1
|
Borah A, Srivastava A. Impact of extracellular enzymes on Staphylococcus aureus host tissue adaptation and infection. APMIS 2025; 133:e13502. [PMID: 39604200 DOI: 10.1111/apm.13502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 11/06/2024] [Indexed: 11/29/2024]
Abstract
Staphylococcus aureus is a multi-host pathogen that can colonize and infect both humans and livestock in a tissue-specific manner. This amazing feature of the pathogen is mainly facilitated by the surplus virulence agents produced upon necessity and favorable environmental factors. These factors are adept at damaging cellular barriers, manipulating host immune factors, and circumventing the host complement system. The delicate balance between the timely release of virulent factors and the regulation of their production underscores the significance of the exoenzyme network. Moreover, the intricate relationship between the pathogen and host tissue highlights the importance of understanding tissue-specific phenotypes for effective therapeutic strategies. Here, we provide a review on the diverse role played by the extracellular enzymes of S. aureus in tissue-specific infection and systemic colonization leading to distinctive diseased conditions. The article highlights the need to study the role of staphylococcal exoenzymes in various systemic invasions, their impact on the deterioration of host tissue, and the regulation of S. aureus virulence factors.
Collapse
Affiliation(s)
- Atlanta Borah
- Biotechnology Research Innovation Council-National Institute of Animal Biotechnology (BRIC-NIAB), Hyderabad, Telangana, India
| | - Anand Srivastava
- Biotechnology Research Innovation Council-National Institute of Animal Biotechnology (BRIC-NIAB), Hyderabad, Telangana, India
| |
Collapse
|
2
|
Korshoj LE, Kielian T. Bacterial single-cell RNA sequencing captures biofilm transcriptional heterogeneity and differential responses to immune pressure. Nat Commun 2024; 15:10184. [PMID: 39580490 PMCID: PMC11585574 DOI: 10.1038/s41467-024-54581-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 11/14/2024] [Indexed: 11/25/2024] Open
Abstract
Biofilm formation is an important mechanism of survival and persistence for many bacterial pathogens. These multicellular communities contain subpopulations of cells that display metabolic and transcriptional diversity along with recalcitrance to antibiotics and host immune defenses. Here, we present an optimized bacterial single-cell RNA sequencing method, BaSSSh-seq, to study Staphylococcus aureus diversity during biofilm growth and transcriptional adaptations following immune cell exposure. BaSSSh-seq captures extensive transcriptional heterogeneity during biofilm compared to planktonic growth. We quantify and visualize transcriptional regulatory networks across heterogeneous biofilm subpopulations and identify gene sets that are associated with a trajectory from planktonic to biofilm growth. BaSSSh-seq also detects alterations in biofilm metabolism, stress response, and virulence induced by distinct immune cell populations. This work facilitates the exploration of biofilm dynamics at single-cell resolution, unlocking the potential for identifying biofilm adaptations to environmental signals and immune pressure.
Collapse
Affiliation(s)
- Lee E Korshoj
- Department of Pathology, Microbiology, and Immunology, University of Nebraska Medical Center, Omaha, NE, USA.
| | - Tammy Kielian
- Department of Pathology, Microbiology, and Immunology, University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
3
|
Scherr F, Darisipudi MN, Börner FR, Austermeier S, Hoffmann F, Eberhardt M, Abdurrahman G, Saade C, von Eggeling F, Kasper L, Holtfreter S, Bröker BM, Kiehntopf M. Alpha-1-antitrypsin as novel substrate for S. aureus' Spl proteases - implications for virulence. Front Immunol 2024; 15:1481181. [PMID: 39628483 PMCID: PMC11611844 DOI: 10.3389/fimmu.2024.1481181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 10/22/2024] [Indexed: 12/06/2024] Open
Abstract
Background The serine protease like (Spl) proteases of Staphylococcus aureus are a family of six proteases whose function and impact on virulence are poorly understood. Here we propose alpha-1-antitrypsin (AAT), an important immunomodulatory serine protease inhibitor as target of SplD, E and F. AAT is an acute phase protein, interacting with many proteases and crucial for prevention of excess tissue damage by neutrophil elastase during the innate immune response to infections. Methods We used MALDI-TOF-MS to identify the cleavage site of Spl proteases within AAT's reactive center loop (RCL) and LC-MS/MS to quantify the resulting peptide cleavage product in in vitro digestions of AAT and heterologous expressed proteases or culture supernatants from different S. aureus strains. We further confirmed proteolytic cleavage and formation of a covalent complex with Western Blots, investigated AAT's inhibitory potential against Spls and examined the NETosis inhibitory activity of AAT-Spl-digestions. Results SplD, E and F, but not A or B, cleave AAT in its RCL, resulting in the release of a peptide consisting of AAT's C-terminal 36 amino acids (C36). Synthetic C36, as well as AAT-SplD/E/F-digestions exhibit NETosis inhibition. Only SplE, but not D or F, was partly inhibited by AAT, forming a covalent complex. Conclusion We unraveled a new virulence trait of S. aureus, where SplD/E/F cleave and inactivate AAT while the cleavage product C36 inhibits NETosis.
Collapse
Affiliation(s)
- Franziska Scherr
- Institute of Clinical Chemistry and Laboratory Diagnostics, Jena University Hospital, Jena, Germany
| | | | - Friedemann R. Börner
- Institute of Clinical Chemistry and Laboratory Diagnostics, Jena University Hospital, Jena, Germany
| | - Sophie Austermeier
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology -Hans Knoell Institute Jena (HKI), Jena, Germany
| | - Franziska Hoffmann
- Department of Otorhinolaryngology, Matrix-assisted Laser Desorption/Ionization (MALDI) Imaging and Clinical Biophotonics, Jena University Hospital, Jena, Germany
| | - Martin Eberhardt
- Institute of Clinical Chemistry and Laboratory Diagnostics, Jena University Hospital, Jena, Germany
| | - Goran Abdurrahman
- Institute of Immunology, University Medicine Greifswald, Greifswald, Germany
| | - Christopher Saade
- Institute of Immunology, University Medicine Greifswald, Greifswald, Germany
| | - Ferdinand von Eggeling
- Department of Otorhinolaryngology, Matrix-assisted Laser Desorption/Ionization (MALDI) Imaging and Clinical Biophotonics, Jena University Hospital, Jena, Germany
| | - Lydia Kasper
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology -Hans Knoell Institute Jena (HKI), Jena, Germany
- Institute of Novel and Emerging Infectious Diseases (INNT), Friedrich-Loeffler-Institut, Greifswald, Germany
| | - Silva Holtfreter
- Institute of Immunology, University Medicine Greifswald, Greifswald, Germany
| | - Barbara M. Bröker
- Institute of Immunology, University Medicine Greifswald, Greifswald, Germany
| | - Michael Kiehntopf
- Institute of Clinical Chemistry and Laboratory Diagnostics, Jena University Hospital, Jena, Germany
| |
Collapse
|
4
|
Kline SN, Saito Y, Archer NK. Staphylococcus aureus Proteases: Orchestrators of Skin Inflammation. DNA Cell Biol 2024; 43:483-491. [PMID: 38957987 PMCID: PMC11535466 DOI: 10.1089/dna.2024.0134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 06/07/2024] [Indexed: 07/04/2024] Open
Abstract
Skin homeostasis relies on a delicate balance between host proteases and protease inhibitors along with those secreted from microbial communities, as disruption to this harmony contributes to the pathogenesis of inflammatory skin disorders, including atopic dermatitis and Netherton's syndrome. In addition to being a prominent cause of skin and soft tissue infections, the gram-positive bacterium Staphylococcus aureus is a key player in inflammatory skin conditions due to its array of 10 secreted proteases. Herein we review how S. aureus proteases augment the development of inflammation in skin disorders. These mechanisms include degradation of skin barrier integrity, immune dysregulation and pruritis, and impairment of host defenses. Delineating the diverse roles of S. aureus proteases has the potential to reveal novel therapeutic strategies, such as inhibitors of proteases or their cognate target, as well as neutralizing vaccines to alleviate the burden of inflammatory skin disorders in patients.
Collapse
Affiliation(s)
- Sabrina N. Kline
- Department of Dermatology, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Yoshine Saito
- School of Medicine, University of Maryland, Baltimore, Maryland, USA
| | - Nathan K. Archer
- Department of Dermatology, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
5
|
Korshoj LE, Kielian T. Bacterial single-cell RNA sequencing captures biofilm transcriptional heterogeneity and differential responses to immune pressure. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.28.601229. [PMID: 38979200 PMCID: PMC11230364 DOI: 10.1101/2024.06.28.601229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Biofilm formation is an important mechanism of survival and persistence for many bacterial pathogens. These multicellular communities contain subpopulations of cells that display vast metabolic and transcriptional diversity along with high recalcitrance to antibiotics and host immune defenses. Investigating the complex heterogeneity within biofilm has been hindered by the lack of a sensitive and high-throughput method to assess stochastic transcriptional activity and regulation between bacterial subpopulations, which requires single-cell resolution. We have developed an optimized bacterial single-cell RNA sequencing method, BaSSSh-seq, to study Staphylococcus aureus diversity during biofilm growth and transcriptional adaptations following immune cell exposure. We validated the ability of BaSSSh-seq to capture extensive transcriptional heterogeneity during biofilm compared to planktonic growth. Application of new computational tools revealed transcriptional regulatory networks across the heterogeneous biofilm subpopulations and identification of gene sets that were associated with a trajectory from planktonic to biofilm growth. BaSSSh-seq also detected alterations in biofilm metabolism, stress response, and virulence that were tailored to distinct immune cell populations. This work provides an innovative platform to explore biofilm dynamics at single-cell resolution, unlocking the potential for identifying biofilm adaptations to environmental signals and immune pressure.
Collapse
|
6
|
Costa FG, Mills KB, Crosby HA, Horswill AR. The Staphylococcus aureus regulatory program in a human skin-like environment. mBio 2024; 15:e0045324. [PMID: 38546267 PMCID: PMC11077960 DOI: 10.1128/mbio.00453-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 03/04/2024] [Indexed: 04/09/2024] Open
Abstract
Staphylococcus aureus is a Gram-positive pathogen responsible for the majority of skin and soft tissue infections (SSTIs). S. aureus colonizes the anterior nares of approximately 20%-30% of the population and transiently colonizes the skin, thereby increasing the risk of developing SSTIs and more serious infections. Current laboratory models that mimic the skin surface environment are expensive, require substantial infrastructure, and limit the scope of bacterial physiology studies under human skin conditions. To overcome these limitations, we developed a cost-effective, open-source, chemically defined media recipe termed skin-like medium (SLM) that incorporates key aspects of the human skin surface environment and supports growth of several staphylococcal species. We utilized SLM to investigate the transcriptional response of methicillin-resistant Staphylococcus aureus (MRSA) following growth in SLM compared to a commonly used laboratory media. Through RNA-seq analysis, we observed the upregulation of several virulence factors, including genes encoding functions involved in adhesion, proteolysis, and cytotoxicity. To further explore these findings, we conducted quantitative reverse transcription-PCR (qRT-PCR) experiments to determine the influence of media composition, pH, and temperature on the transcriptional response of key factors involved in adhesion and virulence. We also demonstrated that MRSA primed in SLM adhered better to human corneocytes and demonstrated adhesin-specific phenotypes that previously required genetic manipulation. This improved adherence to corneocytes was dependent on both acidic pH and growth in SLM. These results support the potential utility of SLM as an in vitro model for assessing staphylococcal physiology and metabolism on human skin. IMPORTANCE Staphylococcus aureus is the major cause of skin diseases, and its increased prevalence in skin colonization and infections present a need to understand its physiology in this environment. The work presented here outlines S. aureus upregulation of colonization and virulence factors using a newly developed medium that strives to replicate the human skin surface environment and demonstrates roles for adhesins clumping factor A (ClfA), serine-rich repeat glycoprotein adhesin (SraP), and the fibronectin binding proteins (Fnbps) in human corneocyte adherence.
Collapse
Affiliation(s)
- Flavia G. Costa
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Krista B. Mills
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Heidi A. Crosby
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Alexander R. Horswill
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Department of Veterans Affairs, Eastern Colorado Healthcare System, Aurora, Colorado, USA
| |
Collapse
|
7
|
Walsh D, Bevan J, Harrison F. How Does Airway Surface Liquid Composition Vary in Different Pulmonary Diseases, and How Can We Use This Knowledge to Model Microbial Infections? Microorganisms 2024; 12:732. [PMID: 38674677 PMCID: PMC11052052 DOI: 10.3390/microorganisms12040732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 03/26/2024] [Accepted: 03/28/2024] [Indexed: 04/28/2024] Open
Abstract
Growth environment greatly alters many facets of pathogen physiology, including pathogenesis and antimicrobial tolerance. The importance of host-mimicking environments for attaining an accurate picture of pathogen behaviour is widely recognised. Whilst this recognition has translated into the extensive development of artificial cystic fibrosis (CF) sputum medium, attempts to mimic the growth environment in other respiratory disease states have been completely neglected. The composition of the airway surface liquid (ASL) in different pulmonary diseases is far less well characterised than CF sputum, making it very difficult for researchers to model these infection environments. In this review, we discuss the components of human ASL, how different lung pathologies affect ASL composition, and how different pathogens interact with these components. This will provide researchers interested in mimicking different respiratory environments with the information necessary to design a host-mimicking medium, allowing for better understanding of how to treat pathogens causing infection in these environments.
Collapse
Affiliation(s)
- Dean Walsh
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK (F.H.)
| | | | | |
Collapse
|
8
|
Jackson JK, Kennedy SJ, Felton EA, Cella E, Lima A, Becker D, Silbert S, Kim K, Azarian T, Shaw LN. Draft genome sequence of a highly proteolytic Staphylococcus aureus USA300 isolate from human urine. Microbiol Resour Announc 2023; 12:e0067923. [PMID: 37933968 PMCID: PMC10720404 DOI: 10.1128/mra.00679-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 09/29/2023] [Indexed: 11/08/2023] Open
Abstract
The secreted proteases of Staphylococcus aureus have been shown to be critical during infection. Here, we present the draft genome sequence of S. aureus TGH337, a hyper-proteolytic USA300 strain isolated from human urine.
