1
|
Harr TJ, Gupta N, Rahar B, Stott K, Medina-Guevara Y, Gari MK, Oler AT, McDermott IS, Lee HJ, Rasoulianboroujeni M, Weichmann AM, Forati A, Holbert K, Langel TS, Coulter KW, Burkel BM, Tomasini-Johansson BR, Ponik SM, Engle JW, Hernandez R, Kwon GS, Sandbo N, Bernau K. The fibronectin-targeting PEG-FUD imaging probe shows enhanced uptake during fibrogenesis in experimental lung fibrosis. Respir Res 2025; 26:34. [PMID: 39844185 PMCID: PMC11756063 DOI: 10.1186/s12931-025-03107-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 01/07/2025] [Indexed: 01/24/2025] Open
Abstract
Progressive forms of interstitial lung diseases, including idiopathic pulmonary fibrosis (IPF), are deadly disorders lacking non-invasive biomarkers for assessment of early disease activity, which presents a major obstacle in disease management. Excessive extracellular matrix (ECM) deposition is a hallmark of these disorders, with fibronectin being an abundant ECM glycoprotein that is highly upregulated in early fibrosis and serves as a scaffold for the deposition of other matrix proteins. Due to its role in active fibrosis, we are targeting fibronectin as a biomarker of early lung fibrosis disease activity via the PEGylated fibronectin-binding polypeptide (PEG-FUD). In this work, we demonstrate the binding of PEG-FUD to the fibrotic lung throughout the course of bleomycin-induced murine model of pulmonary fibrosis. We first analyzed the binding of radiolabeled PEG-FUD following direct incubation to precision cut lung slices from mice at different stages of experimental lung fibrosis. Then, we administered fluorescently labeled PEG-FUD subcutaneously to mice over the course of bleomycin-induced pulmonary fibrosis and assessed peptide uptake 24 h later through ex vivo tissue imaging. Using both methods, we found that peptide targeting to the fibrotic lung is increased during the fibrogenic phase of the single dose bleomycin lung fibrosis model (days 7 and 14 post-bleomycin). At these timepoints we found a correlative relationship between peptide uptake and fibrotic burden. These data suggest that PEG-FUD targets fibronectin associated with active fibrogenesis in this model, making it a promising candidate for a clinically translatable molecular imaging probe to non-invasively determine pulmonary fibrosis disease activity, enabling accelerated therapeutic decision-making.
Collapse
Affiliation(s)
- Thomas J Harr
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, 600 Highland Avenue, Madison, WI, 53792, USA
| | - Nikesh Gupta
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, 777 Highland Avenue, Madison, WI, 53705, USA
| | - Babita Rahar
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, 600 Highland Avenue, Madison, WI, 53792, USA
| | - Kristen Stott
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, 600 Highland Avenue, Madison, WI, 53792, USA
| | - Yadira Medina-Guevara
- Department of Medical Physics, School of Medicine and Public Health, University of Wisconsin-Madison, 1111 Highland Avenue, Madison, WI, 53705, USA
| | - Metti K Gari
- Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin-Madison, 1111 Highland Avenue, Madison, WI, 53705, USA
| | - Angie T Oler
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, 600 Highland Avenue, Madison, WI, 53792, USA
| | - Ivy Sohee McDermott
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, 600 Highland Avenue, Madison, WI, 53792, USA
| | - Hye Jin Lee
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, 777 Highland Avenue, Madison, WI, 53705, USA
- College of Pharmacy, Chungbuk National University, Cheongju, 28160, Republic of Korea
| | - Morteza Rasoulianboroujeni
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, 777 Highland Avenue, Madison, WI, 53705, USA
| | - Ashley M Weichmann
- University of Wisconsin Carbone Cancer Center, University of Wisconsin-Madison, 1111 Highland Avenue, Madison, WI, USA
| | - Amir Forati
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin- Madison, 600 Highland Avenue, Madison, WI, 53792, USA
| | - Kelsey Holbert
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, 600 Highland Avenue, Madison, WI, 53792, USA
| | - Trevor S Langel
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, 600 Highland Avenue, Madison, WI, 53792, USA
| | - Kade W Coulter
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, 600 Highland Avenue, Madison, WI, 53792, USA
| | - Brian M Burkel
- Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin-Madison, 1111 Highland Avenue, Madison, WI, 53705, USA
| | - Bianca R Tomasini-Johansson
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, 600 Highland Avenue, Madison, WI, 53792, USA
| | - Suzanne M Ponik
- Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin-Madison, 1111 Highland Avenue, Madison, WI, 53705, USA
- University of Wisconsin Carbone Cancer Center, University of Wisconsin-Madison, 1111 Highland Avenue, Madison, WI, USA
| | - Jonathan W Engle
- Department of Medical Physics, School of Medicine and Public Health, University of Wisconsin-Madison, 1111 Highland Avenue, Madison, WI, 53705, USA
| | - Reinier Hernandez
- Department of Medical Physics, School of Medicine and Public Health, University of Wisconsin-Madison, 1111 Highland Avenue, Madison, WI, 53705, USA
- University of Wisconsin Carbone Cancer Center, University of Wisconsin-Madison, 1111 Highland Avenue, Madison, WI, USA
| | - Glen S Kwon
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, 777 Highland Avenue, Madison, WI, 53705, USA
- University of Wisconsin Carbone Cancer Center, University of Wisconsin-Madison, 1111 Highland Avenue, Madison, WI, USA
| | - Nathan Sandbo
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, 600 Highland Avenue, Madison, WI, 53792, USA
| | - Ksenija Bernau
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, 600 Highland Avenue, Madison, WI, 53792, USA.
| |
Collapse
|
2
|
Albu MT, Matei AE, Distler JHW, Giesel FL, Mori Y. Fibroblast activation protein inhibitor PET/CT as an emerging diagnostic modality in interstitial lung disease and other fibrotic conditions. RHEUMATOLOGY AND IMMUNOLOGY RESEARCH 2024; 5:152-156. [PMID: 39439976 PMCID: PMC11492823 DOI: 10.2478/rir-2024-0021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 08/31/2024] [Indexed: 10/25/2024]
Abstract
Interstitial lung diseases (ILD) encompass a wide range of disorders characterized by alveolar inflammation and fibrotic tissue remodeling, marked by significant morbidity and mortality. Systemic sclerosis (SSc), among other connective tissue diseases, is a frequent cause of ILD. Assessment of pulmonary fibrosis is frequently constrained by the delayed manifestations of profibrotic activation of fibroblasts, which results in late macroscopic alterations detectable by standard imaging techniques such as computed tomography (CT) and magnetic resonance imaging (MRI) scans. 68Ga-labeled fibroblast activation protein inhibitors (68Ga-FAPI [fibroblast activation protein inhibitor]) are novel radionuclides used in the selective positron emission tomography/computed tomography (PET/CT) detection of profibrotic fibroblasts, a key player in fibrotic tissue remodeling. Application of 68Ga-FAPI in different target organs undergoing fibrosis, such as lung and heart, highlights its efficacy in detecting ongoing fibrotic processes, since FAPI tracer uptake has been correlated with clinical disease progression markers in SSc-ILD. This feature could enable physicians to detect subclinical fibrotic activity and tailor an individualised therapy plan on a case by case basis. The use of 68Ga-FAPI in ILD and other fibrotic conditions may emerge as a novel tool in future clinical practice for both activity monitoring and treatment optimisation. Other tracers tested in ILD of different etiologies have shown promising results and may in future also be considered for potential application in SSc-ILD.
Collapse
Affiliation(s)
- Mihai Tudor Albu
- Department of Rheumatology, University Hospital Düsseldorf, Medical Faculty of Heinrich-Heine University; Düsseldorf, Germany
- Hiller Research Center, University Hospital Düsseldorf, Medical Faculty of Heinrich-Heine University; Düsseldorf, Germany
| | - Alexandru-Emil Matei
- Department of Rheumatology, University Hospital Düsseldorf, Medical Faculty of Heinrich-Heine University; Düsseldorf, Germany
- Hiller Research Center, University Hospital Düsseldorf, Medical Faculty of Heinrich-Heine University; Düsseldorf, Germany
| | - Jörg H. W. Distler
- Department of Rheumatology, University Hospital Düsseldorf, Medical Faculty of Heinrich-Heine University; Düsseldorf, Germany
- Hiller Research Center, University Hospital Düsseldorf, Medical Faculty of Heinrich-Heine University; Düsseldorf, Germany
| | - Frederik L. Giesel
- Department of Nuclear Medicine, University Hospital Düsseldorf, Medical Faculty of Heinrich-Heine University; Düsseldorf, Germany
- Institute for Radiation Sciences, Osaka University, Osaka, Japan
| | - Yuriko Mori
- Department of Nuclear Medicine, University Hospital Düsseldorf, Medical Faculty of Heinrich-Heine University; Düsseldorf, Germany
| |
Collapse
|
3
|
Chen J, Luo D, Dai Y, Zhou Y, Pang Y, Wu H, Sun L, Su G, Lin Q, Zhao L, Chen H. Enhanced Detection of Early Pulmonary Fibrosis Disease Using 68Ga-FAPI-LM3 PET. Mol Pharm 2024; 21:3684-3692. [PMID: 38899595 PMCID: PMC11221418 DOI: 10.1021/acs.molpharmaceut.4c00405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/12/2024] [Accepted: 06/12/2024] [Indexed: 06/21/2024]
Abstract
Early detection of pulmonary fibrosis is a critical yet insufficiently met clinical necessity. This study evaluated the effectiveness of FAPI-LM3, a 68Ga-radiolabeled heterobivalent molecular probe that targets fibroblast activating protein (FAP) and somatostatin receptor 2 (SSTR2), in the early detection of pulmonary fibrosis, leveraging its potential for early disease identification. A bleomycin-induced early pulmonary fibrosis model was established in C57BL/6 mice for 7 days. FAP and SSTR2 expression levels were quantitatively assessed in human idiopathic pulmonary fibrosis lung tissue samples and bleomycin-treated mouse lung tissues by using western blotting, real-time quantitative PCR (RT-qPCR), and immunofluorescence techniques. The diagnostic performance of FAPI-LM3 was investigated by synthesizing monomeric radiotracers 68Ga-FAPI-46 and 68Ga-DOTA-LM3 alongside the heterobivalent probe 68Ga-FAPI-LM3. These imaging radiopharmaceuticals were used in small-animal PET to compare their uptake in fibrotic and normal lung tissues. Results indicated significant upregulation of FAP and SSTR2 at both RNA and protein levels in fibrotic lung tissues compared with that in normal controls. PET imaging demonstrated significantly enhanced uptake of the 68Ga-FAPI-LM3 probe in fibrotic lung tissues, with superior visual effects compared to monomeric tracers. At 60 min postinjection, early stage fibrotic tissues (day 7) demonstrated low-to-medium uptake of monomeric probes, including 68Ga-DOTA-LM3 (0.45 ± 0.04% ID/g) and 68Ga-FAPI-46 (0.78 ± 0.09% ID/g), whereas the uptake of the heterobivalent probe 68Ga-FAPI-LM3 (1.90 ± 0.10% ID/g) was significantly higher in fibrotic lesions than in normal lung tissue. Blockade experiments confirmed the specificity of 68Ga-FAPI-LM3 uptake, which was attributed to synergistic targeting of FAP and SSTR2. This study demonstrates the potential of 68Ga-FAPI-LM3 for early pulmonary fibrosis detection via molecular imaging, offering significant benefits over monomeric tracers 68Ga-FAPI-46 and 68Ga-DOTA-LM3. This strategy offers new possibilities for noninvasive and precise early detection of pulmonary fibrosis.
