1
|
Noli Truant S, Redolfi DM, Sarratea MB, Malchiodi EL, Fernández MM. Superantigens, a Paradox of the Immune Response. Toxins (Basel) 2022; 14:toxins14110800. [PMID: 36422975 PMCID: PMC9692936 DOI: 10.3390/toxins14110800] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/27/2022] [Accepted: 10/27/2022] [Indexed: 11/19/2022] Open
Abstract
Staphylococcal enterotoxins are a wide family of bacterial exotoxins with the capacity to activate as much as 20% of the host T cells, which is why they were called superantigens. Superantigens (SAgs) can cause multiple diseases in humans and cattle, ranging from mild to life-threatening infections. Almost all S. aureus isolates encode at least one of these toxins, though there is no complete knowledge about how their production is triggered. One of the main problems with the available evidence for these toxins is that most studies have been conducted with a few superantigens; however, the resulting characteristics are attributed to the whole group. Although these toxins share homology and a two-domain structure organization, the similarity ratio varies from 20 to 89% among different SAgs, implying wide heterogeneity. Furthermore, every attempt to structurally classify these proteins has failed to answer differential biological functionalities. Taking these concerns into account, it might not be appropriate to extrapolate all the information that is currently available to every staphylococcal SAg. Here, we aimed to gather the available information about all staphylococcal SAgs, considering their functions and pathogenicity, their ability to interact with the immune system as well as their capacity to be used as immunotherapeutic agents, resembling the two faces of Dr. Jekyll and Mr. Hyde.
Collapse
|
2
|
Hamdy A, Leonardi A. Superantigens and SARS-CoV-2. Pathogens 2022; 11:390. [PMID: 35456065 PMCID: PMC9026686 DOI: 10.3390/pathogens11040390] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/03/2022] [Accepted: 03/22/2022] [Indexed: 12/31/2022] Open
Abstract
It has been posited SARS-CoV-2 contains at least one unique superantigen-like motif not found in any other SARS or endemic coronaviruses. Superantigens are potent antigens that can send the immune system into overdrive. SARS-CoV-2 causes many of the biological and clinical consequences of a superantigen, and, in the context of reinfection and waning immunity, it is important to better understand the impact of a widely circulating, airborne pathogen that may be a superantigen, superantigen-like or trigger a superantigenic host response. Urgent research is needed to better understand the long-term risks being taken by governments whose policies enable widespread transmission of a potential superantigenic pathogen, and to more clearly define the vaccination and public health policies needed to protect against the consequences of repeat exposure to the pathogen.
Collapse
Affiliation(s)
- Adam Hamdy
- Panres Pandemic Research, Newport TF10 8PG, UK
| | - Anthony Leonardi
- Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA;
| |
Collapse
|
3
|
Schietroma M, Pessia B, Colozzi S, Romano L, Vicentini V, Giuliani A, Recchia CL, Carlei F, Amicucci G. HLA-DR (cellular and soluble) and inflammatory serum markers in patients after trauma: can they predict outcome? Chirurgia (Bucur) 2019. [DOI: 10.23736/s0394-9508.18.04890-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
4
|
Nakamura A, Ikeda K, Hamaoka K. Aetiological Significance of Infectious Stimuli in Kawasaki Disease. Front Pediatr 2019; 7:244. [PMID: 31316950 PMCID: PMC6611380 DOI: 10.3389/fped.2019.00244] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Accepted: 05/29/2019] [Indexed: 01/23/2023] Open
Abstract
Kawasaki disease (KD) is a pediatric vasculitis syndrome that is often involves coronary artery lesions (e. g., coronary artery aneurysms). Although its causal factors and entire pathogenesis remain elusive, the available evidence indicates that the pathogenesis of KD is closely associated with dysregulation of immune responses to various viruses or microbes. In this short review, we address several essential aspects of the etiology of KD with respect to the immune response to infectious stimuli: 1) the role of viral infections, 2) the role of bacterial infections and the superantigen hypothesis, 3) involvement of innate immune response including pathogens/microbe-associated molecular patterns and complement pathways, and 4) the influence of genetic background on the response to infectious stimuli. Based on the clinical and experimental evidence, we discuss the possibility that a wide range of microbes and viruses could cause KD through common and distinct immune processes.