Collapse
Affiliation(s)
- Jessica K. Jackson
- Department of Molecular Biosciences, University of South Florida, Tampa, Florida, USA
| | - Sarah J. Kennedy
- Department of Molecular Biosciences, University of South Florida, Tampa, Florida, USA
| | - Emily A. Felton
- Department of Molecular Biosciences, University of South Florida, Tampa, Florida, USA
| | - Eleonora Cella
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, Florida, USA
| | - Amorce Lima
- Esoteric Testing/R&D Laboratory, Tampa General Hospital, Tampa, Florida, USA
| | - Deanna Becker
- Esoteric Testing/R&D Laboratory, Tampa General Hospital, Tampa, Florida, USA
| | - Suzane Silbert
- Esoteric Testing/R&D Laboratory, Tampa General Hospital, Tampa, Florida, USA
| | - Kami Kim
- Division of Infectious Disease and Internal Medicine, University of South Florida, Tampa, Florida, USA
- Center for Global Health Infectious Diseases Research, University of South Florida, Tampa, Florida, USA
- Global Emerging Diseases Institute, Tampa General Hospital, Tampa, Florida, USA
| | - Taj Azarian
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, Florida, USA
| | - Lindsey N. Shaw
- Department of Molecular Biosciences, University of South Florida, Tampa, Florida, USA
| |
Collapse
|
9
|
Ding X, Robbe-Masselot C, Fu X, Léonard R, Marsac B, Dauriat CJG, Lepissier A, Rytter H, Ramond E, Dupuis M, Euphrasie D, Dubail I, Schimmich C, Qin X, Parraga J, Leite-de-Moraes M, Ferroni A, Chassaing B, Sermet-Gaudelus I, Charbit A, Coureuil M, Jamet A. Airway environment drives the selection of quorum sensing mutants and promote Staphylococcus aureus chronic lifestyle. Nat Commun 2023; 14:8135. [PMID: 38065959 PMCID: PMC10709412 DOI: 10.1038/s41467-023-43863-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 11/22/2023] [Indexed: 12/18/2023] Open
Abstract
Staphylococcus aureus is a predominant cause of chronic lung infections. While the airway environment is rich in highly sialylated mucins, the interaction of S. aureus with sialic acid is poorly characterized. Using S. aureus USA300 as well as clinical isolates, we demonstrate that quorum-sensing dysfunction, a hallmark of S. aureus adaptation, correlates with a greater ability to consume free sialic acid, providing a growth advantage in an air-liquid interface model and in vivo. Furthermore, RNA-seq experiment reveals that free sialic acid triggers transcriptional reprogramming promoting S. aureus chronic lifestyle. To support the clinical relevance of our results, we show the co-occurrence of S. aureus, sialidase-producing microbiota and free sialic acid in the airway of patients with cystic fibrosis. Our findings suggest a dual role for sialic acid in S. aureus airway infection, triggering virulence reprogramming and driving S. aureus adaptive strategies through the selection of quorum-sensing dysfunctional strains.
Collapse
Affiliation(s)
- Xiongqi Ding
- Université Paris Cité, INSERM UMR-S1151, CNRS UMR-S8253, Institut Necker Enfants Malades, F75015, Paris, France
| | - Catherine Robbe-Masselot
- Université Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, F-59000, Lille, France
| | - Xiali Fu
- Université Paris Cité, INSERM UMR-S1151, CNRS UMR-S8253, Institut Necker Enfants Malades, F75015, Paris, France
| | - Renaud Léonard
- Université Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, F-59000, Lille, France
| | - Benjamin Marsac
- Université Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, F-59000, Lille, France
| | - Charlene J G Dauriat
- INSERM U1016, CNRS UMR8104, Université Paris Cité, Team «Mucosal Microbiota in Chronic Inflammatory Diseases», F75014, Paris, France
| | - Agathe Lepissier
- Université Paris Cité, INSERM UMR-S1151, CNRS UMR-S8253, Institut Necker Enfants Malades, F75015, Paris, France
| | - Héloïse Rytter
- Université Paris Cité, INSERM UMR-S1151, CNRS UMR-S8253, Institut Necker Enfants Malades, F75015, Paris, France
| | - Elodie Ramond
- Genoscope, UMR8030, Laboratory of Systems & Synthetic Biology (LISSB), Xenome team, F91057, Evry, France
| | - Marion Dupuis
- Université Paris Cité, INSERM UMR-S1151, CNRS UMR-S8253, Institut Necker Enfants Malades, F75015, Paris, France
| | - Daniel Euphrasie
- Université Paris Cité, INSERM UMR-S1151, CNRS UMR-S8253, Institut Necker Enfants Malades, F75015, Paris, France
| | - Iharilalao Dubail
- Université Paris Cité, INSERM UMR-S1151, CNRS UMR-S8253, Institut Necker Enfants Malades, F75015, Paris, France
| | - Cécile Schimmich
- Anses, Laboratory of Animal Health in Normandy, Physiopathology and epidemiology of equine diseases (PhEED), RD 675, F14430, Goustranville, France
| | - Xiaoquan Qin
- Université Paris Cité, Institut de physique du globe de Paris, CNRS, F75005, Paris, France
| | - Jessica Parraga
- Department of Clinical Microbiology, Necker-Enfants Malades Hospital, AP-HP Centre Université de Paris Cité, F75015, Paris, France
| | - Maria Leite-de-Moraes
- Université Paris Cité, INSERM UMR-S1151, CNRS UMR-S8253, Institut Necker Enfants Malades, F75015, Paris, France
| | - Agnes Ferroni
- Department of Clinical Microbiology, Necker-Enfants Malades Hospital, AP-HP Centre Université de Paris Cité, F75015, Paris, France
| | - Benoit Chassaing
- INSERM U1016, CNRS UMR8104, Université Paris Cité, Team «Mucosal Microbiota in Chronic Inflammatory Diseases», F75014, Paris, France
| | - Isabelle Sermet-Gaudelus
- Université Paris Cité, INSERM UMR-S1151, CNRS UMR-S8253, Institut Necker Enfants Malades, F75015, Paris, France
| | - Alain Charbit
- Université Paris Cité, INSERM UMR-S1151, CNRS UMR-S8253, Institut Necker Enfants Malades, F75015, Paris, France
| | - Mathieu Coureuil
- Université Paris Cité, INSERM UMR-S1151, CNRS UMR-S8253, Institut Necker Enfants Malades, F75015, Paris, France.
| | - Anne Jamet
- Université Paris Cité, INSERM UMR-S1151, CNRS UMR-S8253, Institut Necker Enfants Malades, F75015, Paris, France.
- Department of Clinical Microbiology, Necker-Enfants Malades Hospital, AP-HP Centre Université de Paris Cité, F75015, Paris, France.
| |
Collapse
|
10
|
Costa FG, Mills KB, Crosby HA, Horswill AR. The Staphylococcus aureus regulatory program in a human skin-like environment. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.24.563767. [PMID: 37961268 PMCID: PMC10634794 DOI: 10.1101/2023.10.24.563767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Staphylococcus aureus is a Gram-positive pathogen responsible for the majority of skin and soft tissue infections (SSTIs). S. aureus colonizes the anterior nares of approximately 20-30% of the population and transiently colonizes the skin, thereby increasing the risk of developing SSTIs and more serious infections. Current laboratory models that mimic the skin surface environment are expensive, require substantial infrastructure, and limit the scope of bacterial physiology studies under human skin conditions. To overcome these limitations, we developed a cost-effective, open-source, chemically defined media recipe termed skin-like media (SLM) that incorporates key aspects of the human skin surface environment and supports growth of several Staphylococcal species. We utilized SLM to investigate the transcriptional response of methicillin-resistant S. aureus (MRSA) following growth in SLM compared to a commonly used laboratory media. Through RNA-seq analysis, we observed the upregulation of several virulence factors, including genes encoding functions involved in adhesion, proteolysis, and cytotoxicity. To further explore these findings, we conducted qRT-PCR experiments to determine the influence of media composition, pH, and temperature on the transcriptional response of key factors involved in adhesion and virulence. We also demonstrated that MRSA primed in SLM adhered better to human corneocytes and demonstrated adhesin-specific phenotypes that previously required genetic manipulation. These results support the potential utility of SLM as an in vitro model for assessing Staphylococcal physiology and metabolism on human skin. Importance Staphylococcus aureus is the major cause of skin diseases, and its increased prevalence in skin colonization and infections present a need to understand its physiology in this environment. The work presented here outlines S. aureus upregulation of colonization and virulence factors using a newly developed media that strives to replicate the human skin surface environment, and demonstrates roles for adhesins ClfA, SraP, and Fnbps in human corneocyte adherence.
Collapse
|
11
|
Wang S, Zhao Y, Breslawec AP, Liang T, Deng Z, Kuperman LL, Yu Q. Strategy to combat biofilms: a focus on biofilm dispersal enzymes. NPJ Biofilms Microbiomes 2023; 9:63. [PMID: 37679355 PMCID: PMC10485009 DOI: 10.1038/s41522-023-00427-y] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 08/15/2023] [Indexed: 09/09/2023] Open
Abstract
Bacterial biofilms, which consist of three-dimensional extracellular polymeric substance (EPS), not only function as signaling networks, provide nutritional support, and facilitate surface adhesion, but also serve as a protective shield for the residing bacterial inhabitants against external stress, such as antibiotics, antimicrobials, and host immune responses. Biofilm-associated infections account for 65-80% of all human microbial infections that lead to serious mortality and morbidity. Tremendous effort has been spent to address the problem by developing biofilm-dispersing agents to discharge colonized microbial cells to a more vulnerable planktonic state. Here, we discuss the recent progress of enzymatic eradicating strategies against medical biofilms, with a focus on dispersal mechanisms. Particularly, we review three enzyme classes that have been extensively investigated, namely glycoside hydrolases, proteases, and deoxyribonucleases.
Collapse
Affiliation(s)
- Shaochi Wang
- Otorhinolaryngology Hospital, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, China
- Translational Medicine Center, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, China
| | - Yanteng Zhao
- Translational Medicine Center, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, China
| | - Alexandra P Breslawec
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD, 20740, USA
| | - Tingting Liang
- Key Laboratory of Natural Medicine and Immune-Engineering of Henan Province, Henan University Jinming Campus, 475004, Kaifeng, Henan, China
| | - Zhifen Deng
- Translational Medicine Center, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, China
| | - Laura L Kuperman
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD, 20740, USA.
- Mirimus Inc., 760 Parkside Avenue, Brooklyn, NY, 11226, USA.
| | - Qiuning Yu
- Otorhinolaryngology Hospital, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, China.
| |
Collapse
|
12
|
Fu T, Fan Z, Li Y, Li Z, Zhao H, Feng Y, Xue G, Cui J, Yan C, Gan L, Feng J, Yuan J, You F. Roles of the Crp/Fnr Family Regulator ArcR in the Hemolysis and Biofilm of Staphylococcus aureus. Microorganisms 2023; 11:1656. [PMID: 37512829 PMCID: PMC10384999 DOI: 10.3390/microorganisms11071656] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/20/2023] [Accepted: 06/22/2023] [Indexed: 07/30/2023] Open
Abstract
Staphylococcus aureus is an opportunistic human pathogen that is often involved in severe infections such as pneumonia and sepsis in which bacterial virulence factors play a key role. Infections caused by S. aureus are often difficult to eradicate, particularly when they are associated with biofilm. The physiological roles of the Crp/Fnr family regulator ArcR are elusive in S. aureus. In this study, it was found that the deletion of arcR increased the hemolytic ability and biofilm formation in S. aureus. Differential gene expression analysis by RNA-seq and real-time quantitative reverse transcription PCR showed that genes associated with hemolytic ability (hla and hlb) and biofilm formation (icaA, icaB, icaC and icaD) were significantly upregulated compared with those in the wild-type strain. The results revealed that ArcR regulated the expression of the hla and ica operon by binding to their promoter regions, respectively. This study provided new insights into the functional importance of ArcR in regulating the virulence and biofilm of S. aureus.
Collapse
Affiliation(s)
- Tongtong Fu
- School of Basic Medical Sciences, Peking University, Beijing 100020, China
- Department of Bacteriology, Capital Institute of Pediatrics, Beijing 100020, China
| | - Zheng Fan
- Department of Bacteriology, Capital Institute of Pediatrics, Beijing 100020, China
| | - Yujie Li
- Department of Life Science and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Zhoufei Li
- Department of Bacteriology, Capital Institute of Pediatrics, Beijing 100020, China
| | - Hanqing Zhao
- Department of Bacteriology, Capital Institute of Pediatrics, Beijing 100020, China
| | - Yanling Feng
- Department of Bacteriology, Capital Institute of Pediatrics, Beijing 100020, China
| | - Guanhua Xue
- Department of Bacteriology, Capital Institute of Pediatrics, Beijing 100020, China
| | - Jinghua Cui
- Department of Bacteriology, Capital Institute of Pediatrics, Beijing 100020, China
| | - Chao Yan
- Department of Bacteriology, Capital Institute of Pediatrics, Beijing 100020, China
| | - Lin Gan
- Department of Bacteriology, Capital Institute of Pediatrics, Beijing 100020, China
| | - Junxia Feng
- Department of Bacteriology, Capital Institute of Pediatrics, Beijing 100020, China
| | - Jing Yuan
- Department of Bacteriology, Capital Institute of Pediatrics, Beijing 100020, China
| | - Fuping You
- School of Basic Medical Sciences, Peking University, Beijing 100020, China
| |
Collapse
|
13
|
Al-Trad EI, Che Hamzah AM, Puah SM, Chua KH, Hanifah MZ, Ayub Q, Palittapongarnpim P, Kwong SM, Chew CH, Yeo CC. Complete Genome Sequence and Analysis of a ST573 Multidrug-Resistant Methicillin-Resistant Staphylococcus aureus SauR3 Clinical Isolate from Terengganu, Malaysia. Pathogens 2023; 12:pathogens12030502. [PMID: 36986424 PMCID: PMC10053073 DOI: 10.3390/pathogens12030502] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 03/17/2023] [Accepted: 03/21/2023] [Indexed: 03/30/2023] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is a World Health Organization-listed priority pathogen. Scarce genomic data are available for MRSA isolates from Malaysia. Here, we present the complete genome sequence of a multidrug-resistant MRSA strain SauR3, isolated from the blood of a 6-year-old patient hospitalized in Terengganu, Malaysia, in 2016. S. aureus SauR3 was resistant to five antimicrobial classes comprising nine antibiotics. The genome was sequenced on the Illumina and Oxford Nanopore platforms and hybrid assembly was performed to obtain its complete genome sequence. The SauR3 genome consists of a circular chromosome of 2,800,017 bp and three plasmids designated pSauR3-1 (42,928 bp), pSauR3-2 (3011 bp), and pSauR3-3 (2473 bp). SauR3 belongs to sequence type 573 (ST573), a rarely reported sequence type of the staphylococcal clonal complex 1 (CC1) lineage, and harbors a variant of the staphylococcal cassette chromosome mec (SCCmec) type V (5C2&5) element which also contains the aac(6')-aph(2″) aminoglycoside-resistance genes. pSauR3-1 harbors several antibiotic resistance genes in a 14,095 bp genomic island (GI), previously reported in the chromosome of other staphylococci. pSauR3-2 is cryptic, whereas pSauR3-3 encodes the ermC gene that mediates inducible resistance to macrolide-lincosamide-streptogramin B (iMLSB). The SauR3 genome can potentially be used as a reference genome for other ST573 isolates.
