1
|
Yuan M, Sun T, Zhang Y, Guo C, Wang F, Yao Z, Yu L. Quercetin Alleviates Insulin Resistance and Repairs Intestinal Barrier in db/ db Mice by Modulating Gut Microbiota. Nutrients 2024; 16:1870. [PMID: 38931226 PMCID: PMC11206920 DOI: 10.3390/nu16121870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/09/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a chronic metabolic disease which seriously affects public health. Gut microbiota remains a dynamic balance state in healthy individuals, and its disorder may affect health status and even results in metabolic diseases. Quercetin, a natural flavonoid, has been shown to have biological activities that can be used in the prevention and treatment of metabolic diseases. This study aimed to explore the mechanism of quercetin in alleviating T2DM based on gut microbiota. db/db mice were adopted as the model for T2DM in this study. After 10 weeks of administration, quercetin could significantly decrease the levels of body weight, fasting blood glucose (FBG), serum insulin (INS), the homeostasis model assessment of insulin resistance (HOMA-IR), monocyte chemoattractant protein-1 (MCP-1), D-lactic acid (D-LA), and lipopolysaccharide (LPS) in db/db mice. 16S rRNA gene sequencing and untargeted metabolomics analysis were performed to compare the differences of gut microbiota and metabolites among the groups. The results demonstrated that quercetin decreased the abundance of Proteobacteria, Bacteroides, Escherichia-Shigella and Escherichia_coli. Moreover, metabolomics analysis showed that the levels of L-Dopa and S-Adenosyl-L-methionine (SAM) were significantly increased, but 3-Methoxytyramine (3-MET), L-Aspartic acid, L-Glutamic acid, and Androstenedione were significantly decreased under quercetin intervention. Taken together, quercetin could exert its hypoglycemic effect, alleviate insulin resistance, repair the intestinal barrier, remodel the intestinal microbiota, and alter the metabolites of db/db mice.
Collapse
Affiliation(s)
| | | | | | | | | | - Zhanxin Yao
- Military Medical Sciences Academy, Beijing 100039, China; (M.Y.); (T.S.); (Y.Z.); (C.G.); (F.W.)
| | - Lixia Yu
- Military Medical Sciences Academy, Beijing 100039, China; (M.Y.); (T.S.); (Y.Z.); (C.G.); (F.W.)
| |
Collapse
|
2
|
Long Q, Luo F, Li B, Li Z, Guo Z, Chen Z, Wu W, Hu M. Gut microbiota and metabolic biomarkers in metabolic dysfunction-associated steatotic liver disease. Hepatol Commun 2024; 8:e0310. [PMID: 38407327 PMCID: PMC10898672 DOI: 10.1097/hc9.0000000000000310] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 08/05/2023] [Indexed: 02/27/2024] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD), a replacement of the nomenclature employed for NAFLD, is the most prevalent chronic liver disease worldwide. Despite its high global prevalence, NAFLD is often under-recognized due to the absence of reliable noninvasive biomarkers for diagnosis and staging. Growing evidence suggests that the gut microbiome plays a significant role in the occurrence and progression of NAFLD by causing immune dysregulation and metabolic alterations due to gut dysbiosis. The rapid advancement of sequencing tools and metabolomics has enabled the identification of alterations in microbiome signatures and gut microbiota-derived metabolite profiles in numerous clinical studies related to NAFLD. Overall, these studies have shown a decrease in α-diversity and changes in gut microbiota abundance, characterized by increased levels of Escherichia and Prevotella, and decreased levels of Akkermansia muciniphila and Faecalibacterium in patients with NAFLD. Furthermore, bile acids, short-chain fatty acids, trimethylamine N-oxide, and tryptophan metabolites are believed to be closely associated with the onset and progression of NAFLD. In this review, we provide novel insights into the vital role of gut microbiome in the pathogenesis of NAFLD. Specifically, we summarize the major classes of gut microbiota and metabolic biomarkers in NAFLD, thereby highlighting the links between specific bacterial species and certain gut microbiota-derived metabolites in patients with NAFLD.
Collapse
|
3
|
He X, Gao X, Hong Y, Zhong J, Li Y, Zhu W, Ma J, Huang W, Li Y, Li Y, Wang H, Liu Z, Bao Y, Pan L, Zheng N, Sheng L, Li H. High Fat Diet and High Sucrose Intake Divergently Induce Dysregulation of Glucose Homeostasis through Distinct Gut Microbiota-Derived Bile Acid Metabolism in Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:230-244. [PMID: 38079533 DOI: 10.1021/acs.jafc.3c02909] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
A high calorie diet such as excessive fat and sucrose intake is always accompanied by impaired glucose homeostasis such as T2DM (type 2 diabetes mellitus). However, it remains unclear how fat and sucrose individually affect host glucose metabolism. In this study, mice were fed with high fat diet (HFD) or 30% sucrose in drinking water (HSD) for 24 weeks, and glucose metabolism, gut microbiota composition, as well as bile acid (BA) profile were investigated. In addition, the functional changes of HFD or HSD-induced gut microbiota were further verified by fecal microbiota transplantation (FMT) and ex vivo culture of gut bacteria with BAs. Our results showed that both HFD and HSD caused dysregulated lipid metabolism, while HFD feeding had a more severe effect on impaired glucose homeostasis, accompanied by reduced hyocholic acid (HCA) levels in all studied tissues. Meanwhile, HFD had a more dramatic influence on composition and function of gut microbiota based on α diversity indices, β diversity analysis, as well as the abundance of secondary BA producers than HSD. In addition, the phenotypes of impaired glucose homeostasis and less formation of HCA caused by HFD can be transferred to recipient mice by FMT. Ex vivo culture with gut bacteria and BAs revealed HFD-altered gut bacteria produced less HCA than HSD, which might closely associate with reduced relative abundance of C7 epimerase-coding bacteria g_norank/unclassified_f_Eggerthellaceae and bile salt hydrolase-producing bacteria Lactobacillus and Bifidobacterium in HFD group. Our findings revealed that the divergent effects of different high-calorie diets on glucose metabolism may be due to the gut microbiota-mediated generation and metabolism of BAs, highlighting the importance of dietary management in T2DM.
