1
|
Esposito M, Amory JK, Kang Y. The pathogenic role of retinoid nuclear receptor signaling in cancer and metabolic syndromes. J Exp Med 2024; 221:e20240519. [PMID: 39133222 PMCID: PMC11318670 DOI: 10.1084/jem.20240519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/13/2024] [Accepted: 07/26/2024] [Indexed: 08/13/2024] Open
Abstract
The retinoid nuclear receptor pathway, activated by the vitamin A metabolite retinoic acid, has been extensively investigated for over a century. This study has resulted in conflicting hypotheses about how the pathway regulates health and how it should be pharmaceutically manipulated. These disagreements arise from a fundamental contradiction: retinoid agonists offer clear benefits to select patients with rare bone growth disorders, acute promyelocytic leukemia, and some dermatologic diseases, yet therapeutic retinoid pathway activation frequently causes more harm than good, both through acute metabolic dysregulation and a delayed cancer-promoting effect. In this review, we discuss controlled clinical, mechanistic, and genetic data to suggest several disease settings where inhibition of the retinoid pathway may be a compelling therapeutic strategy, such as solid cancers or metabolic syndromes, and also caution against continued testing of retinoid agonists in cancer patients. Considerable evidence suggests a central role for retinoid regulation of immunity and metabolism, with therapeutic opportunities to antagonize retinoid signaling proposed in cancer, diabetes, and obesity.
Collapse
Affiliation(s)
- Mark Esposito
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
- Kayothera, Inc , Seattle, WA, USA
| | | | - Yibin Kang
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
- Ludwig Institute for Cancer Research Princeton Branch , Princeton, NJ, USA
| |
Collapse
|
2
|
Zhang L, Tang R, Wu Y, Liang Z, Liu J, Pi J, Zhang H. The Role and Mechanism of Retinol and Its Transformation Product, Retinoic Acid, in Modulating Oxidative Stress-Induced Damage to the Duck Intestinal Epithelial Barrier In Vitro. Animals (Basel) 2023; 13:3098. [PMID: 37835704 PMCID: PMC10572057 DOI: 10.3390/ani13193098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/24/2023] [Accepted: 09/28/2023] [Indexed: 10/15/2023] Open
Abstract
This study aimed to investigate the effects and mechanisms of retinol and retinoic acid on primary duck intestinal epithelial cells under oxidative stress induced by H2O2. Different ratios of retinol and retinoic acid were used for treatment. The study evaluated the cell morphology, viability, antioxidative capacity, and barrier function of cells. The expression of genes related to oxidative stress and the intestinal barrier was analyzed. The main findings demonstrated that the treated duck intestinal epithelial cells exhibited increased viability, increased antioxidative capacity, and improved intestinal barrier function compared to the control group. High retinoic acid treatment improved viability and gene expression, while high retinol increased antioxidative indicators and promoted intestinal barrier repair. Transcriptome analysis revealed the effects of treatments on cytokine interactions, retinol metabolism, PPAR signaling, and cell adhesion. In conclusion, this study highlights the potential of retinol and retinoic acid in protecting and improving intestinal cell health under oxidative stress, providing valuable insights for future research.
Collapse
Affiliation(s)
- Li Zhang
- Institute of Animal Husbandry and Veterinary Science, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (L.Z.); (R.T.); (Y.W.); (Z.L.); (J.P.)
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China;
| | - Rui Tang
- Institute of Animal Husbandry and Veterinary Science, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (L.Z.); (R.T.); (Y.W.); (Z.L.); (J.P.)
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China;
| | - Yan Wu
- Institute of Animal Husbandry and Veterinary Science, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (L.Z.); (R.T.); (Y.W.); (Z.L.); (J.P.)
| | - Zhenhua Liang
- Institute of Animal Husbandry and Veterinary Science, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (L.Z.); (R.T.); (Y.W.); (Z.L.); (J.P.)
| | - Jingbo Liu
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China;
| | - Jinsong Pi
- Institute of Animal Husbandry and Veterinary Science, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (L.Z.); (R.T.); (Y.W.); (Z.L.); (J.P.)
| | - Hao Zhang
- Institute of Animal Husbandry and Veterinary Science, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (L.Z.); (R.T.); (Y.W.); (Z.L.); (J.P.)
