1
|
Li X, Yan C, Li S, Shen L, Huo L. Mechanism of LncRNA CBR3-AS1 in regulating pyroptosis of intestinal epithelial cells in ulcerative colitis. J Bioenerg Biomembr 2025:10.1007/s10863-025-10060-3. [PMID: 40257734 DOI: 10.1007/s10863-025-10060-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 04/02/2025] [Indexed: 04/22/2025]
Abstract
Ulcerative colitis (UC) is a common chronic relapsing inflammatory disease that threatens human life. This study aims to explore the mechanism of LncRNA CBR3-AS1 in pyroptosis of intestinal epithelial cells in UC. The levels of CBR3-AS1, KLF2, and SUGT1 in UC cells were detected. After downregulating CBR3-AS1 expression, cell viability and pyroptosis were measured, followed by the detection of SOD and MDA levels. The binding of CBR3-AS1 to EZH2, enrichment of EZH2 and H3K27me3 on the KLF2 promoter, and binding of KLF2 to the SUGT1 promoter were assayed. The role of CBR3-AS1 in pyroptosis was validated in animal models. We found that CBR3-AS1 and SUGT1 were increased in UC cells, and KLF2 was decreased. After downregulation of CBR3-AS1, cell viability was increased and pyroptosis was alleviated. CBR3-AS1 recruited EZH2 to occupy the KLF2 promoter, leading to increased H3K27me3 levels and suppressed KLF2 expression, reducing the enrichment of KLF2 on the SUGT1 promoter, finally promoting SUGT1 expression. SUGT1 overexpression or KLF2 downregulation alleviated the protective effect of silencing CBR3-AS1 on pyroptosis in UC cells. CBR3-AS1 downregulation alleviates cell pyroptosis in colonic tissues. In conclusion, CBR3-AS1 exacerbated pyroptosis of intestinal epithelial cells in UC via the KLF2/SUGT1 pathway.
Collapse
Affiliation(s)
- Xi Li
- Department of Gastroenterology, The First Affiliated Hospital of Shanxi Medical University, 85 Jiefang South Road, Yingze District, Taiyuan, Shanxi Province, 030000, China
- Department of Gastroenterology, Changzhi People's Hospital, 502 Changxing Middle Road, Changzhi, 046000, China
| | - Caiwen Yan
- Department of Gastroenterology, Changzhi People's Hospital, 502 Changxing Middle Road, Changzhi, 046000, China
| | - Suxia Li
- Department of Gastroenterology, The First Affiliated Hospital of Shanxi Medical University, 85 Jiefang South Road, Yingze District, Taiyuan, Shanxi Province, 030000, China
| | - Lujun Shen
- Department of Gastroenterology, Changzhi People's Hospital, 502 Changxing Middle Road, Changzhi, 046000, China
| | - Lijuan Huo
- Department of Gastroenterology, The First Affiliated Hospital of Shanxi Medical University, 85 Jiefang South Road, Yingze District, Taiyuan, Shanxi Province, 030000, China.
| |
Collapse
|
2
|
Weidle UH, Birzele F. Prostate Cancer: De-regulated Circular RNAs With Efficacy in Preclinical In Vivo Models. Cancer Genomics Proteomics 2025; 22:136-165. [PMID: 39993805 PMCID: PMC11880926 DOI: 10.21873/cgp.20494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 11/28/2025] [Accepted: 12/03/2024] [Indexed: 02/26/2025] Open
Abstract
Therapy resistance, including castration-resistance and metastasis, remains a major hurdle in the treatment of prostate cancer. In order to identify novel therapeutic targets and treatment modalities for prostate cancer, we conducted a comprehensive literature search on PubMed to identify de-regulated circular RNAs that influence treatment efficacy in preclinical prostate cancer-related in vivo models. Our analysis identified 49 circular RNAs associated with various processes, including treatment resistance, transmembrane and secreted proteins, transcription factors, signaling cascades, human antigen R, nuclear receptor binding, ubiquitination, metabolism, epigenetics and other target categories. The identified targets and circular RNAs can be further scrutinized through target validation approaches. Down-regulated circular RNAs are candidates for reconstitution therapy, while up-regulated RNAs can be inhibited using small interfering RNA (siRNA), antisense oligonucleotides (ASO) or clustered regularly interspaced short palindromic repeats/CRISPR associated (CRISPR-CAS)-related approaches.
Collapse
Affiliation(s)
- Ulrich H Weidle
- Roche Pharma Research and Early Development, Roche Innovation Center Munich, Penzberg, Germany;
| | - Fabian Birzele
- Roche Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, Basel, Switzerland
| |
Collapse
|
3
|
Pimenta RML, Skon-Hegg C, Rose-Hellekant T, Holy J. Mechanoresponsive patterns of KLF2, 4, 5, and 6 expression differ among subclones from a single mammary tumor. Acta Histochem 2025; 127:152238. [PMID: 39983249 DOI: 10.1016/j.acthis.2025.152238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 02/10/2025] [Accepted: 02/18/2025] [Indexed: 02/23/2025]
Abstract
A number of Krüppel-like transcription factor (KLF) family members display mechanoresponsive behaviors, and function as mechanosensitive transcription factors. There are many normal and pathological conditions where their roles in mechanotransduction and mechanoadaptation are not well understood, however. In this study, two basic questions regarding KLF mechanoresponsiveness were addressed: 1) are KLF 2, 4, 5, and 6 expressed at different levels among subclones of tumor cells adapted to specific microenvironmental conditions; and 2) is the expression of these KLFs responsive to rapid changes in the physical environment? To address these questions, the heterogeneous and differentially metastatic murine mammary tumor subclones 4T1, 4T07, and 67NR were subjected to physical changes in their culture conditions, and KLF responses assessed. The results show that the expression of different KLFs exhibit distinct responses to reductions in cell tension, as well as cell detachment from 2D and 3D environments. KLF2 and 4 expression is rapidly and temporarily induced upon release of cells from a stiff 2D substrate into liquid suspension culture in all three subclones, and similar responses are observed in two of the subclones upon the release of tension in 3D collagen gel cultures. By contrast, expression patterns of KLF5 and 6 were generally less affected by physical changes in most, but not all, of the cell lines examined. These results support the concept that KLFs differentially participate in transducing physical differences among intratumoral neighborhoods into distinct responses among heterogeneous subclones, thereby contributing to tumor cell behavioral complexity.
Collapse
Affiliation(s)
| | - Cara Skon-Hegg
- Whiteside Institute for Clinical Research, St. Luke's Hospital, University of Minnesota Medical School, Duluth, MN 55812, USA
| | - Teresa Rose-Hellekant
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN 55812, USA
| | - Jon Holy
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN 55812, USA.
| |
Collapse
|
4
|
Marchenko VA, Zhilinskaya IN. Endothelial activation and dysfunction caused by influenza A virus ( Alphainfluenzavirus influenzae). Vopr Virusol 2024; 69:465-478. [PMID: 39841412 DOI: 10.36233/0507-4088-264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Indexed: 01/23/2025]
Abstract
Annual epidemics of influenza result in 3-5 million cases of severe illness and more than 600 000 deaths. Severe forms of influenza are usually characterized by vascular endothelial cells damage. Thus, influenza A viruses, including subtypes A(H1N1)pdm09, A(H3N2), as well as highly pathogenic avian influenza viruses, can infect the vascular endothelium, leading to activation and subsequent dysfunction of these cells. In turn, endothelial dysfunction resulting in systemic morphofunctional changes of endothelial cells, which leads to impaired vascular tone, thrombosis and other complications, and is also a risk factor and profoundly implicated in the pathogenesis of many cardiovascular diseases. Thus, endothelial dysfunction is an important aspect of the pathogenesis of severe influenza, which must be considered in the pathogenetic therapy of this infectious disease. The aim of the review is to analyze the causes and specify mechanisms of development of endothelial activation and dysfunction caused by influenza A virus.
Collapse
Affiliation(s)
- V A Marchenko
- North-Western State Medical University Named after I.I. Mechnikov
| | - I N Zhilinskaya
- North-Western State Medical University Named after I.I. Mechnikov
| |
Collapse
|
5
|
Xu R, Chen Y, Wei S, Chen J. Comprehensive Pan-Cancer Analysis of the Prognostic Role of KLF Transcription Factor 2 (KLF2) in Human Tumors. Onco Targets Ther 2024; 17:887-904. [PMID: 39507409 PMCID: PMC11539754 DOI: 10.2147/ott.s476179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 10/24/2024] [Indexed: 11/08/2024] Open
Abstract
Background KLF2 is a transcription factor expressed early in mammalian development that plays a role in many processes of development and disease. Recently, increasing studies revealed that KLF2 plays a key role in the occurrence and progression of cancer. Purpose The aim of this study was to explore the role of KLF2 in various tumor types using the Cancer Genome Atlas dataset. Methods Here, we set out to explore the role of KLF2 in 33 tumor types using TCGA (The Cancer Genome Atlas), GEO (Gene Expression Omnibus) dataset, Human Protein Atlas (HPA), UALCAN database, CancerSEA, GSCALite and several bioinformatic tools. Furthermore, we also performed immunohistochemistry and qPCR to further validate the role of KLF2 in multiple cancers and its correlation with prognosis. Results We found that KLF2 was underexpressed in most tumors and generally predicted poor OS in tumor patients. We found that amplification of KLF2 may be a risk factor for patients with OV (Ovarian serous cystadenocarcinoma). We also analyzed the abundance of checkpoints and markers of specific immune subsets including CD8+ T lymphocytes (T cells), CD4+ T cells, macrophages, and endothelial cells that significantly correlated with the expression level of KLF2 in pan-carcinoma tissues. In some cancers, KLF2 expression levels are positively correlated with gene promoter DNA methylation and drug sensitivity. In addition, we found that KLF2 is involved in single-cell level cell invasion in some cancers. In addition, KLF2 is co-expressed with several intracellular signal transduction genes involved in immune system processes. Immunohistochemistry and qPCR confirmed the low expression of KLF2 in STAD (stomach adenocarcinoma) and renal cancer. Conclusion Our pan-cancer analysis provides a comprehensive overview of the oncogenic roles of KLF2 in multiple human cancers and can be regarded as a potential prognostic marker and a novel target for cancer immunotherapy.
Collapse
Affiliation(s)
- Rong Xu
- Department of Dermatology, The Fourth Affiliated Hospital of Nanjing Medical University, Nanjing, People’s Republic of China
| | - Yuhan Chen
- Department of Pathology, The Fourth Affiliated Hospital of Nanjing Medical University, Nanjing, People’s Republic of China
| | - Shicai Wei
- Department of Dermatology, The Fourth Affiliated Hospital of Nanjing Medical University, Nanjing, People’s Republic of China
| | - Jun Chen
- Department of Dermatology, The Fourth Affiliated Hospital of Nanjing Medical University, Nanjing, People’s Republic of China
| |
Collapse
|
6
|
Shi J, Chen L, Wang X, Ma X. KLF2 Inhibits Ferroptosis and Improves Mitochondrial Dysfunction in Chondrocyte Through SIRT1/GPX4 Signaling to Improve Osteoarthritis. Drug Dev Res 2024; 85:e70015. [PMID: 39527654 DOI: 10.1002/ddr.70015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/11/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024]
Abstract
Osteoarthritis (OA), a disease of articular joints, is the leading cause of disability in the elderly. Repressing ferroptosis and improving mitochondrial function can delay the progression of OA. Kruppel-like factor 2 (KLF2) exerts a protective effect on OA. However, whether KLF2 affects ferroptosis and mitochondrial function during OA remains unknown. The OA in vivo and in vitro models were constructed in this work. The structural damage of knee joint in OA mice was evaluated through Micro-CT scanning. H&E, SOFG, TB, and TUNEL staining were applied for pathological examination of cartilage tissues. ELISA was employed to examine the contents of inflammatory factors. Additionally, iron deposition in cartilage tissues was measured by Prussian blue staining, and the levels of proteins related to ferroptosis were assessed by immunoblotting. Besides, mitochondrial morphology and function were estimated using a transmission electron microscope and JC-1 staining. In interleukin (IL)-1β-treated C28/I2 cells, the levels of inflammatory factors, intracellular ROS, mitochondrial ROS, lipid ROS, and Fe2+ were measured. Mitochondrial function was evaluated by detecting the levels of mitochondrial membrane potential (MMP), ATP, mPTP, and OCR. KLF2 overexpression ameliorated the structural damage of knee cartilage in OA mice. KLF2 upregulation inhibited ferroptosis and alleviated mitochondrial damage in knee cartilage of OA mice and IL-1β-treated C28/I2 cells. Moreover, KLF2 overexpression activated SIRT1/GPX4 signaling in vivo and in vitro. EX527 addition blocked the influences of KLF2 upregulation on ferroptosis and mitochondrial dysfunction in IL-1β-treated C28/I2 cells. Altogether KLF2 inhibits ferroptosis and improves mitochondrial dysfunction in chondrocytes through SIRT1/GPX4 signaling to improve OA.
