1
|
Li D, Qian L, Du Y, Liu L, Sun Z, Han Y, Guo X, Shen C, Zhang Z, Liu X. METTL14-mediated m 6A modification of DDIT4 promotes its mRNA stability in aging-related idiopathic pulmonary fibrosis. Epigenetics 2025; 20:2462898. [PMID: 39916577 PMCID: PMC11810098 DOI: 10.1080/15592294.2025.2462898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 01/01/2025] [Accepted: 01/29/2025] [Indexed: 02/12/2025] Open
Abstract
Although N6-methyladenosine (m6A) may be related to the pathogenesis of fibrotic process, the mechanism of m6A modification in aging-related idiopathic pulmonary fibrosis (IPF) remains unclear. Three-milliliter venous blood was collected from IPF patients and healthy controls. MeRIP-seq and RNA-seq were utilized to investigate differential m6A modification. The expressions of identified m6A regulator and target gene were validated using MeRIP-qPCR and real-time PCR. Moreover, we established an animal model and a senescent model of A549 cells to explore the associated molecular mechanism. Our study provided a panorama of m6A methylation in IPF. Increased peaks (3756) and decreased peaks (4712) were observed in the IPF group. The association analysis showed that 749 DEGs were affected by m6A methylation in IPF. Among the m6A regulators, the expression of METTL14 decreased in IPF. The m6A level of our interested gene DDIT4 decreased significantly, but the mRNA level of DDIT4 was higher in IPF. This was further verified in bleomycin-induced pulmonary fibrosis. At the cellular level, it was further confirmed that METTL14 and DDIT4 might participate in the senescence of alveolar epithelial cells. The downregulation of METTL14 might inhibit the decay of DDIT4 mRNA by reducing the m6A modification level of DDIT4 mRNA, leading to high expression of DDIT4 mRNA and protein. Our study provided a panorama of m6A alterations in IPF and discovered METTL14 as a potential intervention target for epigenetic modification in IPF. These results pave the way for future investigations regarding m6A modifications in aging-related IPF.
Collapse
Affiliation(s)
- Dan Li
- First Clinical Medical College, Shanxi Medical University, Taiyuan, China
- Department of Geriatrics, the First Hospital of Shanxi Medical University, Taiyuan, China
| | - Li Qian
- Department of Geriatrics, the First Hospital of Shanxi Medical University, Taiyuan, China
| | - Yufeng Du
- Department of Geriatrics, the First Hospital of Shanxi Medical University, Taiyuan, China
| | - Lifang Liu
- Department of Geriatrics, the First Hospital of Shanxi Medical University, Taiyuan, China
| | - Ziyue Sun
- First Clinical Medical College, Shanxi Medical University, Taiyuan, China
| | - Yongkang Han
- First Clinical Medical College, Shanxi Medical University, Taiyuan, China
| | - Xiangrui Guo
- First Clinical Medical College, Shanxi Medical University, Taiyuan, China
| | - Chao Shen
- First Clinical Medical College, Shanxi Medical University, Taiyuan, China
| | - Zheng Zhang
- First Clinical Medical College, Shanxi Medical University, Taiyuan, China
| | - Xuejun Liu
- Department of Geriatrics, the First Hospital of Shanxi Medical University, Taiyuan, China
| |
Collapse
|
2
|
Qiang S, Cheng C, Dong Y, Tang C, Zheng J, Liu Y. DDIT4 participates in high glucose-induced fibroblast-like synoviocytes overactivation and cartilage injury by regulating glycolysis. Regen Ther 2025; 29:51-59. [PMID: 40124471 PMCID: PMC11930535 DOI: 10.1016/j.reth.2025.02.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 02/16/2025] [Accepted: 02/27/2025] [Indexed: 03/25/2025] Open
Abstract
Objective More and more evidence show that diabetes is closely related to osteoarthritis (OA). However, the role and mechanism of DNA damage-inducible transcript 4 protein (DDIT4) in diabetic OA (DOA) have not been clarified. Methods We collected OA patients and non-OA subjects who underwent total knee replacement surgery, and analyzed the DDIT4 expression in synovial samples using RT-qPCR. The cell viability of fibroblast-like synoviocytes (FLSs) was measured by CCK-8 assay. Annexin V-FITC/PI double staining was used to detect the cell apoptosis. Scratch and Transwell assays were used to determine cell migration and invasion, respectively. Results The levels of cellular inflammatory factors (IL-1β, IL-6 and TNF-α), oxidative stress and glycolysis related indicators were detected by using kits. Western blot was used to determine the expression of DDIT4, Aggrecan, COL3A1, MMP3, MMP13, HK2, PFKP and PKM2 in FLSs or ATDC5 cells. The results showed that the expression level of DDIT4 was significantly reduced in the synovial samples of OA patients and primary FLSs. Functional studies showed that DDIT4 overexpression inhibited the overactivation, migration, and invasion of FLSs, as well as alleviated chondrocyte injury co-cultured with FLSs. Importantly, the expression of DDIT4 was down-regulated in patients with DOA and closely related to DOA. Further research found that high glucose (HG) promoted excessive activation, migration, and invasion of FLSs, and exacerbated the followed chondrocyte injury. Overexpression of DDIT4 alleviated HG-induced abnormal function of FLSs and injury to chondrocytes. Importantly, DDIT4 inhibited lactate synthesis, glucose uptake, LDH activity, extracellular acidification rate, oxygen consumption rate, and expression levels of glycolysis related protein (HK2, PFKP, PKM2) in HG-induced FLSs. And the glycolysis inhibitors (Cyto-B and 3BrPA) alleviated the injury of ATDC5 chondrocytes co-cultured with FLSs. Conclusions DDIT4 participates in HG-induced FLSs overactivation and inflammation response, as well as chondrocyte injury and OA progression by regulating glycolysis processes.
Collapse
Affiliation(s)
- Shuo Qiang
- Department of Orthopedics, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou, Henan, 450003, China
| | - Cheng Cheng
- Department of Orthopedics, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou, Henan, 450003, China
| | - Yonghui Dong
- Department of Orthopedics, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou, Henan, 450003, China
| | - Chao Tang
- Department of Orthopedics, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou, Henan, 450003, China
| | - Jia Zheng
- Department of Orthopedics, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou, Henan, 450003, China
| | - Yunke Liu
- Department of Orthopedics, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou, Henan, 450003, China
| |
Collapse
|
3
|
Meng XM, Wang L, Nikolic-Paterson DJ, Lan HY. Innate immune cells in acute and chronic kidney disease. Nat Rev Nephrol 2025:10.1038/s41581-025-00958-x. [PMID: 40263532 DOI: 10.1038/s41581-025-00958-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/24/2025] [Indexed: 04/24/2025]
Abstract
Acute kidney injury (AKI) and chronic kidney disease (CKD) are inter-related clinical and pathophysiological disorders. Cells of the innate immune system, such as granulocytes and macrophages, can induce AKI through the secretion of pro-inflammatory mediators such as cytokines, chemokines and enzymes, and the release of extracellular traps. In addition, macrophages and dendritic cells can drive the progression of CKD through a wide range of pro-inflammatory and pro-fibrotic mechanisms, and by regulation of the adaptive immune response. However, innate immune cells can also promote kidney repair after acute injury. These actions highlight the multifaceted nature of the way by which innate immune cells respond to signals within the kidney microenvironment, including interaction with the complement and coagulation cascades, cells of the adaptive immune system, intrinsic renal cells and infiltrating mesenchymal cells. The factors and mechanisms that underpin the ability of innate immune cells to contribute to renal injury or repair and to drive the progression of CKD are of great interest for understanding disease processes and for developing new therapeutic approaches to limit AKI and the AKI-to-CKD transition.
Collapse
Affiliation(s)
- Xiao-Ming Meng
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, the Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Li Wang
- Research Center of Integrated Traditional Chinese and Western Medicine, the Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
| | - David J Nikolic-Paterson
- Department of Nephrology, Monash Medical Centre and Monash University Centre for Inflammatory Diseases, Melbourne, Victoria, Australia
| | - Hui-Yao Lan
- Research Center of Integrated Traditional Chinese and Western Medicine, the Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China.
- Departments of Medicine & Therapeutics, the Chinese University of Hong Kong, Hong Kong, and Guangdong-Hong Kong Joint Laboratory for Immunological and Genetic Kidney Disease, Guangdong Academy of Medical Science, Guangdong Provincial People's Hospital, Guangzhou, China.
| |
Collapse
|
4
|
Liu J, Tao P, Su B, Zheng L, Lin Y, Zou X, Yang H, Wu W, Zhang T, Li H. Interleukin-33 modulates NET formation via an autophagy-dependent manner to promote neutrophilic inflammation in cigarette smoke-exposure asthma. JOURNAL OF HAZARDOUS MATERIALS 2025; 487:137257. [PMID: 39842125 DOI: 10.1016/j.jhazmat.2025.137257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 01/03/2025] [Accepted: 01/15/2025] [Indexed: 01/24/2025]
Abstract
Cigarette smoke (CS) contributes to IL---33 release and neutrophil inflammation in asthma. Neutrophil extracellular traps (NETs) are essential for neutrophil function. However, the effect of IL--33 on neutrophils in cigarette smoke--exposure asthma remains unclear. We found that CS exposure led to lower lung function and a neutrophil--related phenotype in asthma, characterized by elevated neutrophil and Th17 cell counts. Granulocytic airway inflammation was ablated by sST2, which blocked excessive IL--33 release. Transcriptome analysis of mouse lungs revealed that IL--33 enhanced NET formation in HDM/CS-treated mice, which was further confirmed in our experimental asthma model and in asthma patients. NETs were associated with poor lung function and airway inflammation and directly facilitated monocyte--derived dendritic cell activation, further inducing Th2/Th17 polarization. Furthermore, we demonstrated a feedforward loop between NETs and neutrophil autophagy, both of which are dependent on reactive oxygen species (ROS) production and the mTOR-Hif-1α signaling pathway. Notably, IL--33 knockout suppressed autophagy and NETs, whereas the autophagy agonist rapamycin reversed the inhibition of NETs by sST2 in a mTOR--dependent manner. Our findings revealed that the IL--33/ST2 signaling pathway interacts with the neutrophil -autophagy--mTOR-Hif-1α-NET pathway, ultimately aggravating Th2/Th17-related inflammation. These insights could lead to potential therapeutic targets for mitigating exacerbations in asthmatic patients who are exposed to CS.
Collapse
Affiliation(s)
- Jing Liu
- Department of Pulmonary and Critical Care Medicine, The Third Affiliated Hospital of Sun Yat--sen University, Institute of Respiratory Diseases of Sun Yat--sen University, Guangzhou, PR China
| | - Peizhi Tao
- Department of Pulmonary and Critical Care Medicine, The Third Affiliated Hospital of Sun Yat--sen University, Institute of Respiratory Diseases of Sun Yat--sen University, Guangzhou, PR China
| | - Beiting Su
- Department of Pulmonary and Critical Care Medicine, The Third Affiliated Hospital of Sun Yat--sen University, Institute of Respiratory Diseases of Sun Yat--sen University, Guangzhou, PR China
| | - Li Zheng
- Department of Pulmonary and Critical Care Medicine, The Third Affiliated Hospital of Sun Yat--sen University, Institute of Respiratory Diseases of Sun Yat--sen University, Guangzhou, PR China
| | - Yusen Lin
- Department of Pulmonary and Critical Care Medicine, The Third Affiliated Hospital of Sun Yat--sen University, Institute of Respiratory Diseases of Sun Yat--sen University, Guangzhou, PR China
| | - Xiaoling Zou
- Department of Pulmonary and Critical Care Medicine, The Third Affiliated Hospital of Sun Yat--sen University, Institute of Respiratory Diseases of Sun Yat--sen University, Guangzhou, PR China
| | - Hailing Yang
- Department of Pulmonary and Critical Care Medicine, The Third Affiliated Hospital of Sun Yat--sen University, Institute of Respiratory Diseases of Sun Yat--sen University, Guangzhou, PR China
| | - Wenbin Wu
- Department of Pulmonary and Critical Care Medicine, The Third Affiliated Hospital of Sun Yat--sen University, Institute of Respiratory Diseases of Sun Yat--sen University, Guangzhou, PR China
| | - Tiantuo Zhang
- Department of Pulmonary and Critical Care Medicine, The Third Affiliated Hospital of Sun Yat--sen University, Institute of Respiratory Diseases of Sun Yat--sen University, Guangzhou, PR China.
| | - Hongtao Li
- Department of Pulmonary and Critical Care Medicine, The Third Affiliated Hospital of Sun Yat--sen University, Institute of Respiratory Diseases of Sun Yat--sen University, Guangzhou, PR China.
| |
Collapse
|
5
|
Tsilingiris D, Natsi A, Gavriilidis E, Antoniadou C, Eleftheriadou I, Anastasiou IA, Tentolouris A, Papadimitriou E, Eftalitsidis E, Kolovos P, Tsironidou V, Giatromanolaki A, Koffa M, Tentolouris N, Skendros P, Ritis K. Interleukin-8/Matrix Metalloproteinase-9 Axis Impairs Wound Healing in Type 2 Diabetes through Neutrophil Extracellular Traps-Fibroblast Crosstalk. Eur J Immunol 2025; 55:e202451664. [PMID: 40170410 PMCID: PMC11962236 DOI: 10.1002/eji.202451664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 03/02/2025] [Accepted: 03/05/2025] [Indexed: 04/03/2025]
Abstract
Neutrophils interact with and activate fibroblasts through the release of neutrophil extracellular traps (NETs). We investigated the role of NETs-fibroblast crosstalk in the cutaneous wound healing of type 2 diabetes (T2D). Neutrophils/NETs, serum, and primary human skin fibroblasts (HSFs) were obtained from individuals with T2D and age/sex-matched controls. NET-stimulation studies were performed on neutrophils/HSFs, with and without specific inhibitors, while HSF healing capacity was assessed using a scratch wound healing assay. T2D HSFs display a profibrotic phenotype, showing increased CCN2/CTGF, α-smooth muscle actin, and collagen release, albeit with impaired healing capacity, elevated type I collagen C-terminal telopeptide, and collagen degradation associated with increased (∼3.5-fold) matrix metalloproteinase-9 (MMP-9) in T2D neutrophils/NETs. IL-8 induced the expression of MMP-9 in neutrophils/NETs. Moreover, T2D neutrophils/NETs exhibited increased IL-8 content, which acted in an autocrine/paracrine fashion to further augment its production by neutrophils/HSFs. The findings were validated in normoglycemic individuals during a hyperglycemic clamp with concomitant lipid infusion and further corroborated immunohistochemically in diabetic plantar ulcer biopsies. This novel, vicious circle of NETs/interleukin-8/MMP-9/HSFs was hindered by IL-8 or MMP-9 blockade via specific inhibitors or by dismantling the NET-scaffold with DNase I, suggesting candidate therapeutic targets in wound healing impairment of T2D.