- Hubei Key Laboratory of Animal Embryo Engineering and Molecular Breeding, Wuhan 430064, China
| |
Collapse
|
3
|
Tenório de Menezes YK, Eto C, de Oliveira J, Larson EC, Mendes DAGB, Dias GBM, Delgobo M, Gubernat AK, Gleim JL, Munari EL, Starick M, Ferreira F, Mansur DS, Costa DL, Scanga CA, Báfica A. The Endogenous Retinoic Acid Receptor Pathway Is Exploited by Mycobacterium tuberculosis during Infection, Both In Vitro and In Vivo. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 211:601-611. [PMID: 37395686 DOI: 10.4049/jimmunol.2200555] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 06/07/2023] [Indexed: 07/04/2023]
Abstract
Retinoic acid (RA) is a fundamental vitamin A metabolite involved in regulating immune responses through the nuclear RA receptor (RAR) and retinoid X receptor. While performing experiments using THP-1 cells as a model for Mycobacterium tuberculosis infection, we observed that serum-supplemented cultures displayed high levels of baseline RAR activation in the presence of live, but not heat-killed, bacteria, suggesting that M. tuberculosis robustly induces the endogenous RAR pathway. Using in vitro and in vivo models, we have further explored the role of endogenous RAR activity in M. tuberculosis infection through pharmacological inhibition of RARs. We found that M. tuberculosis induces classical RA response element genes such as CD38 and DHRS3 in both THP-1 cells and human primary CD14+ monocytes via a RAR-dependent pathway. M. tuberculosis-stimulated RAR activation was observed with conditioned media and required nonproteinaceous factor(s) present in FBS. Importantly, RAR blockade by (4-[(E)-2-[5,5-dimethyl-8-(2-phenylethynyl)-6H-naphthalen-2-yl]ethenyl]benzoic acid), a specific pan-RAR inverse agonist, in a low-dose murine model of tuberculosis significantly reduced SIGLEC-F+CD64+CD11c+high alveolar macrophages in the lungs, which correlated with 2× reduction in tissue mycobacterial burden. These results suggest that the endogenous RAR activation axis contributes to M. tuberculosis infection both in vitro and in vivo and reveal an opportunity for further investigation of new antituberculosis therapies.
Collapse
Affiliation(s)
- Yonne Karoline Tenório de Menezes
- Laboratory of Immunobiology, Department of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Carolina Eto
- Laboratory of Immunobiology, Department of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Joseana de Oliveira
- Department of Biochemistry and Immunology, Graduate Program in Basic and Applied Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Erica C Larson
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Daniel A G B Mendes
- Laboratory of Immunobiology, Department of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Greicy Brisa Malaquias Dias
- Laboratory of Immunobiology, Department of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Murilo Delgobo
- Department of Internal Medicine I, University Hospital Würzburg, Würzburg, Germany
| | - Abigail K Gubernat
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Janelle L Gleim
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Eduarda Laís Munari
- Laboratory of Immunobiology, Department of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Marick Starick
- Laboratory of Immunobiology, Department of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Fabienne Ferreira
- Laboratory of Molecular Genetics of Bacteria, Department of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Daniel Santos Mansur
- Laboratory of Immunobiology, Department of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Diego L Costa
- Department of Biochemistry and Immunology, Graduate Program in Basic and Applied Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Charles A Scanga
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - André Báfica
- Laboratory of Immunobiology, Department of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina, Florianópolis, Brazil
| |
Collapse
|
4
|
Bedard M, van der Niet S, Bernard EM, Babunovic G, Cheng TY, Aylan B, Grootemaat AE, Raman S, Botella L, Ishikawa E, O'Sullivan MP, O'Leary S, Mayfield JA, Buter J, Minnaard AJ, Fortune SM, Murphy LO, Ory DS, Keane J, Yamasaki S, Gutierrez MG, van der Wel N, Moody DB. A terpene nucleoside from M. tuberculosis induces lysosomal lipid storage in foamy macrophages. J Clin Invest 2023; 133:161944. [PMID: 36757797 PMCID: PMC10014106 DOI: 10.1172/jci161944] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 02/03/2023] [Indexed: 02/10/2023] Open
Abstract
Induction of lipid-laden foamy macrophages is a cellular hallmark of tuberculosis (TB) disease, which involves the transformation of infected phagolysosomes from a site of killing into a nutrient-rich replicative niche. Here, we show that a terpenyl nucleoside shed from Mycobacterium tuberculosis, 1-tuberculosinyladenosine (1-TbAd), caused lysosomal maturation arrest and autophagy blockade, leading to lipid storage in M1 macrophages. Pure 1-TbAd, or infection with terpenyl nucleoside-producing M. tuberculosis, caused intralysosomal and peribacillary lipid storage patterns that matched both the molecules and subcellular locations known in foamy macrophages. Lipidomics showed that 1-TbAd induced storage of triacylglycerides and cholesterylesters and that 1-TbAd increased M. tuberculosis growth under conditions of restricted lipid access in macrophages. Furthermore, lipidomics identified 1-TbAd-induced lipid substrates that define Gaucher's disease, Wolman's disease, and other inborn lysosomal storage diseases. These data identify genetic and molecular causes of M. tuberculosis-induced lysosomal failure, leading to successful testing of an agonist of TRPML1 calcium channels that reverses lipid storage in cells. These data establish the host-directed cellular functions of an orphan effector molecule that promotes survival in macrophages, providing both an upstream cause and detailed picture of lysosome failure in foamy macrophages.