Collapse
Affiliation(s)
- Jiaqi Shi
- Orthopedic Department, Huashan Hospital Affiliated to Fudan University, Shanghai, China
| | - Li Chen
- Orthopedic Department, Huashan Hospital Affiliated to Fudan University, Shanghai, China
| | - Xu Wang
- Orthopedic Department, Huashan Hospital Affiliated to Fudan University, Shanghai, China
| | - Xin Ma
- Orthopedic Department, Huashan Hospital Affiliated to Fudan University, Shanghai, China
| |
Collapse
|
7
|
Sakano Y, Sakano K, Hurrell BP, Shafiei-Jahani P, Kazemi MH, Li X, Shen S, Barbers R, Akbari O. SIRPα engagement regulates ILC2 effector function and alleviates airway hyperreactivity via modulating energy metabolism. Cell Mol Immunol 2024; 21:1158-1174. [PMID: 39160226 PMCID: PMC11442993 DOI: 10.1038/s41423-024-01208-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 07/17/2024] [Accepted: 07/30/2024] [Indexed: 08/21/2024] Open
Abstract
Group-2 innate lymphoid cells (ILC2) are part of a growing family of innate lymphocytes known for their crucial role in both the development and exacerbation of allergic asthma. The activation and function of ILC2s are regulated by various activating and inhibitory molecules, with their balance determining the severity of allergic responses. In this study, we aim to elucidate the critical role of the suppressor molecule signal regulatory protein alpha (SIRPα), which interacts with CD47, in controlling ILC2-mediated airway hyperreactivity (AHR). Our data indicate that activated ILC2s upregulate the expression of SIRPα, and the interaction between SIRPα and CD47 effectively suppresses both ILC2 proliferation and effector function. To evaluate the function of SIRPα in ILC2-mediated AHR, we combined multiple approaches including genetically modified mouse models and adoptive transfer experiments in murine models of allergen-induced AHR. Our findings suggest that the absence of SIRPα leads to the overactivation of ILC2s. Conversely, engagement of SIRPα with CD47 reduces ILC2 cytokine production and effectively regulates ILC2-dependent AHR. Furthermore, the SIRPα-CD47 axis modulates mitochondrial metabolism through the JAK/STAT and ERK/MAPK signaling pathways, thereby regulating NF-κB activity and the production of type 2 cytokines. Additionally, our studies have revealed that SIRPα is inducible and expressed on human ILC2s, and administration of human CD47-Fc effectively suppresses the effector function and cytokine production. Moreover, administering human CD47-Fc to humanized ILC2 mice effectively alleviates AHR and lung inflammation. These findings highlight the promising therapeutic potential of targeting the SIRPα-CD47 axis in the treatment of ILC2-dependent allergic asthma.
Collapse
Affiliation(s)
- Yoshihiro Sakano
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Kei Sakano
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Benjamin P Hurrell
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Pedram Shafiei-Jahani
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Mohammad Hossein Kazemi
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Xin Li
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Stephen Shen
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Richard Barbers
- Department of Clinical Medicine, Division of Pulmonary and Critical Care Medicine, Keck School of Medicine of USC, University of Southern California Hospital, Los Angeles, CA, USA
| | - Omid Akbari
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
8
|
Pandian K, Huang L, Junaid A, Harms A, van Zonneveld AJ, Hankemeier T. Tracer-based metabolomics for profiling nitric oxide metabolites in a 3D microvessels-on-chip model. FASEB J 2024; 38:e70005. [PMID: 39171967 DOI: 10.1096/fj.202400553r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 06/19/2024] [Accepted: 08/07/2024] [Indexed: 08/23/2024]
Abstract
Endothelial dysfunction, prevalent in cardiovascular diseases (CVDs) and linked to conditions like diabetes, hypertension, obesity, renal failure, or hypercholesterolemia, is characterized by diminished nitric oxide (NO) bioavailability-a key signaling molecule for vascular homeostasis. Current two-dimensional (2D) in vitro studies on NO synthesis by endothelial cells (ECs) lack the crucial laminar shear stress, a vital factor in modulating the NO-generating enzyme, endothelial nitric oxide synthase (eNOS), under physiological conditions. Here we developed a tracer-based metabolomics approach to measure NO-specific metabolites with mass spectrometry (MS) and show the impact of fluid flow on metabolic parameters associated with NO synthesis using 2D and 3D platforms. Specifically, we tracked the conversion of stable-isotope labeled NO substrate L-Arginine to L-Citrulline and L-Ornithine to determine eNOS activity. We demonstrated clear responses in human coronary artery endothelial cells (HCAECs) cultured with 13C6, 15N4-L-Arginine, and treated with eNOS stimulator, eNOS inhibitor, and arginase inhibitor. Analysis of downstream metabolites, 13C6, 15N3 L-Citrulline and 13C5, 15N2 L-Ornithine, revealed distinct outcomes. Additionally, we evaluated the NO metabolic status in static 2D culture and 3D microvessel models with bidirectional and unidirectional fluid flow. Our 3D model exhibited significant effects, particularly in microvessels exposed to the eNOS stimulator, as indicated by the 13C6, 15N3 L-Citrulline/13C5, 15N2 L-Ornithine ratio, compared to the 2D culture. The obtained results indicate that the 2D static culture mimics an endothelial dysfunction status, while the 3D model with a unidirectional fluid flow provides a more representative physiological environment that provides a better model to study endothelial dysfunction.
Collapse
Affiliation(s)
- Kanchana Pandian
- Division of Systems Biomedicine and Pharmacology, LACDR, Leiden University, Leiden, the Netherlands
| | - Luojiao Huang
- Division of Systems Biomedicine and Pharmacology, LACDR, Leiden University, Leiden, the Netherlands
| | - Abidemi Junaid
- Division of Systems Biomedicine and Pharmacology, LACDR, Leiden University, Leiden, the Netherlands
| | - Amy Harms
- Division of Systems Biomedicine and Pharmacology, LACDR, Leiden University, Leiden, the Netherlands
| | - Anton Jan van Zonneveld
- Department of Internal Medicine (Nephrology) and the Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Center (LUMC), Leiden, the Netherlands
| | - Thomas Hankemeier
- Division of Systems Biomedicine and Pharmacology, LACDR, Leiden University, Leiden, the Netherlands
| |
Collapse
|
9
|
Min L, Zhong F, Gu L, Lee K, He JC. Krüppel-like factor 2 is an endoprotective transcription factor in diabetic kidney disease. Am J Physiol Cell Physiol 2024; 327:C477-C486. [PMID: 38981608 PMCID: PMC11901337 DOI: 10.1152/ajpcell.00222.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 07/02/2024] [Accepted: 07/02/2024] [Indexed: 07/11/2024]
Abstract
Diabetic kidney disease (DKD) is a microvascular complication of diabetes, and glomerular endothelial cell (GEC) dysfunction is a key driver of DKD pathogenesis. Krüppel-like factor 2 (KLF2), a shear stress-induced transcription factor, is among the highly regulated genes in early DKD. In the kidney, KLF2 expression is mostly restricted to endothelial cells, but its expression is also found in immune cell subsets. KLF2 expression is upregulated in response to increased shear stress by the activation of mechanosensory receptors but suppressed by inflammatory cytokines, both of which characterize the early diabetic kidney milieu. KLF2 expression is reduced in progressive DKD and hypertensive nephropathy in humans and mice, likely due to high glucose and inflammatory cytokines such as TNF-α. However, KLF2 expression is increased in glomerular hyperfiltration-induced shear stress without metabolic dysregulation, such as in settings of unilateral nephrectomy. Lower KLF2 expression is associated with CKD progression in patients with unilateral nephrectomy, consistent with its endoprotective role. KLF2 confers endoprotection by inhibition of inflammation, thrombotic activation, and angiogenesis, and thus KLF2 is considered a protective factor for cardiovascular disease (CVD). Based on similar mechanisms, KLF2 also exhibits renoprotection, and its reduced expression in endothelial cells worsens glomerular injury and albuminuria in settings of diabetes or unilateral nephrectomy. Thus KLF2 confers endoprotective effects in both CVD and DKD, and its activators could potentially be developed as a novel class of drugs for cardiorenal protection in diabetic patients.
Collapse
Affiliation(s)
- Lulin Min
- Department of Nephrology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Department of Medicine/Nephrology, Icahn School of Medicine at Mount Sinai, New York, New York, United States
| | - Fang Zhong
- Department of Medicine/Nephrology, Icahn School of Medicine at Mount Sinai, New York, New York, United States
| | - Leyi Gu
- Department of Nephrology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Kyung Lee
- Department of Medicine/Nephrology, Icahn School of Medicine at Mount Sinai, New York, New York, United States
| | - John Cijiang He
- Department of Medicine/Nephrology, Icahn School of Medicine at Mount Sinai, New York, New York, United States
- Renal Section, James J. Peters Veterans Affair Medical Center, Bronx, New York, United States
| |
Collapse
|
10
|
Mirandari A, Parker H, Ashton-Key M, Stevens B, Walewska R, Stamatopoulos K, Bryant D, Oscier DG, Gibson J, Strefford JC. The genomic and molecular landscape of splenic marginal zone lymphoma, biological and clinical implications. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2024; 5:877-901. [PMID: 39280243 PMCID: PMC11390296 DOI: 10.37349/etat.2024.00253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 05/08/2024] [Indexed: 09/18/2024] Open
Abstract
Splenic marginal zone lymphoma (SMZL) is a rare, predominantly indolent B-cell lymphoma constituting fewer than 2% of lymphoid neoplasms. However, around 30% of patients have a shorter survival despite currently available treatments and the prognosis is especially poor for the 5-15% of cases that transform to a large cell lymphoma. Mounting evidence suggests that the molecular pathogenesis of SMZL is critically shaped by microenvironmental triggering and cell-intrinsic aberrations. Immunogenetic investigations have revealed biases in the immunoglobulin gene repertoire, indicating a role of antigen selection. Furthermore, cytogenetic studies have identified recurrent chromosomal abnormalities such as deletion of the long arm of chromosome 7, though specific disease-associated genes remain elusive. Our knowledge of SMZL's mutational landscape, based on a limited number of cases, has identified recurring mutations in KLF2, NOTCH2, and TP53, as well as genes clustering within vital B-cell differentiation pathways. These mutations can be clustered within patient subgroups with different patterns of chromosomal lesions, immunogenetic features, transcriptional signatures, immune microenvironments, and clinical outcomes. Regarding SMZL epigenetics, initial DNA methylation profiling has unveiled epigenetically distinct patient subgroups, including one characterized by elevated expression of Polycomb repressor complex 2 (PRC2) components. Furthermore, it has also demonstrated that patients with evidence of high historical cell division, inferred from methylation data, exhibit inferior treatment-free survival. This review provides an overview of our current understanding of SMZL's molecular basis and its implications for patient outcomes. Additionally, it addresses existing knowledge gaps, proposes future research directions, and discusses how a comprehensive molecular understanding of the disease will lead to improved management and treatment choices for patients.
Collapse
Affiliation(s)
- Amatta Mirandari
- Cancer Sciences, Faculty of Medicine, University of Southampton, SO16 6YD Southampton, UK
| | - Helen Parker
- Cancer Sciences, Faculty of Medicine, University of Southampton, SO16 6YD Southampton, UK
| | - Margaret Ashton-Key
- Cancer Sciences, Faculty of Medicine, University of Southampton, SO16 6YD Southampton, UK
- Department of Pathology, University Hospital Southampton NHS Foundation Trust, SO16 6YD Southampton, UK
| | - Benjamin Stevens
- Cancer Sciences, Faculty of Medicine, University of Southampton, SO16 6YD Southampton, UK
| | - Renata Walewska
- Department of Molecular Pathology, University Hospitals Dorset, SO16 6YD Bournemouth, UK
| | - Kostas Stamatopoulos
- Institute of Applied Biosciences, Centre for Research and Technology Hellas, 57001 Thessaloniki, Greece
| | - Dean Bryant
- Cancer Sciences, Faculty of Medicine, University of Southampton, SO16 6YD Southampton, UK
| | - David G Oscier
- Department of Molecular Pathology, University Hospitals Dorset, SO16 6YD Bournemouth, UK
| | - Jane Gibson
- Cancer Sciences, Faculty of Medicine, University of Southampton, SO16 6YD Southampton, UK
| | - Jonathan C Strefford
- Cancer Sciences, Faculty of Medicine, University of Southampton, SO16 6YD Southampton, UK
| |
Collapse
|
11
|
Seetharaman S, Devany J, Kim HR, van Bodegraven E, Chmiel T, Tzu-Pin S, Chou WH, Fang Y, Gardel ML. Mechanosensitive FHL2 tunes endothelial function. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.16.599227. [PMID: 38948838 PMCID: PMC11212908 DOI: 10.1101/2024.06.16.599227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Endothelial tissues are essential mechanosensors in the vasculature and facilitate adaptation to various blood flow-induced mechanical cues. Defects in endothelial mechanoresponses can perturb tissue remodelling and functions leading to cardiovascular disease progression. In this context, the precise mechanisms of endothelial mechanoresponses contributing to normal and diseased tissue functioning remain elusive. Here, we sought to uncover how flow-mediated transcriptional regulation drives endothelial mechanoresponses in healthy and atherosclerotic-prone tissues. Using bulk RNA sequencing, we identify novel mechanosensitive genes in response to healthy unidirectional flow (UF) and athero-prone disturbed flow (DF). We find that the transcription as well as protein expression of Four-and-a-half LIM protein 2 (FHL2) are enriched in athero-prone DF both in vitro and in vivo. We then demonstrate that the exogenous expression of FHL2 is necessary and sufficient to drive discontinuous adherens junction morphology and increased tissue permeability. This athero-prone phenotype requires the force-sensitive binding of FHL2 to actin. In turn, the force-dependent localisation of FHL2 to stress fibres promotes microtubule dynamics to release the RhoGEF, GEF-H1, and activate the Rho-ROCK pathway. Thus, we unravelled a novel mechanochemical feedback wherein force-dependent FHL2 localisation promotes hypercontractility. This misregulated mechanoresponse creates highly permeable tissues, depicting classic hallmarks of atherosclerosis progression. Overall, we highlight crucial functions for the FHL2 force-sensitivity in tuning multi-scale endothelial mechanoresponses.