Collapse
Affiliation(s)
- Xiaofang He
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xinxin Gao
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Ying Hong
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jing Zhong
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- Huzhou Key Laboratory of Molecular Medicine, Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, Huzhou 313000, China
| | - Yue Li
- Department of Endocrinology, Shanghai Fifth People's Hospital, Shanghai Medical School, Fudan University, Shanghai 200032, China
| | - Weize Zhu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Junli Ma
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Wenjin Huang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yifan Li
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yan Li
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Hao Wang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Zekun Liu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yiyang Bao
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Lingyun Pan
- Experiment Center for Science and Technology, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Ningning Zheng
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Lili Sheng
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Houkai Li
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| |
Collapse
|
4
|
Jia X, Chen Q, Wu H, Liu H, Jing C, Gong A, Zhang Y. Exploring a novel therapeutic strategy: the interplay between gut microbiota and high-fat diet in the pathogenesis of metabolic disorders. Front Nutr 2023; 10:1291853. [PMID: 38192650 PMCID: PMC10773723 DOI: 10.3389/fnut.2023.1291853] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 11/27/2023] [Indexed: 01/10/2024] Open
Abstract
In the past two decades, the rapid increase in the incidence of metabolic diseases, including obesity, diabetes, dyslipidemia, non-alcoholic fatty liver disease, hypertension, and hyperuricemia, has been attributed to high-fat diets (HFD) and decreased physical activity levels. Although the phenotypes and pathologies of these metabolic diseases vary, patients with these diseases exhibit disease-specific alterations in the composition and function of their gut microbiota. Studies in germ-free mice have shown that both HFD and gut microbiota can promote the development of metabolic diseases, and HFD can disrupt the balance of gut microbiota. Therefore, investigating the interaction between gut microbiota and HFD in the pathogenesis of metabolic diseases is crucial for identifying novel therapeutic strategies for these diseases. This review takes HFD as the starting point, providing a detailed analysis of the pivotal role of HFD in the development of metabolic disorders. It comprehensively elucidates the impact of HFD on the balance of intestinal microbiota, analyzes the mechanisms underlying gut microbiota dysbiosis leading to metabolic disruptions, and explores the associated genetic factors. Finally, the potential of targeting the gut microbiota as a means to address metabolic disturbances induced by HFD is discussed. In summary, this review offers theoretical support and proposes new research avenues for investigating the role of nutrition-related factors in the pathogenesis of metabolic disorders in the organism.
Collapse
Affiliation(s)
- Xiaokang Jia
- School of Traditional Chinese Medicine, Hainan Medical University, Haikou, Hainan, China
| | - Qiliang Chen
- School of Basic Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Huiwen Wu
- School of Traditional Chinese Medicine, Hainan Medical University, Haikou, Hainan, China
| | - Hongbo Liu
- School of Traditional Chinese Medicine, Hainan Medical University, Haikou, Hainan, China
| | - Chunying Jing
- School of Traditional Chinese Medicine, Hainan Medical University, Haikou, Hainan, China
| | - Aimin Gong
- School of Traditional Chinese Medicine, Hainan Medical University, Haikou, Hainan, China
| | - Yuanyuan Zhang
- The Affiliated TCM Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
5
|
Zhou X, Pak S, Li D, Dong L, Chen F, Hu X, Ma L. Bamboo Shoots Modulate Gut Microbiota, Eliminate Obesity in High-Fat-Diet-Fed Mice and Improve Lipid Metabolism. Foods 2023; 12:foods12071380. [PMID: 37048203 PMCID: PMC10093345 DOI: 10.3390/foods12071380] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/14/2023] [Accepted: 03/22/2023] [Indexed: 04/14/2023] Open
Abstract
Bamboo shoots (BS) have a variety of nutritional benefits; however, their anti-obesity effect and its underlying mechanism of action are still unclear. In this study, we investigated the protective effect of BS against high-fat diet (HFD)-induced gut dysbiosis in mice. After 12 weeks of feeding C57BL/6J mice either on a normal or an HFD with or without BS, metabolic indicators, including blood lipids and glucose tolerance, were measured. 16S rRNA gene sequencing and metabolomics were used to identify alterations in gut microbiota composition and fecal metabolic profiling. The results demonstrated that BS supplementation reduced body weight by 30.56%, mitigated liver damage, and improved insulin resistance and inflammation in obese mice. In addition, BS increased short-chain fatty acid (SCFA) levels and SCFA-producing bacteria (e.g., Lachnospiraceae_NK4A136_group and Norank_f_Muribaculaceae), and reduced levels of harmful bacteria (e.g., Blautia and Burkholderia-Paraburkholderia). Finally, BS increased many beneficial fecal metabolites, such as fatty acids and bile acids, which are highly relevant to the altered gut microbiota. Based on the modulatory effect of BS on microbiota composition and gut metabolite levels observed in this study, we suggest that BS may be beneficial in treating obesity and its related complications.
Collapse
Affiliation(s)
- Xiaolu Zhou
- National Engineering Research Center for Fruit and Vegetable Processing, Key Laboratory of Fruit and Vegetables Processing Ministry of Agriculture, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - SolJu Pak
- National Engineering Research Center for Fruit and Vegetable Processing, Key Laboratory of Fruit and Vegetables Processing Ministry of Agriculture, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Daotong Li
- National Engineering Research Center for Fruit and Vegetable Processing, Key Laboratory of Fruit and Vegetables Processing Ministry of Agriculture, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Li Dong
- National Engineering Research Center for Fruit and Vegetable Processing, Key Laboratory of Fruit and Vegetables Processing Ministry of Agriculture, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Fang Chen
- National Engineering Research Center for Fruit and Vegetable Processing, Key Laboratory of Fruit and Vegetables Processing Ministry of Agriculture, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Xiaosong Hu
- National Engineering Research Center for Fruit and Vegetable Processing, Key Laboratory of Fruit and Vegetables Processing Ministry of Agriculture, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Lingjun Ma
- National Engineering Research Center for Fruit and Vegetable Processing, Key Laboratory of Fruit and Vegetables Processing Ministry of Agriculture, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| |
Collapse
|
6
|
Guo H, Li B, Gao M, Li Q, Gao Y, Dong N, Liu G, Wang Z, Gao W, Chen Y, Yang Y. Dietary Nutritional Level Affects Intestinal Microbiota and Health of Goats. Microorganisms 2022; 10:microorganisms10122322. [PMID: 36557575 PMCID: PMC9781347 DOI: 10.3390/microorganisms10122322] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 11/21/2022] [Accepted: 11/21/2022] [Indexed: 11/25/2022] Open
Abstract
The intestine is a complex micro-ecosystem, and its stability determines the health of animals. Different dietary nutritional levels affect the intestinal microbiota and health. In this study, the nutritional levels of energy and protein in the diet of goats were changed, and the body weight was measured every 15 days. In the late feeding period, 16 S rRNA sequencing technology was used to detect the content of microorganisms. A meteorological chromatograph was used to detect volatile fatty acids in the cecum and colon of goats. In the feeding stage, reducing the nutritional level of the diet significantly reduced the weight of the lamb (p < 0.05). In the cecum, the abundance of potentially harmful bacteria, such as Sphingomonas, Marvinbryantia, and Eisenbergiella, were significantly enriched in goats fed with the standard nutritional level diets (p < 0.05). Additionally, the contents of acetate (p = 0.037) and total VFAs (p = 0.041) increased. In the colon, the abundance of SCFAs-producing bacteria, such as Ruminococcaceae, Christensenellaceae, and Papillibacter, decreased as the nutritional level in the diet increased (p < 0.05). In conclusion, the increase in nutritional level could affect the growth performance and composition of intestinal microbiota.