Collapse
Affiliation(s)
- Jianhao Chen
- Department
of Nuclear Medicine and Minnan PET Center, Xiamen Cancer Center, Xiamen
Key Laboratory of Radiation Oncology, The
First Affiliated Hospital of Xiamen University, School of Medicine,
Xiamen University, Xiamen 361003, China
- Department
of Radiation Oncology, Xiamen Cancer Center, Xiamen Key Laboratory
of Radiation Oncology, The First Affiliated
Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361003, China
- Department
of Colorectal Tumor Surgery, Xiamen Cancer Center, Xiamen Key Laboratory
of Radiation Oncology, The First Affiliated
Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361003, China
| | - Doudou Luo
- Department
of Radiation Oncology, Xiamen Cancer Center, Xiamen Key Laboratory
of Radiation Oncology, The First Affiliated
Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361003, China
| | - Yaqing Dai
- Department
of Radiation Oncology, Xiamen Cancer Center, Xiamen Key Laboratory
of Radiation Oncology, The First Affiliated
Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361003, China
| | - Yangfan Zhou
- Department
of Radiation Oncology, Xiamen Cancer Center, Xiamen Key Laboratory
of Radiation Oncology, The First Affiliated
Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361003, China
| | - Yizhen Pang
- Department
of Nuclear Medicine and Minnan PET Center, Xiamen Cancer Center, Xiamen
Key Laboratory of Radiation Oncology, The
First Affiliated Hospital of Xiamen University, School of Medicine,
Xiamen University, Xiamen 361003, China
- Department
of Radiation Oncology, Xiamen Cancer Center, Xiamen Key Laboratory
of Radiation Oncology, The First Affiliated
Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361003, China
| | - Hua Wu
- Department
of Nuclear Medicine and Minnan PET Center, Xiamen Cancer Center, Xiamen
Key Laboratory of Radiation Oncology, The
First Affiliated Hospital of Xiamen University, School of Medicine,
Xiamen University, Xiamen 361003, China
| | - Long Sun
- Department
of Nuclear Medicine and Minnan PET Center, Xiamen Cancer Center, Xiamen
Key Laboratory of Radiation Oncology, The
First Affiliated Hospital of Xiamen University, School of Medicine,
Xiamen University, Xiamen 361003, China
| | - Guoqiang Su
- Department
of Colorectal Tumor Surgery, Xiamen Cancer Center, Xiamen Key Laboratory
of Radiation Oncology, The First Affiliated
Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361003, China
| | - Qin Lin
- Department
of Radiation Oncology, Xiamen Cancer Center, Xiamen Key Laboratory
of Radiation Oncology, The First Affiliated
Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361003, China
| | - Liang Zhao
- Department
of Nuclear Medicine and Minnan PET Center, Xiamen Cancer Center, Xiamen
Key Laboratory of Radiation Oncology, The
First Affiliated Hospital of Xiamen University, School of Medicine,
Xiamen University, Xiamen 361003, China
- Department
of Radiation Oncology, Xiamen Cancer Center, Xiamen Key Laboratory
of Radiation Oncology, The First Affiliated
Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361003, China
| | - Haojun Chen
- Department
of Nuclear Medicine and Minnan PET Center, Xiamen Cancer Center, Xiamen
Key Laboratory of Radiation Oncology, The
First Affiliated Hospital of Xiamen University, School of Medicine,
Xiamen University, Xiamen 361003, China
| |
Collapse
|
4
|
Ji H, Song X, Lv X, Shao F, Long Y, Song Y, Song W, Qiao P, Gai Y, Jiang D, Lan X. [ 68Ga]FAPI PET for Imaging and Treatment Monitoring in a Preclinical Model of Pulmonary Fibrosis: Comparison to [ 18F]FDG PET and CT. Pharmaceuticals (Basel) 2024; 17:726. [PMID: 38931393 PMCID: PMC11206307 DOI: 10.3390/ph17060726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 04/30/2024] [Accepted: 05/07/2024] [Indexed: 06/28/2024] Open
Abstract
PURPOSE This study aimed to evaluate the feasibility of using [68Ga]-fibroblast-activating protein inhibitor (FAPI) positron emission tomography (PET) imaging for diagnosing pulmonary fibrosis in a mouse model. We also examined its value in monitoring treatment response and compared it with traditional [18F]-fluorodeoxyglucose (FDG) PET and computed tomography (CT) imaging. METHODS A model of idiopathic pulmonary fibrosis was established using intratracheal injection of bleomycin (BLM, 2 mg/kg) into C57BL/6 male mice. For the treatment of IPF, a daily oral dose of 400 mg/kg/day of pirfenidone was administered from 9 to 28 days after the establishment of the model. Disease progression and treatment efficacy were assessed at different stages of the disease every week for four weeks using CT, [18F]FDG PET, and [68Ga]FAPI PET (baseline imaging performed at week 0). Mice were sacrificed and lung tissues were harvested for hematoxylin-eosin staining, picrosirius red staining, and immunohistochemical staining for glucose transporter 1 (GLUT1) and FAP. Expression levels of GLUT1 and FAP in pathological sections were quantified. Correlations between imaging parameters and pathological quantitative values were analyzed. RESULTS CT, [18F]FDG PET and [68Ga]FAPI PET revealed anatomical and functional changes in the lung that reflected progression of pulmonary fibrosis. In untreated mice with pulmonary fibrosis, lung uptake of [18F]FDG peaked on day 14, while [68Ga]FAPI uptake and mean lung density peaked on day 21. In mice treated with pirfenidone, mean lung density and lung uptake of both PET tracers decreased. Mean lung density, [18F]FDG uptake, and [68Ga]FAPI uptake correlated well with quantitative values of picrosirius red staining, GLUT1 expression, and FAP expression, respectively. Conclusions: Although traditional CT and [18F]FDG PET reflect anatomical and metabolic status in fibrotic lung, [68Ga]FAPI PET provides a means of evaluating fibrosis progression and monitoring treatment response.
Collapse
Affiliation(s)
- Hao Ji
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (H.J.); (X.S.); (X.L.); (F.S.); (Y.L.); (Y.S.); (W.S.); (P.Q.); (Y.G.)
- Hubei Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Xiangming Song
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (H.J.); (X.S.); (X.L.); (F.S.); (Y.L.); (Y.S.); (W.S.); (P.Q.); (Y.G.)
- Hubei Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Xiaoying Lv
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (H.J.); (X.S.); (X.L.); (F.S.); (Y.L.); (Y.S.); (W.S.); (P.Q.); (Y.G.)
- Hubei Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Fuqiang Shao
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (H.J.); (X.S.); (X.L.); (F.S.); (Y.L.); (Y.S.); (W.S.); (P.Q.); (Y.G.)
- Hubei Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Yu Long
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (H.J.); (X.S.); (X.L.); (F.S.); (Y.L.); (Y.S.); (W.S.); (P.Q.); (Y.G.)
- Hubei Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Yangmeihui Song
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (H.J.); (X.S.); (X.L.); (F.S.); (Y.L.); (Y.S.); (W.S.); (P.Q.); (Y.G.)
- Hubei Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Wenyu Song
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (H.J.); (X.S.); (X.L.); (F.S.); (Y.L.); (Y.S.); (W.S.); (P.Q.); (Y.G.)
- Hubei Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Pengxin Qiao
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (H.J.); (X.S.); (X.L.); (F.S.); (Y.L.); (Y.S.); (W.S.); (P.Q.); (Y.G.)
- Hubei Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Yongkang Gai
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (H.J.); (X.S.); (X.L.); (F.S.); (Y.L.); (Y.S.); (W.S.); (P.Q.); (Y.G.)
- Hubei Key Laboratory of Molecular Imaging, Wuhan 430022, China
- Key Laboratory of Biological Targeted Therapy of the Ministry of Education, Wuhan 430022, China
| | - Dawei Jiang
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (H.J.); (X.S.); (X.L.); (F.S.); (Y.L.); (Y.S.); (W.S.); (P.Q.); (Y.G.)
- Hubei Key Laboratory of Molecular Imaging, Wuhan 430022, China
- Key Laboratory of Biological Targeted Therapy of the Ministry of Education, Wuhan 430022, China
| | - Xiaoli Lan
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (H.J.); (X.S.); (X.L.); (F.S.); (Y.L.); (Y.S.); (W.S.); (P.Q.); (Y.G.)
