1
|
Rodríguez-Mera IB, Rojas-Hernández S, Bonilla-Lemus P, Esquivel-Solís M, Carrillo-Morales F, Gutiérrez-Sánchez M, López-Reyes I, Osornio-Rojas JL, Carrasco-Yépez MM. Identification of Naegleria fowleri antigens recognized by serum antibodies from people of Mexicali Valley, México. Parasitol Res 2025; 124:33. [PMID: 40088312 PMCID: PMC11910403 DOI: 10.1007/s00436-025-08476-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Accepted: 02/28/2025] [Indexed: 03/17/2025]
Abstract
Naegleria fowleri is an amoeba that causes a fatal disease in the central nervous system known as primary amoebic meningoencephalitis (PAM) in humans. Most of the infections are acquired by people who practice recreational activities in water contaminated with trophozoites. Swimming and wading in irrigation channels of Mexicali are common practices for local people. Although there are some warning signposts in the surrounding sites, people continue using these channels for recreational purposes. In that region, cases of PAM have been reported; however, not everyone who comes into contact with contaminated water containing trophozoites becomes infected, and the factors influencing their immune response to N. fowleri remain unknown. We analyzed the levels of antibodies against N. fowleri in two groups: local individuals, including visitors who swam in the Mexicali channels, and a group from Mexico City (CDMX). In both groups, specific antibody responses were analyzed using immunoassays, including Western blot, ELISA, and cytochemistry. The highest levels of both IgG and IgA were found in samples from Mexicali, compared to those from CDMX. In both groups, IgG recognized polypeptide bands from N. fowleri at molecular weights of 100, 50, and 19 kDa, bands that we have already reported as immunogenic. Moreover, the IgG subjects recognized trophozoite structures such as membrane, pseudopodia, food cups, and even small like-vesicles. This antibody immune response directed against these polypeptide bands and trophozoite structures along with other factors could be participating in the defense of these people against PAM.
Collapse
Affiliation(s)
- Itzel Berenice Rodríguez-Mera
- Laboratorio de Microbiología Ambiental, Grupo CyMA, UIICSE, FES Iztacala, Universidad Nacional Autónoma de México, Estado de México, Tlalnepantla de Baz, México
| | - Saúl Rojas-Hernández
- Laboratorio de Inmunología Molecular y de Mucosas, Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de Mexico, México
| | - Patricia Bonilla-Lemus
- Laboratorio de Microbiología Ambiental, Grupo CyMA, UIICSE, FES Iztacala, Universidad Nacional Autónoma de México, Estado de México, Tlalnepantla de Baz, México
| | - Mariela Esquivel-Solís
- Laboratorio de Inmunología Molecular y de Mucosas, Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de Mexico, México
| | - Frida Carrillo-Morales
- Laboratorio de Inmunología Molecular y de Mucosas, Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de Mexico, México
| | - Mara Gutiérrez-Sánchez
- Laboratorio de Inmunología Molecular y de Mucosas, Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de Mexico, México
| | - Israel López-Reyes
- Universidad Autónoma de La Ciudad de México (UACM), Plantel Cuautepec, Av. La Corona 320, Col. Loma La Palma, Alcaldía Gustavo A. Madero, C.P. 07160, Ciudad de Mexico, México
| | - José Luis Osornio-Rojas
- Departamento de Estomatología, Universidas Autónoma de Ciudad Juarez, Ciudad Juárez, Chihuahua, México
| | - María Maricela Carrasco-Yépez
- Laboratorio de Microbiología Ambiental, Grupo CyMA, UIICSE, FES Iztacala, Universidad Nacional Autónoma de México, Estado de México, Tlalnepantla de Baz, México.