Collapse
Affiliation(s)
- Melissa Bedard
- Division of Rheumatology, Immunity and Inflammation, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Sanne van der Niet
- Electron Microscopy Centre Amsterdam, Amsterdam University Medical Centre, Amsterdam, Netherlands
| | - Elliott M Bernard
- Host-Pathogen Interactions in Tuberculosis Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Gregory Babunovic
- Division of Rheumatology, Immunity and Inflammation, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA.,Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Tan-Yun Cheng
- Division of Rheumatology, Immunity and Inflammation, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Beren Aylan
- Host-Pathogen Interactions in Tuberculosis Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Anita E Grootemaat
- Electron Microscopy Centre Amsterdam, Amsterdam University Medical Centre, Amsterdam, Netherlands
| | - Sahadevan Raman
- Division of Rheumatology, Immunity and Inflammation, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Laure Botella
- Host-Pathogen Interactions in Tuberculosis Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Eri Ishikawa
- Department of Molecular Immunology, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
| | - Mary P O'Sullivan
- Department of Clinical Medicine, Trinity Translational Medicine Institute, St. James's Hospital, Trinity College, Dublin, Ireland
| | - Seónadh O'Leary
- Department of Clinical Medicine, Trinity Translational Medicine Institute, St. James's Hospital, Trinity College, Dublin, Ireland
| | - Jacob A Mayfield
- Division of Rheumatology, Immunity and Inflammation, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Jeffrey Buter
- Department of Chemical Biology, Stratingh Institute for Chemistry, Groningen, Netherlands
| | - Adriaan J Minnaard
- Department of Chemical Biology, Stratingh Institute for Chemistry, Groningen, Netherlands
| | - Sarah M Fortune
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | | | - Daniel S Ory
- Casma Therapeutics, Cambridge, Massachusetts, USA
| | - Joseph Keane
- Department of Clinical Medicine, Trinity Translational Medicine Institute, St. James's Hospital, Trinity College, Dublin, Ireland
| | - Sho Yamasaki
- Department of Molecular Immunology, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
| | - Maximiliano G Gutierrez
- Host-Pathogen Interactions in Tuberculosis Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Nicole van der Wel
- Electron Microscopy Centre Amsterdam, Amsterdam University Medical Centre, Amsterdam, Netherlands
| | - D Branch Moody
- Division of Rheumatology, Immunity and Inflammation, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
5
|
Podell BK, Aibana O, Huang CC, DiLisio JE, Harris MC, Ackart DF, Armann K, Grover A, Severe P, Juste MAJ, Dupnik K, Basaraba RJ, Murray MB. The Impact of Vitamin A Deficiency on Tuberculosis Progression. Clin Infect Dis 2022; 75:2178-2185. [PMID: 35486953 PMCID: PMC10200303 DOI: 10.1093/cid/ciac326] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 04/06/2022] [Accepted: 04/21/2022] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Although previous studies have shown that vitamin A deficiency is associated with incident tuberculosis (TB) disease, the direction of the association has not been established. We investigated the impact of vitamin A deficiency on TB disease progression. METHODS We conducted a longitudinal cohort study nested within a randomized clinical trial among HIV-infected patients in Haiti. We compared serial vitamin A levels in individuals who developed TB disease to controls matched on age, gender, follow-up time, and time to antiretroviral therapy initiation. We also evaluated histopathology, bacterial load, and immune outcomes in TB infection in a guinea pig model of dietary vitamin A deficiency. RESULTS Among 773 participants, 96 developed incident TB during follow-up, 62.5% (60) of whom had stored serum samples obtained 90-365 days before TB diagnosis. In age- and sex- adjusted and multivariate analyses, respectively, incident TB cases were 3.99 times (95% confidence interval [CI], 2.41 to 6.60) and 3.59 times (95% CI, 2.05 to 6.29) more likely to have been vitamin A deficient than matched controls. Vitamin A-deficient guinea pigs manifested more extensive pulmonary pathology, atypical granuloma morphology, and increased bacterial growth after experimental TB infection. Reintroduction of dietary vitamin A to deficient guinea pigs after established TB disease successfully abrogated severe disease manifestations and altered cellular immune profiles. CONCLUSIONS Human and animal studies support the role of baseline vitamin A deficiency as a determinant of future TB disease progression.