- Hubei Key Laboratory of Molecular Imaging, Wuhan 430022, China
- Key Laboratory of Biological Targeted Therapy of the Ministry of Education, Wuhan 430022, China
| |
Collapse
|
5
|
Broens B, Duitman JW, Zwezerijnen GJC, Nossent EJ, van der Laken CJ, Voskuyl AE. Novel tracers for molecular imaging of interstitial lung disease: A state of the art review. Autoimmun Rev 2022; 21:103202. [PMID: 36150433 DOI: 10.1016/j.autrev.2022.103202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 09/16/2022] [Indexed: 12/14/2022]
Abstract
Interstitial lung disease is an overarching term for a wide range of disorders characterized by inflammation and/or fibrosis in the lungs. Most prevalent forms, among others, include idiopathic pulmonary fibrosis (IPF) and connective tissue disease associated interstitial lung disease (CTD-ILD). Currently, only disease modifying treatment options are available for IPF and progressive fibrotic CTD-ILD, leading to reduction or stabilization in the rate of lung function decline at best. Management of these patients would greatly advance if we identify new strategies to improve (1) early detection of ILD, (2) predicting ILD progression, (3) predicting response to therapy and (4) understanding pathophysiology. Over the last years, positron emission tomography (PET) and single photon emission computed tomography (SPECT) have emerged as promising molecular imaging techniques to improve ILD management. Both are non-invasive diagnostic tools to assess molecular characteristics of an individual patient with the potential to apply personalized treatment. In this review, we encompass the currently available pre-clinical and clinical studies on molecular imaging with PET and SPECT in IPF and CTD-ILD. We provide recommendations for potential future clinical applications of these tracers and directions for future research.
Collapse
Affiliation(s)
- Bo Broens
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Rheumatology and Clinical Immunology, De Boelelaan 1117, Amsterdam, the Netherlands; Amsterdam Infection & Immunity, Inflammatory diseases, Amsterdam, the Netherlands.
| | - Jan-Willem Duitman
- Amsterdam Infection & Immunity, Inflammatory diseases, Amsterdam, the Netherlands; Amsterdam UMC location University of Amsterdam, Department of Pulmonary Medicine, Meibergdreef 9, Amsterdam, the Netherlands; Amsterdam UMC location University of Amsterdam, Experimental Immunology (EXIM), Meibergdreef 9, Amsterdam, the Netherlands.
| | - Gerben J C Zwezerijnen
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Radiology and Nuclear Medicine, De Boelelaan 1117, Amsterdam, the Netherlands.
| | - Esther J Nossent
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Pulmonary Medicine, De Boelelaan 1117, Amsterdam, the Netherlands; Amsterdam Cardiovascular Sciences Research Institute, Amsterdam, the Netherlands..
| | - Conny J van der Laken
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Rheumatology and Clinical Immunology, De Boelelaan 1117, Amsterdam, the Netherlands; Amsterdam Infection & Immunity, Inflammatory diseases, Amsterdam, the Netherlands.
| | - Alexandre E Voskuyl
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Rheumatology and Clinical Immunology, De Boelelaan 1117, Amsterdam, the Netherlands; Amsterdam Infection & Immunity, Inflammatory diseases, Amsterdam, the Netherlands.
| |
Collapse
|
6
|
Gabryś HS, Gote-Schniering J, Brunner M, Bogowicz M, Blüthgen C, Frauenfelder T, Guckenberger M, Maurer B, Tanadini-Lang S. Transferability of radiomic signatures from experimental to human interstitial lung disease. Front Med (Lausanne) 2022; 9:988927. [DOI: 10.3389/fmed.2022.988927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 10/31/2022] [Indexed: 11/18/2022] Open
Abstract
BackgroundInterstitial lung disease (ILD) defines a group of parenchymal lung disorders, characterized by fibrosis as their common final pathophysiological stage. To improve diagnosis and treatment of ILD, there is a need for repetitive non-invasive characterization of lung tissue by quantitative parameters. In this study, we investigated whether CT image patterns found in mice with bleomycin induced lung fibrosis can be translated as prognostic factors to human patients diagnosed with ILD.MethodsBleomycin was used to induce lung fibrosis in mice (n_control = 36, n_experimental = 55). The patient cohort consisted of 98 systemic sclerosis (SSc) patients (n_ILD = 65). Radiomic features (n_histogram = 17, n_texture = 137) were extracted from microCT (mice) and HRCT (patients) images. Predictive performance of the models was evaluated with the area under the receiver-operating characteristic curve (AUC). First, predictive performance of individual features was examined and compared between murine and patient data sets. Second, multivariate models predicting ILD were trained on murine data and tested on patient data. Additionally, the models were reoptimized on patient data to reduce the influence of the domain shift on the performance scores.ResultsPredictive power of individual features in terms of AUC was highly correlated between mice and patients (r = 0.86). A model based only on mean image intensity in the lung scored AUC = 0.921 ± 0.048 in mice and AUC = 0.774 (CI95% 0.677-0.859) in patients. The best radiomic model based on three radiomic features scored AUC = 0.994 ± 0.013 in mice and validated with AUC = 0.832 (CI95% 0.745-0.907) in patients. However, reoptimization of the model weights in the patient cohort allowed to increase the model’s performance to AUC = 0.912 ± 0.058.ConclusionRadiomic signatures of experimental ILD derived from microCT scans translated to HRCT of humans with SSc-ILD. We showed that the experimental model of BLM-induced ILD is a promising system to test radiomic models for later application and validation in human cohorts.
Collapse
|
7
|
Khanna D, Distler O, Cottin V, Brown KK, Chung L, Goldin JG, Matteson EL, Kazerooni EA, Walsh SL, McNitt-Gray M, Maher TM. Diagnosis and monitoring of systemic sclerosis-associated interstitial lung disease using high-resolution computed tomography. JOURNAL OF SCLERODERMA AND RELATED DISORDERS 2022; 7:168-178. [PMID: 36211204 PMCID: PMC9537704 DOI: 10.1177/23971983211064463] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 05/12/2021] [Indexed: 01/09/2023]
Abstract
Patients with systemic sclerosis are at high risk of developing systemic sclerosis-associated interstitial lung disease. Symptoms and outcomes of systemic sclerosis-associated interstitial lung disease range from subclinical lung involvement to respiratory failure and death. Early and accurate diagnosis of systemic sclerosis-associated interstitial lung disease is therefore important to enable appropriate intervention. The most sensitive and specific way to diagnose systemic sclerosis-associated interstitial lung disease is by high-resolution computed tomography, and experts recommend that high-resolution computed tomography should be performed in all patients with systemic sclerosis at the time of initial diagnosis. In addition to being an important screening and diagnostic tool, high-resolution computed tomography can be used to evaluate disease extent in systemic sclerosis-associated interstitial lung disease and may be helpful in assessing prognosis in some patients. Currently, there is no consensus with regards to frequency and scanning intervals in patients at risk of interstitial lung disease development and/or progression. However, expert guidance does suggest that frequency of screening using high-resolution computed tomography should be guided by risk of developing interstitial lung disease. Most experienced clinicians would not repeat high-resolution computed tomography more than once a year or every other year for the first few years unless symptoms arose. Several computed tomography techniques have been developed in recent years that are suitable for regular monitoring, including low-radiation protocols, which, together with other technologies, such as lung ultrasound and magnetic resonance imaging, may further assist in the evaluation and monitoring of patients with systemic sclerosis-associated interstitial lung disease. A video abstract to accompany this article is available at: https://www.globalmedcomms.com/respiratory/Khanna/HRCTinSScILD.
Collapse
Affiliation(s)
- Dinesh Khanna
- Scleroderma Program, Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Oliver Distler
- Department of Rheumatology, University Hospital Zurich, Zurich, Switzerland
| | - Vincent Cottin
- Hospices Civils de Lyon, Department of Respiratory Medicine, National Coordinating Reference Center for Rare Pulmonary Diseases, Louis Pradel Hospital, INRAE, UMR754, University Claude Bernard Lyon 1, Lyon, France
| | - Kevin K Brown
- Department of Medicine, National Jewish Health, Denver, CO, USA
| | - Lorinda Chung
- Immunology and Rheumatology, Stanford University, Palo Alto, CA, USA
| | - Jonathan G Goldin
- David Geffen School of Medicine and UCLA Medical Center, Los Angeles, CA, USA
| | | | - Ella A Kazerooni
- Division of Cardiothoracic Radiology, Department of Radiology, Michigan Medicine, Ann Arbor, MI, USA
- Division of Pulmonary Medicine, Department of Internal Medicine, Michigan Medicine, Ann Arbor, MI, USA
| | - Simon Lf Walsh
- National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London, UK
| | - Michael McNitt-Gray
- Department of Radiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
- Physics and Biology in Medicine Graduate Program, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Toby M Maher
- National Heart and Lung Institute, Imperial College London, London, UK
- Interstitial Lung Disease Unit, Royal Brompton Hospital, London, UK
| |
Collapse
|
8
|
Hiroyama S, Matsunaga K, Ito M, Iimori H, Tajiri M, Nakano Y, Shimosegawa E, Abe K. Usefulness of 18F-FPP-RGD2 PET in pathophysiological evaluation of lung fibrosis using a bleomycin-induced rat model. Eur J Nucl Med Mol Imaging 2022; 49:4358-4368. [DOI: 10.1007/s00259-022-05908-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 07/07/2022] [Indexed: 11/04/2022]
|
9
|
Assessment of disease outcome measures in systemic sclerosis. Nat Rev Rheumatol 2022; 18:527-541. [PMID: 35859133 DOI: 10.1038/s41584-022-00803-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/10/2022] [Indexed: 01/08/2023]
Abstract
The assessment of disease activity in systemic sclerosis (SSc) is challenging owing to its heterogeneous manifestations across multiple organ systems, the variable rate of disease progression and regression, and the relative paucity of patients in early-phase therapeutic trials. Despite some recent successes, most clinical trials have failed to show efficacy, underscoring the need for improved outcome measures linked directly to disease pathogenesis, particularly applicable for biomarker studies focused on skin disease. Current outcome measures in SSc-associated interstitial lung disease and SSc skin disease are largely adequate, although advancing imaging technology and the incorporation of skin mRNA biomarkers might provide opportunities for earlier detection of the therapeutic effect. Biomarkers can further inform pathogenesis, enabling early phase trials to act as reverse translational studies through the incorporation of routine high-throughput sequencing.