| |
Collapse
|
2
|
Malych R, Folgosa F, Pilátová J, Mikeš L, Dohnálek V, Mach J, Matějková M, Kopecký V, Doležal P, Sutak R. Eating the brain - A multidisciplinary study provides new insights into the mechanisms underlying the cytopathogenicity of Naegleria fowleri. PLoS Pathog 2025; 21:e1012995. [PMID: 40096149 PMCID: PMC11964265 DOI: 10.1371/journal.ppat.1012995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 04/02/2025] [Accepted: 02/19/2025] [Indexed: 03/19/2025] Open
Abstract
Naegleria fowleri, the causative agent of primary amoebic meningoencephalitis (PAM), requires increased research attention due to its high lethality and the potential for increased incidence as a result of global warming. The aim of this study was to investigate the interactions between N. fowleri and host cells in order to elucidate the mechanisms underlying the pathogenicity of this amoeba. A co-culture system comprising human fibrosarcoma cells was established to study both contact-dependent and contact-independent cytopathogenicity. Proteomic analyses of the amoebas exposed to human cell cultures or passaged through mouse brain were used to identify novel virulence factors. Our results indicate that actin dynamics, regulated by Arp2/3 and Src kinase, play a considerable role in ingestion of host cells by amoebae. We have identified three promising candidate virulence factors, namely lysozyme, cystatin and hemerythrin, which may be critical in facilitating N. fowleri evasion of host defenses, migration to the brain and induction of a lethal infection. Long-term co-culture secretome analysis revealed an increase in protease secretion, which enhances N. fowleri cytopathogenicity. Raman microspectroscopy revealed significant metabolic differences between axenic and brain-isolated amoebae, particularly in lipid storage and utilization. Taken together, our findings provide important new insights into the pathogenic mechanisms of N. fowleri and highlight potential targets for therapeutic intervention against PAM.
Collapse
Affiliation(s)
- Ronald Malych
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Vestec, Czech Republic
| | - Filipe Folgosa
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Jana Pilátová
- Faculty of Mathematics and Physics, Institute of Physics, Charles University, Praha, Czech Republic
- Lawrence Berkeley National Laboratory, Molecular foundry, Berkeley, California, United States of America
- Intitute of Parasitology, Biology Centre, Czech Academy of Science, České Budějovice, Czech Republic
| | - Libor Mikeš
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Vít Dohnálek
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Vestec, Czech Republic
| | - Jan Mach
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Vestec, Czech Republic
| | - Magdaléna Matějková
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Vestec, Czech Republic
| | - Vladimír Kopecký
- Faculty of Mathematics and Physics, Institute of Physics, Charles University, Praha, Czech Republic
| | - Pavel Doležal
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Vestec, Czech Republic
| | - Robert Sutak
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Vestec, Czech Republic
| |
Collapse
|
3
|
Guerlais V, Allouch N, Moseman EA, Wojciechowska AW, Wojciechowski JW, Marcelino I. Transcriptomic profiling of "brain-eating amoeba" Naegleria fowleri infection in mice: the host and the protozoa perspectives. Front Cell Infect Microbiol 2024; 14:1490280. [PMID: 39735262 PMCID: PMC11682717 DOI: 10.3389/fcimb.2024.1490280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 10/21/2024] [Indexed: 12/31/2024] Open
Abstract
The free-living amoeba Naegleria fowleri (NF) causes a rare but lethal parasitic meningoencephalitis (PAM) in humans. Currently, this disease lacks effective treatments and the specific molecular mechanisms that govern NF pathogenesis and host brain response remain unknown. To address some of these issues, we sought to explore naturally existing virulence diversity within environmental NF isolates. Herein, we purified two new NF environmental isolates (NF45 and NF1) and tested their in vivo virulence using experimental infection in mice. We found that NF45 was highly virulent (NF45_HV) compared with NF1 (low virulence, NF1_LV), based on in vivo amoeba growth kinetics and mouse survival. To identify underlying differences, we conducted RNA-seq and bioinformatics analyses from the infected mouse brains. Our results showed that NF1_LV and NF45_HV modulated the expression of their genes during mouse brain infection. Differentially expressed genes (DEGs) in NF1_LV were mostly involved in Translational protein, Protein-binding activity modulator, Protein modifying enzyme, while DEGs