1
|
Warkhade Y, Schaerer LG, Bigcraft I, Hazen TC, Techtmann SM. Diversity and Distribution of Hydrocarbon-Degrading Genes in the Cold Seeps from the Mediterranean and Caspian Seas. Microorganisms 2025; 13:222. [PMID: 40005589 PMCID: PMC11857318 DOI: 10.3390/microorganisms13020222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 12/20/2024] [Accepted: 12/22/2024] [Indexed: 02/27/2025] Open
Abstract
Marine cold seeps are unique ecological niches characterized by the emergence of hydrocarbons, including methane, which fosters diverse microbial communities. This study investigates the diversity and distribution of hydrocarbon-degrading genes and organisms in sediments from the Caspian and Mediterranean Seas, utilizing 16S rRNA and metagenomic sequencing to elucidate microbial community structure and functional potential. Our findings reveal distinct differences in hydrocarbon degrading gene profiles between the two seas, with pathways for aerobic and anaerobic hydrocarbon degradation co-existing in sediments from both basins. Aerobic pathways predominate in the surface sediments of the Mediterranean Sea, while anaerobic pathways are favored in the surface sediments of the anoxic Caspian Sea. Additionally, sediment depths significantly influence microbial diversity, with variations in gene abundance and community composition observed at different depths. Aerobic hydrocarbon-degrading genes decrease in diversity with depth in the Mediterranean Sea, whereas the diversity of aerobic hydrocarbon-degrading genes increases with depth in the Caspian Sea. These results enhance our understanding of microbial ecology in cold seep environments and have implications for bioremediation practices targeting hydrocarbon pollutants in marine ecosystems.
Collapse
Affiliation(s)
- Yogita Warkhade
- Department of Biological Sciences, Michigan Technological University, Houghton, MI 49931, USA; (Y.W.); (L.G.S.); (I.B.)
| | - Laura G. Schaerer
- Department of Biological Sciences, Michigan Technological University, Houghton, MI 49931, USA; (Y.W.); (L.G.S.); (I.B.)
| | - Isaac Bigcraft
- Department of Biological Sciences, Michigan Technological University, Houghton, MI 49931, USA; (Y.W.); (L.G.S.); (I.B.)
| | - Terry C. Hazen
- Department of Civil and Environmental Engineering, University of Tennessee, Knoxville, TN 37996, USA;
| | - Stephen M. Techtmann
- Department of Biological Sciences, Michigan Technological University, Houghton, MI 49931, USA; (Y.W.); (L.G.S.); (I.B.)
| |
Collapse
|
2
|
Yang W, Wu K, Chen H, Huang J, Yu Z. Emerging role of rare earth elements in biomolecular functions. THE ISME JOURNAL 2025; 19:wrae241. [PMID: 39657633 PMCID: PMC11845868 DOI: 10.1093/ismejo/wrae241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 09/27/2024] [Accepted: 12/05/2024] [Indexed: 12/12/2024]
Abstract
The importance of rare earth elements is increasingly recognized due to the increased demand for their mining and separation. This demand is driving research on the biology of rare earth elements. Biomolecules associated with rare earth elements include rare earth element-dependent enzymes (methanol dehydrogenase XoxF, ethanol dehydrogenase ExaF/PedH), rare earth element-binding proteins, and the relevant metallophores. Traditional (chemical) separation methods for rare earth elements harvesting and separation are typically inefficient, while causing environmental problems, whereas bioharvesting, potentially, offers more efficient, more green platforms. Here, we review the current state of research on the biological functions of rare earth element-dependent biomolecules, and the characteristics of the relevant proteins, including the specific amino acids involved in rare earth metal binding. We also provide an outlook at strategies for further understanding of biological processes and the potential applications of rare earth element-dependent enzymes and other biomolecules.
Collapse
Affiliation(s)
- Wenyu Yang
- Human Microbiome and Health Group, Department of Parasitology, School of Basic Medical Science, Central South University, Changsha, Hunan 410013, China
| | - Kaijuan Wu
- Human Microbiome and Health Group, Department of Parasitology, School of Basic Medical Science, Central South University, Changsha, Hunan 410013, China
| | - Hao Chen
- Human Microbiome and Health Group, Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, Hunan 410013, China
| | - Jing Huang
- Human Microbiome and Health Group, Department of Parasitology, School of Basic Medical Science, Central South University, Changsha, Hunan 410013, China
| | - Zheng Yu
- Human Microbiome and Health Group, Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, Hunan 410013, China
| |
Collapse
|
3
|
Liu R, He X, Ren G, Li DW, Zhao M, Lehtovirta-Morley L, Todd JD, Zhang XH, Liu J. Niche Partitioning and Intraspecific Variation of Thaumarchaeota in Deep Ocean Sediments. Environ Microbiol 2025; 27:e70018. [PMID: 39777846 DOI: 10.1111/1462-2920.70018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 11/03/2024] [Accepted: 11/29/2024] [Indexed: 01/11/2025]
Abstract
Deep-sea sediments contain a large number of Thaumarchaeota that are phylogenetically distinct from their pelagic counterparts. However, their ecology and evolutionary adaptations are not well understood. Metagenomic analyses were conducted on samples from various depths of a 750-cm sediment core collected from the Mariana Trench Challenger Deep. The abundance of Thaumarchaeota and archaeal amoA generally decreased with depth, except for an unexpected peak midway through the core. The thaumarchaeotal metagenome-assembled genomes were classified into diverse phylogenetic clusters associated with amoA-NP-γ, amoA-NP-θ, and amoA-NP-δ of ammonia-oxidising Thaumarchaeota and non-ammonia-oxidising lineages. The most abundant group was within amoA-NP-γ, which is usually found in coastal and shallow habitats, indicating potential niche expansion from marine shallow to hadal environments. This benthic group showed within-species genomic variations compared to the previously identified Hadal water group, suggesting microdiversification of hadal Thaumarchaeota along with niche separation between benthic and pelagic environments. Evolutionary adaptations associated with the benthic-to-pelagic transition included reduced genome size, loss of motility/cell adhesion, altered energy metabolism, and different mechanisms for substrate acquisition and regulation (e.g., ammonium). These findings offer new insights into the evolution of hadal Thaumarchaeota and demonstrate, for the first time, intraspecies-level genomic variation in Thaumarchaeota related to the benthic-versus-pelagic niche partitioning in the deep ocean.
Collapse
Affiliation(s)
- Ronghua Liu
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and College of Marine Life Sciences, Ocean University of China, Qingdao, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao, China
- Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education) and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, China
| | - Xinxin He
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Gaoyang Ren
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Da-Wei Li
- Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao, China
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, China
| | - Meixun Zhao
- Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao, China
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, China
| | - Laura Lehtovirta-Morley
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, Norfolk, UK
| | - Jonathan D Todd
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, Norfolk, UK
| | - Xiao-Hua Zhang
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and College of Marine Life Sciences, Ocean University of China, Qingdao, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao, China
- Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education) and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, China
| | - Jiwen Liu
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and College of Marine Life Sciences, Ocean University of China, Qingdao, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao, China
- Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education) and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, China
| |
Collapse
|
4
|
Pereira O, Qin W, Galand PE, Debroas D, Lami R, Hochart C, Zhou Y, Zhou J, Zhang C. Metabolic activities of marine ammonia-oxidizing archaea orchestrated by quorum sensing. MLIFE 2024; 3:417-429. [PMID: 39359677 PMCID: PMC11442133 DOI: 10.1002/mlf2.12144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 05/22/2024] [Accepted: 06/18/2024] [Indexed: 10/04/2024]
Abstract
Ammonia-oxidizing archaea (AOA) play crucial roles in marine carbon and nitrogen cycles by fixing inorganic carbon and performing the initial step of nitrification. Evaluation of carbon and nitrogen metabolism popularly relies on functional genes such as amoA and accA. Increasing studies suggest that quorum sensing (QS) mainly studied in biofilms for bacteria may serve as a universal communication and regulatory mechanism among prokaryotes; however, this has yet to be demonstrated in marine planktonic archaea. To bridge this knowledge gap, we employed a combination of metabolic activity markers (amoA, accA, and grs) to elucidate the regulation of AOA-mediated nitrogen, carbon processes, and their interactions with the surrounding heterotrophic population. Through co-transcription investigations linking metabolic markers to potential key QS genes, we discovered that QS molecules could regulate AOA's carbon, nitrogen, and lipid metabolisms under different conditions. Interestingly, specific AOA ecotypes showed a preference for employing distinct QS systems and a distinct QS circuit involving a typical population. Overall, our data demonstrate that QS orchestrates nitrogen and carbon metabolism, including the exchange of organic metabolites between AOA and surrounding heterotrophic bacteria, which has been previously overlooked in marine AOA research.
Collapse
Affiliation(s)
- Olivier Pereira
- Shenzhen Key Laboratory of Marine Geo-Omics of Archaea, Department of Science and Engineering Southern University of Science and Technology Shenzhen China
- Institut WUT-AMU Wuhan University of Technology and Aix-Marseille Université Wuhan China
| | - Wei Qin
- School of Biological Sciences, Institute for Environmental Genomics University of Oklahoma Norman Oklahoma USA
| | - Pierre E Galand
- Sorbonne Université, CNRS, Laboratoire d'Ecogéochimie des Environnements Benthiques (LECOB) Banyuls sur Mer France
| | - Didier Debroas
- Université Clermont Auvergne, CNRS, Laboratoire Microorganismes: Genome et Environnement Clermont-Ferrand France
| | - Raphael Lami
- Sorbonne Université, CNRS, Laboratoire de Biodiversité et Biotechnologies Microbiennes (LBBM) Banyuls sur Mer France
| | - Corentin Hochart
- Sorbonne Université, CNRS, Laboratoire d'Ecogéochimie des Environnements Benthiques (LECOB) Banyuls sur Mer France
| | - Yangkai Zhou
- Shenzhen Key Laboratory of Marine Geo-Omics of Archaea, Department of Science and Engineering Southern University of Science and Technology Shenzhen China
| | - Jin Zhou
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Shenzhen International Graduate School Tsinghua University Shenzhen China
| | - Chuanlun Zhang
- Shenzhen Key Laboratory of Marine Geo-Omics of Archaea, Department of Science and Engineering Southern University of Science and Technology Shenzhen China
- Shanghai Sheshan National Geophysical Observatory Shanghai Earthquake Agency Shanghai China
| |
Collapse
|
5
|
Rocha RA, Alexandrov K, Scott C. Rare earth elements in biology: From biochemical curiosity to solutions for extractive industries. Microb Biotechnol 2024; 17:e14503. [PMID: 38829373 PMCID: PMC11146143 DOI: 10.1111/1751-7915.14503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 04/28/2024] [Accepted: 05/11/2024] [Indexed: 06/05/2024] Open
Abstract
Rare earth elements (REEs) are critical for our modern lifestyles and the transition to a low-carbon economy. Recent advances in our understanding of the role of REEs in biology, particularly methylotrophy, have provided opportunities to explore biotechnological innovations to improve REE mining and recycling. In addition to bacterial accumulation and concentration of REEs, biological REE binders, including proteins (lanmodulin, lanpepsy) and small molecules (metallophores and cofactors) have been identified that enable REE concentration and separation. REE-binding proteins have also been used in several mechanistically distinct REE biosensors, which have potential application in mining and medicine. Notably, the role of REEs in biology has only been known for a decade, suggesting their considerable scope for developing new understanding and novel applications.
Collapse
Affiliation(s)
- Raquel A. Rocha
- ARC Centre of Excellence in Synthetic BiologyCanberraAustralian Capital TerritoryAustralia
- CSIRO Advanced Engineering Biology Future Science Platform, Black Mountain Science and Innovation ParkCanberraAustralian Capital TerritoryAustralia
| | - Kirill Alexandrov
- ARC Centre of Excellence in Synthetic BiologyCanberraAustralian Capital TerritoryAustralia
- Centre for Agriculture and the BioeconomyQueensland University of TechnologyBrisbaneQueenslandAustralia
- School of Biology and Environmental ScienceQueensland University of TechnologyBrisbaneQueenslandAustralia
| | - Colin Scott
- ARC Centre of Excellence in Synthetic BiologyCanberraAustralian Capital TerritoryAustralia
- CSIRO Advanced Engineering Biology Future Science Platform, Black Mountain Science and Innovation ParkCanberraAustralian Capital TerritoryAustralia
| |
Collapse
|
6
|
Ghimire-Kafle S, Weaver ME, Kimbrel MP, Bollmann A. Competition between ammonia-oxidizing archaea and complete ammonia oxidizers from freshwater environments. Appl Environ Microbiol 2024; 90:e0169823. [PMID: 38349190 PMCID: PMC10952389 DOI: 10.1128/aem.01698-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 01/11/2024] [Indexed: 03/21/2024] Open
Abstract
Aerobic ammonia oxidizers (AOs) are prokaryotic microorganisms that contribute to the global nitrogen cycle by performing the first step of nitrification, the oxidation of ammonium to nitrite and nitrate. While aerobic AOs are found ubiquitously, their distribution is controlled by key environmental conditions such as substrate (ammonium) availability. Ammonia-oxidizing archaea (AOA) and complete ammonia oxidizers (comammox) are generally found in oligotrophic environments with low ammonium availability. However, whether AOA and comammox share these habitats or outcompete each other is not well understood. We assessed the competition for ammonium between an AOA and comammox enriched from the freshwater Lake Burr Oak. The AOA enrichment culture (AOA-BO1) contained Nitrosarchaeum sp. BO1 as the ammonia oxidizer and Nitrospira sp. BO1 as the nitrite oxidizer. The comammox enrichment BO4 (cmx-BO4) contained the comammox strain Nitrospira sp. BO4. The competition experiments were performed either in continuous cultivation with ammonium as a growth-limiting substrate or in batch cultivation with initial ammonium concentrations of 50 and 500 µM. Regardless of the ammonium concentration, Nitrospira sp. BO4 outcompeted Nitrosarchaeum sp. BO1 under all tested conditions. The dominance of Nitrospira sp. BO4 could be explained by the ability of comammox to generate more energy through the complete oxidation of ammonia to nitrate and their more efficient carbon fixation pathway-the reductive tricarboxylic acid cycle. Our results are supported by the higher abundance of comammox compared to AOA in the sediment of Lake Burr Oak. IMPORTANCE Nitrification is a key process in the global nitrogen cycle. Aerobic ammonia oxidizers play a central role in the nitrogen cycle by performing the first step of nitrification. Ammonia-oxidizing archaea (AOA) and complete ammonia oxidizers (comammox) are the dominant nitrifiers in environments with low ammonium availability. While AOA have been studied for almost 20 years, comammox were only discovered 8 years ago. Until now, there has been a gap in our understanding of whether AOA and comammox can co-exist or if one strain would be dominant under ammonium-limiting conditions. Here, we present the first study characterizing the competition between freshwater AOA and comammox under varying substrate concentrations. Our results will help in elucidating the niches of two key nitrifiers in freshwater lakes.