Collapse
Affiliation(s)
- Akihiro Nakamura
- Central Research Laboratory, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Kazuyuki Ikeda
- Department of Pediatrics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Kenji Hamaoka
- Pediatric Cardiology and Kawasaki Disease Center, Uji-Tokushukai Medical Center, Kyoto, Japan.,Faculty of Life and Medical Sciences, Doshisha University, Kyoto, Japan
| |
Collapse
|
5
|
Fichtner M, Dreyling M, Binder M, Trepel M. The role of B cell antigen receptors in mantle cell lymphoma. J Hematol Oncol 2017; 10:164. [PMID: 29041946 PMCID: PMC5646121 DOI: 10.1186/s13045-017-0533-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 10/09/2017] [Indexed: 12/15/2022] Open
Abstract
Mantle cell lymphoma (MCL) is characterized by an aggressive clinical course and secondary resistance to currently available therapies in most cases. Therefore, despite recent advances in the treatment of this disease, it is still considered to be incurable in the majority of cases. MCL B cells retain their B cell antigen receptor (BCR) expression during and after neoplastic transformation. BCRs in MCL show distinct patterns of antigen selection and ongoing BCR signaling. However, little is known about the involved antigens and the mechanisms leading to lymphomagenesis and lymphoma progression in MCL. Recent preclinical and clinical studies have established a crucial role of the BCR and the potential of inhibiting its signaling in this disease. This has established the B cell antigen receptor signaling cascade as a very promising therapeutic target to improve outcome in MCL alone or in combination with chemo-immunotherapy in recent years.
Collapse
Affiliation(s)
- Michael Fichtner
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, St. Stephen's Green, Dublin 2, Ireland.,Department of Oncology and Hematology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Martin Dreyling
- Department of Medicine III, University Hospital LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - Mascha Binder
- Department of Oncology and Hematology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Martin Trepel
- Department of Oncology and Hematology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany. .,Department of Hematology and Oncology, Augsburg Medical Center, Stenglinstr. 2, 86156, Augsburg, Germany.
| |
Collapse
|
6
|
Nomizo A, Postol E, de Alencar R, Cardillo F, Mengel J. Natural killer T cells are required for the development of a superantigen-driven T helper type 2 immune response in mice. Immunology 2005; 116:233-44. [PMID: 16162272 PMCID: PMC1817822 DOI: 10.1111/j.1365-2567.2005.02215.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
We show, here, that one single injection or weekly injections of staphylococcal enterotoxin B (SEB), starting in 1-day-old newborn mice, induced a powerful immune response with a T helper type 2 (Th2) pattern, as judged by the isotype and cytokine profile, with the production of large amounts of SEB-specific immunoglobulin G1 (IgG1), detectable levels of SEB-specific IgE and increased production of interleukin-4 by spleen cells. These protocols also induced an increase in the levels of total IgE in the serum. Memory of SEB was transferred to secondary recipients by using total spleen cells from primed animals. The secondary humoral response in transferred mice was diminished if spleen cells from SEB-treated mice were previously depleted of CD3+ or Vbeta8+ T cells or NK1.1+ cells. In vivo depletion of NK1.1+ cells in adult mice resulted in a marked reduction in the SEB-specific antibody response in both the primary and secondary immune responses. Additionally, purified NK1.1+ T cells were able to perform SEB-specific helper B-cell actions in vitro and in vivo. These results suggest that NK1.1+ T cells are required for the full development of humoral immunological memory, whilst making neonatal tolerance to SEB unachievable.