in NF45_HV were related to DNA metabolism, Cytoskeletal protein, Protein-binding activity modulator. Proteases (namely the virulence factor Cathepsin B) were upregulated in NF1_LV, while downregulated in NF45_HV. When analyzing the host response against infection by these two NF strains, enrichment analyses uncovered genes and mechanisms related to the host immune responses and nervous systems. We detected more DEGs in NF1_LV infected mice compared to NF45_HV, related to blood brain barrier leakage, immune cell recruitment, cytokine production (including IL-6, IFN-Ɣ and TNFα), inflammation of astrocytes and microglia, and oligodendrocyte and neurons degeneration. Increased expression of neuromotor-related genes such as Adam22, Cacnb4 and Zic1 (activated by NF1_LV infection) and ChAt (activated by NF45_LV infection) could explain PAM symptoms such as muscle weakness and seizures. Globally, our results showed that NF isolated from the environment can have different levels of virulence and differentially modulate their gene expression during brain infection. We also provided, for the first time, a comprehensive information for the molecular mechanisms of neuro-immune and host-pathogen interactions during PAM disease. As the host and the protozoa are strongly implicated in PAM lethality, new therapies targeting both the parasite, and the host should be considered to treat PAM infection.
Collapse
Affiliation(s)
- Vincent Guerlais
- Institut Pasteur de la Guadeloupe, Les Abymes, Guadeloupe, France
| | - Nina Allouch
- Institut Pasteur de la Guadeloupe, Les Abymes, Guadeloupe, France
| | - E. Ashley Moseman
- Department of Integrative Immunobiology, Duke University School of Medicine, Durham, NC, United States
| | - Alicja W. Wojciechowska
- Department of Biomedical Engineering, Faculty of Fundamental Problems of Technology, Wroclaw University of Science and Technology, Wrocław, Poland
| | | | - Isabel Marcelino
- Institut Pasteur de la Guadeloupe, Les Abymes, Guadeloupe, France
| |
Collapse
|
4
|
Moseman AP, Chen CW, Liang X, Liao D, Kuraoka M, Moseman EA. Therapeutic glycan-specific antibody binding mediates protection during primary amoebic meningoencephalitis. Infect Immun 2024; 92:e0018324. [PMID: 39235225 PMCID: PMC11475618 DOI: 10.1128/iai.00183-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 07/24/2024] [Indexed: 09/06/2024] Open
Abstract
Naegleria fowleri (N. fowleri) infection via the upper respiratory tract causes a fatal CNS disease known as primary amoebic meningoencephalitis (PAM). The robust in vivo immune response to N. fowleri infection underlies the immunopathology that characterizes the disease. However, little is known about why this pathogen evades immune control. Infections occur in seemingly healthy individuals and effective clinical options are lacking, thus a nearly 98% fatality rate. It is unclear how or if host factors may contribute to susceptibility or disease exacerbation, yet mechanistic studies of the in vivo immune response and disease progression are hampered by a lack of tools. In this study, we have generated monoclonal antibodies to N. fowleri surface antigens and shown them to be excellent tools for studying the in vivo immune response. We also identified one monoclonal, 2B6, with potent inherent anti-amoebastatic activity in vitro. This antibody is also able to therapeutically prolong host survival in vivo and furthermore, recombinant antibodies with an isotype more capable of directing immune effector activity further improved survival when given therapeutically. Thus, we report the generation of a novel monoclonal antibody to N. fowleri that can enhance beneficial immune functions, even when given therapeutically during disease. We believe this provides evidence for the potential of therapeutic antibody treatments in PAM.IMPORTANCENaegleria fowleri (N. fowleri) is a free-living amoeba that is found ubiquitously in warm freshwater. While human exposure is common, it rarely results in pathogenesis. However, when N. fowleri gains access to the upper airway, specifically the olfactory mucosa, infection leads to a lethal disease known as primary amoebic meningoencephalitis (PAM). As a free-living amoeba, N. fowleri does not need a mammalian host; indeed, it can be accurately described as an accidental opportunistic pathogen. While most opportunistic infections occur in humans who are immunocompromised, there are no reported immune dysfunctions associated with N. fowleri infection. Therefore, the basis for N. fowleri opportunism is not known, and the reasons why some humans develop PAM while others do not are simply not well understood. It is reasonable to speculate that local or acute immune failures, potentially even a lack of