Collapse
Affiliation(s)
| | - Matt E. Weaver
- Department of Microbiology, Miami University, Oxford, Ohio, USA
| | | | | |
Collapse
|
7
|
Zhang RY, Wang YR, Liu RL, Rhee SK, Zhao GP, Quan ZX. Metagenomic characterization of a novel non-ammonia-oxidizing Thaumarchaeota from hadal sediment. MICROBIOME 2024; 12:7. [PMID: 38191433 PMCID: PMC10773090 DOI: 10.1186/s40168-023-01728-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 11/20/2023] [Indexed: 01/10/2024]
Abstract
BACKGROUND The hadal sediment, found at an ocean depth of more than 6000 m, is geographically isolated and under extremely high hydrostatic pressure, resulting in a unique ecosystem. Thaumarchaeota are ubiquitous marine microorganisms predominantly present in hadal environments. While there have been several studies on Thaumarchaeota there, most of them have primarily focused on ammonia-oxidizing archaea (AOA). However, systematic metagenomic research specifically targeting heterotrophic non-AOA Thaumarchaeota is lacking. RESULTS In this study, we explored the metagenomes of Challenger Deep hadal sediment, focusing on the Thaumarchaeota. Functional analysis of sequence reads revealed the potential contribution of Thaumarchaeota to recalcitrant dissolved organic matter degradation. Metagenome assembly binned one new group of hadal sediment-specific and ubiquitously distributed non-AOA Thaumarchaeota, named Group-3.unk. Pathway reconstruction of this new type of Thaumarchaeota also supports heterotrophic characteristics of Group-3.unk, along with ABC transporters for the uptake of amino acids and carbohydrates and catabolic utilization of these substrates. This new clade of Thaumarchaeota also contains aerobic oxidation of carbon monoxide-related genes. Complete glyoxylate cycle is a distinctive feature of this clade in supplying intermediates of anabolic pathways. The pan-genomic and metabolic analyses of metagenome-assembled genomes belonging to Group-3.unk Thaumarchaeota have highlighted distinctions, including the dihydroxy phthalate decarboxylase gene associated with the degradation of aromatic compounds and the absence of genes related to the synthesis of some types of vitamins compared to AOA. Notably, Group-3.unk shares a common feature with deep ocean AOA, characterized by their high hydrostatic pressure resistance, potentially associated with the presence of V-type ATP and di-myo-inositol phosphate syntheses-related genes. The enrichment of organic matter in hadal sediments might be attributed to the high recruitment of sequence reads of the Group-3.unk clade of heterotrophic Thaumarchaeota in the trench sediment. Evolutionary and genetic dynamic analyses suggest that Group-3 non-AOA consists of mesophilic Thaumarchaeota organisms. These results indicate a potential role in the transition from non-AOA to AOA Thaumarchaeota and from thermophilic to mesophilic Thaumarchaeota, shedding light on recent evolutionary pathways. CONCLUSIONS One novel clade of heterotrophic non-AOA Thaumarchaeota was identified through metagenome analysis of sediments from Challenger Deep. Our study provides insight into the ecology and genomic characteristics of the new sub-group of heterotrophic non-AOA Thaumarchaeota, thereby extending the knowledge of the evolution of Thaumarchaeota. Video Abstract.
Collapse
Affiliation(s)
- Ru-Yi Zhang
- Fudan Microbiome Center, Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Institute of Biodiversity Science and Institute of Eco-Chongming, School of Life Sciences, Fudan University, Shanghai, China
| | - Yan-Ren Wang
- Fudan Microbiome Center, Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Institute of Biodiversity Science and Institute of Eco-Chongming, School of Life Sciences, Fudan University, Shanghai, China
| | - Ru-Long Liu
- Shanghai Engineering Research Center of Hadal Science and Technology, College of Marine Sciences, Shanghai Ocean University, Shanghai, China
| | - Sung-Keun Rhee
- Department of Microbiology, Chungbuk National University, Cheongju, Republic of Korea
| | - Guo-Ping Zhao
- Fudan Microbiome Center, Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Institute of Biodiversity Science and Institute of Eco-Chongming, School of Life Sciences, Fudan University, Shanghai, China
| | - Zhe-Xue Quan
- Fudan Microbiome Center, Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Institute of Biodiversity Science and Institute of Eco-Chongming, School of Life Sciences, Fudan University, Shanghai, China.
| |
Collapse
|
8
|
Bezuidt OKI, Makhalanyane TP. Phylogenomic analysis expands the known repertoire of single-stranded DNA viruses in benthic zones of the South Indian Ocean. ISME COMMUNICATIONS 2024; 4:ycae065. [PMID: 38800127 PMCID: PMC11128263 DOI: 10.1093/ismeco/ycae065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/25/2024] [Accepted: 04/29/2024] [Indexed: 05/29/2024]
Abstract
Single-stranded (ss) DNA viruses are ubiquitous and constitute some of the most diverse entities on Earth. Most studies have focused on ssDNA viruses from terrestrial environments resulting in a significant deficit in benthic ecosystems including aphotic zones of the South Indian Ocean (SIO). Here, we assess the diversity and phylogeny of ssDNA in deep waters of the SIO using a combination of established viral taxonomy tools and a Hidden Markov Model based approach. Replication initiator protein-associated (Rep) phylogenetic reconstruction and sequence similarity networks were used to show that the SIO hosts divergent and as yet unknown circular Rep-encoding ssDNA viruses. Several sequences appear to represent entirely novel families, expanding the repertoire of known ssDNA viruses. Results suggest that a small proportion of these viruses may be circular genetic elements, which may strongly influence the diversity of both eukaryotes and prokaryotes in the SIO. Taken together, our data show that the SIO harbours a diverse assortment of previously unknown ssDNA viruses. Due to their potential to infect a variety of hosts, these viruses may be crucial for marine nutrient recycling through their influence of the biological carbon pump.
Collapse
Affiliation(s)
- Oliver K I Bezuidt
- DSI/NRF South African Research Chair in Marine Microbiomics, Department of Biochemistry, Genetics and Microbiology, microbiome@UP, University of Pretoria, Pretoria, 0028, South Africa
- Department of Microbiology, Faculty of Science, Stellenbosch University, Stellenbosch 7600, South Africa
| | - Thulani P Makhalanyane
- Department of Microbiology, Faculty of Science, Stellenbosch University, Stellenbosch 7600, South Africa
- Centre for Epidemic Response and Innovation, The School for Data Science and Computational Thinking, Stellenbosch University, Stellenbosch 7600, South Africa
| |
Collapse
|
9
|
Sheridan PO, Meng Y, Williams TA, Gubry-Rangin C. Genomics of soil depth niche partitioning in the Thaumarchaeota family Gagatemarchaeaceae. Nat Commun 2023; 14:7305. [PMID: 37951938 PMCID: PMC10640624 DOI: 10.1038/s41467-023-43196-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 11/03/2023] [Indexed: 11/14/2023] Open
Abstract
Knowledge of deeply-rooted non-ammonia oxidising Thaumarchaeota lineages from terrestrial environments is scarce, despite their abundance in acidic soils. Here, 15 new deeply-rooted thaumarchaeotal genomes were assembled from acidic topsoils (0-15 cm) and subsoils (30-60 cm), corresponding to two genera of terrestrially prevalent Gagatemarchaeaceae (previously known as thaumarchaeotal Group I.1c) and to a novel genus of heterotrophic terrestrial Thaumarchaeota. Unlike previous predictions, metabolic annotations suggest Gagatemarchaeaceae perform aerobic respiration and use various organic carbon sources. Evolutionary divergence between topsoil and subsoil lineages happened early in Gagatemarchaeaceae history, with significant metabolic and genomic trait differences. Reconstruction of the evolutionary mechanisms showed that the genome expansion in topsoil Gagatemarchaeaceae resulted from extensive early lateral gene acquisition, followed by progressive gene duplication throughout evolutionary history. Ancestral trait reconstruction using the expanded genomic diversity also did not support the previous hypothesis of a thermophilic last common ancestor of the ammonia-oxidising archaea. Ultimately, this study provides a good model for studying mechanisms driving niche partitioning between spatially related ecosystems.
Collapse
Affiliation(s)
- Paul O Sheridan
- School of Biological Sciences, University of Aberdeen, Aberdeen, UK
- School of Biological and Chemical Sciences, University of Galway, Galway, Ireland
| | - Yiyu Meng
- School of Biological Sciences, University of Aberdeen, Aberdeen, UK
| | - Tom A Williams
- School of Biological Sciences, University of Bristol, Bristol, UK
| | | |
Collapse
|
10
|
Wright CL, Lehtovirta-Morley LE. Nitrification and beyond: metabolic versatility of ammonia oxidising archaea. THE ISME JOURNAL 2023; 17:1358-1368. [PMID: 37452095 PMCID: PMC10432482 DOI: 10.1038/s41396-023-01467-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 06/09/2023] [Accepted: 06/21/2023] [Indexed: 07/18/2023]
Abstract
Ammonia oxidising archaea are among the most abundant living organisms on Earth and key microbial players in the global nitrogen cycle. They carry out oxidation of ammonia to nitrite, and their activity is relevant for both food security and climate change. Since their discovery nearly 20 years ago, major insights have been gained into their nitrogen and carbon metabolism, growth preferences and their mechanisms of adaptation to the environment, as well as their diversity, abundance and activity in the environment. Despite significant strides forward through the cultivation of novel organisms and omics-based approaches, there are still many knowledge gaps on their metabolism and the mechanisms which enable them to adapt to the environment. Ammonia oxidising microorganisms are typically considered metabolically streamlined and highly specialised. Here we review the physiology of ammonia oxidising archaea, with focus on aspects of metabolic versatility and regulation, and discuss these traits in the context of nitrifier ecology.
Collapse
Affiliation(s)
- Chloe L Wright
- School of Biological Sciences, University of East Anglia, Norwich, NR4 7TJ, United Kingdom
| | | |
Collapse
|
11
|
Lomakina A, Bukin S, Shubenkova O, Pogodaeva T, Ivanov V, Bukin Y, Zemskaya T. Microbial Communities in Ferromanganese Sediments from the Northern Basin of Lake Baikal (Russia). Microorganisms 2023; 11:1865. [PMID: 37513037 PMCID: PMC10386581 DOI: 10.3390/microorganisms11071865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/18/2023] [Accepted: 07/20/2023] [Indexed: 07/30/2023] Open
Abstract
We analyzed the amplicons of the 16S rRNA genes and assembled metagenome-assembled genomes (MAGs) of the enrichment culture from the Fe-Mn layer to have an insight into the diversity and metabolic potential of microbial communities from sediments of two sites in the northern basin of Lake Baikal. Organotrophic Chloroflexota, Actionobacteriota, and Acidobacteriota, as well as aerobic and anaerobic participants of the methane cycle (Methylococcales and Methylomirabilota, respectively), dominated the communities of the surface layers. With depth, one of the cores showed a decrease in the proportion of the Chloroflexota and Acidobacteriota members and a substantial increase in the sequences of the phylum Firmicutes. The proportion of the Desulfobacteriota and Thermodesulfovibronia (Nitrospirota) increased in another core. The composition of archaeal communities was similar between the investigated sites and differed in depth. Members of ammonia-oxidizing archaea (Nitrososphaeria) predominated in the surface sediments, with an increase in anaerobic methanotrophs (Methanoperedenaceae) and organoheterotrophs (Bathyarchaeia) in deep sediments. Among the 37 MAGs, Gammaproteobacteria, Desulfobacteriota, and Methylomirabilota were the most common in the microbial community. Metagenome sequencing revealed the assembled genomes genes for N, S, and CH4 metabolism for carbon fixation, and genes encoding Fe and Mn pathways, indicating the likely coexistence of the biogeochemical cycle of various elements and creating certain conditions for the development of taxonomically and functionally diverse microbial communities.