Collapse
Affiliation(s)
- Esra'a I Al-Trad
- Centre for Research in Infectious Diseases and Biotechnology (CeRIDB), Faculty of Medicine, Universiti Sultan Zainal Abidin, Kuala Terengganu 20400, Malaysia
| | | | - Suat Moi Puah
- Department of Biomedical Science, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Kek Heng Chua
- Department of Biomedical Science, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Muhamad Zarul Hanifah
- Monash University Malaysia Genomics Facility, School of Science, Monash University, Bandar Sunway 47500, Malaysia
| | - Qasim Ayub
- Monash University Malaysia Genomics Facility, School of Science, Monash University, Bandar Sunway 47500, Malaysia
| | - Prasit Palittapongarnpim
- Pornchai Matangkasombut Center for Microbial Genomics (CENMIG), Mahidol University, Bangkok 10400, Thailand
| | - Stephen M Kwong
- Infectious Diseases & Microbiology, School of Medicine, Western Sydney University, Campbelltown 2560, Australia
| | - Ching Hoong Chew
- Faculty of Health Sciences, Universiti Sultan Zainal Abidin, Kuala Nerus 21300, Malaysia
| | - Chew Chieng Yeo
- Centre for Research in Infectious Diseases and Biotechnology (CeRIDB), Faculty of Medicine, Universiti Sultan Zainal Abidin, Kuala Terengganu 20400, Malaysia
| |
Collapse
|
14
|
Francis D, Bhairaddy A, Joy A, Hari GV, Francis A. Secretory proteins in the orchestration of microbial virulence: The curious case of Staphylococcus aureus. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2023; 133:271-350. [PMID: 36707204 DOI: 10.1016/bs.apcsb.2022.10.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Microbial virulence showcases an excellent model for adaptive changes that enable an organism to survive and proliferate in a hostile environment and exploit host resources to its own benefit. In Staphylococcus aureus, an opportunistic pathogen of the human host, known for the diversity of the disease conditions it inflicts and the rapid evolution of antibiotic resistance, virulence is a consequence of having a highly plastic genome that is amenable to quick reprogramming and the ability to express a diverse arsenal of virulence factors. Virulence factors that are secreted to the host milieu effectively manipulate the host conditions to favor bacterial survival and growth. They assist in colonization, nutrient acquisition, immune evasion, and systemic spread. The structural and functional characteristics of the secreted virulence proteins have been shaped to assist S. aureus in thriving and disseminating effectively within the host environment and exploiting the host resources to its best benefit. With the aim of highlighting the importance of secreted virulence proteins in bacterial virulence, the present chapter provides a comprehensive account of the role of the major secreted proteins of S. aureus in orchestrating its virulence in the human host.
Collapse
Affiliation(s)
- Dileep Francis
- Department of Life Sciences, Kristu Jayanti College, Autonomous, Bengaluru, Karnataka, India.
| | - Anusha Bhairaddy
- Department of Life Sciences, Kristu Jayanti College, Autonomous, Bengaluru, Karnataka, India
| | - Atheene Joy
- Department of Life Sciences, Kristu Jayanti College, Autonomous, Bengaluru, Karnataka, India
| | | | - Ashik Francis
- Rajiv Gandhi Centre for Biotechnology, Trivandrum, Kerala, India
| |
Collapse
|
15
|
In Silico Genome-Scale Analysis of Molecular Mechanisms Contributing to the Development of a Persistent Infection with Methicillin-Resistant Staphylococcus aureus (MRSA) ST239. Int J Mol Sci 2022; 23:ijms232416086. [PMID: 36555727 PMCID: PMC9781258 DOI: 10.3390/ijms232416086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 12/05/2022] [Accepted: 12/11/2022] [Indexed: 12/23/2022] Open
Abstract
The increasing frequency of isolation of methicillin-resistant Staphylococcus aureus (MRSA) limits the chances for the effective antibacterial therapy of staphylococcal diseases and results in the development of persistent infection such as bacteremia and osteomyelitis. The aim of this study was to identify features of the MRSAST239 0943-1505-2016 (SA943) genome that contribute to the formation of both acute and chronic musculoskeletal infections. The analysis was performed using comparative genomics data of the dominant epidemic S. aureus lineages, namely ST1, ST8, ST30, ST36, and ST239. The SA943 genome encodes proteins that provide resistance to the host's immune system, suppress immunological memory, and form biofilms. The molecular mechanisms of adaptation responsible for the development of persistent infection were as follows: amino acid substitution in PBP2 and PBP2a, providing resistance to ceftaroline; loss of a large part of prophage DNA and restoration of the nucleotide sequence of beta-hemolysin, that greatly facilitates the escape of phagocytosed bacteria from the phagosome and formation of biofilms; dysfunction of the AgrA system due to the presence of psm-mec and several amino acid substitutions in the AgrC; partial deletion of the nucleotide sequence in genomic island vSAβ resulting in the loss of two proteases of Spl-operon; and deletion of SD repeats in the SdrE amino acid sequence.
Collapse
|
16
|
Characterization of the Secreted Acid Phosphatase SapS Reveals a Novel Virulence Factor of Staphylococcus aureus That Contributes to Survival and Virulence in Mice. Int J Mol Sci 2022; 23:ijms232214031. [PMID: 36430506 PMCID: PMC9692844 DOI: 10.3390/ijms232214031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/07/2022] [Accepted: 11/11/2022] [Indexed: 11/16/2022] Open
Abstract
Staphylococcus aureus possesses a large arsenal of immune-modulating factors, enabling it to bypass the immune system's response. Here, we demonstrate that the acid phosphatase SapS is secreted during macrophage infection and promotes its intracellular survival in this type of immune cell. In animal models, the SA564 sapS mutant demonstrated a significantly lower bacterial burden in liver and renal tissues of mice at four days post infection in comparison to the wild type, along with lower pathogenicity in a zebrafish infection model. The SA564 sapS mutant elicits a lower inflammatory response in mice than the wild-type strain, while S. aureus cells harbouring a functional sapS induce a chemokine response that favours the recruitment of neutrophils to the infection site. Our in vitro and quantitative transcript analysis show that SapS has an effect on S. aureus capacity to adapt to oxidative stress during growth. SapS is also involved in S. aureus biofilm formation. Thus, this study shows for the first time that SapS plays a significant role during infection, most likely through inhibiting a variety of the host's defence mechanisms.
Collapse
|
17
|
Purves J, Hussey SJK, Corscadden L, Purser L, Hall A, Misra R, Selley L, Monks PS, Ketley JM, Andrew PW, Morrissey JA. Air pollution induces Staphylococcus aureus USA300 respiratory tract colonization mediated by specific bacterial genetic responses involving the global virulence gene regulators Agr and Sae. Environ Microbiol 2022; 24:4449-4465. [PMID: 35642645 PMCID: PMC9796851 DOI: 10.1111/1462-2920.16076] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 05/06/2022] [Accepted: 05/16/2022] [Indexed: 01/07/2023]
Abstract
Exposure to particulate matter (PM), a major component of air pollution, is associated with exacerbation of chronic respiratory disease, and infectious diseases such as community-acquired pneumonia. Although PM can cause adverse health effects through direct damage to host cells, our previous study showed that PM can also impact bacterial behaviour by promoting in vivo colonization. In this study we describe the genetic mechanisms involved in the bacterial response to exposure to black carbon (BC), a constituent of PM found in most sources of air pollution. We show that Staphylococcus aureus strain USA300 LAC grown in BC prior to inoculation showed increased murine respiratory tract colonization and pulmonary invasion in vivo, as well as adhesion and invasion of human epithelial cells in vitro. Global transcriptional analysis showed that BC has a widespread effect on S. aureus transcriptional responses, altering the regulation of the major virulence gene regulators Sae and Agr and causing increased expression of genes encoding toxins, proteases and immune evasion factors. Together these data describe a previously unrecognized causative mechanism of air pollution-associated infection, in that exposure to BC can increase bacterial colonization and virulence factor expression by acting directly on the bacterium rather than via the host.
Collapse
Affiliation(s)
- Jo Purves
- Department of GeneticsUniversity of Leicester, University RoadLeicesterLE1 7RHUK
| | - Shane J. K. Hussey
- Department of GeneticsUniversity of Leicester, University RoadLeicesterLE1 7RHUK
| | - Louise Corscadden
- Department of GeneticsUniversity of Leicester, University RoadLeicesterLE1 7RHUK
| | - Lillie Purser
- Department of GeneticsUniversity of Leicester, University RoadLeicesterLE1 7RHUK
| | - Andie Hall
- Molecular Biology, Core Research LaboratoriesNatural History MuseumCromwell Road, LondonSW7 5BDUK
| | - Raju Misra
- Molecular Biology, Core Research LaboratoriesNatural History MuseumCromwell Road, LondonSW7 5BDUK
| | - Liza Selley
- MRC Toxicology UnitUniversity of CambridgeCambridgeCB2 1QRUK
| | - Paul S. Monks
- Department of ChemistryUniversity of LeicesterUniversity RoadLeicesterLE1 7RHUK
| | - Julian M. Ketley
- Department of GeneticsUniversity of Leicester, University RoadLeicesterLE1 7RHUK
| | - Peter W. Andrew
- Department of Respiratory SciencesUniversity of LeicesterUniversity Road, LeicesterLE1 9HNUK
| | - Julie A. Morrissey
- Department of GeneticsUniversity of Leicester, University RoadLeicesterLE1 7RHUK
| |
Collapse
|
18
|
Fountain K, Barbon A, Gibbon MJ, Lloyd DH, Loeffler A, Feil EJ. Staphylococcus aureus lineages associated with a free-ranging population of the fruit bat Pteropus livingstonii retained over 25 years in captivity. Sci Rep 2022; 12:13457. [PMID: 35931727 PMCID: PMC9355961 DOI: 10.1038/s41598-022-17835-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 08/01/2022] [Indexed: 11/09/2022] Open
Abstract
Conservation of endangered species has become increasingly complex, and costly interventions to protect wildlife require a robust scientific evidence base. This includes consideration of the role of the microbiome in preserving animal health. Captivity introduces stressors not encountered in the wild including environmental factors and exposure to exotic species, humans and antimicrobial drugs. These stressors may perturb the microbiomes of wild animals, with negative consequences for their health and welfare and hence the success of the conservation project, and ultimately the risk of release of non-native organisms into native ecosystems. We compared the genomes of Staphylococcus aureus colonising critically endangered Livingstone’s fruit bats (Pteropus livingstonii) which have been in a captive breeding programme for 25 years, with those from bats in the endemic founder population free ranging in the Comoros Republic. Using whole genome sequencing, we compared 47 isolates from captive bats with 37 isolates from those free ranging in the Comoros Republic. Our findings demonstrate unexpected resilience in the bacteria carried, with the captive bats largely retaining the same two distinctive lineages carried at the time of capture. In addition, we found evidence of genomic changes which suggest specific adaptations to the bat host.
Collapse
Affiliation(s)
- Kay Fountain
- Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath, BA2 7AY, UK.
| | - Alberto Barbon
- North of England Zoological Society (Chester Zoo), Caughall Road, Upton by Chester, Chester, Cheshire, CH2 1LH, UK
| | - Marjorie J Gibbon
- Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath, BA2 7AY, UK
| | - David H Lloyd
- Department of Clinical Science and Services, Royal Veterinary College, North Mymms, Hatfield, Hertfordshire, AL9 7TA, UK
| | - Anette Loeffler
- Department of Clinical Science and Services, Royal Veterinary College, North Mymms, Hatfield, Hertfordshire, AL9 7TA, UK
| | - Edward J Feil
- Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath, BA2 7AY, UK
| |
Collapse
|
19
|
Afzal M, Vijay AK, Stapleton F, Willcox MDP. Genomics of Staphylococcus aureus Strains Isolated from Infectious and Non-Infectious Ocular Conditions. Antibiotics (Basel) 2022; 11:1011. [PMID: 36009880 PMCID: PMC9405196 DOI: 10.3390/antibiotics11081011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 07/25/2022] [Accepted: 07/26/2022] [Indexed: 01/08/2023] Open
Abstract
Staphylococcus aureus is a major cause of ocular infectious (corneal infection or microbial keratitis (MK) and conjunctivitis) and non-infectious corneal infiltrative events (niCIE). Despite the significant morbidity associated with these conditions, there is very little data about specific virulence factors associated with the pathogenicity of ocular isolates. A set of 25 S. aureus infectious and niCIEs strains isolated from USA and Australia were selected for whole genome sequencing. Sequence types and clonal complexes of S. aureus strains were identified by using multi-locus sequence type (MLST). The presence or absence of 128 virulence genes was determined by using the virulence finder database (VFDB). Differences between infectious (MK + conjunctivitis) and niCIE isolates from USA and Australia for possession of virulence genes were assessed using the chi-square test. The most common sequence types found among ocular isolates were ST5, ST8 while the clonal complexes were CC30 and CC1. Virulence genes involved in adhesion (ebh, clfA, clfB, cna, sdrD, sdrE), immune evasion (chp, esaD, esaE, esxB, esxC, esxD), and serine protease enzymes (splA, splD, splE, splF) were more commonly observed in infectious strains (MK + conjunctivitis) than niCIE strains (p = 0.004). Toxin genes were present in half of infectious (49%, 25/51) and niCIE (51%, 26/51) strains. USA infectious isolates were significantly more likely to possess splC, yent1, set9, set11, set36, set38, set40, lukF-PV, and lukS-PV (p < 0.05) than Australian infectious isolates. MK USA strains were more likely to possesses yent1, set9, set11 than USA conjunctivitis strains (p = 0.04). Conversely USA conjunctivitis strains were more likely to possess set36 set38, set40, lukF-PV, lukS-PV (p = 0.03) than MK USA strains. The ocular strain set was then compared to 10 fully sequenced non-ocular S. aureus strains to identify differences between ocular and non-ocular isolates. Ocular isolates were significantly more likely to possess cna (p = 0.03), icaR (p = 0.01), sea (p = 0.001), set16 (p = 0.01), and set19 (p = 0.03). In contrast non-ocular isolates were more likely to possess icaD (p = 0.007), lukF-PV, lukS-PV (p = 0.01), selq (p = 0.01), set30 (p = 0.01), set32 (p = 0.02), and set36 (p = 0.02). The clones ST5, ST8, CC30, and CC1 among ocular isolates generally reflect circulating non-ocular pathogenic S. aureus strains. The higher rates of genes in infectious and ocular isolates suggest a potential role of these virulence factors in ocular diseases.