Collapse
|
10
|
Zhang R, Jing W, Chen C, Zhang S, Abdalla M, Sun P, Wang G, You W, Yang Z, Zhang J, Tang C, Du W, Liu Y, Li X, Liu J, You X, Hu H, Cai L, Xu F, Dong B, Liu M, Qiang B, Sun Y, Yu G, Wu J, Zhao K, Jiang X. Inhaled mRNA Nanoformulation with Biogenic Ribosomal Protein Reverses Established Pulmonary Fibrosis in a Bleomycin-Induced Murine Model. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2107506. [PMID: 35146813 DOI: 10.1002/adma.202107506] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 01/24/2022] [Indexed: 06/14/2023]
Abstract
Idiopathic pulmonary fibrosis (IPF), a lethal respiratory disease with few treatment options, occurs due to repetitive microinjuries to alveolar epithelial cells (AECs) and progresses with an overwhelming deposition of extracellular matrix (ECM), ultimately resulting in fibrotic scars and destroyed the alveolar architecture. Here, an inhaled ribosomal protein-based mRNA nanoformulation is reported for clearing the intrapulmonary ECM and re-epithelializing the disrupted alveolar epithelium, thereby reversing established fibrotic foci in IPF. The nanoformulation is sequentially assembled by a ribosomal protein-condensed mRNA core, a bifunctional peptide-modified corona and keratinocyte growth factor (KGF) with a PEGylated shielding shell. When inhaled via a nebulizer, the nanoformulations carried by microdrops are deposited in the alveoli, and penetrate into fibrotic foci, where the outer KGFs are detached after matrix metalloproteinase 2 (MMP2) triggering. The RGD motif-grafted cores then expose and specifically target the integrin-elevated cells for the intracellular delivery of mRNA. Notably, repeated inhalation of the nanoformulations accelerates the clearance of locoregional collagen by boosting the intralesional expression of MMP13 and alveolar re-epithelialization mediated by KGFs, which synergistically ameliorates the lung function of a bleomycin-induced murine model. Therefore, this work provides an alternative mRNA-inhalation delivery strategy, which shows great potential for the treatment of IPF.
Collapse
Affiliation(s)
- Rui Zhang
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products and Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Weiqiang Jing
- Department of Urology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Chen Chen
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products and Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Shengchang Zhang
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products and Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Mohnad Abdalla
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products and Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Peng Sun
- Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Ganyu Wang
- Department of Urology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Wenjie You
- Department of Respiratory and Critical Care Medicine, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, China
| | - Zhenmei Yang
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products and Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Jing Zhang
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products and Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Chunwei Tang
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products and Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Wei Du
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products and Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Ying Liu
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products and Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Xiaoxun Li
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products and Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Jitian Liu
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products and Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Xiaona You
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products and Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Huili Hu
- Experimental Teratology, Ministry of Education and Department of Molecular Medicine and Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Lei Cai
- Shandong Provincial Key Laboratory of Biosensors, Biology Institute, Qilu University of Technology, Jinan, 250103, China
| | - Fengbo Xu
- Yinfeng Biological Group Co., LTD., Jinan, 250102, China
| | - Baixiang Dong
- Yinfeng Biological Group Co., LTD., Jinan, 250102, China
| | - Minglu Liu
- Bellastem Biotechnology Limited, Gaomi, 261500, China
| | | | - Yanhua Sun
- Shandong Provincial Key Laboratory of Microparticles Drug Delivery Technology, Qilu Pharmaceutical Co., LtD, Jinan, 250100, China
| | - Gongchang Yu
- Neck-Shoulder and Lumbocrural Pain Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250012, China
| | - Jibiao Wu
- Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Kun Zhao
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products and Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Xinyi Jiang
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products and Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| |
Collapse
|
11
|
Wang L, Zhang D, Li J, Li F, Wei R, Jiang G, Xu H, Wang X, Zhou Y, Xi L. A novel ICG-labeled cyclic TMTP1 peptide dimer for sensitive tumor imaging and enhanced photothermal therapy in vivo. Eur J Med Chem 2021; 227:113935. [PMID: 34731764 DOI: 10.1016/j.ejmech.2021.113935] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 10/16/2021] [Accepted: 10/18/2021] [Indexed: 12/26/2022]
Abstract
TMTP1 is a polypeptide independently screened in our laboratory, which can target tumors in situ and metastases. In previous work, we have successfully developed a near-infrared (NIR) probe TMTP1-PEG4-ICG for tumor imaging. However, the limited ability to target tumor micrometastases hinders its further clinical application. Multimerization of peptides has been extensively demonstrated as an effective strategy to increase receptor binding affinity due to "multivalent effect" or "apparent cooperative affinity". In this study, a novel TMTP1 homodimer-directed NIR probe (TMTP1-PEG4)2-ICG was successfully constructed and synthesized. The cyclic TMTP1 peptides were bridged by two PEG4 linkers and then labeled with ICG-NHS for tumor imaging and photothermal therapy. In vivo biodistribution were assessed in normal BALB/c mice, and tumor targeting abilities of (TMTP1-PEG4)2-ICG and its monomer were evaluated and compared in 4T1-bearing subcutaneous tumor and lymph node metastasis model mice. Biodistribution analysis in vivo revealed that (TMTP1-PEG4)2-ICG was cleared mainly in both liver and kidney dependent way. Comparing with free ICG dye or TMTP1-PEG4-ICG probe, this improved (TMTP1-PEG4)2-ICG dimer showed more sensitive tumor imaging and could clearly identify tumors at a minimum volume of 10 mm3. Additionally, when compared to its monomer, lymph node (LN) metastases could also be apparently visualized and easily distinguished from normal LN by the novel dimer at 24 h post-injection. The blocking study revealed that the tumor accumulation of this probe was specifically medicated by receptor-ligand interaction. Furthermore, with the increase in stability and tumor targeting ability of ICG in vivo, the probe could also be an attractive photothermal agent to significantly inhibit tumor growth under 808 nm NIR laser irradiation. In conclusion, our work revealed that the novel (TMTP1-PEG4)2-ICG dimer could be a promising theranostic agent for sensitive tumor imaging and imaging-guided photothermal therapy, indicating its broad prospects for further clinical transformation.
Collapse
Affiliation(s)
- Ling Wang
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Department of Gynecologic Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Danya Zhang
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Department of Gynecologic Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Jie Li
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Department of Gynecologic Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Fei Li
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Department of Gynecologic Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Rui Wei
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Department of Gynecologic Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Guiying Jiang
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Department of Gynecologic Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Hanjie Xu
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Department of Gynecologic Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Xueqian Wang
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Department of Gynecologic Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Ying Zhou
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Department of Gynecologic Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China.
| | - Ling Xi
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Department of Gynecologic Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China.
| |
Collapse
|
12
|
Schniering J, Maciukiewicz M, Gabrys HS, Brunner M, Blüthgen C, Meier C, Braga-Lagache S, Uldry AC, Heller M, Guckenberger M, Fretheim H, Nakas CT, Hoffmann-Vold AM, Distler O, Frauenfelder T, Tanadini-Lang S, Maurer B. Computed tomography-based radiomics decodes prognostic and molecular differences in interstitial lung disease related to systemic sclerosis. Eur Respir J 2021; 59:13993003.04503-2020. [PMID: 34649979 PMCID: PMC9117734 DOI: 10.1183/13993003.04503-2020] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 09/23/2021] [Indexed: 11/26/2022]
Abstract
Background Radiomic features calculated from routine medical images show great potential for personalised medicine in cancer. Patients with systemic sclerosis (SSc), a rare, multiorgan autoimmune disorder, have a similarly poor prognosis due to interstitial lung disease (ILD). Here, our objectives were to explore computed tomography (CT)-based high-dimensional image analysis (“radiomics”) for disease characterisation, risk stratification and relaying information on lung pathophysiology in SSc-ILD. Methods We investigated two independent, prospectively followed SSc-ILD cohorts (Zurich, derivation cohort, n=90; Oslo, validation cohort, n=66). For every subject, we defined 1355 robust radiomic features from standard-of-care CT images. We performed unsupervised clustering to identify and characterise imaging-based patient clusters. A clinically applicable prognostic quantitative radiomic risk score (qRISSc) for progression-free survival (PFS) was derived from radiomic profiles using supervised analysis. The biological basis of qRISSc was assessed in a cross-species approach by correlation with lung proteomic, histological and gene expression data derived from mice with bleomycin-induced lung fibrosis. Results Radiomic profiling identified two clinically and prognostically distinct SSc-ILD patient clusters. To evaluate the clinical applicability, we derived and externally validated a binary, quantitative radiomic risk score (qRISSc) composed of 26 features that accurately predicted PFS and significantly improved upon clinical risk stratification parameters in multivariable Cox regression analyses in the pooled cohorts. A high qRISSc score, which identifies patients at risk for progression, was reverse translatable from human to experimental ILD and correlated with fibrotic pathway activation. Conclusions Radiomics-based risk stratification using routine CT images provides complementary phenotypic, clinical and prognostic information significantly impacting clinical decision making in SSc-ILD. CT-based radiomics decodes phenotypic, prognostic and molecular differences in SSc-ILD, and predicts progression-free survival with a significant impact on future clinical decision making in SSc-ILDhttps://bit.ly/3zPaMOn
Collapse
Affiliation(s)
- Janine Schniering
- Center of Experimental Rheumatology, Department of Rheumatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland.,Institute of Lung Biology and Disease and Comprehensive Pneumology Center, Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Malgorzata Maciukiewicz
- Center of Experimental Rheumatology, Department of Rheumatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Hubert S Gabrys
- Department of Radiation Oncology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Matthias Brunner
- Center of Experimental Rheumatology, Department of Rheumatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland.,Department of Rheumatology and Immunology, University Hospital Bern, University Bern, Switzerland
| | - Christian Blüthgen
- Institute of Diagnostic and Interventional Radiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Chantal Meier
- Center of Experimental Rheumatology, Department of Rheumatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Sophie Braga-Lagache
- Proteomics and Mass Spectrometry Core Facility, Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Anne-Christine Uldry
- Proteomics and Mass Spectrometry Core Facility, Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Manfred Heller
- Proteomics and Mass Spectrometry Core Facility, Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Matthias Guckenberger
- Department of Radiation Oncology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Håvard Fretheim
- Department of Rheumatology, Oslo University Hospital, and Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Christos T Nakas
- Laboratory of Biometry, University of Thessaly, Volos, Greece.,University Institute of Clinical Chemistry, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Anna-Maria Hoffmann-Vold
- Department of Rheumatology, Oslo University Hospital, and Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Oliver Distler
- Center of Experimental Rheumatology, Department of Rheumatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Thomas Frauenfelder
- Institute of Diagnostic and Interventional Radiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Stephanie Tanadini-Lang
- Department of Radiation Oncology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Britta Maurer
- Center of Experimental Rheumatology, Department of Rheumatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland .,Department of Rheumatology and Immunology, University Hospital Bern, University Bern, Switzerland
| |
Collapse
|
13
|
Rudnik M, Hukara A, Kocherova I, Jordan S, Schniering J, Milleret V, Ehrbar M, Klingel K, Feghali-Bostwick C, Distler O, Błyszczuk P, Kania G. Elevated Fibronectin Levels in Profibrotic CD14 + Monocytes and CD14 + Macrophages in Systemic Sclerosis. Front Immunol 2021; 12:642891. [PMID: 34504485 PMCID: PMC8421541 DOI: 10.3389/fimmu.2021.642891] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 07/21/2021] [Indexed: 12/15/2022] Open
Abstract
Background Systemic sclerosis (SSc) is an autoimmune disease characterized by overproduction of extracellular matrix (ECM) and multiorgan fibrosis. Animal studies pointed to bone marrow-derived cells as a potential source of pathological ECM-producing cells in immunofibrotic disorders. So far, involvement of monocytes and macrophages in the fibrogenesis of SSc remains poorly understood. Methods and Results Immunohistochemistry analysis showed accumulation of CD14+ monocytes in the collagen-rich areas, as well as increased amount of alpha smooth muscle actin (αSMA)-positive fibroblasts, CD68+ and mannose-R+ macrophages in the heart and lungs of SSc patients. The full genome transcriptomics analyses of CD14+ blood monocytes revealed dysregulation in cytoskeleton rearrangement, ECM remodeling, including elevated FN1 (gene encoding fibronectin) expression and TGF-β signalling pathway in SSc patients. In addition, single cell RNA sequencing analysis of tissue-resident CD14+ pulmonary macrophages demonstrated activated profibrotic signature with the elevated FN1 expression in SSc patients with interstitial lung disease. Peripheral blood CD14+ monocytes obtained from either healthy subjects or SSc patients exposed to profibrotic treatment with profibrotic cytokines TGF-β, IL-4, IL-10, and IL-13 increased production of type I collagen, fibronectin, and αSMA. In addition, CD14+ monocytes co-cultured with dermal fibroblasts obtained from SSc patients or healthy individuals acquired a spindle shape and further enhanced production of profibrotic markers. Pharmacological blockade of the TGF-β signalling pathway with SD208 (TGF-β receptor type I inhibitor), SIS3 (Smad3 inhibitor) or (5Z)-7-oxozeaenol (TGF-β-activated kinase 1 inhibitor) ameliorated fibronectin levels and type I collagen secretion. Conclusions Our findings identified activated profibrotic signature with elevated production of profibrotic fibronectin in CD14+ monocytes and CD14+ pulmonary macrophages in SSc and highlighted the capability of CD14+ monocytes to acquire a profibrotic phenotype. Taking together, tissue-infiltrating CD14+ monocytes/macrophages can be considered as ECM producers in SSc pathogenesis.