Collapse
Affiliation(s)
- Shailaja Seetharaman
- Department of Physics, The University of Chicago, Chicago, IL 60637, USA
- James Franck Institute, The University of Chicago, Chicago, IL 60637, USA
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL 60637, USA
| | - John Devany
- Department of Physics, The University of Chicago, Chicago, IL 60637, USA
- James Franck Institute, The University of Chicago, Chicago, IL 60637, USA
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL 60637, USA
| | - Ha Ram Kim
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL 60637, USA
- Department of Medicine, Biological Sciences Division, The University of Chicago, Chicago, IL, 60637, USA
| | - Emma van Bodegraven
- Department of Translational Neuroscience, Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Theresa Chmiel
- Department of Physics, The University of Chicago, Chicago, IL 60637, USA
- James Franck Institute, The University of Chicago, Chicago, IL 60637, USA
| | - Shentu Tzu-Pin
- Department of Medicine, Biological Sciences Division, The University of Chicago, Chicago, IL, 60637, USA
| | - Wen-hung Chou
- James Franck Institute, The University of Chicago, Chicago, IL 60637, USA
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL 60637, USA
- Graduate Program in Biophysical Sciences, University of Chicago, Chicago, IL 60637, USA
| | - Yun Fang
- Department of Medicine, Biological Sciences Division, The University of Chicago, Chicago, IL, 60637, USA
| | - Margaret Lise Gardel
- Department of Physics, The University of Chicago, Chicago, IL 60637, USA
- James Franck Institute, The University of Chicago, Chicago, IL 60637, USA
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL 60637, USA
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
12
|
Singh MK, Rallabandi HR, Zhou XJ, Qi YY, Zhao ZZ, Gan T, Zhang H, Looger LL, Nath SK. KLF2 enhancer variant rs4808485 increases lupus risk by modulating inflammasome machinery and cellular homoeostasis. Ann Rheum Dis 2024; 83:879-888. [PMID: 38373841 PMCID: PMC11168881 DOI: 10.1136/ard-2023-224953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 02/01/2024] [Indexed: 02/21/2024]
Abstract
OBJECTIVE A recent genome-wide association study linked KLF2 as a novel Asian-specific locus for systemic lupus erythematosus (SLE) susceptibility. However, the underlying causal functional variant(s), cognate target gene(s) and genetic mechanisms associated with SLE risk are unknown. METHODS We used bioinformatics to prioritise likely functional variants and validated the best candidate with diverse experimental techniques, including genome editing. Gene expression was compared between healthy controls (HCs) and patients with SLE with or without lupus nephritis (LN+, LN-). RESULTS Through bioinformatics and expression quantitative trait locus analyses, we prioritised rs4808485 in active chromatin, predicted to modulate KLF2 expression. Luciferase reporter assays and chromatin immunoprecipitation-qPCR demonstrated differential allele-specific enhancer activity and binding of active histone marks (H3K27ac, H3K4me3 and H3K4me1), Pol II, CTCF, P300 and the transcription factor PARP1. Chromosome conformation capture-qPCR revealed long-range chromatin interactions between rs4808485 and the KLF2 promoter. These were directly validated by CRISPR-based genetic and epigenetic editing in Jurkat and lymphoblastoid cells. Deleting the rs4808485 enhancer in Jurkat (KO) cells disrupted NLRP3 inflammasome machinery by reducing KLF2 and increasing CASPASE1, IL-1β and GSDMD levels. Knockout cells also exhibited higher proliferation and cell-cycle progression than wild type. RNA-seq validated interplay between KLF2 and inflammasome machinery in HC, LN+ and LN-. CONCLUSIONS We demonstrate how rs4808485 modulates the inflammasome and cellular homoeostasis through regulating KLF2 expression. This establishes mechanistic connections between rs4808485 and SLE susceptibility.
Collapse
Affiliation(s)
- Manish Kumar Singh
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
| | - Harikrishna Reddy Rallabandi
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
| | - Xu-Jie Zhou
- Renal Division, Peking University Institute of Nephrology, Peking University First Hospital, Beijing, China
- Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China
- Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, China
| | - Yuan-Yuan Qi
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Zhan-Zheng Zhao
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Ting Gan
- Renal Division, Peking University Institute of Nephrology, Peking University First Hospital, Beijing, China
- Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China
| | - Hong Zhang
- Renal Division, Peking University Institute of Nephrology, Peking University First Hospital, Beijing, China
- Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China
| | - Loren L Looger
- Howard Hughes Medical Institute, Department of Neurosciences, University of California San Diego, La Jolla, California, USA
| | - Swapan K Nath
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
| |
Collapse
|
13
|
Baek KI, Ryu K. Role of Flow-Sensitive Endothelial Genes in Atherosclerosis and Antiatherogenic Therapeutics Development. J Cardiovasc Transl Res 2024; 17:609-623. [PMID: 38010480 DOI: 10.1007/s12265-023-10463-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 11/14/2023] [Indexed: 11/29/2023]
Abstract
Atherosclerosis is a chronic inflammatory disease that is the underlying cause of cardiovascular disease which initiates from endothelial dysfunction from genetic and environmental risk factors, including biomechanical forces: blood flow. Endothelial cells (ECs) lining the inner arterial wall regions exposed to disturbed flow are prone to atherosclerosis development, whereas the straight regions exposed to stable flow are spared from the disease. These flow patterns induce genome- and epigenome-wide changes in gene expression in ECs. Through the sweeping changes in gene expression, disturbed flow reprograms ECs from athero-protected cell types under the stable flow condition to pro-atherogenic cell conditions. The pro-atherogenic changes induced by disturbed flow, in combination with additional risk factors such as hypercholesterolemia, lead to the progression of atherosclerosis. The flow-sensitive genes and proteins are critical in understanding the mechanisms and serve as novel targets for antiatherogenic therapeutics.
Collapse
Affiliation(s)
- Kyung In Baek
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Kitae Ryu
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA.
- Department of Biotechnology, The University of Suwon, 17, Wauan-Gil, Bongdam-Eup, Hwaseong-Si, Gyeonggi-Do, 18323, Republic of Korea.
| |
Collapse
|
14
|
Lin W, Lin Z, Wu L, Zheng Y, Xi H. NSUN2 facilitates tenogenic differentiation of rat tendon-derived stem cells via m5C methylation of KLF2. Regen Ther 2024; 26:792-799. [PMID: 39309399 PMCID: PMC11415532 DOI: 10.1016/j.reth.2024.08.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 08/26/2024] [Accepted: 08/29/2024] [Indexed: 09/25/2024] Open
Abstract
Introduction Tendon-derived stem cells (TDSCs) play a critical role in tendon repair. N5-methylcytosine (m5C) is a key regulator of cellular processes such as differentiation. This study aimed to investigate the impact of m5C on TDSC differentiation and the underlying mechanism. Methods TDSCs were isolated from rats and identified, and a tendon injury rat model was generated. Tenogenic differentiation in vitro was evaluated using Sirius red staining and quantitative real-time polymerase chain reaction, while that in vivo was assessed using immunohistochemistry and hematoxylin‒eosin staining. m5C methylation was analyzed using methylated RNA immunoprecipitation, dual-luciferase reporter assay, and RNA stability assay. Results The results showed that m5C levels and NSUN2 expression were increased in TDSCs after tenogenic differentiation. Knockdown of NSUN2 inhibited m5C methylation of KLF2 and decreased its stability, which was recognized by YBX1. Moreover, interfering with KLF2 suppressed tenogenic differentiation of TDSCs, which could be abrogated by KLF2 overexpression. Additionally, TDSCs after NSUN2 overexpression contributed to ameliorating tendon injury in vivo. In conclusion, NSUN2 promotes tenogenic differentiation of TDSCs via m5C methylation of KLF2 and accelerates tendon repair. Conclusions The findings suggest that overexpression of NSUN2 can stimulate the differentiation ability of TDSCs, which can be used in the treatment of tendinopathy.
Collapse
Affiliation(s)
- Wei Lin
- Taizhou Hospital in Zhejiang Province, Ximen Street, Linhai City, Zhejiang 317000, China
- Taizhou Integrated Traditional Chinese and Western Medicine Hospital in Zhejiang Province, Shangcheng Street, Zeguo Town, Wengling City, Zhejiang 317200, China
| | - Zhi Lin
- Taizhou Hospital in Zhejiang Province, Ximen Street, Linhai City, Zhejiang 317000, China
| | - Lizhi Wu
- Taizhou Hospital in Zhejiang Province, Ximen Street, Linhai City, Zhejiang 317000, China
| | - Youmao Zheng
- Taizhou Hospital in Zhejiang Province, Ximen Street, Linhai City, Zhejiang 317000, China
| | - Huifeng Xi
- Taizhou Hospital in Zhejiang Province, Ximen Street, Linhai City, Zhejiang 317000, China
| |
Collapse
|
15
|
Hurrell BP, Shen S, Li X, Sakano Y, Kazemi MH, Quach C, Shafiei-Jahani P, Sakano K, Ghiasi H, Akbari O. Piezo1 channels restrain ILC2s and regulate the development of airway hyperreactivity. J Exp Med 2024; 221:e20231835. [PMID: 38530239 PMCID: PMC10965393 DOI: 10.1084/jem.20231835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 01/16/2024] [Accepted: 02/22/2024] [Indexed: 03/27/2024] Open
Abstract
Mechanosensitive ion channels sense force and pressure in immune cells to drive the inflammatory response in highly mechanical organs. Here, we report that Piezo1 channels repress group 2 innate lymphoid cell (ILC2)-driven type 2 inflammation in the lungs. Piezo1 is induced on lung ILC2s upon activation, as genetic ablation of Piezo1 in ILC2s increases their function and exacerbates the development of airway hyperreactivity (AHR). Conversely, Piezo1 agonist Yoda1 reduces ILC2-driven lung inflammation. Mechanistically, Yoda1 inhibits ILC2 cytokine secretion and proliferation in a KLF2-dependent manner, as we found that Piezo1 engagement reduces ILC2 oxidative metabolism. Consequently, in vivo Yoda1 treatment reduces the development of AHR in experimental models of ILC2-driven allergic asthma. Human-circulating ILC2s express and induce Piezo1 upon activation, as Yoda1 treatment of humanized mice reduces human ILC2-driven AHR. Our studies define Piezo1 as a critical regulator of ILC2s, and we propose the potential of Piezo1 activation as a novel therapeutic approach for the treatment of ILC2-driven allergic asthma.
Collapse
Affiliation(s)
- Benjamin P. Hurrell
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Stephen Shen
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Xin Li
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Yoshihiro Sakano
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Mohammad Hossein Kazemi
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Christine Quach
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Pedram Shafiei-Jahani
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Kei Sakano
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Homayon Ghiasi
- Department of Surgery, Center for Neurobiology and Vaccine Development, Ophthalmology Research, Cedars-Sinai Burns and Allen Research Institute, Los Angeles, CA, USA
| | - Omid Akbari
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
16
|
Wu H, Chen S, You G, Lei B, Chen L, Wu J, Zheng N, You C. The Mechanism of Astragaloside IV in NOD-like Receptor Family Pyrin Domain Containing 3 Inflammasome-mediated Pyroptosis after Intracerebral Hemorrhage. Curr Neurovasc Res 2024; 21:74-85. [PMID: 38409729 DOI: 10.2174/0115672026295640240212095049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 12/27/2023] [Accepted: 12/29/2023] [Indexed: 02/28/2024]
Abstract
BACKGROUND Intracerebral hemorrhage (ICH) is one of the most common subtypes of stroke. OBJECTIVES This study aimed to investigate the mechanism of Astragaloside IV (AS-IV) on inflammatory injury after ICH. METHODS The ICH model was established by the injection of collagenase and treated with ASIV (20 mg/kg or 40 mg/kg). The neurological function, water content of the bilateral cerebral hemisphere and cerebellum, and pathological changes in brain tissue were assessed. The levels of interleukin-1 beta (IL-1β), IL-18, tumor necrosis factor-alpha, interferon-gamma, and IL-10 were detected by enzyme-linked immunosorbent assay. The levels of Kruppel-like factor 2 (KLF2), NOD-like receptor family pyrin domain containing 3 (NLRP3), GSDMD-N, and cleaved-caspase-1 were detected by reverse transcription-quantitative polymerase chain reaction and Western blot assay. The binding relationship between KLF2 and NLRP3 was verified by chromatin-immunoprecipitation and dual-luciferase assays. KLF2 inhibition or NLRP3 overexpression was achieved in mice to observe pathological changes. RESULTS The decreased neurological function, increased water content, severe pathological damage, and inflammatory response were observed in mice after ICH, with increased levels of NLRP3/GSDMD-N/cleaved-caspase-1/IL-1β/IL-18 and poorly-expressed KLF2 in brain tissue. After AS-IV treatment, the neurological dysfunction, high brain water content, inflammatory response, and pyroptosis were alleviated, while KLF2 expression was increased. KLF2 bonded to the NLRP3 promoter region and inhibited its transcription. Down-regulation of KLF2 or upregulation of NLRP3 reversed the effect of AS-IV on inhibiting pyroptosis and reducing inflammatory injury in mice after ICH. CONCLUSION AS-IV inhibited NLRP3-mediated pyroptosis by promoting KLF2 expression and alleviated inflammatory injury in mice after ICH.
