1
|
Aziz K, Gilbert JA, Zaidi AH. Genomic and Phenotypic Insight into the Probiotic Potential of Lactic Acid Bacterial spp. Associated with the Human Gut Mucosa. Probiotics Antimicrob Proteins 2025; 17:1236-1264. [PMID: 38070037 DOI: 10.1007/s12602-023-10193-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/27/2023] [Indexed: 05/07/2025]
Abstract
Commensal microbiome-based health support is gaining respect in the medical community and new human gut-associated Lactic Acid Bacteria (LAB) strains must be evaluated for their probiotic potential. Here we characterized the phenotype and genomes of human ileocecal mucosa-associated LAB strains using metagenomic sequencing and in vitro testing. The strains characterized belonged to the genus Enterococcus (Enterococcus lactis NPL1366, NPL1371, and Enterococcus mundtii NPL1379) and Lactobacillus (Lactobacillus paragasseri, NPL1369, NPL1370, and Lactiplantibacillus plantarum NPL1378). Genome annotation suggested bacterial adaptation to both human physiological and industrial manufacturing-related stressors. Genes for histidine kinases in enterococci and Na + /K + antiporters and F0F1 ATP synthases in Lactobacillus strains may support their tolerance to acid seen in vitro. The bile salt hydrolase (BSH) gene in Lp. plantarum and L. paragasseri may help explain their reported bile salt deconjugation and cholesterol-lowering behavior. Thioredoxin is the principal antioxidant system, and several oxidases and general stress-related proteins are found in lactobacilli, most notably in L. plantarum NPL1378. Multiple adhesion and biofilm-related genes were predicted in the LAB genomes. Adhesion and biofilm-related genes figured prominently in the genomes of enterococcal strains, especially E. lactis, corresponding to its biofilm formation capacity in vitro. Bacteriocin and secondary metabolite biosynthetic gene clusters in the sequenced genomes of E. lactis NPL1366 and Lp. plantarum NPL1378 may explain their in vitro pathogenic antagonism. Moreover, folate producing Lp. plantarum strain holds potential to be used in therapeutics or biofortification of food. All the strains were deemed safe through in vitro and in silico analysis. This basic genetic and phenotypic information supports their contention as probiotic adjuncts to conventional medical therapy.
Collapse
Affiliation(s)
- Kanwal Aziz
- National Probiotic Lab-National Institute for Biotechnology & Genetic Engineering-College (NIBGE-C), Jhang Road, Faisalabad, 38000, Punjab, Pakistan
- Pakistan Institute of Engineering and Applied Sciences (PIEAS), Nilore, 45650, Islamabad, Pakistan
| | - Jack A Gilbert
- Department of Paediatrics and Scripps Institution of Oceanography, UC San Diego School of Medicine, La Jolla, San Diego, CA, 92093, USA
| | - Arsalan Haseeb Zaidi
- National Probiotic Lab-National Institute for Biotechnology & Genetic Engineering-College (NIBGE-C), Jhang Road, Faisalabad, 38000, Punjab, Pakistan.
- Pakistan Institute of Engineering and Applied Sciences (PIEAS), Nilore, 45650, Islamabad, Pakistan.
| |
Collapse
|
2
|
Sliti A, Kim RH, Lee D, Shin JH. Whole genome sequencing and In silico analysis of the safety and probiotic features of Lacticaseibacillus paracasei FMT2 isolated from fecal microbiota transplantation (FMT) capsules. Microb Pathog 2025; 202:107405. [PMID: 40024538 DOI: 10.1016/j.micpath.2025.107405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 02/13/2025] [Accepted: 02/20/2025] [Indexed: 03/04/2025]
Abstract
Lacticaseibacillus paracasei is widely used as a probiotic supplement and food additive in the medicinal and food industries. However, its application requires careful evaluation of safety traits associated with probiotic pathogenesis, including the transfer of antibiotic-resistance genes, the presence of virulence and pathogenicity factors, and the potential disruptions of the gut microbiome and immune system. In this study, we conducted whole genome sequencing (WGS) of L. paracasei FMT2 isolated from fecal microbiota transplantation (FMT) capsules and performed genome annotation to assess its probiotic and safety attributes. Our comparative genomic analysis assessed this novel strain's genetic attributes and functional diversity and unraveled its evolutionary relationships with other L. paracasei strains. The assembly yielded three contigs: one corresponding to the chromosome and two corresponding to plasmids. Genome annotation revealed the presence of 2838 DNA-coding sequences (CDS), 78 ribosomal RNAs (rRNAs), 60 transfer RNAs (tRNAs), three non-coding RNAs (ncRNAs), and 126 pseudogenes. The strain lacked antibiotic resistance genes and pathogenicity factors. Two intact prophages, one Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) region, and three antimicrobial peptide gene clusters were identified, highlighting the genomic stability and antimicrobial potential of the strain. Furthermore, genes linked to probiotic functions, such as mucosal colonization, stress resistance, and biofilm formation, were characterized. The pan-genome analysis identified 3358 orthologous clusters, including 1775 single-copy clusters, across all L. paracasei strains. Notably, L. paracasei FMT2 contained many unique singleton genes, potentially contributing to its distinctive probiotic properties. Our findings confirm the potential of L. paracasei FMT2 for food and therapeutic applications based on its probiotic profile and safety.
Collapse
Affiliation(s)
- Amani Sliti
- Department of Applied Biosciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Ryeong-Hui Kim
- NGS Core Facility, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Dokyung Lee
- Department of Integrative Biotechnology, Kyungpook National University, Daegu, 41566, Republic of Korea; Department of Livestock Microbial Ecology, University of Hohenheim, Emil-Wolff-Straße 8, 70599, Stuttgart, Germany
| | - Jae-Ho Shin
- Department of Applied Biosciences, Kyungpook National University, Daegu, 41566, Republic of Korea; NGS Core Facility, Kyungpook National University, Daegu, 41566, Republic of Korea; Department of Integrative Biotechnology, Kyungpook National University, Daegu, 41566, Republic of Korea.
| |
Collapse
|
3
|
Lu S, Yue K, He S, Huang Y, Ren Z, Xu J. Safety Assessment of Lactiplantibacillus plantarum GUANKE Based on Whole-Genome Sequencing, Phenotypic, and Anti-Inflammatory Capacity Analysis. Microorganisms 2025; 13:873. [PMID: 40284709 PMCID: PMC12029457 DOI: 10.3390/microorganisms13040873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Revised: 03/26/2025] [Accepted: 04/07/2025] [Indexed: 04/29/2025] Open
Abstract
Lactiplantibacillus plantarum GUANKE (L. plantarum GUANKE) is a Gram-positive bacterium isolated from the feces of healthy volunteers. Whole-genome sequencing analysis (WGS) revealed that the genome of L. plantarum GUANKE consists of one chromosome and two plasmids, with the chromosome harbors 2955 CDS, 66 tRNAs, and 5 rRNAs. The genome is devoid of virulence factors and Clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated (Cas) systems. It contains three intact prophage regions and bacteriocin biosynthesis genes (plantaricins K, F, and E), as well as seventeen genomic islands lacking antibiotic resistance or pathogenicity determinants. Functional prediction outcomes identified that the genome of L. plantarum GUANKE is closely related to transcription, carbohydrate transport and metabolism, and amino acid transport and metabolism. Carbohydrate-active enzymes (CAZymes) analysis and GutSMASH analysis revealed that the genome of L. plantarum GUANKE contained 100 carbohydrate-active enzyme genes and two specialized metabolic gene clusters. Safety assessments confirmed that L. plantarum GUANKE neither exhibited β-hemolytic activity nor harbored detectable transferable drug resistance genes. The strain exhibited remarkable acid tolerance and bile salt resistance. Cellular adhesion assays demonstrated moderate binding capacity to Caco-2 intestinal epithelium (4.3 ± 0.007)%. In vitro analyses using lipopolysaccharide (LPS)-stimulated macrophage models demonstrated that L. plantarum GUANKE significantly suppressed the secretion of pro-inflammatory cytokines (TNF-α, IL-6, IL-1β), exhibiting dose-dependent anti-inflammatory activity. In vivo experiments showed that L. plantarum GUANKE was involved in the regulation of the apical junction pathway and interferon pathway in colon tissue of normal mice.
Collapse
Affiliation(s)
| | | | | | | | - Zhihong Ren
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102200, China
| | - Jianguo Xu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102200, China
| |
Collapse
|
4
|
Patra S, Pradhan B, Roychowdhury A. Complete genome sequence, metabolic profiling and functional studies reveal Ligilactobacillus salivarius LS-ARS2 is a promising biofilm-forming probiotic with significant antioxidant, antibacterial, and antibiofilm potential. Front Microbiol 2025; 16:1535388. [PMID: 40182284 PMCID: PMC11965632 DOI: 10.3389/fmicb.2025.1535388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 03/06/2025] [Indexed: 04/05/2025] Open
Abstract
Background Probiotics restore microbial balance and prevent gut-inflammation. Therefore, finding out novel probiotic strains is a demand. As gut-microbe, benefits of Ligilactobacillus salivarius (LS) are established. However, strain-specific detailed studies are limited. Here, we illustrate probiotic attributes of novel LS-ARS2 for its potential application as food-supplement and/or therapeutic to improve gut-health. Methods Whole genome sequencing (WGS) and phylogenetic analysis confirm the strain as LS. To establish probiotic properties, acid-bile tolerance, auto-aggregation, cell-surface-hydrophobicity, biofilm-formation, and adhesion-assays are performed. To ensure safety attributes, antibiotic-susceptibility, hemolytic, DNase, trypan-blue, and MTT assays are done. ABTS, DPPH, superoxide, hydroxyl free radical scavenging assays are used to determine anti-oxidant potential. Antibacterial assays, including co-culture assay with pathogen and pathogenic biofilm-inhibition assays, are performed to explore antibacterial efficacy. To characterize metabolic-profile of LS-ARS2-derived cell-free-supernatant (CFS), HRMS analysis are carried out. Consequently, WGS-analyses predict potential molecular associations related to functional outcomes. Results We find LS-ARS2 a remarkable fast-growing strain that shows acid and bile tolerance (>60% survival rate), indicating promising gut-sustainability. High auto-aggregation capacity (>80%), robust cell-surface hydrophobicity (>85%), and adhesion efficacy to Caco-2 cells illustrate significant potential of LS-ARS2 for gut colonization. Fascinatingly, LS-ARS2 is able to form biofilm within 24 h (p < 0.0001), rare among LS strains, indicating the potential of the strain for efficient stay in the gut. The strain ensures safety attributes. LS-ARS2-WGS analysis recognizes probiotic-specific determinants, predicts genomic stability, identifies orthologous-clusters for diverse functions, and predicts metabolites and bacteriocins. HRMS-studies with LS-ARS2-CFS further validate the presence of diverse beneficial metabolites with antimicrobial and immunomodulatory potential. LS-ARS2 shows significant antioxidant properties in ABTS (>60%), DPPH (>10 U/mL), superoxide (>70%), and hydroxyl free radical scavenging assays (>70%). Further, LS-ARS2 shows antimicrobial activities against Gram-positive Methicillin-resistant Staphylococcus aureus (MRSA) and Gram-negative multidrug-resistant clinical strains enterotoxigenic Escherichia coli, Vibrio cholerae, and Shigella flexneri. Anti-Salmonella effect of LS-ARS2 is prominent (p < 0.0001). Most interestingly, LS-ARS2-CFS inhibits MRSA-biofilm (p < 0.0001), again rare among LS strains. Conclusion LS-ARS2 is a novel, fast-growing, biofilm-forming probiotic with significant antioxidant, antibacterial, and anti-biofilm potentials, suggesting the promising applications of LS-ARS2 for combating pathogenic biofilms and improving gut-health. However, further in vivo studies would facilitate their potential applications.
Collapse
Affiliation(s)
- Sinjini Patra
- Biochemistry and Cell Biology Laboratory, School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Odisha, India
| | - Biswaranjan Pradhan
- S. K. Dash Center of Excellence of Biosciences and Engineering & Technology (SKBET), Indian Institute of Technology Bhubaneswar, Odisha, India
| | - Anasuya Roychowdhury
- Biochemistry and Cell Biology Laboratory, School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Odisha, India
| |
Collapse
|
5
|
Deng X, Li H, Wu A, He J, Mao X, Dai Z, Tian G, Cai J, Tang J, Luo Y. Composition, Influencing Factors, and Effects on Host Nutrient Metabolism of Fungi in Gastrointestinal Tract of Monogastric Animals. Animals (Basel) 2025; 15:710. [PMID: 40075993 PMCID: PMC11898470 DOI: 10.3390/ani15050710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 02/26/2025] [Accepted: 02/28/2025] [Indexed: 03/14/2025] Open
Abstract
Intestinal fungi, collectively referred to as mycobiota, constitute a small (0.01-2%) but crucial component of the overall intestinal microbiota. While fungi are far less abundant than bacteria in the gut, the volume of an average fungal cell is roughly 100-fold greater than that of an average bacterial cell. They play a vital role in nutrient metabolism and maintaining intestinal health. The composition and spatial organization of mycobiota vary across different animal species and are influenced by a multitude of factors, including age, diet, and the host's physiological state. At present, quantitative research on the composition of mycobiota in monogastric animals remains scarce, and investigations into the mechanisms underlying their metabolic functions are also relatively restricted. This review delves into the distribution characteristics of mycobiota, including Candida albicans, Saccharomyces cerevisiae, Kazachstania slooffiae, in monogastric animals, the factors influencing their composition, and the consequent impacts on host metabolism and health. The objective is to offer insights for a deeper understanding of the nutritional significance of intestinal fungi in monogastric animals and to explore the mechanisms by which they affect host health in relation to inflammatory bowel disease (IBD), diarrhea, and obesity. Through a systematic evaluation of their functional contributions, this review shifts our perception of intestinal fungi from overlooked commensals to key components in gut ecosystem dynamics, emphasizing their potential in personalized metabolic control regulation and the enhancement of disease prevention and treatment strategies.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Yuheng Luo
- Key Laboratory for Animal Disease-Resistance Nutrition of Ministry of Education of China, Key Laboratory for Animal Disease-Resistance Nutrition and Feed of Ministry of Agriculture of China, Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Engineering Research Center of Animal Disease-Resistance Nutrition Biotechnology of Ministry of Education of China, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (X.D.); (H.L.); (A.W.); (J.H.); (X.M.); (Z.D.); (G.T.); (J.C.); (J.T.)
| |
Collapse
|
6
|
Komatwar K, Sundararaman A, Raphel S, Halami PM. Whole Genome Analysis of Limosilactobacillus fermentum MCC0552 for Probiotic Functionalities and Comparative Genomic Study with Reference Strains. Probiotics Antimicrob Proteins 2025:10.1007/s12602-025-10467-9. [PMID: 39971853 DOI: 10.1007/s12602-025-10467-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/21/2025] [Indexed: 02/21/2025]
Abstract
Limosilactobacillus fermentum MCC0552, a potential probiotic was isolated from a dairy source. L. fermentum MCC0552 has been proven earlier to enhance immuno-modulatory response by alleviating inflammatory and diabetic effects. The objective of this study is to analyse the whole genome sequence of L. fermentum MCC0552 for probiotic functionalities and to compare it with the reference strains. The general genomic features of L. fermentum strain MCC0552 were analysed and a phylogenetic dendrogram was generated by considering the genome sequences of reference strains (L. fermentum IFO 3956, F-6, MTCC 5898 and ATCC 14931 or B1 28) which elucidates their evolutionary lineage. Functional analysis of MCC0552 reveals that the strain possess vitamin biosynthesis gene (thiamine and riboflavin) and mucin binding protein (mubp) with comparatively larger in size. HPLC analysis suggests that the strain MCC0552 synthesises class B vitamins (B1, B2, B6, B9 and B12) which increases its significance in nutritional and nutraceutical applications. Genomic island (GI) prediction shows 19 GI in strain MCC0552 genome were identified. GI regions possessed CRISPR cluster genes, mainly type IE, cas2 and type III-A, nucleotide sugar biosynthesis gene, TA system genes, heavy metal associated genes, etc. On further analysis, the strain exhibited the presence of 2 intact prophage regions which ensure its supplementary probiotic attribute. Thus, the present study elaborates on the probiotic potential of strain MCC0552 at the genome level, revealing its remarkable genomic potential and presenting novel prospects for utilising its unique genetic features in diverse scientific fields.