Collapse
Affiliation(s)
- Michał Rudnik
- Department of Rheumatology, Center of Experimental Rheumatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Amela Hukara
- Department of Rheumatology, Center of Experimental Rheumatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Ievgeniia Kocherova
- Department of Rheumatology, Center of Experimental Rheumatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Suzana Jordan
- Department of Rheumatology, Center of Experimental Rheumatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Janine Schniering
- Department of Rheumatology, Center of Experimental Rheumatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Vincent Milleret
- Department of Obstetrics, University Hospital Zurich, Zurich, Switzerland
| | - Martin Ehrbar
- Department of Obstetrics, University Hospital Zurich, Zurich, Switzerland
| | - Karin Klingel
- Department of Molecular Pathology, University Hospital Tuebingen, Tuebingen, Germany
| | - Carol Feghali-Bostwick
- Division of Rheumatology, Medical University of South Carolina, Charleston, SC, United States
| | - Oliver Distler
- Department of Rheumatology, Center of Experimental Rheumatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Przemysław Błyszczuk
- Department of Rheumatology, Center of Experimental Rheumatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland.,Department of Clinical Immunology, Jagiellonian University Medical College, Krakow, Poland
| | - Gabriela Kania
- Department of Rheumatology, Center of Experimental Rheumatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| |
Collapse
|
14
|
Mayr CH, Simon LM, Leuschner G, Ansari M, Schniering J, Geyer PE, Angelidis I, Strunz M, Singh P, Kneidinger N, Reichenberger F, Silbernagel E, Böhm S, Adler H, Lindner M, Maurer B, Hilgendorff A, Prasse A, Behr J, Mann M, Eickelberg O, Theis FJ, Schiller HB. Integrative analysis of cell state changes in lung fibrosis with peripheral protein biomarkers. EMBO Mol Med 2021; 13:e12871. [PMID: 33650774 PMCID: PMC8033531 DOI: 10.15252/emmm.202012871] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 01/05/2021] [Accepted: 01/19/2021] [Indexed: 12/11/2022] Open
Abstract
The correspondence of cell state changes in diseased organs to peripheral protein signatures is currently unknown. Here, we generated and integrated single-cell transcriptomic and proteomic data from multiple large pulmonary fibrosis patient cohorts. Integration of 233,638 single-cell transcriptomes (n = 61) across three independent cohorts enabled us to derive shifts in cell type proportions and a robust core set of genes altered in lung fibrosis for 45 cell types. Mass spectrometry analysis of lung lavage fluid (n = 124) and plasma (n = 141) proteomes identified distinct protein signatures correlated with diagnosis, lung function, and injury status. A novel SSTR2+ pericyte state correlated with disease severity and was reflected in lavage fluid by increased levels of the complement regulatory factor CFHR1. We further discovered CRTAC1 as a biomarker of alveolar type-2 epithelial cell health status in lavage fluid and plasma. Using cross-modal analysis and machine learning, we identified the cellular source of biomarkers and demonstrated that information transfer between modalities correctly predicts disease status, suggesting feasibility of clinical cell state monitoring through longitudinal sampling of body fluid proteomes.
Collapse
Affiliation(s)
- Christoph H Mayr
- Institute of Lung Biology and Disease and Comprehensive Pneumology Center with the CPC–M bioArchiveHelmholtz Zentrum München, Member of the German Center for Lung Research (DZL)MunichGermany
| | - Lukas M Simon
- Institute of Computational BiologyHelmholtz Zentrum MünchenMunichGermany
| | - Gabriela Leuschner
- Institute of Lung Biology and Disease and Comprehensive Pneumology Center with the CPC–M bioArchiveHelmholtz Zentrum München, Member of the German Center for Lung Research (DZL)MunichGermany
- Department of Internal Medicine VLudwig‐Maximilians University (LMU) MunichMember of the German Center for Lung Research (DZL), CPC‐M bioArchiveMunichGermany
| | - Meshal Ansari
- Institute of Lung Biology and Disease and Comprehensive Pneumology Center with the CPC–M bioArchiveHelmholtz Zentrum München, Member of the German Center for Lung Research (DZL)MunichGermany
- Institute of Computational BiologyHelmholtz Zentrum MünchenMunichGermany
| | - Janine Schniering
- Institute of Lung Biology and Disease and Comprehensive Pneumology Center with the CPC–M bioArchiveHelmholtz Zentrum München, Member of the German Center for Lung Research (DZL)MunichGermany
- Department of RheumatologyCenter of Experimental RheumatologyUniversity & University Hospital ZurichZurichSwitzerland
| | - Philipp E Geyer
- Department of Proteomics and Signal TransductionMax Planck Institute of BiochemistryMartinsriedGermany
| | - Ilias Angelidis
- Institute of Lung Biology and Disease and Comprehensive Pneumology Center with the CPC–M bioArchiveHelmholtz Zentrum München, Member of the German Center for Lung Research (DZL)MunichGermany
| | - Maximilian Strunz
- Institute of Lung Biology and Disease and Comprehensive Pneumology Center with the CPC–M bioArchiveHelmholtz Zentrum München, Member of the German Center for Lung Research (DZL)MunichGermany
| | - Pawandeep Singh
- Institute of Lung Biology and Disease and Comprehensive Pneumology Center with the CPC–M bioArchiveHelmholtz Zentrum München, Member of the German Center for Lung Research (DZL)MunichGermany
| | - Nikolaus Kneidinger
- Department of Internal Medicine VLudwig‐Maximilians University (LMU) MunichMember of the German Center for Lung Research (DZL), CPC‐M bioArchiveMunichGermany
| | - Frank Reichenberger
- Asklepios Fachkliniken Munich‐GautingCPC‐M bioArchive, Member of the German Center for Lung Research (DZL)MunichGermany
| | - Edith Silbernagel
- Asklepios Fachkliniken Munich‐GautingCPC‐M bioArchive, Member of the German Center for Lung Research (DZL)MunichGermany
| | - Stephan Böhm
- Faculty of MedicineMax von Pettenkofer‐Institute, VirologyNational Reference Center for RetrovirusesLMU MünchenMunichGermany
| | - Heiko Adler
- Helmholtz Zentrum MünchenResearch Unit Lung Repair and Regeneration, Member of the German Center for Lung Research (DZL)MunichGermany
| | - Michael Lindner
- Asklepios Fachkliniken Munich‐GautingCPC‐M bioArchive, Member of the German Center for Lung Research (DZL)MunichGermany
- University Department of Visceral and Thoracic Surgery SalzburgParacelsus Medical UniversitySalzburgAustria
| | - Britta Maurer
- Department of RheumatologyCenter of Experimental RheumatologyUniversity & University Hospital ZurichZurichSwitzerland
| | - Anne Hilgendorff
- Center for Comprehensive Developmental Care (CDeCLMU)Member of the German Center for Lung Research (DZL)Hospital of the Ludwig‐Maximilians University (LMU)CPC‐M bioArchiveMunichGermany
| | - Antje Prasse
- Department of PneumologyHannover Medical School, Member of the German Center for Lung Research (DZL)HannoverGermany
| | - Jürgen Behr
- Department of Internal Medicine VLudwig‐Maximilians University (LMU) MunichMember of the German Center for Lung Research (DZL), CPC‐M bioArchiveMunichGermany
- Asklepios Fachkliniken Munich‐GautingCPC‐M bioArchive, Member of the German Center for Lung Research (DZL)MunichGermany
| | - Matthias Mann
- Department of Proteomics and Signal TransductionMax Planck Institute of BiochemistryMartinsriedGermany
| | - Oliver Eickelberg
- Division of Pulmonary, Allergy, and Critical Care MedicineDepartment of MedicineUniversity of PittsburghPittsburghPAUSA
| | - Fabian J Theis
- Institute of Computational BiologyHelmholtz Zentrum MünchenMunichGermany
| | - Herbert B Schiller
- Institute of Lung Biology and Disease and Comprehensive Pneumology Center with the CPC–M bioArchiveHelmholtz Zentrum München, Member of the German Center for Lung Research (DZL)MunichGermany
| |
Collapse
|
15
|
Candelotti E, De Luca R, Megna R, Maiolo M, De Vito P, Gionfra F, Percario ZA, Borgatti M, Gambari R, Davis PJ, Lin HY, Polticelli F, Persichini T, Colasanti M, Affabris E, Pedersen JZ, Incerpi S. Inhibition by Thyroid Hormones of Cell Migration Activated by IGF-1 and MCP-1 in THP-1 Monocytes: Focus on Signal Transduction Events Proximal to Integrin αvβ3. Front Cell Dev Biol 2021; 9:651492. [PMID: 33898447 PMCID: PMC8060509 DOI: 10.3389/fcell.2021.651492] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 03/04/2021] [Indexed: 02/04/2023] Open
Abstract
Interaction between thyroid hormones and the immune system is reported in the literature. Thyroid hormones, thyroxine, T4, but also T3, act non-genomically through mechanisms that involve a plasma membrane receptor αvβ3 integrin, a co-receptor for insulin-like growth factor-1 (IGF-1). Previous data from our laboratory show a crosstalk between thyroid hormones and IGF-1 because thyroid hormones inhibit the IGF-1-stimulated glucose uptake and cell proliferation in L-6 myoblasts, and the effects are mediated by integrin αvβ3. IGF-1 also behaves as a chemokine, being an important factor for tissue regeneration after damage. In the present study, using THP-1 human leukemic monocytes, expressing αvβ3 integrin in their cell membrane, we focused on the crosstalk between thyroid hormones and either IGF-1 or monocyte chemoattractant protein-1 (MCP-1), studying cell migration and proliferation stimulated by the two chemokines, and the role of αvβ3 integrin, using inhibitors of αvβ3 integrin and downstream pathways. Our results show that IGF-1 is a potent chemoattractant in THP-1 monocytes, stimulating cell migration, and thyroid hormone inhibits the effect through αvβ3 integrin. Thyroid hormone also inhibits IGF-1-stimulated cell proliferation through αvβ3 integrin, an example of a crosstalk between genomic and non-genomic effects. We also studied the effects of thyroid hormone on cell migration and proliferation induced by MCP-1, together with the pathways involved, by a pharmacological approach and docking simulation. Our findings show a different downstream signaling for IGF-1 and MCP-1 in THP-1 monocytes mediated by the plasma membrane receptor of thyroid hormones, integrin αvβ3.
