1
|
Brettell LE, Hoque AF, Joseph TS, Dhokiya V, Hornett EA, Hughes GL, Heinz E. Mosquitoes Reared in Nearby Insectaries at the Same Institution Have Significantly Divergent Microbiomes. Environ Microbiol 2025; 27:e70027. [PMID: 39779320 PMCID: PMC11711076 DOI: 10.1111/1462-2920.70027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 11/28/2024] [Accepted: 12/03/2024] [Indexed: 01/11/2025]
Abstract
The microbiome influences critical aspects of mosquito biology and variations in microbial composition can impact the outcomes of laboratory studies. To investigate how biotic and abiotic conditions in an insectary affect the composition of the mosquito microbiome, a single cohort of Aedes aegypti eggs was divided into three batches and transferred to three different climate-controlled insectaries within the Liverpool School of Tropical Medicine. The bacterial microbiome composition was compared as mosquitoes developed, the microbiome of the mosquitoes' food sources was characterised, environmental conditions over time in each insectary were measured, and mosquito development and survival were recorded. While developmental success was similar across all three insectaries, differences in microbiome composition were observed between mosquitoes from each insectary. Environmental conditions and bacterial input via food sources varied between insectaries, potentially contributing to the observed differences in microbiome composition. At both adult and larval stages, specific members of the mosquito microbiome were associated with particular insectaries; the insectary with less stable and cooler conditions resulted in a slower pupation rate and higher diversity of the larval microbiome. These findings underscore that even minor inconsistencies in rearing conditions can affect the composition of the mosquito microbiome, which may influence experimental outcomes.
Collapse
Affiliation(s)
- Laura E. Brettell
- Department of Vector BiologyLiverpool School of Tropical MedicineLiverpoolUK
- School of Science, Engineering and EnvironmentUniversity of SalfordManchesterUK
| | - Ananya F. Hoque
- Department of Vector BiologyLiverpool School of Tropical MedicineLiverpoolUK
- The Roslin Institute, Royal (Dick) School of Veterinary StudiesThe University of EdinburghMidlothianUK
| | - Tara S. Joseph
- Department of Vector BiologyLiverpool School of Tropical MedicineLiverpoolUK
- Department of Tropical Disease Biology, Centre for Neglected Tropical DiseasesLiverpool School of Tropical MedicineLiverpoolUK
| | - Vishaal Dhokiya
- Department of Vector BiologyLiverpool School of Tropical MedicineLiverpoolUK
- Department of Tropical Disease Biology, Centre for Neglected Tropical DiseasesLiverpool School of Tropical MedicineLiverpoolUK
| | - Emily A. Hornett
- Department of Vector BiologyLiverpool School of Tropical MedicineLiverpoolUK
- Department of Tropical Disease Biology, Centre for Neglected Tropical DiseasesLiverpool School of Tropical MedicineLiverpoolUK
- Department of Evolution, Ecology and BehaviourUniversity of LiverpoolLiverpoolUK
| | - Grant L. Hughes
- Department of Vector BiologyLiverpool School of Tropical MedicineLiverpoolUK
- Department of Tropical Disease Biology, Centre for Neglected Tropical DiseasesLiverpool School of Tropical MedicineLiverpoolUK
| | - Eva Heinz
- Department of Vector BiologyLiverpool School of Tropical MedicineLiverpoolUK
- Department of Clinical SciencesLiverpool School of Tropical MedicineLiverpoolUK
- Strathclyde Institute of Pharmacy and Biomedical SciencesUniversity of StrathclydeGlasgowUK
| |
Collapse
|
2
|
Horváthová T, Lafuente E, Bartels J, Wallisch J, Vorburger C. Tolerance to environmental pollution in the freshwater crustacean Asellus aquaticus: A role for the microbiome. ENVIRONMENTAL MICROBIOLOGY REPORTS 2024; 16:e13252. [PMID: 38783543 PMCID: PMC11116767 DOI: 10.1111/1758-2229.13252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 03/13/2024] [Indexed: 05/25/2024]
Abstract
Freshwater habitats are frequently contaminated by diverse chemicals of anthropogenic origin, collectively referred to as micropollutants, that can have detrimental effects on aquatic life. The animals' tolerance to micropollutants may be mediated by their microbiome. If polluted aquatic environments select for contaminant-degrading microbes, the acquisition of such microbes by the host may increase its tolerance to pollution. Here we tested for the potential effects of the host microbiome on the growth and survival of juvenile Asellus aquaticus, a widespread freshwater crustacean. Using faecal microbiome transplants, we provided newly hatched juveniles with the microbiome isolated from donor adults reared in either clean or micropollutant-contaminated water and, after transplantation, recipient juveniles were reared in water with and without micropollutants. The experiment revealed a significant negative effect of the micropollutants on the survival of juvenile isopods regardless of the received faecal microbiome. The micropollutants had altered the composition of the bacterial component of the donors' microbiome, which in turn influenced the microbiome of juvenile recipients. Hence, we show that relatively high environmental concentrations of micropollutants reduce survival and alter the microbiome composition of juvenile A. aquaticus, but we have no evidence that tolerance to micropollutants is modulated by their microbiome.