Collapse
MESH Headings
- Adoptive Transfer
- Animals
- Animals, Newborn
- Antibodies, Bacterial/biosynthesis
- Antigens/analysis
- Antigens, Ly
- Antigens, Surface
- Cells, Cultured
- Enterotoxins/immunology
- Enzyme-Linked Immunosorbent Assay/methods
- Immune Tolerance
- Immunoglobulin E/biosynthesis
- Immunoglobulin G/biosynthesis
- Immunologic Memory
- Interleukin-4/biosynthesis
- Killer Cells, Natural/immunology
- Lectins, C-Type
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- NK Cell Lectin-Like Receptor Subfamily B
- Proteins/analysis
- Spleen/immunology
- Spleen/transplantation
- Superantigens/immunology
- T-Lymphocyte Subsets/immunology
- T-Lymphocytes, Helper-Inducer/immunology
- Th2 Cells/immunology
Collapse
Affiliation(s)
- Auro Nomizo
- Department of Clinical Analysis, Toxicology and Bromatology, Faculty of Pharmaceutical Sciences of Ribeirão Preto, University of São PauloRibeirão Preto, SP, Brazil
| | - Edilberto Postol
- Department of Immunology, Institute of Biomedical Sciences, University of São PauloSão Paulo, SP, Brazil
| | - Raquel de Alencar
- Department of Immunology, Institute of Biomedical Sciences, University of São PauloSão Paulo, SP, Brazil
| | - Fabíola Cardillo
- Department of Immunology, Institute of Biomedical Sciences, University of São PauloSão Paulo, SP, Brazil
| | - José Mengel
- Department of Immunology, Institute of Biomedical Sciences, University of São PauloSão Paulo, SP, Brazil
| |
Collapse
|
7
|
Hemalatha V, Srikanth P, Mallika M. SUPERANTIGENS – CONCEPTS, CLINICAL DISEASE AND THERAPY. Indian J Med Microbiol 2004. [DOI: 10.1016/s0255-0857(21)02764-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
8
|
Sutkowski N, Chen G, Calderon G, Huber BT. Epstein-Barr virus latent membrane protein LMP-2A is sufficient for transactivation of the human endogenous retrovirus HERV-K18 superantigen. J Virol 2004; 78:7852-60. [PMID: 15220463 PMCID: PMC434102 DOI: 10.1128/jvi.78.14.7852-7860.2004] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Superantigens are microbial proteins that strongly stimulate T cells. We described previously that the Epstein-Barr virus (EBV) transactivates a superantigen encoded by the human endogenous retrovirus, HERV-K18. We now report that the transactivation is dependent upon the EBV latent cycle proteins. Moreover, LMP-2A is sufficient for induction of HERV-K18 superantigen activity.
Collapse
Affiliation(s)
- Natalie Sutkowski
- Department of Pathology, Tufts University School of Medicine, Boston, MA 02111, USA
| | | | | | | |
Collapse
|
9
|
Sester M, Sester U, Gärtner B, Kubuschok B, Girndt M, Meyerhans A, Köhler H. Sustained high frequencies of specific CD4 T cells restricted to a single persistent virus. J Virol 2002; 76:3748-55. [PMID: 11907214 PMCID: PMC136081 DOI: 10.1128/jvi.76.8.3748-3755.2002] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Replication of cytomegalovirus (CMV) is largely controlled by the cellular arm of the immune response. In this study the CMV-specific CD4 T-cell response was characterized in a cohort of apparently healthy individuals. In 11% of all individuals, extremely high frequencies, between 10 and 40%, were found. High-level frequencies of CMV-specific CD4 T cells persisted over several months and were not the result of an acute infection. Specific T cells were oligoclonal and were phenotypically and functionally characterized as mature effector cells, with both cytokine-secreting and proliferative potential. These high-level frequencies do not seem to compromise the immune response towards heterologous infections, and no signs of immunopathology were observed. Whereas a large temporary expansion of virus-specific T cells is well known to occur during acute infection, we now show that extremely high frequencies of virus-specific T cells may continuously exist in chronic CMV infection without overtly compromising the remaining protective immunity.