Collapse
Affiliation(s)
- Honggang Wu
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, 610041, China
- Department of Cerebrovascular Disease, The People's Hospital of Leshan, Leshan, 614000, China
| | - Shu Chen
- Department of Cerebrovascular Disease, The People's Hospital of Leshan, Leshan, 614000, China
| | - Guoliang You
- Department of Cerebrovascular Disease, The People's Hospital of Leshan, Leshan, 614000, China
| | - Bo Lei
- Department of Cerebrovascular Disease, The People's Hospital of Leshan, Leshan, 614000, China
| | - Li Chen
- Department of Cerebrovascular Disease, The People's Hospital of Leshan, Leshan, 614000, China
| | - Jiachuan Wu
- Department of Cerebrovascular Disease, The People's Hospital of Leshan, Leshan, 614000, China
| | - Niandong Zheng
- Department of Cerebrovascular Disease, The People's Hospital of Leshan, Leshan, 614000, China
| | - Chao You
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
17
|
Ma Y, Peng T, Yao X, Sun C, Wang X. KLF2 reduces dexamethasone-induced injury to growth plate chondrocytes by inhibiting the Runx2-mediated PI3K/AKT and ERK signalling pathways. Autoimmunity 2023; 56:1-7. [PMID: 36343159 DOI: 10.1080/08916934.2022.2141233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Dexamethasone (Dex) is a type of glucocorticoid drug. Long term use can induce growth plate chondrocytes (GPCs) apoptosis, impair differentiation, and inhibit cell proliferation and bone growth. It has been reported that Krüppel-like factor 2 (KLF2) inhibits osteoblast damage induced by Dex, but the role in Dex-induced GPCs remains unclear. Dex was used to construct a model of growth plate injury in vitro. CCK-8 and TUNEL kits were used to determine cell viability and apoptosis. A model of growth plate injury was established by intraperitoneal injection of Dex. Immunohistochemistry was used to investigate the expression of KLF2 in rats. The results showed that KLF2 expression of rat tibial GPCs was down-regulated after Dex stimulation. Overexpression of KLF2 promoted cell viability and cell cycle, while inhibited apoptosis of growth plate Dex-induced chondrocytes. Moreover, KLF2 inhibited Runx2-mediated PI3K/AKT and ERK signalling pathways. And PI3K/AKT and ERK signalling pathways, which were involved in the regulation of KLF2 on GPCs. Further studies showed that KLF2 alleviated growth plate injury in vivo. In conclusion, our study found that KLF2 promoted proliferation and inhibited apoptosis of Dex-induced GPCs by targeting the Runx2-mediated PI3K/AKT and ERK signalling pathways.
Collapse
Affiliation(s)
- Yulong Ma
- Department of Orthopedics, Xi'an Children's Hospital, Xi'an, Shaanxi, China
| | - Tao Peng
- Department of Orthopedics, Xi'an Children's Hospital, Xi'an, Shaanxi, China
| | - Xudong Yao
- Department of Orthopedics, Xi'an Children's Hospital, Xi'an, Shaanxi, China
| | - Chaonan Sun
- Department of Orthopedics, Xi'an Children's Hospital, Xi'an, Shaanxi, China
| | - Xiaowei Wang
- Department of Orthopedics, Xi'an Children's Hospital, Xi'an, Shaanxi, China
| |
Collapse
|
18
|
Zhao H, Wu D, Gyamfi MA, Wang P, Luecht C, Pfefferkorn AM, Ashraf MI, Kamhieh-Milz J, Witowski J, Dragun D, Budde K, Schindler R, Zickler D, Moll G, Catar R. Expanded Hemodialysis ameliorates uremia-induced impairment of vasculoprotective KLF2 and concomitant proinflammatory priming of endothelial cells through an ERK/AP1/cFOS-dependent mechanism. Front Immunol 2023; 14:1209464. [PMID: 37795100 PMCID: PMC10546407 DOI: 10.3389/fimmu.2023.1209464] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 08/31/2023] [Indexed: 10/06/2023] Open
Abstract
Aims Expanded hemodialysis (HDx) therapy with improved molecular cut-off dialyzers exerts beneficial effects on lowering uremia-associated chronic systemic microinflammation, a driver of endothelial dysfunction and cardiovascular disease (CVD) in hemodialysis (HD) patients with end-stage renal disease (ESRD). However, studies on the underlying molecular mechanisms are still at an early stage. Here, we identify the (endothelial) transcription factor Krüppel-like factor 2 (KLF2) and its associated molecular signalling pathways as key targets and regulators of uremia-induced endothelial micro-inflammation in the HD/ESRD setting, which is crucial for vascular homeostasis and controlling detrimental vascular inflammation. Methods and results First, we found that human microvascular endothelial cells (HMECs) and other typical endothelial and kidney model cell lines (e.g. HUVECs, HREC, and HEK) exposed to uremic serum from patients treated with two different hemodialysis regimens in the Permeability Enhancement to Reduce Chronic Inflammation II (PERCI-II) crossover clinical trial - comparing High-Flux (HF) and Medium Cut-Off (MCO) membranes - exhibited strongly reduced expression of vasculoprotective KLF2 with HF dialyzers, while dialysis with MCO dialyzers led to the maintenance and restoration of physiological KLF2 levels in HMECs. Mechanistic follow-up revealed that the strong downmodulation of KLF2 in HMECs exposed to uremic serum was mediated by a dominant engagement of detrimental ERK instead of beneficial AKT signalling, with subsequent AP1-/c-FOS binding in the KLF2 promoter region, followed by the detrimental triggering of pleiotropic inflammatory mediators, while the introduction of a KLF2 overexpression plasmid could restore physiological KLF2 levels and downmodulate the detrimental vascular inflammation in a mechanistic rescue approach. Conclusion Uremia downmodulates vasculoprotective KLF2 in endothelium, leading to detrimental vascular inflammation, while MCO dialysis with the novel improved HDx therapy approach can maintain physiological levels of vasculoprotective KLF2.
Collapse
Affiliation(s)
- Hongfan Zhao
- Department of Nephrology and Internal Intensive Care Medicine, at Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Berlin, Germany
| | - Dashan Wu
- Department of Nephrology and Internal Intensive Care Medicine, at Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Berlin, Germany
| | - Michael Adu Gyamfi
- Department of Nephrology and Internal Intensive Care Medicine, at Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Berlin, Germany
| | - Pinchao Wang
- Department of Nephrology and Internal Intensive Care Medicine, at Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Berlin, Germany
| | - Christian Luecht
- Department of Nephrology and Internal Intensive Care Medicine, at Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Berlin, Germany
| | | | | | - Julian Kamhieh-Milz
- Institute of Transfusion Medicine, at Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Janusz Witowski
- Department of Pathophysiology, Poznan University of Medical Sciences, Poznan, Poland
| | - Duska Dragun
- Department of Nephrology and Internal Intensive Care Medicine, at Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Berlin, Germany
| | - Klemens Budde
- Department of Nephrology and Internal Intensive Care Medicine, at Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Berlin, Germany
| | - Ralf Schindler
- Department of Nephrology and Internal Intensive Care Medicine, at Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Berlin, Germany
| | - Daniel Zickler
- Department of Nephrology and Internal Intensive Care Medicine, at Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Berlin, Germany
| | - Guido Moll
- Department of Nephrology and Internal Intensive Care Medicine, at Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Berlin, Germany
- BIH Center for Regenerative Therapies (BCRT) and Berlin-Brandenburg School for Regenerative Therapies (BSRT), at Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Rusan Catar
- Department of Nephrology and Internal Intensive Care Medicine, at Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Berlin, Germany
| |
Collapse
|
19
|
Li J, Jiang JL, Chen YM, Lu WQ. KLF2 inhibits colorectal cancer progression and metastasis by inducing ferroptosis via the PI3K/AKT signaling pathway. J Pathol Clin Res 2023; 9:423-435. [PMID: 37147883 PMCID: PMC10397377 DOI: 10.1002/cjp2.325] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 03/26/2023] [Accepted: 04/16/2023] [Indexed: 05/07/2023]
Abstract
Krüppel-like factor 2 (KLF2) belongs to the zinc finger family and is thought to be a tumor suppressor gene due to its low expression in various cancer types. However, its functional role and molecular pathway involvement in colorectal cancer (CRC) are not well defined. Herein, we investigated the potential mechanism of KLF2 in CRC cell invasion, migration, and epithelial-mesenchymal transition (EMT). We utilized the TCGA and GEPIA databases to analyze the expression of KLF2 in CRC patients and its correlation with different CRC stages and CRC prognosis. RT-PCR, western blot, and immunohistochemistry assays were used to measure KLF2 expression. Gain-of-function assays were performed to evaluate the role of KLF2 in CRC progression. Moreover, mechanistic experiments were conducted to investigate the molecular mechanism and involved signaling pathways regulated by KLF2. Additionally, we also conducted a xenograft tumor assay to evaluate the role of KLF2 in tumorigenesis. KLF2 expression was low in CRC patient tissues and cell lines, and low expression of KLF2 was associated with poor CRC prognosis. Remarkably, overexpressing KLF2 significantly inhibited the invasion, migration, and EMT capabilities of CRC cells, and tumor growth in xenografts. Mechanistically, KLF2 overexpression induced ferroptosis in CRC cells by regulating glutathione peroxidase 4 expression. Moreover, this KLF2-dependent ferroptosis in CRC cells was mediated by inhibiting the PI3K/AKT signaling pathway that resulted in the suppression of invasion, migration, and EMT of CRC cells. We report for the first time that KLF2 acts as a tumor suppressor in CRC by inducing ferroptosis via inhibiting the PI3K/AKT signaling pathway, thus providing a new direction for CRC prognosis assessment and targeted therapy.
Collapse
Affiliation(s)
- Jia Li
- Department of General SurgeryShenzhen Traditional Chinese Medicine HospitalShenzhenPR China
| | - Ji Ling Jiang
- Department of General SurgeryShenzhen Traditional Chinese Medicine HospitalShenzhenPR China
| | - Yi Mei Chen
- Department of Breast SurgeryShenzhen Women & Children's Health Care HospitalShenzhenPR China
| | - Wei Qi Lu
- Department of Gastrointestinal SurgeryFirst Affiliated Hospital of Guangzhou University of Chinese MedicineGuangzhouPR China
| |
Collapse
|
20
|
Yeung-Luk BH, Narayanan GA, Ghosh B, Wally A, Lee E, Mokaya M, Wankhade E, Zhang R, Lee B, Park B, Resnick J, Jedlicka A, Dziedzic A, Ramanathan M, Biswal S, Pekosz A, Sidhaye VK. SARS-CoV-2 infection alters mitochondrial and cytoskeletal function in human respiratory epithelial cells mediated by expression of spike protein. mBio 2023; 14:e0082023. [PMID: 37504520 PMCID: PMC10470579 DOI: 10.1128/mbio.00820-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 06/10/2023] [Indexed: 07/29/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2, SCV2), which has resulted in higher morbidity and mortality rate than other respiratory viral infections, such as Influenza A virus (IAV) infection. Investigating the molecular mechanisms of SCV2-host infection vs IAV is vital in exploring antiviral drug targets against SCV2. We assessed differential gene expression in human nasal cells upon SCV2 or IAV infection using RNA sequencing. Compared to IAV, we observed alterations in both metabolic and cytoskeletal pathways suggestive of epithelial remodeling in the SCV2-infected cells, reminiscent of pathways activated as a response to chronic injury. We found that spike protein interaction with the epithelium was sufficient to instigate these epithelial responses using a SCV2 spike pseudovirus. Specifically, we found downregulation of the mitochondrial markers SIRT3 and TOMM22. Moreover, SCV2 spike infection increased extracellular acidification and decreased oxygen consumption rate in the epithelium. In addition, we observed cytoskeletal rearrangements with a reduction in the actin-severing protein cofilin-1 and an increase in polymerized actin, indicating epithelial cytoskeletal rearrangements. This study revealed distinct epithelial responses to SCV2 infection, with early mitochondrial dysfunction in the host cells and evidence of cytoskeletal remodeling that could contribute to the worsened outcome in COVID-19 patients compared to IAV patients. These changes in cell structure and energetics could contribute to cellular resilience early during infection, allowing for prolonged cell survival and potentially paving the way for more chronic symptoms. IMPORTANCE COVID-19 has caused a global pandemic affecting millions of people worldwide, resulting in a higher mortality rate and concerns of more persistent symptoms compared to influenza A. To study this, we compare lung epithelial responses to both viruses. Interestingly, we found that in response to SARS-CoV-2 infection, the cellular energetics changed and there were cell structural rearrangements. These changes in cell structure could lead to prolonged epithelial cell survival, even in the face of not working well, potentially contributing to the development of chronic symptoms. In summary, these findings represent strategies utilized by the cell to survive the infection but result in a fundamental shift in the epithelial phenotype, with potential long-term consequences, which could set the stage for the development of chronic lung disease or long COVID-19.
Collapse
Affiliation(s)
- Bonnie H. Yeung-Luk
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | | | - Baishakhi Ghosh
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Ara Wally
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Esther Lee
- Department of Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Michelle Mokaya
- Department of Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Esha Wankhade
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Rachel Zhang
- Department of Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Brianna Lee
- Department of Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Bongsoo Park
- Epigenetics and Stem Cell Aging, National Institute of Aging, National Institutes of Health, Baltimore, Maryland, USA
| | - Jessica Resnick
- W. Harry Feinstone Department of Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Anne Jedlicka
- W. Harry Feinstone Department of Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Amanda Dziedzic
- W. Harry Feinstone Department of Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Murugappan Ramanathan
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins Outpatient Center, Baltimore, Maryland, USA
| | - Shyam Biswal
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Andrew Pekosz
- W. Harry Feinstone Department of Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Venkataramana K. Sidhaye
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
- Department of Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
21
|
Ye Y, Xu J, Han Y. Dexamethasone for delayed edema after intracerebral hemorrhage: To be or not to be? Heliyon 2023; 9:e17621. [PMID: 37539239 PMCID: PMC10395021 DOI: 10.1016/j.heliyon.2023.e17621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/22/2023] [Accepted: 06/22/2023] [Indexed: 08/05/2023] Open
Abstract
The pathogenesis of delayed cerebral edema after intracerebral hemorrhage is still unclear. In this case report, we speculate that the formation of subdural effusion or hemorrhage is associated with delayed cerebral edema. By referring to the treatment plan of chronic subdural hematoma, adding dexamethasone to routine medication, certain therapeutic effect has been achieved. Dexamethasone may maintain the stability of blood-brain barrier by directly increasing the expression of ZO-1, and reduce the neuroinflammatory response caused by NF-κB pathway by upregulating KLF2 expression, ultimately reducing nerve injury through multiple pathways.