prior adaptive immunity, are related to disease susceptibility. Careful immune profiling and characterization of the in vivo immune response to N. fowleri in a mammalian host are desperately needed to understand which host factors are critical to defense, and how these responses might be compromised in a way that results in lethal infection. To identify genes and pathways that provide resistance against in vivo N. fowleri infection, we generated surface reactive monoclonal antibodies (Abs) that provide rapid amoeba detection and quantification in vivo. Interestingly, N. fowleri binding Abs have been readily detected in the serum and saliva of humans and animals suggesting that non-lethal exposure drives a humoral immune response against the amoeba. Yet, how Abs might interact with Naegleria in vivo or contribute to preventing lethal infection is not well understood. In this study, we have generated and characterized a monoclonal antibody (Ab), Clone 2B6, that recognizes a glycosylated surface antigen present in cultured in vitro N. fowleri as well as mouse passaged N. fowleri. When clone 2B6 binds to N. fowleri, it inhibits amoeba motility and feeding behavior, leading to strong growth inhibition. Mice treated systemically and intracerebrally with Ab displayed a delayed disease onset and prolonged survival. In addition, we found that enhancing immune-directed effector activity via antibody isotype could further enhance survival without obvious immunopathogenic side effects. These findings show the potential for antibody treatment as an additional therapeutic to those used currently in PAM.
Collapse
Affiliation(s)
- Annie Park Moseman
- Department of Integrative Immunobiology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Ching-wen Chen
- Department of Integrative Immunobiology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Xiaoe Liang
- Department of Integrative Immunobiology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Dongmei Liao
- Department of Integrative Immunobiology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Masayuki Kuraoka
- Department of Integrative Immunobiology, Duke University School of Medicine, Durham, North Carolina, USA
| | - E. Ashley Moseman
- Department of Integrative Immunobiology, Duke University School of Medicine, Durham, North Carolina, USA
| |
Collapse
|
5
|
Ahmad RU, Bilal MA, Ashraf MF, Daim SUR, Oduoye MO, Okon II. Recurring seasonal cases of Naegleria fowleri (Brain-Eating Amoeba) in Pakistan: A rapidly growing threat. Health Sci Rep 2024; 7:e2264. [PMID: 39050908 PMCID: PMC11265988 DOI: 10.1002/hsr2.2264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 06/06/2024] [Accepted: 06/21/2024] [Indexed: 07/27/2024] Open
Affiliation(s)
| | | | | | | | | | - Inibehe Ime Okon
- Department of ResearchMedical Research Circle (MedReC)BukavuDR Congo
| |
Collapse
|
6
|
Shaukat A, Khaliq N, Riaz R, Munsab R, Ashraf T, Raufi N, Shah H. Noninvasive diagnostic biomarkers, genomic profiling, and advanced microscopic imaging in the early detection and characterization of Naegleria fowleri infections leading to primary amebic meningoencephalitis (PAM). Ann Med Surg (Lond) 2024; 86:2032-2048. [PMID: 38576920 PMCID: PMC10990330 DOI: 10.1097/ms9.0000000000001843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 02/08/2024] [Indexed: 04/06/2024] Open
Abstract
This review delves into the strategies for early detection and characterization of Naegleria fowleri infections leading to primary amoebic meningoencephalitis (PAM). The study provides an in-depth analysis of current diagnostic approaches, including cerebrospinal fluid analysis, brain tissue examination, immunostaining techniques, and culture methods, elucidating their strengths and limitations. It explores the geographical distribution of N. fowleri, with a focus on regions near the equator, and environmental factors contributing to its prevalence. The review emphasizes the crucial role of early detection in PAM management, discussing the benefits of timely identification in treatment, personalized care, and prevention strategies. Genomic profiling techniques, such as conventional PCR, nested PCR, multiplex PCR, and real-time PCR, are thoroughly examined as essential tools for accurate and prompt diagnosis. Additionally, the study explores advanced microscopic imaging techniques to characterize N. fowleri's morphology and behavior at different infection stages, enhancing our understanding of its life cycle and pathogenic mechanisms. In conclusion, this review underscores the potential of these strategies to improve our ability to detect, understand, and combat N. fowleri infections, ultimately leading to better patient outcomes and enhanced public health protection.