Collapse
Affiliation(s)
- Madeeha Afzal
- School of Optometry and Vision Science, University of New South Wales, Sydney, NSW 2052, Australia;
| | | | - Fiona Stapleton
- School of Optometry and Vision Science, University of New South Wales, Sydney, NSW 2052, Australia;
| | - Mark D. P. Willcox
- School of Optometry and Vision Science, University of New South Wales, Sydney, NSW 2052, Australia;
| |
Collapse
|
20
|
Ma PY, Chong CW, Than LTL, Sulong AB, Ho KL, Neela VK, Sekawi Z, Liew YK. Impact of IsaA Gene Disruption: Decreasing Staphylococcal Biofilm and Alteration of Transcriptomic and Proteomic Profiles. Microorganisms 2022; 10:microorganisms10061119. [PMID: 35744637 PMCID: PMC9229027 DOI: 10.3390/microorganisms10061119] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 05/26/2022] [Accepted: 05/27/2022] [Indexed: 02/01/2023] Open
Abstract
Staphylococcus aureus expresses diverse proteins at different stages of growth. The immunodominant staphylococcal antigen A (IsaA) is one of the proteins that is constitutively produced by S. aureus during colonisation and infection. SACOL2584 (or isaA) is the gene that encodes this protein. It has been suggested that IsaA can hydrolyse cell walls, and there is still need to study isaA gene disruption to analyse its impact on staphylococcal phenotypes and on alteration to its transcription and protein profiles. In the present study, the growth curve in RPMI medium (which mimics human plasma), autolytic activity, cell wall morphology, fibronectin and fibrinogen adhesion and biofilm formation of S. aureus SH1000 (wildtype) was compared to that of S. aureus MS001 (isaA mutant). RNA sequencing and liquid chromatography–tandem mass spectrometry were carried out on samples of both S. aureus strains taken during the exponential growth phase, followed by bioinformatics analysis. Disruption of isaA had no obvious effect on the growth curve and autolysis ability or thickness of cell walls, but this study revealed significant strength of fibronectin adherence in S. aureus MS001. In particular, the isaA mutant formed less biofilm than S. aureus SH1000. In addition, proteomics and transcriptomics showed that the adhesin/biofilm-related genes and hemolysin genes, such as sasF, sarX and hlgC, were consistently downregulated with isaA gene disruption. The majority of the upregulated genes or proteins in S. aureus MS001 were pur genes. Taken together, this study provides insight into how isaA disruption changes the expression of other genes and has implications regarding biofilm formation and biological processes.
Collapse
Affiliation(s)
- Pei Yee Ma
- School of Postgraduate Studies, International Medical University, Kuala Lumpur 57000, Malaysia;
| | - Chun Wie Chong
- School of Pharmacy, Monash University Malaysia, Subang Jaya 47500, Malaysia;
| | - Leslie Thian Lung Than
- Department of Medical Microbiology, Faculty of Medicine and Health Sciences, University Putra Malaysia, Serdang 43400, Malaysia; (L.T.L.T.); (V.K.N.); (Z.S.)
| | - Anita Binti Sulong
- Department of Medical Microbiology and Immunology, Pusat Perubatan UKM, Kuala Lumpur 56000, Malaysia;
| | - Ket Li Ho
- Department of Life Sciences, School of Pharmacy, International Medical University, Kuala Lumpur 57000, Malaysia;
| | - Vasantha Kumari Neela
- Department of Medical Microbiology, Faculty of Medicine and Health Sciences, University Putra Malaysia, Serdang 43400, Malaysia; (L.T.L.T.); (V.K.N.); (Z.S.)
| | - Zamberi Sekawi
- Department of Medical Microbiology, Faculty of Medicine and Health Sciences, University Putra Malaysia, Serdang 43400, Malaysia; (L.T.L.T.); (V.K.N.); (Z.S.)
| | - Yun Khoon Liew
- Department of Life Sciences, School of Pharmacy, International Medical University, Kuala Lumpur 57000, Malaysia;
- Correspondence:
| |
Collapse
|
21
|
The prevalence of virulence determinants in methicillin-resistant Staphylococcus aureus isolated from different infections in hospitalized patients in Poland. Sci Rep 2022; 12:5477. [PMID: 35361858 PMCID: PMC8971418 DOI: 10.1038/s41598-022-09517-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 03/24/2022] [Indexed: 12/17/2022] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is responsible for hard-to-treat infections. The presence of 19 virulence genes in 120 MRSA isolates obtained from hospitalized patients and genetic relationships of these isolates were investigated. The eno (100%) and ebps (93.3%) genes encoding laminin- and elastin binding proteins, respectively, were ubiquitous. Other adhesion genes: fib (77.5%), fnbB (41.6%), bbp (40.8%), cna (30.8%) encoding proteins binding fibrinogen, fibronectin, bone sialoprotein and collagen, respectively, and map/eap (62.5%), encoding Eap, were also frequent. The etB and etD genes, encoding exfoliative toxins, were present in 15.6% and 12.5% isolates, respectively. The splA, splE and sspA, encoding serine protease were detected in 100%, 70.8% and 94.2% isolates, respectively. The tst gene, encoding toxic shock syndrome toxin-1 was found in 75% isolates. The cna, map/eap and tst genes were the most common in wound isolates and much less common in blood isolates. We identified 45 different spa types, t003 (21.7%) and t008 (18.8%) being the most common. The t003 was the most frequent among isolates from the respiratory tract (35.5%), while t008 in blood isolates (40%). Identification of virulence factors of MRSA is important for evaluation of pathogen transmission rate and disease development.
Collapse
|
22
|
The protease SplB of Staphylococcus aureus targets host complement components and inhibits complement-mediated bacterial opsonophagocytosis. J Bacteriol 2021; 204:e0018421. [PMID: 34633872 PMCID: PMC8765433 DOI: 10.1128/jb.00184-21] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Staphylococcus aureus is an opportunistic pathogen that can cause life-threatening infections, particularly in immunocompromised individuals. The high-level virulence of S. aureus largely relies on its diverse and variable collection of virulence factors and immune evasion proteins, including the six serine protease-like proteins SplA to SplF. Spl proteins are expressed by most clinical isolates of S. aureus, but little is known about the molecular mechanisms by which these proteins modify the host’s immune response for the benefit of the bacteria. Here, we identify SplB as a protease that inactivates central human complement proteins, i.e., C3, C4, and the activation fragments C3b and C4b, by preferentially cleaving their α-chains. SplB maintained its proteolytic activity in human serum, degrading C3 and C4. SplB further cleaved the components of the terminal complement pathway, C5, C6, C7, C8, and C9. In contrast, the important soluble human complement regulators factor H and C4b-binding protein (C4BP), as well as C1q, were left intact. Thereby, SplB reduced C3b-mediated opsonophagocytosis by human neutrophils as well as C5b-9 deposition on the bacterial surface. In conclusion, we identified the first physiological substrates of the S. aureus extracellular protease SplB. This enzyme inhibits all three complement pathways and blocks opsonophagocytosis. Thus, SplB can be considered a novel staphylococcal complement evasion protein. IMPORTANCE The success of bacterial pathogens in immunocompetent humans depends on the control and inactivation of host immunity. S. aureus, like many other pathogens, efficiently blocks host complement attack early in infection. Aiming to understand the role of the S. aureus-encoded orphan proteases of the Spl operon, we asked whether these proteins play a role in immune escape. We found that SplB inhibits all three complement activation pathways as well as the lytic terminal complement pathway. This blocks the opsonophagocytosis of the bacteria by neutrophils. We also clarified the molecular mechanisms: SplB cleaves the human complement proteins C3, C4, C5, C6, C7, C8, and C9 as well as factor B but not the complement inhibitors factor H and C4BP. Thus, we identify the first physiological substrates of the extracellular protease SplB of S. aureus and characterize SplB as a novel staphylococcal complement evasion protein.
Collapse
|
23
|
Abstract
The human skin is our outermost layer and serves as a protective barrier against external insults. Advances in next generation sequencing have enabled the discoveries of a rich and diverse community of microbes - bacteria, fungi and viruses that are residents of this surface. The genomes of these microbes also revealed the presence of many secretory enzymes. In particular, proteases which are hydrolytic enzymes capable of protein cleavage and degradation are of special interest in the skin environment which is enriched in proteins and lipids. In this minireview, we will focus on the roles of these skin-relevant microbial secreted proteases, both in terms of their widely studied roles as pathogenic agents in tissue invasion and host immune inactivation, and their recently discovered roles in inter-microbial interactions and modulation of virulence factors. From these studies, it has become apparent that while microbial proteases are capable of a wide range of functions, their expression is tightly regulated and highly responsive to the environments the microbes are in. With the introduction of new biochemical and bioinformatics tools to study protease functions, it will be important to understand the roles played by skin microbial secretory proteases in cutaneous health, especially the less studied commensal microbes with an emphasis on contextual relevance.
Collapse
|
24
|
Patel N, Nair M. The small RNA RsaF regulates the expression of secreted virulence factors in Staphylococcus aureus Newman. J Microbiol 2021; 59:920-930. [PMID: 34554453 DOI: 10.1007/s12275-021-1205-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 07/27/2021] [Accepted: 08/03/2021] [Indexed: 12/26/2022]
Abstract
The pathogenesis of Staphylococcus aureus, from local infections to systemic dissemination, is mediated by a battery of virulence factors that are regulated by intricate mechanisms, which include regulatory proteins and small RNAs (sRNAs) as key regulatory molecules. We have investigated the involvement of sRNA RsaF, in the regulation of pathogenicity genes hyaluronate lyase (hysA) and serine proteaselike protein D (splD), by employing S. aureus strains with disruption and overexpression of rsaF. Staphylococcus aureus strain with disruption of rsaF exhibited marked down-regulation of hysA transcripts by 0.2 to 0.0002 fold, and hyaluronate lyase activity by 0.2-0.1 fold, as well as increased biofilm formation, during growth from log phase to stationery phase. These mutants also displayed down-regulation of splD transcripts by 0.8 to 0.005 fold, and reduced activity of multiple proteases by zymography. Conversely, overexpression of rsaF resulted in a 2- to 4- fold increase in hysA mRNA levels and hyaluronidase activity. Both hysA and splD mRNAs demonstrated an increased stability in RsaF+ strains. In silico RNA-RNA interaction indicated a direct base pairing of RsaF with hysA and splD mRNAs, which was established in electrophoretic mobility shift assays. The findings demonstrate a positive regulatory role for small RNA RsaF in the expression of the virulence factors, HysA and SplD.
Collapse
Affiliation(s)
- Niralee Patel
- Department of Microbiology and Biotechnology Centre, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, 390002, India
| | - Mrinalini Nair
- Department of Microbiology and Biotechnology Centre, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, 390002, India.
| |
Collapse
|
25
|
Characterization of antibiotic resistance and virulence genes of ocular methicillin-resistant Staphylococcus aureus strains through complete genome analysis. Exp Eye Res 2021; 212:108764. [PMID: 34508729 DOI: 10.1016/j.exer.2021.108764] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 08/03/2021] [Accepted: 09/07/2021] [Indexed: 11/23/2022]
Abstract
Virulence-factor encoding genes (VFGs) and antimicrobial resistance genes (ARGs) of ocular Methicillin-Resistant Staphylococcus aureus (MRSA), are the reason behind the common cause of severe and untreatable ocular infection and are largely unknown. The unavailability of the complete genome sequence of ocular MRSA strains hinders the unambiguous determination of ARGs and VRGs role in disease pathogenesis and their genomic location. To fulfill this critical need, we achieved the high-quality complete genome of four ocular MRSA strains (AMRF3 - AMRF6) by combining MinION nanopore sequencing technology, followed by polishing with Illumina sequence reads. We obtained a single chromosome and a plasmid in each strain. Sequence typing revealed that AMRF3 and AMRF5 strains harbored ST772, whereas AMRF4 and AMRF6 harbored ST 2066. All plasmids carried heavy metal cadmium resistance genes cadC and cadD, while cadA was detected only in the plasmid pSaa6159 of AMRF4 and AMRF6 strains. Further, pSaa6159 contains a complete Tn552 transposon with beta-lactamase genes, blaI, blaR1, and blaZ. Interestingly, pSaa6159 in AMRF6 carried five copies of Tn552 transposon. Several exotoxins and enterotoxins were identified across ocular MRSA strains and ST2066 strains found to be not carried any enterotoxins; this finding suggests that these two strains are exotoxigenic. Besides, ST2066 strains carried serine proteases (splA, splB, splD, splE and spIF) and exotoxin (seb and set 21) for their virulence, while ST772 carried antimicrobial resistance genes (blaZ, dfrG, msrA, mphC and fosB) and enterotoxin sec for virulence, suggesting sequence type-specific resistance and virulence. Also, we identified many VFGs and ARGs, that provided multi-drug resistance, enterotoxigenic, exotoxigenic, biofilm-forming, host tissue adhesion and immune response evasion in ocular MRSA strains. Thus, our study provides a better insight into the genomes of ocular MRSA strains that would provide more effective treatment strategies for ocular MRSA infection.