Collapse
Affiliation(s)
- Anna Lomakina
- Limnological Institute, Siberian Branch of the Russian Academy of Sciences (LIN SB RAS), 664033 Irkutsk, Russia
| | - Sergei Bukin
- Limnological Institute, Siberian Branch of the Russian Academy of Sciences (LIN SB RAS), 664033 Irkutsk, Russia
| | - Olga Shubenkova
- Limnological Institute, Siberian Branch of the Russian Academy of Sciences (LIN SB RAS), 664033 Irkutsk, Russia
| | - Tatyana Pogodaeva
- Limnological Institute, Siberian Branch of the Russian Academy of Sciences (LIN SB RAS), 664033 Irkutsk, Russia
| | - Vyacheslav Ivanov
- Limnological Institute, Siberian Branch of the Russian Academy of Sciences (LIN SB RAS), 664033 Irkutsk, Russia
| | - Yuri Bukin
- Limnological Institute, Siberian Branch of the Russian Academy of Sciences (LIN SB RAS), 664033 Irkutsk, Russia
| | - Tamara Zemskaya
- Limnological Institute, Siberian Branch of the Russian Academy of Sciences (LIN SB RAS), 664033 Irkutsk, Russia
| |
Collapse
|
12
|
Rodríguez-Gijón A, Buck M, Andersson AF, Izabel-Shen D, Nascimento FJA, Garcia SL. Linking prokaryotic genome size variation to metabolic potential and environment. ISME COMMUNICATIONS 2023; 3:25. [PMID: 36973336 PMCID: PMC10042847 DOI: 10.1038/s43705-023-00231-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 03/02/2023] [Accepted: 03/14/2023] [Indexed: 03/29/2023]
Abstract
While theories and models have appeared to explain genome size as a result of evolutionary processes, little work has shown that genome sizes carry ecological signatures. Our work delves into the ecological implications of microbial genome size variation in benthic and pelagic habitats across environmental gradients of the brackish Baltic Sea. While depth is significantly associated with genome size in benthic and pelagic brackish metagenomes, salinity is only correlated to genome size in benthic metagenomes. Overall, we confirm that prokaryotic genome sizes in Baltic sediments (3.47 Mbp) are significantly bigger than in the water column (2.96 Mbp). While benthic genomes have a higher number of functions than pelagic genomes, the smallest genomes coded for a higher number of module steps per Mbp for most of the functions irrespective of their environment. Some examples of this functions are amino acid metabolism and central carbohydrate metabolism. However, we observed that nitrogen metabolism was almost absent in pelagic genomes and was mostly present in benthic genomes. Finally, we also show that Bacteria inhabiting Baltic sediments and water column not only differ in taxonomy, but also in their metabolic potential, such as the Wood-Ljungdahl pathway or the presence of different hydrogenases. Our work shows how microbial genome size is linked to abiotic factors in the environment, metabolic potential and taxonomic identity of Bacteria and Archaea within aquatic ecosystems.
Collapse
Affiliation(s)
- Alejandro Rodríguez-Gijón
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, 106 91, Sweden.
- Science for Life Laboratory, Stockholm, Sweden.
| | - Moritz Buck
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Anders F Andersson
- Science for Life Laboratory, Stockholm, Sweden
- Department of Gene Technology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Dandan Izabel-Shen
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, 106 91, Sweden
| | - Francisco J A Nascimento
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, 106 91, Sweden
- Baltic Sea Centre, Stockholm University, Stockholm, Sweden
| | - Sarahi L Garcia
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, 106 91, Sweden.
- Science for Life Laboratory, Stockholm, Sweden.
| |
Collapse
|
13
|
Parada AE, Mayali X, Weber PK, Wollard J, Santoro AE, Fuhrman JA, Pett-Ridge J, Dekas AE. Constraining the composition and quantity of organic matter used by abundant marine Thaumarchaeota. Environ Microbiol 2023; 25:689-704. [PMID: 36478085 DOI: 10.1111/1462-2920.16299] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 11/27/2022] [Indexed: 12/12/2022]
Abstract
Marine Group I (MGI) Thaumarchaeota were originally described as chemoautotrophic nitrifiers, but molecular and isotopic evidence suggests heterotrophic and/or mixotrophic capabilities. Here, we investigated the quantity and composition of organic matter assimilated by individual, uncultured MGI cells from the Pacific Ocean to constrain their potential for mixotrophy and heterotrophy. We observed that most MGI cells did not assimilate carbon from any organic substrate provided (glucose, pyruvate, oxaloacetate, protein, urea, and amino acids). The minority of MGI cells that did assimilate it did so exclusively from nitrogenous substrates (urea, 15% of MGI and amino acids, 36% of MGI), and only as an auxiliary carbon source (<20% of that subset's total cellular carbon was derived from those substrates). At the population level, MGI assimilation of organic carbon comprised just 0.5%-11% of total biomass carbon. We observed extensive assimilation of inorganic carbon and urea- and amino acid-derived nitrogen (equal to that from ammonium), consistent with metagenomic and metatranscriptomic analyses performed here and previously showing a widespread potential for MGI to perform autotrophy and transport and degrade organic nitrogen. Our results constrain the quantity and composition of organic matter used by MGI and suggest they use it primarily to meet nitrogen demands for anabolism and nitrification.
Collapse
Affiliation(s)
- Alma E Parada
- Department of Earth System Science, Stanford University, Stanford, California, USA
| | - Xavier Mayali
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California, USA
| | - Peter K Weber
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California, USA
| | - Jessica Wollard
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California, USA
| | - Alyson E Santoro
- Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, California, USA
| | - Jed A Fuhrman
- Department of Biological Sciences, University of Southern California, Los Angeles, California, USA
| | - Jennifer Pett-Ridge
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California, USA
| | - Anne E Dekas
- Department of Earth System Science, Stanford University, Stanford, California, USA
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California, USA
| |
Collapse
|
14
|
Chiriac MC, Haber M, Salcher MM. Adaptive genetic traits in pelagic freshwater microbes. Environ Microbiol 2023; 25:606-641. [PMID: 36513610 DOI: 10.1111/1462-2920.16313] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 12/12/2022] [Indexed: 12/15/2022]
Abstract
Pelagic microbes have adopted distinct strategies to inhabit the pelagial of lakes and oceans and can be broadly categorized in two groups: free-living, specialized oligotrophs and patch-associated generalists or copiotrophs. In this review, we aim to identify genomic traits that enable pelagic freshwater microbes to thrive in their habitat. To do so, we discuss the main genetic differences of pelagic marine and freshwater microbes that are both dominated by specialized oligotrophs and the difference to freshwater sediment microbes, where copiotrophs are more prevalent. We phylogenomically analysed a collection of >7700 metagenome-assembled genomes, classified habitat preferences on different taxonomic levels, and compared the metabolic traits of pelagic freshwater, marine, and freshwater sediment microbes. Metabolic differences are mainly associated with transport functions, environmental information processing, components of the electron transport chain, osmoregulation and the isoelectric point of proteins. Several lineages with known habitat transitions (Nitrososphaeria, SAR11, Methylophilaceae, Synechococcales, Flavobacteriaceae, Planctomycetota) and the underlying mechanisms in this process are discussed in this review. Additionally, the distribution, ecology and genomic make-up of the most abundant freshwater prokaryotes are described in details in separate chapters for Actinobacteriota, Bacteroidota, Burkholderiales, Verrucomicrobiota, Chloroflexota, and 'Ca. Patescibacteria'.
Collapse
Affiliation(s)
| | - Markus Haber
- Institute of Hydrobiology, Biology Centre CAS, Ceske Budejovice, Czechia
| | - Michaela M Salcher
- Institute of Hydrobiology, Biology Centre CAS, Ceske Budejovice, Czechia
| |
Collapse
|
15
|
Vuillemin A. Nitrogen cycling activities during decreased stratification in the coastal oxygen minimum zone off Namibia. Front Microbiol 2023; 14:1101902. [PMID: 36846760 PMCID: PMC9950273 DOI: 10.3389/fmicb.2023.1101902] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 01/20/2023] [Indexed: 02/12/2023] Open
Abstract
Productive oxygen minimum zones are regions dominated by heterotrophic denitrification fueled by sinking organic matter. Microbial redox-sensitive transformations therein result in the loss and overall geochemical deficit in inorganic fixed nitrogen in the water column, thereby impacting global climate in terms of nutrient equilibrium and greenhouse gases. Here, geochemical data are combined with metagenomes, metatranscriptomes, and stable-isotope probing incubations from the water column and subseafloor of the Benguela upwelling system. The taxonomic composition of 16S rRNA genes and relative expression of functional marker genes are used to explore metabolic activities by nitrifiers and denitrifiers under decreased stratification and increased lateral ventilation in Namibian coastal waters. Active planktonic nitrifiers were affiliated with Candidatus Nitrosopumilus and Candidatus Nitrosopelagicus among Archaea, and Nitrospina, Nitrosomonas, Nitrosococcus, and Nitrospira among Bacteria. Concurrent evidence from taxonomic and functional marker genes shows that populations of Nitrososphaeria and Nitrospinota were highly active under dysoxic conditions, coupling ammonia and nitrite oxidation with respiratory nitrite reduction, but minor metabolic activity toward mixotrophic use of simple nitrogen compounds. Although active reduction of nitric oxide to nitrous oxide by Nitrospirota, Gammaproteobacteria, and Desulfobacterota was tractable in bottom waters, the produced nitrous oxide was apparently scavenged at the ocean surface by Bacteroidota. Planctomycetota involved in anaerobic ammonia oxidation were identified in dysoxic waters and their underlying sediments, but were not found to be metabolically active due to limited availability of nitrite. Consistent with water column geochemical profiles, metatranscriptomic data demonstrate that nitrifier denitrification is fueled by fixed and organic nitrogen dissolved in dysoxic waters, and prevails over canonical denitrification and anaerobic oxidation of ammonia when the Namibian coastal waters and sediment-water interface on the shelf are ventilated by lateral currents during austral winter.
Collapse
Affiliation(s)
- Aurèle Vuillemin
- GFZ German Research Centre for Geosciences, Section Geomicrobiology, Potsdam, Germany
| |
Collapse
|
16
|
Roda-Garcia JJ, Haro-Moreno JM, Rodriguez-Valera F, Almagro-Moreno S, López-Pérez M. Single-amplified genomes reveal most streamlined free-living marine bacteria. Environ Microbiol 2023. [PMID: 36755376 DOI: 10.1111/1462-2920.16348] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 02/04/2023] [Indexed: 02/10/2023]
Abstract
Evolutionary adaptations of prokaryotes to the environment sometimes result in genome reduction. Our knowledge of this phenomenon among free-living bacteria remains scarce. We address the dynamics and limits of genome reduction by examining one of the most abundant bacteria in the ocean, the SAR86 clade. Despite its abundance, comparative genomics has been limited by the absence of pure cultures and the poor representation in metagenome-assembled genomes. We co-assembled multiple previously available single-amplified genomes to obtain the first complete genomes from members of the four families. All families showed a convergent evolutionary trajectory with characteristic features of streamlined genomes, most pronounced in the TMED112 family. This family has a genome size of ca. 1 Mb and only 1 bp as median intergenic distance, exceeding values found in other abundant microbes such as SAR11, OM43 and Prochlorococcus. This genomic simplification led to a reduction in the biosynthesis of essential molecules, DNA repair-related genes, and the ability to sense and respond to environmental factors, which could suggest an evolutionary dependence on other co-occurring microbes for survival (Black Queen hypothesis). Therefore, these reconstructed genomes within the SAR86 clade provide new insights into the limits of genome reduction in free-living marine bacteria.
Collapse
Affiliation(s)
- Juan J Roda-Garcia
- Evolutionary Genomics Group, Departamento Producción Vegetal y Microbiología, Universidad Miguel Hernández, Alicante, Spain
| | - Jose M Haro-Moreno
- Evolutionary Genomics Group, Departamento Producción Vegetal y Microbiología, Universidad Miguel Hernández, Alicante, Spain
| | - Francisco Rodriguez-Valera
- Evolutionary Genomics Group, Departamento Producción Vegetal y Microbiología, Universidad Miguel Hernández, Alicante, Spain
| | - Salvador Almagro-Moreno
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, Florida, USA.,National Center for Integrated Coastal Research, University of Central Florida, Orlando, Florida, USA
| | - Mario López-Pérez
- Evolutionary Genomics Group, Departamento Producción Vegetal y Microbiología, Universidad Miguel Hernández, Alicante, Spain
| |
Collapse
|
17
|
Herndl GJ, Bayer B, Baltar F, Reinthaler T. Prokaryotic Life in the Deep Ocean's Water Column. ANNUAL REVIEW OF MARINE SCIENCE 2023; 15:461-483. [PMID: 35834811 DOI: 10.1146/annurev-marine-032122-115655] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The oceanic waters below a depth of 200 m represent, in terms of volume, the largest habitat of the biosphere, harboring approximately 70% of the prokaryotic biomass in the oceanic water column. These waters are characterized by low temperature, increasing hydrostatic pressure, and decreasing organic matter supply with depth. Recent methodological advances in microbial oceanography have refined our view of the ecology of prokaryotes in the dark ocean. Here, we review the ecology of prokaryotes of the dark ocean, present data on the biomass distribution and heterotrophic and chemolithoautotrophic prokaryotic production in the major oceanic basins, and highlight the phylogenetic and functional diversity of this part of the ocean. We describe the connectivity of surface and deep-water prokaryotes and the molecular adaptations of piezophilic prokaryotes to high hydrostatic pressure. We also highlight knowledge gaps in the ecology of the dark ocean's prokaryotes and their role in the biogeochemical cycles in the largest habitat of the biosphere.