Collapse
Affiliation(s)
| | - Nawal Khaliq
- Dow University of Health Sciences, Karachi, Pakistan
| | - Rumaisa Riaz
- Dow University of Health Sciences, Karachi, Pakistan
| | - Rabbia Munsab
- Dow University of Health Sciences, Karachi, Pakistan
| | | | - Nahid Raufi
- Department of Medicine, Kabul Medical University, Kabul, Afghanistan
| | - Hafsa Shah
- Dow University of Health Sciences, Karachi, Pakistan
| |
Collapse
|
7
|
Akbar N, Siddiqui R, El-Gamal MI, Zaraei SO, Alawfi BS, Khan NA. The anti-amoebic potential of carboxamide derivatives containing sulfonyl or sulfamoyl moieties against brain-eating Naegleria fowleri. Parasitol Res 2023; 122:2539-2548. [PMID: 37665414 DOI: 10.1007/s00436-023-07953-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 08/18/2023] [Indexed: 09/05/2023]
Abstract
Naegleria fowleri is a free-living thermophilic flagellate amoeba that causes a rare but life-threatening infection called primary amoebic meningoencephalitis (PAM), with a very high fatality rate. Herein, the anti-amoebic potential of carboxamide derivatives possessing sulfonyl or sulfamoyl moiety was assessed against pathogenic N. fowleri using amoebicidal, cytotoxicity and cytopathogenicity assays. The results from amoebicidal experiments showed that derivatives dramatically reduced N. fowleri viability. Selected derivatives demonstrated IC50 values at lower concentrations; 1j showed IC50 at 24.65 μM, while 1k inhibited 50% amoebae growth at 23.31 μM. Compounds with significant amoebicidal effects demonstrated limited cytotoxicity against human cerebral microvascular endothelial cells. Finally, some derivatives mitigated N. fowleri-instigated host cell death. Ultimately, this study demonstrated that 1j and 1k exhibited potent anti-amoebic activity and ought to be looked at in future studies for the development of therapeutic anti-amoebic pharmaceuticals. Further investigation is required to determine the clinical relevance of our findings.
Collapse
Affiliation(s)
- Noor Akbar
- Research Institute of Medical and Health Sciences, University of Sharjah, University City, Sharjah, 27272, United Arab Emirates
- Department of Clinical Sciences, College of Medicine, University of Sharjah, University City, Sharjah, 27272, United Arab Emirates
| | - Ruqaiyyah Siddiqui
- College of Arts and Sciences, American University of Sharjah, University City, Sharjah, 26666, United Arab Emirates
- Microbiota Research Center, Istinye University, 34010, Istanbul, Turkey
| | - Mohammed I El-Gamal
- Research Institute of Medical and Health Sciences, University of Sharjah, University City, Sharjah, 27272, United Arab Emirates.
- Department of Medicinal Chemistry, College of Pharmacy, University of Sharjah, Sharjah, 27272, United Arab Emirates.