Collapse
Affiliation(s)
- Brendan K Podell
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, USA
| | - Omowunmi Aibana
- Department of Internal Medicine, McGovern Medical School, Houston, Texas, USA
| | - Chuan-Chin Huang
- Department of Global Health and Social Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - James E DiLisio
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, USA
| | - Macallister C Harris
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, USA
| | - David F Ackart
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, USA
| | - Kody Armann
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, USA
| | - Alexander Grover
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, USA
| | - Patrice Severe
- Haitian group for the study of Kaposi's Sarcoma and Opportunistic Infections (GHESKIO) Centers, Port au Prince, Haiti
| | - Marc Antoine Jean Juste
- Haitian group for the study of Kaposi's Sarcoma and Opportunistic Infections (GHESKIO) Centers, Port au Prince, Haiti
| | - Kathryn Dupnik
- Department of Medicine, Center for Global Health, Weill Cornell Medicine, New York, New York, USA
| | - Randall J Basaraba
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, USA
| | - Megan B Murray
- Department of Global Health and Social Medicine, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
6
|
Vitamins, microelements and the immune system: current standpoint in the fight against coronavirus disease 2019. Br J Nutr 2022; 128:2131-2146. [PMID: 35057876 DOI: 10.1017/s0007114522000083] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Coronavirus disease 2019 (COVID-19) is an acute respiratory disease associated with severe systemic inflammation. The optimal status of vitamins and microelements is considered crucial for the proper functioning of the immune system and necessary for successful recovery. Most patients with respiratory distress in COVID-19 are vitamin and microelement deficient, with vitamin D and Se deficiency being the most common. Anyway, various micronutrient supplements are widely and arbitrarily used for prevention or in the treatment of COVID-19. We aimed to summarise current knowledge about molecular and physiological mechanisms of vitamins (D, A, C, B6, B9 and B12) and microelements (Se, Zn, Cu and Fe) involved in the immune system regulation in consideration with COVID-19 pathogenesis, as well as recent findings related to their usage and effects in the prevention and treatment of COVID-19. In the early course of the pandemic, several, mainly observational, studies reported an association of some micronutrients, such as vitamin C, D and Zn, with severity reduction and survival improvement. Still, emerging randomised controlled trials showed no effect of vitamin D on hospitalisation length and no effect of vitamin C and Zn on symptom reduction. Up to date, there is evidence neither for nor against the use of micronutrients in the treatment of COVID-19. The doses that exceed the recommended for the general population and age group should not be used, except in clinical trials. Benefits of supplementation are primarily expected in populations prone to micronutrient deficiencies, who are, as well, at a higher risk of worse outcomes in COVID-19.
Collapse
|
7
|
Singh N, Chawla HV, Kumar A, Singh S. Role of Vitamin A Supplementation in Prevention and Control of Coronavirus Disease-19: A Narrative Review. Int J Prev Med 2022; 13:122. [PMID: 36276889 PMCID: PMC9580552 DOI: 10.4103/ijpvm.ijpvm_683_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 09/21/2021] [Indexed: 11/04/2022] Open
Abstract
Coronavirus disease-19 (COVID-19) caused by SARS-CoV-2 is a novel viral infectious disease, which broke out in the end of winter season 2019 in China and soon became a pandemic. Characteristically there was severe local and systemic immune-inflammatory response to the virus, damaging the respiratory system and other organ systems. The morbidity and mortality caused by the disease are producing tremendous impact on health. The understanding about pathogenesis and manifestations of the disease was obscure. To date, no classic treatment or preventive measure was available for COVID-19 other than symptomatic and supportive care or few drugs under trial. A possibility exists that maintaining vitamin A adequate levels can protect the affected respiratory mucosa, increase antimicrobial activity, produce better antibody response, and have antiinflammatory effects, thereby promoting repair and healing as well. It has been discussed in the review that by various mechanisms, immune regulation through vitamin A supplementation is beneficial to boost immunity in the current outbreak situation when the population is susceptible to the disease. There is a high possibility that vitamin A supplementation to cases as well as population at risk of COVID-19 has a key role in prevention and control. Hence, it is believed that along with other therapeutic and preventive measures, maintaining vitamin A sufficiency during and prior to the development of active disease may act as an adjuvant in population at risk and cases to prevent and control COVID-19.
Collapse
Affiliation(s)
- Nikita Singh
- Department of Biochemistry, Shaheed Hasan Khan Mewati Govt Medical College Nalhar, Nuh, Mewat, Haryana, India
| | - Harsh Vardhan Chawla
- Department of Biochemistry, Shaheed Hasan Khan Mewati Govt Medical College Nalhar, Nuh, Mewat, Haryana, India
| | - Arun Kumar
- Department of Community Medicine,Shaheed Hasan Khan Mewati Govt Medical College Nalhar, Nuh, Mewat, Haryana, India,Address for correspondence: Dr. Arun Kumar, Department of Community Medicine, Shaheed Hasan Khan Mewati Govt Medical College Nalhar, Mewat, Haryana. E-mail:
| | - Sangeeta Singh
- Department of Biochemistry, Shaheed Hasan Khan Mewati Govt Medical College Nalhar, Nuh, Mewat, Haryana, India
| |
Collapse
|
8
|
Lu Q, Liu J, Yu Y, Liang HF, Zhang SQ, Li ZB, Chen JX, Xu QG, Li JC. ALB, HP, OAF and RBP4 as novel protein biomarkers for identifying cured patients with pulmonary tuberculosis by DIA. Clin Chim Acta 2022; 535:82-91. [PMID: 35964702 DOI: 10.1016/j.cca.2022.08.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 07/09/2022] [Accepted: 08/01/2022] [Indexed: 02/05/2023]
Abstract
BACKGROUND Pulmonary tuberculosis (TB) is a serious infectious disease that lacks robust blood-based biomarkers to identify cured TB. Some discharged patients are not fully cured and may relapse or even develop multidrug-resistant TB. This study is committed to finding proteomic-based plasma biomarkers to support establishing laboratory standards for clinical TB cure. METHODS Data-independent acquisition (DIA) was used to obtain the plasma protein expression profiles of TB patients at different treatment stages compared with healthy controls. Multivariate statistical methods and bioinformatics were used to analyze the data. RESULTS Bioinformatic analysis suggests coagulation dysfunction and vitamin and lipid metabolism disturbances in TB. Albumin (ALB), haptoglobin (HP), out at first protein homolog (OAF), and retinol-binding protein 4 (RBP4) can be used to establish a diagnostic model for the efficacy evaluation of TB with an area under the curve of 0.963, which could effectively distinguish untreated TB patients from cured patients. CONCLUSIONS Our research demonstrated that ALB, HP, OAF and RBP4 can be potential biomarkers for evaluating the efficacy of TB. These findings may provide experimental data for establishing the laboratory indicators of clinical TB cure and providing clinicians with new targets for exploring the underlying mechanisms of TB pathogenesis.