Collapse
Affiliation(s)
- Dimitrios Tsilingiris
- First Department of Internal MedicineUniversity Hospital of AlexandroupolisDemocritus University of ThraceAlexandroupolisGreece
- Laboratory of Molecular HematologyDepartment of MedicineDemocritus University of ThraceAlexandroupolisGreece
| | - Anastasia‐Maria Natsi
- Laboratory of Molecular HematologyDepartment of MedicineDemocritus University of ThraceAlexandroupolisGreece
| | - Efstratios Gavriilidis
- First Department of Internal MedicineUniversity Hospital of AlexandroupolisDemocritus University of ThraceAlexandroupolisGreece
- Laboratory of Molecular HematologyDepartment of MedicineDemocritus University of ThraceAlexandroupolisGreece
| | - Christina Antoniadou
- First Department of Internal MedicineUniversity Hospital of AlexandroupolisDemocritus University of ThraceAlexandroupolisGreece
- Laboratory of Molecular HematologyDepartment of MedicineDemocritus University of ThraceAlexandroupolisGreece
| | - Ioanna Eleftheriadou
- First Department of Propaedeutic Internal MedicineMedical SchoolNational and Kapodistrian University of AthensLaiko General HospitalAthensGreece
| | - Ioanna A. Anastasiou
- First Department of Propaedeutic Internal MedicineMedical SchoolNational and Kapodistrian University of AthensLaiko General HospitalAthensGreece
| | - Anastasios Tentolouris
- First Department of Propaedeutic Internal MedicineMedical SchoolNational and Kapodistrian University of AthensLaiko General HospitalAthensGreece
| | - Evangelos Papadimitriou
- First Department of Internal MedicineUniversity Hospital of AlexandroupolisDemocritus University of ThraceAlexandroupolisGreece
- Laboratory of Molecular HematologyDepartment of MedicineDemocritus University of ThraceAlexandroupolisGreece
| | - Evgenios Eftalitsidis
- Laboratory of Cell BiologyProteomics and Cell CycleDepartment of Molecular Biology and GeneticsDemocritus University of ThraceAlexandroupolisGreece
| | - Panagiotis Kolovos
- First Department of Internal MedicineUniversity Hospital of AlexandroupolisDemocritus University of ThraceAlexandroupolisGreece
| | - Victoria Tsironidou
- Laboratory of Molecular HematologyDepartment of MedicineDemocritus University of ThraceAlexandroupolisGreece
| | - Alexandra Giatromanolaki
- Department of PathologyUniversity Hospital of AlexandroupolisDemocritus University of ThraceAlexandroupolisGreece
| | - Maria Koffa
- Laboratory of Cell BiologyProteomics and Cell CycleDepartment of Molecular Biology and GeneticsDemocritus University of ThraceAlexandroupolisGreece
| | - Nikolaos Tentolouris
- First Department of Propaedeutic Internal MedicineMedical SchoolNational and Kapodistrian University of AthensLaiko General HospitalAthensGreece
| | - Panagiotis Skendros
- First Department of Internal MedicineUniversity Hospital of AlexandroupolisDemocritus University of ThraceAlexandroupolisGreece
- Laboratory of Molecular HematologyDepartment of MedicineDemocritus University of ThraceAlexandroupolisGreece
| | - Konstantinos Ritis
- First Department of Internal MedicineUniversity Hospital of AlexandroupolisDemocritus University of ThraceAlexandroupolisGreece
- Laboratory of Molecular HematologyDepartment of MedicineDemocritus University of ThraceAlexandroupolisGreece
| |
Collapse
|
6
|
Huang F, Sun K, Zhou J, Bao J, Xie G, Lu K, Fan Y. Decoding tryptophan: Pioneering new frontiers in systemic lupus erythematosus. Autoimmun Rev 2025; 24:103809. [PMID: 40158642 DOI: 10.1016/j.autrev.2025.103809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 03/26/2025] [Accepted: 03/26/2025] [Indexed: 04/02/2025]
Abstract
Systemic lupus erythematosus (SLE) is a complex autoimmune disease that affects multiple organ systems, with its pathogenesis intricately tied to genetic, environmental, and immune regulatory factors. In recent years, the aberration of tryptophan metabolism has emerged as a key player in the disease, particularly through the activation of the kynurenine pathway and its influence on immune regulation. This review delves into the critical pathways of tryptophan metabolism and its profound impact on the multi-system manifestations of SLE, including its connections to the nervous system, kidneys, skin, and other organs. Additionally, it examines how tryptophan metabolism modulates the function of various immune cell types. The review also explores potential therapeutic avenues targeting tryptophan metabolism, such as dietary interventions, probiotic modulation, IDO expression inhibition, and immunoadsorption techniques. While current research has underscored the pivotal role of tryptophan metabolism in the onset and progression of SLE, its full therapeutic potential remains to be fully elucidated. This review aims to provide a solid scientific foundation for therapeutic strategies based on modulating tryptophan metabolism in SLE, offering a comprehensive overview of both clinical and basic research in this rapidly evolving field.
Collapse
Affiliation(s)
- Fugang Huang
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou 310053, PR China
| | - Ke Sun
- The Third School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang, China
| | - Jiawang Zhou
- College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou 310053, PR China
| | - Jie Bao
- College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou 310053, PR China
| | - Guanqun Xie
- College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou 310053, PR China.
| | - Keda Lu
- The Third Affiliated Hospital of Zhejiang Chinese Medical University (Zhongshan Hospital of Zhejiang Province), Hangzhou 310005, Zhejiang, China.
| | - Yongsheng Fan
- The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, PR China.
| |
Collapse
|
7
|
Huang X, Yan H, Xu Z, Yang B, Luo P, He Q. The inducible role of autophagy in cell death: emerging evidence and future perspectives. Cell Commun Signal 2025; 23:151. [PMID: 40140912 PMCID: PMC11948861 DOI: 10.1186/s12964-025-02135-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Accepted: 03/02/2025] [Indexed: 03/28/2025] Open
Abstract
BACKGROUND Autophagy is a lysosome-dependent degradation pathway for recycling intracellular materials and removing damaged organelles, and it is usually considered a prosurvival process in response to stress stimuli. However, increasing evidence suggests that autophagy can also drive cell death in a context-dependent manner. The bulk degradation of cell contents and the accumulation of autophagosomes are recognized as the mechanisms of cell death induced by autophagy alone. However, autophagy can also drive other forms of regulated cell death (RCD) whose mechanisms are not related to excessive autophagic vacuolization. Notably, few reviews address studies on the transformation from autophagy to RCD, and the underlying molecular mechanisms are still vague. AIM OF REVIEW This review aims to summarize the existing studies on autophagy-mediated RCD, to elucidate the mechanism by which autophagy initiates RCD, and to comprehensively understand the role of autophagy in determining cell fate. KEY SCIENTIFIC CONCEPTS OF REVIEW This review highlights the prodeath effect of autophagy, which is distinct from the generally perceived cytoprotective role, and its mechanisms are mainly associated with the selective degradation of proteins or organelles essential for cell survival and the direct involvement of the autophagy machinery in cell death. Additionally, this review highlights the need for better manipulation of autophagy activation or inhibition in different pathological contexts, depending on clinical purpose.
Collapse
Affiliation(s)
- Xiangliang Huang
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Hao Yan
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Zhifei Xu
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Bo Yang
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- School of Medicine, Hangzhou City University, Hangzhou, 310015, China
| | - Peihua Luo
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou, 310018, China.
| | - Qiaojun He
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.
- School of Medicine, Hangzhou City University, Hangzhou, 310015, China.
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou, 310018, China.
| |
Collapse
|
8
|
Garantziotis P, Moysidou GS, Kapsala N, Flouda S, Nikolopoulos D, Chavatza K, Sentis G, Filia A, Malissovas N, Pieta A, Banos A, Katechis S, Fanouriakis A, Bertsias G, Boumpas DT. Transcriptome analysis to decipher the molecular underpinnings of response to treatment in systemic lupus erythematosus. RMD Open 2025; 11:e005050. [PMID: 40081913 PMCID: PMC11931925 DOI: 10.1136/rmdopen-2024-005050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 01/02/2025] [Indexed: 03/16/2025] Open
Abstract
OBJECTIVE Systemic lupus erythematosus (SLE) is a multisystem autoimmune disease characterised by variable treatment responses. We investigated the transcriptional landscape associated with treatment response and resistance in SLE. METHODS Blood was collected from 92 active patients with SLE at baseline and after 6 months (n=32 paired samples) of treatment with cyclophosphamide (n=40), rituximab (n=20), belimumab (n=23), mycophenolate mofetil (n=8) or azathioprine (n=1) and was subjected to RNA sequencing. The response was defined by the Lupus Low Disease Activity State. We identified differentially expressed genes and co-expressed transcript modules. RESULTS Achieving response, irrespective of treatment, was accompanied by downregulation of B cell immunity-related and complement activation-related signatures. Rituximab led to the most profound decrease in the activity of the B cell pathway, while cyclophosphamide uniquely downregulated neutrophil activation pathways. Responders, regardless of medication, showed increased activity in pathways related to neutrophil migration, type I interferon signalling, complement activation and B cell function prior to treatment. A 539-gene signature, enriched in processes related to chemokine signalling, characterised patients with insufficient response to treatment. CONCLUSIONS Baseline B cell immunity transcriptional signatures correlate with favourable treatment outcomes-accounting for better responses in serologically active patients in SLE clinical trials-with effective treatment reversing the B cell immunity signature. Cyclophosphamide uniquely targets a neutrophil gene signature linked to severe SLE. Alterations in chemotaxis may represent a mechanism driving resistance to treatment in SLE.
Collapse
Affiliation(s)
- Panagiotis Garantziotis
- Department of Internal Medicine 3-Rheumatology and Immunology, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), FAU Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Georgia Savina Moysidou
- Laboratory of Autoimmunity and Inflammation, Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation Academy of Athens, Athens, Greece
| | - Noemin Kapsala
- 4th Department of Internal Medicine, National and Kapodistrian University of Athens Medical School, Athens, Greece
| | - Sofia Flouda
- 4th Department of Internal Medicine, National and Kapodistrian University of Athens Medical School, Athens, Greece
| | | | - Katerina Chavatza
- 4th Department of Internal Medicine, National and Kapodistrian University of Athens Medical School, Athens, Greece
| | - George Sentis
- Laboratory of Autoimmunity and Inflammation, Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation Academy of Athens, Athens, Greece
| | - Anastasia Filia
- Laboratory of Autoimmunity and Inflammation, Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation Academy of Athens, Athens, Greece
| | - Nikos Malissovas
- Laboratory of Autoimmunity and Inflammation, Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation Academy of Athens, Athens, Greece
| | - Antigone Pieta
- Laboratory of Autoimmunity and Inflammation, Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation Academy of Athens, Athens, Greece
- University General Hospital of Ioannina, Ioannina, Greece
| | - Aggelos Banos
- Laboratory of Autoimmunity and Inflammation, Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation Academy of Athens, Athens, Greece
| | - Spyridon Katechis
- 4th Department of Internal Medicine, National and Kapodistrian University of Athens Medical School, Athens, Greece
| | - Antonis Fanouriakis
- 4th Department of Internal Medicine, National and Kapodistrian University of Athens Medical School, Athens, Greece
| | - George Bertsias
- Rheumatology, University of Crete School of Medicine, Iraklio, Greece
- Laboratory of Autoimmunity-Inflammation, Institute of Molecular Biology and Biotechnology, Heraklion, Greece
| | - Dimitrios T Boumpas
- Laboratory of Autoimmunity and Inflammation, Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation Academy of Athens, Athens, Greece
- 4th Department of Internal Medicine, National and Kapodistrian University of Athens Medical School, Athens, Greece
| |
Collapse
|
9
|
Li Y, Cao Z, Liu J, Qiang R, Wang J, Lyu W. Current perspectives and trends of neutrophil extracellular traps in organ fibrosis: a bibliometric and visualization study. Front Immunol 2025; 16:1508909. [PMID: 40109341 PMCID: PMC11920176 DOI: 10.3389/fimmu.2025.1508909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 02/17/2025] [Indexed: 03/22/2025] Open
Abstract
New insights into the role of immune responses in the fibrosis process provide valuable considerations for the treatment of organ fibrotic diseases. Neutrophil extracellular traps (NETs) represent a novel understanding of neutrophil functions, and their involvement in organ fibrotic diseases has garnered widespread attention in recent years. This study aims to conduct a bibliometric analysis and literature review focusing on the mechanisms by which NETs participate in fibrotic diseases. Specifically, we utilized a bibliometric dataset that includes 220 papers published in 139 journals, originating from 425 organizations across 39 countries, with a total citation count of 12,301. Keyword co-occurrence analysis indicates that the research focus on the mechanisms of NETs in organ fibrosis is likely to center on NETosis, immune responses, immune thrombosis, inflammation, and tissue damage associated with NET formation. In conclusion, our findings underscore the current status and emerging trends in NET research related to organ fibrosis, offering novel insights into the mechanisms by which NETs contribute to the pathogenesis of fibrotic diseases, as well as potential therapeutic strategies.
Collapse
Affiliation(s)
- Yanbo Li
- Department of Infectious Diseases, Guang'anmen Hospital, China Academy of Traditional Chinese Medicine, Beijing, China
| | - Zhengmin Cao
- Department of Infectious Diseases, Guang'anmen Hospital, China Academy of Traditional Chinese Medicine, Beijing, China
| | - Jing Liu
- Department of Infectious Diseases, Guang'anmen Hospital, China Academy of Traditional Chinese Medicine, Beijing, China
| | - Rui Qiang
- Department of Oncology, Beijing Hospital of Traditional Chinese Medicine Shunyi Hospital, Beijing, China
| | - Jiuchong Wang
- Department of Infectious Diseases, Guang'anmen Hospital, China Academy of Traditional Chinese Medicine, Beijing, China
| | - Wenliang Lyu
- Department of Infectious Diseases, Guang'anmen Hospital, China Academy of Traditional Chinese Medicine, Beijing, China
| |
Collapse
|
10
|
Shi L, Sun T, Huo D, Geng L, Zhao C, Xia W. ETV5-Mediated Transcriptional Repression of DDIT4 Blocks Macrophage Pro-Inflammatory Activation in Diabetic Atherosclerosis. Cardiovasc Toxicol 2025; 25:379-394. [PMID: 39864045 DOI: 10.1007/s12012-024-09956-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 12/28/2024] [Indexed: 01/27/2025]
Abstract
Atherosclerosis risk is elevated in diabetic patients, but the underlying mechanism such as the involvement of macrophages remains unclear. Here, we investigated the underlying mechanism related to the pro-inflammatory activation of macrophages in the development of diabetic atherosclerosis. Bioinformatics tools were used to analyze the macrophage-related transcriptome differences in patients with atherosclerosis and diabetic mice. LDLR-/- mice with DDIT4 depletion were generated and fed a Western diet to induce atherosclerosis. DDIT4 expression was elevated in diabetic mice and patients with atherosclerosis. Macrophage proinflammatory factors F4/80, Il-6, and TNFα were reduced in DDIT4-/-LDLR-/- mice and necrotic areas were decreased in the aortic root. Atherosclerotic plaque stability was increased in DDIT4-/-LDLR-/- mice, as evidenced by increased collagen and smooth muscle cell content. DDIT4, regulated by ETV5, acted on macrophages, affecting lipid accumulation, migration capacity, and pro-inflammatory responses. Knockdown of ETV5 increased expression of DDIT4 and pro-inflammatory factors in macrophages, increased necrotic core area in the aortic root, and decreased stability of atherosclerotic plaques in mice, which was abated by DDIT4 knockdown. The findings provide new insight into how diabetes promotes atherosclerosis and support a model wherein loss of ETV5 sustains transcription of DDIT4 and the pro-inflammatory activation of macrophages.