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt.
| | - Seyed-Omar Zaraei
- Research Institute of Medical and Health Sciences, University of Sharjah, University City, Sharjah, 27272, United Arab Emirates
| | - Bader S Alawfi
- Department of Medical Laboratories Technology, College of Applied Medical Sciences, Taibah University, Madinah, 42353, Saudi Arabia
| | - Naveed Ahmed Khan
- Microbiota Research Center, Istinye University, 34010, Istanbul, Turkey.
| |
Collapse
|
8
|
Dereeper A, Allouch N, Guerlais V, Garnier M, Ma L, De Jonckheere JF, Joseph SJ, Ali IKM, Talarmin A, Marcelino I. Naegleria genus pangenome reveals new structural and functional insights into the versatility of these free-living amoebae. Front Microbiol 2023; 13:1056418. [PMID: 36817109 PMCID: PMC9928731 DOI: 10.3389/fmicb.2022.1056418] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 12/21/2022] [Indexed: 02/04/2023] Open
Abstract
Introduction Free-living amoebae of the Naegleria genus belong to the major protist clade Heterolobosea and are ubiquitously distributed in soil and freshwater habitats. Of the 47 Naegleria species described, N. fowleri is the only one being pathogenic to humans, causing a rare but fulminant primary amoebic meningoencephalitis. Some Naegleria genome sequences are publicly available, but the genetic basis for Naegleria diversity and ability to thrive in diverse environments (including human brain) remains unclear. Methods Herein, we constructed a high-quality Naegleria genus pangenome to obtain a comprehensive catalog of genes encoded by these amoebae. For this, we first sequenced, assembled, and annotated six new Naegleria genomes. Results and Discussion Genome architecture analyses revealed that Naegleria may use genome plasticity features such as ploidy/aneuploidy to modulate their behavior in different environments. When comparing 14 near-to-complete genome sequences, our results estimated the theoretical Naegleria pangenome as a closed genome, with 13,943 genes, including 3,563 core and 10,380 accessory genes. The functional annotations revealed that a large fraction of Naegleria genes show significant sequence similarity with those already described in other kingdoms, namely Animalia and Plantae. Comparative analyses highlighted a remarkable genomic heterogeneity, even for closely related strains and demonstrate that Naegleria harbors extensive genome variability, reflected in different metabolic repertoires. If Naegleria core genome was enriched in conserved genes essential for metabolic, regulatory and survival processes, the accessory genome revealed the presence of genes involved in stress response, macromolecule modifications, cell signaling and immune response. Commonly reported N. fowleri virulence-associated genes were present in both core and accessory genomes, suggesting that N. fowleri's ability to infect human brain could be related to its unique species-specific genes (mostly of unknown function) and/or to differential gene expression. The construction of Naegleria first pangenome allowed us to move away from a single reference genome (that does not necessarily represent each species as a whole) and to identify essential and dispensable genes in Naegleria evolution, diversity and biology, paving the way for further genomic and post-genomic studies.
Collapse
Affiliation(s)
- Alexis Dereeper
- Institut Pasteur de la Guadeloupe, Unité TReD-Path, Les Abymes, Guadeloupe, France
| | - Nina Allouch
- Institut Pasteur de la Guadeloupe, Unité TReD-Path, Les Abymes, Guadeloupe, France
| | - Vincent Guerlais
- Institut Pasteur de la Guadeloupe, Unité TReD-Path, Les Abymes, Guadeloupe, France
| | - Maëlle Garnier
- Institut Pasteur de la Guadeloupe, Unité TReD-Path, Les Abymes, Guadeloupe, France
| | - Laurence Ma
- Institut Pasteur de Paris, Biomics, Paris, France
| | | | - Sandeep J. Joseph
- Centers for Disease Control and Prevention (CDC), Atlanta, GA, United States
| | - Ibne Karim M. Ali