Collapse
Affiliation(s)
- Qiqi Lu
- The Medical Research Center, Yue Bei People's Hospital, Shantou University Medical College, Shaoguan 512025, China
| | - Jun Liu
- The Medical Research Center, Yue Bei People's Hospital, Shantou University Medical College, Shaoguan 512025, China
| | - Yi Yu
- The Medical Research Center, Yue Bei People's Hospital, Shantou University Medical College, Shaoguan 512025, China; The Central Laboratory, Yangjiang People's Hospital, Yangjiang 529500, China
| | - Hong-Feng Liang
- The Central Laboratory, Yangjiang People's Hospital, Yangjiang 529500, China
| | - Shan-Qiang Zhang
- The Medical Research Center, Yue Bei People's Hospital, Shantou University Medical College, Shaoguan 512025, China
| | - Zhi-Bin Li
- The Medical Research Center, Yue Bei People's Hospital, Shantou University Medical College, Shaoguan 512025, China; The Central Laboratory, Yangjiang People's Hospital, Yangjiang 529500, China; Institute of Cell Biology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Jia-Xi Chen
- Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Taizhou 318050, China; Institute of Cell Biology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Qiu-Gui Xu
- The Central Laboratory, Yangjiang People's Hospital, Yangjiang 529500, China
| | - Ji-Cheng Li
- The Medical Research Center, Yue Bei People's Hospital, Shantou University Medical College, Shaoguan 512025, China
- The Central Laboratory, Yangjiang People's Hospital, Yangjiang 529500, China
- Institute of Cell Biology, Zhejiang University School of Medicine, Hangzhou 310058, China
| |
Collapse
|
9
|
Bahlool AZ, Grant C, Cryan SA, Keane J, O'Sullivan MP. All trans retinoic acid as a host-directed immunotherapy for tuberculosis. CURRENT RESEARCH IN IMMUNOLOGY 2022; 3:54-72. [PMID: 35496824 PMCID: PMC9040133 DOI: 10.1016/j.crimmu.2022.03.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 03/11/2022] [Accepted: 03/22/2022] [Indexed: 12/22/2022] Open
Abstract
Tuberculosis (TB) is the top bacterial infectious disease killer and one of the top ten causes of death worldwide. The emergence of strains of multiple drug-resistant tuberculosis (MDR-TB) has pushed our available stock of anti-TB agents to the limit of effectiveness. This has increased the urgent need to develop novel treatment strategies using currently available resources. An adjunctive, host-directed therapy (HDT) designed to act on the host, instead of the bacteria, by boosting the host immune response through activation of intracellular pathways could be the answer. The integration of multidisciplinary approaches of repurposing currently FDA-approved drugs, with a targeted drug-delivery platform is a very promising option to reduce the long timeline associated with the approval of new drugs - time that cannot be afforded given the current levels of morbidity and mortality associated with TB infection. The deficiency of vitamin A has been reported to be highly associated with the increased susceptibility of TB. All trans retinoic acid (ATRA), the active metabolite of vitamin A, has proven to be very efficacious against TB both in vitro and in vivo. In this review, we discuss and summarise the importance of vitamin A metabolites in the fight against TB and what is known regarding the molecular mechanisms of ATRA as a host-directed therapy for TB including its effect on macrophages cytokine profile and cellular pathways. Furthermore, we focus on the issues behind why previous clinical trials with vitamin A supplementation have failed, and how these issues might be overcome.