Collapse
|
26
|
Smith JT, Eckhardt EM, Hansel NB, Eliato TR, Martin IW, Andam CP. Genomic epidemiology of methicillin-resistant and -susceptible Staphylococcus aureus from bloodstream infections. BMC Infect Dis 2021; 21:589. [PMID: 34154550 PMCID: PMC8215799 DOI: 10.1186/s12879-021-06293-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 06/01/2021] [Indexed: 01/13/2023] Open
Abstract
Background Bloodstream infections due to Staphylococcus aureus cause significant patient morbidity and mortality worldwide. Of major concern is the emergence and spread of methicillin-resistant S. aureus (MRSA) in bloodstream infections, which are associated with therapeutic failure and increased mortality. Methods We generated high quality draft genomes from 323 S. aureus blood culture isolates from patients diagnosed with bloodstream infection at the Dartmouth-Hitchcock Medical Center, New Hampshire, USA in 2010–2018. Results In silico detection of antimicrobial resistance genes revealed that 133/323 isolates (41.18%) carry horizontally acquired genes conferring resistance to at least three antimicrobial classes, with resistance determinants for aminoglycosides, beta-lactams and macrolides being the most prevalent. The most common resistance genes were blaZ and mecA, which were found in 262/323 (81.11%) and 104/323 (32.20%) isolates, respectively. Majority of the MRSA (102/105 isolates or 97.14%) identified using in vitro screening were related to two clonal complexes (CC) 5 and 8. The two CCs emerged in the New Hampshire population at separate times. We estimated that the time to the most recent common ancestor of CC5 was 1973 (95% highest posterior density (HPD) intervals: 1966–1979) and 1946 for CC8 (95% HPD intervals: 1924–1959). The effective population size of CC8 increased until the late 1960s when it started to level off until late 2000s. The levelling off of CC8 in 1968 coincided with the acquisition of SCCmec Type IV in majority of the strains. The plateau in CC8 also coincided with the acceleration in the population growth of CC5 carrying SCCmec Type II in the early 1970s, which eventually leveled off in the early 1990s. Lastly, we found evidence for frequent recombination in the two clones during their recent clonal expansion, which has likely contributed to their success in the population. Conclusions We conclude that the S. aureus population was shaped mainly by the clonal expansion, recombination and co-dominance of two major MRSA clones in the last five decades in New Hampshire, USA. These results have important implications on the development of effective and robust strategies for intervention, control and treatment of life-threatening bloodstream infections. Supplementary Information The online version contains supplementary material available at 10.1186/s12879-021-06293-3.
Collapse
Affiliation(s)
- Joshua T Smith
- Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, NH, 03824, USA
| | - Elissa M Eckhardt
- Dartmouth-Hitchcock Medical Center and Dartmouth College Geisel School of Medicine, Lebanon, NH, 03756, USA
| | - Nicole B Hansel
- Dartmouth-Hitchcock Medical Center and Dartmouth College Geisel School of Medicine, Lebanon, NH, 03756, USA
| | | | - Isabella W Martin
- Dartmouth-Hitchcock Medical Center and Dartmouth College Geisel School of Medicine, Lebanon, NH, 03756, USA.
| | - Cheryl P Andam
- Department of Biological Sciences, University at Albany, State University of New York, Albany, New York, 12222, USA.
| |
Collapse
|
27
|
Abstract
Staphylococcus aureus is both a commensal and a pathogenic bacterium for humans. Its ability to induce severe infections is based on a wide range of virulence factors. S. aureus community-acquired pneumonia (SA-CAP) is rare and severe, and the contribution of certain virulence factors in this disease has been recognized over the past 2 decades. First, the factors involved in metabolism adaptation are crucial for S. aureus survival in the lower respiratory tract, and toxins and enzymes are required for it to cross the pulmonary epithelial barrier. S. aureus subsequently faces host defense mechanisms, including the epithelial barrier, but most importantly the immune system. Here, again, S. aureus uses myriad virulence factors to successfully escape from the host's defenses and takes advantage of them. The impact of S. aureus virulence, combined with the collateral damage caused by an overwhelming immune response, leads to severe tissue damage and adverse clinical outcomes. In this review, we summarize step by step all of the S. aureus factors implicated in CAP and described to date, and we provide an outlook for future research.
Collapse
Affiliation(s)
- Mariane Pivard
- CIRI, Centre International de Recherche en Infectiologie, Université de Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Lyon, France
| | - Karen Moreau
- CIRI, Centre International de Recherche en Infectiologie, Université de Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Lyon, France
| | - François Vandenesch
- CIRI, Centre International de Recherche en Infectiologie, Université de Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Lyon, France
- Centre National de Référence des Staphylocoques, Institut des agents infectieux, Hospices Civils de Lyon, Lyon, France
| |
Collapse
|
28
|
Gómez P, Ruiz-Ripa L, Fernández-Fernández R, Gharsa H, Ben Slama K, Höfle U, Zarazaga M, Holmes MA, Torres C. Genomic Analysis of Staphylococcus aureus of the Lineage CC130, Including mecC-Carrying MRSA and MSSA Isolates Recovered of Animal, Human, and Environmental Origins. Front Microbiol 2021; 12:655994. [PMID: 33841383 PMCID: PMC8027229 DOI: 10.3389/fmicb.2021.655994] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 03/03/2021] [Indexed: 02/02/2023] Open
Abstract
Most methicillin resistant Staphylococcus aureus (MRSA) isolates harboring mecC gene belong to clonal complex CC130. This lineage has traditionally been regarded as animal-associated as it lacks the human specific immune evasion cluster (IEC), and has been recovered from a broad range of animal hosts. Nevertheless, sporadic mecC-MRSA human infections have been reported, with evidence of zoonotic transmission in some cases. The objective of this study was to investigate the whole-genome sequences of 18 S. aureus CC130 isolates [13 methicillin-resistant (mecC-MRSA) and five methicillin-susceptible (MSSA)] from different sequences types, obtained from a variety of host species and origins (human, livestock, wild birds and mammals, and water), and from different geographic locations, in order to identify characteristic markers and genomic features. Antibiotic resistance genes found among MRSA-CC130 were those associated with the SSCmecXI element. Most MRSA-CC130 strains carried a similar virulence gene profile. Additionally, six MRSA-CC130 possessed scn-sak and one MSSA-ST130 had lukMF'. The MSSA-ST700 strains were most divergent in their resistance and virulence genes. The pan-genome analysis showed that 29 genes were present solely in MRSA-CC130 (associated with SCCmecXI) and 21 among MSSA-CC130 isolates (associated with phages). The SCCmecXI, PBP3, GdpP, and AcrB were identical at the amino acid level in all strains, but some differences were found in PBP1, PBP2, PBP4, and YjbH proteins. An examination of the host markers showed that the 3' region of the bacteriophage φ3 was nearly identical to the reference sequence. Truncated hlb gene was also found in scn-negative strains (two of them carrying sak-type gene). The dtlB gene of wild rabbit isolates included novel mutations. The vwbp gene was found in the three MSSA-ST700 strains from small ruminants and in one MSSA-ST130 from a red deer; these strains also carried a scn-type gene, different from the human and equine variants. Finally, a phylogenetic analysis showed that the three MSSA-ST700 strains and the two MSSA-ST130 strains cluster separately from the remaining MRSA-CC130 strains with the etD2 gene as marker for the main lineage. The presence of the human IEC cluster in some mecC-MRSA-CC130 strains suggests that these isolates may have had a human origin.
Collapse
Affiliation(s)
- Paula Gómez
- Area of Biochemistry and Molecular Biology, OneHealth-UR Research Group, University of La Rioja, Logroño, Spain
| | - Laura Ruiz-Ripa
- Area of Biochemistry and Molecular Biology, OneHealth-UR Research Group, University of La Rioja, Logroño, Spain
| | - Rosa Fernández-Fernández
- Area of Biochemistry and Molecular Biology, OneHealth-UR Research Group, University of La Rioja, Logroño, Spain
| | - Haythem Gharsa
- Laboratoire des Microorganismes et Biomolécules Actives, Faculté des Sciences de Tunis, Université de Tunis El Manar, Tunis, Tunisia
| | - Karim Ben Slama
- Laboratoire des Microorganismes et Biomolécules Actives, Faculté des Sciences de Tunis, Université de Tunis El Manar, Tunis, Tunisia
| | - Ursula Höfle
- Health and Biotechnology SaBio Research Group, Instituto de Investigación en Recursos Cinegéticos IREC (CSIC-UCLM-JCCM), Ciudad Real, Spain
| | - Myriam Zarazaga
- Area of Biochemistry and Molecular Biology, OneHealth-UR Research Group, University of La Rioja, Logroño, Spain
| | - Mark A. Holmes
- Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Carmen Torres
- Area of Biochemistry and Molecular Biology, OneHealth-UR Research Group, University of La Rioja, Logroño, Spain
| |
Collapse
|
29
|
Nordengrün M, Abdurrahman G, Treffon J, Wächter H, Kahl BC, Bröker BM. Allergic Reactions to Serine Protease-Like Proteins of Staphylococcus aureus. Front Immunol 2021; 12:651060. [PMID: 33833764 PMCID: PMC8021911 DOI: 10.3389/fimmu.2021.651060] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 03/08/2021] [Indexed: 11/13/2022] Open
Abstract
In cystic fibrosis (CF) infectious and allergic airway inflammation cause pulmonary exacerbations that destroy the lungs. Staphylococcus aureus is a common long-term colonizer and cause of recurrent airway infections in CF. The pathogen is also associated with respiratory allergy; especially the staphylococcal serine protease-like proteins (Spls) can induce type 2 immune responses in humans and mice. We measured the serum IgE levels specific to 7 proteases of S. aureus by ELISA, targeting 5 Spls (76 CF patients and 46 controls) and the staphopains A and B (16 CF patients and 46 controls). Then we compared cytokine release and phenotype of T cells that had been stimulated with Spls between 5 CF patients and 5 controls. CF patients had strongly increased serum IgE binding to all Spls but not to the staphopains. Compared to healthy controls, their Spl-stimulated T cells released more type 2 cytokines (IL-4, IL-5, IL-13) and more IL-6 with no difference in the secretion of type 1- or type 3 cytokines (IFNγ, IL-17A, IL-17F). IL-10 production was low in CF T cells. The phenotype of the Spl-exposed T cells shifted towards a Th2 or Th17 profile in CF but to a Th1 profile in controls. Sensitization to S. aureus Spls is common in CF. This discovery could explain episodes of allergic inflammation of hitherto unknown causation in CF and extend the diagnostic and therapeutic portfolio.
Collapse
Affiliation(s)
- Maria Nordengrün
- Department of Immunology, Institute for Immunology and Transfusion Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Goran Abdurrahman
- Department of Immunology, Institute for Immunology and Transfusion Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Janina Treffon
- Institute of Medical Microbiology, University Hospital Münster, Münster, Germany.,Institute of Hygiene, University Hospital Münster, Münster, Germany
| | - Hannah Wächter
- Institute of Medical Microbiology, University Hospital Münster, Münster, Germany
| | - Barbara C Kahl
- Institute of Medical Microbiology, University Hospital Münster, Münster, Germany
| | - Barbara M Bröker
- Department of Immunology, Institute for Immunology and Transfusion Medicine, University Medicine Greifswald, Greifswald, Germany
| |
Collapse
|
30
|
Brandenburg KS, Weaver AJ, Karna SLR, Leung KP. The impact of simultaneous inoculation of Pseudomonas aeruginosa, Staphylococcus aureus, and Candida albicans on rodent burn wounds. Burns 2021; 47:1818-1832. [PMID: 33771422 DOI: 10.1016/j.burns.2021.02.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 01/13/2021] [Accepted: 02/18/2021] [Indexed: 12/27/2022]
Abstract
Burn wound infection often involves a diverse combination of bacterial and fungal pathogens. In this study, we characterize the mixed species burn wound infection by inoculating the burn surface with 1 × 103/4/5 CFU of Pseudomonas aeruginosa, Staphylococcus aureus, and Candida albicans in a 1:1:1 ratio. Using the revised Walker-Mason scald burn rat model, 168 male Sprague-Dawley rats (350-450 g) subject to ∼10% TBSA burn injury, with or without inoculation, were evaluated for 11 days after burn. In the wound, P. aeruginosa and S. aureus formed robust biofilms as determined by the bacterial tissue load, ∼1 × 109 CFU/g, and expression of key biofilm genes. Interestingly, within 3 days C. albicans achieved tissue loads of ∼1 × 106 CFU/g, but its numbers were significantly reduced beyond the limit of detection in the burn wound by day 7 in partial-thickness injuries and by day 11 in full-thickness injuries. The pathogenic biofilms contributed to burn depth progression, increased release of HMGB-1 into circulation from injured tissue, and significantly elevated the numbers of circulating innate immune cells (Neutrophils, Monocytes, and Basophils). This robust model of multi-species burn wound infection will serve as the basis for the development of new antimicrobials for combating biofilm-based wound infections.
Collapse
Affiliation(s)
- Kenneth S Brandenburg
- Division of Combat Wound Repair, US Army Institute of Surgical Research, JBSA Fort Sam Houston, TX 78234, USA.
| | - Alan J Weaver
- Division of Combat Wound Repair, US Army Institute of Surgical Research, JBSA Fort Sam Houston, TX 78234, USA.
| | - S L Rajasekhar Karna
- Division of Combat Wound Repair, US Army Institute of Surgical Research, JBSA Fort Sam Houston, TX 78234, USA.
| | - Kai P Leung
- Division of Combat Wound Repair, US Army Institute of Surgical Research, JBSA Fort Sam Houston, TX 78234, USA.
| |
Collapse
|
31
|
Structural Determinants of Substrate Specificity of SplF Protease from Staphylococcus aureus. Int J Mol Sci 2021; 22:ijms22042220. [PMID: 33672341 PMCID: PMC7926377 DOI: 10.3390/ijms22042220] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/16/2021] [Accepted: 02/19/2021] [Indexed: 11/17/2022] Open
Abstract
Accumulating evidence suggests that six proteases encoded in the spl operon of a dangerous human pathogen, Staphylococcus aureus, may play a role in virulence. Interestingly, SplA, B, D, and E have complementary substrate specificities while SplF remains to be characterized in this regard. Here, we describe the prerequisites of a heterologous expression system for active SplF protease and characterize the enzyme in terms of substrate specificity and its structural determinants. Substrate specificity of SplF is comprehensively profiled using combinatorial libraries of peptide substrates demonstrating strict preference for long aliphatic sidechains at the P1 subsite and significant selectivity for aromatic residues at P3. The crystal structure of SplF was provided at 1.7 Å resolution to define the structural basis of substrate specificity of SplF. The obtained results were compared and contrasted with the characteristics of other Spl proteases determined to date to conclude that the spl operon encodes a unique extracellular proteolytic system.