Collapse
MESH Headings
- Animals
- Atherosclerosis/metabolism
- Atherosclerosis/genetics
- Atherosclerosis/pathology
- Macrophages/metabolism
- Macrophages/pathology
- Humans
- Mice, Knockout
- Plaque, Atherosclerotic
- Transcription Factors/metabolism
- Transcription Factors/genetics
- Mice, Inbred C57BL
- Inflammation Mediators/metabolism
- Male
- Aortic Diseases/pathology
- Aortic Diseases/genetics
- Aortic Diseases/metabolism
- Aortic Diseases/prevention & control
- Aortic Diseases/immunology
- Macrophage Activation
- Transcription, Genetic
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- Signal Transduction
- Diabetes Mellitus, Experimental/metabolism
- Diabetes Mellitus, Experimental/genetics
- Receptors, LDL/genetics
- Receptors, LDL/deficiency
- Receptors, LDL/metabolism
- Mice
- Cytokines/metabolism
- RAW 264.7 Cells
- Necrosis
- Inflammation/metabolism
- Inflammation/pathology
- Inflammation/genetics
- Disease Models, Animal
- Diabetic Angiopathies/metabolism
- Diabetic Angiopathies/genetics
- Diabetic Angiopathies/pathology
Collapse
Affiliation(s)
- Lili Shi
- Department of Cadre Ward, The First Affiliated Hospital of Harbin Medical University, No. 23, Postal Street, Harbin, 150001, Heilongjiang, PR China
| | - Tingting Sun
- Department of Cadre Ward, The First Affiliated Hospital of Harbin Medical University, No. 23, Postal Street, Harbin, 150001, Heilongjiang, PR China
| | - Di Huo
- Department of Cadre Ward, The First Affiliated Hospital of Harbin Medical University, No. 23, Postal Street, Harbin, 150001, Heilongjiang, PR China
| | - Lin Geng
- Department of Cadre Ward, The First Affiliated Hospital of Harbin Medical University, No. 23, Postal Street, Harbin, 150001, Heilongjiang, PR China
| | - Chao Zhao
- Department of Cadre Ward, The First Affiliated Hospital of Harbin Medical University, No. 23, Postal Street, Harbin, 150001, Heilongjiang, PR China
| | - Wenbo Xia
- Department of Cadre Ward, The First Affiliated Hospital of Harbin Medical University, No. 23, Postal Street, Harbin, 150001, Heilongjiang, PR China.
| |
Collapse
|
11
|
Kaplan MJ. Exploring the Role of Neutrophil Extracellular Traps in Systemic Lupus Erythematosus: A Clinical Case Study and Comprehensive Review. Arthritis Rheumatol 2025; 77:247-252. [PMID: 39402725 DOI: 10.1002/art.43019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/16/2024] [Accepted: 09/10/2024] [Indexed: 11/07/2024]
Affiliation(s)
- Mariana J Kaplan
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, NIH, Bethesda, Maryland
| |
Collapse
|
12
|
Manoj H, Gomes SM, Thimmappa PY, Nagareddy PR, Jamora C, Joshi MB. Cytokine signalling in formation of neutrophil extracellular traps: Implications for health and diseases. Cytokine Growth Factor Rev 2025; 81:27-39. [PMID: 39681501 DOI: 10.1016/j.cytogfr.2024.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 12/02/2024] [Accepted: 12/04/2024] [Indexed: 12/18/2024]
Abstract
Neutrophils, as essential component of the innate immune response, form a crucial part in the defence mechanisms through the release of extracellular traps (NETs). These web-like structures, composed of chromatin and antimicrobial proteins, are essential for the entrapment and inactivation of pathogens. However, either constitutive formation or inefficient clearance of NETs leads to adverse effects such as fibrosis, thrombosis, delayed wound healing and tissue damage in multiple diseases associated with sterile inflammation. This dichotomy casts NETs as both protective agents and harmful factors in several diseases such as autoimmune diseases, metabolic syndromes, systemic infections, and malignancies. Besides microbes and their products, variety of stimulants including pro-inflammatory cytokines induce NETs. The complex interactions and cross talk among the pro-inflammatory cytokines including IL-8, IL-6, GM-CSF, TNF-α, IFNs, and IL-1β activate neutrophils to form NETs and also contributes to a vicious circle of inflammatory cascade, leading to increased inflammation, oxidative stress, and thrombotic events. Emerging evidence indicates that the dysregulated cytokine milieus in diseases, such as diabetes mellitus, obesity, atherosclerosis, stroke, rheumatoid arthritis, and systemic lupus erythematosus, potentiate NETs release, thereby promoting disease development. Thus, neutrophils represent both critical effectors and potential therapeutic targets, underscoring their importance in the context of cytokine-mediated therapies for a spectrum of diseases. In the present review, we describe various cytokines and associated signalling pathways activating NETs formation in different human pathologies. Further, the review identifies potential strategies to pharmacologically modulate cytokine pathways to reduce NETs.
Collapse
Affiliation(s)
- Haritha Manoj
- Department of Ageing Research, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Sarah Michael Gomes
- Department of Ageing Research, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Pooja Yedehalli Thimmappa
- Department of Ageing Research, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Prabhakara R Nagareddy
- Department of Internal Medicine, Section of Cardiovascular Diseases, University of Oklahoma Health Sciences Center (OUHSC), Oklahoma, OK, USA
| | - Colin Jamora
- Department of Life Sciences, School of Natural Sciences, Shiv Nadar University, Dadri, Uttar Pradesh 201314, India
| | - Manjunath B Joshi
- Department of Ageing Research, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India.
| |
Collapse
|
13
|
Luo T, Ji W, Gong Y, Chen L, Liu C, Zhang D, Li X, Lv Y. REDD1 mediates HDM-induced nuclear-cytoplasmic translocation and release of IL-33 in airway epithelial cells by downregulating Nrf2. Respir Res 2025; 26:47. [PMID: 39893427 PMCID: PMC11786574 DOI: 10.1186/s12931-025-03119-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 01/16/2025] [Indexed: 02/04/2025] Open
Abstract
OBJECTIVE This study aims to investigate whether REDD1 (Regulated in Development and DNA Damage Responses 1) mediates the nuclear-to-cytoplasmic translocation and release of IL-33 in airway epithelial cells induced by house dust mites (HDM). METHODS REDD1 expression levels in bronchial asthma patients were validated using public databases, followed by immunohistochemical analysis of REDD1 protein in airway epithelial cells from these patients. An asthma model was then established using HDM-induced 16HBE cell lines, with REDD1 gene knockout performed. The relationship between varying levels of REDD1 expression, Nrf2, and related inflammatory factors was assessed using Western blot and qPCR. To further investigate the role of the REDD1-Nrf2-IL-33 axis in the development of asthma, we employed Nrf2 activators and inhibitors to reassess the impact of REDD1 on IL-33. RESULTS At both mRNA and protein levels, we found that REDD1 was significantly overexpressed in samples from asthma patients (P < 0.05). In vitro, 24-hour exposure to HDM induced a notable nuclear-to-cytoplasmic translocation of IL-33 and increased its levels in the culture medium of 16HBE cells. In addition, HDM treatment significantly upregulated the expression of both REDD1 and Nrf2. Knockdown of REDD1 markedly suppressed HDM-induced IL-33 release and the expression of TNF-α, IL-6, and IL-1β, while enhancing Nrf2 expression. Moreover, treatment with the Nrf2 agonist curcumin inhibited HDM-induced nuclear-to-cytoplasmic translocation and extracellular secretion of IL-33, whereas the opposite effect was observed when using the Nrf2 antagonist ML385. CONCLUSION This study reveals the crucial regulatory role of the REDD1-Nrf2-IL-33 axis in the pathological process of bronchial asthma. REDD1 modulates the expression of IL-33 and other inflammatory factors through the Nrf2 signaling pathway, thereby influencing the onset and progression of asthma. CLINICAL TRIAL NUMBER Not applicable.
Collapse
Affiliation(s)
- Tian Luo
- Zhongshan City People's Hospital, Xinxiang Medical University, Xinxiang, Henan, 453003, China
- Department of Respiratory and Critical Care Medicine, Zhongshan City People's Hospital, Zhongshan, Guangdong, 528403, China
| | - Wentao Ji
- Department of Respiratory and Critical Care Medicine, Zhongshan City People's Hospital, Zhongshan, Guangdong, 528403, China
| | - Yuxin Gong
- Department of Pulmonary and Critical Care Medicine, Zhujiang Hospital, Southern Medical University, Foshan, Guangdong, 510280, China
| | - Lichang Chen
- Department of Pulmonary and Critical Care Medicine, Zhujiang Hospital, Southern Medical University, Foshan, Guangdong, 510280, China
| | - Chao Liu
- Department of Respiratory and Critical Care Medicine, Zhongshan City People's Hospital, Zhongshan, Guangdong, 528403, China
| | - Dandan Zhang
- Department of Respiratory and Critical Care Medicine, Zhongshan City People's Hospital, Zhongshan, Guangdong, 528403, China
| | - Xi Li
- Department of Respiratory and Critical Care Medicine, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), Foshan, Guangdong, 528300, China.
| | - Yanhua Lv
- Department of Respiratory and Critical Care Medicine, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), Foshan, Guangdong, 528300, China.
| |
Collapse
|
14
|
Zhang S, Hu W, Tang Y, Chen X. Identification and validation of key autophagy-related genes in lupus nephritis by bioinformatics and machine learning. PLoS One 2025; 20:e0318280. [PMID: 39869603 PMCID: PMC11771862 DOI: 10.1371/journal.pone.0318280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 01/13/2025] [Indexed: 01/29/2025] Open
Abstract
INTRODUCTION Lupus nephritis (LN) is one of the most frequent and serious organic manifestations of systemic lupus erythematosus (SLE). Autophagy, a new form of programmed cell death, has been implicated in a variety of renal diseases, but the relationship between autophagy and LN remains unelucidated. METHODS We analyzed differentially expressed genes (DEGs) in kidney tissues from 14 LN patients and 7 normal controls using the GSE112943 dataset. Key modules and their contained genes were identified utilizing weighted gene co-expression network analysis (WGCNA). Differentially expressed autophagy-related genes (DE-ARGs) among DEGs, key module genes and autophagy-related genes (ARGs) were obtained by venn plot, and subjected to protein-protein interaction network construction. Two machine learning methods were applied to identify signature genes. The area under the receiver operating characteristic (ROC) curves was used to assess the accuracy of the signature genes. We also analyzed immune cell infiltration in LN. Additionally, the association between key genes and kidney diseases was predicted. Finally, key genes expression in kidney was verified by clinical samples and animal experiments. RESULTS A total of 10304 DEGs were identified in GSE1129943 and 29 modules were identified in WGCNA. Among them, the brown module and coral 2 module exhibited significant correlation with LN (cor = 0.86, -0.84, p<0.001). Machine learning techniques identified 5 signature genes, but only 2 were validated in the external dataset GSE32591, namely MAP1LC3B (AUC = 0.920) and TNFSF10 (AUC = 0.937), which are involved in autophagy and apoptosis. Immune infiltration analysis suggested that these key genes may be associated with immune cell infiltration in LN. In addition, these genes have been linked to a variety of renal diseases, and their expression was verified in kidney tissues in LN patients and lupus mice. CONCLUSION MAP1LC3B and TNFSF10 may be key autophagy-related genes in LN. These key genes have the potential to provide new insights into the molecular diagnosis and treatment of LN.
Collapse
Affiliation(s)
- Su Zhang
- Department of Rheumatology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, P.R. China
| | - Weitao Hu
- Department of Rheumatology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, P.R. China
| | - Yelin Tang
- General Hospital of Ningxia Medical University, Yinchuan, P.R. China
| | - Xiaoqing Chen
- Department of Rheumatology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, P.R. China
| |
Collapse
|
15
|
Liu Z, Dou Y, Lu C, Han R, He Y. Neutrophil extracellular traps in tumor metabolism and microenvironment. Biomark Res 2025; 13:12. [PMID: 39849606 PMCID: PMC11756210 DOI: 10.1186/s40364-025-00731-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 01/11/2025] [Indexed: 01/25/2025] Open
Abstract
Neutrophil extracellular traps (NETs) are intricate, web-like formations composed of DNA, histones, and antimicrobial proteins, released by neutrophils. These structures participate in a wide array of physiological and pathological activities, including immune rheumatic diseases and damage to target organs. Recently, the connection between NETs and cancer has garnered significant attention. Within the tumor microenvironment and metabolism, NETs exhibit multifaceted roles, such as promoting the proliferation and migration of tumor cells, influencing redox balance, triggering angiogenesis, and driving metabolic reprogramming. This review offers a comprehensive analysis of the link between NETs and tumor metabolism, emphasizing areas that remain underexplored. These include the interaction of NETs with tumor mitochondria, their effect on redox states within tumors, their involvement in metabolic reprogramming, and their contribution to angiogenesis in tumors. Such insights lay a theoretical foundation for a deeper understanding of the role of NETs in cancer development. Moreover, the review also delves into potential therapeutic strategies that target NETs and suggests future research directions, offering new perspectives on the treatment of cancer and other related diseases.
Collapse
Affiliation(s)
- Zhanrui Liu
- Department of Respiratory Disease, Daping Hospital, Army Medical University, Chongqing, China
| | - Yuanyao Dou
- Department of Respiratory Disease, Daping Hospital, Army Medical University, Chongqing, China
| | - Conghua Lu
- Department of Respiratory Disease, Daping Hospital, Army Medical University, Chongqing, China
| | - Rui Han
- Department of Respiratory Disease, Bishan hospital of Chongqing medical university, Chongqing, China
| | - Yong He
- Department of Respiratory Disease, Daping Hospital, Army Medical University, Chongqing, China.
| |
Collapse
|
16
|
Zhang L, Huang W, Ma T, Shi X, Chen J, Hu YL, Liu YX, Liu ZX, Lu CH. Targeting CFTR restoring aggrephagy to suppress HSC activation and alleviate liver fibrosis. Int Immunopharmacol 2025; 145:113754. [PMID: 39667045 DOI: 10.1016/j.intimp.2024.113754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 11/20/2024] [Accepted: 11/27/2024] [Indexed: 12/14/2024]
Abstract
BACKGROUND AND AIMS Multiple studies have shown that hepatic fibrosis, a progressive condition that represents the endpoint of various chronic liver diseases, is primarily marked by the extensive activation of hepatic stellate cells (HSCs). However, the exact impact of cystic fibrosis transmembrane conductance regulator (CFTR) on HSCs during the development of hepatic fibrosis remains unclear. METHODS In our study, we measured CFTR levels in tissue samples and in HSCs activated by TGF-β stimulation. We established mouse models of liver fibrosis using carbon tetrachloride (CCl4) and bile duct ligation (BDL). In vitro, we investigated the specific mechanisms of CFTR action in HSCs by exploring aggrephagy. We employed co-immunoprecipitation (co-IP) experiments to identify potential downstream targets of CFTR. Finally, through rescue experiments, we examined the impact of GTPase-activating protein - binding protein 1 (G3BP1) on CFTR-mediated activation of hepatic stellate cells. RESULT In activated HSCs induced by TGF-β, the reduction of CFTR, various liver fibrosis models, and fibrotic tissue samples were identified. In vitro functional experiments confirmed that CFTR promoted the expression of fibrosis-related markers and aggrephagy in HSCs. Mechanistically, we found that CFTR directly interacts with G3BP1, thereby further promoting the TGF-β/Smad2/3 pathway. The inhibition of G3BP1 caused by CFTR knockdown reduced extracellular matrix deposition, contributing to alleviating liver fibrosis. CONCLUSION We emphasize that CFTR activates aggrephagy and promotes HSC activation and hepatic fibrosis by targeting G3BP1, participating in the TGF-β/Smad2/3 signaling pathway. Overall, CFTR has been identified as a potential therapeutic target for liver fibrosis.
Collapse
Affiliation(s)
- Lu Zhang
- Department Gastroenterology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001 China
| | - Wei Huang
- Department Gastroenterology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001 China
| | - Tao Ma
- Department Gastroenterology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001 China
| | - Xiang Shi
- Department Gastroenterology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001 China
| | - Jing Chen
- Department Gastroenterology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001 China
| | - Yi-Lin Hu
- Department of Gastrointestinal Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001 China
| | - Yong-Xia Liu
- Department of Gastroenterology, Tongzhou District Traditional Chinese Medicine Hospital, Nantong, China
| | - Zhao-Xiu Liu
- Department Gastroenterology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001 China.
| | - Cui-Hua Lu
- Department Gastroenterology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001 China.
| |
Collapse
|
17
|
Kong K, Qiao X, Liu T, Wang X, Li R, Fang J, Zhang X. Identification of Novel Hub Genes Associated with Inflammation and Autophagy in Astragaloside Membranaceus ameliorates Lupus Nephritis by Bioinformatics Analysis and Molecular Dynamics Simulation. Comb Chem High Throughput Screen 2025; 28:306-318. [PMID: 38299290 DOI: 10.2174/0113862073255980231113071412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 09/17/2023] [Accepted: 10/09/2023] [Indexed: 02/02/2024]
Abstract
BACKGROUND Lupus nephritis is an autoimmune disease, and its pathogenesis involves inflammation and autophagy disorders. Studies have demonstrated that Astragalus membranaceus can effectively suppress the progression of LN, but the underlying therapeutic target is still unclear. OBJECTION This study aimed to investigate the therapeutic target whereby AM ameliorates LN. METHOD We downloaded AM and LN-related chips from the TCMSP and GEO databases, respectively. We selected the two compound targets for the subsequent analysis via WGCNA, and constructed protein interaction networks of compound targets and determined the core targets. GO, KEGG analyses were conducted on compound targets to identify enriched functional and genomic pathways. The core genes were further validated in clinical and external datasets. Molecular docking of AS with the core targets was performed using the AutoDock software, and molecular dynamics simulation was conducted for the optimal core protein ligand obtained by molecular docking by Gromacs 2020.6 software. RESULT We obtained 10 core targets, namely IL-1β, EGF, CCND1, CASP3, STAT1, PTGS2, PPARγ, AR, CXCL10, and KDR, from the 24 compound targets identified. The results of the GO enrichment analysis mainly included cell growth regulation. The results of the KEGG enrichment analysis showed that 7 out of 23 valid targets were significantly enriched in the mitogen-activated protein kinase pathway (p < 0.01). Combined with the clinical datasets, we found that IL-1β, EGF, CCND1, CASP3, STAT1, PTGS2, and PPARγ have high diagnostic values for LN. In the validation dataset, all the core targets were significantly differentially expressed, except for EGF deletion. The molecular docking and molecular dynamics simulation results showed that AM and IL- 1β, CASP3, STAT1, and PPARγ all had binding energies < -5 kJ·mol-1 and good binding properties. CONCLUSION IL-1β, CASP3, STAT1, and PPARγ could be potential biomarkers and therapeutic targets in AM ameliorates LN.