Collapse
Affiliation(s)
- Ahmad Z. Bahlool
- School of Pharmacy and Biomolecular Sciences (PBS), Royal College of Surgeons in Ireland (RCSI), 123 St Stephens Green, Dublin 2, Ireland
- Tissue Engineering Research Group (TERG), Royal College of Surgeons in Ireland (RCSI), 123 St Stephens Green, Dublin 2, Ireland
- Department of Clinical Medicine, Trinity Translational Medicine Institute, St. James's Hospital, Trinity College Dublin, The University of Dublin, Dublin 8, Ireland
| | - Conor Grant
- Department of Clinical Medicine, Trinity Translational Medicine Institute, St. James's Hospital, Trinity College Dublin, The University of Dublin, Dublin 8, Ireland
| | - Sally-Ann Cryan
- School of Pharmacy and Biomolecular Sciences (PBS), Royal College of Surgeons in Ireland (RCSI), 123 St Stephens Green, Dublin 2, Ireland
- Tissue Engineering Research Group (TERG), Royal College of Surgeons in Ireland (RCSI), 123 St Stephens Green, Dublin 2, Ireland
- SFI Advanced Materials and Bioengineering Research (AMBER) Centre, RCSI & TCD, Dublin, Ireland
- SFI Centre for Research in Medical Devices (CURAM), RCSI, Dublin and National University of Ireland, Galway, Ireland
| | - Joseph Keane
- Department of Clinical Medicine, Trinity Translational Medicine Institute, St. James's Hospital, Trinity College Dublin, The University of Dublin, Dublin 8, Ireland
| | - Mary P. O'Sullivan
- Department of Clinical Medicine, Trinity Translational Medicine Institute, St. James's Hospital, Trinity College Dublin, The University of Dublin, Dublin 8, Ireland
| |
Collapse
|
10
|
Džopalić T, Božić-Nedeljković B, Jurišić V. The role of vitamin A and vitamin D in modulation of the immune response with a focus on innate lymphoid cells. Cent Eur J Immunol 2021; 46:264-269. [PMID: 34764797 PMCID: PMC8568032 DOI: 10.5114/ceji.2021.103540] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 01/03/2021] [Indexed: 01/21/2023] Open
Abstract
The immune system with its numerous and complex interactions helps to protect the host from pathogenic microorganisms, and enables cleaning of damaged tissues. It is also associated with constant "monitoring" of the appearance of malignant cells and their elimination that can occur in the human body. Such a role depends on many factors including adequate intake of nutrients, including vitamins. The effect of vitamin supplementation on the modulation of the immune response has always been the focus of numerous studies. Vitamins A and D have been shown to have the greatest immune-modulatory effect. In this review, we discuss and consider the possible roles of vitamins A and D on the immune response through innate and adaptive immune cells, with special focus on the cell population recently characterized as innate lymphoid cells. Recent literature data indicate that vitamin A and its metabolites modulate the balance between Th1 and Th2 immunity. In addition, vitamin D expresses protective effects on the innate immune system and inhibitory effects on adaptive immunity.
Collapse
Affiliation(s)
- Tanja Džopalić
- Department of Immunology, University of Niš, Medical Faculty, Niš, Serbia
| | - Biljana Božić-Nedeljković
- Institute for Physiology and Biochemistry “Ivan Djaja” Belgrade, Faculty of Biology, University of Belgrade, Serbia
| | - Vladimir Jurišić
- Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| |
Collapse
|
11
|
Zhang L, Wang H, Li N, Hu P, Zhu Z, Wang W, Song Y, Wen Z, Yu X, Zhang S. Label-Free Mass Spectrometry-Based Plasma Proteomics Identified LY6D, DSC3, CDSN, SERPINB12, and SLURP1 as Novel Protein Biomarkers For Pulmonary Tuberculosis. CURR PROTEOMICS 2021. [DOI: 10.2174/1570164617666191210105122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Aim:
We aimed to identify new plasma biomarkers for the diagnosis of Pulmonary Tuberculosis
(PTB).
Background:
Tuberculosis is an ancient infectious disease that remains one of the major global health problems.
Until now, effective, convenient, and affordable methods for diagnosis of PTB were still lacking.
Objective:
This study focused on constructing a label-free LC-MS/MS-based comparative proteomics
between six tuberculosis patients and six healthy controls to identify Differentially Expressed Proteins
(DEPs) in plasma.
Methods:
To reduce the influences of high-abundant proteins, albumin and globulin were removed from
plasma samples using affinity gels. Then DEPs from the plasma samples were identified using a label-free
Quadrupole-Orbitrap LC-MS/MS system. The results were analyzed by the protein database search algorithm
SEQUEST-HT to identify mass spectra to peptides. The predictive abilities of combinations of host
markers were investigated by General Discriminant Analysis (GDA), with Leave-One-Out Cross-
Validation (LOOCV).
Results:
A total of 572 proteins were identified and 549 proteins were quantified. The threshold for
DEPs was set as adjusted p-value < 0.05 and fold change ≥1.5 or ≤0.6667, 32 DEPs were found. ClusterVis,
TBtools, and STRING were used to find new potential biomarkers of PTB. Six proteins, LY6D,
DSC3, CDSN, FABP5, SERPINB12, and SLURP1, which performed well in the LOOCV method validation,
were termed as potential biomarkers. The percentage of cross-validated grouped cases correctly
classified and original grouped cases correctly classified is greater than or equal to 91.7%.
Conclusion:
We successfully identified five candidate biomarkers for immunodiagnosis of PTB in
plasma, LY6D, DSC3, CDSN, SERPINB12, and SLURP1. Our work supported this group of proteins
as potential biomarkers for PTB, and be worthy of further validation.