Collapse
Affiliation(s)
- Yongqing Ye
- Department of Neurosurgery, The Affiliated Suqian First People’s Hospital of Nanjing Medical University, Jiangsu Province, Suqian 223800, China
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Heilongjiang Province, Harbin 150000, China
| | - Jin Xu
- Department of Neurosurgery, The Affiliated Suqian First People’s Hospital of Nanjing Medical University, Jiangsu Province, Suqian 223800, China
| | - Yuhan Han
- Department of Neurosurgery, The Affiliated Suqian First People’s Hospital of Nanjing Medical University, Jiangsu Province, Suqian 223800, China
| |
Collapse
|
22
|
Banerjee P, Rosales JE, Chau K, Nguyen MTH, Kotla S, Lin SH, Deswal A, Dantzer R, Olmsted-Davis EA, Nguyen H, Wang G, Cooke JP, Abe JI, Le NT. Possible molecular mechanisms underlying the development of atherosclerosis in cancer survivors. Front Cardiovasc Med 2023; 10:1186679. [PMID: 37332576 PMCID: PMC10272458 DOI: 10.3389/fcvm.2023.1186679] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 05/17/2023] [Indexed: 06/20/2023] Open
Abstract
Cancer survivors undergone treatment face an increased risk of developing atherosclerotic cardiovascular disease (CVD), yet the underlying mechanisms remain elusive. Recent studies have revealed that chemotherapy can drive senescent cancer cells to acquire a proliferative phenotype known as senescence-associated stemness (SAS). These SAS cells exhibit enhanced growth and resistance to cancer treatment, thereby contributing to disease progression. Endothelial cell (EC) senescence has been implicated in atherosclerosis and cancer, including among cancer survivors. Treatment modalities for cancer can induce EC senescence, leading to the development of SAS phenotype and subsequent atherosclerosis in cancer survivors. Consequently, targeting senescent ECs displaying the SAS phenotype hold promise as a therapeutic approach for managing atherosclerotic CVD in this population. This review aims to provide a mechanistic understanding of SAS induction in ECs and its contribution to atherosclerosis among cancer survivors. We delve into the mechanisms underlying EC senescence in response to disturbed flow and ionizing radiation, which play pivotal role in atherosclerosis and cancer. Key pathways, including p90RSK/TERF2IP, TGFβR1/SMAD, and BH4 signaling are explored as potential targets for cancer treatment. By comprehending the similarities and distinctions between different types of senescence and the associated pathways, we can pave the way for targeted interventions aim at enhancing the cardiovascular health of this vulnerable population. The insights gained from this review may facilitate the development of novel therapeutic strategies for managing atherosclerotic CVD in cancer survivors.
Collapse
Affiliation(s)
- Priyanka Banerjee
- Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX, United States
| | - Julia Enterría Rosales
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
- School of Medicine, Instituto Tecnológico de Monterrey, Guadalajara, Mexico
| | - Khanh Chau
- Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX, United States
| | - Minh T. H. Nguyen
- Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX, United States
- Department of Life Science, University of Science and Technology of Hanoi, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Sivareddy Kotla
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Steven H. Lin
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Anita Deswal
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Robert Dantzer
- Department of Symptom Research, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Elizabeth A. Olmsted-Davis
- Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX, United States
| | - Hung Nguyen
- Cancer Division, Burnett School of Biomedical Science, College of Medicine, University of Central Florida, Orlando, FL, United States
| | - Guangyu Wang
- Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX, United States
| | - John P. Cooke
- Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX, United States
| | - Jun-ichi Abe
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Nhat-Tu Le
- Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX, United States
| |
Collapse
|
23
|
Chrysanthopoulou A, Antoniadou C, Natsi AM, Gavriilidis E, Papadopoulos V, Xingi E, Didaskalou S, Mikroulis D, Tsironidou V, Kambas K, Koffa M, Skendros P, Ritis K. Down-regulation of KLF2 in lung fibroblasts is linked with COVID-19 immunofibrosis and restored by combined inhibition of NETs, JAK-1/2 and IL-6 signaling. Clin Immunol 2023; 247:109240. [PMID: 36693535 PMCID: PMC9862710 DOI: 10.1016/j.clim.2023.109240] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 01/22/2023]
Abstract
Kruppel-like factor 2 (KLF2) has been linked with fibrosis and neutrophil-associated thromboinflammation; however, its role in COVID-19 remains elusive. We investigated the effect of disease microenvironment on the fibrotic potential of human lung fibroblasts (LFs) and its association with KLF2 expression. LFs stimulated with plasma from severe COVID-19 patients down-regulated KLF2 expression at mRNA/protein and functional level acquiring a pre-fibrotic phenotype, as indicated by increased CCN2/collagen levels. Pre-incubation with the COMBI-treatment-agents (DNase I and JAKs/IL-6 inhibitors baricitinib/tocilizumab) restored KLF2 levels of LFs to normal abolishing their fibrotic activity. LFs stimulated with plasma from COMBI-treated patients at day-7 expressed lower CCN2 and higher KLF2 levels, compared to plasma prior-to-treatment, an effect not observed in standard-of-care treatment. In line with this, COMBI-treated patients had better outcome than standard-of-care group. These data link fibroblast KLF2 with NETosis and JAK/IL-6 signaling, suggesting the potential of combined therapeutic strategies in immunofibrotic diseases, such as COVID-19.
Collapse
Affiliation(s)
- Akrivi Chrysanthopoulou
- Laboratory of Molecular Hematology, Department of Medicine, Democritus University of Thrace, Alexandroupolis, Greece
| | - Christina Antoniadou
- First Department of Internal Medicine, University Hospital of Alexandroupolis, Democritus University of Thrace, Alexandroupolis, Greece
| | - Anastasia-Maria Natsi
- Laboratory of Molecular Hematology, Department of Medicine, Democritus University of Thrace, Alexandroupolis, Greece
| | - Efstratios Gavriilidis
- First Department of Internal Medicine, University Hospital of Alexandroupolis, Democritus University of Thrace, Alexandroupolis, Greece
| | - Vasileios Papadopoulos
- First Department of Internal Medicine, University Hospital of Alexandroupolis, Democritus University of Thrace, Alexandroupolis, Greece
| | - Evangelia Xingi
- Light Microscopy Unit, Hellenic Pasteur Institute, Athens, Greece
| | - Stylianos Didaskalou
- Laboratory of Cell Biology, Proteomics and Cell Cycle, Department of Molecular Biology and Genetics, Democritus University of Thrace, Alexandroupolis, Greece
| | - Dimitrios Mikroulis
- Department of Cardiovascular Surgery, University Hospital of Alexandroupolis, Democritus University of Thrace, Alexandroupolis, Greece
| | - Victoria Tsironidou
- Laboratory of Molecular Hematology, Department of Medicine, Democritus University of Thrace, Alexandroupolis, Greece
| | - Konstantinos Kambas
- Laboratory of Molecular Genetics, Department of Immunology, Hellenic Pasteur Institute, Athens, Greece
| | - Maria Koffa
- Laboratory of Cell Biology, Proteomics and Cell Cycle, Department of Molecular Biology and Genetics, Democritus University of Thrace, Alexandroupolis, Greece
| | - Panagiotis Skendros
- Laboratory of Molecular Hematology, Department of Medicine, Democritus University of Thrace, Alexandroupolis, Greece; First Department of Internal Medicine, University Hospital of Alexandroupolis, Democritus University of Thrace, Alexandroupolis, Greece.
| | - Konstantinos Ritis
- Laboratory of Molecular Hematology, Department of Medicine, Democritus University of Thrace, Alexandroupolis, Greece; First Department of Internal Medicine, University Hospital of Alexandroupolis, Democritus University of Thrace, Alexandroupolis, Greece.
| |
Collapse
|
24
|
Li Y, Chen L, Li Y, Yang C, Gui B, Li Y, Liao L, Zhu Z, Huang R, Wang Y. Krüppel-like factor 2a (KLF2A) suppresses GCRV replication by upregulating serpinc1 expression in Ctenopharyngodon idellus kidney (CIK) cells. FISH & SHELLFISH IMMUNOLOGY 2022; 131:1118-1124. [PMID: 36400369 DOI: 10.1016/j.fsi.2022.11.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 11/08/2022] [Accepted: 11/10/2022] [Indexed: 06/16/2023]
Abstract
Krüppel-like factor 2a (KLF2A), a transcription factor of the krüppel-like family, is involved in regulating the immune molecules and is associated with viral infection. However, the function of KLF2A during viral infections in fish remains unclear. In this study, grass carp (Ctenopharyngodon idellus) was used to predict the target genes regulated by KLF2A. The results showed that the candidate target genes included four members of the serpin gene family (serpinb1l2, serpinc1, serpinh1a, and serpinh1b). Dual-luciferase experiments showed that klf2a positively regulates serpinc1 expression. Dose-dependent klf2a overexpression in C. idellus kidney (CIK) cells significantly upregulated the expression of serpinc1. Overexpressing klf2a or serpinc1 in CIK cells activated interferon responses and suppressed grass carp reovirus (GCRV) replication. Klf2a and serpinc1 co-expression inhibited GCRV replication. These results show that klf2a upregulates serpinc1 mRNA expression, promotes type 1 interferon responses, and suppresses GCRV infection. This study provides insights into the regulatory role and biological functions of KLF2A in host-virus interactions in fish.
Collapse
Affiliation(s)
- Yangyu Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Liangming Chen
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yangyang Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Cheng Yang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Bin Gui
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yongming Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Lanjie Liao
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Zuoyan Zhu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Rong Huang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.
| | - Yaping Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
25
|
Ma X, Su M, He Q, Zhang Z, Zhang F, Liu Z, Sun L, Weng J, Xu S. PHACTR1, a coronary artery disease risk gene, mediates endothelial dysfunction. Front Immunol 2022; 13:958677. [PMID: 36091033 PMCID: PMC9457086 DOI: 10.3389/fimmu.2022.958677] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 08/01/2022] [Indexed: 01/13/2023] Open
Abstract
Genome-wide association studies (GWAS) have recently identified phosphatase and actin regulator-1 (PHACTR1) as a critical risk gene associated with polyvascular diseases. However, it remains largely unclear how PHACTR1 is involved in endothelial dysfunction. Here, by mining published datasets of human stable and vulnerable/ruptured plaque tissues, we observed upregulated expression of PHACTR1 in vulnerable/ruptured plaques. Congruent with these data, we demonstrated increased Phactr1 gene expression in aortic endothelium from ApoE-/- mice fed a western type diet compared with that in normal C57BL/6J mice. Relevantly, PHACTR1 gene expression was upregulated by pro-inflammatory and pro-atherogenic stimuli, including TNF-α, IL-1β and oxidized LDL (oxLDL). By employing next-generation RNA sequencing, we demonstrate that PHACTR1 overexpression disrupts pathways associated with endothelial homeostasis. Cell biological studies unravel that PHACTR1 mediates endothelial inflammation and monocyte adhesion by activating NF-κB dependent intercellular adhesion molecule 1 (ICAM1) and vascular cell adhesion molecule 1 (VCAM1) expression. In addition, overexpression of PHACTR1 also reduces the generation of nitric oxide (NO) by inhibiting Akt/eNOS activation. In-house compound screening of vasoprotective drugs identifies several drugs, including lipid-lowering statins, decreases PHACTR1 gene expression. However, PHACTR1 gene expression was not affected by another lipid-lowering drug-fenofibrate. We also performed a proteomic study to reveal PHACTR1 interacting proteins and validated that PHACTR1 can interact with heat shock protein A8 (HSPA8) which was reported to be associated with coronary artery disease and eNOS degradation. Further studies are warranted to confirm the precise mechanism of PHACTR1 in driving endothelial dysfunction. In conclusion, by using systems biology approach and molecular validation, we disclose the deleterious effects of PHACTR1 on endothelial function by inducing endothelial inflammation and reducing NO production, highlighting the potential to prevent endothelial dysfunction and atherosclerosis by targeting PHACTR1 expression. The precise role of endothelial cell PHACTR1 in polyvascular diseases remains to be validated in diseased conditions.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Suowen Xu
- *Correspondence: Suowen Xu, ; Jianping Weng,
| |
Collapse
|
26
|
Arconada-Luque E, Jiménez-Suarez J, Pascual-Serra R, Nam-Cha SH, Moline T, Cimas FJ, Fliquete G, Ortega-Muelas M, Roche O, Fernández-Aroca DM, Muñoz Velasco R, García-Flores N, Garnés-García C, Sánchez-Fdez A, Matilla-Almazán S, Sánchez-Arévalo Lobo VJ, Hernández-Losa J, Belandia B, Pandiella A, Esparís-Ogando A, Ramón y Cajal S, del Peso L, Sánchez-Prieto R, Ruiz-Hidalgo MJ. ERK5 Is a Major Determinant of Chemical Sarcomagenesis: Implications in Human Pathology. Cancers (Basel) 2022; 14:cancers14143509. [PMID: 35884568 PMCID: PMC9316148 DOI: 10.3390/cancers14143509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/11/2022] [Accepted: 07/16/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary Sarcoma is a heterogeneous group of tumors poorly studied with few therapeutic opportunities. Interestingly, the role of MAPKs still remains unclear in sarcomatous pathology. Here, we describe for the first time the critical role of ERK5 in the biology of soft tissue sarcoma by using in vitro and in vivo approaches in a murine experimental model of chemical sarcomagenesis. Indeed, our observations were extrapolated to a short series of human leiomyosarcoma and rhabdomyosarcomas. Furthermore, transcriptome analysis allows us to demonstrate the critical role of KLF2 in the biological effects of ERK5. Therefore, the data presented here open new windows in the diagnosis and therapy of soft tissue sarcomas. Abstract Sarcomas are a heterogeneous group of tumors in which the role of ERK5 is poorly studied. To clarify the role of this MAPK in sarcomatous pathology, we used a murine 3-methyl-cholanthrene (3MC)-induced sarcoma model. Our data show that 3MC induces pleomorphic sarcomas with muscle differentiation, showing an increased expression of ERK5. Indeed, this upregulation was also observed in human sarcomas of muscular origin, such as leiomyosarcoma or rhabdomyosarcoma. Moreover, in cell lines derived from these 3MC-induced tumors, abrogation of Mapk7 expression by using specific shRNAs decreased in vitro growth and colony-forming capacity and led to a marked loss of tumor growth in vivo. In fact, transcriptomic profiling in ERK5 abrogated cell lines by RNAseq showed a deregulated gene expression pattern for key biological processes such as angiogenesis, migration, motility, etc., correlating with a better prognostic in human pathology. Finally, among the various differentially expressed genes, Klf2 is a key mediator of the biological effects of ERK5 as indicated by its specific interference, demonstrating that the ERK5–KLF2 axis is an important determinant of sarcoma biology that should be further studied in human pathology.