Collapse
|
32
|
Abstract
Staphylococcus aureus controls the progression of infection through the coordinated production of extracellular proteases, which selectively modulate virulence determinant stability. This is evidenced by our previous finding that a protease-null strain has a hypervirulent phenotype in a murine model of sepsis, resulting from the unchecked accumulation of virulence factors. Here, we dissect the individual roles of these proteases by constructing and assessing the pathogenic potential of a combinatorial protease mutant library. When strains were constructed bearing increasing numbers of secreted proteases, we observed a variable impact on infectious capacity, where some exhibited hypervirulence, while others phenocopied the wild-type. The common thread for hypervirulent strains was that each lacked both aureolysin and staphopain A. Upon assessment, we found that the combined loss of these two enzymes alone was necessary and sufficient to engender hypervirulence. Using proteomics, we identified a number of important secreted factors, including SPIN, LukA, Sbi, SEK, and PSMα4, as well as an uncharacterized chitinase-related protein (SAUSA300_0964), to be overrepresented in both the aur scpA and the protease-null mutants. When assessing the virulence of aur scpA SAUSA300_0964 and aur scpA lukA mutants, we found that hypervirulence was completely eliminated, whereas aur scpA spn and aur scpA sek strains elicited aggressive infections akin to the protease double mutant. Collectively, our findings shed light on the influence of extracellular proteases in controlling the infectious process and identifies SAUSA300_0964 as an important new component of the S. aureus virulence factor arsenal.IMPORTANCE A key feature of the pathogenic success of S. aureus is the myriad virulence factors encoded within its genome. These are subject to multifactorial control, ensuring their timely production only within an intended infectious niche. A key node in this network of control is the secreted proteases of S. aureus, who specifically and selectively modulate virulence factor stability. In our previous work we demonstrated that deletion of all 10 secreted proteases results in hypervirulence, since virulence factors exist unchecked, leading to overly aggressive infections. Here, using a combinatorial collection of protease mutants, we reveal that deletion of aureolysin and staphopain A is necessary and sufficient to elicit hypervirulence. Using proteomic techniques, we identify the collection of virulence factors that accumulate in hypervirulent protease mutants, and demonstrate that a well-known toxin (LukA) and an entirely novel secreted element (SAUSA300_0964) are the leading contributors to deadly infections observed in protease-lacking strains.
Collapse
|
33
|
Petrie LE, Leonard AC, Murphy J, Cox G. Development and validation of a high-throughput whole cell assay to investigate Staphylococcus aureus adhesion to host ligands. J Biol Chem 2020; 295:16700-16712. [PMID: 32978256 PMCID: PMC7864066 DOI: 10.1074/jbc.ra120.015360] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 09/22/2020] [Indexed: 12/20/2022] Open
Abstract
Staphylococcus aureus adhesion to the host's skin and mucosae enables asymptomatic colonization and the establishment of infection. This process is facilitated by cell wall-anchored adhesins that bind to host ligands. Therapeutics targeting this process could provide significant clinical benefits; however, the development of anti-adhesives requires an in-depth knowledge of adhesion-associated factors and an assay amenable to high-throughput applications. Here, we describe the development of a sensitive and robust whole cell assay to enable the large-scale profiling of S. aureus adhesion to host ligands. To validate the assay, and to gain insight into cellular factors contributing to adhesion, we profiled a sequence-defined S. aureus transposon mutant library, identifying mutants with attenuated adhesion to human-derived fibronectin, keratin, and fibrinogen. Our screening approach was validated by the identification of known adhesion-related proteins, such as the housekeeping sortase responsible for covalently linking adhesins to the cell wall. In addition, we also identified genetic loci that could represent undescribed anti-adhesive targets. To compare and contrast the genetic requirements of adhesion to each host ligand, we generated a S. aureus Genetic Adhesion Network, which identified a core gene set involved in adhesion to all three host ligands, and unique genetic signatures. In summary, this assay will enable high-throughput chemical screens to identify anti-adhesives and our findings provide insight into the target space of such an approach.
Collapse
Affiliation(s)
- Laurenne E Petrie
- College of Biological Sciences, Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Allison C Leonard
- College of Biological Sciences, Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Julia Murphy
- College of Biological Sciences, Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Georgina Cox
- College of Biological Sciences, Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada.
| |
Collapse
|
34
|
Ramirez AM, Beenken KE, Byrum SD, Tackett AJ, Shaw LN, Gimza BD, Smeltzer MS. SarA plays a predominant role in controlling the production of extracellular proteases in the diverse clinical isolates of Staphylococcus aureus LAC and UAMS-1. Virulence 2020; 11:1738-1762. [PMID: 33258416 PMCID: PMC7738309 DOI: 10.1080/21505594.2020.1855923] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 11/12/2020] [Accepted: 11/18/2020] [Indexed: 12/26/2022] Open
Abstract
Using DNA affinity chromatography we demonstrate that the S. aureus regulatory proteins MgrA, Rot, SarA, and SarS bind DNA baits derived from the promoter regions associated with the genes encoding aureolysin, ScpAB, SspABC, and SplA-F. Three of four baits also bound SarR and SarZ, the exception in both cases being the ScpAB-associated bait. Using the USA300, methicillin-resistant strain LAC and the USA200, methicillin-sensitive strain UAMS-1, we generated mutations in the genes encoding each of these proteins alone and in combination with sarA and examined the impact on protease production, the accumulation of high molecular weight proteins, and biofilm formation. These studies confirmed that multiple regulatory loci are involved in limiting protease production to a degree that impacts all of these phenotypes, but also demonstrate that sarA plays a predominant role in this regard. Using sarA mutants unable to produce individual proteases alone and in combination with each other, we also demonstrate that the increased production of aureolysin and ScpA is particularly important in defining the biofilm-deficient phenotype of LAC and UAMS-1 sarA mutants, while aureolysin alone plays a key role in defining the reduced accumulation of alpha toxin and overall cytotoxicity as assessed using both osteoblasts and osteoclasts.
Collapse
Affiliation(s)
- Aura M. Ramirez
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Karen E. Beenken
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Stephanie D. Byrum
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, and Arkansas Children’s Research Institute, Little Rock, AR, USA
| | - Alan J. Tackett
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, and Arkansas Children’s Research Institute, Little Rock, AR, USA
| | - Lindsey N. Shaw
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, Tampa, FL
| | - Brittney D. Gimza
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, Tampa, FL
| | - Mark S. Smeltzer
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| |
Collapse
|
35
|
Jin Y, Yu X, Zhang S, Kong X, Chen W, Luo Q, Zheng B, Xiao Y. Comparative Analysis of Virulence and Toxin Expression of Vancomycin-Intermediate and Vancomycin-Sensitive Staphylococcus aureus Strains. Front Microbiol 2020; 11:596942. [PMID: 33193280 PMCID: PMC7661696 DOI: 10.3389/fmicb.2020.596942] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 10/12/2020] [Indexed: 01/19/2023] Open
Abstract
Previous studies on vancomycin-intermediate Staphylococcus aureus (VISA) have mainly focused on drug resistance, the evolution of differences in virulence between VISA and vancomycin-sensitive S. aureus (VSSA) requires further investigation. To address this issue, in this study, we compared the virulence and toxin profiles of pair groups of VISA and VSSA strains, including a series of vancomycin-resistant induced S. aureus strains—SA0534, SA0534-V8, and SA0534-V16. We established a mouse skin infection model to evaluate the invasive capacity of VISA strains, and found that although mice infected with VISA had smaller-sized abscesses than those infected with VSSA, the abscesses persisted for a longer period (up to 9 days). Infection with VISA strains was associated with a lower mortality rate in Galleria mellonella larvae compared to infection with VSSA strains (≥ 40% vs. ≤ 3% survival at 28 h). Additionally, VISA were more effective in colonizing the nasal passage of mice than VSSA, and in vitro experiments showed that while VISA strains were less virulent they showed enhanced intracellular survival compared to VSSA strains. RNA sequencing of VISA strains revealed significant differences in the expression levels of the agr, hla, cap, spa, clfB, and sbi genes and suggested that platelet activation is only weakly induced by VISA. Collectively, our findings indicate that VISA is less virulent than VSSA but has a greater capacity to colonize human hosts and evade destruction by the host innate immune system, resulting in persistent and chronic S. aureus infection.
Collapse
Affiliation(s)
- Ye Jin
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiao Yu
- Department of Respiratory and Critical Care Medicine, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Shuntian Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaoyang Kong
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Weiwei Chen
- Department of Laboratory Medicine, College of Medicine, Zhejiang University, Hangzhou, China
| | - Qixia Luo
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Beiwen Zheng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yonghong Xiao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
36
|
Chung HY, Kim YT, Kwon JG, Im HH, Ko D, Lee JH, Choi SH. Molecular interaction between methicillin-resistant Staphylococcus aureus (MRSA) and chicken breast reveals enhancement of pathogenesis and toxicity for food-borne outbreak. Food Microbiol 2020; 93:103602. [PMID: 32912577 DOI: 10.1016/j.fm.2020.103602] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 06/27/2020] [Accepted: 07/21/2020] [Indexed: 12/24/2022]
Abstract
To study pathogenesis and toxicity of Staphylococcus aureus in foods, FORC_062 was isolated from a human blood sample and complete genome sequence has a type II SCCmec gene cluster and a type II toxin-antitoxin system, indicating an MRSA strain. Its mobile gene elements has many pathogenic genes involved in host infection, biofilm formation, and various enterotoxin and hemolysin genes. Clinical MRSA is often found in animal foods and ingestion of MRSA-contaminated foods causes human infection. Therefore, it is very important to understand the role of contaminated foods. To elucidate the interaction between clinical MRSA FORC_062 and raw chicken breast, transcriptome analysis was conducted, showing that gene expressions of amino acid biosynthesis and metabolism were specifically down-regulated, suggesting that the strain may import and utilize amino acids from the chicken breast, but not able to synthesize them. However, toxin gene expressions were up-regulated, suggesting that human infection of S. aureus via contaminated food may be more fatal. In addition, the contaminated foods enhance multiple-antibiotic resistance activities and virulence factors in this clinical MRSA. Consequently, MRSA-contaminated food may play a role as a nutritional reservoir as well as in enhancing factor for pathogenesis and toxicity of clinical MRSA for severe food-borne outbreaks.
Collapse
Affiliation(s)
- Han Young Chung
- National Research Laboratory of Molecular Microbiology and Toxicology, Department of Agricultural Biotechnology, And Center for Food Safety and Toxicology, Seoul National University, Seoul, 08826, South Korea; Food-borne Pathogen Omics Research Center (FORC), Seoul National University, Seoul, 08826, South Korea
| | - You-Tae Kim
- Department of Food Science and Biotechnology, Kyung Hee University, Yongin, 17104, South Korea; Food-borne Pathogen Omics Research Center (FORC), Seoul National University, Seoul, 08826, South Korea
| | - Joon-Gi Kwon
- Department of Food Science and Biotechnology, Kyung Hee University, Yongin, 17104, South Korea; Food-borne Pathogen Omics Research Center (FORC), Seoul National University, Seoul, 08826, South Korea
| | - Han Hyeok Im
- National Research Laboratory of Molecular Microbiology and Toxicology, Department of Agricultural Biotechnology, And Center for Food Safety and Toxicology, Seoul National University, Seoul, 08826, South Korea; Food-borne Pathogen Omics Research Center (FORC), Seoul National University, Seoul, 08826, South Korea
| | - Duhyun Ko
- National Research Laboratory of Molecular Microbiology and Toxicology, Department of Agricultural Biotechnology, And Center for Food Safety and Toxicology, Seoul National University, Seoul, 08826, South Korea; Food-borne Pathogen Omics Research Center (FORC), Seoul National University, Seoul, 08826, South Korea
| | - Ju-Hoon Lee
- Department of Food Science and Biotechnology, Kyung Hee University, Yongin, 17104, South Korea; Food-borne Pathogen Omics Research Center (FORC), Seoul National University, Seoul, 08826, South Korea.
| | - Sang Ho Choi
- National Research Laboratory of Molecular Microbiology and Toxicology, Department of Agricultural Biotechnology, And Center for Food Safety and Toxicology, Seoul National University, Seoul, 08826, South Korea; Food-borne Pathogen Omics Research Center (FORC), Seoul National University, Seoul, 08826, South Korea.
| |
Collapse
|
37
|
Belikova D, Jochim A, Power J, Holden MTG, Heilbronner S. "Gene accordions" cause genotypic and phenotypic heterogeneity in clonal populations of Staphylococcus aureus. Nat Commun 2020; 11:3526. [PMID: 32665571 PMCID: PMC7360770 DOI: 10.1038/s41467-020-17277-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 06/15/2020] [Indexed: 12/18/2022] Open
Abstract
Gene tandem amplifications are thought to drive bacterial evolution, but they are transient in the absence of selection, making their investigation challenging. Here, we analyze genomic sequences of Staphylococcus aureus USA300 isolates from the same geographical area to identify variations in gene copy number, which we confirm by long-read sequencing. We find several hotspots of variation, including the csa1 cluster encoding lipoproteins known to be immunogenic. We also show that the csa1 locus expands and contracts during bacterial growth in vitro and during systemic infection of mice, and recombination creates rapid heterogeneity in initially clonal cultures. Furthermore, csa1 copy number variants differ in their immunostimulatory capacity, revealing a mechanism by which gene copy number variation can modulate the host immune response. Gene tandem amplifications can drive bacterial evolution. Here, Belikova et al. identify copy number variations of lipoprotein-encoding genes in Staphylococcus aureus clinical isolates, and show that the loci expand and contract during bacterial growth in vitro and in mice, leading to changes in immunostimulatory capacity.
Collapse
Affiliation(s)
- Darya Belikova
- Interfaculty Institute of Microbiology and Infection Medicine, Department of Infection Biology, University of Tübingen, Tübingen, Germany
| | - Angelika Jochim
- Interfaculty Institute of Microbiology and Infection Medicine, Department of Infection Biology, University of Tübingen, Tübingen, Germany
| | - Jeffrey Power
- Interfaculty Institute of Microbiology and Infection Medicine, Department of Infection Biology, University of Tübingen, Tübingen, Germany
| | | | - Simon Heilbronner
- Interfaculty Institute of Microbiology and Infection Medicine, Department of Infection Biology, University of Tübingen, Tübingen, Germany. .,German Centre for Infection Research (DZIF), Partner Site Tübingen, Tübingen, Germany. .,(DFG) Cluster of Excellence EXC 2124 Controlling Microbes to Fight Infections, Tübingen, Germany.
| |
Collapse
|
38
|
The 5' NAD Cap of RNAIII Modulates Toxin Production in Staphylococcus aureus Isolates. J Bacteriol 2020; 202:JB.00591-19. [PMID: 31871032 DOI: 10.1128/jb.00591-19] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 12/18/2019] [Indexed: 01/14/2023] Open
Abstract
Nicotinamide adenosine dinucleotide (NAD) has been found to be covalently attached to the 5' ends of specific RNAs in many different organisms, but the physiological consequences of this modification are largely unknown. Here, we report the occurrence of several NAD-RNAs in the opportunistic pathogen Staphylococcus aureus Most prominently, RNAIII, a central quorum-sensing regulator of this bacterium's physiology, was found to be 5' NAD capped in a range from 10 to 35%. NAD incorporation efficiency into RNAIII was found to depend in vivo on the -1 position of the P3 promoter. An increase in RNAIII's NAD content led to a decreased expression of alpha- and delta-toxins, resulting in reduced cytotoxicity of the modified strains. These effects seem to be caused neither by changes in RNAIII's secondary structure nor by a different translatability upon NAD attachment, as indicated by unaltered patterns in in vitro chemical probing and toeprinting experiments. Even though we did not observe any effect of this modification on RNAIII's secondary structure or translatability in vitro, additional unidentified factors might account for the modulation of exotoxins in vivo Ultimately, the study constitutes a step forward in the discovery of new roles of the NAD molecule in bacteria.IMPORTANCE Numerous organisms, including bacteria, are endowed with a 5' NAD cap in specific RNAs. While the presence of the 5' NAD cap modulates the stability of the modified RNA species, a significant biological function and phenotype have not been assigned so far. Here, we show the presence of a 5' NAD cap in RNAIII from S. aureus, a dual-function regulatory RNA involved in quorum-sensing processes and regulation of virulence factor expression. We also demonstrate that altering the natural NAD modification ratio of RNAIII leads to a decrease in exotoxin production, thereby modulating the bacterium's virulence. Our work unveils a new layer of regulation of RNAIII and the agr system that might be linked to the redox state of the NAD molecule in the cell.