Collapse
Affiliation(s)
- Gerhard J Herndl
- Department of Functional and Evolutionary Ecology, University of Vienna, Vienna, Austria;
- Department of Marine Microbiology and Biogeochemistry, Royal Netherlands Institute for Sea Research (NIOZ), Utrecht University, Den Burg, The Netherlands
| | - Barbara Bayer
- Department of Microbiology and Ecosystem Science, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | - Federico Baltar
- Department of Functional and Evolutionary Ecology, University of Vienna, Vienna, Austria;
| | - Thomas Reinthaler
- Department of Functional and Evolutionary Ecology, University of Vienna, Vienna, Austria;
| |
Collapse
|
18
|
Patin NV, Goodwin KD. Long-Read Sequencing Improves Recovery of Picoeukaryotic Genomes and Zooplankton Marker Genes from Marine Metagenomes. mSystems 2022; 7:e0059522. [PMID: 36448813 PMCID: PMC9765425 DOI: 10.1128/msystems.00595-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 10/27/2022] [Indexed: 12/05/2022] Open
Abstract
Long-read sequencing offers the potential to improve metagenome assemblies and provide more robust assessments of microbial community composition and function than short-read sequencing. We applied Pacific Biosciences (PacBio) CCS (circular consensus sequencing) HiFi shotgun sequencing to 14 marine water column samples and compared the results with those for short-read metagenomes from the corresponding environmental DNA samples. We found that long-read metagenomes varied widely in quality and biological information. The community compositions of the corresponding long- and short-read metagenomes were frequently dissimilar, suggesting higher stochasticity and/or bias associated with PacBio sequencing. Long reads provided few improvements to the assembly qualities, gene annotations, and prokaryotic metagenome-assembled genome (MAG) binning results. However, only long reads produced high-quality eukaryotic MAGs and contigs containing complete zooplankton marker gene sequences. These results suggest that high-quality long-read metagenomes can improve marine community composition analyses and provide important insight into eukaryotic phyto- and zooplankton genetics, but the benefits may be outweighed by the inconsistent data quality. IMPORTANCE Ocean microbes provide critical ecosystem services, but most remain uncultivated. Their communities can be studied through shotgun metagenomic sequencing and bioinformatic analyses, including binning draft microbial genomes. However, most sequencing to date has been done using short-read technology, which rarely yields genome sequences of key microbes like SAR11. Long-read sequencing can improve metagenome assemblies but is hampered by technological shortcomings and high costs. In this study, we compared long- and short-read sequencing of marine metagenomes. We found a wide range of long-read metagenome qualities and minimal improvements to microbiome analyses. However, long reads generated draft genomes of eukaryotic algal species and provided full-length marker gene sequences of zooplankton species, including krill and copepods. These results suggest that long-read sequencing can provide greater genetic insight into the wide diversity of eukaryotic phyto- and zooplankton that interact as part of and with the marine microbiome.
Collapse
Affiliation(s)
- N. V. Patin
- Ocean Chemistry and Ecosystems Division, Atlantic Oceanographic and Meteorological Laboratory, National Oceanic and Atmospheric Administration, Miami, Florida, USA
- Cooperative Institute for Marine and Atmospheric Studies, Rosenstiel School of Marine, Atmospheric & Earth Science, University of Miami, Miami, Florida, USA
- Southwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, La Jolla, California, USA
| | - K. D. Goodwin
- Ocean Chemistry and Ecosystems Division, Atlantic Oceanographic and Meteorological Laboratory, National Oceanic and Atmospheric Administration, Miami, Florida, USA
- Southwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, La Jolla, California, USA
| |
Collapse
|
19
|
Microbial Communities of Ferromanganese Sedimentary Layers and Nodules of Lake Baikal (Bolshoy Ushkany Island). DIVERSITY 2022. [DOI: 10.3390/d14100868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Ferromanganese (Fe-Mn) sedimentary layers and nodules occur at different depths within sediments at deep basins and ridges of Lake Baikal. We studied Fe-Mn nodules and host sediments recovered at the slope of Bolshoy Ushkany Island. Layer-by-layer 230Th/U dating analysis determined the initial age of the Fe-Mn nodule formation scattered in the sediments as 96 ± 5–131 ± 8 Ka. The distribution profiles of the main ions in the pore waters of the studied sediment are similar to those observed in the deep-sea areas of Lake Baikal, while the chemical composition of Fe-Mn nodules indicates their diagenetic formation with hydrothermal influence. Among the bacteria in microbial communities of sediments, members of organoheterotrophic Gammaproteobacteria, Chloroflexi, Actinobacteriota, Acidobacteriota, among them Archaea—chemolithoautotrophic ammonia-oxidizing archaea Nitrososphaeria, dominated. About 13% of the bacterial 16S rRNA gene sequences in Fe-Mn layers belonged to Methylomirabilota representatives which use nitrite ions as electron acceptors for the anaerobic oxidation of methane (AOM). Nitrospirota comprised up to 9% of the layers of Bolshoy Ushkany Island. In bacterial communities of Fe-Mn nodule, a large percentage of sequences were attributed to Alphaproteobacteria, Actinobacteriota and Firmicutes, as well as a variety of OTUs with a small number of sequences characteristic of hydrothermal ecosystems. The contribution of representatives of Methylomirabilota and Nitrospirota in communities of Fe-Mn nodule was minor. Our data support the hypothesis that chemolithoautotrophs associated with ammonium-oxidizing archaea and nitrite-oxidizing bacteria can potentially play an important role as primary producers of Fe-Mn substrates in freshwater Lake Baikal.
Collapse
|
20
|
The microbiome of a bacterivorous marine choanoflagellate contains a resource-demanding obligate bacterial associate. Nat Microbiol 2022; 7:1466-1479. [PMID: 35970961 PMCID: PMC9418006 DOI: 10.1038/s41564-022-01174-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 06/14/2022] [Indexed: 11/08/2022]
Abstract
Microbial predators such as choanoflagellates are key players in ocean food webs. Choanoflagellates, which are the closest unicellular relatives of animals, consume bacteria and also exhibit marked biological transitions triggered by bacterial compounds, yet their native microbiomes remain uncharacterized. Here we report the discovery of a ubiquitous, uncultured bacterial lineage we name Candidatus Comchoanobacterales ord. nov., related to the human pathogen Coxiella and physically associated with the uncultured marine choanoflagellate Bicosta minor. We analyse complete ‘Comchoano’ genomes acquired after sorting single Bicosta cells, finding signatures of obligate host-dependence, including reduction of pathways encoding glycolysis, membrane components, amino acids and B-vitamins. Comchoano encode the necessary apparatus to import energy and other compounds from the host, proteins for host-cell associations and a type IV secretion system closest to Coxiella’s that is expressed in Pacific Ocean metatranscriptomes. Interactions between choanoflagellates and their microbiota could reshape the direction of energy and resource flow attributed to microbial predators, adding complexity and nuance to marine food webs. Choanoflagellates are the closest living unicellular relatives of animals and are important bacterivorous predators in the ocean. Here the authors show that the microbiome of this predator includes an obligate, host resource-dependent bacterial associate.
Collapse
|
21
|
Daumann LJ, Pol A, Op den Camp HJM, Martinez-Gomez NC. A perspective on the role of lanthanides in biology: Discovery, open questions and possible applications. Adv Microb Physiol 2022; 81:1-24. [PMID: 36167440 DOI: 10.1016/bs.ampbs.2022.06.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Because of their use in high technologies like computers, smartphones and renewable energy applications, lanthanides (belonging to the group of rare earth elements) are essential for our daily lives. A range of applications in medicine and biochemical research made use of their photo-physical properties. The discovery of a biological role for lanthanides has boosted research in this new field. Several methanotrophs and methylotrophs are strictly dependent on the presence of lanthanides in the growth medium while others show a regulatory response. After the first demonstration of a lanthanide in the active site of the XoxF-type pyrroloquinoline quinone methanol dehydrogenases, follow-up studies showed the same for other pyrroloquinoline quinone-containing enzymes. In addition, research focused on the effect of lanthanides on regulation of gene expression and uptake mechanism into bacterial cells. This review briefly describes the discovery of the role of lanthanides in biology and focuses on open questions in biological lanthanide research and possible application of lanthanide-containing bacteria and enzymes in recovery of these special elements.
Collapse
Affiliation(s)
- Lena J Daumann
- Department of Chemistry, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Arjan Pol
- Department of Microbiology, RIBES, Radboud University, Nijmegen, The Netherlands
| | - Huub J M Op den Camp
- Department of Microbiology, RIBES, Radboud University, Nijmegen, The Netherlands.
| | - N Cecilia Martinez-Gomez
- Department of Plant and Microbial Biology, University of California, Berkeley, California, United States
| |
Collapse
|
22
|
LaBrie R, Péquin B, Fortin St-Gelais N, Yashayaev I, Cherrier J, Gélinas Y, Guillemette F, Podgorski DC, Spencer RGM, Tremblay L, Maranger R. Deep ocean microbial communities produce more stable dissolved organic matter through the succession of rare prokaryotes. SCIENCE ADVANCES 2022; 8:eabn0035. [PMID: 35857452 PMCID: PMC11323801 DOI: 10.1126/sciadv.abn0035] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 05/24/2022] [Indexed: 06/15/2023]
Abstract
The microbial carbon pump (MCP) hypothesis suggests that successive transformation of labile dissolved organic carbon (DOC) by prokaryotes produces refractory DOC (RDOC) and contributes to the long-term stability of the deep ocean DOC reservoir. We tested the MCP by exposing surface water from a deep convective region of the ocean to epipelagic, mesopelagic, and bathypelagic prokaryotic communities and tracked changes in dissolved organic matter concentration, composition, and prokaryotic taxa over time. Prokaryotic taxa from the deep ocean were more efficient at consuming DOC and producing RDOC as evidenced by greater abundance of highly oxygenated molecules and fluorescent components associated with recalcitrant molecules. This first empirical evidence of the MCP in natural waters shows that carbon sequestration is more efficient in deeper waters and suggests that the higher diversity of prokaryotes from the rare biosphere holds a greater metabolic potential in creating these stable dissolved organic compounds.
Collapse
Affiliation(s)
- Richard LaBrie
- Département des sciences biologiques, Université de Montréal, Pavillon MIL C. P. 6128, succ. Centre-ville, Montréal, QC H3C 3J7, Canada
- Groupe de recherche interuniversitaire en limnologie et environnement aquatique (GRIL), Université de Montréal, C. P. 6128, succ. Centre-ville, Montréal, QC H3C 3J7, Canada
| | - Bérangère Péquin
- Département des sciences biologiques, Université de Montréal, Pavillon MIL C. P. 6128, succ. Centre-ville, Montréal, QC H3C 3J7, Canada
- Groupe de recherche interuniversitaire en limnologie et environnement aquatique (GRIL), Université de Montréal, C. P. 6128, succ. Centre-ville, Montréal, QC H3C 3J7, Canada
| | - Nicolas Fortin St-Gelais
- Département des sciences biologiques, Université de Montréal, Pavillon MIL C. P. 6128, succ. Centre-ville, Montréal, QC H3C 3J7, Canada
- Groupe de recherche interuniversitaire en limnologie et environnement aquatique (GRIL), Université de Montréal, C. P. 6128, succ. Centre-ville, Montréal, QC H3C 3J7, Canada
| | - Igor Yashayaev
- Department of Fisheries and Ocean Canada, Bedford Institute of Oceanography, 1 Challenger Dr., Dartmouth, NS B2Y 4A2, Canada
| | - Jennifer Cherrier
- Department of Earth and Environmental Sciences, Brooklyn College–The City University of New York, 2900 Bedford Avenue, Brooklyn, NY 11210, USA
| | - Yves Gélinas
- Geotop and Department of Chemistry and Biochemistry, Concordia University, 7141 Sherbrooke W., Montréal, QC H4B 1R6, Canada
| | - François Guillemette
- Groupe de recherche interuniversitaire en limnologie et environnement aquatique (GRIL), Université de Montréal, C. P. 6128, succ. Centre-ville, Montréal, QC H3C 3J7, Canada
- Département des sciences de l’environnement, Université du Québec à Trois-Rivières, 3351 Boulevard des Forges, Trois-Rivières, QC G8Z 4M3, Canada
| | - David C. Podgorski
- Pontchartrain Institute for Environmental Sciences, Department of Chemistry, The University of New Orleans, 2000 Lakeshore Dr., New Orleans, LA 70148, USA
| | - Robert G. M. Spencer
- National High Magnetic Field Laboratory, Geochemistry Group, Department of Earth, Ocean and Atmospheric Science, Florida State University, Tallahassee, FL 32306, USA
| | - Luc Tremblay
- Département de chimie et biochimie, Université de Moncton, 18, avenue Antonine-Maillet, Moncton, NB E1A 3E9, Canada
| | - Roxane Maranger
- Département des sciences biologiques, Université de Montréal, Pavillon MIL C. P. 6128, succ. Centre-ville, Montréal, QC H3C 3J7, Canada
- Groupe de recherche interuniversitaire en limnologie et environnement aquatique (GRIL), Université de Montréal, C. P. 6128, succ. Centre-ville, Montréal, QC H3C 3J7, Canada
| |
Collapse
|
23
|
Differentiated Evolutionary Strategies of Genetic Diversification in Atlantic and Pacific Thaumarchaeal Populations. mSystems 2022; 7:e0147721. [PMID: 35695431 PMCID: PMC9239043 DOI: 10.1128/msystems.01477-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Some marine microbes are seemingly “ubiquitous,” thriving across a wide range of environmental conditions. While the increased depth in metagenomic sequencing has led to a growing body of research on within-population heterogeneity in environmental microbial populations, there have been fewer systematic comparisons and characterizations of population-level genetic diversity over broader expanses of time and space. Here, we investigated the factors that govern the diversification of ubiquitous microbial taxa found within and between ocean basins. Specifically, we use mapped metagenomic paired reads to examine the genetic diversity of ammonia-oxidizing archaeal (“Candidatus Nitrosopelagicus brevis”) populations in the Pacific (Hawaii Ocean Time-series [HOT]) and Atlantic (Bermuda Atlantic Time Series [BATS]) Oceans sampled over 2 years. We observed higher nucleotide diversity in “Ca. N. brevis” at HOT, driven by a higher rate of homologous recombination. In contrast, “Ca. N. brevis” at BATS featured a more open pangenome with a larger set of genes that were specific to BATS, suggesting a history of dynamic gene gain and loss events. Furthermore, we identified highly differentiated genes that were regulatory in function, some of which exhibited evidence of recent selective sweeps. These findings indicate that different modes of genetic diversification likely incur specific adaptive advantages depending on the selective pressures that they are under. Within-population diversity generated by the environment-specific strategies of genetic diversification is likely key to the ecological success of “Ca. N. brevis.” IMPORTANCE Ammonia-oxidizing archaea (AOA) are one of the most abundant chemolithoautotrophic microbes in the marine water column and are major contributors to global carbon and nitrogen cycling. Despite their ecological importance and geographical pervasiveness, there have been limited systematic comparisons and characterizations of their population-level genetic diversity over time and space. Here, we use metagenomic time series from two ocean observatories to address the fundamental questions of how abiotic and biotic factors shape the population-level genetic diversity and how natural microbial populations adapt across diverse habitats. We show that the marine AOA “Candidatus Nitrosopelagicus brevis” in different ocean basins exhibits distinct modes of genetic diversification in response to their selective regimes shaped by nutrient availability and patterns of environmental fluctuations. Our findings specific to “Ca. N. brevis” have broader implications, particularly in understanding the population-level responses to the changing climate and predicting its impact on biogeochemical cycles.