Collapse
Affiliation(s)
- Elena Arconada-Luque
- Laboratorio de Oncología Molecular, Unidad de Medicina Molecular, Centro Regional de Investigaciones Biomédicas, Unidad Asociada de Biomedicina UCLM, Unidad Asociada al CSIC, Universidad de Castilla-La Mancha, 02008 Albacete, Spain; (E.A.-L.); (J.J.-S.); (R.P.-S.); (M.O.-M.); (O.R.); (D.M.F.-A.); (N.G.-F.); (C.G.-G.); (M.J.R.-H.)
| | - Jaime Jiménez-Suarez
- Laboratorio de Oncología Molecular, Unidad de Medicina Molecular, Centro Regional de Investigaciones Biomédicas, Unidad Asociada de Biomedicina UCLM, Unidad Asociada al CSIC, Universidad de Castilla-La Mancha, 02008 Albacete, Spain; (E.A.-L.); (J.J.-S.); (R.P.-S.); (M.O.-M.); (O.R.); (D.M.F.-A.); (N.G.-F.); (C.G.-G.); (M.J.R.-H.)
| | - Raquel Pascual-Serra
- Laboratorio de Oncología Molecular, Unidad de Medicina Molecular, Centro Regional de Investigaciones Biomédicas, Unidad Asociada de Biomedicina UCLM, Unidad Asociada al CSIC, Universidad de Castilla-La Mancha, 02008 Albacete, Spain; (E.A.-L.); (J.J.-S.); (R.P.-S.); (M.O.-M.); (O.R.); (D.M.F.-A.); (N.G.-F.); (C.G.-G.); (M.J.R.-H.)
| | - Syong Hyun Nam-Cha
- Servicio de Anatomía Patológica, Hospital General de Albacete, 02008 Albacete, Spain;
| | - Teresa Moline
- Grupo de Patología Molecular Traslacional, Vall d’Hebron Institut de Recerca, Universitat Autònoma de Barcelona Centro de Investigación Biomédica en RED de Cancer CIBERONC, 08035 Barcelona, Spain; (T.M.); (G.F.); (J.H.-L.); (S.R.y.C.)
| | - Francisco J. Cimas
- Unidad de Bioquímica y Biología Molecular, Servicio de Instrumentación Biomédica, Universidad de Castilla-La Mancha, 02008 Albacete, Spain;
| | - Germán Fliquete
- Grupo de Patología Molecular Traslacional, Vall d’Hebron Institut de Recerca, Universitat Autònoma de Barcelona Centro de Investigación Biomédica en RED de Cancer CIBERONC, 08035 Barcelona, Spain; (T.M.); (G.F.); (J.H.-L.); (S.R.y.C.)
| | - Marta Ortega-Muelas
- Laboratorio de Oncología Molecular, Unidad de Medicina Molecular, Centro Regional de Investigaciones Biomédicas, Unidad Asociada de Biomedicina UCLM, Unidad Asociada al CSIC, Universidad de Castilla-La Mancha, 02008 Albacete, Spain; (E.A.-L.); (J.J.-S.); (R.P.-S.); (M.O.-M.); (O.R.); (D.M.F.-A.); (N.G.-F.); (C.G.-G.); (M.J.R.-H.)
| | - Olga Roche
- Laboratorio de Oncología Molecular, Unidad de Medicina Molecular, Centro Regional de Investigaciones Biomédicas, Unidad Asociada de Biomedicina UCLM, Unidad Asociada al CSIC, Universidad de Castilla-La Mancha, 02008 Albacete, Spain; (E.A.-L.); (J.J.-S.); (R.P.-S.); (M.O.-M.); (O.R.); (D.M.F.-A.); (N.G.-F.); (C.G.-G.); (M.J.R.-H.)
- Departamento de Ciencias Médicas, Facultad de Medicina, Universidad de Castilla-La Mancha, 02008 Albacete, Spain
| | - Diego M. Fernández-Aroca
- Laboratorio de Oncología Molecular, Unidad de Medicina Molecular, Centro Regional de Investigaciones Biomédicas, Unidad Asociada de Biomedicina UCLM, Unidad Asociada al CSIC, Universidad de Castilla-La Mancha, 02008 Albacete, Spain; (E.A.-L.); (J.J.-S.); (R.P.-S.); (M.O.-M.); (O.R.); (D.M.F.-A.); (N.G.-F.); (C.G.-G.); (M.J.R.-H.)
| | - Raúl Muñoz Velasco
- Grupo de Oncología Molecular, Facultad de Ciencias Experimentales, Instituto de Investigación Biosanitaria, Universidad Francisco de Vitoria, Pozuelo de Alarcón, 28223 Madrid, Spain; (R.M.V.); (V.J.S.-A.L.)
- Departamento de Anatomía Patológica, Instituto de Investigación Hospital 12 de Octubre, Av. Córdoba, s/n, 28041 Madrid, Spain
| | - Natalia García-Flores
- Laboratorio de Oncología Molecular, Unidad de Medicina Molecular, Centro Regional de Investigaciones Biomédicas, Unidad Asociada de Biomedicina UCLM, Unidad Asociada al CSIC, Universidad de Castilla-La Mancha, 02008 Albacete, Spain; (E.A.-L.); (J.J.-S.); (R.P.-S.); (M.O.-M.); (O.R.); (D.M.F.-A.); (N.G.-F.); (C.G.-G.); (M.J.R.-H.)
| | - Cristina Garnés-García
- Laboratorio de Oncología Molecular, Unidad de Medicina Molecular, Centro Regional de Investigaciones Biomédicas, Unidad Asociada de Biomedicina UCLM, Unidad Asociada al CSIC, Universidad de Castilla-La Mancha, 02008 Albacete, Spain; (E.A.-L.); (J.J.-S.); (R.P.-S.); (M.O.-M.); (O.R.); (D.M.F.-A.); (N.G.-F.); (C.G.-G.); (M.J.R.-H.)
| | - Adrián Sánchez-Fdez
- Instituto de Biología Molecular y Celular del Cáncer-CSIC, 37007 Salamanca, Spain; (A.S.-F.); (S.M.-A.); (A.P.); (A.E.-O.)
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Hospital Universitario de Salamanca, Universidad de Salamanca, CSIC, 37007 Salamanca, Spain
- Centro de Investigación Biomédica en RED de Cancer CIBERONC, 37007 Salamanca, Spain
| | - Sofía Matilla-Almazán
- Instituto de Biología Molecular y Celular del Cáncer-CSIC, 37007 Salamanca, Spain; (A.S.-F.); (S.M.-A.); (A.P.); (A.E.-O.)
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Hospital Universitario de Salamanca, Universidad de Salamanca, CSIC, 37007 Salamanca, Spain
- Centro de Investigación Biomédica en RED de Cancer CIBERONC, 37007 Salamanca, Spain
| | - Víctor J. Sánchez-Arévalo Lobo
- Grupo de Oncología Molecular, Facultad de Ciencias Experimentales, Instituto de Investigación Biosanitaria, Universidad Francisco de Vitoria, Pozuelo de Alarcón, 28223 Madrid, Spain; (R.M.V.); (V.J.S.-A.L.)
- Departamento de Anatomía Patológica, Instituto de Investigación Hospital 12 de Octubre, Av. Córdoba, s/n, 28041 Madrid, Spain
| | - Javier Hernández-Losa
- Grupo de Patología Molecular Traslacional, Vall d’Hebron Institut de Recerca, Universitat Autònoma de Barcelona Centro de Investigación Biomédica en RED de Cancer CIBERONC, 08035 Barcelona, Spain; (T.M.); (G.F.); (J.H.-L.); (S.R.y.C.)
| | - Borja Belandia
- Departamento de Biología del Cáncer, Instituto de Investigaciones Biomédicas ‘Alberto Sols’ (CSIC-UAM), Unidad Asociada de Biomedicina UCLM, Unidad Asociada al CSIC, 28029 Madrid, Spain;
| | - Atanasio Pandiella
- Instituto de Biología Molecular y Celular del Cáncer-CSIC, 37007 Salamanca, Spain; (A.S.-F.); (S.M.-A.); (A.P.); (A.E.-O.)
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Hospital Universitario de Salamanca, Universidad de Salamanca, CSIC, 37007 Salamanca, Spain
- Centro de Investigación Biomédica en RED de Cancer CIBERONC, 37007 Salamanca, Spain
| | - Azucena Esparís-Ogando
- Instituto de Biología Molecular y Celular del Cáncer-CSIC, 37007 Salamanca, Spain; (A.S.-F.); (S.M.-A.); (A.P.); (A.E.-O.)
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Hospital Universitario de Salamanca, Universidad de Salamanca, CSIC, 37007 Salamanca, Spain
- Centro de Investigación Biomédica en RED de Cancer CIBERONC, 37007 Salamanca, Spain
| | - Santiago Ramón y Cajal
- Grupo de Patología Molecular Traslacional, Vall d’Hebron Institut de Recerca, Universitat Autònoma de Barcelona Centro de Investigación Biomédica en RED de Cancer CIBERONC, 08035 Barcelona, Spain; (T.M.); (G.F.); (J.H.-L.); (S.R.y.C.)
| | - Luis del Peso
- Departamento de Bioquímica, Universidad Autónoma de Madrid (UAM) and Instituto de Investigaciones Biomédicas ‘Alberto Sols’ (CSIC-UAM), 28029 Madrid, Spain;
- Unidad Asociada de Biomedicina UCLM, Unidad Asociada al CSIC, 28029 Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias CIBERES, 28029 Madrid, Spain
| | - Ricardo Sánchez-Prieto
- Laboratorio de Oncología Molecular, Unidad de Medicina Molecular, Centro Regional de Investigaciones Biomédicas, Unidad Asociada de Biomedicina UCLM, Unidad Asociada al CSIC, Universidad de Castilla-La Mancha, 02008 Albacete, Spain; (E.A.-L.); (J.J.-S.); (R.P.-S.); (M.O.-M.); (O.R.); (D.M.F.-A.); (N.G.-F.); (C.G.-G.); (M.J.R.-H.)
- Departamento de Ciencias Médicas, Facultad de Medicina, Universidad de Castilla-La Mancha, 02008 Albacete, Spain
- Departamento de Biología del Cáncer, Instituto de Investigaciones Biomédicas ‘Alberto Sols’ (CSIC-UAM), Unidad Asociada de Biomedicina UCLM, Unidad Asociada al CSIC, 28029 Madrid, Spain;
- Instituto de Investigaciones Biomédicas ‘Alberto Sols’, Consejo Superior de Investigaciones Científicas (IIBM-CSIC)-Universidad de Castilla-La Mancha, 02008 Albacete, Spain
- Correspondence:
| | - María José Ruiz-Hidalgo
- Laboratorio de Oncología Molecular, Unidad de Medicina Molecular, Centro Regional de Investigaciones Biomédicas, Unidad Asociada de Biomedicina UCLM, Unidad Asociada al CSIC, Universidad de Castilla-La Mancha, 02008 Albacete, Spain; (E.A.-L.); (J.J.-S.); (R.P.-S.); (M.O.-M.); (O.R.); (D.M.F.-A.); (N.G.-F.); (C.G.-G.); (M.J.R.-H.)
