystis sp. strain PCC 6803. Previous studies have demonstrated that Sycrp1 has binding affinity for cAMP and is involved in motility by regulating the formation of pili. However, the function of Sycrp2 remains unknown. Here, we report that sycrp2 disruption results in the loss of motility of Synechocystis sp. PCC 6803, and that the phenotype can be recovered by reintroducing the sycrp2 gene into the genome of sycrp2-disrupted mutants. Electron microscopy showed that the sycrp2-disrupted mutant lost the pilus apparatus on the cell surface, resulting in a lack of cell motility. Furthermore, the transcript level of the pilA9-pilA11 operon (essential for cell motility and regulated by the cAMP receptor protein Sycrp1) was markedly decreased in sycrp2-disrupted mutants compared with the wild-type strain. Moreover, yeast two-hybrid analysis and a pulldown assay demonstrated that Sycrp2 interacted with Sycrp1 to form a heterodimer and that Sycrp1 and Sycrp2 interacted with themselves to form homodimers. Gel mobility shift assays revealed that Sycrp1 specifically binds to the upstream region of pilA9 Together, these findings indicate that in Synechocystis sp. PCC 6803, Sycrp2 regulates the formation of pili and cell motility by interacting with Sycrp1.IMPORTANCE cAMP receptor proteins (CRPs) are widely distributed in cyanobacteria and play important roles in regulating gene expression. Although many cyanobacterial species have two cAMP receptor-like proteins, the functional links between them are unknown. Here, we found that Sycrp2 in the cyanobacterium Synechocystis sp. strain PCC 6803 is essential for twitching motility and that it interacts with Sycrp1, a known cAMP receptor protein involved with twitching motility. Our findings indicate that the two cAMP receptor-like proteins in cyanobacteria do not have functional redundancy but rather work together.
Collapse
|
45
|
Microbial Cell Factories à la Carte: Elimination of Global Regulators Cra and ArcA Generates Metabolic Backgrounds Suitable for the Synthesis of Bioproducts in Escherichia coli. Appl Environ Microbiol 2018; 84:AEM.01337-18. [PMID: 30030227 DOI: 10.1128/aem.01337-18] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 07/16/2018] [Indexed: 11/20/2022] Open
Abstract
Manipulation of global regulators is one of the strategies used for the construction of bacterial strains suitable for the synthesis of bioproducts. However, the pleiotropic effects of these regulators can vary under different conditions and are often strain dependent. This study analyzed the effects of ArcA, CreC, Cra, and Rob using single deletion mutants of the well-characterized and completely sequenced Escherichia coli strain BW25113. Comparison of the effects of each regulator on the synthesis of major extracellular metabolites, tolerance to several compounds, and synthesis of native and nonnative bioproducts under different growth conditions allowed the discrimination of the particular phenotypes that can be attributed to the individual mutants and singled out Cra and ArcA as the regulators with the most important effects on bacterial metabolism. These data were used to identify the most suitable backgrounds for the synthesis of the reduced bioproducts succinate and 1,3-propanediol (1,3-PDO). The Δcra mutant was further modified to enhance succinate synthesis by the addition of enzymes that increase NADH and CO2 availability, achieving an 80% increase compared to the parental strain. Production of 1,3-PDO in the ΔarcA mutant was optimized by overexpression of PhaP, which increased more than twice the amount of the diol compared to the wild type in a semidefined medium using glycerol, resulting in 24 g · liter-1 of 1,3-PDO after 48 h, with a volumetric productivity of 0.5 g · liter-1 h-1 IMPORTANCE Although the effects of many global regulators, especially ArcA and Cra, have been studied in Escherichia coli, the metabolic changes caused by the absence of global regulators have been observed to differ between strains. This scenario complicates the identification of the individual effects of the regulators, which is essential for the design of metabolic engineering strategies. The genome of Escherichia coli BW25113 has been completely sequenced and does not contain additional mutations that could mask or interfere with the effects of the global regulator mutations. The uniform genetic background of the Keio collection mutants enabled the characterization of the physiological consequences of altered carbon and redox fluxes caused by each global regulator deletion, eliminating possible strain-dependent results. As a proof of concept, Δcra and ΔarcA mutants were subjected to further manipulations to obtain large amounts of succinate and 1,3-PDO, demonstrating that the metabolic backgrounds of the mutants were suitable for the synthesis of bioproducts.