Collapse
Affiliation(s)
- Hongran Guo
- Innovative Research Team of Sheep and Goat, College of Animal Science and Technology, Northwest A&F University, Xianyang 712100, China
| | - Bibo Li
- College of Animal Science, Shanxi Agricultural University, Jinzhong 030801, China
| | - Meiqi Gao
- Innovative Research Team of Sheep and Goat, College of Animal Science and Technology, Northwest A&F University, Xianyang 712100, China
| | - Qian Li
- Innovative Research Team of Sheep and Goat, College of Animal Science and Technology, Northwest A&F University, Xianyang 712100, China
| | - Yawei Gao
- Innovative Research Team of Sheep and Goat, College of Animal Science and Technology, Northwest A&F University, Xianyang 712100, China
| | - Ning Dong
- Innovative Research Team of Sheep and Goat, College of Animal Science and Technology, Northwest A&F University, Xianyang 712100, China
| | - Gongwei Liu
- Innovative Research Team of Sheep and Goat, College of Animal Science and Technology, Northwest A&F University, Xianyang 712100, China
| | - Zhichao Wang
- Innovative Research Team of Sheep and Goat, College of Animal Science and Technology, Northwest A&F University, Xianyang 712100, China
| | - Wenrui Gao
- Hengshan District Animal Husbandry Bureau, Yulin 719000, China
| | - Yulin Chen
- Innovative Research Team of Sheep and Goat, College of Animal Science and Technology, Northwest A&F University, Xianyang 712100, China
| | - Yuxin Yang
- Innovative Research Team of Sheep and Goat, College of Animal Science and Technology, Northwest A&F University, Xianyang 712100, China
- Correspondence:
| |
Collapse
|
7
|
Manoppo JIC, Nurkolis F, Gunawan WB, Limen GA, Rompies R, Heroanto JP, Natanael H, Phan S, Tanjaya K. Functional sterol improves breast milk quality by modulating the gut microbiota: A proposed opinion for breastfeeding mothers. Front Nutr 2022; 9:1018153. [PMID: 36424924 PMCID: PMC9678907 DOI: 10.3389/fnut.2022.1018153] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 09/16/2022] [Indexed: 09/30/2023] Open
Affiliation(s)
- Jeanette Irene Christiene Manoppo
- Department of Pediatrics, Faculty of Medicine, Sam Ratulangi University, Manado, Indonesia
- Department of Pediatrics, Prof. R. D. Kandou General Hospital, Manado, Indonesia
| | - Fahrul Nurkolis
- Biological Sciences, Faculty of Sciences and Technology, State Islamic University of Sunan Kalijaga (UIN Sunan Kalijaga Yogyakarta), Yogyakarta, Indonesia
| | - William Ben Gunawan
- Department of Nutrition Science, Faculty of Medicine, Diponegoro University, Semarang, Indonesia
| | - Gilbert Ansell Limen
- Medical Programme, Faculty of Medicine, Sam Ratulangi University, Manado, Indonesia
| | - Ronald Rompies
- Department of Pediatrics, Faculty of Medicine, Sam Ratulangi University, Manado, Indonesia
- Department of Pediatrics, Prof. R. D. Kandou General Hospital, Manado, Indonesia
| | - Joko Purnomo Heroanto
- Department of Pediatrics, Faculty of Medicine, Sam Ratulangi University, Manado, Indonesia
- Department of Pediatrics, Prof. R. D. Kandou General Hospital, Manado, Indonesia
| | - Hans Natanael
- Department of Pediatrics, Faculty of Medicine, Sam Ratulangi University, Manado, Indonesia
- Department of Pediatrics, Prof. R. D. Kandou General Hospital, Manado, Indonesia
| | - Sardito Phan
- Department of Pediatrics, Faculty of Medicine, Sam Ratulangi University, Manado, Indonesia
- Department of Pediatrics, Prof. R. D. Kandou General Hospital, Manado, Indonesia
| | - Krisanto Tanjaya
- Medical Programme, Faculty of Medicine, Universitas Brawijaya, Malang, Indonesia
| |
Collapse
|
8
|
Arnone D, Chabot C, Heba AC, Kökten T, Caron B, Hansmannel F, Dreumont N, Ananthakrishnan AN, Quilliot D, Peyrin-Biroulet L. Sugars and Gastrointestinal Health. Clin Gastroenterol Hepatol 2022; 20:1912-1924.e7. [PMID: 34902573 DOI: 10.1016/j.cgh.2021.12.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/03/2021] [Accepted: 12/04/2021] [Indexed: 12/18/2022]
Abstract
Sugar overconsumption is linked to a rise in the incidence of noncommunicable diseases such as diabetes, cardiovascular diseases, and cancer. This increased incidence is becoming a real public health problem that is more severe than infectious diseases, contributing to 35 million deaths annually. Excessive intake of free sugars can cause many of the same health problems as excessive alcohol consumption. Many recent international recommendations have expressed concerns about sugar consumption in Westernized societies, as current consumption levels represent quantities with no precedent during hominin evolution. In both adults and children, the World Health Organization strongly recommends reducing free sugar intake to <10% of total energy intake and suggests a further reduction to below 5%. Most studies have focused on the deleterious effects of Western dietary patterns on global health and the intestine. Whereas excessive dietary fat consumption is well studied, the specific impact of sugar is poorly described, while refined sugars represent up to 40% of caloric intake within industrialized countries. However, high sugar intake is associated with multiple tissue and organ dysfunctions. Both hyperglycemia and excessive sugar intake disrupt the intestinal barrier, thus increasing gut permeability and causing profound gut microbiota dysbiosis, which results in a disturbance in mucosal immunity that enhances infection susceptibility. This review aims to highlight the roles of different types of dietary carbohydrates and the consequences of their excessive intake for intestinal homeostasis.