- Departamento de Química Inorgánica, Orgánica y Bioquímica, Área de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad de Castilla-La Mancha, 02008 Albacete, Spain
| |
Collapse
|
27
|
Hu F, Ren Y, Wang Z, Zhou H, Luo Y, Wang M, Tian F, Zheng J, Du J, Pang G. Bioinformatics analysis of KLF2 as a potential prognostic factor in ccRCC and association with epithelial‑mesenchymal transition. Exp Ther Med 2022; 24:561. [PMID: 35978925 PMCID: PMC9366276 DOI: 10.3892/etm.2022.11498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 06/23/2022] [Indexed: 11/29/2022] Open
Abstract
Clear cell renal cell carcinoma (ccRCC) is a primary pathological subtype of RCC and has poor clinical outcome. Krüppel-like factors (KLFs), which are zinc-finger proteins, may be involved in ccRCC development and progression. KLFs belong to the zinc-finger family of DNA-binding transcription factors and regulate transcription of downstream target genes. KLFs are involved in cancer development. The present study aimed to investigate the role of KLFs in ccRCC prognosis. The Cancer Genome Atlas database and multifactorial analysis showed that KLFs were widely expressed in pan-cancers and KLF2 was an independent protective factor for ccRCC prognosis. Patients with low KLF2 expression had a low survival probability and expression of KLF2 was downregulated in patients with ccRCC with high pathological grade (II + III vs. I). In addition, western blot and reverse transcription-quantitative PCR revealed that KLF2 was expressed at low levels in ccRCC cell lines and overexpression of KLF2 inhibited cell migration. In addition, KLF2 expression was negatively correlated with methylation. KLF2 expression was elevated following treatment of ccRCC cells with DNA methyltransferase inhibitor. A prognostic risk index prediction model was constructed based on multiple Cox regression. The receiver operating characteristic curve was 0.780 (area under curve >0.5). Furthermore, Gene Ontology enrichment analysis showed that ‘cell adhesion’ and ‘junction’ were negatively correlated with KLF2 and that high-risk group exhibited significantly activated ‘epithelial-mesenchymal transition’. Western blot analysis showed that overexpression of KLF2 increased expression of E-cadherin, while decreasing levels of N-cadherin and vimentin. The present study highlighted the role of KLFs in ccRCC prognosis prediction and provides a research base for the search of validated prognostic biological markers for ccRCC.
Collapse
Affiliation(s)
- Fangfang Hu
- Department of Physiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Yan Ren
- Department of Human Anatomy, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Zunyun Wang
- The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, P.R. China
| | - Hui Zhou
- Department of Physiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Yumei Luo
- The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, P.R. China
| | - Minghua Wang
- The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, P.R. China
| | - Faqing Tian
- The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, P.R. China
| | - Jian Zheng
- The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, P.R. China
| | - Juan Du
- Department of Physiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Gang Pang
- Department of Human Anatomy, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| |
Collapse
|
28
|
Wang X, Huo R, Liang Z, Xu C, Chen T, Lin J, Li L, Lin W, Pan B, Fu X, Chen S. Simvastatin Inhibits NLRP3 Inflammasome Activation and Ameliorates Lung Injury in Hyperoxia-Induced Bronchopulmonary Dysplasia via the KLF2-Mediated Mechanism. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:8336070. [PMID: 35509841 PMCID: PMC9060986 DOI: 10.1155/2022/8336070] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 04/04/2022] [Indexed: 12/17/2022]
Abstract
Bronchopulmonary dysplasia (BPD) is a chronic lung disease commonly found in premature infants. Excessive inflammation and oxidative stress contribute to BPD occurrence and development. Simvastatin, as an inhibitor of HMG-CoA reductase, has been reported to have antioxidative and anti-inflammatory effects. However, its effect and possible mechanisms in hyperoxia-induced lung injury are rarely reported. In this study, in vivo and in vitro experiments were conducted to investigate whether simvastatin could ameliorate hyperoxia-induced lung injury and explore its potential mechanism. For the in vivo study, simvastatin could improve alveolar development after hyperoxic lung injury and reduce hyperoxic stress and inflammation. The in vitro study revealed that simvastatin can reduce inflammation in A549 cells after high-oxygen exposure. Simvastatin suppressed NLRP3 inflammasome activation and played anti-inflammatory and antioxidant roles by increasing KLF2 (Krüppel-like factor 2) expression. In vitro experiments also revealed that these effects of simvastatin were partially reversed by KLF2 shRNA, indicating that KLF2 was involved in simvastatin effects. In summary, our findings indicate that simvastatin could downregulate NLRP3 inflammasome activation and attenuate lung injury in hyperoxia-induced bronchopulmonary dysplasia via KLF2-mediated mechanism.
Collapse
Affiliation(s)
- Xinye Wang
- Department of Neonatology, The Second Affiliated Hospital, Yuying Children's Hospital of Wenzhou Medical University, Zhejiang, China
- Department of Pediatric, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Ran Huo
- Department of Neonatology, The Second Affiliated Hospital, Yuying Children's Hospital of Wenzhou Medical University, Zhejiang, China
| | - Zhongjie Liang
- Department of Neonatology, The Second Affiliated Hospital, Yuying Children's Hospital of Wenzhou Medical University, Zhejiang, China
| | - Congcong Xu
- Department of Neonatology, The Second Affiliated Hospital, Yuying Children's Hospital of Wenzhou Medical University, Zhejiang, China
| | - Tingting Chen
- Department of Neonatology, The Second Affiliated Hospital, Yuying Children's Hospital of Wenzhou Medical University, Zhejiang, China
| | - Jingjing Lin
- Department of Neonatology, The Second Affiliated Hospital, Yuying Children's Hospital of Wenzhou Medical University, Zhejiang, China
| | - Luyao Li
- Department of Neonatology, The Second Affiliated Hospital, Yuying Children's Hospital of Wenzhou Medical University, Zhejiang, China
| | - Wei Lin
- Department of Neonatology, The Second Affiliated Hospital, Yuying Children's Hospital of Wenzhou Medical University, Zhejiang, China
| | - Bingting Pan
- Department of Neonatology, The Second Affiliated Hospital, Yuying Children's Hospital of Wenzhou Medical University, Zhejiang, China
| | - Xiaoqin Fu
- Department of Neonatology, The Second Affiliated Hospital, Yuying Children's Hospital of Wenzhou Medical University, Zhejiang, China
| | - Shangqin Chen
- Department of Neonatology, The Second Affiliated Hospital, Yuying Children's Hospital of Wenzhou Medical University, Zhejiang, China
| |
Collapse
|
29
|
Ale-Ebrahim M, Rahmani R, Faryabi K, Mohammadifar N, Mortazavi P, Karkhaneh L. Atheroprotective and hepatoprotective effects of trans-chalcone through modification of eNOS/AMPK/KLF-2 pathway and regulation of COX-2, Ang-II, and PDGF mRNA expression in NMRI mice fed HCD. Mol Biol Rep 2022; 49:3433-3443. [PMID: 35190927 DOI: 10.1007/s11033-022-07174-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 01/19/2022] [Indexed: 02/06/2023]
Abstract
BACKGROUND The effects of trans-chalcone on atherosclerosis and NAFLD have been investigated. However, the underlying molecular mechanisms of these effects are not completely understood. This study aimed to deduce the impacts of trans-chalcone on the eNOS/AMPK/KLF-2 pathway in the heart tissues and the expression of Ang-II, PDFG, and COX-2 genes in liver sections of NMRI mice fed HCD. METHODS AND RESULTS Thirty-two male mice were divided into four groups (n = 8): control group; fed normal diet. HCD group; fed HCD (consisted of 2% cholesterol) (12 weeks). TCh groups; received HCD (12 weeks) besides co-treated with trans-chalcone (20 mg/kg and 40 mg/kg b.w. dosages respectively) for 4 weeks. Finally, the blood samples were collected to evaluate the biochemical parameters. Histopathological observations of aorta and liver sections were performed by H&E staining. The real-time PCR method was used for assessing the expression of the aforementioned genes. Histopathological examination demonstrated atheroma plaque formation and fatty liver in mice fed HCD which were accomplished with alteration in biochemical factors and Real-time PCR outcomes. Administration of trans-chalcone significantly modulated the serum of biochemical parameters. These effects were accompanied by significant increasing the expression of eNOS, AMPK, KLF-2 genes in heart sections and significant decrease in COX-2, Ang-II, and PDGF mRNA expression in liver sections. CONCLUSION Our findings propose that the atheroprotective and hepatoprotective effects of trans-chalcone may be attributed to the activation of the eNOS/AMPK/KLF-2 pathway and down-regulation of Ang-II, PDFG, and COX-2 genes, respectively.
Collapse
Affiliation(s)
- Mahsa Ale-Ebrahim
- Department of Physiology, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Raziyeh Rahmani
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Kousar Faryabi
- Department of Microbiology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Niloofar Mohammadifar
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Pejman Mortazavi
- Department of Veterinary Pathology, Faculty of Specialized Veterinary, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Leyla Karkhaneh
- Department of Physiology, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
30
|
Zhang W, Chen Z, Qiao S, Chen S, Zheng H, Wei X, Li Q, Xu B, Huang W. The effects of extracellular vesicles derived from Krüppel-Like Factor 2 overexpressing endothelial cells on the regulation of cardiac inflammation in the dilated cardiomyopathy. J Nanobiotechnology 2022; 20:76. [PMID: 35139878 PMCID: PMC8827179 DOI: 10.1186/s12951-022-01284-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 01/23/2022] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Dilated cardiomyopathy (DCM) is one of the common causes of heart failure. Myocardial injury triggers an inflammatory response and recruits immune cells into the heart. High expression of Krüppel-like factor 2 (KLF2) in endothelial cells (ECs) potentially exerts an anti-inflammatory effect. However, the role of extracellular vesicles (EVs) from KLF2-overexpressing ECs (KLF2-EVs) in DCM remains unclear. METHODS AND RESULTS EVs were separated from the supernatant of KLF2-overexpressing ECs by gradient centrifugation. Mice were repeatedly administered low-dose doxorubicin (DOX) and then received KLF2-EVs through an intravenous injection. Treatment with KLF2-EVs prevented doxorubicin-induced left ventricular dysfunction and reduced the recruitment of Ly6high Mo/Mø in the myocardium. We used flow cytometry to detect Ly6high monocytes in bone marrow and spleen tissues and to elucidate the mechanisms underlying this beneficial effect. KLF2-EVs increased the retention of Ly6Chigh monocytes in the bone marrow but not in the spleen tissue. KLF2-EVs also significantly downregulated C-C chemokine receptor 2 (CCR2) protein expression in cells from the bone marrow. CONCLUSIONS EVs derived from KLF2-overexpressing ECs reduced cardiac inflammation and ameliorated left ventricular dysfunction in DCM mice by targeting the CCR2 protein to inhibit Ly6Chigh monocyte mobilization from the bone marrow.
Collapse
Affiliation(s)
- Wenfeng Zhang
- Department of Cardiology, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, 210008, China
| | - Ziwei Chen
- Department of Cardiology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, 210008, China
| | - Shuaihua Qiao
- Department of Cardiology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, 210008, China
| | - Siyuan Chen
- Department of Cardiology, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, 210008, China
| | - Hongyan Zheng
- Department of Cardiology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, 210008, China
| | - Xuan Wei
- Department of Cardiology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, 210008, China
| | - Qiaoling Li
- Department of Cardiology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, 210008, China.
| | - Biao Xu
- Department of Cardiology, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, 210008, China. .,Department of Cardiology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, 210008, China.
| | - Wei Huang
- Department of Cardiology, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, 210008, China.
| |
Collapse
|
31
|
Ma C, Wu H, Yang G, Xiang J, Feng K, Zhang J, Hua Y, Kang L, Fan G, Yang S. Calycosin ameliorates atherosclerosis by enhancing autophagy via regulating the interaction between KLF2 and MLKL in apoE -/- mice. Br J Pharmacol 2021; 179:252-269. [PMID: 34713437 DOI: 10.1111/bph.15720] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/23/2021] [Accepted: 10/06/2021] [Indexed: 10/20/2022] Open
Abstract
BACKGROUND AND PURPOSE Atherosclerosis is one of the underlying causes of cardiovascular disease. Formation of foam cells and necrotic core in the plaque is a hallmark of atherosclerosis, which results from lipid deposition, apoptosis, and inflammation in macrophage. Macrophage autophagy is a critical anti-atherogenic process and defective autophagy aggravates atherosclerosis by enhancing foam cell formation, apoptosis, and inflammation. Hence, enhancing autophagy can be a strategy for atherosclerosis treatment. Calycosin, a flavonoid from Astragali Radix, displays antioxidant and anti-inflammatory activities, and therefore is potential to reduce the risk of cardiovascular disease. However, the antiatherogenic effect of calycosin and the involved mechanism remains unclear. In this study, we assessed the potential benefits of calycosin on autophagy and atherosclerosis, and revealed the underlying mechanism. EXPERIMENTAL APPROACH In this study, apoE-/- mice were fed high-fat diet for 16 weeks in presence of calycosin and/or autophagy inhibitor chloroquine, which was followed by determination of atherosclerosis development, autophagy activity, and the involved mechanisms. KEY RESULTS Calycosin protected against atherosclerosis and enhanced plaque stability via promoting autophagy. Calycosin inhibited foam cells formation, inflammation, and apoptosis by enhancing autophagy. MLKL was demonstrated as a new autophagy regulator, which can be negatively regulated by KLF2. Mechanistically, inhibitory effects of calycosin on atherogenesis were via improving autophagy through modulating KLF2-MLKL signaling pathway. CONCLUSIONS AND IMPLICATIONS This study demonstrated the atheroprotective effect of calycosin was through upregulating KLF2-MLKL-mediated autophagy, which not only proposed novel mechanistic insights into the atherogenesis but also identified calycosin as a potential drug candidate for atherosclerosis treatment.