Collapse
Affiliation(s)
- Kaili Kong
- Shanxi Medicial University, Taiyuan, China
| | | | - Ting Liu
- Department of Nephrology, The First Hospital of Shanxi Medical University, Taiyuan, 030001, China
| | | | - Rui Li
- Shanxi Medicial University, Taiyuan, China
| | - Jingai Fang
- Department of Nephrology, The First Hospital of Shanxi Medical University, Taiyuan, 030001, China
| | - Xiaodong Zhang
- Department of Nephrology, The First Hospital of Shanxi Medical University, Taiyuan, 030001, China
| |
Collapse
|
18
|
Luo Y, Fraser L, Jezykowski J, Gupta NA, Miethke AG, Taylor SA, Alonso EM, Horslen S, Kohli R, Molleston JP, Kamath BM, Guthery SL, Loomes KM, Magee JC, Rosenthal P, Valentino P, Sokol RJ, Mack CL. Interleukin 8-CXCR2-mediated neutrophil extracellular trap formation in biliary atresia associated with neutrophil extracellular trap-induced stellate cell activation. Hepatology 2024:01515467-990000000-01113. [PMID: 39693274 DOI: 10.1097/hep.0000000000001195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 11/23/2024] [Indexed: 12/20/2024]
Abstract
BACKGROUND AND AIMS Biliary atresia (BA) entails an inflammatory sclerosing lesion of the biliary tree, with prominent fibrosis in infancy. Previous studies revealed that neutrophil-activating IL-8 and neutrophil extracellular traps (NETs) positively correlated with bilirubin and the risk of liver transplant. The aims of this study were to determine the mechanism of NET formation (NETosis) in BA and whether NETs induce stellate cell activation. APPROACH AND RESULTS BA and other liver disease control plasma and tissue were obtained at diagnosis and transplant. Elastase, NETs, and IL-8 were quantified by ELISA for plasma and by immunohistochemistry for liver tissue. FACS analysis of neutrophils co-cultured with BA or control plasma measured BA-specific NETosis. Stellate cell activation from co-culture studies of stellate cells with NETs was measured by real-time quantitative PCR, ELISA, and FACS. Liver neutrophils and NETs, and plasma elastase, NETs, and IL-8, were significantly increased in BA at diagnosis and transplant. Normal neutrophils co-cultured with BA plasma had increased NETosis and activation of CXCR2, an IL-8 receptor; CXCR2 inhibition decreased NET production. Immunohistochemistry identified increased NET expression of profibrogenic tissue factor and IL-17. NETs co-cultured with stellate cells resulted in stellate cell activation based on increased ACTA2 and COL1A1 mRNA, collagen protein, and cell surface expression of actin, collagen1A, and platelet-derived growth factor receptor-beta. CONCLUSIONS Patients with BA have persistent IL-8-CXCR2-mediated NETosis that correlates with biomarkers of injury and fibrosis, and NETs induce stellate cell activation, suggesting a role for NETs in the immunopathogenesis of disease. Future investigations should focus on therapeutic agents that inhibit NETs in BA.
Collapse
Affiliation(s)
- Yuhuan Luo
- Department of Pediatrics, University of Colorado Anschutz, Aurora, Colorado, USA
| | - Lisa Fraser
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Julia Jezykowski
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Nitika A Gupta
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Alexander G Miethke
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Sarah A Taylor
- Department of Pediatrics, University of Colorado Anschutz, Aurora, Colorado, USA
| | - Estella M Alonso
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Simon Horslen
- Department of Pediatrics, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Rohit Kohli
- Department of Pediatrics, University of Southern California, Los Angeles, California, USA
| | - Jean P Molleston
- Department of Pediatrics, James Whitcomb Riley Hospital for Children, Indianapolis, Indiana, USA
| | - Binita M Kamath
- Department of Pediatrics, University of Toronto, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Stephen L Guthery
- Department of Pediatrics, University of Utah College of Medicine, Salt Lake City, Utah, USA
| | - Kathleen M Loomes
- Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - John C Magee
- Department of Surgery, University of Michigan, Ann Arbor, Michigan, USA
| | - Phillip Rosenthal
- Department of Pediatrics, University of California, San Francisco, California, USA
| | - Pamela Valentino
- Department of Pediatrics, University of Washington School of Medicine, Seattle, Washington, USA
| | - Ronald J Sokol
- Department of Pediatrics, University of Colorado Anschutz, Aurora, Colorado, USA
| | - Cara L Mack
- Department of Pediatrics, University of Colorado Anschutz, Aurora, Colorado, USA
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| |
Collapse
|
19
|
Lyu J, Zhang H, Wang C, Pan M. New insight in treating autoimmune diseases by targeting autophagy. Autoimmunity 2024; 57:2351872. [PMID: 38739691 DOI: 10.1080/08916934.2024.2351872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 04/28/2024] [Indexed: 05/16/2024]
Abstract
Autophagy is a highly conserved biological process in eukaryotes, which degrades cellular misfolded proteins, damaged organelles and invasive pathogens in the lysosome-dependent manner. Autoimmune diseases caused by genetic elements, environments and aberrant immune responses severely impact patients' living quality and even threaten life. Recently, numerous studies have reported autophagy can regulate immune responses, and play an important role in autoimmune diseases. In this review, we summarised the features of autophagy and autophagy-related genes, enumerated some autophagy-related genes involved in autoimmune diseases, and further overviewed how to treat autoimmune diseases through targeting autophagy. Finally, we outlooked the prospect of relieving and curing autoimmune diseases by targeting autophagy pathway.
Collapse
Affiliation(s)
- Jiao Lyu
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Hongqian Zhang
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Chaoyang Wang
- The Key Medical Laboratory for Chemical Poison Detection of Henan Province, The Third People's Hospital of Henan Province, Zhengzhou, China
- Department of Biomedical Science, City University of Hong Kong, Hong Kong, China
| | - Mingyu Pan
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
- Department of Biomedical Science, City University of Hong Kong, Hong Kong, China
| |
Collapse
|
20
|
Zhou Q, Shi R, Liu J, Liu Z. Identification and characterization of novel ferroptosis-related genes in acute myocardial infarction. Hum Genomics 2024; 18:123. [PMID: 39538299 PMCID: PMC11562590 DOI: 10.1186/s40246-024-00693-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Acute myocardial infarction (AMI) is a leading cause of death and morbidity worldwide. Ferroptosis, a form of regulated cell death, plays a critical role in modulating immune functions during AMI. This study aimed to identify ferroptosis-related hub genes that could serve as potential therapeutic targets in the progression of AMI. METHODS Bioinformatics was used to identify overlapping genes associated with ferroptosis and the infiltration of 22 immune cells by Cell-type Identification by Estimating Relative Subsets of RNA Transcript (CIBERSORT) analysis. The expression of ferroptosis-related genes in AMI was validated across independent datasets, clinical samples, and in vitro cellular experiments. The predictive value for heart failure was evaluated in the first dimension of principal component analysis (PCA) using receiver operating characteristic (ROC) analysis. RESULTS The study identified 11 key ferroptosis-related genes significantly correlated with immune cell abundance. CIBERSORT analysis highlighted immune dysregulation in AMI. JDP2, DUSP1, TLR4, NFS1, and SLC1A5 were identified as potential biomarkers for AMI progression. Additionally, JDP2, DUSP1, and DDIT4 demonstrated strong predictive value for long-term heart failure. CONCLUSION This study highlights the potential association of ferroptosis-related genes with the pathogenesis of AMI, suggesting a role in the molecular mechanisms that may underlie acute coronary events.
Collapse
Affiliation(s)
- Qiaoyu Zhou
- Department of Cardiovascular Medicine, Postdoctoral Station of Pharmacy, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ruizheng Shi
- Department of Cardiovascular Medicine, The Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jia Liu
- Department of Cardiovascular Medicine, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhaoya Liu
- Department of Geriatrics, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
21
|
Hou H, Qu Z, Liu R, Jiang B, Wang L, Li A. Traumatic brain injury: Advances in coagulopathy (Review). Biomed Rep 2024; 21:156. [PMID: 39268405 PMCID: PMC11391523 DOI: 10.3892/br.2024.1844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Accepted: 08/05/2024] [Indexed: 09/15/2024] Open
Abstract
Trauma is a prevalent cause of coagulopathy, with traumatic brain injury (TBI) accompanied by coagulation disorders particularly linked to adverse outcomes. TBI is distinguished by minimal bleeding volume and unique injury sites, which precipitate complex coagulation disturbances. Historically, research into trauma-induced coagulopathy has primarily concentrated on the molecular biology and pathophysiology of endogenous anticoagulation and inflammation. Nonetheless, recognizing that cells are the fundamental units of structure and function in all living organisms, the present review aimed to distill our understanding of coagulopathy post-TBI by elucidating the intricate cellular mechanisms involving endothelial cells, neutrophils and platelets. Additionally, this study evaluates the strengths and weaknesses of various diagnostic tools and discusses the characteristics of pharmacological treatments and potential therapies for patients with TBI and coagulation disorders. The aim of this review is to amalgamate recent updates in mechanistic research and innovative diagnostic and therapeutic methodologies, thereby fostering the progression of precision medicine within this specialized domain.
Collapse
Affiliation(s)
- Hongqiao Hou
- Department of Emergency, Yantai Affiliated Hospital of Binzhou Medical College, Yantai, Shandong 264100, P.R. China
| | - Zhe Qu
- Department of Emergency, Yantai Affiliated Hospital of Binzhou Medical College, Yantai, Shandong 264100, P.R. China
| | - Ruping Liu
- Department of Emergency, Yantai Affiliated Hospital of Binzhou Medical College, Yantai, Shandong 264100, P.R. China
| | - Bowen Jiang
- Department of Emergency, Yantai Affiliated Hospital of Binzhou Medical College, Yantai, Shandong 264100, P.R. China
| | - Lanlan Wang
- Department of Emergency, Yantai Affiliated Hospital of Binzhou Medical College, Yantai, Shandong 264100, P.R. China
| | - Aiqun Li
- Department of Emergency, Yantai Affiliated Hospital of Binzhou Medical College, Yantai, Shandong 264100, P.R. China
| |
Collapse
|
22
|
Venetsanopoulou AI, Ntinopoulou M, Papagianni E, Koletsos N, Voulgari PV, Chrysanthopoulou A. Neutrophil extracellular traps as immunofibrotic mediators in RA-ILD; pilot evaluation of the nintedanib therapy. Front Immunol 2024; 15:1480594. [PMID: 39507540 PMCID: PMC11538023 DOI: 10.3389/fimmu.2024.1480594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 09/30/2024] [Indexed: 11/08/2024] Open
Abstract
Objective Rheumatoid arthritis-associated interstitial lung disease (RA-ILD) is a significant pulmonary complication of RA. This study tried to elucidate the mechanisms enhancing inflammation and causing lung injury in RA-ILD, focusing on the role of neutrophil extracellular traps (NETs). The study also investigated the potential benefits of nintedanib in advanced disease. Methods Nine RA-ILD patients and nine healthy controls were included in the study. Inflammatory markers in patients' circulation were evaluated with immunoassays. The formation of NETs was examined using a citrullinated histone H3 (CitH3) ELISA and cell immunofluorescence. Inflammatory proteins expressed in neutrophils/NETs were studied with real-time qPCR and NET ELISA. To assess the effect of nintedanib, an intracellular tyrosine kinase inhibitor with antifibrotic properties, in RA-ILD a paired study was conducted in five patients before treatment administration and 16 weeks later. Results The soluble terminal complement complex sC5b-9 and the levels of CitH3 were significantly elevated in patients with RA-ILD, compared to healthy controls. In addition, neutrophils isolated from RA-ILD patients released NETs enriched with tissue factor and interleukin-17A. Inflammatory NETs had a dynamic role, increasing the fibrotic potential of human pulmonary fibroblasts (HPFs). On the other hand, nintedanib treatment decreased NETs and sC5b-9 levels in RA-ILD patients. Conclusion The findings propose an interplay between circulating NETs and HPFs, establishing the immunofibrotic aspects of RA-ILD. They also support the effectiveness of nintedanib in reducing key pathological processes of the disease. Further research is needed to fully understand these mechanisms and optimize treatment strategies for RA-ILD.
Collapse
Affiliation(s)
- Aliki I. Venetsanopoulou
- Department of Rheumatology, School of Health Sciences, Faculty of Medicine, University of Ioannina, Ioannina, Greece
| | - Maria Ntinopoulou
- Laboratory of Molecular Immunology, Department of Biological Applications and Technology, School of Health Sciences, University of Ioannina, Ioannina, Greece
| | - Eleni Papagianni
- Laboratory of Molecular Immunology, Department of Biological Applications and Technology, School of Health Sciences, University of Ioannina, Ioannina, Greece
| | - Nikolaos Koletsos
- Department of Rheumatology, School of Health Sciences, Faculty of Medicine, University of Ioannina, Ioannina, Greece
| | - Paraskevi V. Voulgari
- Department of Rheumatology, School of Health Sciences, Faculty of Medicine, University of Ioannina, Ioannina, Greece
| | - Akrivi Chrysanthopoulou
- Laboratory of Molecular Immunology, Department of Biological Applications and Technology, School of Health Sciences, University of Ioannina, Ioannina, Greece
| |
Collapse
|
23
|
Cheng J, Zhou C, Liu J, Geng Y, Liu L, Fan Y. Expression of neutrophil extracellular trap-related proteins and its correlation with IL-17 and TNF-α in patients with oral lichen planus. PeerJ 2024; 12:e18260. [PMID: 39430569 PMCID: PMC11488494 DOI: 10.7717/peerj.18260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 09/17/2024] [Indexed: 10/22/2024] Open
Abstract
Background Neutrophil extracellular traps (NETs) are produced by polymorphonuclear neutrophils (PMNs) stimulated by interleukin-17 (IL-17) and tumor necrosis factor α (TNF-α). However, the level and role of NETs in oral lichen planus (OLP) remain poorly understood. Objective This study aimed to investigate the expression of NETs in OLP and explore the correlation between NETs and the levels of IL-17 and TNF-α. Methods The expression and distribution of NET-related proteins in tissue samples from each group were assessed using hematoxylin-eosin (HE) staining and immunofluorescence (IF). Additionally, the expression of NET-related proteins in peripheral blood samples from each group was evaluated using cell IF technique and fluorescence spectrophotometry. The relative formation level of NETs in each group was determined by fluorescence spectrophotometry via plasma co-culture. Furthermore, the levels of inflammatory cytokines IL-17 and TNF-α in plasma and culture supernatant were measured using enzyme-linked immunosorbent assay (ELISA). Results NET-related proteins were located in the subepithelial and lamina propria layers of OLP lesions. OLP had significantly higher expression of NET-related proteins in lesion tissues and peripheral blood compared to the healthy control (HC) group (p < 0.05). The rate of NETs formation in the erosive-stage OLP (EOLP) group was significantly higher than that in the HC group (p < 0.05), in contrast, no significant increase was observed in the non-erosive OLP (NEOLP) group (p > 0.05). Furthermore, the levels of IL-17 and TNF-α in the EOLP group were significantly elevated compared to those in the NEOLP group and HC group (p < 0.05), while the levels in the NEOLP group did not significantly differ from those in the HC group (p > 0.05). The rate of NETs formation showed a positive correlation with the levels of IL-17 and TNF-α in plasma. Conclusion The expression of NET-related proteins was upregulated in OLP lesion tissues and peripheral blood. Elevated levels of IL-17 and TNF-α in peripheral blood plasma positively correlated with the rate of NETs formation, suggesting that IL-17 and TNF-α mediate the formation of NETs in OLP patients, and may thereby contribute to the development of OLP.