Collapse
Affiliation(s)
- Martina Sester
- Medical Department IV, Institute of Medical Microbiology and Hygiene, University of the Saarland, D-66421 Homburg, Germany
| | | | | | | | | | | | | |
Collapse
|
10
|
Dalwadi H, Wei B, Kronenberg M, Sutton CL, Braun J. The Crohn's disease-associated bacterial protein I2 is a novel enteric t cell superantigen. Immunity 2001; 15:149-58. [PMID: 11485746 DOI: 10.1016/s1074-7613(01)00164-9] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
An aberrant T cell response to enteric bacteria is important in inflammatory bowel disease. However, the identity of relevant microbial antigens is unknown. Here, we report the presence of I2, a Crohn's disease-associated microbial gene, in the murine intestine. The I2 protein induced a proliferative and IL-10 response by CD4(+) T cells from unimmunized mice. The I2 response was dependent on MHC class II-mediated recognition but did not require antigen processing. Selective activation was observed for the TCR-Vbeta5 subpopulation. These findings indicate that the I2 protein is a new class of T cell superantigen and suggest that colonization by the I2 microorganism in susceptible hosts may provide a superantigenic stimulus pertinent to Crohn's disease pathogenesis.
Collapse
Affiliation(s)
- H Dalwadi
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, School of Medicine, Los Angeles, CA 90095, USA
| | | | | | | | | |
Collapse
|
11
|
Abstract
Superantigens are highly potent immune stimulators with a unique ability to interact simultaneously with MHC class II molecules and T cell receptors, forming a trimolecular complex that induces profound T-cell proliferation and massive cytokine production. Recent structural studies have provided a wealth of information regarding these complex interactions, and it is now emerging that, despite their common 3-D architecture, superantigens are able to crosslink MHC class II molecules and T cell receptors in a variety of ways.
Collapse
Affiliation(s)
- A C Papageorgiou
- are in the Dept of Biology and Biochemistry, University of Bath, Claverton Down, Bath, UK BA2 7AY
| | | |
Collapse
|
12
|
Abstract
Theileria parva and T. annulata provide intriguing models for the study of parasite-host interactions. Both parasites possess the unique property of being able to transform the cells they infect; T. parva transforms T and B cells, whereas T. annulata affects B cells and monocytes/macrophages. Parasitized cells do not require antigenic stimulation or exogenous growth factors and acquire the ability to proliferate continuously. In vivo, parasitized cells undergo clonal expansion and infiltrate both lymphoid and non-lymphoid tissues of the infected host. Theileria-induced transformation is entirely reversible and is accompanied by the expression of a wide range of different lymphokines and cytokines, some of which may contribute to proliferation or may enhance spread and survival of the parasitized cell in the host. The presence of the parasite in the host-cell cytoplasm modulates the state of activation of a number of signal transduction pathways. This, in turn, leads to the activation of transcription factors, including nuclear factor-kappa B, which appear to be essential for the survival of Theileria-transformed T cells.
Collapse
Affiliation(s)
- D Dobbelaere
- Department of Molecular Pathology, University of Berne, Switzerland.
| | | |
Collapse
|
13
|
Barnett A, Mustafa F, Wrona TJ, Lozano M, Dudley JP. Expression of mouse mammary tumor virus superantigen mRNA in the thymus correlates with kinetics of self-reactive T-cell loss. J Virol 1999; 73:6634-45. [PMID: 10400761 PMCID: PMC112748 DOI: 10.1128/jvi.73.8.6634-6645.1999] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mouse mammary tumor virus (MMTV) encodes a superantigen (Sag) that is expressed at the surface of antigen-presenting cells in conjunction with major histocompatibility complex (MHC) type II molecules. The Sag-MHC complex is recognized by entire subsets of T cells, leading to cytokine release and amplification of infected B and T cells that carry milk-borne MMTV to the mammary gland. Expression of Sag proteins from endogenous MMTV proviruses carried in the mouse germ line usually results in the deletion of self-reactive T cells during negative selection in the thymus and the elimination of T cells required for infection by specific milk-borne MMTVs. However, other endogenous MMTVs are unable to eliminate Sag-reactive T cells in newborn mice and cause partial loss of reactive T cells in adults. To investigate the kinetics of Sag-reactive T-cell deletion, backcross mice that contain single or multiple MMTVs were screened by a novel PCR assay designed to distinguish among highly related MMTV strains. Mice that contained Mtv-17 alone showed slow kinetics of reactive T-cell loss that involved the CD4(+), but not the CD8(+), subset. Deletion of CD4(+) or CD8(+) T cells reactive with Mtv-17 Sag was not detected in thymocytes. Slow kinetics of peripheral T-cell deletion by Mtv-17 Sag also was accompanied by failure to detect Mtv-17 sag-specific mRNA in the thymus, despite detectable expression in other tissues, such as spleen. Together, these data suggest that Mtv-17 Sag causes peripheral, rather than intrathymic, deletion of T cells. Interestingly, the Mtv-8 provirus caused partial deletion of CD4(+)Vbeta12(+) cells in the thymus, but other T-cell subsets appeared to be deleted only in the periphery. Our data have important implications for the level of antigen expression required for elimination of self-reactive T cells. Moreover, these experiments suggest that mice expressing endogenous MMTVs that lead to slow kinetics of T-cell deletion will be susceptible to infection by milk-borne MMTVs with the same Sag specificity.