- Centers for Disease Control and Prevention (CDC), Atlanta, GA, United States
| | - Antoine Talarmin
- Institut Pasteur de la Guadeloupe, Unité TReD-Path, Les Abymes, Guadeloupe, France
| | - Isabel Marcelino
- Institut Pasteur de la Guadeloupe, Unité TReD-Path, Les Abymes, Guadeloupe, France,*Correspondence: Isabel Marcelino,
| |
Collapse
|
9
|
Madero-Ayala PA, Mares-Alejandre RE, Ramos-Ibarra MA. In Silico Structural Analysis of Serine Carboxypeptidase Nf314, a Potential Drug Target in Naegleria fowleri Infections. Int J Mol Sci 2022; 23:ijms232012203. [PMID: 36293059 PMCID: PMC9603766 DOI: 10.3390/ijms232012203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 09/28/2022] [Accepted: 10/12/2022] [Indexed: 11/24/2022] Open
Abstract
Naegleria fowleri, also known as the “brain-eating” amoeba, is a free-living protozoan that resides in freshwater bodies. This pathogenic amoeba infects humans as a casual event when swimming in contaminated water. Upon inhalation, N. fowleri invades the central nervous system and causes primary amoebic meningoencephalitis (PAM), a rapidly progressive and often fatal disease. Although PAM is considered rare, reducing its case fatality rate compels the search for pathogen-specific proteins with a structure–function relationship that favors their application as targets for discovering new or improved drugs against N. fowleri infections. Herein, we report a computational approach to study the structural features of Nf314 (a serine carboxypeptidase that is a virulence-related protein in N. fowleri infections) and assess its potential as a drug target, using bioinformatics tools and in silico molecular docking experiments. Our findings suggest that Nf314 has a ligand binding site suitable for the structure-based design of specific inhibitors. This study represents a further step toward postulating a reliable therapeutic target to treat PAM with drugs specifically aimed at blocking the pathogen proliferation by inhibiting protein function.
Collapse
|
10
|
Soontrapa P, Jitmuang A, Ruenchit P, Tiewcharoen S, Sarasombath PT, Rattanabannakit C. The First Molecular Genotyping of Naegleria fowleri Causing Primary Amebic Meningoencephalitis in Thailand With Epidemiology and Clinical Case Reviews. Front Cell Infect Microbiol 2022; 12:931546. [PMID: 35909963 PMCID: PMC9326084 DOI: 10.3389/fcimb.2022.931546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 06/06/2022] [Indexed: 11/13/2022] Open
Abstract
Primary amebic meningoencephalitis (PAM) is a rare and fatal central nervous system infection caused by Naegleria fowleri, a free-living amoeba found in the environment. To date, eight pathogenic N. fowleri genotypes have been reported worldwide. We aimed to explore the genotypes of N. fowleri that cause primary amebic meningoencephalitis in Thailand. In 2021, the 17th PAM case was reported, and a retrospective literature search of PAM cases in Thailand from 1982 through April 2021 was performed. Phylogenetic and genotyping analyses of the two mitochondrial (12S rRNA and 16S rRNA) and nuclear (ITS1 and 5.8s rRNA) genes of N. fowleri were performed on four available clinical isolates. Based on the mitochondrial and nuclear genes, N. fowleri genotype T3 was found to cause PAM in three out of four cases. However, disagreement between the genotype based on the mitochondrial and nuclear genes was found in one of the PAM cases, in which the 12S rRNA locus suggested the causative genotype as T1, while the ITS1 implied genotype T4. The discrepancy between the mitochondrial and nuclear genome was previously observed, which suggests the possible horizontal gene transfer among N. fowleri species. Based on the ITS1 gene, two N. fowleri genotypes, T3 and T4, were found to be the genotypes causing PAM in this study. In addition, N. fowleri genotype T2 was previously reported in a traveler who was infected in Thailand. Thus, at least three genotypes (T2, T3, and T4) of N. fowleri are found to be associated with PAM in Thailand.