Collapse
Affiliation(s)
- Djésia Arnone
- Délégation à la Recherche Clinique et de l'Innovation, Centre Hospitalier Régional Universitaire de Nancy, Nancy, France; Inserm U1256 "Nutrition - Genetics and exposure to environmental risks," Université de Lorraine, Nancy, France
| | - Caroline Chabot
- Inserm U1256, Pediatric Hepato-Gastroenterology and Nutrition Unit, Department of Child Medicine and Clinical Genetics, Université de Lorraine, Nancy, France
| | - Anne-Charlotte Heba
- Inserm U1256 "Nutrition - Genetics and exposure to environmental risks," Université de Lorraine, Nancy, France
| | - Tunay Kökten
- Inserm U1256 "Nutrition - Genetics and exposure to environmental risks," Université de Lorraine, Nancy, France
| | - Bénédicte Caron
- Department of Gastroenterology, Centre Hospitalier Régional Universitaire de Nancy, Université de Lorraine, Nancy, France
| | - Franck Hansmannel
- Inserm U1256 "Nutrition - Genetics and exposure to environmental risks," Université de Lorraine, Nancy, France
| | - Natacha Dreumont
- Inserm U1256 "Nutrition - Genetics and exposure to environmental risks," Université de Lorraine, Nancy, France
| | | | - Didier Quilliot
- Inserm U1256 "Nutrition - Genetics and exposure to environmental risks," Université de Lorraine, Nancy, France; Department of Diabetology-Endocrinology-Nutrition, Centre Hospitalier Régional Universitaire de Nancy, Université de Lorraine, Nancy, France
| | - Laurent Peyrin-Biroulet
- Inserm U1256 "Nutrition - Genetics and exposure to environmental risks," Université de Lorraine, Nancy, France; Department of Gastroenterology, Centre Hospitalier Régional Universitaire de Nancy, Université de Lorraine, Nancy, France.
| |
Collapse
|
9
|
Sindi AS, Stinson LF, Lean SS, Chooi YH, Leghi GE, Netting MJ, Wlodek ME, Muhlhausler BS, Geddes DT, Payne MS. Effect of a reduced fat and sugar maternal dietary intervention during lactation on the infant gut microbiome. Front Microbiol 2022; 13:900702. [PMID: 36060782 PMCID: PMC9428759 DOI: 10.3389/fmicb.2022.900702] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 07/18/2022] [Indexed: 11/13/2022] Open
Abstract
ObjectiveA growing body of literature has shown that maternal diet during pregnancy is associated with infant gut bacterial composition. However, whether maternal diet during lactation affects the exclusively breastfed infant gut microbiome remains understudied. This study sets out to determine whether a two-week of a reduced fat and sugar maternal dietary intervention during lactation is associated with changes in the infant gut microbiome composition and function.DesignStool samples were collected from four female and six male (n = 10) infants immediately before and after the intervention. Maternal baseline diet from healthy mothers aged 22–37 was assessed using 24-h dietary recall. During the 2-week dietary intervention, mothers were provided with meals and their dietary intake was calculated using FoodWorks 10 Software. Shotgun metagenomic sequencing was used to characterize the infant gut microbiome composition and function.ResultsIn all but one participant, maternal fat and sugar intake during the intervention were significantly lower than at baseline. The functional capacity of the infant gut microbiome was significantly altered by the intervention, with increased levels of genes associated with 28 bacterial metabolic pathways involved in biosynthesis of vitamins (p = 0.003), amino acids (p = 0.005), carbohydrates (p = 0.01), and fatty acids and lipids (p = 0.01). Although the dietary intervention did not affect the bacterial composition of the infant gut microbiome, relative difference in maternal fiber intake was positively associated with increased abundance of genes involved in biosynthesis of storage compounds (p = 0.016), such as cyanophycin. Relative difference in maternal protein intake was negatively associated with Veillonella parvula (p = 0.006), while positively associated with Klebsiella michiganensis (p = 0.047). Relative difference in maternal sugar intake was positively associated with Lactobacillus paracasei (p = 0.022). Relative difference in maternal fat intake was positively associated with genes involved in the biosynthesis of storage compounds (p = 0.015), fatty acid and lipid (p = 0.039), and metabolic regulator (p = 0.038) metabolic pathways.ConclusionThis pilot study demonstrates that a short-term maternal dietary intervention during lactation can significantly alter the functional potential, but not bacterial taxonomy, of the breastfed infant gut microbiome. While the overall diet itself was not able to change the composition of the infant gut microbiome, changes in intakes of maternal protein and sugar during lactation were correlated with changes in the relative abundances of certain bacterial species.Clinical trial registration: Australian New Zealand Clinical Trials Registry (ACTRN12619000606189).