Collapse
Affiliation(s)
- A Barnett
- Department of Microbiology and Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas 78712, USA
| | | | | | | | | |
Collapse
|
14
|
Ditschkowski M, Kreuzfelder E, Rebmann V, Ferencik S, Majetschak M, Schmid EN, Obertacke U, Hirche H, Schade UF, Grosse-Wilde H. HLA-DR expression and soluble HLA-DR levels in septic patients after trauma. Ann Surg 1999; 229:246-54. [PMID: 10024107 PMCID: PMC1191638 DOI: 10.1097/00000658-199902000-00013] [Citation(s) in RCA: 141] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
OBJECTIVE To determine if cellular and soluble HLA-DR molecules may be relevant in severely injured patients for the development of gram-positive or gram-negative sepsis. SUMMARY BACKGROUND DATA HLA-DR molecules play a central role in the specific immune response to infection. The reduced HLA-DR expression on monocytes is considered to correlate with infectious complications and the development of sepsis. Data on the role of HLA-DR expression on T cells and soluble HLA-DR molecules are rare. METHODS HLA-DR expression on monocytes and T cells was measured by flow cytometry. Plasma levels of soluble HLA-DR were studied by enzyme-linked immunosorbent assay. RESULTS HLA-DR expression on circulating T cells, calculated as mean fluorescence intensity in channels, was reduced at day 1 after admission in 20 patients with subsequent severe sepsis compared with 46 patients without sepsis. The septic patients immediately after trauma had significantly lower soluble HLA-DR plasma levels than the nonseptic patients. At day 2 after admission, HLA-DR expression on monocytes was significantly lower in the severe sepsis group than in the patients without sepsis, and lasted until day 14 after injury. CONCLUSIONS In severely injured patients, decreased levels of cellular and soluble HLA-DR appear as early indicators of an immune deviation associated with the development of severe sepsis. Moreover, immune alterations of different cell types may promote distinct kinds of septicemia.
Collapse
Affiliation(s)
- M Ditschkowski
- Institute of Immunology, University Hospital of Essen, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Proft T, Moffatt SL, Berkahn CJ, Fraser JD. Identification and characterization of novel superantigens from Streptococcus pyogenes. J Exp Med 1999; 189:89-102. [PMID: 9874566 PMCID: PMC1887688 DOI: 10.1084/jem.189.1.89] [Citation(s) in RCA: 153] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Three novel streptococcal superantigen genes (spe-g, spe-h, and spe-j) were identified from the Streptococcus pyogenes M1 genomic database at the University of Oklahoma. A fourth novel gene (smez-2) was isolated from the S. pyogenes strain 2035, based on sequence homology to the streptococcal mitogenic exotoxin z (smez) gene. SMEZ-2, SPE-G, and SPE-J are most closely related to SMEZ and streptococcal pyrogenic exotoxin (SPE)-C, whereas SPE-H is most similar to the staphylococcal toxins than to any other streptococcal toxin. Recombinant (r)SMEZ, rSMEZ-2, rSPE-G, and rSPE-H were mitogenic for human peripheral blood lymphocytes with half-maximal responses between 0.02 and 50 pg/ml (rSMEZ-2 and rSPE-H, respectively). SMEZ-2 is the most potent superantigen (SAg) discovered thus far. All toxins, except rSPE-G, were active on murine T cells, but with reduced potency. Binding to a human B-lymphoblastoid line was shown to be zinc dependent with high binding affinity of 15-65 nM. Evidence from modeled protein structures and competitive binding experiments suggest that high affinity binding of each toxin is to the major histocompatibility complex class II beta chain. Competition for binding between toxins was varied and revealed overlapping but discrete binding to subsets of class II molecules in the hierarchical order (SMEZ, SPE-C) > SMEZ-2 > SPE-H > SPE-G. The most common targets for the novel SAgs were human Vbeta2.1- and Vbeta4-expressing T cells. This might reflect a specific role for this subset of Vbetas in the immune defense of gram-positive bacteria.