Collapse
|
24
|
Nishimura Y, Yoshizawa S. The OceanDNA MAG catalog contains over 50,000 prokaryotic genomes originated from various marine environments. Sci Data 2022; 9:305. [PMID: 35715423 PMCID: PMC9205870 DOI: 10.1038/s41597-022-01392-5] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 05/12/2022] [Indexed: 12/22/2022] Open
Abstract
Marine microorganisms are immensely diverse and play fundamental roles in global geochemical cycling. Recent metagenome-assembled genome studies, with particular attention to large-scale projects such as Tara Oceans, have expanded the genomic repertoire of marine microorganisms. However, published marine metagenome data is still underexplored. We collected 2,057 marine metagenomes covering various marine environments and developed a new genome reconstruction pipeline. We reconstructed 52,325 qualified genomes composed of 8,466 prokaryotic species-level clusters spanning 59 phyla, including genomes from the deep-sea characterized as deeper than 1,000 m (n = 3,337), low-oxygen zones of <90 μmol O2 per kg water (n = 7,884), and polar regions (n = 7,752). Novelty evaluation using a genome taxonomy database shows that 6,256 species (73.9%) are novel and include genomes of high taxonomic novelty, such as new class candidates. These genomes collectively expanded the known phylogenetic diversity of marine prokaryotes by 34.2%, and the species representatives cover 26.5-42.0% of prokaryote-enriched metagenomes. Thoroughly leveraging accumulated metagenomic data, this genome resource, named the OceanDNA MAG catalog, illuminates uncharacterized marine microbial 'dark matter' lineages.
Collapse
Affiliation(s)
- Yosuke Nishimura
- Atmosphere and Ocean Research Institute, The University of Tokyo, Chiba, 277-8564, Japan.
- Research Center for Bioscience and Nanoscience (CeBN), Research Institute for Marine Resources Utilization, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Kanagawa, 237-0061, Japan.
| | - Susumu Yoshizawa
- Atmosphere and Ocean Research Institute, The University of Tokyo, Chiba, 277-8564, Japan
- Graduate School of Frontier Sciences, The University of Tokyo, Chiba, 277-8563, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Tokyo, 113-8657, Japan
| |
Collapse
|
25
|
Ren M, Wang J. Phylogenetic divergence and adaptation of Nitrososphaeria across lake depths and freshwater ecosystems. THE ISME JOURNAL 2022; 16:1491-1501. [PMID: 35091647 PMCID: PMC9123079 DOI: 10.1038/s41396-022-01199-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 01/05/2022] [Accepted: 01/17/2022] [Indexed: 04/29/2023]
Abstract
Thaumarchaeota (now the class Nitrososphaeria in the phylum Thermoproteota in GTDB taxonomy) are abundant across marine and soil habitats; however, their genomic diversity and evolutionary history in freshwater environments remain elusive. Here, we reconstructed 17 high-quality metagenome-assembled genomes of Nitrososphaeria from a deep lake and two great rivers, and compared all available genomes between freshwater and marine habitats regarding their phylogenetic positions, relative abundance, and genomic content. We found that freshwater Nitrososphaeria were dominated by the family Nitrosopumilaceae and could be grouped into three distinct clades closely related to the genera Nitrosopumilus, Nitrosoarchaeum, and Nitrosotenuis. The Nitrosopumilus-like clade was exclusively from deep lakes, while the Nitrosoarchaeum-like clade was dominated by species from deep lakes and rivers, and the Nitrosotenuis-like clade was mainly from rivers, deep lakes, and estuaries. Interestingly, there was vertical niche separation between two clades in deep lakes, showing that the Nitrosopumilus-like species dominated shallow layers, whereas the relative abundance of the Nitrosoarchaeum-like clade increased toward deep waters. Phylogenetic clustering patterns in the Nitrosopumilaceae supported at least one freshwater-to-marine and two marine-to-freshwater transitions, the former of which refined the potential terrestrial-to-marine evolutionary path as previously proposed. The occurrence of the two marine-to-freshwater transitions were accompanied by horizontal transfer of the genes involved in nutrition regulation, osmoregulation, and cell motility during their colonization to freshwater habitats. Specifically, the Nitrosopumilus-like clade showed losses of genes encoding flagella assembly and ion transport, whereas the Nitrosoarchaeum-like clade had losses of intact genes involved in urea uptake and utilization and gains of genes encoding osmolarity-mediated mechanosensitive channels. Collectively, our results reveal for the first time the high genomic diversity of the class Nitrososphaeria across freshwater ecosystems and provide novel insights into their adaptive mechanisms and evolutionary histories.
Collapse
Affiliation(s)
- Minglei Ren
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Jianjun Wang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
26
|
Microbial Activities and Selection from Surface Ocean to Subseafloor on the Namibian Continental Shelf. Appl Environ Microbiol 2022; 88:e0021622. [PMID: 35404072 PMCID: PMC9088280 DOI: 10.1128/aem.00216-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Oxygen minimum zones (OMZs) are hot spots for redox-sensitive nitrogen transformations fueled by sinking organic matter. In comparison, the regulating role of sulfur-cycling microbes in marine OMZs, their impact on carbon cycling in pelagic and benthic habitats, and activities below the seafloor remain poorly understood. Using 13C DNA stable isotope probing (SIP) and metatranscriptomics, we explored microbial guilds involved in sulfur and carbon cycling from the ocean surface to the subseafloor on the Namibian shelf. There was a clear separation in microbial community structure across the seawater-seafloor boundary, which coincided with a 100-fold-increased concentration of microbial biomass and unique gene expression profiles of the benthic communities. 13C-labeled 16S rRNA genes in SIP experiments revealed carbon-assimilating taxa and their distribution across the sediment-water interface. Most of the transcriptionally active taxa among water column communities that assimilated 13C from diatom exopolysaccharides (mostly Bacteroidetes, Actinobacteria, Alphaproteobacteria, and Planctomycetes) also assimilated 13C-bicarbonate under anoxic conditions in sediment incubations. Moreover, many transcriptionally active taxa from the seafloor community (mostly sulfate-reducing Deltaproteobacteria and sulfide-oxidizing Gammaproteobacteria) that assimilated 13C-bicarbonate under sediment anoxic conditions also assimilated 13C from diatom exopolysaccharides in the surface ocean and OMZ waters. Despite strong selection at the sediment-water interface, many taxa related to either planktonic or benthic communities were found to be present at low abundance and actively assimilating carbon under both sediment and water column conditions. In austral winter, mixing of shelf waters reduces stratification and suspends sediments from the seafloor into the water column, potentially spreading metabolically versatile microbes across niches. IMPORTANCE Microbial activities in oxygen minimum zones (OMZs) transform inorganic fixed nitrogen into greenhouse gases, impacting the Earth’s climate and nutrient equilibrium. Coastal OMZs are predicted to expand with global change and increase carbon sedimentation to the seafloor. However, the role of sulfur-cycling microbes in assimilating carbon in marine OMZs and related seabed habitats remain poorly understood. Using 13C DNA stable isotope probing and metatranscriptomics, we explore microbial guilds involved in sulfur and carbon cycling from ocean surface to subseafloor on the Namibian shelf. Despite strong selection and differential activities across the sediment-water interface, many active taxa were identified in both planktonic and benthic communities, either fixing inorganic carbon or assimilating organic carbon from algal biomass. Our data show that many planktonic and benthic microbes linked to the sulfur cycle can cross redox boundaries when mixing of the shelf waters reduces stratification and suspends seafloor sediment particles into the water column.
Collapse
|
27
|
Reji L, Cardarelli EL, Boye K, Bargar JR, Francis CA. Diverse ecophysiological adaptations of subsurface Thaumarchaeota in floodplain sediments revealed through genome-resolved metagenomics. THE ISME JOURNAL 2022; 16:1140-1152. [PMID: 34873295 PMCID: PMC8940955 DOI: 10.1038/s41396-021-01167-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 11/17/2021] [Accepted: 11/26/2021] [Indexed: 02/03/2023]
Abstract
The terrestrial subsurface microbiome contains vastly underexplored phylogenetic diversity and metabolic novelty, with critical implications for global biogeochemical cycling. Among the key microbial inhabitants of subsurface soils and sediments are Thaumarchaeota, an archaeal phylum that encompasses ammonia-oxidizing archaea (AOA) as well as non-ammonia-oxidizing basal lineages. Thaumarchaeal ecology in terrestrial systems has been extensively characterized, particularly in the case of AOA. However, there is little knowledge on the diversity and ecophysiology of Thaumarchaeota in deeper soils, as most lineages, particularly basal groups, remain uncultivated and underexplored. Here we use genome-resolved metagenomics to examine the phylogenetic and metabolic diversity of Thaumarchaeota along a 234 cm depth profile of hydrologically variable riparian floodplain sediments in the Wind River Basin near Riverton, Wyoming. Phylogenomic analysis of the metagenome-assembled genomes (MAGs) indicates a shift in AOA population structure from the dominance of the terrestrial Nitrososphaerales lineage in the well-drained top ~100 cm of the profile to the typically marine Nitrosopumilales in deeper, moister, more energy-limited sediment layers. We also describe two deeply rooting non-AOA MAGs with numerous unexpected metabolic features, including the reductive acetyl-CoA (Wood-Ljungdahl) pathway, tetrathionate respiration, a form III RuBisCO, and the potential for extracellular electron transfer. These MAGs also harbor tungsten-containing aldehyde:ferredoxin oxidoreductase, group 4f [NiFe]-hydrogenases and a canonical heme catalase, typically not found in Thaumarchaeota. Our results suggest that hydrological variables, particularly proximity to the water table, impart a strong control on the ecophysiology of Thaumarchaeota in alluvial sediments.