Collapse
Affiliation(s)
- Juehua Cheng
- Department of Oral Mucosal Diseases, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
| | - Chenyu Zhou
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
- Qingpu Branch of Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jia Liu
- Department of Oral Mucosal Diseases, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
| | - Yanlin Geng
- Department of Oral Mucosal Diseases, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
| | - Lin Liu
- Department of Oral Mucosal Diseases, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
| | - Yuan Fan
- Department of Oral Mucosal Diseases, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
| |
Collapse
|
24
|
Hou M, Wu J, Li J, Zhang M, Yin H, Chen J, Jin Z, Dong R. Immunothrombosis: A bibliometric analysis from 2003 to 2023. Medicine (Baltimore) 2024; 103:e39566. [PMID: 39287275 PMCID: PMC11404911 DOI: 10.1097/md.0000000000039566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/19/2024] Open
Abstract
BACKGROUND Immunothrombosis is a physiological process that constitutes an intravascular innate immune response. Abnormal immunothrombosis can lead to thrombotic disorders. With the outbreak of COVID-19, there is increasing attention to the mechanisms of immunothrombosis and its critical role in thrombotic events, and a growing number of relevant research papers are emerging. This article employs bibliometrics to discuss the current status, hotspots, and trends in research of this field. METHODS Research papers relevant to immunothrombosis published from January 1, 2003, to May 29, 2023, were collected from the Web of Science Core Collection database. VOSviewer and the R package "Bibliometrix" were employed to analyze publication metrics, including the number of publications, authors, countries, institutions, journals, and keywords. The analysis generated visual results, and trends in research topics and hotspots were examined. RESULTS A total of 495 target papers were identified, originating from 58 countries and involving 3287 authors from 1011 research institutions. Eighty high-frequency keywords were classified into 5 clusters. The current key research topics in the field of immunothrombosis include platelets, inflammation, neutrophil extracellular traps, Von Willebrand factor, and the complement system. Research hotspots focus on the mechanisms and manifestations of immunothrombosis in COVID-19, as well as the discovery of novel treatment strategies targeting immunothrombosis in cardiovascular and cerebrovascular diseases. CONCLUSION Bibliometric analysis summarizes the main achievements and development trends in research on immunothrombosis, offering readers a comprehensive understanding of the field and guiding future research directions.
Collapse
Affiliation(s)
- Mengyu Hou
- Department of Research Ward, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Cheng J, Rink L, Wessels I. Zinc Supplementation Reduces the Formation of Neutrophil Extracellular Traps by Decreasing the Expression of Peptidyl Arginine Deiminase 4. Mol Nutr Food Res 2024; 68:e2400013. [PMID: 39138624 DOI: 10.1002/mnfr.202400013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 07/12/2024] [Indexed: 08/15/2024]
Abstract
SCOPE Neutrophils play a decisive role during the immediate defense against infections. However, as observed during rheumatoid arthritis, activated neutrophils can also cause tissue damage. Previous studies indicate that zinc supplementation may alter certain neutrophil functions. However, precise underlying mechanisms and possible effects of zinc deficiency remain incompletely understood. The objective of this study is to investigate the effects of changes in zinc status on formation of neutrophil extracellular traps (NETs) and other fundamental neutrophil functions. METHODS AND RESULTS Interleukin (IL)-17 and tumor necrosis factor (TNF)-α are used to simulate the inflammatory environment observed in autoimmune diseases. The study analyzes the impact of the zinc status on NETs release, using a fluorescence plate reader, and on the expression of peptidylarginine deiminase 4 (PAD4), S100A8/A9, and certain cytokines by PCR and western blot. These results show that zinc supplementation significantly reduces NETs formation and downregulates PAD4 protein expression. Zinc supplementation results in increased protein expression of interleukin-1 receptor antagonist (IL-1RA) and IL-8 in stimulated cells. CONCLUSION The results suggest that changes in extracellular zinc availability may influence the functions of neutrophils. Therefore, maintaining an appropriate zinc level is advisable for preserving innate immunity and to prevent hyper-activation of neutrophils.
Collapse
Affiliation(s)
- Jianan Cheng
- Institute of Immunology, Faculty of Medicine, RWTH Aachen University Hospital, Pauwelsstraße 30, 52074, Aachen, Germany
| | - Lothar Rink
- Institute of Immunology, Faculty of Medicine, RWTH Aachen University Hospital, Pauwelsstraße 30, 52074, Aachen, Germany
| | - Inga Wessels
- Institute of Immunology, Faculty of Medicine, RWTH Aachen University Hospital, Pauwelsstraße 30, 52074, Aachen, Germany
| |
Collapse
|
26
|
Li Z, Lu Q. The role of neutrophils in autoimmune diseases. Clin Immunol 2024; 266:110334. [PMID: 39098706 DOI: 10.1016/j.clim.2024.110334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 07/26/2024] [Accepted: 07/27/2024] [Indexed: 08/06/2024]
Abstract
Historically, neutrophils have been primarily regarded as short-lived immune cells that act as initial responders to antibacterial immunity by swiftly neutralizing pathogens and facilitating the activation of adaptive immunity. However, recent evidence indicates that their roles are considerably more complex than previously recognized. Neutrophils comprise distinct subpopulations and can interact with various immune cells, release granular proteins, and form neutrophil extracellular traps. These functions are increasingly recognized as contributing factors to tissue damage in autoimmune diseases. This review comprehensively examines the physiological functions and heterogeneity of neutrophils, their interactions with other immune cells, and their significance in autoimmune diseases, including systemic lupus erythematosus, rheumatoid arthritis, antiphospholipid syndrome, antineutrophil cytoplasmic antibody-associated vasculitis, multiple sclerosis, and others. This review aims to provide a deeper understanding of the function of neutrophils in the development and progression of autoimmune disorders.
Collapse
Affiliation(s)
- Zhuoshu Li
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences &Peking Union Medical College, Nanjing, China; Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China; Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, China
| | - Qianjin Lu
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences &Peking Union Medical College, Nanjing, China; Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China; Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, China.
| |
Collapse
|
27
|
Jo A, Lim HS, Eun KM, Park JA, Hong SN, Kim DW. Neutrophil Extracellular Traps as a Biomarker in Refractory Non-Type 2 CRSwNP. ALLERGY, ASTHMA & IMMUNOLOGY RESEARCH 2024; 16:473-489. [PMID: 39363767 PMCID: PMC11450440 DOI: 10.4168/aair.2024.16.5.473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 06/06/2024] [Accepted: 06/11/2024] [Indexed: 10/05/2024]
Abstract
PURPOSE Chronic rhinosinusitis (CRS) is classified into type 2 (T2) and non-T2 inflammation. T2 CRS presents as a severe form, CRS with nasal polyps (CRSwNP), which often occurs with asthma as a comorbidity worldwide. Some cases of non-T2 CRS show nasal polyposis and refractoriness, mainly in Asian countries. However, its mechanism remains elusive. To investigate a biomarker for the refractoriness of non-T2 CRSwNP via RNA sequencing. METHODS RNA sequencing by using nasal polyps (NPs) and ethmoidal mucosa (EM) from CRS subjects and uncinate tissues from controls was performed, and differentially expressed genes (DEGs) were analyzed (cutoffs: expression change > 2-fold, P < 0.01). Immunofluorescence staining and enzyme-linked immunosorbent assay were performed. RESULTS We identified DEGs among T2-NP, non-T2-NP, T2-EM, non-T2-EM, and controls (NP vs. controls: 1,877 genes, EM vs. controls: 1,124 genes, T2-NP vs. controls: 1,790 genes, non-T2-NP vs. controls: 2,012 genes, T2-EM vs. controls: 740 genes, non-T2-EM vs. controls: 1,553 genes). The Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis showed that neutrophil extracellular trap (NET) formation, systemic lupus erythematosus, and the phagosome were enriched in non-T2-NP vs. controls and non-T2-EM vs. controls. Immunofluorescence staining confirmed that NETs were elevated in non-T2-NP. Cytokine analysis demonstrated that NETs were significantly related to the refractoriness in non-T2-NPs. CONCLUSIONS This study demonstrated DEGs between T2 and non-T2 inflammation. These results suggest that NETs may contribute to the refractoriness in non-T2-NPs and have a promise as a therapeutic strategy for patients with refractory non-T2-NP.
Collapse
Affiliation(s)
- Ara Jo
- Department of Otorhinolaryngology-Head & Neck Surgery, Boramae Medical Center, Seoul National University College of Medicine, Seoul, Korea
| | - Hee-Suk Lim
- Department of Otorhinolaryngology-Head & Neck Surgery, Boramae Medical Center, Seoul National University College of Medicine, Seoul, Korea
| | - Kyoung Mi Eun
- Department of Otorhinolaryngology-Head & Neck Surgery, Boramae Medical Center, Seoul National University College of Medicine, Seoul, Korea
| | - Jin-A Park
- Department of Otorhinolaryngology-Head & Neck Surgery, Boramae Medical Center, Seoul National University College of Medicine, Seoul, Korea
- Sensory Organ Research Institute, Seoul National University Medical Research Center, Seoul, Korea
| | - Seung-No Hong
- Department of Otorhinolaryngology-Head & Neck Surgery, Boramae Medical Center, Seoul National University College of Medicine, Seoul, Korea
- Sensory Organ Research Institute, Seoul National University Medical Research Center, Seoul, Korea
| | - Dae Woo Kim
- Department of Otorhinolaryngology-Head & Neck Surgery, Boramae Medical Center, Seoul National University College of Medicine, Seoul, Korea
- Sensory Organ Research Institute, Seoul National University Medical Research Center, Seoul, Korea.
| |
Collapse
|
28
|
Li Y, Yang T, Jiang B. Neutrophil and neutrophil extracellular trap involvement in neutrophilic asthma: A review. Medicine (Baltimore) 2024; 103:e39342. [PMID: 39183388 PMCID: PMC11346896 DOI: 10.1097/md.0000000000039342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/21/2024] [Accepted: 07/26/2024] [Indexed: 08/27/2024] Open
Abstract
Asthma is a highly prevalent chronic inflammatory disease characterized by variable airflow obstruction and airway hyperresponsiveness. Neutrophilic asthma (NA) is classified as "type 2 low" asthma, defined as 65% or more neutrophils in the total cell count. There is no clear consensus on the pathogenesis of NA, and the accumulation of neutrophils and release of neutrophil extracellular traps (NETs) may be responsible for its development. A NET is a large extracellular meshwork comprising cell membrane and granule proteins. It is a powerful antimicrobial defence system that traps, neutralizes, and kills bacteria, fungi, viruses, and parasites and prevents the spread of microorganisms. However, dysregulation of NETs may lead to chronic airway inflammation, is associated with worsening of asthma, and has been the subject of major research advances in chronic lung diseases in recent years. NA is insensitive to steroids, and there is a need to find effective biomarkers as targets for the treatment of NA to replace steroids. This review analyses the mechanisms of action between asthmatic neutrophil recruitment and NET formation and their impact on NA development. It also discusses their possible therapeutic significance in NA, summarizing the advances made in NA agents and providing strategies for the treatment of NA, provide a theoretical basis for the development of new therapeutic drugs, thereby improving the level of diagnosis and treatment, and promoting the research progress in the field of asthma.
Collapse
Affiliation(s)
- Yuemu Li
- Institutes of Integrative Medicine, Heilongjiang Provincial Hospital of Traditional Chinese Medicine, Heilongjiang, China
| | - Tianyi Yang
- Institutes of Integrative Medicine, Heilongjiang Provincial Hospital of Traditional Chinese Medicine, Heilongjiang, China
| | - Baihua Jiang
- Institutes of Integrative Medicine, Heilongjiang Provincial Hospital of Traditional Chinese Medicine, Heilongjiang, China
| |
Collapse
|
29
|
Ma X, Li J, Li M, Qi G, Wei L, Zhang D. Nets in fibrosis: Bridging innate immunity and tissue remodeling. Int Immunopharmacol 2024; 137:112516. [PMID: 38906006 DOI: 10.1016/j.intimp.2024.112516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/10/2024] [Accepted: 06/16/2024] [Indexed: 06/23/2024]
Abstract
Fibrosis, a complex pathological process characterized by excessive deposition of extracellular matrix components, leads to tissue scarring and dysfunction. Emerging evidence suggests that neutrophil extracellular traps (NETs), composed of DNA, histones, and antimicrobial proteins, significantly contribute to fibrotic diseases pathogenesis. This review summarizes the process of NETs production, molecular mechanisms, and related diseases, and outlines the cellular and molecular mechanisms associated with fibrosis. Subsequently, this review comprehensively summarizes the current understanding of the intricate interplay between NETs and fibrosis across various organs, including the lung, liver, kidney, skin, and heart. The mechanisms by which NETs contribute to fibrogenesis, including their ability to promote inflammation, induce epithelial-mesenchymal transition (EMT), activate fibroblasts, deposit extracellular matrix (ECM) components, and trigger TLR4 signaling were explored. This review aimed to provide insights into the complex relationship between NETs and fibrosis via a comprehensive analysis of existing reports, offering novel perspectives for future research and therapeutic interventions.
Collapse
Affiliation(s)
- Xueni Ma
- Key Laboratory of Digestive Diseases, Lanzhou University Second Hospital, Lanzhou, China; The Second Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Jipin Li
- The Second Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Muyang Li
- Key Laboratory of Digestive Diseases, Lanzhou University Second Hospital, Lanzhou, China; The Second Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Guoqing Qi
- Department of Gastroenterology, Lanzhou University Second Hospital, Lanzhou, China
| | - Lina Wei
- Department of Gastroenterology, Lanzhou University Second Hospital, Lanzhou, China
| | - Dekui Zhang
- Key Laboratory of Digestive Diseases, Lanzhou University Second Hospital, Lanzhou, China; Department of Gastroenterology, Lanzhou University Second Hospital, Lanzhou, China.
| |
Collapse
|
30
|
Roveta A, Parodi EL, Brezzi B, Tunesi F, Zanetti V, Merlotti G, Francese A, Maconi AG, Quaglia M. Lupus Nephritis from Pathogenesis to New Therapies: An Update. Int J Mol Sci 2024; 25:8981. [PMID: 39201667 PMCID: PMC11354900 DOI: 10.3390/ijms25168981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/03/2024] [Accepted: 08/15/2024] [Indexed: 09/03/2024] Open
Abstract
Lupus Nephritis (LN) still represents one of the most severe complications of Systemic Lupus Erythematosus (SLE) and a major risk factor for morbidity and mortality. However, over the last few years, several studies have paved the way for a deeper understanding of its pathogenetic mechanisms and more targeted treatments. This review aims to provide a comprehensive update on progress on several key aspects in this setting: pathogenetic mechanisms of LN, including new insight into the role of autoantibodies, complement, vitamin D deficiency, and interaction between infiltrating immune cells and kidney resident ones; the evolving role of renal biopsy and biomarkers, which may integrate information from renal histology; newly approved drugs such as voclosporin (VOC) and belimumab (BEL), allowing a more articulate strategy for induction therapy, and other promising phase III-immunosuppressive (IS) agents in the pipeline. Several adjunctive treatments aimed at reducing cardiovascular risk and progression of chronic renal damage, such as antiproteinuric agents, represent an important complement to IS therapy. Furthermore, non-pharmacological measures concerning general lifestyle and diet should also be adopted when managing LN. Integrating these therapeutic areas requires an effort towards a holistic and multidisciplinary approach. At the same time, the availability of an increasingly wider armamentarium may translate into improvements in patient's renal outcomes over the next decades.
Collapse
Affiliation(s)
- Annalisa Roveta
- Research and Innovation Department (DAIRI), “SS Antonio e Biagio e Cesare Arrigo” University Hospital, 15121 Alessandria, Italy; (A.R.); (A.F.); (A.G.M.)
| | - Emanuele Luigi Parodi
- Nephrology and Dialysis Unit, “SS Antonio e Biagio e Cesare Arrigo” University Hospital, 15121 Alessandria, Italy; (E.L.P.); (B.B.)
| | - Brigida Brezzi
- Nephrology and Dialysis Unit, “SS Antonio e Biagio e Cesare Arrigo” University Hospital, 15121 Alessandria, Italy; (E.L.P.); (B.B.)
| | - Francesca Tunesi
- Nephrology and Dialysis Unit, IRCCS “San Raffaele” Scientific Institute, 20132 Milan, Italy;
| | - Valentina Zanetti
- Department of Internal Medicine, University of Genova, 16126 Genoa, Italy;
| | - Guido Merlotti
- Department of Primary Care, Azienda Socio Sanitaria Territoriale (ASST) of Pavia, 27100 Pavia, Italy;
| | - Alessia Francese
- Research and Innovation Department (DAIRI), “SS Antonio e Biagio e Cesare Arrigo” University Hospital, 15121 Alessandria, Italy; (A.R.); (A.F.); (A.G.M.)
| | - Antonio G. Maconi
- Research and Innovation Department (DAIRI), “SS Antonio e Biagio e Cesare Arrigo” University Hospital, 15121 Alessandria, Italy; (A.R.); (A.F.); (A.G.M.)
| | - Marco Quaglia
- Nephrology and Dialysis Unit, “SS Antonio e Biagio e Cesare Arrigo” University Hospital, 15121 Alessandria, Italy; (E.L.P.); (B.B.)