Collapse
Affiliation(s)
- Azhar S. Sindi
- Division of Obstetrics and Gynecology, The University of Western Australia, Perth, WA, Australia
- College of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Lisa F. Stinson
- School of Molecular Sciences, The University of Western Australia, Perth, WA, Australia
| | - Soo Sum Lean
- School of Molecular Sciences, The University of Western Australia, Perth, WA, Australia
| | - Yit-Heng Chooi
- School of Molecular Sciences, The University of Western Australia, Perth, WA, Australia
| | - Gabriela E. Leghi
- School of Agriculture, Food and Wine, The University of Adelaide, Adelaide, SA, Australia
| | - Merryn J. Netting
- Women and Kids Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA, Australia
- Discipline of Pediatrics, The University of Adelaide, Adelaide, SA, Australia
- Women’s and Children’s Hospital, Adelaide, SA, Australia
| | - Mary E. Wlodek
- School of Molecular Sciences, The University of Western Australia, Perth, WA, Australia
- Department of Obstetrics and Gynecology, University of Melbourne, Melbourne, VIC, Australia
| | - Beverly S. Muhlhausler
- School of Agriculture, Food and Wine, The University of Adelaide, Adelaide, SA, Australia
- CSIRO, Adelaide, SA, Australia
| | - Donna T. Geddes
- School of Molecular Sciences, The University of Western Australia, Perth, WA, Australia
| | - Matthew S. Payne
- Division of Obstetrics and Gynecology, The University of Western Australia, Perth, WA, Australia
- Women and Infants Research Foundation, Perth, WA, Australia
- *Correspondence: Matthew S. Payne,
| |
Collapse
|
10
|
Characterization of Acidic Tea Polysaccharides from Yellow Leaves of Wuyi Rock Tea and Their Hypoglycemic Activity via Intestinal Flora Regulation in Rats. Foods 2022; 11:foods11040617. [PMID: 35206093 PMCID: PMC8871580 DOI: 10.3390/foods11040617] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 02/15/2022] [Accepted: 02/16/2022] [Indexed: 02/05/2023] Open
Abstract
A bioactive acidic tea polysaccharide from yellow leaves of Wuyi rock tea was successively prepared via DEAE-52 and Superdex-200 columns. Nuclear magnetic resonance (NMR) analysis showed that the main glycosidic bonds were composed of α-l-Araf-(1→, →5)-α-l-Araf-(1→, →4)-α-d-Glcp-(1→, Arap-(1→, →6)-α-d-Glcp-(1→, →2,4)-α-l-Rhap-(1→, →3,4)-α-d-Glcp-(1→, →4)-α-d-GalAp-(1→, →4)-α-d-GalAp-(1→, α-d-Galp-(1→, →6)-β-d-Galp-(1→ and →4)-β-d-Galp-(1→. The molecular weight was 3.9285 × 104 Da. The hypoglycemic effect of acidic tea polysaccharides on streptozotocin-induced type 2 diabetes mellitus rats was evaluated through histopathology and biochemistry analysis. The acidic tea polysaccharide could improve plasma and liver lipid metabolism. Moreover, 16S rRNA gene sequencing revealed that the composition of the intestinal flora changed drastically after treatment, namely, blooms of Bifidobacterium, Blautia, Dorea, and Oscillospira, and a strong reduction in Desulfovibrio and Lactobacillus. The above results illustrated that tea polysaccharides might serve as an effective ingredient to ameliorate glucose metabolism disorders and intestinal flora in hyperglycemic rats.
Collapse
|
11
|
Wu Y, Zheng Y, Wang S, Chen Y, Tao J, Chen Y, Chen G, Zhao H, Wang K, Dong K, Hu F, Feng Y, Zheng H. Genetic divergence and functional convergence of gut bacteria between the Eastern honey bee Apis cerana and the Western honey bee Apis mellifera. J Adv Res 2021; 37:19-31. [PMID: 35499050 PMCID: PMC9039653 DOI: 10.1016/j.jare.2021.08.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 07/07/2021] [Accepted: 08/03/2021] [Indexed: 01/21/2023] Open
Abstract
The inter-species diversity of A. cerana and A. mellifera core gut bacteria was revealed. Core bacterial species of A. cerana and A. mellifera are distinctive in function. Functional profile of overall gut community of A. cerana and A. mellifera are similar. Metabolome showed that A. cerana and A. mellifera gut bacteria have similar metabolic capability. A. cerana and A. mellifera core gut bacteria have no strict host specificity.
Introduction The functional relevance of intra-species diversity in natural microbial communities remains largely unexplored. The guts of two closely related honey bee species, Apis cerana and A. mellifera, are colonised by a similar set of core bacterial species composed of host-specific strains, thereby providing a good model for an intra-species diversity study. Objectives We aim to assess the functional relevance of intra-species diversity of A. cerana and A. mellifera gut microbiota. Methods Honey bee workers were collected from four regions of China. Their gut microbiomes were investigated by shotgun metagenomic sequencing, and the bacterial compositions were compared at the species level. A cross-species colonisation assay was conducted, with the gut metabolomes being characterised by LC-MS/MS. Results Comparative analysis showed that the strain composition of the core bacterial species was host-specific. These core bacterial species presented distinctive functional profiles between the hosts. However, the overall functional profiles of the A. cerana and A. mellifera gut microbiomes were similar; this was further supported by the consistency of the honey bees’ gut metabolome, as the gut microbiota of different honey bee species showed rather similar metabolic profiles in the cross-species colonisation assay. Moreover, this experiment also demonstrated that the gut microbiota of A. cerana and A. mellifera could cross colonise between the two honey bee species. Conclusion Our findings revealed functional differences in most core gut bacteria between the guts of A. cerana and A. mellifera, which may be associated with their inter-species diversity. However, the functional profiles of the overall gut microbiomes between the two honey bee species converge, probably as a result of the overlapping ecological niches of the two species. Our findings provide critical insights into the evolution and functional roles of the mutualistic microbiota of honey bees and reveal that functional redundancy could stabilise the gene content diversity at the strain-level within the gut community.
Collapse
Affiliation(s)
- Yuqi Wu
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Yufei Zheng
- College of Animal Sciences, Zhejiang University, Hangzhou, China
- Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Shuai Wang
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Yanping Chen
- USDA-ARS Bee Research Laboratory, Beltsville, MD, USA
| | - Junyi Tao
- Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Yanan Chen
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Gongwen Chen
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Hongxia Zhao
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Guangdong Institute of Applied Biological Resources, Guangzhou, China
| | - Kai Wang
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Kun Dong
- Eastern Bee Research Institute, College of Animal Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Fuliang Hu
- College of Animal Sciences, Zhejiang University, Hangzhou, China
- Corresponding authors.
| | - Ye Feng
- Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Institute for Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Corresponding authors.
| | - Huoqing Zheng
- College of Animal Sciences, Zhejiang University, Hangzhou, China
- Corresponding authors.