Collapse
Affiliation(s)
- Terézia Horváthová
- Department of Aquatic EcologyEawagDübendorfSwitzerland
- Institute of Soil Biology and BiochemistryBiology Centre CASČeské BudějoviceCzechia
| | - Elvira Lafuente
- Department of Aquatic EcologyEawagDübendorfSwitzerland
- Instituto Gulbenkian de CiênciaOeirasPortugal
| | | | | | - Christoph Vorburger
- Department of Aquatic EcologyEawagDübendorfSwitzerland
- D‐USYS, Department of Environmental Systems ScienceETH ZürichZürichSwitzerland
| |
Collapse
|
3
|
Serghiou IR, Baker D, Evans R, Dalby MJ, Kiu R, Trampari E, Phillips S, Watt R, Atkinson T, Murphy B, Hall LJ, Webber MA. An efficient method for high molecular weight bacterial DNA extraction suitable for shotgun metagenomics from skin swabs. Microb Genom 2023; 9:mgen001058. [PMID: 37428148 PMCID: PMC10438817 DOI: 10.1099/mgen.0.001058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 06/04/2023] [Indexed: 07/11/2023] Open
Abstract
The human skin microbiome represents a variety of complex microbial ecosystems that play a key role in host health. Molecular methods to study these communities have been developed but have been largely limited to low-throughput quantification and short amplicon-based sequencing, providing limited functional information about the communities present. Shotgun metagenomic sequencing has emerged as a preferred method for microbiome studies as it provides more comprehensive information about the species/strains present in a niche and the genes they encode. However, the relatively low bacterial biomass of skin, in comparison to other areas such as the gut microbiome, makes obtaining sufficient DNA for shotgun metagenomic sequencing challenging. Here we describe an optimised high-throughput method for extraction of high molecular weight DNA suitable for shotgun metagenomic sequencing. We validated the performance of the extraction method, and analysis pipeline on skin swabs collected from both adults and babies. The pipeline effectively characterised the bacterial skin microbiota with a cost and throughput suitable for larger longitudinal sets of samples. Application of this method will allow greater insights into community compositions and functional capabilities of the skin microbiome.