- Department of Translational Medicine, University of Piemonte Orientale (UPO), 28100 Novara, Italy
| |
Collapse
|
31
|
Long D, Mao C, Xu Y, Zhu Y. The emerging role of neutrophil extracellular traps in ulcerative colitis. Front Immunol 2024; 15:1425251. [PMID: 39170617 PMCID: PMC11335521 DOI: 10.3389/fimmu.2024.1425251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 07/22/2024] [Indexed: 08/23/2024] Open
Abstract
Ulcerative colitis (UC) is characterized by chronic non-recessive inflammation of the intestinal mucosa involving both innate and adaptive immune responses. Currently, new targeted therapies are urgently needed for UC, and neutrophil extracellular traps (NETs) are new therapeutic options. NETs are DNA-based networks released from neutrophils into the extracellular space after stimulation, in which a variety of granule proteins, proteolytic enzymes, antibacterial peptides, histones, and other network structures are embedded. With the deepening of the studies on NETs, their regulatory role in the development of autoimmune and autoinflammatory diseases has received extensive attention in recent years. Increasing evidence indicates that excess NETs exacerbate the inflammatory response in UC, disrupting the structure and function of the intestinal mucosal barrier and increasing the risk of thrombosis. Although NETs are usually assigned a deleterious role in promoting the pathological process of UC, they also appear to have a protective role in some models. Despite such progress, comprehensive reviews describing the therapeutic promise of NETs in UC remain limited. In this review, we discuss the latest evidence for the formation and degradation of NETs, focusing on their double-edged role in UC. Finally, the potential implications of NETs as therapeutic targets for UC will be discussed. This review aims to provide novel insights into the pathogenesis and therapeutic options for UC.
Collapse
Affiliation(s)
- Dan Long
- Department of Gastroenterology, The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Chenhan Mao
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Yin Xu
- Department of Gastroenterology, The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Ying Zhu
- Department of Gastroenterology, The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| |
Collapse
|
32
|
Zhang J, Feng Y, Shi D. NETosis of psoriasis: a critical step in amplifying the inflammatory response. Front Immunol 2024; 15:1374934. [PMID: 39148738 PMCID: PMC11324545 DOI: 10.3389/fimmu.2024.1374934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 07/08/2024] [Indexed: 08/17/2024] Open
Abstract
NETosis, a regulated form of neutrophil death, is crucial for host defense against pathogens. However, the release of neutrophil extracellular traps (NETs) during NETosis can have detrimental effects on surrounding tissues and contribute to the pro-inflammatory response, in addition to their role in controlling microbes. Although it is well-established that the IL-23-Th17 axis plays a key role in the pathogenesis of psoriasis, emerging evidence suggests that psoriasis, as an autoinflammatory disease, is also associated with NETosis. The purpose of this review is to provide a comprehensive understanding of the mechanisms underlying NETosis in psoriasis. It will cover topics such as the formation of NETs, immune cells involved in NETosis, and potential biomarkers as prognostic/predicting factors in psoriasis. By analyzing the intricate relationship between NETosis and psoriasis, this review also aims to identify novel possibilities targeting NETosis for the treatment of psoriasis.
Collapse
Affiliation(s)
- Jinke Zhang
- Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yahui Feng
- The Laboratory of Medical Mycology, Jining No. 1 People's Hospital, Jining, Shandong, China
| | - Dongmei Shi
- The Laboratory of Medical Mycology, Jining No. 1 People's Hospital, Jining, Shandong, China
- Department of Dermatology, Jining No.1 People's Hospital, Jining, Shandong, China
| |
Collapse
|
33
|
Chen YM, Tang KT, Liu HJ, Huang ST, Liao TL. tRF-His-GTG-1 enhances NETs formation and interferon-α production in lupus by extracellular vesicle. Cell Commun Signal 2024; 22:354. [PMID: 38972975 PMCID: PMC11229248 DOI: 10.1186/s12964-024-01730-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 06/29/2024] [Indexed: 07/09/2024] Open
Abstract
BACKGROUND Hyperactive neutrophil extracellular traps (NETs) formation plays a crucial role in active severe systemic lupus erythematosus (SLE). However, what triggers the imbalance in dysregulated NETs formation in SLE is elusive. Transfer RNA-derived small RNAs (tsRNAs) are novel non-coding RNAs, which participate in various cellular processes. We explore the role of tsRNAs on NETs formation in SLE. METHODS We analyzed the levels of NETs DNA and platelet-derived extracellular vesicles (pEVs) from 50 SLE patients and 20 healthy control subjects. The effects of pEVs on NETs formation were evaluated by using immunofluorescence assay and myeloperoxidase-DNA PicoGreen assay. The regulatory mechanism of pEVs on NETs formation and inflammatory cytokines production were investigated using an in vitro cell-based assay. RESULTS Increased circulating NETs DNA and pEVs were shown in SLE patients and were associated with disease activity (P < 0.005). We demonstrated that SLE patient-derived immune complexes (ICs) induced platelet activation, followed by pEVs release. ICs-triggered NETs formation was significantly enhanced in the presence of pEVs through Toll-like receptor (TLR) 8 activation. Increased levels of tRF-His-GTG-1 in pEVs and neutrophils of SLE patients were associated with disease activity. tRF-His-GTG-1 interacted with TLR8 to prime p47phox phosphorylation in neutrophils, resulting in reactive oxygen species production and NETs formation. Additionally, tRF-His-GTG-1 modulated NF-κB and IRF7 activation in neutrophils upon TLR8 engagement, resulting IL-1β, IL-8, and interferon-α upregulation, respectively. CONCLUSIONS The level of tRF-His-GTG-1 was positively correlated with NETs formation in SLE patients; tRF-His-GTG-1 inhibitor could efficiently suppress ICs-triggered NETs formation/hyperactivation, which may become a potential therapeutic target.
Collapse
Affiliation(s)
- Yi-Ming Chen
- Department of Medical Research, Taichung Veterans General Hospital, No.1650, Sec.4, Taiwan Boulevard, Xitun Dist, Taichung, 40705, Taiwan
- Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung, 40227, Taiwan
- Ph.D. Program in Translational Medicine, National Chung Hsing University, Taichung, 40227, Taiwan
- Division of Allergy, Immunology and Rheumatology, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, 40705, Taiwan
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung, 40227, Taiwan
| | - Kuo-Tung Tang
- Division of Allergy, Immunology and Rheumatology, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, 40705, Taiwan
| | - Hung-Jen Liu
- Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung, 40227, Taiwan
- Ph.D. Program in Translational Medicine, National Chung Hsing University, Taichung, 40227, Taiwan
- Institute of Molecular Biology, National Chung Hsing University, Taichung, 40227, Taiwan
- The iEGG and Animal Biotechnology Center, National Chung Hsing University, Taichung, 40227, Taiwan
| | - Shih-Ting Huang
- Division of Nephrology, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, 40705, Taiwan
| | - Tsai-Ling Liao
- Department of Medical Research, Taichung Veterans General Hospital, No.1650, Sec.4, Taiwan Boulevard, Xitun Dist, Taichung, 40705, Taiwan.
- Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung, 40227, Taiwan.
- Ph.D. Program in Translational Medicine, National Chung Hsing University, Taichung, 40227, Taiwan.
| |
Collapse
|
34
|
Reshetnyak TM, Nurbaeva KS, Ptashnik IV, Kudrieva AA, Belogurov AA, Lila AM, Nasonov EL. [NETosis in lupus nephritis]. TERAPEVT ARKH 2024; 96:453-458. [PMID: 38829805 DOI: 10.26442/00403660.2024.05.202699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 05/14/2024] [Indexed: 06/05/2024]
Abstract
AIM To evaluate the levels of MPO-DNA complex in patients with systemic lupus erythematosus (SLE) and its association with the presence of lupus nephritis (LN). MATERIALS AND METHODS The study included 77 patients with SLE, of whom 30 had SLE without anti phospholipid syndrome (APS), 47 had SLE with APS, and 20 were healthy individuals serving as the control group. The MPO-DNA complex in the serum was investigated using ELISA. RESULTS The levels of MPO-DNA complex in serum were significantly higher in patients with SLE compared to healthy controls (p=0.001). Among the patients with SLE, 30 (39%) had elevated levels of MPO-DNA complex. The presence of elevated MPO-DNA complex was significantly associated with the presence of a history of LN (p=0.009). Moreover, among the patients included in the study, 20 had active LN, and patients with elevated MPO-DNA complex levels were more likely to have active LN than patients without elevated MPO-DNA complex concentrations [12 (40%) of 30 vs 8 (17%) of 47, χ2=5.029; p=0.034]. An association was found between elevated levels of MPO-DNA complex and the presence of proteinuria, hematuria, cellular hematic/granular casts and aseptic leukocyturia. A direct correlation of MPO-DNA complex with SLEDAI-R was found in patients with active LN (rs=0.497; p=0.026). CONCLUSION Elevated levels of MPO-DNA complex were detected in 39% of patients with SLE. These patients had a higher prevalence of LN in their medical history and at the time of inclusion in the study. The correlation between MPO-DNA complex levels and the activity of LN according to SLEDAI-R indicates the potential role of MPO-DNA complex as a biomarker for assessing the activity of renal damage in SLE.
Collapse
Affiliation(s)
- T M Reshetnyak
- Nasonova Research Institute of Rheumatology
- Russian Medical Academy of Continuous Professional Education
| | - K S Nurbaeva
- Nasonova Research Institute of Rheumatology
- Russian Medical Academy of Continuous Professional Education
| | - I V Ptashnik
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry
| | - A A Kudrieva
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry
| | - A A Belogurov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry
- Russian University of Medicine
| | - A M Lila
- Nasonova Research Institute of Rheumatology
- Russian Medical Academy of Continuous Professional Education
| | - E L Nasonov
- Nasonova Research Institute of Rheumatology
- Sechenov First Moscow State Medical University (Sechenov University)
| |
Collapse
|
35
|
Chen X, Wu Y, Jia S, Zhao M. Fibroblast: A Novel Target for Autoimmune and Inflammatory Skin Diseases Therapeutics. Clin Rev Allergy Immunol 2024; 66:274-293. [PMID: 38940997 DOI: 10.1007/s12016-024-08997-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/21/2024] [Indexed: 06/29/2024]
Abstract
Fibroblasts are crucial components of the skin structure. They were traditionally believed to maintain the skin's structure by producing extracellular matrix and other elements. Recent research illuminated that fibroblasts can respond to external stimuli and exhibit diverse functions, such as the secretion of pro-inflammatory factors, adipogenesis, and antigen presentation, exhibiting remarkable heterogeneity and plasticity. This revelation positions fibroblasts as active contributors to the pathogenesis of skin diseases, challenging the traditional perspective that views fibroblasts solely as structural entities. Based on their diverse functions, fibroblasts can be categorized into six subtypes: pro-inflammatory fibroblasts, myofibroblasts, adipogenic fibroblasts, angiogenic fibroblasts, mesenchymal fibroblasts, and antigen-presenting fibroblasts. Cytokines, metabolism, and epigenetics regulate functional abnormalities in fibroblasts. The dynamic changes fibroblasts exhibit in different diseases and disease states warrant a comprehensive discussion. We focus on dermal fibroblasts' aberrant manifestations and pivotal roles in inflammatory and autoimmune skin diseases, including psoriasis, vitiligo, lupus erythematosus, scleroderma, and atopic dermatitis, and propose targeting aberrantly activated fibroblasts as a potential therapeutic strategy for inflammatory and autoimmune skin diseases.
Collapse
Affiliation(s)
- Xiaoyun Chen
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Yutong Wu
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Sujie Jia
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, 210042, China.
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, China.
| | - Ming Zhao
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, Second Xiangya Hospital, Central South University, Changsha, 410011, China.
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, 210042, China.
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, China.
| |
Collapse
|
36
|
Wu X, Yang Y. Neutrophil extracellular traps (NETs) and fibrotic diseases. Int Immunopharmacol 2024; 133:112085. [PMID: 38626550 DOI: 10.1016/j.intimp.2024.112085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/07/2024] [Accepted: 04/10/2024] [Indexed: 04/18/2024]
Abstract
Fibrosis, a common cause and serious outcome of organ failure that can affect any organ, is responsible for up to 45% of all deaths in various clinical settings. Both preclinical models and clinical trials investigating various organ systems have shown that fibrosis is a highly dynamic process. Although many studies have sought to gain understanding of the mechanism of fibrosis progression, their findings have been mixed. In recent years, increasing evidence indicates that neutrophil extracellular traps (NETs) are involved in many inflammatory and autoimmune disorders and participate in the regulation of fibrotic processes in various organs and systems. In this review, we summarize the current understanding of the role of NETs in fibrosis development and progression and their possibility as therapeutic targets.
Collapse
Affiliation(s)
- Xiaojiao Wu
- School of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Yang Yang
- Department of Gastroenterology, Sir Run Run Hospital, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
37
|
Qing M, Yang D, Shang Q, Li W, Zhou Y, Xu H, Chen Q. Humoral immune disorders affect clinical outcomes of oral lichen planus. Oral Dis 2024; 30:2337-2346. [PMID: 37392455 DOI: 10.1111/odi.14667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 06/16/2023] [Accepted: 06/20/2023] [Indexed: 07/03/2023]
Abstract
OBJECTIVES The molecular characteristics of oral lichen planus (OLP) are still unclear, and it is not possible to distinguish the clinical outcome of OLP patients in a short period of time for follow-up. Here, we investigate the molecular characteristics of lesions in patients with stable lichen planus (SOLP) and recalcitrant erosive oral lichen planus (REOLP). METHODS Our clinical follow-up cohort was split into SOLP and REOLP groups based on the follow-up clinical data. The core modules associated with the clinical information were identified by weighted gene co-expression network analysis (WGCNA). The OLP cohort samples were divided into two groups by molecular typing, and a prediction model for OLP was created by training neural networks with the neuralnet package. RESULTS We screened 546 genes in five modules. After doing a molecular type of OLP, it was determined that B cells might have a significant impact on the clinical outcome of OLP. In addition, by means of machine learning, a prediction model was developed to predict the clinical regression of OLP with greater accuracy than the existing clinical diagnostic. CONCLUSIONS Our study revealed humoral immune disorders may make an important contribution to the clinical outcome of OLP.
Collapse
Affiliation(s)
- Maofeng Qing
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Stomatology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Dan Yang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Qianhui Shang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Weiqi Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yu Zhou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Hao Xu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Qianming Chen
- Key Laboratory of Oral Biomedical Research of Zhejiang Province, Affiliated Stomatology Hospital, Zhejiang University School of Stomatology, Hangzhou, China
| |
Collapse
|
38
|
Li W, Chi D, Ju S, Zhao X, Li X, Zhao J, Xie H, Li Y, Jin J, Mang G, Dong Z. Platelet factor 4 promotes deep venous thrombosis by regulating the formation of neutrophil extracellular traps. Thromb Res 2024; 237:52-63. [PMID: 38547695 DOI: 10.1016/j.thromres.2024.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 02/14/2024] [Accepted: 03/04/2024] [Indexed: 04/29/2024]
Abstract
The presence of neutrophil extracellular traps (NETs) in thrombotic diseases has been extensively studied. The exact mechanism of NET formation in deep venous thrombosis (DVT) has not been largely studied. This study is aimed to explore the role of NETs and their interaction with platelet factor 4 (PF4) in DVT. In plasma samples from 51 healthy volunteers and 52 DVT patients, NET markers and PF4 were measured using enzyme-linked immunosorbent assays (ELISA). NET generation in blood samples from healthy subjects and DVT patients was analyzed by confocal microscopy and flow cytometry. The plasma levels of NETs were significantly elevated in DVT patients, and neutrophils from patients showed a stronger ability to generate NETs after treatment. PF4 was upregulated in plasma samples from DVT patients and mediated NET formation. NETs enhanced procoagulant (PCA) via tissue factor and activating platelets to induce procoagulant activity. In addition, we established an inferior vena cava ligation (IVC) model to examine the role of NETs in thrombogenicity in DVT. In conclusion, NET formation was mediated by PF4 and enhance the procoagulant activity in DVT.