Collapse
Affiliation(s)
- Krishna Komatwar
- Microbiology and Fermentation Technology Department, CSIR- CFTRI, Mysore, India, 570020
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India, 201002
| | - Aravind Sundararaman
- Microbiology and Fermentation Technology Department, CSIR- CFTRI, Mysore, India, 570020
- Present Address: Research and Development Probiotics, Virchow Biotech, Hyderabad, India, 500043
| | - Steji Raphel
- Microbiology and Fermentation Technology Department, CSIR- CFTRI, Mysore, India, 570020
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India, 201002
| | - Prakash M Halami
- Microbiology and Fermentation Technology Department, CSIR- CFTRI, Mysore, India, 570020.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India, 201002.
| |
Collapse
|
7
|
Mejía-Caballero A, López-Sánchez R, Ramos-Cerrillo B, Garciarrubio A, Segovia L. Genomic insights into habitat adaptation of Lactobacillus species. World J Microbiol Biotechnol 2025; 41:61. [PMID: 39900839 PMCID: PMC11790720 DOI: 10.1007/s11274-025-04275-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 01/24/2025] [Indexed: 02/05/2025]
Abstract
Lactobacillus is one of the most important genera within the lactic acid bacteria group, due to its importance in the food industry and the health field. This diversity can be explained either by their radiation in different environments or by the domestication process in artificial habitats, such as fermented foods. In this study, we performed a comparative genomic analysis of 1020 Lactobacillus genomes, categorizing them into five broad habitats: insects, vertebrates (including humans and animals), vegetables, free-living environments, and dairy products. Utilizing phylogenetic relationships, genomic distances, and gene presence/absence profiles, we identified distinct clustering patterns associated with specific environmental adaptations. Notably, species within the Lactobacillus delbrueckii clade exhibited GC content variations fivefold greater than those observed in other bacterial genera, indicating significant genomic divergence. Insect-associated species showed a strong correlation between genes for carbohydrate utilization and those for amino acid biosynthesis across all habitats. However, individual gene analyses revealed no consistent correlation between habitat adaptation and phylogenetic proximity, suggesting that Lactobacillus employs strain-specific adaptive mechanisms rather than universal genetic markers. Notably, around 50% of the genes associated with specific habitats are hypothetical. Our findings highlight the genomic complexity of Lactobacillus, driven by diverse adaptive strategies, and underscore the need for more comprehensive sampling to fully elucidate the evolutionary dynamics within this important genus.
Collapse
Affiliation(s)
- Alejandra Mejía-Caballero
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Rafael López-Sánchez
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Blanca Ramos-Cerrillo
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Alejandro Garciarrubio
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Lorenzo Segovia
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México.
| |
Collapse
|
8
|
Agolino G, Cristofolini M, Vaccalluzzo A, Tagliazucchi D, Cattivelli A, Pino A, Caggia C, Solieri L, Randazzo CL. Genome Mining and Characterization of Two Novel Lacticaseibacillus rhamnosus Probiotic Candidates with Bile Salt Hydrolase Activity. Biomolecules 2025; 15:86. [PMID: 39858480 PMCID: PMC11763831 DOI: 10.3390/biom15010086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 12/30/2024] [Accepted: 12/31/2024] [Indexed: 01/27/2025] Open
Abstract
Bile salt hydrolase (BSH; EC 3.5.1.24) is the microbial enzyme that catalyzes the conversion of primary bile acids (BAs) into secondary ones, promoting microbial adaptation and modulating several host's biological functions. Probiotics with BSH activity are supposed to survive harsh intestinal conditions and exert a cholesterol-lowering effect. Here, Lacticaseibacillus rhamnosus strains (VB4 and VB1), isolated from the vaginal ecosystem, were submitted to a genomic survey, in vitro BSH activity, and BAs tolerance assay to unravel their probiotic potential as BAs modulators. The draft genomes of Lcb. rhamnosus VB4 and VB1 strains comprised 2769 and 2704 CDSs, respectively. Gene annotation revealed numerous strain-specific genes involved in metabolism and transport, as well as in DNA recombination. Each strain harbors a single bsh gene, encoding a C-N amide hydrolase, which conserved the essential residues required in the BSH core site. According to the results, compared to VB1, the VB4 strain tolerated better BAs stress and was more active in deconjugating BAs. However, BAs stress increased the bsh gene transcription in the VB1 strain but not in the VB4 strain, suggesting a partially nonlinear relationship between BSH activity and gene expression. In conclusion, despite the complexity of the BSH transcriptional system, the results support the VB4 strain as a promising BAs-deconjugating probiotic candidate.
Collapse
Affiliation(s)
- Gianluigi Agolino
- Department of Agriculture, Food and Environment, University of Catania, 95123 Catania, Italy
| | - Marianna Cristofolini
- Department of Life Science, University of Modena and Reggio Emilia, 42122 Reggio Emilia, Italy
| | - Amanda Vaccalluzzo
- Department of Agriculture, Food and Environment, University of Catania, 95123 Catania, Italy
| | - Davide Tagliazucchi
- Department of Life Science, University of Modena and Reggio Emilia, 42122 Reggio Emilia, Italy
| | - Alice Cattivelli
- Department of Life Science, University of Modena and Reggio Emilia, 42122 Reggio Emilia, Italy
| | - Alessandra Pino
- Department of Agriculture, Food and Environment, University of Catania, 95123 Catania, Italy
- ProBioEtna SRL, Spin off of the University of Catania, 95123 Catania, Italy
| | - Cinzia Caggia
- Department of Agriculture, Food and Environment, University of Catania, 95123 Catania, Italy
- ProBioEtna SRL, Spin off of the University of Catania, 95123 Catania, Italy
| | - Lisa Solieri
- Department of Life Science, University of Modena and Reggio Emilia, 42122 Reggio Emilia, Italy
| | - Cinzia Lucia Randazzo
- Department of Agriculture, Food and Environment, University of Catania, 95123 Catania, Italy
- ProBioEtna SRL, Spin off of the University of Catania, 95123 Catania, Italy
| |
Collapse
|
9
|
Pan M, O'Flaherty S, Hibberd A, Gerdes S, Morovic W, Barrangou R. The curated Lactobacillus acidophilus NCFM genome provides insights into strain specificity and microevolution. BMC Genomics 2025; 26:1. [PMID: 39754036 PMCID: PMC11697832 DOI: 10.1186/s12864-024-11177-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 12/20/2024] [Indexed: 01/07/2025] Open
Abstract
BACKGROUND The advent of next generation sequencing technologies has enabled a surge in the number of whole genome sequences in public databases, and our understanding of the composition and evolution of bacterial genomes. Besides model organisms and pathogens, some attention has been dedicated to industrial bacteria, notably members of the Lactobacillaceae family that are commonly studied and formulated as probiotic bacteria. Of particular interest is Lactobacillus acidophilus NCFM, an extensively studied strain that has been widely commercialized for decades and is being used for the delivery of vaccines and therapeutics. RESULTS Here, we revisit the L. acidophilus genome, which was sequenced twenty years ago, and determined the core and pan genomes of 114 publicly available L. acidophilus strains, spanning commercial isolates, academic strains and clones from the scientific literature. Results indicate a predictable high level of homogeneity within the species, but also reveal surprising mis-assemblies. Furthermore, by investigating twenty one available L. acidophilus NCFM-derived variants, we document overall genomic stability, with no observed genomic re-arrangement or inversions. CONCLUSION This study provides a comparative analysis of the currently available genomes for L. acidophilus and examines microevolution patterns for several strains derived from L. acidophilus NCFM, which revealed no to very few SNPs with strains sequenced at different points in time using different sequencing technologies and platforms. This re-affirms its suitability for industrial deployment as a probiotic and its use as an engineering chassis and delivery modality for novel biotherapeutics.
Collapse
Affiliation(s)
- Meichen Pan
- Department of Food, Bioprocessing, & Nutrition Sciences, North Carolina State University, Raleigh, NC, USA
| | - Sarah O'Flaherty
- Department of Food, Bioprocessing, & Nutrition Sciences, North Carolina State University, Raleigh, NC, USA
| | | | | | | | - Rodolphe Barrangou
- Department of Food, Bioprocessing, & Nutrition Sciences, North Carolina State University, Raleigh, NC, USA.
| |
Collapse
|
10
|
Dooley D, Ryu S, Giannone RJ, Edwards J, Dien BS, Slininger PJ, Trinh CT. Expanded genome and proteome reallocation in a novel, robust Bacillus coagulans strain capable of utilizing pentose and hexose sugars. mSystems 2024; 9:e0095224. [PMID: 39377583 PMCID: PMC11575207 DOI: 10.1128/msystems.00952-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 09/06/2024] [Indexed: 10/09/2024] Open
Abstract
Bacillus coagulans, a Gram-positive thermophilic bacterium, is recognized for its probiotic properties and recent development as a microbial cell factory. Despite its importance for biotechnological applications, the current understanding of B. coagulans' robustness is limited, especially for undomesticated strains. To fill this knowledge gap, we characterized the metabolic capability and performed functional genomics and systems analysis of a novel, robust strain, B. coagulans B-768. Genome sequencing revealed that B-768 has the largest B. coagulans genome known to date (3.94 Mbp), about 0.63 Mbp larger than the average genome of sequenced B. coagulans strains, with expanded carbohydrate metabolism and mobilome. Functional genomics identified a well-equipped genetic portfolio for utilizing a wide range of C5 (xylose, arabinose), C6 (glucose, mannose, galactose), and C12 (cellobiose) sugars present in biomass hydrolysates, which was validated experimentally. For growth on individual xylose and glucose, the dominant sugars in biomass hydrolysates, B-768 exhibited distinct phenotypes and proteome profiles. Faster growth and glucose uptake rates resulted in lactate overflow metabolism, which makes B. coagulans a lactate overproducer; however, slower growth and xylose uptake diminished overflow metabolism due to the high energy demand for sugar assimilation. Carbohydrate Transport and Metabolism (COG-G), Translation (COG-J), and Energy Conversion and Production (COG-C) made up 60%-65% of the measured proteomes but were allocated differently when growing on xylose and glucose. The trade-off in proteome reallocation, with high investment in COG-C over COG-G, explains the xylose growth phenotype with significant upregulation of xylose metabolism, pyruvate metabolism, and tricarboxylic acid (TCA) cycle. Strain B-768 tolerates and effectively utilizes inhibitory biomass hydrolysates containing mixed sugars and exhibits hierarchical sugar utilization with glucose as the preferential substrate.IMPORTANCEThe robustness of B. coagulans makes it a valuable microorganism for biotechnology applications; yet, this phenotype is not well understood at the cellular level. Through phenotypic characterization and systems analysis, this study elucidates the functional genomics and robustness of a novel, undomesticated strain, B. coagulans B-768, capable of utilizing inhibitory switchgrass biomass hydrolysates. The genome of B-768, enriched with carbohydrate metabolism genes, demonstrates high regulatory capacity. The coordination of proteome reallocation in Carbohydrate Transport and Metabolism (COG-G), Translation (COG-J), and Energy Conversion and Production (COG-C) is critical for effective cell growth, sugar utilization, and lactate production via overflow metabolism. Overall, B-768 is a novel, robust, and promising B. coagulans strain that can be harnessed as a microbial biomanufacturing platform to produce chemicals and fuels from biomass hydrolysates.
Collapse
Affiliation(s)
- David Dooley
- Department of Chemical and Biomolecular Engineering, University of Tennessee Knoxville, Knoxville, Tennessee, USA
| | - Seunghyun Ryu
- Department of Chemical and Biomolecular Engineering, University of Tennessee Knoxville, Knoxville, Tennessee, USA
- Center for Bioenergy Innovation, Oak Ridge, Tennessee, USA
| | - Richard J Giannone
- Center for Bioenergy Innovation, Oak Ridge, Tennessee, USA
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Jackson Edwards
- United States Department of Agriculture (USDA), Agricultural Research Service (ARS), National Center for Agricultural Utilization Research (NCAUR), Bioenergy Research Unit, Peoria, Illinois, USA
| | - Bruce S Dien
- United States Department of Agriculture (USDA), Agricultural Research Service (ARS), National Center for Agricultural Utilization Research (NCAUR), Bioenergy Research Unit, Peoria, Illinois, USA
| | - Patricia J Slininger
- United States Department of Agriculture (USDA), Agricultural Research Service (ARS), National Center for Agricultural Utilization Research (NCAUR), Bioenergy Research Unit, Peoria, Illinois, USA
| | - Cong T Trinh
- Department of Chemical and Biomolecular Engineering, University of Tennessee Knoxville, Knoxville, Tennessee, USA
- Center for Bioenergy Innovation, Oak Ridge, Tennessee, USA
| |
Collapse
|
11
|
da Silva TF, Glória RDA, Americo MF, Freitas ADS, de Jesus LCL, Barroso FAL, Laguna JG, Coelho-Rocha ND, Tavares LM, le Loir Y, Jan G, Guédon É, Azevedo VADC. Unlocking the Potential of Probiotics: A Comprehensive Review on Research, Production, and Regulation of Probiotics. Probiotics Antimicrob Proteins 2024; 16:1687-1723. [PMID: 38539008 DOI: 10.1007/s12602-024-10247-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/12/2024] [Indexed: 10/02/2024]
Abstract
This review provides a comprehensive overview of the current state of probiotic research, covering a wide range of topics, including strain identification, functional characterization, preclinical and clinical evaluations, mechanisms of action, therapeutic applications, manufacturing considerations, and future directions. The screening process for potential probiotics involves phenotypic and genomic analysis to identify strains with health-promoting properties while excluding those with any factor that could be harmful to the host. In vitro assays for evaluating probiotic traits such as acid tolerance, bile metabolism, adhesion properties, and antimicrobial effects are described. The review highlights promising findings from in vivo studies on probiotic mitigation of inflammatory bowel diseases, chemotherapy-induced mucositis, dysbiosis, obesity, diabetes, and bone health, primarily through immunomodulation and modulation of the local microbiota in human and animal models. Clinical studies demonstrating beneficial modulation of metabolic diseases and human central nervous system function are also presented. Manufacturing processes significantly impact the growth, viability, and properties of probiotics, and the composition of the product matrix and supplementation with prebiotics or other strains can modify their effects. The lack of regulatory oversight raises concerns about the quality, safety, and labeling accuracy of commercial probiotics, particularly for vulnerable populations. Advancements in multi-omics approaches, especially probiogenomics, will provide a deeper understanding of the mechanisms behind probiotic functionality, allowing for personalized and targeted probiotic therapies. However, it is crucial to simultaneously focus on improving manufacturing practices, implementing quality control standards, and establishing regulatory oversight to ensure the safety and efficacy of probiotic products in the face of increasing therapeutic applications.