Collapse
Affiliation(s)
- T Proft
- Department of Molecular Medicine, School of Medicine, University of Auckland, 92019 Auckland, New Zealand
| | | | | | | |
Collapse
|
16
|
Mason KM, Dryden TD, Bigley NJ, Fink PS. Staphylococcal enterotoxin B primes cytokine secretion and lytic activity in response to native bacterial antigens. Infect Immun 1998; 66:5082-8. [PMID: 9784507 PMCID: PMC108633 DOI: 10.1128/iai.66.11.5082-5088.1998] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Superantigens stimulate T-lymphocyte proliferation and cytokine production, but the effects of superantigen exposure on cell function within a complex, highly regulated immune response remain to be determined. In this study, we demonstrate that superantigen exposure significantly alters the murine host response to bacterial antigens in an in vitro coculture system. Two days after exposure to the superantigen staphylococcal enterotoxin B, splenocytes cultured with Streptococcus mutans produced significantly greater amounts of gamma interferon (IFN-gamma) and interleukin-12 than did sham-injected controls. The majority of IFN-gamma production appeared to be CD8(+) T-cell derived since depletion of this cell type dramatically reduced the levels of IFN-gamma. To study host cell damage that may occur following superantigen exposure, we analyzed cytotoxicity to "bystander" fibroblast cells cultured with splenocytes in the presence of bacterial antigens. Prior host exposure to staphylococcal enterotoxin B significantly enhanced fibroblast cytotoxicity in the presence of bacteria. Neutralization of IFN-gamma decreased the amount of cytotoxicity observed. However, a greater reduction was evident when splenocyte-bacterium cocultures were separated from the bystander cell monolayer via a permeable membrane support. Increased cytotoxicity appears to be primarily dependent upon cell-cell contact. Collectively, these data indicate that overproduction of inflammatory cytokines may alter the activity of cytotoxic immune cells. Superantigen exposure exacerbates cytokine production and lytic cell activity when immune cells encounter bacteria in vitro and comparable activities could possibly occur in vivo.
Collapse
Affiliation(s)
- K M Mason
- Department of Microbiology and Immunology, Wright State University, Dayton, Ohio 45435, USA
| | | | | | | |
Collapse
|
17
|
Hurme M, Helminen M. Polymorphism of the IL-1 gene complex in Epstein-Barr virus seronegative and seropositive adult blood donors. Scand J Immunol 1998; 48:219-22. [PMID: 9743204 DOI: 10.1046/j.1365-3083.1998.00406.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Epstein-Barr virus (EBV) seronegativity is rare in adults. To examine whether genetic differences would explain this, we studied the genetic polymorphisms of the genes of the interleukin-1 (IL-1) complex in seronegative adults. These cytokines (i.e. IL-1alpha, IL-1beta and IL-1 receptor antagonist, IL-1RA) regulate, in several ways, the inflammatory reactions of the body. In each of these genes there are polymorphic sites and the various alleles differ in their frequency in several diseases of inflammatory nature. In 400 healthy blood donors (from 18 to 60 years of age) there were 20 (5%) seronegative persons. The frequency of allele 2 of the IL-1beta gene (base exchange polymorphism at position -511 from the transcriptional start site) was decreased in the seronegative patients (0.20 versus 0.42 in the seropositive patients, P < 0.05, chi2-test). Moreover, the frequency of allele 2 of the IL-1RA (polymorphism defined by variable numbers of 86-bp repeats in intron 2) was slightly, but not significantly, decreased in the seronegative patients. Alleles of these two loci are known to be associated, but in the seronegative patients this association was abnormal: 11 out of 20 (55%) were of the IL-1RA-2 negative/IL-1beta-2 negative type, while of the seropositive patients, 25% were of this type (P < 0.01, chi2-test). These data suggest that immunological differences, depending on cytokine gene polymorphisms, regulate the resistance to EBV infection.