Collapse
Affiliation(s)
- Wenqiang Li
- Department of Vascular and Wound Center, Jinshan Hospital of Fudan University, Shanghai, China.
| | - Decai Chi
- Department of Vascular Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Shuai Ju
- Department of Vascular and Wound Center, Jinshan Hospital of Fudan University, Shanghai, China
| | - Xinyi Zhao
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xiaoyan Li
- Department of Vascular and Wound Center, Jinshan Hospital of Fudan University, Shanghai, China
| | - Junjie Zhao
- Department of General Surgery, The Fourth Hospital of Changsha City, Changsha, China
| | - Huiqi Xie
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yao Li
- Department of Vascular and Wound Center, Jinshan Hospital of Fudan University, Shanghai, China
| | - Jiaqi Jin
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.
| | - Ge Mang
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.
| | - Zhihui Dong
- Department of Vascular and Wound Center, Jinshan Hospital of Fudan University, Shanghai, China; Department of Vascular Surgery, Zhongshan hospital of Fudan University, Shanghai, China.
| |
Collapse
|
39
|
Zhang Y, Lu Q. Immune cells in skin inflammation, wound healing, and skin cancer. J Leukoc Biol 2024; 115:852-865. [PMID: 37718697 DOI: 10.1093/jleuko/qiad107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 08/22/2023] [Accepted: 09/05/2023] [Indexed: 09/19/2023] Open
Abstract
Given the self-evident importance of cutaneous immunity in the maintenance of body-surface homeostasis, disturbance of the steady-state skin is inextricably intertwined with dysfunction in cutaneous immunity. It is often overlooked by people that skin, well-known as a solid physical barrier, is also a strong immunological barrier, considering the abundant presence of immune cells including lymphocytes, granulocytes, dendritic cells, and macrophages. What's more, humoral immune components including cytokines, immunoglobulins, and antimicrobial peptides are also rich in the skin. This review centers on skin inflammation (acute and chronic, infection and aseptic inflammation), wound healing, and skin cancer to elucidate the elaborate network of immune cells in skin diseases.
Collapse
Affiliation(s)
- Yuhan Zhang
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Jiangwangmiao Street No. 12, Xuanwu, Nanjing 210042, China
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Jiangwangmiao Street No. 12, Xuanwu, Nanjing 210042, China
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing 210042, China
| | - Qianjin Lu
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Jiangwangmiao Street No. 12, Xuanwu, Nanjing 210042, China
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Jiangwangmiao Street No. 12, Xuanwu, Nanjing 210042, China
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing 210042, China
| |
Collapse
|
40
|
King PT, Dousha L. Neutrophil Extracellular Traps and Respiratory Disease. J Clin Med 2024; 13:2390. [PMID: 38673662 PMCID: PMC11051312 DOI: 10.3390/jcm13082390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/26/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024] Open
Abstract
Extracellular traps made by neutrophils (NETs) and other leukocytes such as macrophages and eosinophils have a key role in the initial immune response to infection but are highly inflammatory and may contribute to tissue damage. They are particularly relevant to lung disease, with the pulmonary anatomy facilitating their ability to fully extend into the airways/alveolar space. There has been a rapid expansion in the number of published studies demonstrating their role in a variety of important respiratory diseases including chronic obstructive pulmonary disease, cystic fibrosis, bronchiectasis, asthma, pneumonia, COVID-19, rhinosinusitis, interstitial lung disease and lung cancer. The expression of NETs and other traps is a specific process, and diagnostic tests need to differentiate them from other inflammatory pathways/causes of cell death that are also characterised by the presence of extracellular DNA. The specific targeting of this pathway by relevant therapeutics may have significant clinical benefit; however, current clinical trials/evidence are at a very early stage. This review will provide a broad overview of the role of NETs and their possible treatment in respiratory disease.
Collapse
Affiliation(s)
- Paul T. King
- Monash Lung, Sleep, Allergy and Immunology, Monash Medical Centre, 246 Clayton Rd, Clayton, Melbourne, VIC 3168, Australia;
- Department of Medicine, Monash University, Clayton, Melbourne, VIC 3168, Australia
| | - Lovisa Dousha
- Monash Lung, Sleep, Allergy and Immunology, Monash Medical Centre, 246 Clayton Rd, Clayton, Melbourne, VIC 3168, Australia;
- Department of Medicine, Monash University, Clayton, Melbourne, VIC 3168, Australia
| |
Collapse
|
41
|
Jiang W, Jia W, Dong C. Under the dual effect of inflammation and pulmonary fibrosis, CTD-ILD patients possess a greater susceptibility to VTE. Thromb J 2024; 22:34. [PMID: 38576023 PMCID: PMC10993540 DOI: 10.1186/s12959-024-00599-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 03/18/2024] [Indexed: 04/06/2024] Open
Abstract
As an autoimmune disease, the persistent systemic inflammatory response associated with connective tissue disease (CTD) is involved in the development of venous thromboembolism (VTE). However, clinical data showed that the risk of VTE in patients differed between subtypes of CTD, suggesting that different subtypes may have independent mechanisms to promote the development of VTE, but the specific mechanism lacks sufficient research at present. The development of pulmonary fibrosis also contributes to the development of VTE, and therefore, patients with CTD-associated interstitial lung disease (CTD-ILD) may be at higher risk of VTE than patients with CTD alone or patients with ILD alone. In addition, the activation of the coagulation cascade response will drive further progression of the patient's pre-existing pulmonary fibrosis, which will continue to increase the patient's risk of VTE and adversely affect prognosis. Currently, the treatment for CTD-ILD is mainly immunosuppressive and antirheumatic therapy, such as the use of glucocorticoids and janus kinase-inhibitors (JAKis), but, paradoxically, these drugs are also involved in the formation of patients' coagulation tendency, making the clinical treatment of CTD-ILD patients with a higher risk of developing VTE challenging. In this article, we review the potential risk factors and related mechanisms for the development of VTE in CTD-ILD patients to provide a reference for clinical treatment and prevention.
Collapse
Affiliation(s)
- Wenli Jiang
- Department of Pulmonary and Critical Care Medicine, Second Hospital, Jilin University, 130041, Changchun, China
| | - Wenhui Jia
- Department of Pulmonary and Critical Care Medicine, Second Hospital, Jilin University, 130041, Changchun, China
| | - Chunling Dong
- Department of Pulmonary and Critical Care Medicine, Second Hospital, Jilin University, 130041, Changchun, China.
| |
Collapse
|
42
|
Gan H, Ma Q, Hao W, Yang N, Chen ZS, Deng L, Chen J. Targeting autophagy to counteract neuroinflammation: A novel antidepressant strategy. Pharmacol Res 2024; 202:107112. [PMID: 38403256 DOI: 10.1016/j.phrs.2024.107112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 02/01/2024] [Accepted: 02/19/2024] [Indexed: 02/27/2024]
Abstract
Depression is a common disease that affects physical and mental health and imposes a considerable burden on afflicted individuals and their families worldwide. Depression is associated with a high rate of disability and suicide. It causes a severe decline in productivity and quality of life. Unfortunately, the pathophysiological mechanisms underlying depression have not been fully elucidated, and the risk of its treatment is still presented. Studies have shown that the expression of autophagic markers in the brain and peripheral inflammatory mediators are dysregulated in depression. Autophagy-related genes regulate the level of autophagy and change the inflammatory response in depression. Depression is related to several aspects of immunity. The regulation of the immune system and inflammation by autophagy may lead to the development or deterioration of mental disorders. This review highlights the role of autophagy and neuroinflammation in the pathophysiology of depression, sumaries the autophagy-targeting small moleculars, and discusses a novel therapeutic strategy based on anti-inflammatory mechanisms that target autophagy to treat the disease.
Collapse
Affiliation(s)
- Hua Gan
- Guangzhou Key Laboratory of Formula-Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, China
| | - Qingyu Ma
- Guangzhou Key Laboratory of Formula-Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, China
| | - Wenzhi Hao
- Guangzhou Key Laboratory of Formula-Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, China
| | - Nating Yang
- Guangzhou Key Laboratory of Formula-Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, China
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA.
| | - Lijuan Deng
- Guangzhou Key Laboratory of Formula-Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, China.
| | - Jiaxu Chen
- Guangzhou Key Laboratory of Formula-Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, China; School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China.
| |
Collapse
|
43
|
Zervopoulou E, Grigoriou M, Doumas SA, Yiannakou D, Pavlidis P, Gasparoni G, Walter J, Filia A, Gakiopoulou H, Banos A, Mitroulis I, Boumpas DT. Enhanced medullary and extramedullary granulopoiesis sustain the inflammatory response in lupus nephritis. Lupus Sci Med 2024; 11:e001110. [PMID: 38471723 DOI: 10.1136/lupus-2023-001110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 02/20/2024] [Indexed: 03/14/2024]
Abstract
OBJECTIVES In SLE, deregulation of haematopoiesis is characterised by inflammatory priming and myeloid skewing of haematopoietic stem and progenitor cells (HSPCs). We sought to investigate the role of extramedullary haematopoiesis (EMH) as a key player for tissue injury in systemic autoimmune disorders. METHODS Transcriptomic analysis of bone marrow (BM)-derived HSPCs from patients with SLE and NZBW/F1 lupus-prone mice was performed in combination with DNA methylation profile. Trained immunity (TI) was induced through β-glucan administration to the NZBW/F1 lupus-prone model. Disease activity was assessed through lupus nephritis (LN) histological grading. Colony-forming unit assay and adoptive cell transfer were used to assess HSPCs functionalities. RESULTS Transcriptomic analysis shows that splenic HSPCs carry a higher inflammatory potential compared with their BM counterparts. Further induction of TI, through β-glucan administration, exacerbates splenic EMH, accentuates myeloid skewing and worsens LN. Methylomic analysis of BM-derived HSPCs demonstrates myeloid skewing which is in part driven by epigenetic tinkering. Importantly, transcriptomic analysis of human SLE BM-derived HSPCs demonstrates similar findings to those observed in diseased mice. CONCLUSIONS These data support a key role of granulocytes derived from primed HSPCs both at medullary and extramedullary sites in the pathogenesis of LN. EMH and TI contribute to SLE by sustaining the systemic inflammatory response and increasing the risk for flare.
Collapse
Affiliation(s)
- Eleni Zervopoulou
- Autoimmunity and Inflammation Laboratory, Center of Clinical, Experimental Surgery & Translational Research, Biomedical Research Foundation Academy of Athens, Athens, Greece
- 4th Department of Internal Medicine, Attikon University Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Maria Grigoriou
- Autoimmunity and Inflammation Laboratory, Center of Clinical, Experimental Surgery & Translational Research, Biomedical Research Foundation Academy of Athens, Athens, Greece
- 1st Department of Internal Medicine, University Hospital of Alexandroupolis, Democritus University of Thrace School of Health Sciences, Alexandroupoli, Greece
| | - Stavros A Doumas
- Autoimmunity and Inflammation Laboratory, Center of Clinical, Experimental Surgery & Translational Research, Biomedical Research Foundation Academy of Athens, Athens, Greece
- 4th Department of Internal Medicine, Attikon University Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Danae Yiannakou
- Institute of Computer Science, Foundation of Research and Technology Hellas, Heraklion, Greece
| | - Pavlos Pavlidis
- Institute of Computer Science, Foundation of Research and Technology Hellas, Heraklion, Greece
| | - Gilles Gasparoni
- Department of Genetics-Epigenetics, Saarland University, Saarbrucken, Germany
| | - Jörn Walter
- Department of Genetics-Epigenetics, Saarland University, Saarbrucken, Germany
| | - Anastasia Filia
- Autoimmunity and Inflammation Laboratory, Center of Clinical, Experimental Surgery & Translational Research, Biomedical Research Foundation Academy of Athens, Athens, Greece
- 1st Department of Internal Medicine, University Hospital of Alexandroupolis, Democritus University of Thrace School of Health Sciences, Alexandroupoli, Greece
| | - Harikleia Gakiopoulou
- 1st Department of Pathology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Aggelos Banos
- Autoimmunity and Inflammation Laboratory, Center of Clinical, Experimental Surgery & Translational Research, Biomedical Research Foundation Academy of Athens, Athens, Greece
| | - Ioannis Mitroulis
- 1st Department of Internal Medicine, University Hospital of Alexandroupolis, Democritus University of Thrace School of Health Sciences, Alexandroupoli, Greece
| | - Dimitrios T Boumpas
- Autoimmunity and Inflammation Laboratory, Center of Clinical, Experimental Surgery & Translational Research, Biomedical Research Foundation Academy of Athens, Athens, Greece
- 4th Department of Internal Medicine, Attikon University Hospital, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
44
|
Divolis G, Synolaki E, Doulou A, Gavriil A, Giannouli CC, Apostolidou A, Foster ML, Matzuk MM, Skendros P, Galani IE, Sideras P. Neutrophil-derived Activin-A moderates their pro-NETotic activity and attenuates collateral tissue damage caused by Influenza A virus infection. Front Immunol 2024; 15:1302489. [PMID: 38476229 PMCID: PMC10929267 DOI: 10.3389/fimmu.2024.1302489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 01/24/2024] [Indexed: 03/14/2024] Open
Abstract
Background Pre-neutrophils, while developing in the bone marrow, transcribe the Inhba gene and synthesize Activin-A protein, which they store and release at the earliest stage of their activation in the periphery. However, the role of neutrophil-derived Activin-A is not completely understood. Methods To address this issue, we developed a neutrophil-specific Activin-A-deficient animal model (S100a8-Cre/Inhba fl/fl mice) and analyzed the immune response to Influenza A virus (IAV) infection. More specifically, evaluation of body weight and lung mechanics, molecular and cellular analyses of bronchoalveolar lavage fluids, flow cytometry and cell sorting of lung cells, as well as histopathological analysis of lung tissues, were performed in PBS-treated and IAV-infected transgenic animals. Results We found that neutrophil-specific Activin-A deficiency led to exacerbated pulmonary inflammation and widespread hemorrhagic histopathology in the lungs of IAV-infected animals that was associated with an exuberant production of neutrophil extracellular traps (NETs). Moreover, deletion of the Activin-A receptor ALK4/ACVR1B in neutrophils exacerbated IAV-induced pathology as well, suggesting that neutrophils themselves are potential targets of Activin-A-mediated signaling. The pro-NETotic tendency of Activin-A-deficient neutrophils was further verified in the context of thioglycollate-induced peritonitis, a model characterized by robust peritoneal neutrophilia. Of importance, transcriptome analysis of Activin-A-deficient neutrophils revealed alterations consistent with a predisposition for NET release. Conclusion Collectively, our data demonstrate that Activin-A, secreted by neutrophils upon their activation in the periphery, acts as a feedback mechanism to moderate their pro-NETotic tendency and limit the collateral tissue damage caused by neutrophil excess activation during the inflammatory response.