Collapse
|
39
|
Staphylococcus aureus Pneumonia: Preceding Influenza Infection Paves the Way for Low-Virulent Strains. Toxins (Basel) 2019; 11:toxins11120734. [PMID: 31861176 PMCID: PMC6950557 DOI: 10.3390/toxins11120734] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 12/05/2019] [Accepted: 12/14/2019] [Indexed: 12/22/2022] Open
Abstract
Staphylococcus aureus is a facultative pathogenic bacterium that colonizes the nasopharyngeal area of healthy individuals, but can also induce severe infection, such as pneumonia. Pneumonia caused by mono- or superinfected S.aureus leads to high mortality rates. To establish an infection, S. aureus disposes of a wide variety of virulence factors, which can vary between clinical isolates. Our study aimed to characterize pneumonia isolates for their virulent capacity. For this, we analyzed isolates from colonization, pneumonia due to S. aureus, and pneumonia due to S. aureus/influenza virus co-infection. A total of 70 strains were analyzed for their virulence genes and the host–pathogen interaction was analyzed through functional assays in cell culture systems. Strains from pneumonia due to S. aureus mono-infection showed enhanced invasion and cytotoxicity against professional phagocytes than colonizing and co-infecting strains. This corresponded to the high presence of cytotoxic components in pneumonia strains. By contrast, strains obtained from co-infection did not exhibit these virulence characteristics and resembled strains from colonization, although they caused the highest mortality rate in patients. Taken together, our results underline the requirement of invasion and toxins to cause pneumonia due to S. aureus mono-infection, whereas in co-infection even low-virulent strains can severely aggravate pneumonia.
Collapse
|
40
|
Kläui AJ, Boss R, Graber HU. Characterization and Comparative Analysis of the Staphylococcus aureus Genomic Island vSaβ: an In Silico Approach. J Bacteriol 2019; 201:e00777-18. [PMID: 31451542 PMCID: PMC6805111 DOI: 10.1128/jb.00777-18] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 07/25/2019] [Indexed: 01/10/2023] Open
Abstract
Staphylococcus aureus is a widespread opportunistic pathogen to humans and animals. Of its genome, 20 to 25% varies between strains and consists of phages, pathogenicity islands, transposons, and genomic islands. S. aureus harbors up to three genomic islands, vSaα, vSaβ, and vSaγ. The vSaβ region of S. aureus can encode a number of virulence-associated factors, such as serine proteases, leukocidins, enterotoxins, bacteriocins, or a hyaluronate lyase. In this study, the vSaβ regions of 103 clinically relevant S. aureus strains were characterized in silico and compared to the three predefined vSaβ types. We here suggest a superordinate system of 15 different vSaβ types, of which 12 were newly defined. Each vSaβ type has a distinct structure with a distinct set of genes, which are both highly conserved. Between the different types, gene content and composition vary substantially. Based on our data, a strain's vSaβ type is strongly coupled with its clonal complex, suggesting that vSaβ was acquired in an ancestral S. aureus strain, arguably by phage mediation, before differentiation into clonal complexes. In addition, we addressed the issue of ambiguous nomenclature in the serine protease gene cluster and propose a novel, phylogeny-based nomenclature of the cluster contained in the vSaβ region.IMPORTANCE With the rapid increase of available sequencing data on clinically relevant bacterial species such as S. aureus, the genomic basis of clinical phenotypes can be investigated in much more detail, allowing a much deeper understanding of the mechanisms involved in disease. We characterized in detail the S. aureus genomic island vSaβ and defined a superordinate system to categorize S. aureus strains based on their vSaβ type, providing information about the strains' virulence-associated genes and clinical potential.
Collapse
Affiliation(s)
- Anita J Kläui
- Food Microbial Systems, Agroscope, Bern, Switzerland
| | - Renate Boss
- Risk Assessment Division, Federal Food Safety and Veterinary Office, Bern, Switzerland
| | - Hans U Graber
- Food Microbial Systems, Agroscope, Bern, Switzerland
| |
Collapse
|
41
|
Singh V, Phukan UJ. Interaction of host and Staphylococcus aureus protease-system regulates virulence and pathogenicity. Med Microbiol Immunol 2019; 208:585-607. [PMID: 30483863 DOI: 10.1007/s00430-018-0573-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 11/22/2018] [Indexed: 02/06/2023]
Abstract
Staphylococcus aureus causes various health care- and community-associated infections as well as certain chronic TH2 driven inflammatory diseases. It is a potent pathogen with serious virulence and associated high morbidity. Severe pathogenicity is accredited to the S. aureus secreted virulence factors such as proteases and host protease modulators. These virulence factors promote adhesion and invasion of bacteria through damage of tight junction barrier and keratinocytes. They inhibit activation and transmigration of various immune cells such as neutrophils (and neutrophil proteases) to evade opsono-phagocytosis and intracellular bacterial killing. Additionally, they protect the bacteria from extracellular killing by disrupting integrity of extracellular matrix. Platelet activation and agglutination is also impaired by these factors. They also block the classical as well as alternative pathways of complement activation and assist in spread of infection through blood and tissue. As these factors are exquisite factors of S. aureus mediated disease development, we have focused on review of diversification of various protease-system associated virulence factors, their structural building, diverse role in disease development and available therapeutic counter measures. This review summarises the role of protease-associated virulence factors during invasion and progression of disease.
Collapse
Affiliation(s)
- Vigyasa Singh
- Molecular Bioprospection Department, CSIR-Central Institute of Medicinal and Aromatic Plants, P.O. CIMAP, Lucknow, 226015, India
| | - Ujjal Jyoti Phukan
- School of Life Science, Jawaharlal Nehru University, New Delhi, 110067, India.
| |
Collapse
|
42
|
Hua X, Jia Y, Yang Q, Zhang W, Dong Z, Liu S. Transcriptional Analysis of the Effects of Gambogic Acid and Neogambogic Acid on Methicillin-Resistant Staphylococcus aureus. Front Pharmacol 2019; 10:986. [PMID: 31572177 PMCID: PMC6753875 DOI: 10.3389/fphar.2019.00986] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 07/31/2019] [Indexed: 11/13/2022] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) infection is a major threat to human health, as this bacterium has developed resistance to a variety of conventional antibiotics. This is especially true of MRSA biofilms, which not only exhibit enhanced pathogenicity but also are resistant to most antibiotics. In this work, we demonstrated that two natural products with antitumor activity, namely, gambogic acid (GA) and neogambogic acid (NGA), have significant inhibitory activity toward MRSA. GA and NGA can not only effectively inhibit planktonic MRSA strains in vivo and in vitro, but also have strong inhibitory effects on MRSA biofilms formation. By transcriptome sequencing, Q-RT-PCR and PRM, we found that GA and NGA could reduce the expression of S. aureus virulence factors by inhibiting the saeRS two-component, thus achieving inhibition of MRSA. We found that GA and NGA had anti-MRSA activity in vivo and in vitro and identified saeRS to be the target, indicating that saeRS inhibitors may be used to treat biofilm-related infections.
Collapse
Affiliation(s)
- Xin Hua
- Division of Bacterial Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Yue Jia
- Division of Bacterial Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Qin Yang
- Division of Bacterial Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Wanjiang Zhang
- Division of Bacterial Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Zhimin Dong
- Innovation Team of Livestock and Poultry Epidemic Disease Prevention and Control, Tianjin Animal Science and Veterinary Research Institute, Tianjin, China
| | - Siguo Liu
- Division of Bacterial Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| |
Collapse
|
43
|
Espadinha D, Sobral RG, Mendes CI, Méric G, Sheppard SK, Carriço JA, de Lencastre H, Miragaia M. Distinct Phenotypic and Genomic Signatures Underlie Contrasting Pathogenic Potential of Staphylococcus epidermidis Clonal Lineages. Front Microbiol 2019; 10:1971. [PMID: 31507574 PMCID: PMC6719527 DOI: 10.3389/fmicb.2019.01971] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 08/12/2019] [Indexed: 12/31/2022] Open
Abstract
Background: Staphylococcus epidermidis is a common skin commensal that has emerged as a pathogen in hospitals, mainly related to medical devices-associated infections. Noteworthy, infection rates by S. epidermidis have the tendency to rise steeply in next decades together with medical devices use and immunocompromized population growth. Staphylococcus epidermidis population structure includes two major clonal lineages (A/C and B) that present contrasting pathogenic potentials. To address this distinction and explore the basis of increased pathogenicity of A/C lineage, we performed a detailed comparative analysis using phylogenetic and integrated pangenome-wide-association study (panGWAS) approaches and compared the lineages's phenotypes in in vitro conditions mimicking carriage and infection. Results: Each S. epidermidis lineage had distinct phenotypic signatures in skin and infection conditions and differed in genomic content. Combination of phenotypic and genotypic data revealed that both lineages were well adapted to skin environmental cues. However, they appear to occupy different skin niches, perform distinct biological functions in the skin and use different mechanisms to complete the same function: lineage B strains showed evidence of specialization to survival in microaerobic and lipid rich environment, characteristic of hair follicle and sebaceous glands; lineage A/C strains showed evidence for adaption to diverse osmotic and pH conditions, potentially allowing them to occupy a broader and more superficial skin niche. In infection conditions, A/C strains had an advantage, having the potential to bind blood-associated host matrix proteins, form biofilms at blood pH, resist antibiotics and macrophage acidity and to produce proteases. These features were observed to be rare in the lineage B strains. PanGWAS analysis produced a catalog of putative S. epidermidis virulence factors and identified an epidemiological molecular marker for the more pathogenic lineage. Conclusion: The prevalence of A/C lineage in infection is probably related to a higher metabolic and genomic versatility that allows rapid adaptation during transition from a commensal to a pathogenic lifestyle. The putative virulence and phenotypic factors associated to A/C lineage constitute a reliable framework for future studies on S. epidermidis pathogenesis and the finding of an epidemiological marker for the more pathogenic lineage is an asset for the management of S. epidermidis infections.
Collapse
Affiliation(s)
- Diana Espadinha
- Laboratory of Bacterial Evolution and Molecular Epidemiology, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
- Laboratory of Molecular Genetics, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Rita G. Sobral
- Laboratory of Molecular Microbiology of Bacterial Pathogens, UCIBIO/REQUIMTE, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Costa de Caparica, Portugal
| | - Catarina Inês Mendes
- Molecular Microbiology and Infection Unit, Instituto de Medicina Molecular, Faculdade de Medicina de Lisboa, Universidade de Lisboa, Lisbon, Portugal
| | - Guillaume Méric
- The Milner Centre for Evolution, University of Bath, Bath, United Kingdom
| | - Samuel K. Sheppard
- The Milner Centre for Evolution, University of Bath, Bath, United Kingdom
- MRC CLIMB Consortium, Bath, United Kingdom
| | - João A. Carriço
- Molecular Microbiology and Infection Unit, Instituto de Medicina Molecular, Faculdade de Medicina de Lisboa, Universidade de Lisboa, Lisbon, Portugal
| | - Hermínia de Lencastre
- Laboratory of Molecular Genetics, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
- Laboratory of Microbiology and Infectious Diseases, The Rockefeller University, New York, NY, United States
| | - Maria Miragaia
- Laboratory of Bacterial Evolution and Molecular Epidemiology, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| |
Collapse
|
44
|
Randad PR, Dillen CA, Ortines RV, Mohr D, Aziz M, Price LB, Kaya H, Larsen J, Carroll KC, Smith TC, Miller LS, Heaney CD. Comparison of livestock-associated and community-associated Staphylococcus aureus pathogenicity in a mouse model of skin and soft tissue infection. Sci Rep 2019; 9:6774. [PMID: 31043631 PMCID: PMC6494861 DOI: 10.1038/s41598-019-42919-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 04/08/2019] [Indexed: 11/08/2022] Open
Abstract
Industrial hog operation (IHO) workers are at increased risk of carrying Staphylococcus aureus in their nares, particularly strains that are livestock-associated (LA) and multidrug-resistant. The pathogenicity of LA-S. aureus strains remains unclear, with some prior studies suggesting reduced transmission and virulence in humans compared to community-associated methicillin-resistant (CA-MRSA) S. aureus. The objective of this study was to determine the degree to which LA-S. aureus strains contracted by IHO workers cause disease relative to a representative CA-MRSA strain in a mouse model of skin and soft tissue infection (SSTI). Mice infected with CC398 LA-S. aureus strains (IHW398-1 and IHW398-2) developed larger lesion sizes with higher bacterial burden than mice infected with CA-MRSA (SF8300) (p < 0.05). The greatest lesion size and bacterial burden was seen with a CC398 strain that produced a recurrent SSTI in an IHO worker. The LA-S. aureus infected mice had decreased IL-1β protein levels compared with CA-MRSA-infected mice (p < 0.05), suggesting a suboptimal host response to LA-S. aureus SSTIs. WGSA revealed heterogeneity in virulence factor and antimicrobial resistance genes carried by LA-S. aureus and CA-MRSA strains. The observed pathogenicity suggest that more attention should be placed on preventing the spread of LA-S. aureus into human populations.