Collapse
Affiliation(s)
- Chuanrui Ma
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.,National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion
| | - Han Wu
- Department of Endocrinology, Shenzhen People's Hospital, The Second Clinical Medical College of Jinan University & The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Guangyan Yang
- Department of Endocrinology, Shenzhen People's Hospital, The Second Clinical Medical College of Jinan University & The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Jiaqing Xiang
- Department of Endocrinology, Shenzhen People's Hospital, The Second Clinical Medical College of Jinan University & The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Ke Feng
- College of Life Sciences, Nankai University, Tianjin, China
| | - Jing Zhang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.,National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion
| | - Yunqing Hua
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.,National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion
| | - Lin Kang
- Department of Endocrinology, Shenzhen People's Hospital, The Second Clinical Medical College of Jinan University & The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, Guangdong, China.,The Biobank of National Innovation Center for Advanced Medical Devices, Shenzhen People's Hospital, Shenzhen, Guangdong, China
| | - Guanwei Fan
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.,National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion
| | - Shu Yang
- Department of Endocrinology, Shenzhen People's Hospital, The Second Clinical Medical College of Jinan University & The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, Guangdong, China.,Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, Guangzhou, China
| |
Collapse
|
32
|
Li Z, Wang J, Ma Y. Montelukast attenuates interleukin IL-1β-induced oxidative stress and apoptosis in chondrocytes by inhibiting CYSLTR1 (Cysteinyl Leukotriene Receptor 1) and activating KLF2 (Kruppel Like Factor 2). Bioengineered 2021; 12:8476-8484. [PMID: 34565285 PMCID: PMC8806840 DOI: 10.1080/21655979.2021.1984003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Montelukast is a cysteinyl leukotriene receptor 1 (CysLTR1) antagonist widely used to suppress the inflammatory response in asthma and allergic rhinitis. This study aimed to investigate the potential impacts of montelukast on osteoarthritis (OA) progression. To determine the role of montelukast in OA, the expression of CysLTR1 was first examined by quantitative reverse transcription PCR (RT-qPCR) and western blot in IL-1β-induced ATDC5 cells treated with or without montelukast. Subsequently, the impacts of montelukast on cell viability and oxidative stress were measured by Cell-Counting-Kit-8 (CCK-8), commercial kits and western blot. Oxidative stress-related protein expressions were determined by western blot analysis in Il-1β-induced ATDC5 cells. Cell apoptosis and cartilage degradation were examined by TdT-mediated dUTP Nick-End Labeling (TUNEL) assay, western blot and RT-qPCR. KLF2 expression was measured in IL-1β-induced ATDC5 cells treated with montelukast. After interference with small interfering RNA (siRNA)-KLF2 in ATDC5 cells, the loss-of-function assays were also performed in same ways. CysLTR1 expression was elevated in IL-1β-induced ATDC5 cells but inhibited significantly by montelukast. Montelukast attenuated the oxidative stress and apoptosis, improved cell viability. Moreover, montelukast enhanced KLF2 expression. After transfected with siRNA-KLF2, montelukast attenuated cell injury, oxidative stress, apoptosis and cartilage degradation in IL-1β-induced ATDC5 cells by activating KLF2.In summary, this work elaborates the evidence that montelukast could attenuate oxidative stress and apoptosis in IL-1β-induced chondrocytes by inhibiting CysLTR1 and activating KLF2, which can guide the therapeutic strategies of montelukast for OA development in the future.
Collapse
Affiliation(s)
- Zongwei Li
- School of Pharmaceutical Engineering, Guangdong Food and Drug Vocational College, Guangzhou City, Guangdong Province, China
| | - Jianming Wang
- School of Pharmaceutical Engineering, Guangdong Food and Drug Vocational College, Guangzhou City, Guangdong Province, China
| | - Yumin Ma
- Department of Pharmaceutical Machinery, Maternal and Child Health and Family Planning Technical Service Center, Wuwei City, Gansu Province, China
| |
Collapse
|
33
|
Ni D, Mo Z, Yi G. Recent insights into atherosclerotic plaque cell autophagy. Exp Biol Med (Maywood) 2021; 246:2553-2558. [PMID: 34407677 DOI: 10.1177/15353702211038894] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Cardiovascular and cerebrovascular diseases, such as coronary heart disease and stroke, caused by atherosclerosis have become the "number one killer", seriously endangering human health in developing and developed countries. Atherosclerosis mainly occurs in large and medium-sized arteries and involves intimal thickening, accumulation of foam cells, and formation of atheromatous plaques. Autophagy is a cellular catabolic process that has evolved to defend cells from the turnover of intracellular molecules. Autophagy is thought to play an important role in the development of plaques. This review focuses on studies on autophagy in cells involved in the formation of atherosclerotic plaques, such as monocytes, macrophages, endothelial cells, dendritic cells, and vascular smooth muscle cells, indicating that autophagy plays an important role in plaque development. We mainly discuss the roles of autophagy in these cells in maintaining the stability of atherosclerotic plaques, providing a reference for the next steps to unravel the mechanisms of atherogenesis.
Collapse
Affiliation(s)
- Dan Ni
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, University of South China, Hengyang 421001, China
| | - Zhongcheng Mo
- Guangxi Key Laboratory of Diabetic Systems Medicine, Institute of Basic Medical Sciences, Guilin Medical University, Guilin 541000, China
| | - Guanghui Yi
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, University of South China, Hengyang 421001, China
| |
Collapse
|
34
|
A functional screen identifies transcriptional networks that regulate HIV-1 and HIV-2. Proc Natl Acad Sci U S A 2021; 118:2012835118. [PMID: 33836568 DOI: 10.1073/pnas.2012835118] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The molecular networks involved in the regulation of HIV replication, transcription, and latency remain incompletely defined. To expand our understanding of these networks, we performed an unbiased high-throughput yeast one-hybrid screen, which identified 42 human transcription factors and 85 total protein-DNA interactions with HIV-1 and HIV-2 long terminal repeats. We investigated a subset of these transcription factors for transcriptional activity in cell-based models of infection. KLF2 and KLF3 repressed HIV-1 and HIV-2 transcription in CD4+ T cells, whereas PLAGL1 activated transcription of HIV-2 through direct protein-DNA interactions. Using computational modeling with interacting proteins, we leveraged the results from our screen to identify putative pathways that define intrinsic transcriptional networks. Overall, we used a high-throughput functional screen, computational modeling, and biochemical assays to identify and confirm several candidate transcription factors and biochemical processes that influence HIV-1 and HIV-2 transcription and latency.
Collapse
|
35
|
Hou W, Ye C, Chen M, Gao W, Xie X, Wu J, Zhang K, Zhang W, Zheng Y, Cai X. Excavating bioactivities of nanozyme to remodel microenvironment for protecting chondrocytes and delaying osteoarthritis. Bioact Mater 2021; 6:2439-2451. [PMID: 33553826 PMCID: PMC7848724 DOI: 10.1016/j.bioactmat.2021.01.016] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 12/18/2020] [Accepted: 01/12/2021] [Indexed: 12/21/2022] Open
Abstract
Osteoarthritis (OA) is the main cause of disability in the elderly. Effective intervention in the early and middle stage of osteoarthritis can greatly prevent or slow down the development of the disease, and reduce the probability of joint replacement. However, there is to date no effective intervention for early and middle-stage OA. OA microenvironment mainly destroys the balance of oxidative stress, extracellular matrix synthesis and degradation of chondrocytes under the joint action of biological and mechanical factors. Herein, hollow Prussian blue nanozymes (HPBzymes) were designed via a modified hydrothermal template-free method. The aim of this study was to investigate the effects of HPBzymes on chondrocytes and the progression of OA. The intrinsic bioactivities of HPBzymes were excavated in vitro and in vivo, remodeling microenvironment for significantly protecting chondrocytes and delaying the progression of traumatic OA by inhibiting reactive oxygen species (ROS) and Rac1/nuclear factor kappa-B (NF-κB) signaling in a rat model. HPBzyme significantly diminished interleukin (IL)-1β-stimulated inflammation, extracellular matrix degradation, and apoptosis of human chondrocytes. HPBzyme attenuated the expression of Rac1 and the ROS levels and prevented the release and nuclear translocation of NF-κB. Deeply digging the intrinsic bioactivities of nanozyme with single component to remodel microenvironment is an effective strategy for ROS-associated chronic diseases. This study reveals that excavating the bioactivities of nanomedicine deserves attention for diagnosis and treatment of severe diseases.
Collapse
Affiliation(s)
- Weiduo Hou
- Department of Orthopaedics, Second Affiliated Hospital, School of Medicine, Zhejiang University, 310009, Hangzhou, China.,Research Institute of Orthopaedics, Zhejiang University, 310009, Hangzhou, China
| | - Chenyi Ye
- Department of Orthopaedics, Second Affiliated Hospital, School of Medicine, Zhejiang University, 310009, Hangzhou, China.,Research Institute of Orthopaedics, Zhejiang University, 310009, Hangzhou, China
| | - Mo Chen
- Department of Rheumatology, Second Affiliated Hospital, School of Medicine, Zhejiang University, 310009, Hangzhou, China
| | - Wei Gao
- Department of Ultrasound in Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, PR China
| | - Xue Xie
- Department of Ultrasound in Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, PR China
| | - Jianrong Wu
- Shanghai Institute of Ultrasound in Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, PR China
| | - Kai Zhang
- Laboratory for Pathophysiological and Health Science, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo, 650-0047, Japan
| | - Wei Zhang
- Department of Orthopaedics, Second Affiliated Hospital, School of Medicine, Zhejiang University, 310009, Hangzhou, China.,Research Institute of Orthopaedics, Zhejiang University, 310009, Hangzhou, China
| | - Yuanyi Zheng
- Department of Ultrasound in Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, PR China
| | - Xiaojun Cai
- Shanghai Institute of Ultrasound in Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, PR China
| |
Collapse
|
36
|
Impact of KLF4 on Cell Proliferation and Epithelial Differentiation in the Context of Cystic Fibrosis. Int J Mol Sci 2020; 21:ijms21186717. [PMID: 32937756 PMCID: PMC7555189 DOI: 10.3390/ijms21186717] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 09/10/2020] [Accepted: 09/11/2020] [Indexed: 12/13/2022] Open
Abstract
Cystic fibrosis (CF) cells display a more cancer-like phenotype vs. non-CF cells. KLF4 overexpression has been described in CF and this transcriptional factor acts as a negative regulator of wt-CFTR. KLF4 is described as exerting its effects in a cell-context-dependent fashion, but it is generally considered a major regulator of proliferation, differentiation, and wound healing, all the processes that are also altered in CF. Therefore, it is relevant to characterize the differential role of KLF4 in these processes in CF vs. non-CF cells. To this end, we used wt- and F508del-CFTR CFBE cells and their respective KLF4 knockout (KO) counterparts to evaluate processes like cell proliferation, polarization, and wound healing, as well as to compare the expression of several epithelial differentiation markers. Our data indicate no major impact of KLF4 KO in proliferation and a differential impact of KLF4 KO in transepithelial electrical resistance (TEER) acquisition and wound healing in wt- vs. F508del-CFTR cells. In parallel, we also observed a differential impact on the levels of some differentiation markers and epithelial-mesencymal transition (EMT)-associated transcription factors. In conclusion, KLF4 impacts TEER acquisition, wound healing, and the expression of differentiation markers in a way that is partially dependent on the CFTR-status of the cell.
Collapse
|
37
|
Sousa L, Pankonien I, Clarke LA, Silva I, Kunzelmann K, Amaral MD. KLF4 Acts as a wt-CFTR Suppressor through an AKT-Mediated Pathway. Cells 2020; 9:cells9071607. [PMID: 32630830 PMCID: PMC7408019 DOI: 10.3390/cells9071607] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 06/24/2020] [Accepted: 06/30/2020] [Indexed: 02/06/2023] Open
Abstract
Cystic Fibrosis (CF) is caused by >2000 mutations in the CF transmembrane conductance regulator (CFTR) gene, but one mutation-F508del-occurs in ~80% of patients worldwide. Besides its main function as an anion channel, the CFTR protein has been implicated in epithelial differentiation, tissue regeneration, and, when dysfunctional, cancer. However, the mechanisms that regulate such relationships are not fully elucidated. Krüppel-like factors (KLFs) are a family of transcription factors (TFs) playing central roles in development, stem cell differentiation, and proliferation. Herein, we hypothesized that these TFs might have an impact on CFTR expression and function, being its missing link to differentiation. Our results indicate that KLF4 (but not KLF2 nor KLF5) is upregulated in CF vs. non-CF cells and that it negatively regulates wt-CFTR expression and function. Of note, F508del-CFTR expressing cells are insensitive to KLF4 modulation. Next, we investigated which KLF4-related pathways have an effect on CFTR. Our data also show that KLF4 modulates wt-CFTR (but not F508del-CFTR) via both the serine/threonine kinase AKT1 (AKT) and glycogen synthase kinase 3 beta (GSK3β) signaling. While AKT acts positively, GSK3β is a negative regulator of CFTR. This crosstalk between wt-CFTR and KLF4 via AKT/ GSK3β signaling, which is disrupted in CF, constitutes a novel mechanism linking CFTR to the epithelial differentiation.
Collapse
Affiliation(s)
- Luis Sousa
- BioISI – Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, 1749-016 Lisbon, Portugal; (L.S.); (I.P.); (L.A.C.); (I.S.)
| | - Ines Pankonien
- BioISI – Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, 1749-016 Lisbon, Portugal; (L.S.); (I.P.); (L.A.C.); (I.S.)
| | - Luka A Clarke
- BioISI – Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, 1749-016 Lisbon, Portugal; (L.S.); (I.P.); (L.A.C.); (I.S.)
| | - Iris Silva
- BioISI – Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, 1749-016 Lisbon, Portugal; (L.S.); (I.P.); (L.A.C.); (I.S.)
| | - Karl Kunzelmann
- Department of Physiology, University of Regensburg, 93053 Regensburg, Germany;
| | - Margarida D Amaral
- BioISI – Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, 1749-016 Lisbon, Portugal; (L.S.); (I.P.); (L.A.C.); (I.S.)
- Correspondence: ; Tel.: +351-21-750-08-61; Fax: +351-21-750-00-88
| |
Collapse
|