| |
Collapse
|
12
|
AB-Kefir Reduced Body Weight and Ameliorated Inflammation in Adipose Tissue of Obese Mice Fed a High-Fat Diet, but Not a High-Sucrose Diet. Nutrients 2021; 13:nu13072182. [PMID: 34202894 PMCID: PMC8308298 DOI: 10.3390/nu13072182] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/17/2021] [Accepted: 06/22/2021] [Indexed: 12/18/2022] Open
Abstract
Consumption of different types of high-calorie foods leads to the development of various metabolic disorders. However, the effects of multi-strain probiotics on different types of diet-induced obesity and intestinal dysbiosis remain unclear. In this study, mice were fed a control diet, high-fat diet (HFD; 60% kcal fat and 20% kcal carbohydrate), or western diet (WD; 40% kcal fat and 43% kcal carbohydrate) and administered with multi-strain AB-Kefir containing six strains of lactic acid bacteria and a Bifidobacterium strain, at 109 CFU per mouse for 10 weeks. Results demonstrated that AB-Kefir reduced body weight gain, glucose intolerance, and hepatic steatosis with a minor influence on gut microbiota composition in HFD-fed mice, but not in WD-fed mice. In addition, AB-Kefir significantly reduced the weight and size of adipose tissues by regulating the expression of CD36, Igf1, and Pgc1 in HFD-fed mice. Although AB-Kefir did not reduce the volume of white adipose tissue, it markedly regulated CD36, Dgat1 and Mogat1 mRNA expression. Moreover, the abundance of Eubacterium_coprostanoligenes_group and Ruminiclostridium significantly correlated with changes in body weight, liver weight, and fasting glucose in test mice. Overall, this study provides important evidence to understand the interactions between probiotics, gut microbiota, and diet in obesity treatment.
Collapse
|
13
|
Chen F, Gan Y, Li Y, He W, Wu W, Wang K, Li Q. Association of gestational diabetes mellitus with changes in gut microbiota composition at the species level. BMC Microbiol 2021; 21:147. [PMID: 33990174 PMCID: PMC8122539 DOI: 10.1186/s12866-021-02207-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 04/19/2021] [Indexed: 12/13/2022] Open
Abstract
Background Gestational diabetes mellitus (GDM), a common endocrine disorder with rising prevalence in pregnancy, has been reported to be associated with alteration of gut microbiota in recent years. However, the role of gut microbiome in GDM physiopathology remains unclear. This pilot study aims to characterize the alteration of gut microbiota in GDM on species-level resolution and evaluate the relationship with occurrence of GDM. Methods An analysis based on 16S rRNA microarray was performed on fecal samples obtained from 30 women with GDM and 28 healthy pregnant women. Results We found 54 and 141 differentially abundant taxa between GDM and control group at the genus and the species level respectively. Among GDM patients, Peptostreptococcus anaerobius was inversely correlated with fasting glucose while certain species (e.g., Aureimonas altamirensis, Kosakonia cowanii) were positively correlated with fasting glucose. Conclusions This study suggests that there are large amounts of differentially abundant taxa between GDM and control group at the genus and the species level. Some of these taxa were correlated with blood glucose level and might be used as biomarkers for diagnoses and therapeutic targets for probiotics or synbiotics. Supplementary Information The online version contains supplementary material available at 10.1186/s12866-021-02207-0.
Collapse
Affiliation(s)
- Fang Chen
- Department of Obstetrics and Gynecology, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yu Gan
- Department of Obstetrics and Gynecology, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yingtao Li
- Department of Obstetrics and Gynecology, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Wenzhi He
- Department of Obstetrics and Gynecology, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Weizhen Wu
- Department of Obstetrics and Gynecology, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Kejian Wang
- Department of Obstetrics and Gynecology, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
| | - Qing Li
- Department of Obstetrics and Gynecology, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
14
|
Tian B, Zhao J, Zhang M, Chen Z, Ma Q, Liu H, Nie C, Zhang Z, An W, Li J. Lycium ruthenicum Anthocyanins Attenuate High-Fat Diet-Induced Colonic Barrier Dysfunction and Inflammation in Mice by Modulating the Gut Microbiota. Mol Nutr Food Res 2021; 65:e2000745. [PMID: 33629483 DOI: 10.1002/mnfr.202000745] [Citation(s) in RCA: 100] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 01/15/2021] [Indexed: 12/16/2022]
Abstract
SCOPE Gut barrier dysfunction and inflammation originating from a dysbiotic gut microbiota (GM) are strongly associated with a high-fat diet (HFD). Anthocyanins from Lycium ruthenicum (ACs) show antiobesity effects through modulating the GM. However, the mechanism linking the antiobesity effects of ACs and GM modulation remains obscure. METHODS AND RESULTS To investigate the ameliorative effects of ACs on colonic barrier dysfunction and inflammation, mice are fed an HFD with or without ACs at doses of 50, 100, and 200 mg kg-1 for 12 weeks. AC supplementation reduced weight gain, enriched short-chain fatty acid (SCFA)-producing bacteria (e.g., Ruminococcaceae, Muribaculaceae, Akkermansia, Ruminococcaceae_UCG-014, and Bacteroides) and SCFA content, depleted endotoxin-producing bacteria (e.g., Helicobacter and Desulfovibrionaceae), and decreased endotoxin (i.e., lipopolysaccharide) levels. SCFAs substantially activated G protein-coupled receptors (GPRs), inhibited histone deacetylases (HDAC), increased intestinal tight junction mRNA and protein expression levels, reduced intestinal permeability, and protected intestinal barrier integrity in HFD-induced mice. These effects mitigate intestinal inflammation by inhibiting the LPS/NF-κB/TLR4 pathway. CONCLUSION These data indicates that ACs can mitigate colonic barrier dysfunction and inflammation, induce SCFA production and inhibit endotoxin production by modulating the GM in HFD-fed mice. This finding provides a clue for understanding the antiobesity effects of ACs.