Collapse
Affiliation(s)
| | - Roberto De Luca
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Roberto Megna
- Department of Science, Roma Tre University, Rome, Italy
| | | | - Paolo De Vito
- Department of Biology, Tor Vergata University, Rome, Italy
| | - Fabio Gionfra
- Department of Science, Roma Tre University, Rome, Italy
| | | | - Monica Borgatti
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Roberto Gambari
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Paul J Davis
- Department of Medicine, Albany Medical College, Albany, NY, United States.,Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Albany, NY, United States
| | - Hung-Yun Lin
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Albany, NY, United States.,Taipei Cancer Center, Taipei Medical University, Taipei, Taiwan.,Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan.,Traditional Herbal Medicine Research Center of Taipei Medical University Hospital, Taipei Medical University, Taipei, Taiwan.,TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, Taiwan
| | | | | | | | | | | | | |
Collapse
|
16
|
Bergmann C, Distler JHW, Treutlein C, Tascilar K, Müller AT, Atzinger A, Matei AE, Knitza J, Györfi AH, Lück A, Dees C, Soare A, Ramming A, Schönau V, Distler O, Prante O, Ritt P, Götz TI, Köhner M, Cordes M, Bäuerle T, Kuwert T, Schett G, Schmidkonz C. 68Ga-FAPI-04 PET-CT for molecular assessment of fibroblast activation and risk evaluation in systemic sclerosis-associated interstitial lung disease: a single-centre, pilot study. THE LANCET. RHEUMATOLOGY 2021; 3:e185-e194. [PMID: 38279381 DOI: 10.1016/s2665-9913(20)30421-5] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 11/19/2020] [Accepted: 11/26/2020] [Indexed: 01/09/2023]
Abstract
BACKGROUND Interstitial lung disease (ILD) is the most common cause of death in systemic sclerosis. To date, the progression of systemic sclerosis-associated ILD is judged by the accrual of lung damage on CT and pulmonary function tests. However, diagnostic tools to assess disease activity are not available. Here, we tested the hypothesis that quantification of fibroblast activation by PET-CT using a 68Ga-labelled selective inhibitor of prolyl endopeptidase FAP (68Ga-FAPI-04) would correlate with ILD activity and disease progression in patients with systemic sclerosis-associated ILD. METHODS Between Sept 10, 2018, and April 8, 2020, 21 patients with systemic sclerosis-associated ILD confirmed by high-resolution CT (HRCT) within 12 months of inclusion and with onset of systemic sclerosis-associated ILD within 5 years or signs of progressive ILD and 21 controls without ILD were consecutively enrolled. All participants underwent 68Ga-FAPI-04 PET-CT imaging and standard-of-care procedures, including HRCT and pulmonary function tests at baseline. Patients with systemic sclerosis-associated ILD were followed for 6 months with HRCT and pulmonary function tests. We compared baseline 68Ga-FAPI-04 PET-CT uptake with standard diagnostic tools and predictors of ILD progression. The association of 68Ga-FAPI-04 uptake with changes in forced vital capacity was analysed using mixed-effects models. Follow-up 68Ga-FAPI-04 PET-CT scans were obtained in a subset of patients treated with nintedanib (follow-up between 6-10 months) to assess change over time. FINDINGS 68Ga-FAPI-04 accumulated in fibrotic areas of the lungs in patients with systemic sclerosis-associated ILD compared with controls, with a median standardised uptake value (SUV) mean over the whole lung of 0·80 (IQR 0·60-2·10) in the systemic sclerosis-ILD group and 0·50 (0·40-0·50) in the control group (p<0·0001) and a mean whole lung maximal SUV of 4·40 (range 3·05-5·20) in the systemic sclerosis-ILD group compared with 0·70 (0·65-0·70) in the control group (p<0·0001). Whole-lung FAPI metabolic active volume (wlFAPI-MAV) and whole-lung total lesion FAPI (wlTL-FAPI) were not measurable in control participants, because no 68Ga-FAPI-04 uptake above background level was observed. In the systemic sclerosis-ILD group the median wlFAPI-MAV was 254·00 cm3 (IQR 163·40-442·30), and the median wlTL-FAPI was 183·60 cm3 (98·04-960·70). 68Ga-FAPI-04 uptake was higher in patients with extensive disease, with previous ILD progression, or high EUSTAR activity scores than in those with with limited disease, previously stable ILD, or low EUSTAR activity scores. Increased 68Ga-FAPI-04 uptake at baseline was associated with progression of ILD independently of extent of involvement on HRCT scan and the forced vital capacity at baseline. In consecutive 68Ga-FAPI-04 PET-CTs, changes in 68Ga-FAPI-04 uptake was concordant with the observed response to the fibroblast-targeting antifibrotic drug nintedanib. INTERPRETATION Our study presents the first in-human evidence that fibroblast activation correlates with fibrotic activity and disease progression in the lungs of patients with systemic sclerosis-associated ILD and that 68Ga-FAPI-04 PET-CT might improve risk assessment of systemic sclerosis-associated ILD. FUNDING German Research Foundation, Erlangen Anschubs-und Nachwuchsfinanzierung, Interdisziplinäres Zentrum für Klinische Forschung Erlangen, Bundesministerium für Bildung und Forschung, Deutsche Stiftung Systemische Sklerose, Wilhelm-Sander-Foundation, Else-Kröner-Fresenius-Foundation, European Research Council, Ernst-Jung-Foundation, and Clinician Scientist Program Erlangen.
Collapse
Affiliation(s)
- Christina Bergmann
- Department of Internal Medicine 3-Rheumatology and Immunology, Friedrich-Alexander University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Jörg H W Distler
- Department of Internal Medicine 3-Rheumatology and Immunology, Friedrich-Alexander University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany.
| | - Christoph Treutlein
- Department of Radiology, Friedrich-Alexander University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Koray Tascilar
- Department of Internal Medicine 3-Rheumatology and Immunology, Friedrich-Alexander University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Anna-Theresa Müller
- Department of Internal Medicine 3-Rheumatology and Immunology, Friedrich-Alexander University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Armin Atzinger
- Department of Nuclear Medicine, Friedrich-Alexander University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Alexandru-Emil Matei
- Department of Internal Medicine 3-Rheumatology and Immunology, Friedrich-Alexander University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Johannes Knitza
- Department of Internal Medicine 3-Rheumatology and Immunology, Friedrich-Alexander University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Andrea-Hermina Györfi
- Department of Internal Medicine 3-Rheumatology and Immunology, Friedrich-Alexander University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Anja Lück
- Department of Internal Medicine 3-Rheumatology and Immunology, Friedrich-Alexander University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Clara Dees
- Department of Internal Medicine 3-Rheumatology and Immunology, Friedrich-Alexander University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Alina Soare
- Department of Internal Medicine 3-Rheumatology and Immunology, Friedrich-Alexander University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Andreas Ramming
- Department of Internal Medicine 3-Rheumatology and Immunology, Friedrich-Alexander University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Verena Schönau
- Department of Internal Medicine 3-Rheumatology and Immunology, Friedrich-Alexander University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Oliver Distler
- Rheumaklinik, University Hospital Zurich, Zurich, Switzerland
| | - Olaf Prante
- Department of Nuclear Medicine, Friedrich-Alexander University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Philipp Ritt
- Department of Nuclear Medicine, Friedrich-Alexander University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Theresa Ida Götz
- Department of Nuclear Medicine, Friedrich-Alexander University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Markus Köhner
- Department of Nuclear Medicine, Friedrich-Alexander University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Michael Cordes
- Department of Nuclear Medicine, Friedrich-Alexander University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Tobias Bäuerle
- Department of Radiology, Friedrich-Alexander University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Torsten Kuwert
- Department of Nuclear Medicine, Friedrich-Alexander University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Georg Schett
- Department of Internal Medicine 3-Rheumatology and Immunology, Friedrich-Alexander University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Christian Schmidkonz
- Department of Nuclear Medicine, Friedrich-Alexander University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| |
Collapse
|
17
|
Mahmutovic Persson I, von Wachenfeldt K, Waterton JC, Olsson LE. Imaging Biomarkers in Animal Models of Drug-Induced Lung Injury: A Systematic Review. J Clin Med 2020; 10:jcm10010107. [PMID: 33396865 PMCID: PMC7795017 DOI: 10.3390/jcm10010107] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 12/24/2020] [Indexed: 12/28/2022] Open
Abstract
For drug-induced interstitial lung disease (DIILD) translational imaging biomarkers are needed to improve detection and management of lung injury and drug-toxicity. Literature was reviewed on animal models in which in vivo imaging was used to detect and assess lung lesions that resembled pathological changes found in DIILD, such as inflammation and fibrosis. A systematic search was carried out using three databases with key words “Animal models”, “Imaging”, “Lung disease”, and “Drugs”. A total of 5749 articles were found, and, based on inclusion criteria, 284 papers were selected for final data extraction, resulting in 182 out of the 284 papers, based on eligibility. Twelve different animal species occurred and nine various imaging modalities were used, with two-thirds of the studies being longitudinal. The inducing agents and exposure (dose and duration) differed from non-physiological to clinically relevant doses. The majority of studies reported other biomarkers and/or histological confirmation of the imaging results. Summary of radiotracers and examples of imaging biomarkers were summarized, and the types of animal models and the most used imaging modalities and applications are discussed in this review. Pathologies resembling DIILD, such as inflammation and fibrosis, were described in many papers, but only a few explicitly addressed drug-induced toxicity experiments.