Collapse
Affiliation(s)
- Iliana R. Serghiou
- Quadram Institute Bioscience, Norwich Research Park, Norwich, Norfolk, NR4 7UQ, UK
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, Norfolk, NR4 7TJ, UK
| | - Dave Baker
- Quadram Institute Bioscience, Norwich Research Park, Norwich, Norfolk, NR4 7UQ, UK
| | - Rhiannon Evans
- Quadram Institute Bioscience, Norwich Research Park, Norwich, Norfolk, NR4 7UQ, UK
| | - Matthew J. Dalby
- Quadram Institute Bioscience, Norwich Research Park, Norwich, Norfolk, NR4 7UQ, UK
| | - Raymond Kiu
- Quadram Institute Bioscience, Norwich Research Park, Norwich, Norfolk, NR4 7UQ, UK
| | - Eleftheria Trampari
- Quadram Institute Bioscience, Norwich Research Park, Norwich, Norfolk, NR4 7UQ, UK
| | - Sarah Phillips
- Quadram Institute Bioscience, Norwich Research Park, Norwich, Norfolk, NR4 7UQ, UK
| | - Rachel Watt
- Quadram Institute Bioscience, Norwich Research Park, Norwich, Norfolk, NR4 7UQ, UK
| | - Thomas Atkinson
- Quadram Institute Bioscience, Norwich Research Park, Norwich, Norfolk, NR4 7UQ, UK
| | - Barry Murphy
- Unilever R&D Port Sunlight, Bebington, CH63 3JW, UK
| | - Lindsay J. Hall
- Quadram Institute Bioscience, Norwich Research Park, Norwich, Norfolk, NR4 7UQ, UK
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, Norfolk, NR4 7TJ, UK
- Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich, Norfolk, NR4 7TJ, UK
| | - Mark A. Webber
- Quadram Institute Bioscience, Norwich Research Park, Norwich, Norfolk, NR4 7UQ, UK
- Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich, Norfolk, NR4 7TJ, UK
| |
Collapse
|
4
|
Jagare L, Rozenberga M, Silamikelis I, Ansone L, Elbere I, Briviba M, Megnis K, Konrade I, Birka I, Straume Z, Klovins J. Metatranscriptome analysis of blood in healthy individuals and irritable bowel syndrome patients. J Med Microbiol 2023; 72. [PMID: 37335601 DOI: 10.1099/jmm.0.001719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2023] Open
Abstract
Introduction. Although the presence of micro-organisms in the blood of healthy humans is a relatively new concept, there is a growing amount of evidence that blood might have its own microbiome.Gap Statement. Previous research has targeted the taxonomic composition of the blood microbiome using DNA-based sequencing methods, while little information is known about the presence of microbial transcripts obtained from the blood and their relation to conditions connected with increased gut permeability.Aim. To detect potentially alive and active micro-organisms and investigate differences in taxonomic composition between healthy people and patients with irritable bowel syndrome (IBS), we used the metatranscriptomics approach.Methodology. We collected blood samples from 23 IBS patients and 26 volunteers from the general population, and performed RNAseq on the isolated RNA. Reads corresponding to microbial genomes were identified with Kraken 2's standard plus protozoa and fungi database, and re-estimated at genus level with Bracken 2.7. We looked for trends in the taxonomic composition, making a comparison between the IBS and control groups, accounting for other different factors.Results. The dominant genera in the blood microbiome were found to be Cutibacterium, Bradyrhizobium, Escherichia, Pseudomonas, Micrococcus, Delftia, Mediterraneibacter, Staphylococcus, Stutzerimonas and Ralstonia. Some of these are typical environmental bacteria and could partially represent contamination. However, analysis of sequences from the negative controls suggested that some genera which are characteristic of the gut microbiome (Mediterraneibacter, Blautia, Collinsella, Klebsiella, Coprococcus, Dysosmobacter, Anaerostipes, Faecalibacterium, Dorea, Simiaoa, Bifidobacterium, Alistipes, Prevotella, Ruminococcus) are less likely to be a result of contamination. Differential analysis of microbes between groups showed that some taxa associated with the gut microbiome (Blautia, Faecalibacterium, Dorea, Bifidobacterium, Clostridium, Christensenella) are more prevalent in IBS patients compared to the general population. No significant correlations with any other factors were identified.Conclusion. Our findings support the existence of the blood microbiome and suggest the gut and possibly the oral microbiome as its origin, while the skin microbiome is a possible but less certain source. The blood microbiome is likely influenced by states of increased gut permeability such as IBS.