Collapse
Affiliation(s)
- Georgios Divolis
- Center for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation Academy of Athens, Athens, Greece
| | - Evgenia Synolaki
- Center for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation Academy of Athens, Athens, Greece
| | - Athanasia Doulou
- Center for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation Academy of Athens, Athens, Greece
| | - Ariana Gavriil
- Center for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation Academy of Athens, Athens, Greece
| | - Christina C. Giannouli
- Center for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation Academy of Athens, Athens, Greece
| | - Anastasia Apostolidou
- Center for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation Academy of Athens, Athens, Greece
| | | | - Martin M. Matzuk
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, United States
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX, United States
| | - Panagiotis Skendros
- Laboratory of Molecular Hematology, Department of Medicine, Democritus University of Thrace, Alexandroupolis, Greece
- First Department of Internal Medicine, University Hospital of Alexandroupolis, Democritus University of Thrace, Alexandroupolis, Greece
| | - Ioanna-Evdokia Galani
- Center for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation Academy of Athens, Athens, Greece
| | - Paschalis Sideras
- Center for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation Academy of Athens, Athens, Greece
| |
Collapse
|
45
|
Gao X, Zhao X, Li J, Liu C, Li W, Zhao J, Li Z, Wang N, Wang F, Dong J, Yan X, Zhang J, Hu X, Jin J, Mang G, Ma R, Hu S. Neutrophil extracellular traps mediated by platelet microvesicles promote thrombosis and brain injury in acute ischemic stroke. Cell Commun Signal 2024; 22:50. [PMID: 38233928 PMCID: PMC10795390 DOI: 10.1186/s12964-023-01379-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 11/01/2023] [Indexed: 01/19/2024] Open
Abstract
AIMS Neutrophil extracellular traps (NETs) have been implicated in thrombotic diseases. There is no definitive explanation for how NETs form during acute ischemic strokes (AIS). The purpose of our study was to investigate the potential mechanism and role of NETs formation in the AIS process. METHODS As well as 45 healthy subjects, 45 patients with AIS had ELISA tests performed to detect NET markers. Expression of high-mobility group box 1 (HMGB1) on platelet microvesicles (PMVs) was analyzed by flow cytometry in healthy subjects and AIS patients' blood samples. We established middle cerebral artery occlusion (MCAO) mice model to elucidate the interaction between PMPs and NETs. RESULTS A significant elevation in NET markers was found in patient plasma in AIS patients, and neutrophils generated more NETs from patients' neutrophils. HMGB1 expression was upregulated on PMVs from AIS patients and induced NET formation. NETs enhanced Procoagulant activity (PCA) through tissue factor and via platelet activation. Targeting lactadherin in genetical and in pharmacology could regulate the formation of NETs in MCAO model. CONCLUSIONS NETs mediated by PMVs derived HMGB1 exacerbate thrombosis and brain injury in AIS. Video Abstract.
Collapse
Affiliation(s)
- Xin Gao
- Department of Neurosurgery, Cancer Center, Zhejiang Provincial People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xinyi Zhao
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- The Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin, Heilongjiang Province, China
| | - Jiacheng Li
- The Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin, Heilongjiang Province, China
| | - Chang Liu
- The Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin, Heilongjiang Province, China
| | - Wenqiang Li
- Department of Vascular Surgery, Jinshan Hospital of Fudan University, Shanghai, China
| | - Junjie Zhao
- Department of General Surgery, Changsha Fourth Hospital, Changsha, China
| | - Zhixi Li
- The Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin, Heilongjiang Province, China
| | - Nan Wang
- Department of Neurosurgery, Cancer Center, Zhejiang Provincial People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Fang Wang
- Department of Neurosurgery, Cancer Center, Zhejiang Provincial People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jiawei Dong
- Department of Neurosurgery, Cancer Center, Zhejiang Provincial People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xiuwei Yan
- Department of Neurosurgery, Cancer Center, Zhejiang Provincial People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jiheng Zhang
- Department of Neurosurgery, Cancer Center, Zhejiang Provincial People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xueyan Hu
- Department of Neurosurgery, Cancer Center, Zhejiang Provincial People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Jiaqi Jin
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China.
| | - Ge Mang
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.
- The Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin, Heilongjiang Province, China.
| | - Ruishuang Ma
- Department of Radiotherapy and Chemotherapy, The First Affiliated Hospital of Ningbo University, Ningbo, China.
- Department of Radiotherapy and Chemotherapy, Ningbo First Hospital of Ningbo, Ningbo, 315000, China.
| | - Shaoshan Hu
- Department of Neurosurgery, Cancer Center, Zhejiang Provincial People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China.
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.
| |
Collapse
|
46
|
Zeng J, Cheng Y, Xie W, Lin X, Ding C, Xu H, Cui B, Chen Y, Gao S, Zhang S, Liu K, Lu Y, Zhou J, Shi Z, Sun Y. Calcium-sensing receptor and NF-κB pathways in TN breast cancer contribute to cancer-induced cardiomyocyte damage via activating neutrophil extracellular traps formation. Cell Mol Life Sci 2024; 81:19. [PMID: 38196005 PMCID: PMC11073098 DOI: 10.1007/s00018-023-05051-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/26/2023] [Accepted: 10/28/2023] [Indexed: 01/11/2024]
Abstract
Cardiovascular disorders are commonly prevalent in cancer patients, yet the mechanistic link between them remains poorly understood. Because neutrophil extracellular traps (NETs) have implications not just in cardiovascular diseases (CVD), but also in breast cancer (BC), it was hypothesized to contribute to CVD in the context of oncogenesis. We established a mouse model using nude mice to simulate liver metastasis of triple-negative BC (TNBC) through the injection of MDA-MB-231 cells. Multiple imaging and analysis techniques were employed to assess the cardiac function and structure, including echocardiography, HE staining, Masson staining, and transmission electron microscopy (TEM). MDA-MB-231 cells underwent treatment with a CaSR inhibitor, CaSR agonist, and NF-κB channel blocker. The phosphorylation of NF-κB channel protein p65 and the expression and secretion of IL-8 were assessed using qRT-PCR, Western Blot, and ELISA, respectively. In addition, MDA-MB-231 cells were co-cultured with polymorphonuclear neutrophils (PMN) under varying conditions. The co-localization of PMN extracellular myeloperoxidase (MPO) and DNA were observed by cellular immunofluorescence staining to identify the formation of NETs. Then, the cardiomyocytes were co-cultured with the above medium that contains NETs or not, respectively; the effects of NETs on cardiomyocytes apoptosis were perceived by flow cytometry. The ultrastructural changes of myocardial cells were perceived by TEM, and ELISA detected the levels of myocardial enzyme (LDH, MDA and SOD). Overall, according to our research, CaSR has been found to have a regulatory role in IL-8 secretion in MDA-MB-231 cells, as well as in the formation of NETs by PMN cells. These findings suggest CaSR-mediated stimulation in PMN can lead to increased NETs formation and subsequently to cytotoxicity in cardiomyocytes, which potentially via activation of the NF-κB signaling cascade of BC cell.
Collapse
Affiliation(s)
- Jingya Zeng
- Department of Clinical Laboratory, Harbin Medical University Cancer Hospital, Harbin, 150081, Heilongjiang, China
| | - Yangyang Cheng
- Department of Clinical Laboratory, Harbin Medical University Cancer Hospital, Harbin, 150081, Heilongjiang, China
| | - Wanlin Xie
- Department of Clinical Laboratory, Harbin Medical University Cancer Hospital, Harbin, 150081, Heilongjiang, China
| | - Xin Lin
- Department of Clinical Laboratory, Harbin Medical University Cancer Hospital, Harbin, 150081, Heilongjiang, China
| | - Chenglong Ding
- Department of Pathology, The First Affiliated Hospital of Jiamusi University, Jiamusi, 154003, Heilongjiang, China
| | - Huimin Xu
- Department of Clinical Laboratory, Harbin Medical University Cancer Hospital, Harbin, 150081, Heilongjiang, China
| | - Baohong Cui
- Department of Clinical Laboratory, Harbin Medical University Cancer Hospital, Harbin, 150081, Heilongjiang, China
| | - Yixin Chen
- Department of Clinical Laboratory, Harbin Medical University Cancer Hospital, Harbin, 150081, Heilongjiang, China
| | - Song Gao
- Department of Clinical Laboratory, Harbin Medical University Cancer Hospital, Harbin, 150081, Heilongjiang, China
| | - Siwen Zhang
- Department of Clinical Laboratory, Harbin Medical University Cancer Hospital, Harbin, 150081, Heilongjiang, China
| | - Kaiyue Liu
- Department of Clinical Laboratory, Harbin Medical University Cancer Hospital, Harbin, 150081, Heilongjiang, China
| | - Yue Lu
- Department of Clinical Laboratory, Harbin Medical University Cancer Hospital, Harbin, 150081, Heilongjiang, China
| | - Jialing Zhou
- Department of Clinical Laboratory, Harbin Medical University Cancer Hospital, Harbin, 150081, Heilongjiang, China
| | - Zhongxiang Shi
- Department of Clinical Laboratory, Harbin Medical University Cancer Hospital, Harbin, 150081, Heilongjiang, China
| | - Yihua Sun
- Department of Clinical Laboratory, Harbin Medical University Cancer Hospital, Harbin, 150081, Heilongjiang, China.
| |
Collapse
|
47
|
Pandey SP, Bhaskar R, Han SS, Narayanan KB. Autoimmune Responses and Therapeutic Interventions for Systemic Lupus Erythematosus: A Comprehensive Review. Endocr Metab Immune Disord Drug Targets 2024; 24:499-518. [PMID: 37718519 DOI: 10.2174/1871530323666230915112642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 06/05/2023] [Accepted: 07/22/2023] [Indexed: 09/19/2023]
Abstract
Systemic Lupus Erythematosus (SLE) or Lupus is a multifactorial autoimmune disease of multiorgan malfunctioning of extremely heterogeneous and unclear etiology that affects multiple organs and physiological systems. Some racial groups and women of childbearing age are more susceptible to SLE pathogenesis. Impressive progress has been made towards a better understanding of different immune components contributing to SLE pathogenesis. Recent investigations have uncovered the detailed mechanisms of inflammatory responses and organ damage. Various environmental factors, pathogens, and toxicants, including ultraviolet light, drugs, viral pathogens, gut microbiome metabolites, and sex hormones trigger the onset of SLE pathogenesis in genetically susceptible individuals and result in the disruption of immune homeostasis of cytokines, macrophages, T cells, and B cells. Diagnosis and clinical investigations of SLE remain challenging due to its clinical heterogeneity and hitherto only a few approved antimalarials, glucocorticoids, immunosuppressants, and some nonsteroidal anti-inflammatory drugs (NSAIDs) are available for treatment. However, the adverse effects of renal and neuropsychiatric lupus and late diagnosis make therapy challenging. Additionally, SLE is also linked to an increased risk of cardiovascular diseases due to inflammatory responses and the risk of infection from immunosuppressive treatment. Due to the diversity of symptoms and treatment-resistant diseases, SLE management remains a challenging issue. Nevertheless, the use of next-generation therapeutics with stem cell and gene therapy may bring better outcomes to SLE treatment in the future. This review highlights the autoimmune responses as well as potential therapeutic interventions for SLE particularly focusing on the recent therapeutic advancements and challenges.
Collapse
Affiliation(s)
- Surya Prakash Pandey
- Aarogya Institute of Healthcare and Research, Jaipur, Rajasthan, 302033, India
- Department of Zoology, School of Science, IFTM University, Moradabad, Uttar Pradesh, 244102, India
| | - Rakesh Bhaskar
- School of Chemical Engineering, Yeungnam University, Gyeongsan, 38541, South Korea
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan, Gyeongbuk, 38541, South Korea
| | - Sung Soo Han
- School of Chemical Engineering, Yeungnam University, Gyeongsan, 38541, South Korea
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan, Gyeongbuk, 38541, South Korea
| | - Kannan Badri Narayanan
- School of Chemical Engineering, Yeungnam University, Gyeongsan, 38541, South Korea
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan, Gyeongbuk, 38541, South Korea
| |
Collapse
|
48
|
Li M, Weng L, Yu D, Yang G, Hao J. Increased formation of neutrophil extracellular traps induced by autophagy and identification of autophagy-related biomarkers in systemic lupus erythematosus. Exp Dermatol 2024; 33:e14881. [PMID: 37539924 DOI: 10.1111/exd.14881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 06/10/2023] [Accepted: 06/13/2023] [Indexed: 08/05/2023]
Abstract
Abnormal death of neutrophils and the subsequent ineffective clearance of cell fragments result in production of autoantigens that can lead to systemic lupus erythematosus (SLE). Excessive formation of neutrophil extracellular traps (NETs) can trigger the synthesis of pro-inflammatory cytokines such as type I interferons, leading to tissue damage and immune dysfunction in SLE patients. In this study, we found that a decrease in neutrophil counts in the peripheral blood was correlated with clinical parameters in SLE patients. Patients with low neutrophil counts had high renal activity index and chronicity index scores. NET formation and neutrophil autophagy in SLE patients were increased. The autophagy inhibitor hydroxychloroquine was shown to restrict NET formation. Using comprehensive bioinformatics analysis, we found that the expression of the autophagy-related gene, hypoxia-inducible factor 1A (HIF1A), was enhanced in peripheral neutrophils and in the renal glomeruli in SLE patients. Targeting HIF1A could be a potential therapeutic approach for SLE.
Collapse
Affiliation(s)
- Mingfang Li
- Department of Dermatology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Department of Dermatology, Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - Luobei Weng
- Department of Dermatology, The First Affiliated Hospital of Jinan University, Guangzhou, China
- Institute of Mycology, Jinan University, Guangzhou, China
| | - Datang Yu
- Department of urology, The 74th Group Army Hospital of the PLA, Guangzhou, China
| | - Guofei Yang
- Department of Dermatology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jin Hao
- Department of Dermatology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
49
|
Li Y, Wu Y, Huang J, Cao X, An Q, Peng Y, Zhao Y, Luo Y. A variety of death modes of neutrophils and their role in the etiology of autoimmune diseases. Immunol Rev 2024; 321:280-299. [PMID: 37850797 DOI: 10.1111/imr.13284] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2023]
Abstract
Neutrophils are important in the context of innate immunity and actively contribute to the progression of diverse autoimmune disorders. Distinct death mechanisms of neutrophils may exhibit specific and pivotal roles in autoimmune diseases and disease pathogenesis through the orchestration of immune homeostasis, the facilitation of autoantibody production, the induction of tissue and organ damage, and the incitement of pathological alterations. In recent years, more studies have provided in-depth examination of various neutrophil death modes, revealing nuances that challenge conventional understanding and underscoring their potential clinical utility in diagnosis and treatment. This review explores the multifaceted processes and characteristics of neutrophil death, with a focus on tailored investigations within various autoimmune diseases. It also highlights the potential interplay between neutrophil death and the landscape of autoimmune disorders. The review encapsulates the pertinent pathways implicated in various neutrophil death mechanisms across diverse autoimmune diseases while also charts possible avenues for future research.
Collapse
Affiliation(s)
- Yanhong Li
- Department of Rheumatology & Immunology, Laboratory of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yinlan Wu
- Department of Rheumatology & Immunology, Laboratory of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jingang Huang
- Medical Research Center, Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Xue Cao
- Department of Rheumatology and Immunology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, Henan, China
| | - Qiyuan An
- School of Inspection and Biotechnology, Southern Medical University, Guangzhou, China
| | - Yun Peng
- Department of Rheumatology and Clinical Immunology, School of Medicine, The First Affiliated Hospital of Xiamen University, Xiamen University, Xiamen, Fujian, China
| | - Yi Zhao
- Department of Rheumatology & Immunology, Laboratory of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yubin Luo
- Department of Rheumatology & Immunology, Laboratory of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Institute of Immunology and Inflammation, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
50
|
Zhu W, Fan C, Dong S, Li X, Chen H, Zhou W. Neutrophil extracellular traps regulating tumorimmunity in hepatocellular carcinoma. Front Immunol 2023; 14:1253964. [PMID: 38173719 PMCID: PMC10764195 DOI: 10.3389/fimmu.2023.1253964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 11/23/2023] [Indexed: 01/05/2024] Open
Abstract
As a component of the innate immune system, there is emerging evidence to suggest that neutrophils may play a critical role in the initiation and progression of hepatocellular carcinoma (HCC). Neutrophil extracellular traps (NETs) are web-like chromatin structures that protrude from the membranes during neutrophil activation. Recent research has shown that NETs, which are at the forefront of the renewed interest in neutrophil studies, are increasingly intertwined with HCC. By exploring the mechanisms of NETs in HCC, we aim to improve our understanding of the role of NETs and gain deeper insights into neutrophil biology. Therefore, this article provides a summary of key findings and discusses the emerging field of NETs in HCC.
Collapse
Affiliation(s)
- Weixiong Zhu
- The Second Clinical Medical College, Lanzhou University, Lanzhou, China
- Department of General Surgery, The Second Hospital of Lanzhou University, Lanzhou, China
| | - Chuanlei Fan
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Shi Dong
- The Second Clinical Medical College, Lanzhou University, Lanzhou, China
- Department of General Surgery, The Second Hospital of Lanzhou University, Lanzhou, China
| | - Xin Li
- The Second Clinical Medical College, Lanzhou University, Lanzhou, China
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Haofei Chen
- The Second Clinical Medical College, Lanzhou University, Lanzhou, China
- Department of General Surgery, The Second Hospital of Lanzhou University, Lanzhou, China
| | - Wence Zhou
- The Second Clinical Medical College, Lanzhou University, Lanzhou, China
- Department of General Surgery, The Second Hospital of Lanzhou University, Lanzhou, China
| |
Collapse
|