Collapse
Affiliation(s)
- Tales Fernando da Silva
- Institute of Biological Sciences, Department of Genetics, Ecology, and Evolution, Federal University of Minas Gerais, Belo Horizonte, Brazil
- UMR1253, INRAE, L'Institut Agro Rennes Angers, STLO, Rennes, France
| | - Rafael de Assis Glória
- Institute of Biological Sciences, Department of Genetics, Ecology, and Evolution, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Monique Ferrary Americo
- Institute of Biological Sciences, Department of Genetics, Ecology, and Evolution, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Andria Dos Santos Freitas
- Institute of Biological Sciences, Department of Genetics, Ecology, and Evolution, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Luis Claudio Lima de Jesus
- Institute of Biological Sciences, Department of Genetics, Ecology, and Evolution, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Fernanda Alvarenga Lima Barroso
- Institute of Biological Sciences, Department of Genetics, Ecology, and Evolution, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Juliana Guimarães Laguna
- Institute of Biological Sciences, Department of Genetics, Ecology, and Evolution, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Nina Dias Coelho-Rocha
- Institute of Biological Sciences, Department of Genetics, Ecology, and Evolution, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Laisa Macedo Tavares
- Institute of Biological Sciences, Department of Genetics, Ecology, and Evolution, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Yves le Loir
- UMR1253, INRAE, L'Institut Agro Rennes Angers, STLO, Rennes, France
| | - Gwénaël Jan
- UMR1253, INRAE, L'Institut Agro Rennes Angers, STLO, Rennes, France
| | - Éric Guédon
- UMR1253, INRAE, L'Institut Agro Rennes Angers, STLO, Rennes, France
| | - Vasco Ariston de Carvalho Azevedo
- Institute of Biological Sciences, Department of Genetics, Ecology, and Evolution, Federal University of Minas Gerais, Belo Horizonte, Brazil.
| |
Collapse
|
12
|
Pei Z, Liu Y, Zhao F, Wang H, Zhao J, Chen W, Lu W. Antibiotic Susceptibility Testing and Establishment of Tentative Species-Specific Microbiological Cut-off Values for Bifidobacteria Isolated from Chinese Population. Probiotics Antimicrob Proteins 2024; 16:1657-1672. [PMID: 37515711 DOI: 10.1007/s12602-023-10128-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/20/2023] [Indexed: 07/31/2023]
Abstract
Bifidobacteria are commonly used as probiotics in the food industry. The resistance of Bifidobacterium species to antibiotics is closely linked to food safety. However, we still lack a system for the safety evaluation of antibiotic resistance in bifidobacteria, and genus-level microbiological cut-off values remain in use for the determination of phenotypic resistance of Bifidobacterium strains to a given antibiotic. Here, we collected a total of 422 gut-derived bifidobacterial strains isolated from Chinese population and identified their phenotypic resistance profiles against ampicillin, amoxicillin, ciprofloxacin, chloramphenicol, clindamycin, erythromycin, rifampicin, tetracycline, trimethoprim, and vancomycin. Different Bifidobacterium species were found to have varying tolerances to the same antibiotic; therefore, we further established species-specific cut-off values for bifidobacterial species to ten antibiotics. Species-specific rather than genus-specific cut-off values for species belonging to the same taxon were considered more suitable to determine the phenotypic resistance of a Bifidobacterium strain. Moreover, a comprehensive scanning of antibiotic resistance genes in all Bifidobacterium strains tested revealed that the existence of the tetracycline resistance gene tet(W) and the erythromycin/clindamycin resistance gene ErmX is closely related to host phenotypes. Our findings provide guidance and reference values at both phenotype and genotype levels for the safe application of bifidobacteria in the food industry and the development of probiotic resistance evaluation standards.
Collapse
Affiliation(s)
- Zhangming Pei
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, People's Republic of China
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, People's Republic of China
| | - Yufei Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, People's Republic of China
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, People's Republic of China
| | - Fang Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, People's Republic of China
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, People's Republic of China
| | - Hongchao Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, People's Republic of China
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, People's Republic of China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, People's Republic of China
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, People's Republic of China
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, People's Republic of China
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, People's Republic of China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, 214122, People's Republic of China
| | - Wenwei Lu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, People's Republic of China.
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, People's Republic of China.
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, 214122, People's Republic of China.
| |
Collapse
|
13
|
Kandasamy S, Lee KH, Yoo J, Yun J, Kang HB, Kim JE, Oh MH, Ham JS. Whole genome sequencing of Lacticaseibacillus casei KACC92338 strain with strong antioxidant activity, reveals genes and gene clusters of probiotic and antimicrobial potential. Front Microbiol 2024; 15:1458221. [PMID: 39391606 PMCID: PMC11464305 DOI: 10.3389/fmicb.2024.1458221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 09/12/2024] [Indexed: 10/12/2024] Open
Abstract
Lacticaseibacillus casei KACC92338 was originally isolated from Korean raw milk. The antioxidant activities and protective effect in vitro of this strain were evaluated extensively. The results showed that KACC92338 can tolerate hydrogen peroxide up to 2 mM and cell-free supernatant (CFS) had higher scavenging rates for DPPH, hydroxyl radical, reducing power, and iron chelating activities with 95.61 ± 1.59%, 34.10 ± 1.93%, 2.220 ± 0.82 and 81.06 ± 1.06%, respectively. Meanwhile, the CFS showed a protective effect on yeast cells against 10 mM hydrogen peroxide with a survival rate of 76.05 ± 5.65%. To explore the probiotic potential of KACC92338, whole genome assembly and gene clusters with probiotic properties were further analyzed. The genome size was 3,050,901 bp with a 47.96% GC ratio, and 63 contigs. The genome contains 3,048 genes composed of 2,981 coding sequences and 67 RNAs (including 57 tRNAs +9 rRNAs +1 tmRNA). Average Nucleotide Identity and genome-based taxonomy showed that the KACC92338 genome had close similarity with L. casei strains with 96% ANI. Functional annotation by EggNOG and KEGG revealed the presence of numerous genes putatively involved in carbohydrate- and amino acid-transport and metabolism, genetic information processing, and signaling and cellular processes. Additionally, several genes conferring probiotic characteristics such as tolerance to stress, heat, cold, acid, bile salts, oxidative stress, immunomodulation, and adhesion to intestinal epithelium were identified. Notably absent were acquired antibiotic resistance genes, virulence, and pathogenic factors, that prove KACC92338 is a safe strain. Besides, the defense mechanisms of KACC92338 include six prophage regions and three clustered regularly interspaced short palindromic repeat (CRISPR) arrays as acquired immune systems against mobile elements. Further, the BAGEL4 database determined antimicrobial bacteriocin clusters of class IIb: sakacin-P, Enterolysin_A, sactipeptides, and Enterocin X, which suggests the strain could exhibit a wide range of antimicrobial functions. Together, these findings show that the L. casei KACC92338 strain can be a potential probiotic candidate in producing functional fermented foods-, health care- and skin care products- with antioxidant properties. However, a few more mechanistic studies are necessary on the safety assurance and potential application of the strain as a probiotic agent.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Jun-Sang Ham
- Animal Products Research and Development Division, National Institute of Animal Science, Rural Development Administration, Wanju-gun, Republic of Korea
| |
Collapse
|
14
|
Zhang L, Kulyar MF, Niu T, Yang S, Chen W. Comparative Genomics of Limosilactobacillus reuteri YLR001 Reveals Genetic Diversity and Probiotic Properties. Microorganisms 2024; 12:1636. [PMID: 39203478 PMCID: PMC11356486 DOI: 10.3390/microorganisms12081636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/03/2024] [Accepted: 08/07/2024] [Indexed: 09/03/2024] Open
Abstract
To gain deeper insights into the genomic characteristics of Limosilactobacillus reuteri (L. reuteri) YLR001 and uncover its probiotic properties, in the current study, a comprehensive analysis of its whole genome was conducted, explicitly exploring the genetic variations associated with different host organisms. The genome of YLR001 consisted of a circular 2,242,943 bp chromosome with a GC content of 38.84%, along with three circular plasmids (24,864, 38, 926, and 132,625 bp). Among the 2183 protein-coding sequences (CDSs), the specific genes associated with genetic adaptation and stress resistance were identified. We predicted the function of COG protein genes and analyzed the KEGG pathways. Comparative genome analysis revealed that the pan-genome contained 5207 gene families, including 475 core gene families and 941 strain-specific genes. Phylogenetic analysis revealed distinct host specificity among 20 strains of L. reuteri, highlighting substantial genetic diversity across different hosts. This study enhanced our comprehension of the genetic diversity of L. reuteri YLR001, demonstrated its potential probiotic characteristics, and established more solid groundwork for future applications.
Collapse
Affiliation(s)
- Lihong Zhang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China; (T.N.); (S.Y.); (W.C.)
| | - Md. F. Kulyar
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China;
| | - Tian Niu
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China; (T.N.); (S.Y.); (W.C.)
| | - Shuai Yang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China; (T.N.); (S.Y.); (W.C.)
| | - Wenjing Chen
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China; (T.N.); (S.Y.); (W.C.)
| |
Collapse
|
15
|
Roberts A, Spang D, Sanozky-Dawes R, Nethery MA, Barrangou R. Characterization of Ligilactobacillus salivarius CRISPR-Cas systems. mSphere 2024; 9:e0017124. [PMID: 38990000 PMCID: PMC11288051 DOI: 10.1128/msphere.00171-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 06/11/2024] [Indexed: 07/12/2024] Open
Abstract
Ligilactobacillus is a diverse genus among lactobacilli with phenotypes that reflect adaptation to various hosts. CRISPR-Cas systems are highly prevalent within lactobacilli, and Ligilactobacillus salivarius, the most abundant species of Ligilactobacillus, possesses both DNA- and RNA-targeting CRISPR-Cas systems. In this study, we explore the presence and functional properties of I-B, I-C, I-E, II-A, and III-A CRISPR-Cas systems in over 500 Ligilactobacillus genomes, emphasizing systems found in L. salivarius. We examined the I-E, II-A, and III-A CRISPR-Cas systems of two L. salivarius strains and observed occurrences of split cas genes and differences in CRISPR RNA maturation in native hosts. This prompted testing of the single Cas9 and multiprotein Cascade and Csm CRISPR-Cas effector complexes in a cell-free context to demonstrate the functionality of these systems. We also predicted self-targeting spacers within L. salivarius CRISPR-Cas systems and found that nearly a third of L. salivarius genomes possess unique self-targeting spacers that generally target elements other than prophages. With these two L. salivarius strains, we performed prophage induction coupled with RNA sequencing and discovered that the prophages residing within these strains are inducible and likely active elements, despite targeting by CRISPR-Cas systems. These findings deepen our comprehension of CRISPR-Cas systems in L. salivarius, further elucidating their relationship with associated prophages and providing a functional basis for the repurposing of these Cas effectors for bacterial manipulation. IMPORTANCE Ligilactobacillus salivarius is a diverse bacterial species widely used in the food and dietary supplement industries. In this study, we investigate the occurrence and diversity of their adaptive immune systems, CRISPR-Cas, in over 500 genomes. We establish their function and provide insights into their role in the interplay between the bacterial host and the predatory phages that infect them. Such findings expand our knowledge about these important CRISPR-Cas immune systems widespread across the bacterial tree of life and also provide a technical basis for the repurposing of these molecular machines for the development of molecular biology tools and the manipulation and engineering of bacteria and other life forms.
Collapse
Affiliation(s)
- Avery Roberts
- Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Raleigh, North Carolina, USA
| | - Daniel Spang
- Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Raleigh, North Carolina, USA
| | - Rosemary Sanozky-Dawes
- Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Raleigh, North Carolina, USA
| | | | - Rodolphe Barrangou
- Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Raleigh, North Carolina, USA
| |
Collapse
|
16
|
Kingkaew E, Tanaka N, Shiwa Y, Sitdhipol J, Nuhwa R, Tanasupawat S. Genomic Assessment of Potential Probiotic Lactiplantibacillus plantarum CRM56-2 Isolated from Fermented Tea Leaves. Trop Life Sci Res 2024; 35:249-269. [PMID: 39234476 PMCID: PMC11371405 DOI: 10.21315/tlsr2024.35.2.12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 02/19/2024] [Indexed: 09/06/2024] Open
Abstract
Lactiplantibacillus plantarum is a widely studied species known for its probiotic properties that can help alleviate serum cholesterol levels. Whole-genome sequencing provides genetic information on probiotic attributes, metabolic activities and safety assessment. This study investigates the probiotic properties of strain CRM56-2, isolated from Thai fermented tea leaves, using Whole-Genome Sequencing (WGS) to evaluate the safety, health-promoting genes and functional analysis. Strain CRM56-2 showed bile salt hydrolase (BSH) activity, assimilated cholesterol at a rate of 75.94%, tolerated acidic and bile environments and attached to Caco-2 cells. Based on ANIb (98.9%), ANIm (99.2%), and digital DNA-DNA hybridisation (98.3%), strain CRM56-2 was identified as L. plantarum. In silico analysis revealed that it was not pathogenic and contained no antibiotic-resistance genes or plasmids. L. plantarum CRM56-2 possessed genes linked to several probiotic properties and beneficial impacts. The genome of strain CRM56-2 suggested that L. plantarum CRM56-2 is non-hazardous, with potential probiotic characteristics and beneficial impacts, which could enhance its probiotic application. Consequently, L. plantarum CRM56-2 demonstrated excellent cholesterol-lowering activity and probiotic properties.