Collapse
Affiliation(s)
- Baoming Tian
- College of Food Science and Engineering, Northwest A&F University, Yangling, P. R. China
- Institute of Wolfberry Engineering Technology Research, Ningxia Academy of Agricultural and Forestry Sciences, Yinchuan, P. R. China
- National Wolfberry Engineering Research Center, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, P. R. China
| | - Jianhua Zhao
- Institute of Wolfberry Engineering Technology Research, Ningxia Academy of Agricultural and Forestry Sciences, Yinchuan, P. R. China
- National Wolfberry Engineering Research Center, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, P. R. China
| | - Min Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling, P. R. China
| | - Zhifei Chen
- College of Food Science and Engineering, Northwest A&F University, Yangling, P. R. China
| | - Qingyu Ma
- College of Food Science and Engineering, Northwest A&F University, Yangling, P. R. China
| | - Huicui Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling, P. R. China
| | - Chenxi Nie
- College of Food Science and Engineering, Northwest A&F University, Yangling, P. R. China
| | - Ziqi Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling, P. R. China
| | - Wei An
- Institute of Wolfberry Engineering Technology Research, Ningxia Academy of Agricultural and Forestry Sciences, Yinchuan, P. R. China
- National Wolfberry Engineering Research Center, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, P. R. China
| | - Juxiu Li
- College of Food Science and Engineering, Northwest A&F University, Yangling, P. R. China
| |
Collapse
|
15
|
Rybtsova N, Berezina T, Kagansky A, Rybtsov S. Can Blood-Circulating Factors Unveil and Delay Your Biological Aging? Biomedicines 2020; 8:E615. [PMID: 33333870 PMCID: PMC7765271 DOI: 10.3390/biomedicines8120615] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 12/09/2020] [Accepted: 12/14/2020] [Indexed: 12/15/2022] Open
Abstract
According to the World Health Organization, the population of over 60 will double in the next 30 years in the developed countries, which will enforce a further raise of the retirement age and increase the burden on the healthcare system. Therefore, there is an acute issue of maintaining health and prolonging active working longevity, as well as implementation of early monitoring and prevention of premature aging and age-related disorders to avoid early disability. Traditional indicators of biological age are not always informative and often require extensive and expensive analysis. The study of blood factors is a simple and easily accessible way to assess individual health and supplement the traditional indicators of a person's biological age with new objective criteria. With age, the processes of growth and development, tissue regeneration and repair decline; they are gradually replaced by enhanced catabolism, inflammatory cell activity, and insulin resistance. The number of senescent cells supporting the inflammatory loop rises; cellular clearance by autophagy and mitophagy slows down, resulting in mitochondrial and cellular damage and dysfunction. Monitoring of circulated blood factors not only reflects these processes, but also allows suggesting medical intervention to prevent or decelerate the development of age-related diseases. We review the age-related blood factors discussed in recent publications, as well as approaches to slowing aging for healthy and active longevity.
Collapse
Affiliation(s)
- Natalia Rybtsova
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh EH16 4UU, UK;
| | - Tatiana Berezina
- Department of Scientific Basis of Extreme Psychology, Moscow State University of Psychology and Education, 127051 Moscow, Russia;
| | - Alexander Kagansky
- Centre for Genomic and Regenerative Medicine, School of Biomedicine, Far Eastern Federal University, 690922 Vladivostok, Russia
| | - Stanislav Rybtsov
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh EH16 4UU, UK;
| |
Collapse
|
16
|
High Fat-High Fructose Diet-Induced Changes in the Gut Microbiota Associated with Dyslipidemia in Syrian Hamsters. Nutrients 2020; 12:nu12113557. [PMID: 33233570 PMCID: PMC7699731 DOI: 10.3390/nu12113557] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 11/16/2020] [Accepted: 11/17/2020] [Indexed: 12/15/2022] Open
Abstract
Aim: The objective of this study was to characterize the early effects of high fructose diets (with and without high fat) on both the composition of the gut microbiota and lipid metabolism in Syrian hamsters, a reproducible preclinical model of diet-induced dyslipidemia. Methods: Eight-week-old male hamsters were fed diets consisting of high-fat/high-fructose, low-fat/high-fructose or a standard chow diet for 14 days. Stool was collected at baseline (day 0), day 7 and day 14. Fasting levels of plasma triglycerides and cholesterol were monitored on day 0, day 7 and day 14, and nonfasting levels were also assayed on day 15. Then, 16S rRNA sequencing of stool samples was used to determine gut microbial composition, and predictive metagenomics was performed to evaluate dietary-induced shifts in deduced microbial functions. Results: Both high-fructose diets resulted in divergent gut microbiota composition. A high-fat/high-fructose diet induced the largest shift in overall gut microbial composition, with dramatic shifts in the Firmicute/Bacteroidetes ratio, and changes in beta diversity after just seven days of dietary intervention. Significant associations between genus level taxa and dietary intervention were identified, including an association with Ruminococceace NK4A214 group in high-fat/high-fructose fed animals and an association with Butryimonas with the low-fat/high-fructose diet. High-fat/high-fructose feeding induced dyslipidemia with increases in plasma triglycerides and cholesterol, and hepatomegaly. Dietary-induced changes in several genus level taxa significantly correlated with lipid levels over the two-week period. Differences in microbial metabolic pathways between high-fat/high-fructose and low-fat/high-fructose diet fed hamsters were identified, and several of these pathways also correlated with lipid profiles in hamsters. Conclusions: The high-fat/high-fructose diet caused shifts in the host gut microbiota. These dietary-induced alterations in gut microbial composition were linked to changes in the production of secondary metabolites, which contributed to the development of metabolic syndrome in the host.
Collapse
|
17
|
The alteration of gut microbiome and metabolism in amyotrophic lateral sclerosis patients. Sci Rep 2020; 10:12998. [PMID: 32747678 PMCID: PMC7398913 DOI: 10.1038/s41598-020-69845-8] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 07/13/2020] [Indexed: 12/12/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease accompanied with severe paralysis or even death, while the pathogenesis of ALS is still unclear and no effective therapy exists. The accumulating evidence has indicated the association between gut microbiota and various neurological diseases. Thus, to explore the potential role of gut microbiome in ALS, 20 patients diagnosed with probable or definite ALS and 20 healthy controls were enrolled and their fecal excrements were collected. The analysis of fecal community diversity with 16S rDNA sequencing showed an obvious change in microbial structure of ALS patients, where Bacteroidetes at the phylum level and several microbes at the genus level were up-regulated, while Firmicutes at the phylum level and Megamonas at the genus level were down-regulated compared to healthy controls. Additionally, decreased gene function associated with metabolic pathways was observed in ALS patients. The metagenomics further demonstrated the discrepancies in microflora at the species level and relevant metabolites thereof were also revealed when combined with metabolomics. In conclusion, the altered composition of the gut microbiota and metabolic products in ALS patients provided deeper insights into the pathogenesis of ALS, and these biomarkers might be established as potential therapeutic targets which deserve further exploration.