Collapse
Affiliation(s)
- Lauma Jagare
- Latvian Biomedical Research and Study Centre, Human Genetics and Disease Mechanisms Group, Ratsupites iela 1, Riga, LV-1067, Latvia
| | - Maija Rozenberga
- Latvian Biomedical Research and Study Centre, Human Genetics and Disease Mechanisms Group, Ratsupites iela 1, Riga, LV-1067, Latvia
| | - Ivars Silamikelis
- Latvian Biomedical Research and Study Centre, Human Genetics and Disease Mechanisms Group, Ratsupites iela 1, Riga, LV-1067, Latvia
| | - Laura Ansone
- Latvian Biomedical Research and Study Centre, Human Genetics and Disease Mechanisms Group, Ratsupites iela 1, Riga, LV-1067, Latvia
| | - Ilze Elbere
- Latvian Biomedical Research and Study Centre, Human Genetics and Disease Mechanisms Group, Ratsupites iela 1, Riga, LV-1067, Latvia
| | - Monta Briviba
- Latvian Biomedical Research and Study Centre, Human Genetics and Disease Mechanisms Group, Ratsupites iela 1, Riga, LV-1067, Latvia
| | - Kaspars Megnis
- Latvian Biomedical Research and Study Centre, Human Genetics and Disease Mechanisms Group, Ratsupites iela 1, Riga, LV-1067, Latvia
| | - Ilze Konrade
- Riga Stradins University, Dzirciema iela 16, Riga, LV-1007, Latvia
| | - Ilze Birka
- Pauls Stradins Clinical University Hospital, Pilsonu iela 13, Riga, LV-1002, Latvia
| | - Zane Straume
- Ogre Regional Hospital, Slimnicas iela 2, Ogre, LV-5001, Latvia
| | - Janis Klovins
- Latvian Biomedical Research and Study Centre, Human Genetics and Disease Mechanisms Group, Ratsupites iela 1, Riga, LV-1067, Latvia
| |
Collapse
|
5
|
Geerinck MWJ, Van Hee S, Gloder G, Crauwels S, Colazza S, Jacquemyn H, Cusumano A, Lievens B. Diversity and composition of the microbiome associated with eggs of the Southern green stinkbug, Nezara viridula (Hemiptera: Pentatomidae). Microbiologyopen 2022; 11:e1337. [PMID: 36479626 PMCID: PMC9728049 DOI: 10.1002/mbo3.1337] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 01/21/2022] [Accepted: 11/21/2022] [Indexed: 12/12/2022] Open
Abstract
Although microbial communities of insects from larval to adult stage have been increasingly investigated in recent years, little is still known about the diversity and composition of egg-associated microbiomes. In this study, we used high-throughput amplicon sequencing and quantitative PCR to get a better understanding of the microbiome of insect eggs and how they are established using the Southern green stinkbug Nezara viridula (L.) (Hemiptera: Pentatomidae) as a study object. First, to determine the bacterial community composition, egg masses from two natural populations in Belgium and Italy were examined. Subsequently, microbial community establishment was assessed by studying stinkbug eggs of different ages obtained from laboratory strains (unlaid eggs collected from the ovaries, eggs less than 24 h old, and eggs collected 4 days after oviposition). Both the external and internal egg-associated microbiomes were analyzed by investigating egg washes and surface-sterilized washed eggs, respectively. Eggs from the ovaries were completely devoid of bacteria, indicating that egg-associated bacteria were deposited on the eggs during or after oviposition. The bacterial diversity of deposited eggs was very low, with on average 6.1 zero-radius operational taxonomic units (zOTUs) in the external microbiome and 1.2 zOTUs in internal samples of egg masses collected from the field. Bacterial community composition and density did not change significantly over time, suggesting limited bacterial growth. A Pantoea-like symbiont previously found in the midgut of N. viridula was found in every sample and generally occurred at high relative and absolute densities, especially in the internal egg samples. Additionally, some eggs harbored a Sodalis symbiont, which has previously been found in the abdomen of several insects, but so far not in N. viridula populations. We conclude that the egg-associated bacterial microbiome of N. viridula is species-poor and dominated by a few symbionts, particularly the species-specific obligate Pantoea-like symbiont.