Collapse
Affiliation(s)
- Engkarat Kingkaew
- Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Biology, School of Science, King Mongkut’s Institute of Technology Ladkrabang, Bangkok 10520, Thailand
| | - Naoto Tanaka
- Department of Molecular Microbiology, Faculty of Life Sciences, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo 156-8502, Japan
| | - Yuh Shiwa
- Department of Molecular Microbiology, Faculty of Life Sciences, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo 156-8502, Japan
| | - Jaruwan Sitdhipol
- Biodiversity Research Centre, Research and Development Group for Bio-Industries, Thailand Institute of Scientific and Technological Research, Pathum Thani 12120, Thailand
| | - Rattanatda Nuhwa
- Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Somboon Tanasupawat
- Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
17
|
Hu WF, Yang JY, Wang JJ, Yuan SF, Yue XJ, Zhang Z, Zhang YQ, Meng JY, Li YZ. Characteristics and immune functions of the endogenous CRISPR-Cas systems in myxobacteria. mSystems 2024; 9:e0121023. [PMID: 38747603 PMCID: PMC11237760 DOI: 10.1128/msystems.01210-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 04/15/2024] [Indexed: 06/19/2024] Open
Abstract
The clustered regularly interspaced short palindromic repeats and their associated proteins (CRISPR-Cas) system widely occurs in prokaryotic organisms to recognize and destruct genetic invaders. Systematic collation and characterization of endogenous CRISPR-Cas systems are conducive to our understanding and potential utilization of this natural genetic machinery. In this study, we screened 39 complete and 692 incomplete genomes of myxobacteria using a combined strategy to dispose of the abridged genome information and revealed at least 19 CRISPR-Cas subtypes, which were distributed with a taxonomic difference and often lost stochastically in intraspecies strains. The cas genes in each subtype were evolutionarily clustered but deeply separated, while most of the CRISPRs were divided into four types based on the motif characteristics of repeat sequences. The spacers recorded in myxobacterial CRISPRs were in high G+C content, matching lots of phages, tiny amounts of plasmids, and, surprisingly, massive organismic genomes. We experimentally demonstrated the immune and self-target immune activities of three endogenous systems in Myxococcus xanthus DK1622 against artificial genetic invaders and revealed the microhomology-mediated end-joining mechanism for the immunity-induced DNA repair but not homology-directed repair. The panoramic view and immune activities imply potential omnipotent immune functions and applications of the endogenous CRISPR-Cas machinery. IMPORTANCE Serving as an adaptive immune system, clustered regularly interspaced short palindromic repeats and their associated proteins (CRISPR-Cas) empower prokaryotes to fend off the intrusion of external genetic materials. Myxobacteria are a collective of swarming Gram-stain-negative predatory bacteria distinguished by intricate multicellular social behavior. An in-depth analysis of their intrinsic CRISPR-Cas systems is beneficial for our understanding of the survival strategies employed by host cells within their environmental niches. Moreover, the experimental findings presented in this study not only suggest the robust immune functions of CRISPR-Cas in myxobacteria but also their potential applications.
Collapse
Affiliation(s)
- Wei-Feng Hu
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, China
| | - Jiang-Yu Yang
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, China
| | - Jing-Jing Wang
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, China
| | - Shu-Fei Yuan
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, China
| | - Xin-Jing Yue
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, China
| | - Zheng Zhang
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, China
| | - Ya-Qi Zhang
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, China
| | - Jun-Yan Meng
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, China
| | - Yue-Zhong Li
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, China
| |
Collapse
|
18
|
Sornsenee P, Surachat K, Wong T, Kaewdech A, Saki M, Romyasamit C. Lyophilized cell-free supernatants of Limosilactobacillus fermentum T0701 exhibited antibacterial activity against Helicobacter pylori. Sci Rep 2024; 14:13632. [PMID: 38871850 PMCID: PMC11176309 DOI: 10.1038/s41598-024-64443-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 06/10/2024] [Indexed: 06/15/2024] Open
Abstract
Helicobacter pylori is a prominent gastrointestinal pathogen associated with various gastrointestinal illnesses. It presents substantial health risks due to its antibiotic resistance. Therefore, it is crucial to identify alternative treatments for H. pylori infections. Limosilactobacillus spp exhibit probiotic properties with beneficial effects in humans; however, the mechanisms by which it counteracts H. pylori infection are unknown. This study aimed to evaluate the potential of Limosilactobacillus fermentum T0701 lyophilized cell-free supernatants (LCFS) against H. pylori. The LCFS has varying antimicrobial activities, with inhibition zones of up to 10.67 mm. The minimum inhibitory concentration and minimum bacterial concentration of LCFS are 6.25-25.00 mg/mL and 6.25 mg/mL to > 50.00 mg/mL, respectively, indicating its capability to inhibit H. pylori. There is morphological damage observed in H. pylori treated with LCFS. Additionally, H. pylori adhesion to AGS cells (human gastric adenocarcinoma epithelial cells) reduces by 74.23%, highlighting the LCFS role in preventing bacterial colonization. Moreover, LCFS exhibits no cytotoxicity or morphological changes in AGS cells, and with no detected virulence or antimicrobial resistance genes, further supporting its safety profile. L. fermentum T0701 LCFS shows promise as a safe and effective non-toxic agent against H. pylori, with the potential to prevent gastric colonization.
Collapse
Affiliation(s)
- Phoomjai Sornsenee
- Department of Family and Preventive Medicine, Faculty of Medicine, Prince of Songkla University, Songkhla, 90110, Thailand
| | - Komwit Surachat
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
| | - Thanawin Wong
- Gastroenterology and Hepatology Unit, Division of Internal Medicine, Faculty of Medicine, Prince of Songkla University, Songkhla, Thailand
| | - Apichat Kaewdech
- Gastroenterology and Hepatology Unit, Division of Internal Medicine, Faculty of Medicine, Prince of Songkla University, Songkhla, Thailand
| | - Morteza Saki
- Department of Microbiology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Chonticha Romyasamit
- Department of Medical Technology, School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat, 80160, Thailand.
- Center of Excellence in Innovation of Essential Oil and Bioactive Compounds, Walailak University, Nakhon Si Thammarat, 80160, Thailand.
- Research Center in Tropical Pathobiology, Walailak University, Thasala District, Nakhon Si Thammarat, Thailand.
| |
Collapse
|
19
|
Sornsenee P, Surachat K, Kang DK, Mendoza R, Romyasamit C. Probiotic Insights from the Genomic Exploration of Lacticaseibacillus paracasei Strains Isolated from Fermented Palm Sap. Foods 2024; 13:1773. [PMID: 38891001 PMCID: PMC11172291 DOI: 10.3390/foods13111773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 05/31/2024] [Accepted: 06/04/2024] [Indexed: 06/20/2024] Open
Abstract
This study focused on L. paracasei strains isolated from fermented palm sap in southern Thailand that exhibit potential probiotic characteristics, including antibiotic susceptibility, resistance to gastrointestinal stresses, and antimicrobial activity against various pathogens. However, a thorough investigation of the whole genome sequences of L. paracasei isolates is required to ensure their safety and probiotic properties for human applications. This study aimed to sequence the genome of L. paracasei isolated from fermented palm sap, to assess its safety profile, and to conduct a comprehensive comparative genomic analysis with other Lacticaseibacillus species. The genome sizes of the seven L. paracasei strains ranged from 3,070,747 bp to 3,131,129 bp, with a GC content between 46.11% and 46.17% supporting their classification as nomadic lactobacilli. In addition, the minimal presence of cloud genes and a significant number of core genes suggest a high degree of relatedness among the strains. Meanwhile, phylogenetic analysis of core genes revealed that the strains possessed distinct genes and were grouped into two distinct clades. Genomic analysis revealed key genes associated with probiotic functions, such as those involved in gastrointestinal, oxidative stress resistance, vitamin synthesis, and biofilm disruption. This study is consistent with previous studies that used whole-genome sequencing and bioinformatics to assess the safety and potential benefits of probiotics in various food fermentation processes. Our findings provide valuable insights into the potential use of seven L. paracasei strains isolated from fermented palm sap as probiotic and postbiotic candidates in functional foods and pharmaceuticals.
Collapse
Affiliation(s)
- Phoomjai Sornsenee
- Department of Family and Preventive Medicine, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand;
| | - Komwit Surachat
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand;
| | - Dae-Kyung Kang
- Department of Animal Biotechnology, Dankook University, Cheonan 31116, Republic of Korea; (D.-K.K.); (R.M.)
| | - Remylin Mendoza
- Department of Animal Biotechnology, Dankook University, Cheonan 31116, Republic of Korea; (D.-K.K.); (R.M.)
| | - Chonticha Romyasamit
- Department of Medical Technology, School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat 80160, Thailand
- Center of Excellence in Innovation of Essential Oil and Bioactive Compounds, Walailak University, Nakhon Si Thammarat 80160, Thailand
| |
Collapse
|
20
|
Ma J, Qian C, Hu Q, Zhang J, Gu G, Liang X, Zhang L. The bacteriome-coupled phage communities continuously contract and shift to orchestrate the traditional rice vinegar fermentation. Food Res Int 2024; 184:114244. [PMID: 38609223 DOI: 10.1016/j.foodres.2024.114244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 03/12/2024] [Accepted: 03/14/2024] [Indexed: 04/14/2024]
Abstract
Amounts of microbiome studies have uncovered the microbial communities of traditional food fermentations, while in which the phageome development with time is poorly understood. Here, we conducted a study to decipher both phageome and bacteriome of the traditional rice vinegar fermentation. The vinegar phageomes showed significant differences in the alpha diversity, network density and clustering coefficient over time. Peduoviridae had the highest relative abundance. Moreover, the phageome negatively correlated to the cognate bacteriome in alpha diversity, and undergone constantly contracting and shifting across the temporal scale. Nevertheless, 257 core virial clusters (VCs) persistently occurred with time whatever the significant impacts imposed by the varied physiochemical properties. Glycoside hydrolase (GH) and glycosyltransferase (GT) families genes displayed the higher abundances across all samples. Intriguingly, diversely structuring of toxin-antitoxin systems (TAs) and CRISPR-Cas arrays were frequently harbored by phage genomes. Their divergent organization and encoding attributes underlie the multiple biological roles in modulation of network and/or contest of phage community as well as bacterial host community. This phageome-wide mapping will fuel the current insights of phage community ecology in other traditional fermented ecosystems that are challenging to decipher.
Collapse
Affiliation(s)
- Jiawen Ma
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang Province 310018, China
| | - Chenggong Qian
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang Province 310018, China
| | - Qijie Hu
- Huzhou Institute of Food and Drug Control, Huzhou, Zhejiang Province 313002, China
| | - Jianping Zhang
- Haining Yufeng Brewing Co., Ltd, Haining, Zhejiang Province 314408, China
| | - Guizhang Gu
- Huzhou Institute of Food and Drug Control, Huzhou, Zhejiang Province 313002, China
| | - Xinle Liang
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang Province 310018, China.
| | - Lei Zhang
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang Province 310018, China.
| |
Collapse
|
21
|
Cui Y, Qu X. CRISPR-Cas systems of lactic acid bacteria and applications in food science. Biotechnol Adv 2024; 71:108323. [PMID: 38346597 DOI: 10.1016/j.biotechadv.2024.108323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 12/29/2023] [Accepted: 02/09/2024] [Indexed: 02/17/2024]
Abstract
CRISPR-Cas (Clustered regularly interspaced short palindromic repeats-CRISPR associated proteins) systems are widely distributed in lactic acid bacteria (LAB), contributing to their RNA-mediated adaptive defense immunity. The CRISPR-Cas-based genetic tools have exhibited powerful capability. It has been highly utilized in different organisms, accelerating the development of life science. The review summarized the components, adaptive immunity mechanisms, and classification of CRISPR-Cas systems; analyzed the distribution and characteristics of CRISPR-Cas system in LAB. The review focuses on the development of CRISPR-Cas-based genetic tools in LAB for providing latest development and future trend. The diverse and broad applications of CRISPR-Cas systems in food/probiotic industry are introduced. LAB harbor a plenty of CRISPR-Cas systems, which contribute to generate safer and more robust strains with increased resistance against bacteriophage and prevent the dissemination of plasmids carrying antibiotic-resistance markers. Furthermore, the CRISPR-Cas system from LAB could be used to exploit novel, flexible, programmable genome editing tools of native host and other organisms, resolving the limitation of genetic operation of some LAB species, increasing the important biological functions of probiotics, improving the adaptation of probiotics in complex environments, and inhibiting the growth of foodborne pathogens. The development of the genetic tools based on CRISPR-Cas system in LAB, especially the endogenous CRISPR-Cas system, will open new avenues for precise regulation, rational design, and flexible application of LAB.
Collapse
Affiliation(s)
- Yanhua Cui
- Department of Food Nutrition and Health, School of Medicine and Health, Harbin Institute of Technology, Harbin 150001, China.
| | - Xiaojun Qu
- Institute of Microbiology, Heilongjiang Academy of Sciences, Harbin, 150010, China
| |
Collapse
|
22
|
Shawon J, Pell LG, Kabir M, Evans K, Hasan M, Li G, Qamar H, Starke CWE, Kurukulasuriya S, Al Mahmud A, Sherman PM, Sarker SA, Roth DE, Haque R. Detection and absolute quantification of Lactiplantibacillus plantarum ATCC 202195 by quantitative real-time PCR. Microbiol Spectr 2024; 12:e0271123. [PMID: 38018977 PMCID: PMC10783133 DOI: 10.1128/spectrum.02711-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 10/09/2023] [Indexed: 11/30/2023] Open
Abstract
IMPORTANCE When administered for seven consecutive days shortly after birth, the probiotic bacterium Lactiplantibacillus plantarum ATCC 202195 plus fructooligosaccharide (FOS) was reported to reduce sepsis and lower respiratory tract infection events during early infancy in a randomized trial in India. Since probiotic effects are often strain specific, strain-level detection and quantification by routine molecular methods enables the monitoring of safety outcomes, such as probiotic-associated bacteremia, and allows for the quality of probiotic interventions to be assessed and monitored (i.e., verify strain identity and enumerate). Despite the potential clinical applications of L. plantarum ATCC 202195, an assay to detect and quantify this strain has not previously been described. Herein, we report the design of primer and probe sequences to detect L. plantarum ATCC 202195 and the development and optimization of a real-time PCR assay to detect and quantify the strain with high specificity and high sensitivity.