Collapse
Affiliation(s)
- Irma Mahmutovic Persson
- Department of Translational Medicine, Medical Radiation Physics, Lund University, 20502 Malmö, Sweden;
- Correspondence: ; Tel.: +46-736839562
| | | | - John C. Waterton
- Bioxydyn Ltd., Science Park, Manchester M15 6SZ, UK;
- Manchester Academic Health Sciences Centre, University of Manchester, Manchester M13 9PL, UK
| | - Lars E. Olsson
- Department of Translational Medicine, Medical Radiation Physics, Lund University, 20502 Malmö, Sweden;
| | | |
Collapse
|
18
|
Chassagnon G, Zacharaki EI, Bommart S, Burgel PR, Chiron R, Dangeard S, Paragios N, Martin C, Revel MP. Quantification of Cystic Fibrosis Lung Disease with Radiomics-based CT Scores. Radiol Cardiothorac Imaging 2020; 2:e200022. [PMID: 33778637 DOI: 10.1148/ryct.2020200022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 09/10/2020] [Accepted: 10/30/2020] [Indexed: 11/11/2022]
Abstract
Purpose To develop radiomics-based CT scores for assessing lung disease severity and exacerbation risk in adult patients with cystic fibrosis (CF). Materials and Methods This two-center retrospective observational study was approved by an institutional ethics committee, and the need for patient consent was waived. A total of 215 outpatients with CF referred for unenhanced follow-up chest CT were evaluated in two different centers between January 2013 and December 2016. After lung segmentation, chest CT scans from center 1 (training cohort, 162 patients [median age, 29 years; interquartile range {IQR}, 24-36 years; 84 men]) were used to build CT scores from 38 extracted CT features, using five different machine learning techniques trained to predict a clinical prognostic score, the Nkam score. The correlations between the developed CT scores, two different clinical prognostic scores (Liou and CF-ABLE), forced expiratory volume in 1 second (FEV1), and risk of respiratory exacerbations were evaluated in the test cohort (center 2, 53 patients [median age, 27 years; IQR, 22-35 years; 34 men]) using the Spearman rank coefficient. Results In the test cohort, all radiomics-based CT scores showed moderate to strong correlation with the Nkam score (R = 0.57 to 0.63, P < .001) and Liou scores (R = -0.55 to -0.65, P < .001), whereas the correlation with CF-ABLE score was weaker (R = 0.28 to 0.38, P = .005 to .048). The developed CT scores showed strong correlation with predicted FEV1 (R = -0.62 to -0.66, P < .001) and weak to moderate correlation with the number of pulmonary exacerbations to occur in the 12 months after the CT examination (R = 0.38 to 0.55, P < .001 to P = .006). Conclusion Radiomics can be used to build automated CT scores that correlate to clinical severity and exacerbation risk in adult patients with CF.Supplemental material is available for this article.See also the commentary by Elicker and Sohn in this issue.© RSNA, 2020.
Collapse
Affiliation(s)
- Guillaume Chassagnon
- Department of Radiology (G.C., S.D., M.P.R.) and Respiratory Medicine and National Cystic Reference Center (P.R.B.), Groupe Hospitalier Cochin-Hotel Dieu, AP-HP, Université Paris Descartes, 27 Rue du Faubourg Saint-Jacques, 75014 Paris, France; Center for Visual Computing, Ecole CentraleSupelec, Grande Voie des Vignes, Chatenay Malabry, France (G.C., E.I.Z., N.P.); U1016 Inserm, Institut Cochin, Paris, France (G.C., P.R.B., C.M., M.P.R.); Radiology Department (S.B.) and Pulmonary Department (R.C.), Hôpital Arnaud de Villeneuve, CHU de Montpellier, Université de Montpellier, Montpellier, France; ERN-Lung CF Network, France (P.R.B., C.M.); and TheraPanacea, Paris-Biotech-Santé, Paris, France (N.P.)
| | - Evangelia I Zacharaki
- Department of Radiology (G.C., S.D., M.P.R.) and Respiratory Medicine and National Cystic Reference Center (P.R.B.), Groupe Hospitalier Cochin-Hotel Dieu, AP-HP, Université Paris Descartes, 27 Rue du Faubourg Saint-Jacques, 75014 Paris, France; Center for Visual Computing, Ecole CentraleSupelec, Grande Voie des Vignes, Chatenay Malabry, France (G.C., E.I.Z., N.P.); U1016 Inserm, Institut Cochin, Paris, France (G.C., P.R.B., C.M., M.P.R.); Radiology Department (S.B.) and Pulmonary Department (R.C.), Hôpital Arnaud de Villeneuve, CHU de Montpellier, Université de Montpellier, Montpellier, France; ERN-Lung CF Network, France (P.R.B., C.M.); and TheraPanacea, Paris-Biotech-Santé, Paris, France (N.P.)
| | - Sébastien Bommart
- Department of Radiology (G.C., S.D., M.P.R.) and Respiratory Medicine and National Cystic Reference Center (P.R.B.), Groupe Hospitalier Cochin-Hotel Dieu, AP-HP, Université Paris Descartes, 27 Rue du Faubourg Saint-Jacques, 75014 Paris, France; Center for Visual Computing, Ecole CentraleSupelec, Grande Voie des Vignes, Chatenay Malabry, France (G.C., E.I.Z., N.P.); U1016 Inserm, Institut Cochin, Paris, France (G.C., P.R.B., C.M., M.P.R.); Radiology Department (S.B.) and Pulmonary Department (R.C.), Hôpital Arnaud de Villeneuve, CHU de Montpellier, Université de Montpellier, Montpellier, France; ERN-Lung CF Network, France (P.R.B., C.M.); and TheraPanacea, Paris-Biotech-Santé, Paris, France (N.P.)
| | - Pierre-Régis Burgel
- Department of Radiology (G.C., S.D., M.P.R.) and Respiratory Medicine and National Cystic Reference Center (P.R.B.), Groupe Hospitalier Cochin-Hotel Dieu, AP-HP, Université Paris Descartes, 27 Rue du Faubourg Saint-Jacques, 75014 Paris, France; Center for Visual Computing, Ecole CentraleSupelec, Grande Voie des Vignes, Chatenay Malabry, France (G.C., E.I.Z., N.P.); U1016 Inserm, Institut Cochin, Paris, France (G.C., P.R.B., C.M., M.P.R.); Radiology Department (S.B.) and Pulmonary Department (R.C.), Hôpital Arnaud de Villeneuve, CHU de Montpellier, Université de Montpellier, Montpellier, France; ERN-Lung CF Network, France (P.R.B., C.M.); and TheraPanacea, Paris-Biotech-Santé, Paris, France (N.P.)
| | - Raphael Chiron
- Department of Radiology (G.C., S.D., M.P.R.) and Respiratory Medicine and National Cystic Reference Center (P.R.B.), Groupe Hospitalier Cochin-Hotel Dieu, AP-HP, Université Paris Descartes, 27 Rue du Faubourg Saint-Jacques, 75014 Paris, France; Center for Visual Computing, Ecole CentraleSupelec, Grande Voie des Vignes, Chatenay Malabry, France (G.C., E.I.Z., N.P.); U1016 Inserm, Institut Cochin, Paris, France (G.C., P.R.B., C.M., M.P.R.); Radiology Department (S.B.) and Pulmonary Department (R.C.), Hôpital Arnaud de Villeneuve, CHU de Montpellier, Université de Montpellier, Montpellier, France; ERN-Lung CF Network, France (P.R.B., C.M.); and TheraPanacea, Paris-Biotech-Santé, Paris, France (N.P.)
| | - Séverine Dangeard
- Department of Radiology (G.C., S.D., M.P.R.) and Respiratory Medicine and National Cystic Reference Center (P.R.B.), Groupe Hospitalier Cochin-Hotel Dieu, AP-HP, Université Paris Descartes, 27 Rue du Faubourg Saint-Jacques, 75014 Paris, France; Center for Visual Computing, Ecole CentraleSupelec, Grande Voie des Vignes, Chatenay Malabry, France (G.C., E.I.Z., N.P.); U1016 Inserm, Institut Cochin, Paris, France (G.C., P.R.B., C.M., M.P.R.); Radiology Department (S.B.) and Pulmonary Department (R.C.), Hôpital Arnaud de Villeneuve, CHU de Montpellier, Université de Montpellier, Montpellier, France; ERN-Lung CF Network, France (P.R.B., C.M.); and TheraPanacea, Paris-Biotech-Santé, Paris, France (N.P.)