Collapse
|
46
|
Direct activation of a phospholipase by cyclic GMP-AMP in El Tor Vibrio cholerae. Proc Natl Acad Sci U S A 2018; 115:E6048-E6055. [PMID: 29891656 PMCID: PMC6042076 DOI: 10.1073/pnas.1801233115] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Second messengers are employed by all organisms to regulate fundamental behaviors, including biofilm formation, motility, metabolism, and pathogenesis in bacteria. We have identified a phospholipase in the El Tor Vibrio cholerae biotype, responsible for the current cholera pandemic, that is directly activated by the second messenger 3′, 3′-cyclic GMP-AMP (cGAMP). Discovery of this proteinaceous bacterial cGAMP effector sheds light on the functions and basic principles of cGAMP signaling. Both this phospholipase and the cGAMP synthase are encoded within the VSP-1 pathogenicity island, unique to the El Tor biotype, and our findings assign a biochemical function to VSP-1 that may contribute to the epidemiological success of El Tor V. cholerae. Sensing and responding to environmental changes is essential for bacteria to adapt and thrive, and nucleotide-derived second messengers are central signaling systems in this process. The most recently identified bacterial cyclic dinucleotide second messenger, 3′, 3′-cyclic GMP-AMP (cGAMP), was first discovered in the El Tor biotype of Vibrio cholerae. The cGAMP synthase, DncV, is encoded on the VSP-1 pathogenicity island, which is found in all El Tor isolates that are responsible for the current seventh pandemic of cholera but not in the classical biotype. We determined that unregulated production of DncV inhibits growth in El Tor V. cholerae but has no effect on the classical biotype. This cGAMP-dependent phenotype can be suppressed by null mutations in vc0178 immediately 5′ of dncV in VSP-1. VC0178 [renamed as cGAMP-activated phospholipase in Vibrio (CapV)] is predicted to be a patatin-like phospholipase, and coexpression of capV and dncV is sufficient to induce growth inhibition in classical V. cholerae and Escherichia coli. Furthermore, cGAMP binds to CapV and directly activates its hydrolase activity in vitro. CapV activated by cGAMP in vivo degrades phospholipids in the cell membrane, releasing 16:1 and 18:1 free fatty acids. Together, we demonstrate that cGAMP activates CapV phospholipase activity to target the cell membrane and suggest that acquisition of this second messenger signaling pathway may contribute to the emergence of the El Tor biotype as the etiological agent behind the seventh cholera pandemic.
Collapse
|
47
|
Blain-Hartung M, Rockwell NC, Moreno MV, Martin SS, Gan F, Bryant DA, Lagarias JC. Cyanobacteriochrome-based photoswitchable adenylyl cyclases (cPACs) for broad spectrum light regulation of cAMP levels in cells. J Biol Chem 2018; 293:8473-8483. [PMID: 29632072 DOI: 10.1074/jbc.ra118.002258] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 04/02/2018] [Indexed: 12/18/2022] Open
Abstract
Class III adenylyl cyclases generate the ubiquitous second messenger cAMP from ATP often in response to environmental or cellular cues. During evolution, soluble adenylyl cyclase catalytic domains have been repeatedly juxtaposed with signal-input domains to place cAMP synthesis under the control of a wide variety of these environmental and endogenous signals. Adenylyl cyclases with light-sensing domains have proliferated in photosynthetic species depending on light as an energy source, yet are also widespread in nonphotosynthetic species. Among such naturally occurring light sensors, several flavin-based photoactivated adenylyl cyclases (PACs) have been adopted as optogenetic tools to manipulate cellular processes with blue light. In this report, we report the discovery of a cyanobacteriochrome-based photoswitchable adenylyl cyclase (cPAC) from the cyanobacterium Microcoleus sp. PCC 7113. Unlike flavin-dependent PACs, which must thermally decay to be deactivated, cPAC exhibits a bistable photocycle whose adenylyl cyclase could be reversibly activated and inactivated by blue and green light, respectively. Through domain exchange experiments, we also document the ability to extend the wavelength-sensing specificity of cPAC into the near IR. In summary, our work has uncovered a cyanobacteriochrome-based adenylyl cyclase that holds great potential for the design of bistable photoswitchable adenylyl cyclases to fine-tune cAMP-regulated processes in cells, tissues, and whole organisms with light across the visible spectrum and into the near IR.