Collapse
Affiliation(s)
- Lu Zhang
- School of Biological and Pharmaceutical Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Hualin Wang
- School of Biological and Pharmaceutical Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Na Li
- School of Biological and Pharmaceutical Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Peng Hu
- School of Biological and Pharmaceutical Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Zhaoqin Zhu
- Shanghai Public Health Clinical Center, Shanghai, China
| | - Wei Wang
- Henan Provincial Chest Hospital, Zhengzhou, China
| | - Yanzheng Song
- Shanghai Public Health Clinical Center, Shanghai, China
| | - Zilu Wen
- Shanghai Public Health Clinical Center, Shanghai, China
| | - Xiaoli Yu
- School of Biological and Pharmaceutical Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Shulin Zhang
- Shanghai Public Health Clinical Center, Shanghai, China
| |
Collapse
|
12
|
Yan S, Fang J, Chen Y, Xie Y, Zhang S, Zhu X, Fang F. Comprehensive analysis of prognostic gene signatures based on immune infiltration of ovarian cancer. BMC Cancer 2020; 20:1205. [PMID: 33287740 PMCID: PMC7720540 DOI: 10.1186/s12885-020-07695-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Accepted: 11/26/2020] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Ovarian cancer (OV) is one of the most common malignant tumors of gynecology oncology. The lack of effective early diagnosis methods and treatment strategies result in a low five-year survival rate. Also, immunotherapy plays an important auxiliary role in the treatment of advanced OV patient, so it is of great significance to find out effective immune-related tumor markers for the diagnosis and treatment of OV. METHODS Based on the consensus clustering analysis of single-sample gene set enrichment analysis (ssGSEA) score transformed via The Cancer Genome Atlas (TCGA) mRNA profile, we obtained two groups with high and low levels of immune infiltration. Multiple machine learning methods were conducted to explore prognostic genes associated with immune infiltration. Simultaneously, the correlation between the expression of mark genes and immune cells components was explored. RESULTS A prognostic classifier including 5 genes (CXCL11, S1PR4, TNFRSF17, FPR1 and DHRS95) was established and its robust efficacy for predicting overall survival was validated via 1129 OV samples. Some significant variations of copy number on gene loci were found between two risk groups and it showed that patients with fine chemosensitivity has lower risk score than patient with poor chemosensitivity (P = 0.013). The high and low-risk groups showed significantly different distribution (P < 0.001) of five immune cells (Monocytes, Macrophages M1, Macrophages M2, T cells CD4 menory and T cells CD8). CONCLUSION The present study identified five prognostic genes associated with immune infiltration of OV, which may provide some potential clinical implications for OV treatment.
Collapse
Affiliation(s)
- Shibai Yan
- Department of Medical Oncology, the First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, China
| | - Juntao Fang
- Laboratory of Experimental Cardiology, Department of Cardiology, University Medical Center Utrecht, Utrecht, 3584, CX, The Netherlands
| | - Yongcai Chen
- Department of Obstetrics and Gynecology, The First People's Hospital of Foshan, 81 Lingnan North Avenue, Foshan, 528000, Guangdong, China
| | - Yong Xie
- Department of Obstetrics and Gynecology, The First People's Hospital of Foshan, 81 Lingnan North Avenue, Foshan, 528000, Guangdong, China
| | - Siyou Zhang
- Department of Obstetrics and Gynecology, The First People's Hospital of Foshan, 81 Lingnan North Avenue, Foshan, 528000, Guangdong, China
| | - Xiaohui Zhu
- Department of Pharmacology, College of Pharmacy, Shenzhen Technology University, Shenzhen, 518118, Guangdong, China.
| | - Feng Fang
- Department of Obstetrics and Gynecology, The First People's Hospital of Foshan, 81 Lingnan North Avenue, Foshan, 528000, Guangdong, China.
| |
Collapse
|
13
|
Smiljanovic B, Grützkau A, Sörensen T, Grün JR, Vogl T, Bonin M, Schendel P, Stuhlmüller B, Claussnitzer A, Hermann S, Ohrndorf S, Aupperle K, Backhaus M, Radbruch A, Burmester GR, Häupl T. Synovial tissue transcriptomes of long-standing rheumatoid arthritis are dominated by activated macrophages that reflect microbial stimulation. Sci Rep 2020; 10:7907. [PMID: 32404914 PMCID: PMC7220941 DOI: 10.1038/s41598-020-64431-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 04/15/2020] [Indexed: 12/30/2022] Open
Abstract
Advances in microbiome research suggest involvement in chronic inflammatory diseases such as rheumatoid arthritis (RA). Searching for initial trigger(s) in RA, we compared transcriptome profiles of highly inflamed RA synovial tissue (RA-ST) and osteoarthritis (OA)-ST with 182 selected reference transcriptomes of defined cell types and their activation by exogenous (microbial) and endogenous inflammatory stimuli. Screening for dominant changes in RA-ST demonstrated activation of monocytes/macrophages with gene-patterns induced by bacterial and fungal triggers. Gene-patterns of activated B- or T-cells in RA-ST reflected a response to activated monocytes/macrophages rather than inducing their activation. In contrast, OA-ST was dominated by gene-patterns of non-activated macrophages and fibroblasts. The difference between RA and OA was more prominent in transcripts of secreted proteins and was confirmed by protein quantification in synovial fluid (SF) and serum. In total, 24 proteins of activated cells were confirmed in RA-SF compared to OA-SF and some like CXCL13, CCL18, S100A8/A9, sCD14, LBP reflected this increase even in RA serum. Consequently, pathogen-like response patterns in RA suggest that direct microbial influences exist. This challenges the current concept of autoimmunity and immunosuppressive treatment and advocates new diagnostic and therapeutic strategies that consider microbial persistence as important trigger(s) in the etiopathogenesis of RA.