Collapse
Affiliation(s)
- M Hurme
- Department of Microbiology and Immunology, University of Tampere Medical School, Finland
| | | |
Collapse
|
18
|
Kokuba H, Imafuku S, Huang S, Aurelian L, Burnett JW. Erythema multiforme lesions are associated with expression of a herpes simplex virus (HSV) gene and qualitative alterations in the HSV-specific T-cell response. Br J Dermatol 1998; 138:952-64. [PMID: 9747355 DOI: 10.1046/j.1365-2133.1998.02260.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A common form of erythema multiforme, herpes-associated erythema multiforme (HAEM), occurs following infection with herpes simplex virus (HSV). Here we report that HSV gene expression and the qualitative nature of the virus-specific T-cell responses are related to HAEM lesion development. Skin from HAEM lesions and 1-3 months healed HAEM lesional skin were positive for the viral DNA polymerase gene (Pol) by polymerase chain reaction. However, gene expression as determined by immunohistochemistry with Pol-specific antibody was seen only in HAEM lesions, suggesting that lesion development is associated with Pol gene expression. Similar HSV-specific T-cell lymphoproliferative responses were seen in peripheral blood mononuclear cells (PBMCs) from patients with acute or healed HAEM lesions or HSV lesions and from HSV-seropositive patients with unrelated inflammatory diseases. However, the T-cell receptor variable (V beta) chain repertoire of HSV-stimulated PBMCs obtained from HAEM lesions was altered; the prevalence of some families of variable chain (namely V beta 16 and V beta 19) was reduced, whereas the prevalence of others was increased (namely V beta 2 and V beta 7). V beta 2 cells were found in HAEM lesional skin positive for Pol antigen, suggesting that these cells home to viral antigen-positive skin.
Collapse
Affiliation(s)
- H Kokuba
- Virology/Immunology Laboratories, University of Maryland School of Medicine, Baltimore 21201, USA
| | | | | | | | | |
Collapse
|
19
|
Baker DG. Natural pathogens of laboratory mice, rats, and rabbits and their effects on research. Clin Microbiol Rev 1998; 11:231-66. [PMID: 9564563 PMCID: PMC106832 DOI: 10.1128/cmr.11.2.231] [Citation(s) in RCA: 218] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Laboratory mice, rats, and rabbits may harbor a variety of viral, bacterial, parasitic, and fungal agents. Frequently, these organisms cause no overt signs of disease. However, many of the natural pathogens of these laboratory animals may alter host physiology, rendering the host unsuitable for many experimental uses. While the number and prevalence of these pathogens have declined considerably, many still turn up in laboratory animals and represent unwanted variables in research. Investigators using mice, rats, and rabbits in biomedical experimentation should be aware of the profound effects that many of these agents can have on research.
Collapse
Affiliation(s)
- D G Baker
- Division of Laboratory Animal Medicine, School of Veterinary Medicine, Louisiana State University, Baton Rouge 70810, USA.
| |
Collapse
|
20
|
Blanchard A, Montagnier L, Gougeon ML. Influence of microbial infections on the progression of HIV disease. Trends Microbiol 1997; 5:326-31. [PMID: 9263412 DOI: 10.1016/s0966-842x(97)01089-5] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
HIV infection is associated with immune activation, which in turn stimulates HIV replication. Certain other co-infections cause immune activation and may contribute to an increased viral load. The impact of co-infections by microorganisms such as Mycobacterium tuberculosis can be important for patient survival, particularly those at high risk of exposure to infection and with poor access to medical care.
Collapse
Affiliation(s)
- A Blanchard
- Institut Pasteur, Dépt du SIDA et des Retrovirus, Paris, France.
| | | | | |
Collapse
|