Collapse
Affiliation(s)
- Pannathat Soontrapa
- Division of Neurology, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Anupop Jitmuang
- Division of Infectious Diseases and Tropical Medicine, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Pichet Ruenchit
- Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Supathra Tiewcharoen
- Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Patsharaporn T. Sarasombath
- Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- *Correspondence: Patsharaporn T. Sarasombath, ; Chatchawan Rattanabannakit,
| | - Chatchawan Rattanabannakit
- Division of Neurology, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- *Correspondence: Patsharaporn T. Sarasombath, ; Chatchawan Rattanabannakit,
| |
Collapse
|
11
|
Differential Growth Rates and In Vitro Drug Susceptibility to Currently Used Drugs for Multiple Isolates of Naegleria fowleri. Microbiol Spectr 2022; 10:e0189921. [PMID: 35138140 PMCID: PMC8826828 DOI: 10.1128/spectrum.01899-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The free-living amoeba Naegleria fowleri, which typically dwells within warm, freshwater environments, can opportunistically cause primary amoebic meningoencephalitis (PAM), a disease with a mortality rate of >97%. The lack of positive treatment outcomes for PAM has prompted the discovery and development of more effective therapeutics, yet most studies utilize only one or two clinical isolates. The inability to assess possible heterogenic responses to drugs among isolates from various geographical regions hinders progress in the discovery of more effective drugs. Here, we conducted drug efficacy and growth rate determinations for 11 different clinical isolates by applying a previously developed CellTiter-Glo 2.0 screening technique and flow cytometry. We found significant differences in the susceptibilities of these isolates to 7 of 8 drugs tested, all of which make up the cocktail that is recommended to physicians by the U.S. Centers for Disease Control and Prevention. We also discovered significant variances in growth rates among isolates, which draws attention to the differences among the amoeba isolates collected from different patients. Our results demonstrate the need for additional clinical isolates of various genotypes in drug assays and highlight the necessity for more targeted therapeutics with universal efficacy across N. fowleri isolates. Our data establish a needed baseline for drug susceptibility among clinical isolates and provide a segue for future combination therapy studies as well as research related to phenotypic or genetic differences that could shed light on mechanisms of action or predispositions to specific drugs. IMPORTANCENaegleria fowleri, also known as the brain-eating amoeba, is ubiquitous in warm freshwater and is an opportunistic pathogen that causes primary amoebic meningoencephalitis. Although few cases are described each year, the disease has a case fatality rate of >97%. In most laboratory studies of this organism, only one or two well-adapted lab strains are used; therefore, there is a lack of data to discern if there are major differences in potency of currently used drugs for multiple strains and genotypes of the amoeba. In this study, we found significant differences in the susceptibilities of 11 N. fowleri isolates to 7 of the 8 drugs currently used to treat the disease. The data from this study provide a baseline of drug susceptibility among clinical isolates and suggest that new drugs should be tested on a larger number of isolates in the future.
Collapse
|
12
|
Zhang J, Sun Y, Zheng J. The State of Art of Extracellular Traps in Protozoan Infections (Review). Front Immunol 2022; 12:770246. [PMID: 34970259 PMCID: PMC8712655 DOI: 10.3389/fimmu.2021.770246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 11/29/2021] [Indexed: 11/25/2022] Open
Abstract
Protozoan parasite infection causes severe diseases in humans and animals, leading to tremendous economic and medical pressure. Natural immunity is the first line of defence against parasitic infection. Currently, the role of natural host immunity in combatting parasitic infection is unclear, so further research on natural host immunity against parasites will provide a theoretical basis for the prevention and treatment of related parasitic diseases. Extracellular traps (ETs) are an important natural mechanism of immunity involving resistance to pathogens. When immune cells such as neutrophils and macrophages are stimulated by external pathogens, they release a fibrous network structure, consisting mainly of DNA and protein, that can capture and kill a variety of extracellular pathogenic microorganisms. In this review, we discuss the relevant recently reported data on ET formation induced by protozoan parasite infection, including the molecular mechanisms involved, and discuss the role of ETs in the occurrence and development of parasitic diseases.
Collapse
Affiliation(s)
- Jing Zhang
- Intensive Care Unit, First Hospital of Jilin University, Changchun, China.,Department of Pathogenobiology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Ying Sun
- Department of Respiratory and Critical Care Medicine, First Hospital of Jilin University, Changchun, China
| | - Jingtong Zheng
- Department of Pathogenobiology, College of Basic Medical Sciences, Jilin University, Changchun, China
| |
Collapse
|