Collapse
|
18
|
Administration of Exogenous Melatonin Improves the Diurnal Rhythms of the Gut Microbiota in Mice Fed a High-Fat Diet. mSystems 2020; 5:5/3/e00002-20. [PMID: 32430404 PMCID: PMC7253360 DOI: 10.1128/msystems.00002-20] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The gut microbiota is strongly shaped by a high-fat diet, and obese humans and animals are characterized by low gut microbial diversity and impaired gut microbiota compositions. Comprehensive data on mammalian gut metagenomes shows gut microbiota exhibit circadian rhythms, which is disturbed by a high-fat diet. On the other hand, melatonin is a natural and ubiquitous molecule showing multiple mechanisms of regulating the circadian clock and lipid metabolism, while the role of melatonin in the regulation of the diurnal patterns of gut microbial structure and function in obese animals is not yet known. This study delineates an intricate picture of melatonin-gut microbiota circadian rhythms and may provide insight for obesity intervention. Melatonin, a circadian hormone, has been reported to improve host lipid metabolism by reprogramming the gut microbiota, which also exhibits rhythmicity in a light/dark cycle. However, the effect of the administration of exogenous melatonin on the diurnal variation in the gut microbiota in mice fed a high-fat diet (HFD) is unclear. Here, we further confirmed the antiobesogenic effect of melatonin on mice fed an HFD for 2 weeks. Samples were collected every 4 h within a 24-h period, and diurnal rhythms of clock gene expression (Clock, Cry1, Cry2, Per1, and Per2) and serum lipid indexes varied with diurnal time. Notably, Clock and triglycerides (TG) showed a marked rhythm in the control in melatonin-treated mice but not in the HFD-fed mice. The rhythmicity of these parameters was similar between the control and melatonin-treated HFD-fed mice compared with that in the HFD group, indicating an improvement caused by melatonin in the diurnal clock of host metabolism in HFD-fed mice. Moreover, 16S rRNA gene sequencing showed that most microbes exhibited daily rhythmicity, and the trends were different for different groups and at different time points. We also identified several specific microbes that correlated with the circadian clock genes and serum lipid indexes, which might indicate the potential mechanism of action of melatonin in HFD-fed mice. In addition, effects of melatonin exposure during daytime or nighttime were compared, but a nonsignificant difference was noticed in response to HFD-induced lipid dysmetabolism. Interestingly, the responses of microbiota-transplanted mice to HFD feeding also varied at different transplantation times (8:00 and 16:00) and with different microbiota donors. In summary, the daily oscillations in the expression of circadian clock genes, serum lipid indexes, and the gut microbiota appeared to be driven by short-term feeding of an HFD, while administration of exogenous melatonin improved the composition and diurnal rhythmicity of some specific gut microbiota in HFD-fed mice. IMPORTANCE The gut microbiota is strongly shaped by a high-fat diet, and obese humans and animals are characterized by low gut microbial diversity and impaired gut microbiota compositions. Comprehensive data on mammalian gut metagenomes shows gut microbiota exhibit circadian rhythms, which is disturbed by a high-fat diet. On the other hand, melatonin is a natural and ubiquitous molecule showing multiple mechanisms of regulating the circadian clock and lipid metabolism, while the role of melatonin in the regulation of the diurnal patterns of gut microbial structure and function in obese animals is not yet known. This study delineates an intricate picture of melatonin-gut microbiota circadian rhythms and may provide insight for obesity intervention.
Collapse
|
19
|
Khudhair Z, Alhallaf R, Eichenberger RM, Whan J, Kupz A, Field M, Krause L, Wilson DT, Daly NL, Giacomin P, Sotillo J, Loukas A. Gastrointestinal Helminth Infection Improves Insulin Sensitivity, Decreases Systemic Inflammation, and Alters the Composition of Gut Microbiota in Distinct Mouse Models of Type 2 Diabetes. Front Endocrinol (Lausanne) 2020; 11:606530. [PMID: 33613446 PMCID: PMC7892786 DOI: 10.3389/fendo.2020.606530] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 12/18/2020] [Indexed: 12/11/2022] Open
Abstract
Type 2 diabetes (T2D) is a major health problem and is considered one of the top 10 diseases leading to death globally. T2D has been widely associated with systemic and local inflammatory responses and with alterations in the gut microbiota. Microorganisms, including parasitic worms and gut microbes have exquisitely co-evolved with their hosts to establish an immunological interaction that is essential for the formation and maintenance of a balanced immune system, including suppression of excessive inflammation. Herein we show that both prophylactic and therapeutic infection of mice with the parasitic hookworm-like nematode, Nippostrongylus brasiliensis, significantly reduced fasting blood glucose, oral glucose tolerance and body weight gain in two different diet-induced mouse models of T2D. Helminth infection was associated with elevated type 2 immune responses including increased eosinophil numbers in the mesenteric lymph nodes, liver and adipose tissues, as well as increased expression of IL-4 and alternatively activated macrophage marker genes in adipose tissue, liver and gut. N. brasiliensis infection was also associated with significant compositional changes in the gut microbiota at both the phylum and order levels. Our findings show that N. brasiliensis infection drives changes in local and systemic immune cell populations, and that these changes are associated with a reduction in systemic and local inflammation and compositional changes in the gut microbiota which cumulatively might be responsible for the improved insulin sensitivity observed in infected mice. Our findings indicate that carefully controlled therapeutic hookworm infection in humans could be a novel approach for treating metabolic syndrome and thereby preventing T2D.
Collapse
Affiliation(s)
- Zainab Khudhair
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
| | - Rafid Alhallaf
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
| | - Ramon M. Eichenberger
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
| | - Jen Whan
- Advanced Analytical Center, James Cook University, Cairns, QLD, Australia
| | - Andreas Kupz
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
| | - Matt Field
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
- John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia
| | | | - David T. Wilson
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
| | - Norelle L. Daly
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
| | - Paul Giacomin
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
| | - Javier Sotillo
- Parasitology Reference and Research Laboratory, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain
| | - Alex Loukas
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
- *Correspondence: Alex Loukas,
| |
Collapse
|