Collapse
Affiliation(s)
- Linta Reji
- grid.168010.e0000000419368956Department of Earth System Science, Stanford University, Stanford, CA USA ,grid.16750.350000 0001 2097 5006Present Address: Department of Geosciences, Princeton University, Princeton, NJ USA
| | - Emily L. Cardarelli
- grid.168010.e0000000419368956Department of Earth System Science, Stanford University, Stanford, CA USA ,grid.20861.3d0000000107068890Present Address: Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA USA
| | - Kristin Boye
- grid.445003.60000 0001 0725 7771Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA USA
| | - John R. Bargar
- grid.445003.60000 0001 0725 7771Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA USA
| | - Christopher A. Francis
- grid.168010.e0000000419368956Department of Earth System Science, Stanford University, Stanford, CA USA
| |
Collapse
|
28
|
Rodríguez-Gijón A, Nuy JK, Mehrshad M, Buck M, Schulz F, Woyke T, Garcia SL. A Genomic Perspective Across Earth's Microbiomes Reveals That Genome Size in Archaea and Bacteria Is Linked to Ecosystem Type and Trophic Strategy. Front Microbiol 2022; 12:761869. [PMID: 35069467 PMCID: PMC8767057 DOI: 10.3389/fmicb.2021.761869] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 12/15/2021] [Indexed: 01/09/2023] Open
Abstract
Our view of genome size in Archaea and Bacteria has remained skewed as the data has been dominated by genomes of microorganisms that have been cultivated under laboratory settings. However, the continuous effort to catalog Earth's microbiomes, specifically propelled by recent extensive work on uncultivated microorganisms, provides an opportunity to revise our perspective on genome size distribution. We present a meta-analysis that includes 26,101 representative genomes from 3 published genomic databases; metagenomic assembled genomes (MAGs) from GEMs and stratfreshDB, and isolates from GTDB. Aquatic and host-associated microbial genomes present on average the smallest estimated genome sizes (3.1 and 3.0 Mbp, respectively). These are followed by terrestrial microbial genomes (average 3.7 Mbp), and genomes from isolated microorganisms (average 4.3 Mbp). On the one hand, aquatic and host-associated ecosystems present smaller genomes sizes in genera of phyla with genome sizes above 3 Mbp. On the other hand, estimated genome size in phyla with genomes under 3 Mbp showed no difference between ecosystems. Moreover, we observed that when using 95% average nucleotide identity (ANI) as an estimator for genetic units, only 3% of MAGs cluster together with genomes from isolated microorganisms. Although there are potential methodological limitations when assembling and binning MAGs, we found that in genome clusters containing both environmental MAGs and isolate genomes, MAGs were estimated only an average 3.7% smaller than isolate genomes. Even when assembly and binning methods introduce biases, estimated genome size of MAGs and isolates are very similar. Finally, to better understand the ecological drivers of genome size, we discuss on the known and the overlooked factors that influence genome size in different ecosystems, phylogenetic groups, and trophic strategies.
Collapse
Affiliation(s)
- Alejandro Rodríguez-Gijón
- Department of Ecology, Environment, and Plant Sciences, Science for Life Laboratory, Stockholm University, Stockholm, Sweden
| | - Julia K. Nuy
- Department of Ecology, Environment, and Plant Sciences, Science for Life Laboratory, Stockholm University, Stockholm, Sweden
| | - Maliheh Mehrshad
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Moritz Buck
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | | | - Tanja Woyke
- DOE Joint Genome Institute, Berkeley, CA, United States
| | - Sarahi L. Garcia
- Department of Ecology, Environment, and Plant Sciences, Science for Life Laboratory, Stockholm University, Stockholm, Sweden
| |
Collapse
|
29
|
Garber AI, Zehnpfennig JR, Sheik CS, Henson MW, Ramírez GA, Mahon AR, Halanych KM, Learman DR. Metagenomics of Antarctic Marine Sediment Reveals Potential for Diverse Chemolithoautotrophy. mSphere 2021; 6:e0077021. [PMID: 34817234 PMCID: PMC8612310 DOI: 10.1128/msphere.00770-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Accepted: 11/10/2021] [Indexed: 11/30/2022] Open
Abstract
The microbial biogeochemical processes occurring in marine sediment in Antarctica remain underexplored due to limited access. Further, these polar habitats are unique, as they are being exposed to significant changes in their climate. To explore how microbes drive biogeochemistry in these sediments, we performed a shotgun metagenomic survey of marine surficial sediment (0 to 3 cm of the seafloor) collected from 13 locations in western Antarctica and assembled 16 high-quality metagenome assembled genomes for focused interrogation of the lifestyles of some abundant lineages. We observe an abundance of genes from pathways for the utilization of reduced carbon, sulfur, and nitrogen sources. Although organotrophy is pervasive, nitrification and sulfide oxidation are the dominant lithotrophic pathways and likely fuel carbon fixation via the reverse tricarboxylic acid and Calvin cycles. Oxygen-dependent terminal oxidases are common, and genes for reduction of oxidized nitrogen are sporadically present in our samples. Our results suggest that the underlying benthic communities are well primed for the utilization of settling organic matter, which is consistent with findings from highly productive surface water. Despite the genetic potential for nitrate reduction, the net catabolic pathway in our samples remains aerobic respiration, likely coupled to the oxidation of sulfur and nitrogen imported from the highly productive Antarctic water column above. IMPORTANCE The impacts of climate change in polar regions, like Antarctica, have the potential to alter numerous ecosystems and biogeochemical cycles. Increasing temperature and freshwater runoff from melting ice can have profound impacts on the cycling of organic and inorganic nutrients between the pelagic and benthic ecosystems. Within the benthos, sediment microbial communities play a critical role in carbon mineralization and the cycles of essential nutrients like nitrogen and sulfur. Metagenomic data collected from sediment samples from the continental shelf of western Antarctica help to examine this unique system and document the metagenomic potential for lithotrophic metabolisms and the cycles of both nitrogen and sulfur, which support not only benthic microbes but also life in the pelagic zone.
Collapse
Affiliation(s)
- Arkadiy I. Garber
- Biodesign Center for Mechanisms for Evolution, Arizona State University, Tempe, Arizona, USA
| | | | - Cody S. Sheik
- Biology Department and Large Lakes Observatory, University of Minnesota Duluth, Duluth, Minnesota, USA
| | - Michael W. Henson
- Department of Biology, Central Michigan University, Mt. Pleasant, Michigan, USA
| | - Gustavo A. Ramírez
- College of Veterinary Medicine, Western University of Health Sciences, Pomona, California, USA
- Department of Marine Biology, Haifa University, Haifa, Israel
| | - Andrew R. Mahon
- Department of Biology, Central Michigan University, Mt. Pleasant, Michigan, USA
| | - Kenneth M. Halanych
- Center for Marine Science, University of North Carolina Wilmington, Wilmington, North Carolina, USA
| | - Deric R. Learman
- Department of Biology, Central Michigan University, Mt. Pleasant, Michigan, USA
| |
Collapse
|
30
|
Martinez-Gutierrez CA, Aylward FO. Phylogenetic Signal, Congruence, and Uncertainty across Bacteria and Archaea. Mol Biol Evol 2021; 38:5514-5527. [PMID: 34436605 PMCID: PMC8662615 DOI: 10.1093/molbev/msab254] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Reconstruction of the Tree of Life is a central goal in biology. Although numerous novel phyla of bacteria and archaea have recently been discovered, inconsistent phylogenetic relationships are routinely reported, and many inter-phylum and inter-domain evolutionary relationships remain unclear. Here, we benchmark different marker genes often used in constructing multidomain phylogenetic trees of bacteria and archaea and present a set of marker genes that perform best for multidomain trees constructed from concatenated alignments. We use recently-developed Tree Certainty metrics to assess the confidence of our results and to obviate the complications of traditional bootstrap-based metrics. Given the vastly disparate number of genomes available for different phyla of bacteria and archaea, we also assessed the impact of taxon sampling on multidomain tree construction. Our results demonstrate that biases between the representation of different taxonomic groups can dramatically impact the topology of resulting trees. Inspection of our highest-quality tree supports the division of most bacteria into Terrabacteria and Gracilicutes, with Thermatogota and Synergistota branching earlier from these superphyla. This tree also supports the inclusion of the Patescibacteria within the Terrabacteria as a sister group to the Chloroflexota instead of as a basal-branching lineage. For the Archaea, our tree supports three monophyletic lineages (DPANN, Euryarchaeota, and TACK/Asgard), although we note the basal placement of the DPANN may still represent an artifact caused by biased sequence composition. Our findings provide a robust and standardized framework for multidomain phylogenetic reconstruction that can be used to evaluate inter-phylum relationships and assess uncertainty in conflicting topologies of the Tree of Life.
Collapse
Affiliation(s)
| | - Frank O Aylward
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, USA
- Center for Emerging, Zoonotic, and Arthropod-borne Pathogens, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| |
Collapse
|
31
|
Compendium of 530 metagenome-assembled bacterial and archaeal genomes from the polar Arctic Ocean. Nat Microbiol 2021; 6:1561-1574. [PMID: 34782724 DOI: 10.1038/s41564-021-00979-9] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 09/13/2021] [Indexed: 11/08/2022]
Abstract
The role of the Arctic Ocean ecosystem in climate regulation may depend on the responses of marine microorganisms to environmental change. We applied genome-resolved metagenomics to 41 Arctic seawater samples, collected at various depths in different seasons during the Tara Oceans Polar Circle expedition, to evaluate the ecology, metabolic potential and activity of resident bacteria and archaea. We assembled 530 metagenome-assembled genomes (MAGs) to form the Arctic MAGs catalogue comprising 526 species. A total of 441 MAGs belonged to species that have not previously been reported and 299 genomes showed an exclusively polar distribution. Most Arctic MAGs have large genomes and the potential for fast generation times, both of which may enable adaptation to a copiotrophic lifestyle in nutrient-rich waters. We identified 38 habitat generalists and 111 specialists in the Arctic Ocean. We also found a general prevalence of 14 mixotrophs, while chemolithoautotrophs were mostly present in the mesopelagic layer during spring and autumn. We revealed 62 MAGs classified as key Arctic species, found only in the Arctic Ocean, showing the highest gene expression values and predicted to have habitat-specific traits. The Artic MAGs catalogue will inform our understanding of polar microorganisms that drive global biogeochemical cycles.
Collapse
|
32
|
Traving SJ, Kellogg CTE, Ross T, McLaughlin R, Kieft B, Ho GY, Peña A, Krzywinski M, Robert M, Hallam SJ. Prokaryotic responses to a warm temperature anomaly in northeast subarctic Pacific waters. Commun Biol 2021; 4:1217. [PMID: 34686760 PMCID: PMC8536700 DOI: 10.1038/s42003-021-02731-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 09/23/2021] [Indexed: 11/23/2022] Open
Abstract
Recent studies on marine heat waves describe water temperature anomalies causing changes in food web structure, bloom dynamics, biodiversity loss, and increased plant and animal mortality. However, little information is available on how water temperature anomalies impact prokaryotes (bacteria and archaea) inhabiting ocean waters. This is a nontrivial omission given their integral roles in driving major biogeochemical fluxes that influence ocean productivity and the climate system. Here we present a time-resolved study on the impact of a large-scale warm water surface anomaly in the northeast subarctic Pacific Ocean, colloquially known as the Blob, on prokaryotic community compositions. Multivariate statistical analyses identified significant depth- and season-dependent trends that were accentuated during the Blob. Moreover, network and indicator analyses identified shifts in specific prokaryotic assemblages from typically particle-associated before the Blob to taxa considered free-living and chemoautotrophic during the Blob, with potential implications for primary production and organic carbon conversion and export.
Collapse
Affiliation(s)
- Sachia J Traving
- Department of Microbiology & Immunology, University of British Columbia, Vancouver, BC, V6T 1Z1, Canada
- HADAL and Nordcee, Department of Biology, University of Southern Denmark, Campusvej 55, 5230, Odense M, Denmark
| | | | - Tetjana Ross
- Institute of Ocean Sciences, Fisheries and Ocean Canada, Sidney, BC, Canada
| | - Ryan McLaughlin
- Graduate Program in Bioinformatics, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Brandon Kieft
- Department of Microbiology & Immunology, University of British Columbia, Vancouver, BC, V6T 1Z1, Canada
| | - Grace Y Ho
- Department of Microbiology & Immunology, University of British Columbia, Vancouver, BC, V6T 1Z1, Canada
- Max Planck Institute for Marine Microbiology, Celsiusstraße 1, 28359, Bremen, Germany
| | - Angelica Peña
- Institute of Ocean Sciences, Fisheries and Ocean Canada, Sidney, BC, Canada
| | - Martin Krzywinski
- Genome Sciences Centre, BC Cancer Agency, Vancouver, BC, V5Z 4S6, Canada
| | - Marie Robert
- Institute of Ocean Sciences, Fisheries and Ocean Canada, Sidney, BC, Canada
| | - Steven J Hallam
- Department of Microbiology & Immunology, University of British Columbia, Vancouver, BC, V6T 1Z1, Canada.
- Graduate Program in Bioinformatics, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada.
- Genome Science and Technology Program, University of British Columbia, 2329 West Mall, Vancouver, BC, V6T 1Z4, Canada.
- Life Sciences Institute, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada.