Collapse
Affiliation(s)
- Biljana Smiljanovic
- Department of Rheumatology and Clinical Immunology, Charité Universitätsmedizin, Berlin, Germany
| | - Andreas Grützkau
- Deutsches Rheuma-Forschungszentrum Berlin (DRFZ), a Leibniz Institute, Berlin, Germany
| | - Till Sörensen
- Department of Rheumatology and Clinical Immunology, Charité Universitätsmedizin, Berlin, Germany
| | - Joachim R Grün
- Deutsches Rheuma-Forschungszentrum Berlin (DRFZ), a Leibniz Institute, Berlin, Germany
| | - Thomas Vogl
- Institute of Immunology, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - Marc Bonin
- Department of Rheumatology and Clinical Immunology, Charité Universitätsmedizin, Berlin, Germany
| | - Pascal Schendel
- Department of Rheumatology and Clinical Immunology, Charité Universitätsmedizin, Berlin, Germany
| | - Bruno Stuhlmüller
- Department of Rheumatology and Clinical Immunology, Charité Universitätsmedizin, Berlin, Germany
| | - Anne Claussnitzer
- Department of Rheumatology and Clinical Immunology, Charité Universitätsmedizin, Berlin, Germany
| | - Sandra Hermann
- Department of Rheumatology and Clinical Immunology, Charité Universitätsmedizin, Berlin, Germany
| | - Sarah Ohrndorf
- Department of Rheumatology and Clinical Immunology, Charité Universitätsmedizin, Berlin, Germany
| | - Karlfried Aupperle
- Department of Rheumatology and Clinical Immunology, Charité Universitätsmedizin, Berlin, Germany
| | - Marina Backhaus
- Department of Rheumatology and Clinical Immunology, Charité Universitätsmedizin, Berlin, Germany
| | - Andreas Radbruch
- Deutsches Rheuma-Forschungszentrum Berlin (DRFZ), a Leibniz Institute, Berlin, Germany
| | - Gerd R Burmester
- Department of Rheumatology and Clinical Immunology, Charité Universitätsmedizin, Berlin, Germany
| | - Thomas Häupl
- Department of Rheumatology and Clinical Immunology, Charité Universitätsmedizin, Berlin, Germany.
| |
Collapse
|
14
|
Abstract
Generation of the autacoid all-trans-retinoic acid (ATRA) from retinol (vitamin A) relies on a complex metabolon that includes retinol binding-proteins and enzymes from the short-chain dehydrogenase/reductase and aldehyde dehydrogenase gene families. Serum retinol binding-protein delivers all-trans-retinol (vitamin A) from blood to cells through two membrane receptors, Stra6 and Rbpr2. Stra6 and Rbpr2 convey retinol to cellular retinol binding-protein type 1 (Crbp1). Holo-Crbp1 delivers retinol to lecithin: retinol acyl transferase (Lrat) for esterification and storage. Lrat channels retinol directly into its active site from holo-Crbp1 by protein-protein interaction. The ratio apo-Crbp1/holo-Crbp1 directs flux of retinol into and out of retinyl esters, through regulating esterification vs ester hydrolysis. Multiple retinol dehydrogenases (Rdh1, Rdh10, Dhrs9, Rdhe2, Rdhe2s) channel retinol from holo-Crbp1 to generate retinal for ATRA biosynthesis. β-Carotene oxidase type 1 generates retinal from carotenoids, delivered by the scavenger receptor-B1. Retinal reductases (Dhrs3, Dhrs4, Rdh11) reduce retinal into retinol, thereby restraining ATRA biosynthesis. Retinal dehydrogenases (Raldh1, 2, 3) dehydrogenate retinal irreversibly into ATRA. ATRA regulates its own concentrations by inducing Lrat and ATRA degradative enzymes. ATRA exhibits hormesis. Its effects relate to its concentration as an inverted J-shaped curve, transitioning from beneficial in the "goldilocks" zone to toxicity, as concentrations increase. Hormesis has distorted understanding physiological effects of ATRA post-nataly using chow-diet fed, ATRA-dosed animal models. Cancer, immune deficiency and metabolic abnormalities result from mutations and/or insufficiency in Crbp1 and retinoid metabolizing enzymes.
Collapse
Affiliation(s)
- Joseph L Napoli
- Graduate Program in Metabolic Biology, Nutritional Sciences and Toxicology, University of California, Berkeley, CA, United States.
| |
Collapse
|