Collapse
Affiliation(s)
- Pranay R. Randad
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland USA
| | - Carly A. Dillen
- Department of Dermatology, Johns Hopkins School of Medicine, Baltimore, Maryland USA
| | - Roger V. Ortines
- Department of Dermatology, Johns Hopkins School of Medicine, Baltimore, Maryland USA
| | - David Mohr
- Genetic Resources Core Facility, McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland USA
| | - Maliha Aziz
- Department of Environmental and Occupational Health, George Washington University, Washington, D.C. USA
- Antibiotic Resistance Action Center, George Washington University, Washington, D.C. USA
| | - Lance B. Price
- Department of Environmental and Occupational Health, George Washington University, Washington, D.C. USA
- Antibiotic Resistance Action Center, George Washington University, Washington, D.C. USA
| | - Hülya Kaya
- Department of Bacteria, Parasites and Fungi, Statens Serum Institut, Copenhagen, Denmark
| | - Jesper Larsen
- Department of Bacteria, Parasites and Fungi, Statens Serum Institut, Copenhagen, Denmark
| | - Karen C. Carroll
- Division of Medical Microbiology, Johns Hopkins University School of Medicine, Baltimore, Maryland USA
| | - Tara C. Smith
- Department of Epidemiology and Biostatistics, Kent State University, Kent, Ohio, USA
| | - Lloyd S. Miller
- Department of Dermatology, Johns Hopkins School of Medicine, Baltimore, Maryland USA
| | - Christopher D. Heaney
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland USA
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland USA
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland USA
| |
Collapse
|
45
|
Comprehensive Virulence Gene Profiling of Bovine Non- aureus Staphylococci Based on Whole-Genome Sequencing Data. mSystems 2019; 4:mSystems00098-18. [PMID: 30863792 PMCID: PMC6401416 DOI: 10.1128/msystems.00098-18] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 02/15/2019] [Indexed: 12/21/2022] Open
Abstract
Non-aureus staphylococci (NAS) are the most frequently isolated pathogens from milk in dairy cattle worldwide. The virulence factors (VFs) and mechanisms by which these bacteria cause udder infection are not fully known. We determined the distribution and associations of 191 VFs in 25 NAS species and investigated the relationship between VFs and disease. Although the overall number of VFs was not associated with disease severity, increasing numbers of toxin and host immune evasion genes specifically were associated with more severe disease outcomes. These findings suggest that the development of disease and the interactions of VFs with the host are complex and determined by the interplay of genes rather than just the presence of virulence genes. Together, our results provide foundational genetic knowledge to other researchers to design and conduct further experiments, focusing on understanding the synergy between VFs and roles of individual NAS species in IMI and characterizing species-specific effects on udder health. Non-aureus staphylococci (NAS) are the most frequently isolated pathogens from intramammary infection (IMI) in dairy cattle. Virulence factors (VFs) and mechanisms by which NAS cause IMI are not fully known. Herein, we analyzed the distribution of 191 VFs in 441 genomes of 25 NAS species, after classifying VFs into functional categories: adherence (n = 28), exoenzymes (n = 21), immune evasion (n = 20), iron metabolism (n = 29), and toxins (n = 93). In addition to establishing VF gene profiles, associations of VF genes between and among functional categories were computed, revealing distinctive patterns of association among VFs for various NAS species. Associations were also computed for low, medium, and high somatic cell count (SCC) and clinical mastitis (CM) isolates, demonstrating distinctive patterns of associations for low SCC and CM isolates, but no differences between high SCC and CM isolates. To determine whether VF distributions had any association with SCC or CM, various clustering approaches, including complete linkages, Ward clustering, and t-distributed stochastic neighbor embedding, were applied. However, no clustering of isolates representing low SCC, medium SCC, or high SCC or CM was identified. Regression analysis to test for associations with individual VF functional categories demonstrated that each additional toxin and host immune evasion gene increased the odds of having high SCC or CM, although an overall increase in the number of VFs was not associated with increased SCC or occurrence of CM. In conclusion, we established comprehensive VF gene profiling, determined VF gene distributions and associations, calculated pathogenic potentials of all NAS species, and detected no clear link between VF genes and mastitis. IMPORTANCE Non-aureus staphylococci (NAS) are the most frequently isolated pathogens from milk in dairy cattle worldwide. The virulence factors (VFs) and mechanisms by which these bacteria cause udder infection are not fully known. We determined the distribution and associations of 191 VFs in 25 NAS species and investigated the relationship between VFs and disease. Although the overall number of VFs was not associated with disease severity, increasing numbers of toxin and host immune evasion genes specifically were associated with more severe disease outcomes. These findings suggest that the development of disease and the interactions of VFs with the host are complex and determined by the interplay of genes rather than just the presence of virulence genes. Together, our results provide foundational genetic knowledge to other researchers to design and conduct further experiments, focusing on understanding the synergy between VFs and roles of individual NAS species in IMI and characterizing species-specific effects on udder health.
Collapse
|
46
|
Tam K, Torres VJ. Staphylococcus aureus Secreted Toxins and Extracellular Enzymes. Microbiol Spectr 2019; 7:10.1128/microbiolspec.gpp3-0039-2018. [PMID: 30873936 PMCID: PMC6422052 DOI: 10.1128/microbiolspec.gpp3-0039-2018] [Citation(s) in RCA: 232] [Impact Index Per Article: 38.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Indexed: 02/06/2023] Open
Abstract
Staphylococcus aureus is a formidable pathogen capable of causing infections in different sites of the body in a variety of vertebrate animals, including humans and livestock. A major contribution to the success of S. aureus as a pathogen is the plethora of virulence factors that manipulate the host's innate and adaptive immune responses. Many of these immune modulating virulence factors are secreted toxins, cofactors for activating host zymogens, and exoenzymes. Secreted toxins such as pore-forming toxins and superantigens are highly inflammatory and can cause leukocyte cell death by cytolysis and clonal deletion, respectively. Coagulases and staphylokinases are cofactors that hijack the host's coagulation system. Exoenzymes, including nucleases and proteases, cleave and inactivate various immune defense and surveillance molecules, such as complement factors, antimicrobial peptides, and surface receptors that are important for leukocyte chemotaxis. Additionally, some of these secreted toxins and exoenzymes can cause disruption of endothelial and epithelial barriers through cell lysis and cleavage of junction proteins. A unique feature when examining the repertoire of S. aureus secreted virulence factors is the apparent functional redundancy exhibited by the majority of the toxins and exoenzymes. However, closer examination of each virulence factor revealed that each has unique properties that have important functional consequences. This chapter provides a brief overview of our current understanding of the major secreted virulence factors critical for S. aureus pathogenesis.
Collapse
Affiliation(s)
- Kayan Tam
- Department of Microbiology, New York University School of Medicine, Alexandria Center for Life Science, New York, NY 10016
| | - Victor J Torres
- Department of Microbiology, New York University School of Medicine, Alexandria Center for Life Science, New York, NY 10016
| |
Collapse
|
47
|
Busche T, Hillion M, Van Loi V, Berg D, Walther B, Semmler T, Strommenger B, Witte W, Cuny C, Mellmann A, Holmes MA, Kalinowski J, Adrian L, Bernhardt J, Antelmann H. Comparative Secretome Analyses of Human and Zoonotic Staphylococcus aureus Isolates CC8, CC22, and CC398. Mol Cell Proteomics 2018; 17:2412-2433. [PMID: 30201737 PMCID: PMC6283302 DOI: 10.1074/mcp.ra118.001036] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Indexed: 12/24/2022] Open
Abstract
The spread of methicillin-resistant Staphylococcus aureus (MRSA) in the community, hospitals and in livestock is mediated by highly diverse virulence factors that include secreted toxins, superantigens, enzymes and surface-associated adhesins allowing host adaptation and colonization. Here, we combined proteogenomics, secretome and phenotype analyses to compare the secreted virulence factors in selected S. aureus isolates of the dominant human- and livestock-associated genetic lineages CC8, CC22, and CC398. The proteogenomic comparison revealed 2181 core genes and 1306 accessory genes in 18 S. aureus isolates reflecting the high genome diversity. Using secretome analysis, we identified 869 secreted proteins with 538 commons in eight isolates of CC8, CC22, and CC398. These include 64 predicted extracellular and 37 cell surface proteins that account for 82.4% of total secretome abundance. Among the top 10 most abundantly secreted virulence factors are the major autolysins (Atl, IsaA, Sle1, SAUPAN006375000), lipases and lipoteichoic acid hydrolases (Lip, Geh, LtaS), cytolytic toxins (Hla, Hlb, PSMβ1) and proteases (SspB). The CC398 isolates showed lower secretion of cell wall proteins, but higher secretion of α- and β-hemolysins (Hla, Hlb) which correlated with an increased Agr activity and strong hemolysis. CC398 strains were further characterized by lower biofilm formation and staphyloxanthin levels because of decreased SigB activity. Overall, comparative secretome analyses revealed CC8- or CC22-specific enterotoxin and Spl protease secretion as well as Agr- and SigB-controlled differences in exotoxin and surface protein secretion between human-specific and zoonotic lineages of S. aureus.
Collapse
Affiliation(s)
- Tobias Busche
- Institute for Biology-Microbiology, Freie Universität Berlin, D-14195 Berlin, Germany; Center for Biotechnology, Bielefeld University, D-33594 Bielefeld, Germany
| | - Mélanie Hillion
- Institute for Biology-Microbiology, Freie Universität Berlin, D-14195 Berlin, Germany
| | - Vu Van Loi
- Institute for Biology-Microbiology, Freie Universität Berlin, D-14195 Berlin, Germany
| | - David Berg
- Institute for Biology-Microbiology, Freie Universität Berlin, D-14195 Berlin, Germany
| | - Birgit Walther
- Robert Koch Institute, Advanced Light and Electron Microscopy, D-13353 Berlin, Germany; Institute of Microbiology and Epizootics, Centre for Infection Medicine, Freie Universität Berlin, D-14153 Berlin, Germany
| | - Torsten Semmler
- Robert Koch Institute, Advanced Light and Electron Microscopy, D-13353 Berlin, Germany
| | | | - Wolfgang Witte
- Robert Koch Institute, Wernigerode Branch, D-38855 Wernigerode, Germany
| | - Christiane Cuny
- Robert Koch Institute, Wernigerode Branch, D-38855 Wernigerode, Germany
| | - Alexander Mellmann
- Institute of Hygiene, University Hospital Münster, D-48149 Münster, Germany
| | - Mark A Holmes
- Department of Veterinary Medicine, University of Cambridge, Cambridge CB3 0ES, UK
| | - Jörn Kalinowski
- Center for Biotechnology, Bielefeld University, D-33594 Bielefeld, Germany
| | - Lorenz Adrian
- Department Isotope Biogeochemistry, Helmholtz Centre for Environmental Research-UFZ, D-04318 Leipzig, Germany; Chair of Geobiotechnology, Technische Universität Berlin, D-13355 Berlin, Germany
| | - Jörg Bernhardt
- Institute for Biology-Microbiology, Freie Universität Berlin, D-14195 Berlin, Germany; Institute for Microbiology, University of Greifswald, D-17489 Greifswald, Germany
| | - Haike Antelmann
- Institute for Biology-Microbiology, Freie Universität Berlin, D-14195 Berlin, Germany.
| |
Collapse
|
48
|
Mannala GK, Koettnitz J, Mohamed W, Sommer U, Lips KS, Spröer C, Bunk B, Overmann J, Hain T, Heiss C, Domann E, Alt V. Whole-genome comparison of high and low virulent Staphylococcus aureus isolates inducing implant-associated bone infections. Int J Med Microbiol 2018; 308:505-513. [DOI: 10.1016/j.ijmm.2018.04.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 03/08/2018] [Accepted: 04/22/2018] [Indexed: 11/16/2022] Open
|
49
|
|
50
|
Pérez-Montarelo D, Viedma E, Murcia M, Muñoz-Gallego I, Larrosa N, Brañas P, Fernández-Hidalgo N, Gavaldà J, Almirante B, Chaves F. Pathogenic Characteristics of Staphylococcus aureus Endovascular Infection Isolates from Different Clonal Complexes. Front Microbiol 2017; 8:917. [PMID: 28579985 PMCID: PMC5437158 DOI: 10.3389/fmicb.2017.00917] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 05/04/2017] [Indexed: 11/13/2022] Open
Abstract
Staphylococcus aureus is a major cause of bacteremia and, even with appropriate clinical management, causes high morbidity, and mortality due to its involvement in endovascular complications and metastatic infections. Through different pathogenic in vivo and in vitro models we investigated the behavior of S. aureus most relevant clonal complexes (CCs) causing endovascular complications. We analyzed 14 S. aureus strains representing CC5, CC8, CC15, CC30, and CC45 that caused endovascular complications, including methicillin susceptible and resistant isolates and strains with different functionality of the agr global regulator. Their adherence to collagen, interaction with the endothelium, resistance to immune attack, capacity to form biofilm and virulence in the Galleria mellonella model were analyzed. CC30 and CC45 showed greater adhesion to collagen and CC8 showed a trend towards higher rate of intracellular persistence in endothelial cells. All CCs exhibited similar tolerance to neutrophil antimicrobial peptide hNP-1 and were capable of forming biofilms under static conditions. The virulence assay in the G. mellonella model demonstrated that CC15 and CC30 were the most and least virulent, respectively. The analysis of the genomic sequences of the most relevant virulence genes identified some CC15 specific gene patterns (absence of enterotoxins and sak gene) and variants (mainly in leucocidins and proteases), but did not reveal any gene or variant that could be responsible for the increased virulence detected for CC15 strains. Even though all the CCs were capable of causing endovascular complications, our results showed that different CCs are likely to produce these complications through different mechanisms which, if confirmed in more sophisticated models, would indicate the need to more specific management and therapeutic approaches.
Collapse
Affiliation(s)
- Dafne Pérez-Montarelo
- Department of Microbiology, Instituto de Investigación Hospital de OctubreMadrid, Spain
| | - Esther Viedma
- Department of Microbiology, Instituto de Investigación Hospital de OctubreMadrid, Spain
| | - Mercedes Murcia
- Department of Microbiology, Instituto de Investigación Hospital de OctubreMadrid, Spain
| | - Irene Muñoz-Gallego
- Department of Microbiology, Instituto de Investigación Hospital de OctubreMadrid, Spain
| | - Nieves Larrosa
- Department of Microbiology, Hospital Universitari Vall d'hebron, Universitat Autónoma de BarcelonaBarcelona, Spain
| | - Patricia Brañas
- Department of Microbiology, Instituto de Investigación Hospital de OctubreMadrid, Spain
| | - Nuria Fernández-Hidalgo
- Department of Infectious Diseases, Hospital Universitari Vall d'hebron, Universitat Autónoma de BarcelonaBarcelona, Spain
| | - Joan Gavaldà
- Department of Infectious Diseases, Hospital Universitari Vall d'hebron, Universitat Autónoma de BarcelonaBarcelona, Spain
| | - Benito Almirante
- Department of Infectious Diseases, Hospital Universitari Vall d'hebron, Universitat Autónoma de BarcelonaBarcelona, Spain
| | - Fernando Chaves
- Department of Microbiology, Instituto de Investigación Hospital de OctubreMadrid, Spain
| |
Collapse
|