Collapse
Affiliation(s)
- Margot W. J. Geerinck
- CMPG Laboratory for Process Microbial Ecology and Bioinspirational Management (PME&BIM), Department M2S, KU LeuvenLeuvenBelgium
- Leuven Plant Institute (LPI), KU LeuvenLeuvenBelgium
| | - Sara Van Hee
- CMPG Laboratory for Process Microbial Ecology and Bioinspirational Management (PME&BIM), Department M2S, KU LeuvenLeuvenBelgium
- Leuven Plant Institute (LPI), KU LeuvenLeuvenBelgium
| | - Gabriele Gloder
- CMPG Laboratory for Process Microbial Ecology and Bioinspirational Management (PME&BIM), Department M2S, KU LeuvenLeuvenBelgium
- Leuven Plant Institute (LPI), KU LeuvenLeuvenBelgium
| | - Sam Crauwels
- CMPG Laboratory for Process Microbial Ecology and Bioinspirational Management (PME&BIM), Department M2S, KU LeuvenLeuvenBelgium
| | - Stefano Colazza
- Department of Agricultural, Food and Forest SciencesUniversity of Palermo Viale delle ScienzePalermoItaly
- Interuniversity Center for Studies on Bioinspired Agro‐Environmental Technology (BATCenter)University of Napoli Federico IIPorticiItaly
| | - Hans Jacquemyn
- Leuven Plant Institute (LPI), KU LeuvenLeuvenBelgium
- Laboratory of Plant Conservation and Population Biology, Biology Department, KU LeuvenLeuvenBelgium
| | - Antonino Cusumano
- Department of Agricultural, Food and Forest SciencesUniversity of Palermo Viale delle ScienzePalermoItaly
- Interuniversity Center for Studies on Bioinspired Agro‐Environmental Technology (BATCenter)University of Napoli Federico IIPorticiItaly
| | - Bart Lievens
- CMPG Laboratory for Process Microbial Ecology and Bioinspirational Management (PME&BIM), Department M2S, KU LeuvenLeuvenBelgium
- Leuven Plant Institute (LPI), KU LeuvenLeuvenBelgium
| |
Collapse
|
6
|
Fofana A, Gendrin M, Romoli O, Yarbanga GAB, Ouédraogo GA, Yerbanga RS, Ouédraogo JB. Analyzing gut microbiota composition in individual Anopheles mosquitoes after experimental treatment. iScience 2021; 24:103416. [PMID: 34901787 PMCID: PMC8637483 DOI: 10.1016/j.isci.2021.103416] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 08/27/2021] [Accepted: 11/05/2021] [Indexed: 01/04/2023] Open
Abstract
The microbiota of Anopheles mosquitoes influences malaria transmission. Antibiotics ingested during a blood meal impact the mosquito microbiome and malaria transmission, with substantial differences between drugs. Here, we assessed if amoxicillin affects the gut mosquito microbiota. We collected Anopheles larvae in Burkina Faso, kept them in semi-field conditions, and offered a blood meal to adult females. We tested the impact of blood supplementation with two alternative amoxicillin preparations on microbiota composition, determined by high-throughput sequencing in individual gut samples. Our analysis detected four major genera, Elizabethkingia, Wigglesworthia, Asaia, and Serratia. The antibiotic treatment significantly affected overall microbiota composition, with a specific decrease in the relative abundance of Elizabethkingia and Asaia during blood digestion. Besides its interest on the influence of amoxicillin on the mosquito microbiota, our study proposes a thorough approach to report negative-control data of high-throughput sequencing studies on samples with a reduced microbial load.