- ECOSCOPE Training Program, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada.
| |
Collapse
|
33
|
Li F, Leu A, Poff K, Carlson LT, Ingalls AE, DeLong EF. Planktonic Archaeal Ether Lipid Origins in Surface Waters of the North Pacific Subtropical Gyre. Front Microbiol 2021; 12:610675. [PMID: 34589060 PMCID: PMC8473941 DOI: 10.3389/fmicb.2021.610675] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Accepted: 08/23/2021] [Indexed: 01/04/2023] Open
Abstract
Thaumarchaeota and Thermoplasmatota are the most abundant planktonic archaea in the sea. Thaumarchaeota contain tetraether lipids as their major membrane lipids, but the lipid composition of uncultured planktonic Thermoplasmatota representatives remains unknown. To address this knowledge gap, we quantified archaeal cells and ether lipids in open ocean depth profiles (0–200 m) of the North Pacific Subtropical Gyre. Planktonic archaeal community structure and ether lipid composition in the water column partitioned into two separate clusters: one above the deep chlorophyll maximum, the other within and below it. In surface waters, Thermoplasmatota densities ranged from 2.11 × 106 to 6.02 × 106 cells/L, while Thaumarchaeota were undetectable. As previously reported for Thaumarchaeota, potential homologs of archaeal tetraether ring synthases were present in planktonic Thermoplasmatota metagenomes. Despite the absence of Thaumarchaeota in surface waters, measurable amounts of intact polar ether lipids were found there. Based on cell abundance estimates, these surface water archaeal ether lipids contributed only 1.21 × 10–9 ng lipid/Thermoplasmatota cell, about three orders of magnitude less than that reported for Thaumarchaeota cells. While these data indicate that even if some tetraether and diether lipids may be derived from Thermoplasmatota, they would only comprise a small fraction of Thermoplasmatota total biomass. Therefore, while both MGI Thaumarchaeota and MGII/III Thermoplasmatota are potential biological sources of archaeal GDGTs, the Thaumarchaeota appear to be the major contributors of archaeal tetraether lipids in planktonic marine habitats. These results extend and confirm previous reports of planktonic archaeal lipid sources, and further emphasize the need for Thermoplasmatota cultivation, to better characterize the membrane lipid constituents of marine planktonic Thermoplasmatota, and more precisely define the sources and patterns of archaeal tetraether lipid distributions in marine plankton.
Collapse
Affiliation(s)
- Fuyan Li
- Daniel K. Inouye Center for Microbial Oceanography: Research and Education, University of Hawai'i at Mânoa, Honolulu, HI, United States
| | - Andy Leu
- Daniel K. Inouye Center for Microbial Oceanography: Research and Education, University of Hawai'i at Mânoa, Honolulu, HI, United States
| | - Kirsten Poff
- Daniel K. Inouye Center for Microbial Oceanography: Research and Education, University of Hawai'i at Mânoa, Honolulu, HI, United States
| | - Laura T Carlson
- School of Oceanography, University of Washington, Seattle, WA, United States
| | - Anitra E Ingalls
- School of Oceanography, University of Washington, Seattle, WA, United States
| | - Edward F DeLong
- Daniel K. Inouye Center for Microbial Oceanography: Research and Education, University of Hawai'i at Mânoa, Honolulu, HI, United States
| |
Collapse
|
34
|
Patin NV, Dietrich ZA, Stancil A, Quinan M, Beckler JS, Hall ER, Culter J, Smith CG, Taillefert M, Stewart FJ. Gulf of Mexico blue hole harbors high levels of novel microbial lineages. THE ISME JOURNAL 2021; 15:2206-2232. [PMID: 33612832 PMCID: PMC8319197 DOI: 10.1038/s41396-021-00917-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 01/14/2021] [Accepted: 01/27/2021] [Indexed: 01/31/2023]
Abstract
Exploration of oxygen-depleted marine environments has consistently revealed novel microbial taxa and metabolic capabilities that expand our understanding of microbial evolution and ecology. Marine blue holes are shallow karst formations characterized by low oxygen and high organic matter content. They are logistically challenging to sample, and thus our understanding of their biogeochemistry and microbial ecology is limited. We present a metagenomic and geochemical characterization of Amberjack Hole on the Florida continental shelf (Gulf of Mexico). Dissolved oxygen became depleted at the hole's rim (32 m water depth), remained low but detectable in an intermediate hypoxic zone (40-75 m), and then increased to a secondary peak before falling below detection in the bottom layer (80-110 m), concomitant with increases in nutrients, dissolved iron, and a series of sequentially more reduced sulfur species. Microbial communities in the bottom layer contained heretofore undocumented levels of the recently discovered phylum Woesearchaeota (up to 58% of the community), along with lineages in the bacterial Candidate Phyla Radiation (CPR). Thirty-one high-quality metagenome-assembled genomes (MAGs) showed extensive biochemical capabilities for sulfur and nitrogen cycling, as well as for resisting and respiring arsenic. One uncharacterized gene associated with a CPR lineage differentiated hypoxic from anoxic zone communities. Overall, microbial communities and geochemical profiles were stable across two sampling dates in the spring and fall of 2019. The blue hole habitat is a natural marine laboratory that provides opportunities for sampling taxa with under-characterized but potentially important roles in redox-stratified microbial processes.
Collapse
Affiliation(s)
- N V Patin
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA.
- Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, GA, USA.
- Ocean Chemistry and Ecosystems Division, Atlantic Oceanographic and Meteorological Laboratory, National Oceanic and Atmospheric Administration, Miami, FL, USA.
- Cooperative Institute for Marine and Atmospheric Studies, Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, FL, USA.
- Stationed at Southwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, La Jolla, CA, USA.
| | | | - A Stancil
- Harbor Branch Oceanographic Institute, Florida Atlantic University, Ft. Pierce, FL, USA
| | - M Quinan
- Harbor Branch Oceanographic Institute, Florida Atlantic University, Ft. Pierce, FL, USA
| | - J S Beckler
- Harbor Branch Oceanographic Institute, Florida Atlantic University, Ft. Pierce, FL, USA
| | - E R Hall
- Mote Marine Laboratory, Sarasota, FL, USA
| | - J Culter
- Mote Marine Laboratory, Sarasota, FL, USA
| | - C G Smith
- U.S. Geological Survey, St. Petersburg Coastal and Marine Science Center, St. Petersburg, FL, USA
| | - M Taillefert
- School of Earth & Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - F J Stewart
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
- Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, GA, USA
- Department of Microbiology & Immunology, Montana State University, Bozeman, MT, USA
| |
Collapse
|
35
|
Acinas SG, Sánchez P, Salazar G, Cornejo-Castillo FM, Sebastián M, Logares R, Royo-Llonch M, Paoli L, Sunagawa S, Hingamp P, Ogata H, Lima-Mendez G, Roux S, González JM, Arrieta JM, Alam IS, Kamau A, Bowler C, Raes J, Pesant S, Bork P, Agustí S, Gojobori T, Vaqué D, Sullivan MB, Pedrós-Alió C, Massana R, Duarte CM, Gasol JM. Deep ocean metagenomes provide insight into the metabolic architecture of bathypelagic microbial communities. Commun Biol 2021; 4:604. [PMID: 34021239 PMCID: PMC8139981 DOI: 10.1038/s42003-021-02112-2] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 04/16/2021] [Indexed: 02/04/2023] Open
Abstract
The deep sea, the largest ocean's compartment, drives planetary-scale biogeochemical cycling. Yet, the functional exploration of its microbial communities lags far behind other environments. Here we analyze 58 metagenomes from tropical and subtropical deep oceans to generate the Malaspina Gene Database. Free-living or particle-attached lifestyles drive functional differences in bathypelagic prokaryotic communities, regardless of their biogeography. Ammonia and CO oxidation pathways are enriched in the free-living microbial communities and dissimilatory nitrate reduction to ammonium and H2 oxidation pathways in the particle-attached, while the Calvin Benson-Bassham cycle is the most prevalent inorganic carbon fixation pathway in both size fractions. Reconstruction of the Malaspina Deep Metagenome-Assembled Genomes reveals unique non-cyanobacterial diazotrophic bacteria and chemolithoautotrophic prokaryotes. The widespread potential to grow both autotrophically and heterotrophically suggests that mixotrophy is an ecologically relevant trait in the deep ocean. These results expand our understanding of the functional microbial structure and metabolic capabilities of the largest Earth aquatic ecosystem.
Collapse
Affiliation(s)
- Silvia G Acinas
- Department of Marine Biology and Oceanography, Institute of Marine Sciences (ICM), CSIC, Barcelona, Spain.
| | - Pablo Sánchez
- Department of Marine Biology and Oceanography, Institute of Marine Sciences (ICM), CSIC, Barcelona, Spain
| | - Guillem Salazar
- Department of Marine Biology and Oceanography, Institute of Marine Sciences (ICM), CSIC, Barcelona, Spain
- Department of Biology, Institute of Microbiology and Swiss Institute of Bioinformatics, ETH Zurich, Zurich, Switzerland
| | - Francisco M Cornejo-Castillo
- Department of Marine Biology and Oceanography, Institute of Marine Sciences (ICM), CSIC, Barcelona, Spain
- Department of Ocean Sciences, University of California, Santa Cruz, CA, USA
| | - Marta Sebastián
- Department of Marine Biology and Oceanography, Institute of Marine Sciences (ICM), CSIC, Barcelona, Spain
- Instituto de Oceanografía y Cambio Global, IOCAG, Universidad de Las Palmas de Gran Canaria, ULPGC, Gran Canaria, Spain
| | - Ramiro Logares
- Department of Marine Biology and Oceanography, Institute of Marine Sciences (ICM), CSIC, Barcelona, Spain
| | - Marta Royo-Llonch
- Department of Marine Biology and Oceanography, Institute of Marine Sciences (ICM), CSIC, Barcelona, Spain
| | - Lucas Paoli
- Department of Biology, Institute of Microbiology and Swiss Institute of Bioinformatics, ETH Zurich, Zurich, Switzerland
| | - Shinichi Sunagawa
- Department of Biology, Institute of Microbiology and Swiss Institute of Bioinformatics, ETH Zurich, Zurich, Switzerland
| | - Pascal Hingamp
- Aix Marseille Univ., Université de Toulon, CNRS, Marseille, France
| | - Hiroyuki Ogata
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Japan
| | - Gipsi Lima-Mendez
- Cellular and Molecular Microbiology, Faculté des Sciences, Université libre de Bruxelles (ULB), Brussels, Belgium
- Interuniversity Institute for Bioinformatics in Brussels, ULB-VUB, Brussels, Belgium
| | - Simon Roux
- Department of Microbiology, The Ohio State University, Columbus, OH, USA
- U.S. Department of Energy Joint Genome Institute, Berkeley, CA, USA
| | - José M González
- Department of Microbiology, University of La Laguna, La Laguna, Spain
| | - Jesús M Arrieta
- Spanish Institute of Oceanography (IEO), Oceanographic Center of The Canary Islands, Dársena Pesquera, Santa Cruz de Tenerife, Spain
| | - Intikhab S Alam
- King Abdullah University of Science and Technology (KAUST), Computational Bioscience Research Center (CBRC), Thuwal, Saudi Arabia
| | - Allan Kamau
- King Abdullah University of Science and Technology (KAUST), Computational Bioscience Research Center (CBRC), Thuwal, Saudi Arabia
| | - Chris Bowler
- Institut de Biologie de l'ENS (IBENS), Département de biologie, École normale supérieure, CNRS, INSERM, Université PSL, Paris, France
- Research Federation for the study of Global Ocean Systems Ecology and Evolution, Paris, France
| | - Jeroen Raes
- Department of Microbiology and Immunology, Rega Institute, KU Leuven - University of Leuven, Leuven, Belgium
- VIB Center for Microbiology, Leuven, Belgium
| | - Stéphane Pesant
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge, United Kingdom
- PANGAEA, Data Publisher for Earth and Environmental Science, University of Bremen, Bremen, Germany
| | - Peer Bork
- Structural and Computational Biology, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Susana Agustí
- King Abdullah University of Science and Technology (KAUST), Red Sea Research Center (RSRC), Thuwal, Saudi Arabia
| | - Takashi Gojobori
- King Abdullah University of Science and Technology (KAUST), Computational Bioscience Research Center (CBRC), Thuwal, Saudi Arabia
| | - Dolors Vaqué
- Department of Marine Biology and Oceanography, Institute of Marine Sciences (ICM), CSIC, Barcelona, Spain
| | - Matthew B Sullivan
- Department of Microbiology and Civil Environmental and Geodetic Engineering, The Ohio State University, Columbus, OH, USA
| | - Carlos Pedrós-Alió
- Department of Systems Biology, Centro Nacional de Biotecnología (CNB), CSIC, Madrid, Spain
| | - Ramon Massana
- Department of Marine Biology and Oceanography, Institute of Marine Sciences (ICM), CSIC, Barcelona, Spain
| | - Carlos M Duarte
- King Abdullah University of Science and Technology (KAUST), Red Sea Research Center (RSRC) and Computational Bioscience Research Center (CBRC), Thuwal, Saudi Arabia
| | - Josep M Gasol
- Department of Marine Biology and Oceanography, Institute of Marine Sciences (ICM), CSIC, Barcelona, Spain
- Centre for Marine Ecosystems Research, School of Sciences, Edith Cowan University, Joondalup, WA, Australia
| |
Collapse
|
36
|
Hitch TCA, Riedel T, Oren A, Overmann J, Lawley TD, Clavel T. Automated analysis of genomic sequences facilitates high-throughput and comprehensive description of bacteria. ISME COMMUNICATIONS 2021; 1:16. [PMID: 36732617 PMCID: PMC9723785 DOI: 10.1038/s43705-021-00017-z] [Citation(s) in RCA: 109] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 04/21/2021] [Accepted: 05/04/2021] [Indexed: 02/05/2023]
Abstract
The study of microbial communities is hampered by the large fraction of still unknown bacteria. However, many of these species have been isolated, yet lack a validly published name or description. The validation of names for novel bacteria requires that the uniqueness of those taxa is demonstrated and their properties are described. The accepted format for this is the protologue, which can be time-consuming to create. Hence, many research fields in microbiology and biotechnology will greatly benefit from new approaches that reduce the workload and harmonise the generation of protologues.We have developed Protologger, a bioinformatic tool that automatically generates all the necessary readouts for writing a detailed protologue. By producing multiple taxonomic outputs, functional features and ecological analysis using the 16S rRNA gene and genome sequences from a single species, the time needed to gather the information for describing novel taxa is substantially reduced. The usefulness of Protologger was demonstrated by using three published isolate collections to describe 34 novel taxa, encompassing 17 novel species and 17 novel genera, including the automatic generation of ecologically and functionally relevant names. We also highlight the need to utilise multiple taxonomic delineation methods, as while inconsistencies between each method occur, a combined approach provides robust placement. Protologger is open source; all scripts and datasets are available, along with a webserver at www.protologger.de.