Collapse
Affiliation(s)
- Jakaria Shawon
- Nutrition and Clinical Services Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Lisa G. Pell
- Centre for Global Child Health, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Mamun Kabir
- Emerging Infections and Parasitology Laboratory, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Kara Evans
- International Flavors & Fragrances Inc., Madison, Wisconsin, USA
| | - Mehedi Hasan
- Nutrition and Clinical Services Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Grace Li
- Centre for Global Child Health, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Huma Qamar
- Centre for Global Child Health, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Cody W. E. Starke
- Centre for Global Child Health, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Shakya Kurukulasuriya
- Centre for Global Child Health, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Abdullah Al Mahmud
- Nutrition and Clinical Services Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Philip M. Sherman
- Cell Biology Program, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Paediatrics, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Shafiqul Alam Sarker
- Nutrition and Clinical Services Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Daniel E. Roth
- Centre for Global Child Health, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Paediatrics, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Rashidul Haque
- Emerging Infections and Parasitology Laboratory, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| |
Collapse
|
23
|
Fang Z, Xu M, Shen S, Sun W, Yu Q, Wu Q, Xiang L, Weng Q. Prediction and characterization of prophages of Stenotrophomonas maltophilia reveals a remarkable phylogenetic diversity of prophages. Sci Rep 2023; 13:22941. [PMID: 38135742 PMCID: PMC10746704 DOI: 10.1038/s41598-023-50449-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 12/20/2023] [Indexed: 12/24/2023] Open
Abstract
Prophages, which enables bacterial hosts to acquire novel traits, and increase genetic variation and evolutionary innovation, are considered to be one of the greatest drivers of bacterial diversity and evolution. Stenotrophomonas maltophilia is widely distributed and one of the most important multidrug resistant bacteria in hospitals. However, the distribution and genetic diversity of S. maltophilia prophages have not been elucidated. In this study, putative prophages were predicted in S. maltophilia genomes by using virus prediction tools, and the genetic diversity and phylogeny of S. maltophilia and the prophages they harbor were further analyzed. A total of 356 prophage regions were predicted from 88 S. maltophilia genomes. Among them, 144 were intact prophages, but 77.09% of the intact prophages did not match any known phage sequences in the public database. The number of prophage carried by S. maltophilia is related to its host habitat and is an important factor affecting the size of the host genome, but it is not related to the genetic diversity of the prophage. The prediction of auxiliary genes encoded by prophage showed that antibiotic resistance genes was not predicted for any of the prophages except for one questionable prophage, while 53 virulence genes and 169 carbohydrate active enzymes were predicted from 11.24 and 44.1% prophages, respectively. Most of the prophages (72.29%) mediated horizontal gene transfer of S. maltophilia genome, but only involved in 6.25% of the horizontal gene transfer events. In addition, CRISPR prediction indicated 97.75% S. maltophilia strains contained the CRISPR-Cas system containing 818 spacer sequences. However, these spacer sequences did not match any known S. maltophilia phages, and only a few S. maltophilia prophages. Comparative genomic analysis revealed a highly conserved and syntenic organization with genomic rearrangement between the prophages and the known related S. maltophilia phages. Our results indicate a high prevalence and genetic diversity of prophages in the genome of S. maltophilia, as well as the presence of a large number of uncharacterized phages. It provides an important complement to understanding the diversity and biological characteristics of phages, as well as the interactions and evolution between bacteria and phages.
Collapse
Affiliation(s)
- Zheng Fang
- School of Life Sciences, Guizhou Normal University, Guiyang, 550025, Guizhou, People's Republic of China
| | - Man Xu
- School of Life Sciences, Guizhou Normal University, Guiyang, 550025, Guizhou, People's Republic of China
| | - Shan Shen
- School of Life Sciences, Guizhou Normal University, Guiyang, 550025, Guizhou, People's Republic of China
| | - Weiwei Sun
- School of Life Sciences, Guizhou Normal University, Guiyang, 550025, Guizhou, People's Republic of China
| | - Qing Yu
- School of Life Sciences, Guizhou Normal University, Guiyang, 550025, Guizhou, People's Republic of China
| | - Qingshan Wu
- School of Life Sciences, Guizhou Normal University, Guiyang, 550025, Guizhou, People's Republic of China
| | - Lan Xiang
- Qiannan Normal University for Nationalities, Duyun, 558000, Guizhou, People's Republic of China
| | - Qingbei Weng
- School of Life Sciences, Guizhou Normal University, Guiyang, 550025, Guizhou, People's Republic of China.
- Qiannan Normal University for Nationalities, Duyun, 558000, Guizhou, People's Republic of China.
| |
Collapse
|
24
|
Aziz G, Zaidi A, Sullivan DJO'. Insights from metagenome-assembled genomes on the genetic stability and safety of over-the-counter probiotic products. Curr Genet 2023; 69:213-234. [PMID: 37237157 DOI: 10.1007/s00294-023-01271-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 04/04/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023]
Abstract
The demand for and acceptance of probiotics is determined by their quality and safety. Illumina NGS sequencing and analytics were used to examine eight marketed probiotics. Up to the species level, sequenced DNA was taxonomically identified, and relative abundances were determined using Kaiju. The genomes were constructed using GTDB and validated through PATRICK and TYGS. A FastTree 2 phylogenetic tree was constructed using several type strain sequences from relevant species. Bacteriocin and ribosomally synthesized polypeptide (RiPP) genes were discovered, and a safety check was performed to test for toxins, antibiotic resistance, and genetic drift genes. Except for two products with unclaimed species, the labeling was taxonomically correct. In three product formulations, Lactobacillus acidophilus, Limosilactobacillus reuteri, Lacticaseibacillus paracasei, and Bifidobacterium animalis exhibited two to three genomic alterations, while Streptococcus equinus was found in one. TYGS and GDTB discovered E. faecium and L. paracasei in distinctly different ways. All the bacteria tested had the genetic repertoire to tolerate GIT transit, although some exhibited antibiotic resistance, and one strain had two virulence genes. Except for Bifidobacterium strains, the others revealed a variety of bacteriocins and ribosomally synthesized polypeptides (RiPP), 92% of which were unique and non-homologous to known ones. Plasmids and mobile genetic elements are present in strains of L. reuteri (NPLps01.et_L.r and NPLps02.uf_L.r), Lactobacillus delbrueckii (NPLps01.et_L.d), Streptococcus thermophilus (NPLps06.ab_S.t), and E. faecium (NPLps07.nf_E.f). Our findings support the use of metagenomics to build better and efficient production and post-production practices for probiotic quality and safety assessment.
Collapse
Affiliation(s)
- Ghazal Aziz
- National Probiotic Laboratory, National Institute for Biotechnology and Genetic Engineering College (NIBGE-C), Punjab, 38000, Faisalabad, Pakistan
- Pakistan Institute of Engineering and Applied Sciences (PIEAS), Nilore, 45650, Islamabad (ICT), Pakistan
- Department of Food Science and Nutrition, Center for Microbial and Plant Genomics, University of Minnesota, 1500 Gortner Ave, St. Paul, MN, 55108, USA
| | - Arsalan Zaidi
- National Probiotic Laboratory, National Institute for Biotechnology and Genetic Engineering College (NIBGE-C), Punjab, 38000, Faisalabad, Pakistan.
- Pakistan Institute of Engineering and Applied Sciences (PIEAS), Nilore, 45650, Islamabad (ICT), Pakistan.
| | - Daniel J O ' Sullivan
- Department of Food Science and Nutrition, Center for Microbial and Plant Genomics, University of Minnesota, 1500 Gortner Ave, St. Paul, MN, 55108, USA
| |
Collapse
|
25
|
Xu D, Zhang X, Yuan X, Han H, Xue Y, Guo X. Hazardous risk of antibiotic resistance genes: Host occurrence, distribution, mobility and vertical transmission from different environments to corn silage. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 338:122671. [PMID: 37788797 DOI: 10.1016/j.envpol.2023.122671] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/25/2023] [Accepted: 09/30/2023] [Indexed: 10/05/2023]
Abstract
Antibiotic resistance genes (ARGs) are one of the emerging contaminants posing a great deal of hazardous risk to public health. This study employed metagenomics and deciphered the potential risk of the antibiotic resistome and their vertical transfer to ensiled whole-crop corn silage harvested from six climate zones: 1. Warm temperate-fully humid-hot summer (Cfa), 2. Arid-desert-cold arid (BWk), 3. Snow-desert-cold summer (Dwc), 4. Snow-desert-hot summer (Dwa), 5. Arid-steppe-cold arid (BSk), and 6. Equatorial-desert (Aw) based on the Köppen-Geiger climate classification in China. The findings demonstrate a high diversity of ARGs, which is related to the drug classes of tetracycline, ciprofloxacin, lincosamide, fosfomycin, and beta lactam. Resistome variations are mostly related to variations in microbial composition and fermentation characteristics of the silages from different climate zones, which are indirectly influenced by environmental conditions. The most dominating ARGs in corn silage were tetM, acrA, H-NS, lnuA, emrR, and KpnG, which is primarily hosted by Klebsiella and Lactobacilli. There were 5 high-risk ARGs (tetM, bacA, SHV-1, dfrA17, and QnrS1) in silage from different climate zones, and the tetM was the most prevalent high-risk ARG. However, throughout the ensiling process, the abundance of ARGs, and mobile ARGs were reduced. The resistome contamination in silage from Tibet (Dwc) with high altitude and harsh environment was relatively low due to the low variety and abundance of ARGs, the low abundance of mobile ARGs and high-risk ARGs. In addition, most of the bacteria responsible for the silage fermentation were also found to be the hosts to the ARGs, although their abundance decreased after 90 d of silage fermentation. Hence, we alert the existence of ARGs-related biosafety risk in silages and call for more attention to the silage ARGs, their hosts, and mobile genetic elements in order to curtail their possible risk to public health.
Collapse
Affiliation(s)
- Dongmei Xu
- School of Life Sciences, Lanzhou University, Lanzhou, 730000, PR China
| | - Xingguo Zhang
- Bioyi Biotechnology Co., Ltd., Wuhan, 430075, PR China
| | - Xianjun Yuan
- Institute of Ensiling and Processing of Grass, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Hongyan Han
- The Research Center for Laboratory Animal Science, College of Life Science, Inner Mongolia University, Hohhot, 010070, PR China
| | - Yanlin Xue
- Inner Mongolia Engineering Research Center of Development and Utilization of Microbial Resources in Silage, Inner Mongolia Academy of Agriculture and Animal Husbandry Science, Hohhot, 010031, PR China
| | - Xusheng Guo
- School of Life Sciences, Lanzhou University, Lanzhou, 730000, PR China.
| |
Collapse
|
26
|
Dorosky RJ, Lola SL, Brown HA, Schreier JE, Dreher-Lesnick SM, Stibitz S. Characterization of Lactobacilli Phage Endolysins and Their Functional Domains-Potential Live Biotherapeutic Testing Reagents. Viruses 2023; 15:1986. [PMID: 37896764 PMCID: PMC10610939 DOI: 10.3390/v15101986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/18/2023] [Accepted: 09/21/2023] [Indexed: 10/29/2023] Open
Abstract
Phage endolysin-specific binding characteristics and killing activity support their potential use in biotechnological applications, including potency and purity testing of live biotherapeutic products (LBPs). LBPs contain live organisms, such as lactic acid bacteria (LAB), and are intended for use as drugs. Our approach uses the endolysin cell wall binding domains (CBD) for LBP potency assays and the endolysin killing activity for purity assays. CBDs of the following five lactobacilli phage lysins were characterized: CL1, Jlb1, Lj965, LL-H, and ΦJB. They exhibited different bindings to 27 LAB strains and were found to bind peptidoglycan or surface polymers. Flow cytometry based on CBD binding was used to enumerate viable counts of two strains in the mixture. CL1-lys, jlb1-lys, and ΦJB-lys and their enzymatic domains (EADs) exhibited cell wall digestive activity and lytic activity against LAB. Jlb1-EAD and ΦJB-EAD were more sensitive than their respective hololysins to buffer pH and NaCl changes. The ΦJB-EAD exhibited stronger lytic activity than ΦJB-lys, possibly due to ΦJB-CBD-mediated sequestration of ΦJB-lys by cell debris. CBD multiplex assays indicate that these proteins may be useful LBP potency reagents, and the lytic activity suggests that CL1-lys, jlb1-lys, and ΦJB-lys and their EADs are good candidates for LBP purity reagent development.
Collapse
Affiliation(s)
- Robert J. Dorosky
- Office of Vaccines Research and Review, Division of Bacterial, Parasitic, and Allergenic Products, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Stephanie L. Lola
- Office of Vaccines Research and Review, Division of Bacterial, Parasitic, and Allergenic Products, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Haleigh A. Brown
- Office of Vaccines Research and Review, Division of Bacterial, Parasitic, and Allergenic Products, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Jeremy E. Schreier
- Department of Marine Sciences, University of Georgia, Athens, GA 30602, USA
| | - Sheila M. Dreher-Lesnick
- Office of Vaccines Research and Review, Division of Bacterial, Parasitic, and Allergenic Products, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Scott Stibitz
- Office of Vaccines Research and Review, Division of Bacterial, Parasitic, and Allergenic Products, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD 20993, USA
| |
Collapse
|
27
|
Johnson A, Miller EA, Weber B, Figueroa CF, Aguayo JM, Johny AK, Noll S, Brannon J, Kozlowicz B, Johnson TJ. Evidence of host specificity in Lactobacillus johnsonii genomes and its influence on probiotic potential in poultry. Poult Sci 2023; 102:102858. [PMID: 37390550 PMCID: PMC10331464 DOI: 10.1016/j.psj.2023.102858] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 06/01/2023] [Accepted: 06/05/2023] [Indexed: 07/02/2023] Open
Abstract
To date, the selection of candidate strains for probiotic development in production animals has been largely based upon screens for desired phenotypic traits. However, increasing evidence indicates that the use of host-specific strains may be important, because coevolution with the animal host better prepares a bacterial strain to colonize and succeed in its respective host animal species. This concept was applied to Lactobacillus johnsonii in commercial poultry production because of its previous correlation with enhanced bird performance. Using 204 naturally isolated chicken- and turkey-source L. johnsonii, we demonstrate that there is a strong phylogenetic signal for coevolution with the animal host. These isolates differ phenotypically, even within host source, and these differences can be correlated with certain L. johnsonii phylogenetic clades. In commercial turkey poults, turkey-specific strains with strong in vitro phenotypes performed better early in life than strains lacking those phenotypes. A follow-up performance trial in broiler chickens demonstrated that chicken-specific strains result in better overall bird performance than nonchicken-specific strains. Collectively, this work provides evidence for the impact of host adaptation on a probiotic strain's potential. Furthermore, this top-down approach is useful for screening larger numbers of isolates for probiotic candidates.