Collapse
Affiliation(s)
- Matthew Blain-Hartung
- From the Department of Molecular and Cellular Biology, University of California, Davis, California 95616
| | - Nathan C Rockwell
- From the Department of Molecular and Cellular Biology, University of California, Davis, California 95616
| | - Marcus V Moreno
- From the Department of Molecular and Cellular Biology, University of California, Davis, California 95616
| | - Shelley S Martin
- From the Department of Molecular and Cellular Biology, University of California, Davis, California 95616
| | - Fei Gan
- the Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, and
| | - Donald A Bryant
- the Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, and.,the Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana 59717
| | - J Clark Lagarias
- From the Department of Molecular and Cellular Biology, University of California, Davis, California 95616,
| |
Collapse
|
48
|
Repression of VvpM Protease Expression by Quorum Sensing and the cAMP-cAMP Receptor Protein Complex in Vibrio vulnificus. J Bacteriol 2018; 200:JB.00526-17. [PMID: 29339417 DOI: 10.1128/jb.00526-17] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 01/10/2018] [Indexed: 12/13/2022] Open
Abstract
Septicemia-causing Vibrio vulnificus produces at least three exoproteases, VvpE, VvpS, and VvpM, all of which participate in interactions with human cells. Expression of VvpE and VvpS is induced in the stationary phase by multiple transcription factors, including sigma factor S, SmcR, and the cAMP-cAMP receptor protein (cAMP-CRP) complex. Distinct roles of VvpM, such as induction of apoptosis, lead us to hypothesize VvpM expression is different from that of the other exoproteases. Its transcription, which was found to be independent of sigma S, is induced at the early exponential phase and then becomes negligible upon entry into the stationary phase. SmcR and CRP were studied regarding the control of vvpM expression. Transcription of vvpM was repressed by SmcR and cAMP-CRP complex individually, which specifically bound to the regions -2 to +20 and +6 to +27, respectively, relative to the vvpM transcription initiation site. Derepression of vvpM gene expression was 10- to 40-fold greater in an smcR crp double mutant than in single-gene mutants. Therefore, these results show that the expression of V. vulnificus exoproteases is differentially regulated, and in this way, distinct proteases can engage in specific interactions with a host.IMPORTANCE An opportunistic human pathogen, Vibrio vulnificus produces multiple extracellular proteases that are involved in diverse interactions with a host. The total exoproteolytic activity is detected mainly in the supernatants of the high-cell-density cultures. However, some proteolytic activity derived from a metalloprotease, VvpM, was present in the supernatants of the low-cell-density cultures sampled at the early growth period. In this study, we present the regulatory mechanism for VvpM expression via repression by at least two transcription factors. This type of transcriptional regulation is the exact opposite of those for expression of the other V. vulnificus exoproteases. Differential regulation of each exoprotease's production then facilitates the pathogen's participation in the distinct interactions with a host.
Collapse
|
49
|
Cyclic AMP Regulates Bacterial Persistence through Repression of the Oxidative Stress Response and SOS-Dependent DNA Repair in Uropathogenic Escherichia coli. mBio 2018; 9:mBio.02144-17. [PMID: 29317513 PMCID: PMC5760743 DOI: 10.1128/mbio.02144-17] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Bacterial persistence is a transient, nonheritable physiological state that provides tolerance to bactericidal antibiotics. The stringent response, toxin-antitoxin modules, and stochastic processes, among other mechanisms, play roles in this phenomenon. How persistence is regulated is relatively ill defined. Here we show that cyclic AMP, a global regulator of carbon catabolism and other core processes, is a negative regulator of bacterial persistence in uropathogenic Escherichia coli, as measured by survival after exposure to a β-lactam antibiotic. This phenotype is regulated by a set of genes leading to an oxidative stress response and SOS-dependent DNA repair. Thus, persister cells tolerant to cell wall-acting antibiotics must cope with oxidative stress and DNA damage and these processes are regulated by cyclic AMP in uropathogenic E. coli. Bacterial persister cells are important in relapsing infections in patients treated with antibiotics and also in the emergence of antibiotic resistance. Our results show that in uropathogenic E. coli, the second messenger cyclic AMP negatively regulates persister cell formation, since in its absence much more persister cells form that are tolerant to β-lactams antibiotics. We reveal the mechanism to be decreased levels of reactive oxygen species, specifically hydroxyl radicals, and SOS-dependent DNA repair. Our findings suggest that the oxidative stress response and DNA repair are relevant pathways to target in the design of persister-specific antibiotic compounds.
Collapse
|
50
|
Kasai T, Kouzuma A, Watanabe K. CpdA is involved in amino acid metabolism in Shewanella oneidensis MR-1. Biosci Biotechnol Biochem 2017; 82:166-172. [PMID: 29235426 DOI: 10.1080/09168451.2017.1413326] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Cyclic 3',5'-adenosine monophosphate (cAMP) phosphodiesterase (CPD) is an enzyme that catalyzes the hydrolysis of cAMP, a signaling molecule affecting diverse cellular and metabolic processes in bacteria. Some CPDs are also known to function in cAMP-independent manners, while their physiological roles remain largely unknown. Here, we investigated physiological roles of CPD in Shewanella oneidensis MR-1, a model environmental bacterium, and report that CPD is involved in amino-acid metabolism. We found that a CPD-deficient mutant of MR-1 (ΔcpdA) showed decreased expression of genes for the synthesis of methionine, S-adenosylmethionine, and histidine and required these three compounds to grow in minimal media. Interestingly, deletion of adenylate cyclases in ΔcpdA did not restore the ability to grow in minimal media, indicating that the amino acid requirements were not due to the accumulation of cAMP. These results suggest that CPD is involved in the regulation of amino acid metabolism in MR-1 in a cAMP-independent manner.
Collapse
Affiliation(s)
- Takuya Kasai
- a School of Life Sciences , Tokyo University of Pharmacy and Life Sciences , Tokyo , Japan
| | - Atsushi Kouzuma
- a School of Life Sciences , Tokyo University of Pharmacy and Life Sciences , Tokyo , Japan
| | - Kazuya Watanabe
- a School of Life Sciences , Tokyo University of Pharmacy and Life Sciences , Tokyo , Japan
| |
Collapse
|