Collapse
Affiliation(s)
- Thomas C A Hitch
- Functional Microbiome Research Group, RWTH University Hospital, Aachen, Germany.
| | - Thomas Riedel
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
- German Center for Infection Research (DZIF), Partner site Hannover-Braunschweig, Braunschweig, Germany
| | - Aharon Oren
- The Institute of Life Sciences, The Hebrew University of Jerusalem, The Edmond J. Safra Campus, Jerusalem, Israel
| | - Jörg Overmann
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
- German Center for Infection Research (DZIF), Partner site Hannover-Braunschweig, Braunschweig, Germany
- Braunschweig University of Technology, Braunschweig, Germany
| | - Trevor D Lawley
- Host-Microbiota Interactions Laboratory, Wellcome Sanger Institute, Hinxton, UK
| | - Thomas Clavel
- Functional Microbiome Research Group, RWTH University Hospital, Aachen, Germany.
| |
Collapse
|
37
|
Seyler LM, Trembath-Reichert E, Tully BJ, Huber JA. Time-series transcriptomics from cold, oxic subseafloor crustal fluids reveals a motile, mixotrophic microbial community. THE ISME JOURNAL 2021; 15:1192-1206. [PMID: 33273721 PMCID: PMC8115675 DOI: 10.1038/s41396-020-00843-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 10/27/2020] [Accepted: 11/11/2020] [Indexed: 01/29/2023]
Abstract
The oceanic crustal aquifer is one of the largest habitable volumes on Earth, and it harbors a reservoir of microbial life that influences global-scale biogeochemical cycles. Here, we use time series metagenomic and metatranscriptomic data from a low-temperature, ridge flank environment representative of the majority of global hydrothermal fluid circulation in the ocean to reconstruct microbial metabolic potential, transcript abundance, and community dynamics. We also present metagenome-assembled genomes from recently collected fluids that are furthest removed from drilling disturbances. Our results suggest that the microbial community in the North Pond aquifer plays an important role in the oxidation of organic carbon within the crust. This community is motile and metabolically flexible, with the ability to use both autotrophic and organotrophic pathways, as well as function under low oxygen conditions by using alternative electron acceptors such as nitrate and thiosulfate. Anaerobic processes are most abundant in subseafloor horizons deepest in the aquifer, furthest from connectivity with the deep ocean, and there was little overlap in the active microbial populations between sampling horizons. This work highlights the heterogeneity of microbial life in the subseafloor aquifer and provides new insights into biogeochemical cycling in ocean crust.
Collapse
Affiliation(s)
- Lauren M Seyler
- School of Natural and Mathematical Sciences, Stockton University, Galloway, NJ, USA.
- Blue Marble Space Institute of Science, Seattle, WA, USA.
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA, USA.
| | | | - Benjamin J Tully
- Center for Dark Energy Biosphere Investigations, University of Southern California, Los Angeles, CA, USA
| | - Julie A Huber
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA, USA
| |
Collapse
|
38
|
DeLong EF. Exploring Marine Planktonic Archaea: Then and Now. Front Microbiol 2021; 11:616086. [PMID: 33519774 PMCID: PMC7838436 DOI: 10.3389/fmicb.2020.616086] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Accepted: 12/18/2020] [Indexed: 12/24/2022] Open
Abstract
In 1977, Woese and Fox leveraged molecular phylogenetic analyses of ribosomal RNAs and identified a new microbial domain of life on Earth, the Archaebacteria (now known as Archaea). At the time of their discovery, only one archaebacterial group, the strictly anaerobic methanogens, was known. But soon, other phenotypically unrelated microbial isolates were shown to belong to the Archaea, many originating from extreme habitats, including extreme halophiles, extreme thermophiles, and thermoacidophiles. Since most Archaea seemed to inhabit extreme or strictly anoxic habitats, it came as a surprise in 1992 when two new lineages of archaea were reported to be abundant in oxygen rich, temperate marine coastal waters and the deep ocean. Since that time, studies of marine planktonic archaea have revealed many more surprises, including their unexpected ubiquity, unusual symbiotic associations, unpredicted physiologies and biogeochemistry, and global abundance. In this Perspective, early work conducted on marine planktonic Archaea by my lab group and others is discussed in terms of the relevant historical context, some of the original research motivations, and surprises and discoveries encountered along the way.
Collapse
Affiliation(s)
- Edward F DeLong
- Daniel K. Inouye Center for Microbial Oceanography Research and Education, University of Hawai'i at Mănoa, Honolulu, HI, United States
| |
Collapse
|
39
|
Haber M, Burgsdorf I, Handley KM, Rubin-Blum M, Steindler L. Genomic Insights Into the Lifestyles of Thaumarchaeota Inside Sponges. Front Microbiol 2021; 11:622824. [PMID: 33537022 PMCID: PMC7848895 DOI: 10.3389/fmicb.2020.622824] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 12/14/2020] [Indexed: 11/28/2022] Open
Abstract
Sponges are among the oldest metazoans and their success is partly due to their abundant and diverse microbial symbionts. They are one of the few animals that have Thaumarchaeota symbionts. Here we compare genomes of 11 Thaumarchaeota sponge symbionts, including three new genomes, to free-living ones. Like their free-living counterparts, sponge-associated Thaumarchaeota can oxidize ammonia, fix carbon, and produce several vitamins. Adaptions to life inside the sponge host include enrichment in transposases, toxin-antitoxin systems and restriction modifications systems, enrichments previously reported also from bacterial sponge symbionts. Most thaumarchaeal sponge symbionts lost the ability to synthesize rhamnose, which likely alters their cell surface and allows them to evade digestion by the host. All but one archaeal sponge symbiont encoded a high-affinity, branched-chain amino acid transporter system that was absent from the analyzed free-living thaumarchaeota suggesting a mixotrophic lifestyle for the sponge symbionts. Most of the other unique features found in sponge-associated Thaumarchaeota, were limited to only a few specific symbionts. These features included the presence of exopolyphosphatases and a glycine cleavage system found in the novel genomes. Thaumarchaeota have thus likely highly specific interactions with their sponge host, which is supported by the limited number of host sponge species to which each of these symbionts is restricted.
Collapse
Affiliation(s)
- Markus Haber
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel
- Department of Aquatic Microbial Ecology, Institute of Hydrobiology, Biology Centre CAS, České Budějovice, Czechia
| | - Ilia Burgsdorf
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel
| | - Kim M. Handley
- School of Biological Sciences, The University of Auckland, Auckland, New Zealand
| | - Maxim Rubin-Blum
- Israel Oceanographic and Limnological Research Institute, Haifa, Israel
| | - Laura Steindler
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel
| |
Collapse
|
40
|
Genomes of the " Candidatus Actinomarinales" Order: Highly Streamlined Marine Epipelagic Actinobacteria. mSystems 2020; 5:5/6/e01041-20. [PMID: 33323418 PMCID: PMC7771536 DOI: 10.1128/msystems.01041-20] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Microbiology is in a new age in which sequence databases are primary sources of information about many microbes. However, in-depth analysis of environmental genomes thus retrieved is essential to substantiate the new knowledge. “Candidatus Actinomarinales” was defined as a subclass of exclusively marine Actinobacteria with small cells and genomes. We have collected all the available genomes in databases to assess the diversity included in this group and analyzed it by comparative genomics. We have found the equivalent of five genera and 18 genomospecies. They have genome reduction parameters equal to those of freshwater actinobacterial “Candidatus Nanopelagicales” or marine alphaproteobacterial Pelagibacterales. Genome recruitment shows that they are found only in the photic zone and mainly in surface waters, with only one genus that is found preferentially at or below the deep chlorophyll maximum. “Ca. Actinomarinales” show a highly conserved core genome (80% of the gene families conserved for the whole order) with a saturation of genomic diversity of the flexible genome at the genomospecies level. We found only a flexible genomic island preserved throughout the order; it is related to the sugar decoration of the envelope and uses several tRNAs as hot spots to increase its genomic diversity. Populations had a discrete level of sequence diversity similar to other marine microbes but drastically different from the much higher levels found for Pelagibacterales. Genomic analysis suggests that they are all aerobic photoheterotrophs with one type 1 rhodopsin and a heliorhodopsin. Like other actinobacteria, they possess the F420 coenzyme biosynthesis pathway, and its lower reduction potential could provide access to an increased range of redox chemical transformations. Last, sequence analysis revealed the first “Ca. Actinomarinales” phages, including a prophage, with metaviromic islands related to sialic acid cleavage. IMPORTANCE Microbiology is in a new age in which sequence databases are primary sources of information about many microbes. However, in-depth analysis of environmental genomes thus retrieved is essential to substantiate the new knowledge. Here, we study 182 genomes belonging to the only known exclusively marine pelagic group of the phylum Actinobacteria. The aquatic branch of this phylum is largely known from environmental sequencing studies (single-amplified genomes [SAGs] and metagenome-assembled genomes [MAGs]), and we have collected and analyzed the available information present in databases about the “Ca. Actinomarinales.” They are among the most streamlined microbes to live in the epipelagic zone of the ocean, and their study is critical to obtain a proper view of the diversity of Actinobacteria and their role in aquatic ecosystems.
Collapse
|
41
|
Ancestral Reconstructions Decipher Major Adaptations of Ammonia-Oxidizing Archaea upon Radiation into Moderate Terrestrial and Marine Environments. mBio 2020; 11:mBio.02371-20. [PMID: 33051370 PMCID: PMC7554672 DOI: 10.1128/mbio.02371-20] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Unlike all other archaeal lineages, ammonia-oxidizing archaea (AOA) of the phylum Thaumarchaeota are widespread and abundant in all moderate and oxic environments on Earth. The evolutionary adaptations that led to such unprecedented ecological success of a microbial clade characterized by highly conserved energy and carbon metabolisms have, however, remained underexplored. Here, we reconstructed the genomic content and growth temperature of the ancestor of all AOA, as well as the ancestors of the marine and soil lineages, based on 39 available complete or nearly complete genomes of AOA. Our evolutionary scenario depicts an extremely thermophilic, autotrophic, aerobic ancestor from which three independent lineages of a marine and two terrestrial groups radiated into moderate environments. Their emergence was paralleled by (i) a continuous acquisition of an extensive collection of stress tolerance genes mostly involved in redox maintenance and oxygen detoxification, (ii) an expansion of regulatory capacities in transcription and central metabolic functions, and (iii) an extended repertoire of cell appendages and modifications related to adherence and interactions with the environment. Our analysis provides insights into the evolutionary transitions and key processes that enabled the conquest of the diverse environments in which contemporary AOA are found.
Collapse
|
42
|
Zou D, Liu H, Li M. Community, Distribution, and Ecological Roles of Estuarine Archaea. Front Microbiol 2020; 11:2060. [PMID: 32983044 PMCID: PMC7484942 DOI: 10.3389/fmicb.2020.02060] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 08/05/2020] [Indexed: 12/04/2022] Open
Abstract
Archaea are diverse and ubiquitous prokaryotes present in both extreme and moderate environments. Estuaries, serving as links between the land and ocean, harbor numerous microbes that are relatively highly active because of massive terrigenous input of nutrients. Archaea account for a considerable portion of the estuarine microbial community. They are diverse and play key roles in the estuarine biogeochemical cycles. Ammonia-oxidizing archaea (AOA) are an abundant aquatic archaeal group in estuaries, greatly contributing estuarine ammonia oxidation. Bathyarchaeota are abundant in sediments, and they may involve in sedimentary organic matter degradation, acetogenesis, and, potentially, methane metabolism, based on genomics. Other archaeal groups are also commonly detected in estuaries worldwide. They include Euryarchaeota, and members of the DPANN and Asgard archaea. Based on biodiversity surveys of the 16S rRNA gene and some functional genes, the distribution and abundance of estuarine archaea are driven by physicochemical factors, such as salinity and oxygen concentration. Currently, increasing amount of genomic information for estuarine archaea is becoming available because of the advances in sequencing technologies, especially for AOA and Bathyarchaeota, leading to a better understanding of their functions and environmental adaptations. Here, we summarized the current knowledge on the community composition and major archaeal groups in estuaries, focusing on AOA and Bathyarchaeota. We also highlighted the unique genomic features and potential adaptation strategies of estuarine archaea, pointing out major unknowns in the field and scope for future research.
Collapse
Affiliation(s)
- Dayu Zou
- SZU-HKUST Joint Ph.D. Program in Marine Environmental Science, Shenzhen University, Shenzhen, China
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, China
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Hongbin Liu
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong, China
- Hong Kong Branch of Southern Marine Science & Engineering Guangdong Laboratory, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Meng Li
- SZU-HKUST Joint Ph.D. Program in Marine Environmental Science, Shenzhen University, Shenzhen, China
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, China
| |
Collapse
|