Collapse
Affiliation(s)
- Abigail Johnson
- Department of Veterinary and Biomedical Sciences, University of Minnesota, Saint Paul, MN, USA
| | - Elizabeth A Miller
- Department of Veterinary and Biomedical Sciences, University of Minnesota, Saint Paul, MN, USA
| | - Bonnie Weber
- Department of Veterinary and Biomedical Sciences, University of Minnesota, Saint Paul, MN, USA
| | | | | | | | - Sally Noll
- Department of Animal Science, University of Minnesota, Saint Paul, MN, USA
| | - Jeanine Brannon
- Department of Animal Science, University of Minnesota, Saint Paul, MN, USA
| | | | - Timothy J Johnson
- Department of Veterinary and Biomedical Sciences, University of Minnesota, Saint Paul, MN, USA; Mid-Central Research and Outreach Center, University of Minnesota, Willmar, MN, USA.
| |
Collapse
|
28
|
Phuengjayaem S, Pakdeeto A, Kingkaew E, Tunvongvinis T, Somphong A, Tanasupawat S. Genome sequences and functional analysis of Levilactobacillus brevis LSF9-1 and Pediococcus acidilactici LSF1-1 from fermented fish cake (Som-fak) with gamma-aminobutyric acid (GABA) production. Funct Integr Genomics 2023; 23:158. [PMID: 37171680 DOI: 10.1007/s10142-023-01085-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 05/02/2023] [Accepted: 05/02/2023] [Indexed: 05/13/2023]
Abstract
Gamma-aminobutyric acid (GABA) is a crucial inhibitory neurotransmitter in the sympathetic nervous system that exerts regulatory effects on the blood, immune, and nervous systems. GABA production in som-fak, a traditional fermented fish of Thailand, has been attributed to the activity of lactic acid bacteria (LAB). The present study aims to characterize the LAB isolates and compare the genomes and GABA synthesis genes of selected isolates capable of GABA production. Thirteen isolates demonstrating GABA synthesis capability were identified based on their phenotypic and genotypic characteristics. Seven isolates (group I: LSF3-3, LSF8-3, LSF9-1, LSF9-3, LSF9-6, LSF9-7, and LSF10-14) were identified as Levilactobacillus brevis with 99.78-100% similarity. LSF2-1, LSF3-2, LSF5-4, and LSF6-5 (group II) were identified as Lactiplantibacillus pentosus with 99.86-100% similarity. Strain LSF1-1 (group III) was identified as Pediococcus acidilactici (99.47%), and LSF10-4 (group IV) was identified as Pediococcus pentosaceus with 99.93% similarity. The GABA production of isolates ranged from 0.087 to 16.935 g/L. The maximum production of 16.935 g/L from 3% monosodium glutamate was obtained from strain LSF9-1. Gene and genome analysis revealed that L. brevis LSF9-1 has multiple gad genes in the genome, such as gadB1, gadB2, gadC1, and gadC2, making it the potential strain for GABA production. Additionally, the genome analysis of P. acidilactici LSF1-1 consists of gadA, gadB, and gadC, which respond to controlling GABA production and export. Furthermore, strain LSF1-1 was considered safe, containing no virulence factors. Thus, Levilactobacillus brevis LSF9-1 and Pediococcus acidilactici LSF1-1 have the potential for GABA production and probiotic use in future studies.
Collapse
Affiliation(s)
- Sukanya Phuengjayaem
- Department of Microbiology, Faculty of Science, King Mongkut's University of Technology Thonburi, Bangkok, 10140, Thailand
| | - Amnat Pakdeeto
- Program in Food Science and Technology, Faculty of Agriculture and Life Sciences, Chandrakasem Rajabhat University, Bangkok, 10900, Thailand
| | - Engkarat Kingkaew
- Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Tuangrat Tunvongvinis
- Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Achiraya Somphong
- Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Somboon Tanasupawat
- Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
29
|
Ozen M, Piloquet H, Schaubeck M. Limosilactobacillus fermentum CECT5716: Clinical Potential of a Probiotic Strain Isolated from Human Milk. Nutrients 2023; 15:2207. [PMID: 37432320 PMCID: PMC10181152 DOI: 10.3390/nu15092207] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/28/2023] [Accepted: 05/02/2023] [Indexed: 07/12/2023] Open
Abstract
Breastfeeding provides the ideal nutrition for infants. Human milk contains a plethora of functional ingredients which foster the development of the immune system. The human milk microbiota predominantly contributes to this protective effect. This is mediated by various mechanisms, such as an antimicrobial effect, pathogen exclusion and barrier integrity, beneficial effects on the gastrointestinal microbiota, vitamin synthesis, immunity enhancement, secreted probiotic factors, and postbiotic mechanisms. Therefore, human milk is a good source for isolating probiotics for infants who cannot be exclusively breastfed. One such probiotic which was isolated from human milk is Limosilactobacillus fermentum CECT5716. In this review, we give an overview of available interventional studies using Limosilactobacillus fermentum CECT5716 and summarise preclinical trials in several animal models of different pathologies, which have given first insights into its mechanisms of action. We present several randomised clinical studies, which have been conducted to investigate the clinical efficacy of the Limosilactobacillus fermentum CECT5716 strain in supporting the host's health.
Collapse
Affiliation(s)
- Metehan Ozen
- School of Medicine, Acibadem Mehmet Ali Aydinlar University, 34752 Istanbul, Türkiye;
| | - Hugues Piloquet
- Department of Paediatric Chronic Diseases, Nantes University Hospital, 44000 Nantes, France;
| | | |
Collapse
|
30
|
Goh YX, Wang M, Hou XP, He Y, Ou HY. Analysis of CRISPR-Cas Loci and their Targets in Levilactobacillus brevis. Interdiscip Sci 2023:10.1007/s12539-023-00555-1. [PMID: 36849628 DOI: 10.1007/s12539-023-00555-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 02/15/2023] [Accepted: 02/15/2023] [Indexed: 03/01/2023]
Abstract
The CRISPR‒Cas system acts as a bacterial defense mechanism by conferring adaptive immunity and limiting genetic reshuffling. However, under adverse environmental hazards, bacteria can employ their CRISPR‒Cas system to exchange genes that are vital for adaptation and survival. Levilactobacillus brevis is a lactic acid bacterium with great potential for commercial purposes because it can be genetically manipulated to enhance its functionality and nutritional value. Nevertheless, the CRISPR‒Cas system might interfere with the genetic modification process. Additionally, little is known about the CRISPR‒Cas system in this industrially important microorganism. Here, we investigate the prevalence, diversity, and targets of CRISPR‒Cas systems in the genus Levilactobacillus, further focusing on complete genomes of L. brevis. Using the CRISPRCasFinder webserver, we identified 801 putative CRISPR-Cas systems in the genus Levilactobacillus. Further investigation focusing on the complete genomes of L. brevis revealed 54 putative CRISPR-Cas systems. Of these, 46 were orphan CRISPRs, and eight were CRISPR‒Cas systems. The type II-A CRISPR‒Cas system is the most common in Levilactobacillus and L. brevis complete genomes. Analysis of the spacer's target showed that the CRISPR‒Cas systems of L. brevis mainly target the enterococcal plasmids. Comparative analysis of putative CRISPR-Cas loci in Levilactobacillus brevis.
Collapse
Affiliation(s)
- Ying-Xian Goh
- State Key Laboratory of Biological Fermentation Engineering of Beer, Tsingtao Brewery Co. Ltd, Qingdao, 266100, China.,State Key Laboratory of Microbial Metabolism, Shanghai-Islamabad-Belgrade Joint Innovation Center on Antibacterial Resistances, Joint International Laboratory on Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China.,UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Meng Wang
- State Key Laboratory of Microbial Metabolism, Shanghai-Islamabad-Belgrade Joint Innovation Center on Antibacterial Resistances, Joint International Laboratory on Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xiao-Ping Hou
- State Key Laboratory of Biological Fermentation Engineering of Beer, Tsingtao Brewery Co. Ltd, Qingdao, 266100, China
| | - Yang He
- State Key Laboratory of Biological Fermentation Engineering of Beer, Tsingtao Brewery Co. Ltd, Qingdao, 266100, China.
| | - Hong-Yu Ou
- State Key Laboratory of Microbial Metabolism, Shanghai-Islamabad-Belgrade Joint Innovation Center on Antibacterial Resistances, Joint International Laboratory on Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
31
|
In Silico Evidence of the Multifunctional Features of Lactiplantibacillus pentosus LPG1, a Natural Fermenting Agent Isolated from Table Olive Biofilms. Foods 2023; 12:foods12050938. [PMID: 36900455 PMCID: PMC10000683 DOI: 10.3390/foods12050938] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/16/2023] [Accepted: 02/17/2023] [Indexed: 02/25/2023] Open
Abstract
In recent years, there has been a growing interest in obtaining probiotic bacteria from plant origins. This is the case of Lactiplantibacillus pentosus LPG1, a lactic acid bacterial strain isolated from table olive biofilms with proven multifunctional features. In this work, we have sequenced and closed the complete genome of L. pentosus LPG1 using both Illumina and PacBio technologies. Our intention is to carry out a comprehensive bioinformatics analysis and whole-genome annotation for a further complete evaluation of the safety and functionality of this microorganism. The chromosomic genome had a size of 3,619,252 bp, with a GC (Guanine-Citosine) content of 46.34%. L. pentosus LPG1 also had two plasmids, designated as pl1LPG1 and pl2LPG1, with lengths of 72,578 and 8713 bp (base pair), respectively. Genome annotation revealed that the sequenced genome consisted of 3345 coding genes and 89 non-coding sequences (73 tRNA and 16 rRNA genes). Taxonomy was confirmed by Average Nucleotide Identity analysis, which grouped L. pentosus LPG1 with other sequenced L. pentosus genomes. Moreover, the pan-genome analysis showed that L. pentosus LPG1 was closely related to the L. pentosus strains IG8, IG9, IG11, and IG12, all of which were isolated from table olive biofilms. Resistome analysis reported the absence of antibiotic resistance genes, whilst PathogenFinder tool classified the strain as a non-human pathogen. Finally, in silico analysis of L. pentosus LPG1 showed that many of its previously reported technological and probiotic phenotypes corresponded with the presence of functional genes. In light of these results, we can conclude that L. pentosus LPG1 is a safe microorganism and a potential human probiotic with a plant origin and application as a starter culture for vegetable fermentations.
Collapse
|
32
|
Abraha HB, Lee JW, Kim G, Ferdiansyah MK, Ramesha RM, Kim KP. Genomic diversity and comprehensive taxonomical classification of 61 Bacillus subtilis group member infecting bacteriophages, and the identification of ortholog taxonomic signature genes. BMC Genomics 2022; 23:835. [PMID: 36526963 PMCID: PMC9756591 DOI: 10.1186/s12864-022-09055-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 11/28/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Despite the applications of Bacillus subtilis group species in various sectors, limited information is available regarding their phages. Here, 61 B. subtilis group species-infecting phages (BSPs) were studied for their taxonomic classification considering the genome-size, genomic diversity, and the host, followed by the identification of orthologs taxonomic signature genes. RESULTS BSPs have widely ranging genome sizes that can be bunched into groups to demonstrate correlations to family and subfamily classifications. Comparative analysis re-confirmed the existing, BSPs-containing 14 genera and 21 species and displayed inter-genera similarities within existing subfamilies. Importantly, it also revealed the need for the creation of new taxonomic classifications, including 28 species, nine genera, and two subfamilies (New subfamily1 and New subfamily2) to accommodate inter-genera relatedness. Following pangenome analysis, no ortholog shared by all BSPs was identified, while orthologs, namely, the tail fibers/spike proteins and poly-gamma-glutamate hydrolase, that are shared by more than two-thirds of the BSPs were identified. More importantly, major capsid protein (MCP) type I, MCP type II, MCP type III and peptidoglycan binding proteins that are distinctive orthologs for Herelleviridae, Salasmaviridae, New subfamily1, and New subfamily2, respectively, were identified and analyzed which could serve as signatures to distinguish BSP members of the respective taxon. CONCLUSIONS In this study, we show the genomic diversity and propose a comprehensive classification of 61 BSPs, including the proposition for the creation of two new subfamilies, followed by the identification of orthologs taxonomic signature genes, potentially contributing to phage taxonomy.
Collapse
Affiliation(s)
- Haftom Baraki Abraha
- Department of Food Science and Technology, Jeonbuk National University, Jeonju, 54896, South Korea
| | - Jae-Won Lee
- Department of Agricultural Convergence Technology, Jeonbuk National University, Jeonju, 54896, South Korea
| | - Gayeong Kim
- Department of Food Science and Technology, Jeonbuk National University, Jeonju, 54896, South Korea
| | | | | | - Kwang-Pyo Kim
- Department of Food Science and Technology, Jeonbuk National University, Jeonju, 54896, South Korea.
- Department of Agricultural Convergence Technology, Jeonbuk National University, Jeonju, 54896, South Korea.
| |
Collapse
|
33
|
Bradford EL, Wax N, Bueren EK, Walke JB, Fell R, Belden LK, Haak DC. Comparative genomics of Lactobacillaceae from the gut of honey bees, Apis mellifera, from the Eastern United States. G3 (BETHESDA, MD.) 2022; 12:jkac286. [PMID: 36331337 PMCID: PMC9713430 DOI: 10.1093/g3journal/jkac286] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 10/03/2022] [Indexed: 04/13/2024]
Abstract
Lactobacillaceae are an important family of lactic acid bacteria that play key roles in the gut microbiome of many animal species. In the honey bee (Apis mellifera) gut microbiome, many species of Lactobacillaceae are found, and there is functionally important strain-level variation in the bacteria. In this study, we completed whole-genome sequencing of 3 unique Lactobacillaceae isolates collected from hives in Virginia, USA. Using 107 genomes of known bee-associated Lactobacillaceae and Limosilactobacillus reuteri as an outgroup, the phylogenetics of the 3 isolates was assessed, and these isolates were identified as novel strains of Apilactobacillus kunkeei, Lactobacillus kullabergensis, and Bombilactobacillus mellis. Genome rearrangements, conserved orthologous genes (COG) categories and potential prophage regions were identified across the 3 novel strains. The new A. kunkeei strain was enriched in genes related to replication, recombination and repair, the L. kullabergensis strain was enriched for carbohydrate transport, and the B. mellis strain was enriched in transcription or transcriptional regulation and in some genes with unknown functions. Prophage regions were identified in the A. kunkeei and L. kullabergensis isolates. These new bee-associated strains add to our growing knowledge of the honey bee gut microbiome, and to Lactobacillaceae genomics more broadly.
Collapse
Affiliation(s)
- Emma L Bradford
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| | - Noah Wax
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| | - Emma K Bueren
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| | - Jenifer B Walke
- Department of Biology, Eastern Washington University, Cheney, WA 99004, USA
| | - Richard Fell
- Department of Entomology, Virginia Tech, Blacksburg, VA 24061, USA
| | - Lisa K Belden
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| | - David C Haak
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| |
Collapse
|
34
|
Ambros CL, Ehrmann MA. Distribution, inducibility, and characterisation of prophages in Latilactobacillus sakei. BMC Microbiol 2022; 22:267. [PMID: 36348293 PMCID: PMC9641780 DOI: 10.1186/s12866-022-02675-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 10/20/2022] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND Lactic acid bacteria (LAB) are used as starters in a wide variety of food fermentations. While the number of reports of phages infecting other LAB steadily increased over the years, information about phage associated with Latilactobacillus sakei, a frequently used meat starter, remains scarce. RESULTS In this study, a predictive genomic analysis of 43 Latilactobacillus sakei genomes revealed the presence of 26 intact, eleven questionable and 52 incomplete prophage sequences across all analysed genomes with a range of one to five predicted prophage sequences per strain. Screening 24 sakei strains for inducible prophages by utilising UV light or mitomycin C, we identified seven lysogenic strains showing lysis after induction during subsequent growth monitoring. Electron microscopic analysis revealed fully assembled virions in the purified lysates of four samples, thus confirming successful prophage induction. All virions featured icosahedral, isomeric heads and long, most likely non-contractile tails indicating siphoviruses. By performing phylogenetic analyses with various marker genes as well as full prophage sequences, we displayed a remarkably high diversity of prophages, that share a similar gene module organisation and six different chromosomal integration sites were identified. By sequencing viral DNA purified from lysates of Latilactobacillus sakei TMW 1.46, we demonstrate that simultaneous induction of multiple prophages is possible. CONCLUSIONS With this work, we not only provide data about the incidence of prophages harboured by the meat starter Latilactobacillus sakei, we also demonstrated their potential to impact growth of their host after induction, as well as forming seemingly fully assembled virions.