Collapse
Affiliation(s)
- Aminata Fofana
- Institut de Recherche en Sciences de la Santé, Bobo Dioulasso, Burkina Faso.,Université Nazi Boni, Bobo-Dioulasso 1091, Burkina Faso
| | - Mathilde Gendrin
- Microbiota of Insect Vectors Group, Institut Pasteur de la Guyane, 97306 Cayenne, French Guiana.,Institut Pasteur, Université de Paris, Department of Insect Vectors, 75015 Paris, France
| | - Ottavia Romoli
- Microbiota of Insect Vectors Group, Institut Pasteur de la Guyane, 97306 Cayenne, French Guiana
| | | | | | - Rakiswende Serge Yerbanga
- Institut de Recherche en Sciences de la Santé, Bobo Dioulasso, Burkina Faso.,Institut des Sciences et Techniques, 2779 Bobo Dioulasso, Burkina Faso
| | - Jean-Bosco Ouédraogo
- Institut de Recherche en Sciences de la Santé, Bobo Dioulasso, Burkina Faso.,Institut des Sciences et Techniques, 2779 Bobo Dioulasso, Burkina Faso
| |
Collapse
|
7
|
Díaz S, Camargo C, Avila FW. Characterization of the reproductive tract bacterial microbiota of virgin, mated, and blood-fed Aedes aegypti and Aedes albopictus females. Parasit Vectors 2021; 14:592. [PMID: 34852835 PMCID: PMC8638121 DOI: 10.1186/s13071-021-05093-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 11/09/2021] [Indexed: 12/13/2022] Open
Abstract
Background Aedes aegypti and Ae. albopictus are vectors of numerous arboviruses that adversely affect human health. In mosquito vectors of disease, the bacterial microbiota influence several physiological processes, including fertility and vector competence, making manipulation of the bacterial community a promising method to control mosquito vectors. In this study, we describe the reproductive tract tissue microbiota of lab-reared virgin Ae. aegypti and Ae. albopictus males, and virgin, mated, and mated + blood-fed females of each species, comparing the bacterial composition found there to the well-described gut microbiota. Methods We performed metabarcoding of the 16S rRNA isolated from the gut, upper reproductive tract (URT; testes or ovaries), and lower reproductive tract (LRT; males: seminal vesicles and accessory glands; females: oviduct, spermathecae, and bursa) for each species, and evaluated the influence of host species, tissue, nutritional status, and reproductive status on microbiota composition. Finally, based on the identified taxonomic profiles of the tissues assessed, bacterial metabolic pathway abundance was predicted. Results The community structure of the reproductive tract is unique compared to the gut. Asaia is the most prevalent OTU in the LRTs of both Ae. aegypti and Ae. albopictus. In the URT, we observed differences between species, with Wolbachia OTUs being dominant in the Ae. albopictus URT, while Enterobacter and Serratia were dominant in Ae. aegypti URT. Host species and tissue were the best predictors of the community composition compared to reproductive status (i.e., virgin or mated) and nutritional status (i.e., sugar or blood-fed). The predicted functional profile shows changes in the abundance of specific microbial pathways that are associated with mating and blood-feeding, like energy production in mated tissues and siderophore synthesis in blood-fed female tissues. Conclusions Aedes aegypti and Ae. albopictus have distinct differences in the composition of microbiota found in the reproductive tract. The distribution of the bacterial taxonomic groups indicates that some bacteria have tissue-specific tropism for reproductive tract tissue, such as Asaia and Wolbachia. No significant differences in the taxonomic composition were observed in the reproductive tract between virgin, mated, and mated + blood-fed females, but changes in the abundance of specific metabolic pathways were found in the predicted microbial functional profiles in mated and blood-fed females. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13071-021-05093-7.
Collapse
Affiliation(s)
- Sebastián Díaz
- Max Planck Tandem Group in Mosquito Reproductive Biology, Universidad de Antioquia, Medellín, 050010, Antioquia, Colombia
| | - Carolina Camargo
- Max Planck Tandem Group in Mosquito Reproductive Biology, Universidad de Antioquia, Medellín, 050010, Antioquia, Colombia
| | - Frank W Avila
- Max Planck Tandem Group in Mosquito Reproductive Biology, Universidad de Antioquia, Medellín, 050010, Antioquia, Colombia.
| |
Collapse
|