Collapse
Affiliation(s)
- Conrad L Ambros
- Lehrstuhl für Technische Mikrobiologie, Technische Universität München (TUM), 85354, Freising, Germany
| | - Matthias A Ehrmann
- Lehrstuhl für Technische Mikrobiologie, Technische Universität München (TUM), 85354, Freising, Germany.
| |
Collapse
|
35
|
Abriouel H, Manetsberger J, Caballero Gómez N, Benomar N. In silico genomic analysis of the potential probiotic Lactiplantibacillus pentosus CF2-10N reveals promising beneficial effects with health promoting properties. Front Microbiol 2022; 13:989824. [PMID: 36406402 PMCID: PMC9670130 DOI: 10.3389/fmicb.2022.989824] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 10/04/2022] [Indexed: 10/29/2023] Open
Abstract
Lactiplantibacillus pentosus CF2-10 N, isolated from brines of naturally fermented Aloreña green table olives, exhibited high probiotic potential. High throughput sequencing and annotation of genome sequences underline the potential of L. pentosus CF2-10 N as excellent probiotic candidate of vegetable origin. In a previous study we could show the probiotic potential of CF2-10 N in vitro, while in this study in silico analysis of its genome revealed new insights into its safety and functionality. Our findings highlight the microorganism's ecological flexibility and adaptability to a broad range of environmental niches, food matrices and the gastrointestinal tract. These features are shared by both phylogenetically very close L. pentosus strains (CF2-10 N and MP-10) isolated from the same ecological niche with respect to their genome size (≅ 3.6 Mbp), the presence of plasmids (4-5) and several other properties. Nonetheless, additional and unique features are reported in the present study for L. pentosus CF2-10 N. Notably, the safety of L. pentosus CF2-10 N was shown by the absence of virulence determinants and the determination of acquired antibiotic resistance genes, i.e., resistome, which is mostly represented by efflux-pump resistance genes responsible for the intrinsic resistance. On the other hand, defense mechanisms of L. pentosus CF2-10 N include eight prophage regions and a CRISPR/cas system (CRISPR-I and CRISPR-II) as acquired immune system against mobile elements. Finally, the probiotic potential of this strain was further demonstrated by the presence of genes coding for proteins involved in adhesion, exopolysaccharide biosynthesis, tolerance to low pH and bile salts, immunomodulation, and vitamin and enzyme production. Taken together these results, we propose the use of L. pentosus CF2-10 N as a potential and promising probiotic candidate able to colonize several niches and adapt to different lifestyles. The strain can provide attractive functional and probiotic features necessary for its application as starter culture and probiotic.
Collapse
Affiliation(s)
- Hikmate Abriouel
- Área de Microbiología, Departamento de Ciencias de la Salud, Facultad de Ciencias Experimentales, Universidad de Jaén, Jaén, Spain
| | | | | | | |
Collapse
|
36
|
Raethong N, Santivarangkna C, Visessanguan W, Santiyanont P, Mhuantong W, Chokesajjawatee N. Whole-genome sequence analysis for evaluating the safety and probiotic potential of Lactiplantibacillus pentosus 9D3, a gamma-aminobutyric acid (GABA)-producing strain isolated from Thai pickled weed. Front Microbiol 2022; 13:969548. [PMID: 36212812 PMCID: PMC9539741 DOI: 10.3389/fmicb.2022.969548] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 09/06/2022] [Indexed: 11/25/2022] Open
Abstract
Lactiplantibacillus pentosus 9D3, a prominent gamma-aminobutyric acid (GABA)-producing bacteria isolated from Thai pickled weed was characterized for its safety and probiotic properties via whole-genome analysis and in vitro testing. The whole-genome sequence of L. pentosus 9D3 was determined using a hybrid-sequencing approach, combining PacBio and Illumina technologies. A 3.81-Mbp genome of L. pentosus 9D3 consisting of one 3.65-Mbp chromosome and six plasmids (1.9–71.9 Kbp) was identified with an estimated GC content of 46.09% and 3,456 predicted genes. The strain was confirmed to be Lactiplantibacillus pentosus according to the high average nucleotide identity value of >95% and digital DNA–DNA hybridization scores of >70% to the L. pentosus type strain. Comparative genome analysis with other L. pentosus strains showed that the GABA-producing capability was specific to the strain 9D3. Genes related to GABA biosynthesis and transport were identified on a plasmid, pLPE-70K, indicating the acquired nature of this property. The safety of L. pentosus 9D3 was demonstrated through the lack of genes related to the production of toxins, biogenic amines, and antimicrobial drugs. Although the strain exhibited resistance to ampicillin and chloramphenicol, none of the antimicrobial resistance (AMR) genes were associated with mobile elements, i.e., plasmids and prophages. Therefore, the strain is considered to have low risk of transferring the AMR genes to other, potentially pathogenic bacteria. In addition, L. pentosus 9D3 showed good survivability in the gastrointestinal tract environment and was able to adhere to the intestinal cell in vitro. Therefore, L. pentosus 9D3 is concluded to be safe, with the potential to be used as a probiotic, exerting its health benefit through GABA production in the food system. The GABA-producing capability of the strain in vivo is the subject of further investigation.
Collapse
Affiliation(s)
- Nachon Raethong
- Institute of Nutrition, Mahidol University, Nakhon Pathom, Thailand
- *Correspondence: Nachon Raethong, ; Nipa Chokesajjawatee,
| | | | - Wonnop Visessanguan
- National Center for Genetic Engineering and Biotechnology (BIOTEC), Pathum Thani, Thailand
| | - Pannita Santiyanont
- National Center for Genetic Engineering and Biotechnology (BIOTEC), Pathum Thani, Thailand
| | - Wuttichai Mhuantong
- National Center for Genetic Engineering and Biotechnology (BIOTEC), Pathum Thani, Thailand
| | - Nipa Chokesajjawatee
- National Center for Genetic Engineering and Biotechnology (BIOTEC), Pathum Thani, Thailand
- *Correspondence: Nachon Raethong, ; Nipa Chokesajjawatee,
| |
Collapse
|
37
|
Zhang C, Ma K, Nie K, Deng M, Luo W, Wu X, Huang Y, Wang X. Assessment of the safety and probiotic properties of Roseburia intestinalis: A potential “Next Generation Probiotic”. Front Microbiol 2022; 13:973046. [PMID: 36160246 PMCID: PMC9493362 DOI: 10.3389/fmicb.2022.973046] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 08/05/2022] [Indexed: 12/04/2022] Open
Abstract
Roseburia intestinalis is an anaerobic bacterium that produces butyric acid and belongs to the phylum Firmicutes. There is increasing evidence that this bacterium has positive effects on several diseases, including inflammatory bowel disease, atherosclerosis, alcoholic fatty liver, colorectal cancer, and metabolic syndrome, making it a potential “Next Generation Probiotic.” We investigated the genomic characteristics, probiotic properties, cytotoxicity, oral toxicity, colonization characteristics of the bacterium, and its effect on the gut microbiota. The genome contains few genes encoding virulence factors, three clustered regularly interspaced short palindromic repeat (CRISPR) sequences, two Cas genes, no toxic biogenic amine synthesis genes, and several essential amino acid and vitamin synthesis genes. Seven prophages and 41 genomic islands were predicted. In addition to a bacteriocin (Zoocin A), the bacterium encodes four metabolic gene clusters that synthesize short-chain fatty acids and 222 carbohydrate-active enzyme modules. This bacterium is sensitive to antibiotics specified by the European Food Safety Authority, does not exhibit hemolytic or gelatinase activity, and exhibits some acid resistance. R. intestinalis adheres to intestinal epithelial cells and inhibits the invasion of certain pathogens. In vitro experiments showed that the bacterium was not cytotoxic. R. intestinalis did not affect the diversity or abundance of the gut flora. Using the fluorescent labelling method, we discovered that R. intestinalis colonizes the cecum and mucus of the colon. An oral toxicity study did not reveal any obvious adverse effects. The lethal dose (LD)50 of R. intestinalis exceeded 1.9 × 109 colony forming units (CFU)/kg, whereas the no observed adverse effect level (NOAEL) derived from this study was 1.32 × 109 CFU/kg/day for 28 days. The current research shows that, R. intestinalis is a suitable next-generation probiotic considering its probiotic properties and safety.
Collapse
Affiliation(s)
- Chao Zhang
- Department of Gastroenterology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Kejia Ma
- Department of Gastroenterology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Kai Nie
- Department of Gastroenterology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Minzi Deng
- Department of Gastroenterology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Weiwei Luo
- Department of Gastroenterology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Xing Wu
- Department of Gastroenterology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Yujun Huang
- Department of Gastroenterology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Xiaoyan Wang
- Department of Gastroenterology, The Third Xiangya Hospital of Central South University, Changsha, China
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Cancer Research Institute, Central South University, Changsha, China
- *Correspondence: Xiaoyan Wang,
| |
Collapse
|
38
|
Qian C, Ma J, Liang J, Zhang L, Liang X. Comprehensive deciphering prophages in genus Acetobacter on the ecology, genomic features, toxin–antitoxin system, and linkage with CRISPR-Cas system. Front Microbiol 2022; 13:951030. [PMID: 35983328 PMCID: PMC9379143 DOI: 10.3389/fmicb.2022.951030] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 07/07/2022] [Indexed: 11/13/2022] Open
Abstract
Acetobacter is the predominant microbe in vinegar production, particularly in those natural fermentations that are achieved by complex microbial communities. Co-evolution of prophages with Acetobacter, including integration, release, and dissemination, heavily affects the genome stability and production performance of industrial strains. However, little has been discussed yet about prophages in Acetobacter. Here, prophage prediction analysis using 148 available genomes from 34 Acetobacter species was carried out. In addition, the type II toxin–antitoxin systems (TAs) and CRISPR-Cas systems encoded by prophages or the chromosome were analyzed. Totally, 12,000 prophage fragments were found, of which 350 putatively active prophages were identified in 86.5% of the selected genomes. Most of the active prophages (83.4%) belonged to the order Caudovirales dominated by the families Siphoviridae and Myroviridae prophages (71.4%). Notably, Acetobacter strains survived in complex environments that frequently carried multiple prophages compared with that in restricted habits. Acetobacter prophages showed high genome diversity and horizontal gene transfer across different bacterial species by genomic feature characterization, average nucleotide identity (ANI), and gene structure visualization analyses. About 31.14% of prophages carry type II TAS, suggesting its important role in addiction, bacterial defense, and growth-associated bioprocesses to prophages and hosts. Intriguingly, the genes coding for Cse1, Cse2, Cse3, Cse4, and Cas5e involved in type I-E and Csy4 involved in type I-F CRISPR arrays were firstly found in two prophages. Type II-C CRISPR-Cas system existed only in Acetobacter aceti, while the other Acetobacter species harbored the intact or eroded type I CRISPR-Cas systems. Totally, the results of this study provide fundamental clues for future studies on the role of prophages in the cell physiology and environmental behavior of Acetobacter.
Collapse
|
39
|
Li Y, Yang Y, Ma L, Liu J, An Q, Zhang C, Yin G, Cao Z, Pan H. Comparative Analyses of Antibiotic Resistance Genes in Jejunum Microbiota of Pigs in Different Areas. Front Cell Infect Microbiol 2022; 12:887428. [PMID: 35719330 PMCID: PMC9204423 DOI: 10.3389/fcimb.2022.887428] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 04/25/2022] [Indexed: 11/28/2022] Open
Abstract
Antibiotic resistance genes (ARGs) are emerging environmental contaminants that threaten human and animal health. Intestinal microbiota may be an important ARGs repository, and intensive animal farming is a likely contributor to the environmental burden of ARGs. Using metagenomic sequencing, we investigated the structure, function, and drug resistance of the jejunal microbial community in Landrace (LA, Kunming), Saba (SB, Kunming), Dahe (DH, Qujing), and Diannan small-ear piglets (DS, Xishuangbanna) from different areas in Yunnan Province, China. Remarkable differences in jejunal microbial diversity among the different pig breeds, while the microbial composition of pig breeds in close areas tends to be similar. Functional analysis showed that there were abundant metabolic pathways and carbohydrate enzymes in all samples. In total, 32,487 ARGs were detected in all samples, which showed resistance to 38 categories of drugs. The abundance of ARGs in jejunum was not significantly different between LA and SB from the same area, but significantly different between DS, DH and LA or SB from different areas. Therefore, the abundance of ARGs was little affected by pig breeds and microorganism community structure, but it was closely related to geographical location. In addition, as a probiotic, Lactobacillus amylovorus is also an important ARGs producing bacterium. Our results revealed the antibiotic exposure and intestinal microbial resistance of farms in the study areas, which could provide basic knowledge and potential strategies for rational use of antibiotics and reducing the risk of ARGs transmission in animal husbandry.
Collapse
Affiliation(s)
- Yongxiang Li
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed Science, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Yuting Yang
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed Science, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Li Ma
- Institiute of Animal husbandry, Yunnan Vocational and Technical College of Agriculture, Kunming, China
| | - Jianping Liu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Qingcong An
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed Science, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Chunyong Zhang
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed Science, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Gefen Yin
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming, China
| | - Zhenhui Cao
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed Science, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Hongbin Pan
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed Science, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| |
Collapse
|
40
|
Ledormand P, Desmasures N, Midoux C, Rué O, Dalmasso M. Investigation of the Phageome and Prophages in French Cider, a Fermented Beverage. Microorganisms 2022; 10:1203. [PMID: 35744720 PMCID: PMC9230842 DOI: 10.3390/microorganisms10061203] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/01/2022] [Accepted: 06/08/2022] [Indexed: 12/10/2022] Open
Abstract
Phageomes are known to play a key role in the functioning of their associated microbial communities. The phageomes of fermented foods have not been studied thoroughly in fermented foods yet, and even less in fermented beverages. Two approaches were employed to investigate the presence of phages in cider, a fermented beverage made from apple, during a fermentation process of two cider tanks, one from an industrial producer and one from a hand-crafted producer. The phageome (free lytic phages) was explored in cider samples with several methodological developments for total phage DNA extraction, along with single phage isolation. Concentration methods, such as tangential flow filtration, flocculation and classical phage concentration methods, were employed and tested to extract free phage particles from cider. This part of the work revealed a very low occurrence of free lytic phage particles in cider. In parallel, a prophage investigation during the fermentation process was also performed using a metagenomic approach on the total bacterial genomic DNA. Prophages in bacterial metagenomes in the two cider tanks seemed also to occur in low abundance, as a total of 1174 putative prophages were identified in the two tanks overtime, and only two complete prophages were revealed. Prophage occurrence was greater at the industrial producer than at the hand-crafted producer, and different dynamics of prophage trends were also observed during fermentation. This is the first report dealing with the investigation of the phageome and of prophages throughout a fermentation process of a fermented beverage.
Collapse
Affiliation(s)
- Pierre Ledormand
- Normandie Univ., UNICAEN, UNIROUEN, ABTE, 14000 Caen, France; (P.L.); (N.D.)
| | - Nathalie Desmasures
- Normandie Univ., UNICAEN, UNIROUEN, ABTE, 14000 Caen, France; (P.L.); (N.D.)
| | - Cédric Midoux
- INRAE, MaIAGE, Université Paris-Saclay, 78350 Jouy-en-Josas, France; (C.M.); (O.R.)
- INRAE, BioinfOmics, MIGALE Bioinformatics Facility, Université Paris-Saclay, 78350 Jouy-en-Josas, France
- INRAE, PROSE, Université Paris-Saclay, 92761 Antony, France
| | - Olivier Rué
- INRAE, MaIAGE, Université Paris-Saclay, 78350 Jouy-en-Josas, France; (C.M.); (O.R.)
- INRAE, BioinfOmics, MIGALE Bioinformatics Facility, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | - Marion Dalmasso
- Normandie Univ., UNICAEN, UNIROUEN, ABTE, 14000 Caen, France; (P.L.); (N.D.)
| |
Collapse
|
41
|
Safety Assessment of Lactiplantibacillus plantarum TWK10 Based on Whole-Genome Sequencing, Phenotypic, and Oral Toxicity Analysis. Microorganisms 2022; 10:microorganisms10040784. [PMID: 35456834 PMCID: PMC9031848 DOI: 10.3390/microorganisms10040784] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/03/2022] [Accepted: 04/05/2022] [Indexed: 12/04/2022] Open
Abstract
Lactiplantibacillus plantarum TWK10 (TWK10), isolated from Taiwanese pickled cabbage, has been demonstrated to exert beneficial probiotic effects in both mice and humans. Here, we comprehensively assessed the safety of TWK10 using both in vivo and in vitro approaches, including whole-genome sequence analysis, an assessment of hemolytic activity, and performing an antimicrobial susceptibility test, the Ames bacterial reverse mutation assay, the chromosomal aberration test, a rodent peripheral blood micronucleus test, and the 28-day subacute oral toxicity assay. The results showed that there was no significant increase in the incidence of reverse mutations or chromosomal aberrations following exposure to TWK10. Moreover, no significant changes were detected either in the number of reticulocytes or the incidence of micronuclei in ICR mice, and no subacute toxicity was recorded in SD rats at the oral TWK10 dosage of 2000 mg/kg body weight/day repeated for 28 days. Additionally, TWK10 exhibited no hemolytic activity and was susceptible to all the antibiotics tested, except kanamycin. However, no antimicrobial resistance genes, virulence factors, or genes involved in biogenic amine synthesis were found in the genome of TWK10. Our findings demonstrated that TWK10 has high potential of being safe for human consumption as a probiotic.
Collapse
|
42
|
Yuan L, Fan L, Zhao H, Mgomi FC, Ni H, He G. RNA-seq reveals the phage-resistant mechanisms displayed by Lactiplantibacillus plantarum ZJU-1 isolated from Chinese traditional sourdough. Int Dairy J 2022. [DOI: 10.1016/j.idairyj.2021.105286] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
43
|
Happel AU, Balle C, Maust BS, Konstantinus IN, Gill K, Bekker LG, Froissart R, Passmore JA, Karaoz U, Varsani A, Jaspan H. Presence and Persistence of Putative Lytic and Temperate Bacteriophages in Vaginal Metagenomes from South African Adolescents. Viruses 2021; 13:2341. [PMID: 34960611 PMCID: PMC8708031 DOI: 10.3390/v13122341] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/18/2021] [Accepted: 11/18/2021] [Indexed: 12/11/2022] Open
Abstract
The interaction between gut bacterial and viral microbiota is thought to be important in human health. While fluctuations in female genital tract (FGT) bacterial microbiota similarly determine sexual health, little is known about the presence, persistence, and function of vaginal bacteriophages. We conducted shotgun metagenome sequencing of cervicovaginal samples from South African adolescents collected longitudinally, who received no antibiotics. We annotated viral reads and circular bacteriophages, identified CRISPR loci and putative prophages, and assessed their diversity, persistence, and associations with bacterial microbiota composition. Siphoviridae was the most prevalent bacteriophage family, followed by Myoviridae, Podoviridae, Herelleviridae, and Inoviridae. Full-length siphoviruses targeting bacterial vaginosis (BV)-associated bacteria were identified, suggesting their presence in vivo. CRISPR loci and prophage-like elements were common, and genomic analysis suggested higher diversity among Gardnerella than Lactobacillus prophages. We found that some prophages were highly persistent within participants, and identical prophages were present in cervicovaginal secretions of multiple participants, suggesting that prophages, and thus bacterial strains, are shared between adolescents. The number of CRISPR loci and prophages were associated with vaginal microbiota stability and absence of BV. Our analysis suggests that (pro)phages are common in the FGT and vaginal bacteria and (pro)phages may interact.
Collapse
Affiliation(s)
- Anna-Ursula Happel
- Department of Pathology, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Anzio Road, Cape Town 7925, South Africa; (A.-U.H.); (C.B.); (I.N.K.); (J.-A.P.)
| | - Christina Balle
- Department of Pathology, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Anzio Road, Cape Town 7925, South Africa; (A.-U.H.); (C.B.); (I.N.K.); (J.-A.P.)
| | - Brandon S. Maust
- Seattle Children’s Research Institute, 307 Westlake Ave. N, Seattle, WA 98109, USA;
- Department of Pediatrics, University of Washington School of Medicine, 1959 NE Pacific St., Seattle, WA 98195, USA
| | - Iyaloo N. Konstantinus
- Department of Pathology, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Anzio Road, Cape Town 7925, South Africa; (A.-U.H.); (C.B.); (I.N.K.); (J.-A.P.)
- Namibia Institute of Pathology, Hosea Kutako, Windhoek 10005, Namibia
| | - Katherine Gill
- Desmond Tutu HIV Centre, University of Cape Town, Anzio Road, Cape Town 7925, South Africa; (K.G.); (L.-G.B.)
- NRF-DST CAPRISA Centre of Excellence in HIV Prevention, 719 Umbilo Road, Congella, Durban 4013, South Africa
| | - Linda-Gail Bekker
- Desmond Tutu HIV Centre, University of Cape Town, Anzio Road, Cape Town 7925, South Africa; (K.G.); (L.-G.B.)
- NRF-DST CAPRISA Centre of Excellence in HIV Prevention, 719 Umbilo Road, Congella, Durban 4013, South Africa
| | - Rémy Froissart
- CNRS, IRD, Université Montpellier, UMR 5290, MIVEGEC, 34394 Montpellier, France;
| | - Jo-Ann Passmore
- Department of Pathology, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Anzio Road, Cape Town 7925, South Africa; (A.-U.H.); (C.B.); (I.N.K.); (J.-A.P.)
- Desmond Tutu HIV Centre, University of Cape Town, Anzio Road, Cape Town 7925, South Africa; (K.G.); (L.-G.B.)
- NRF-DST CAPRISA Centre of Excellence in HIV Prevention, 719 Umbilo Road, Congella, Durban 4013, South Africa
- National Health Laboratory Service, Anzio Road, Cape Town 7925, South Africa
| | - Ulas Karaoz
- Earth and Environmental Science, Lawrence Berkeley National Laboratories, 1 Cyclotron Rd., Berkeley, CA 94720, USA;
| | - Arvind Varsani
- The Biodesign Center of Fundamental and Applied Microbiomics, Center for Evolution and Medicine, School of Life Sciences, Arizona State University, 1001 S. McAllister Ave., Tempe, AZ 85281, USA
- Structural Biology Research Unit, Department of Integrative Biomedical Sciences, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Anzio Road, Cape Town 7925, South Africa
| | - Heather Jaspan
- Department of Pathology, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Anzio Road, Cape Town 7925, South Africa; (A.-U.H.); (C.B.); (I.N.K.); (J.-A.P.)
- Seattle Children’s Research Institute, 307 Westlake Ave. N, Seattle, WA 98109, USA;
- Department of Pediatrics, University of Washington School of Medicine, 1959 NE Pacific St., Seattle, WA 98195, USA
- Department of Global Health, University of Washington School of Public Health, 1510 San Juan Road NE, Seattle, WA 98195, USA
| |
Collapse
|
44
|
Ma Q, Pei Z, Fang Z, Wang H, Zhu J, Lee YK, Zhang H, Zhao J, Lu W, Chen W. Evaluation of Tetracycline Resistance and Determination of the Tentative Microbiological Cutoff Values in Lactic Acid Bacterial Species. Microorganisms 2021; 9:2128. [PMID: 34683449 PMCID: PMC8538481 DOI: 10.3390/microorganisms9102128] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/01/2021] [Accepted: 10/06/2021] [Indexed: 11/20/2022] Open
Abstract
Lactic acid bacteria (LAB) are widely used as probiotics in the food industry owing to their beneficial effects on human health. However, numerous antibiotic resistance genes have been found in LAB strains, especially tetracycline resistance genes. Notably, the potential transferability of these genes poses safety risks. To comprehensively evaluate tetracycline resistance in LAB, we determined the tetracycline susceptibility patterns of 478 LAB strains belonging to four genera and eight species. By comparing phenotypes with genotypes based on genome-wide annotations, five tetracycline resistance genes, tet(M), tet(W/N/W), tet(L), tet(S), and tet(45), were detected in LAB. Multiple LAB strains without tetracycline resistance genes were found to be resistant to tetracycline at the currently recommended cutoff values. Thus, based on the minimum inhibitory concentrations of tetracycline for these LAB strains, the species-specific microbiological cutoff values for Lactobacillus (para)gasseri, Lactobacillus johnsonii, and Lactobacillus crispatus to tetracycline were first developed using the Turnidge, Kronvall, and eyeball methods. The cutoff values for Lactiplantibacillus plantarum were re-established and could be used to better distinguish susceptible strains from strains with acquired resistance. Finally, we verified that these five genes play a role in tetracycline resistance and found that tet(M) and tet(W/N/W) are the most widely distributed tetracycline resistance genes in LAB.
Collapse
Affiliation(s)
- Qingqing Ma
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (Q.M.); (Z.P.); (Z.F.); (H.W.); (J.Z.); (H.Z.); (J.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Zhangming Pei
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (Q.M.); (Z.P.); (Z.F.); (H.W.); (J.Z.); (H.Z.); (J.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Zhifeng Fang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (Q.M.); (Z.P.); (Z.F.); (H.W.); (J.Z.); (H.Z.); (J.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Hongchao Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (Q.M.); (Z.P.); (Z.F.); (H.W.); (J.Z.); (H.Z.); (J.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Jinlin Zhu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (Q.M.); (Z.P.); (Z.F.); (H.W.); (J.Z.); (H.Z.); (J.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Yuan-kun Lee
- Department of Microbiology & Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117545, Singapore;
- International Joint Research Laboratory for Pharmabiotics & Antibiotic Resistance, Jiangnan University, Wuxi 214122, China
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (Q.M.); (Z.P.); (Z.F.); (H.W.); (J.Z.); (H.Z.); (J.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- (Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou 225004, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (Q.M.); (Z.P.); (Z.F.); (H.W.); (J.Z.); (H.Z.); (J.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- (Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou 225004, China
| | - Wenwei Lu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (Q.M.); (Z.P.); (Z.F.); (H.W.); (J.Z.); (H.Z.); (J.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- International Joint Research Laboratory for Pharmabiotics & Antibiotic Resistance, Jiangnan University, Wuxi 214122, China
- (Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou 225004, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (Q.M.); (Z.P.); (Z.F.); (H.W.); (J.Z.); (H.Z.); (J.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
45
|
Lu W, Pei Z, Zang M, Lee YK, Zhao J, Chen W, Wang H, Zhang H. Comparative Genomic Analysis of Bifidobacterium bifidum Strains Isolated from Different Niches. Genes (Basel) 2021; 12:genes12101504. [PMID: 34680899 PMCID: PMC8535415 DOI: 10.3390/genes12101504] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 09/17/2021] [Accepted: 09/17/2021] [Indexed: 01/17/2023] Open
Abstract
The potential probiotic benefits of Bifidobacterium bifidum have received increasing attention recently. We used comparative genomic analysis to explore the differences in the genome and the physiological characteristics of B. bifidum isolated from the fecal samples of Chinese adults and infants. The relationships between genotypes and phenotypes were analyzed to assess the effects of isolation sources on the genetic variation of B. bifidum. The phylogenetic tree results indicated that the phylogeny of B. bifidum may be related to the geographical features of its isolation source. B. bifidum was found to have an open pan-genome and a conserved core genome. The genetic diversity of B. bifidum is mainly reflected in carbohydrate metabolism- and immune/competition-related factors, such as the glycoside hydrolase gene family, bacteriocin operons, antibiotic resistance genes, and clustered regularly interspaced short palindromic repeats (CRISPR)-Cas. Additionally, the type III A CRISPR-Cas system was discovered in B. bifidum for the first time. B. bifidum strains exhibited niche-specific characteristics, and the results of this study provide an improved understanding of the genetics of this species.
Collapse
Affiliation(s)
- Wenwei Lu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (W.L.); (Z.P.); (M.Z.); (J.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
| | - Zhangming Pei
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (W.L.); (Z.P.); (M.Z.); (J.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Mengning Zang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (W.L.); (Z.P.); (M.Z.); (J.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Yuan-kun Lee
- Department of Microbiology & Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore;
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (W.L.); (Z.P.); (M.Z.); (J.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (W.L.); (Z.P.); (M.Z.); (J.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
| | - Hongchao Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (W.L.); (Z.P.); (M.Z.); (J.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Correspondence: (H.W.); (H.Z.); Tel.: +86-510-85-197-239 (H.W. & H.Z.); Fax: +86-510-85-197-239 (H.W. & H.Z.)
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (W.L.); (Z.P.); (M.Z.); (J.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
- Wuxi Translational Medicine Research Center and Jiangsu Translational Medicine Research Institute Wuxi Branch, Wuxi 214122, China
- Correspondence: (H.W.); (H.Z.); Tel.: +86-510-85-197-239 (H.W. & H.Z.); Fax: +86-510-85-197-239 (H.W. & H.Z.)
| |
Collapse
|