| | - Nikos Paragios
- Department of Radiology (G.C., S.D., M.P.R.) and Respiratory Medicine and National Cystic Reference Center (P.R.B.), Groupe Hospitalier Cochin-Hotel Dieu, AP-HP, Université Paris Descartes, 27 Rue du Faubourg Saint-Jacques, 75014 Paris, France; Center for Visual Computing, Ecole CentraleSupelec, Grande Voie des Vignes, Chatenay Malabry, France (G.C., E.I.Z., N.P.); U1016 Inserm, Institut Cochin, Paris, France (G.C., P.R.B., C.M., M.P.R.); Radiology Department (S.B.) and Pulmonary Department (R.C.), Hôpital Arnaud de Villeneuve, CHU de Montpellier, Université de Montpellier, Montpellier, France; ERN-Lung CF Network, France (P.R.B., C.M.); and TheraPanacea, Paris-Biotech-Santé, Paris, France (N.P.)
| | - Clémence Martin
- Department of Radiology (G.C., S.D., M.P.R.) and Respiratory Medicine and National Cystic Reference Center (P.R.B.), Groupe Hospitalier Cochin-Hotel Dieu, AP-HP, Université Paris Descartes, 27 Rue du Faubourg Saint-Jacques, 75014 Paris, France; Center for Visual Computing, Ecole CentraleSupelec, Grande Voie des Vignes, Chatenay Malabry, France (G.C., E.I.Z., N.P.); U1016 Inserm, Institut Cochin, Paris, France (G.C., P.R.B., C.M., M.P.R.); Radiology Department (S.B.) and Pulmonary Department (R.C.), Hôpital Arnaud de Villeneuve, CHU de Montpellier, Université de Montpellier, Montpellier, France; ERN-Lung CF Network, France (P.R.B., C.M.); and TheraPanacea, Paris-Biotech-Santé, Paris, France (N.P.)
| | - Marie-Pierre Revel
- Department of Radiology (G.C., S.D., M.P.R.) and Respiratory Medicine and National Cystic Reference Center (P.R.B.), Groupe Hospitalier Cochin-Hotel Dieu, AP-HP, Université Paris Descartes, 27 Rue du Faubourg Saint-Jacques, 75014 Paris, France; Center for Visual Computing, Ecole CentraleSupelec, Grande Voie des Vignes, Chatenay Malabry, France (G.C., E.I.Z., N.P.); U1016 Inserm, Institut Cochin, Paris, France (G.C., P.R.B., C.M., M.P.R.); Radiology Department (S.B.) and Pulmonary Department (R.C.), Hôpital Arnaud de Villeneuve, CHU de Montpellier, Université de Montpellier, Montpellier, France; ERN-Lung CF Network, France (P.R.B., C.M.); and TheraPanacea, Paris-Biotech-Santé, Paris, France (N.P.)
| |
Collapse
|
19
|
Ebenhan T, Kleynhans J, Zeevaart JR, Jeong JM, Sathekge M. Non-oncological applications of RGD-based single-photon emission tomography and positron emission tomography agents. Eur J Nucl Med Mol Imaging 2020; 48:1414-1433. [PMID: 32918574 DOI: 10.1007/s00259-020-04975-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 07/23/2020] [Indexed: 12/30/2022]
Abstract
INTRODUCTION Non-invasive imaging techniques (especially single-photon emission tomography and positron emission tomography) apply several RGD-based imaging ligands developed during a vast number of preclinical and clinical investigations. The RGD (Arg-Gly-Asp) sequence is a binding moiety for a large selection of adhesive extracellular matrix and cell surface proteins. Since the first identification of this sequence as the shortest sequence required for recognition in fibronectin during the 1980s, fundamental research regarding the molecular mechanisms of integrin action have paved the way for development of several pharmaceuticals and radiopharmaceuticals with clinical applications. Ligands recognizing RGD may be developed for use in the monitoring of these interactions (benign or pathological). Although RGD-based molecular imaging has been actively investigated for oncological purposes, their utilization towards non-oncology applications remains relatively under-exploited. METHODS AND SCOPE This review highlights the new non-oncologic applications of RGD-based tracers (with the focus on single-photon emission tomography and positron emission tomography). The focus is on the last 10 years of scientific literature (2009-2020). It is proposed that these imaging agents will be used for off-label indications that may provide options for disease monitoring where there are no approved tracers available, for instance Crohn's disease or osteoporosis. Fundamental science investigations have made progress in elucidating the involvement of integrin in various diseases not pertaining to oncology. Furthermore, RGD-based radiopharmaceuticals have been evaluated extensively for safety during clinical evaluations of various natures. CONCLUSION Clinical translation of non-oncological applications for RGD-based radiopharmaceuticals and other imaging tracers without going through time-consuming extensive development is therefore highly plausible. Graphical abstract.
Collapse
Affiliation(s)
- Thomas Ebenhan
- Nuclear Medicine, University of Pretoria, Pretoria, 0001, South Africa. .,Nuclear Medicine Research Infrastructure, NPC, Pretoria, 0001, South Africa.
| | - Janke Kleynhans
- Nuclear Medicine, University of Pretoria, Pretoria, 0001, South Africa.,Nuclear Medicine Research Infrastructure, NPC, Pretoria, 0001, South Africa
| | - Jan Rijn Zeevaart
- Nuclear Medicine Research Infrastructure, NPC, Pretoria, 0001, South Africa.,DST/NWU Preclinical Drug Development Platform, North-West University, Potchefstroom, 2520, South Africa
| | - Jae Min Jeong
- Department of Nuclear Medicine, Institute of Radiation Medicine, Seoul National University College of Medicine, 101 Daehangno Jongno-gu, Seoul, 110-744, South Korea
| | - Mike Sathekge
- Nuclear Medicine, University of Pretoria, Pretoria, 0001, South Africa
| |
Collapse
|
20
|
Su CY, Li JQ, Zhang LL, Wang H, Wang FH, Tao YW, Wang YQ, Guo QR, Li JJ, Liu Y, Yan YY, Zhang JY. The Biological Functions and Clinical Applications of Integrins in Cancers. Front Pharmacol 2020; 11:579068. [PMID: 33041823 PMCID: PMC7522798 DOI: 10.3389/fphar.2020.579068] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 08/24/2020] [Indexed: 12/12/2022] Open
Abstract
Integrins are the adhesion molecules and receptors of extracellular matrix (ECM). They mediate the interactions between cells-cells and cells-ECM. The crosstalk between cancer cells and their microenvironment triggers a variety of critical signaling cues and promotes the malignant phenotype of cancer. As a type of transmembrane protein, integrin-mediated cell adhesion is essential in regulating various biological functions of cancer cells. Recent evidence has shown that integrins present on tumor cells or tumor-associated stromal cells are involved in ECM remodeling, and as mechanotransducers sensing changes in the biophysical properties of the ECM, which contribute to cancer metastasis, stemness and drug resistance. In this review, we outline the mechanism of integrin-mediated effects on biological changes of cancers and highlight the current status of clinical treatments by targeting integrins.
Collapse
Affiliation(s)
- Chao-yue Su
- The Fifth Affiliated Hospital, Key Laboratory of Molecular Target and Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Jing-quan Li
- The First Affiliated Hospital, Hainan Medical University, Haikou, China
| | - Ling-ling Zhang
- The Fifth Affiliated Hospital, Key Laboratory of Molecular Target and Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Hui Wang
- Guangzhou Institute of Pediatrics/Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Feng-hua Wang
- Guangzhou Institute of Pediatrics/Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Yi-wen Tao
- The Fifth Affiliated Hospital, Key Laboratory of Molecular Target and Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Yu-qing Wang
- The Fifth Affiliated Hospital, Key Laboratory of Molecular Target and Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Qiao-ru Guo
- The Fifth Affiliated Hospital, Key Laboratory of Molecular Target and Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Jia-jun Li
- The Fifth Affiliated Hospital, Key Laboratory of Molecular Target and Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Yun Liu
- The Fifth Affiliated Hospital, Key Laboratory of Molecular Target and Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Yan-yan Yan
- Institute of Immunology and School of Medicine, Shanxi Datong University, Datong, China
| | - Jian-ye Zhang
- The Fifth Affiliated Hospital, Key Laboratory of Molecular Target and Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, China
- The First Affiliated Hospital, Hainan Medical University, Haikou, China
| |
Collapse
|
21
|
Distler O, Assassi S, Cottin V, Cutolo M, Danoff SK, Denton CP, Distler JHW, Hoffmann-Vold AM, Johnson SR, Müller Ladner U, Smith V, Volkmann ER, Maher TM. Predictors of progression in systemic sclerosis patients with interstitial lung disease. Eur Respir J 2020; 55:13993003.02026-2019. [PMID: 32079645 PMCID: PMC7236865 DOI: 10.1183/13993003.02026-2019] [Citation(s) in RCA: 145] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 02/09/2020] [Indexed: 12/17/2022]
Abstract
Systemic sclerosis (SSc) is a systemic autoimmune disease affecting multiple organ systems, including the lungs. Interstitial lung disease (ILD) is the leading cause of death in SSc. There are no valid biomarkers to predict the occurrence of SSc-ILD, although auto-antibodies against anti-topoisomerase I and several inflammatory markers are candidate biomarkers that need further evaluation. Chest auscultation, presence of shortness of breath and pulmonary function testing are important diagnostic tools, but lack sensitivity to detect early ILD. Baseline screening with high-resolution computed tomography (HRCT) is therefore necessary to confirm an SSc-ILD diagnosis. Once diagnosed with SSc-ILD, patients' clinical courses are variable and difficult to predict, although certain patient characteristics and biomarkers are associated with disease progression. It is important to monitor patients with SSc-ILD for signs of disease progression, although there is no consensus about which diagnostic tools to use or how often monitoring should occur. In this article, we review methods used to define and predict disease progression in SSc-ILD. There is no valid definition of SSc-ILD disease progression, but we suggest that either a decline in forced vital capacity (FVC) from baseline of ≥10%, or a decline in FVC of 5–9% in association with a decline in diffusing capacity of the lung for carbon monoxide of ≥15% represents progression. An increase in the radiographic extent of ILD on HRCT imaging would also signify progression. A time period of 1–2 years is generally used for this definition, but a decline over a longer time period may also reflect clinically relevant disease progression. Lung function tests and chest imaging help predict who has SSc-associated ILD and whether it will progress. In the absence of standardised methods for doctors, we recommend a strategy that combines both lung function tests and chest imaging.http://bit.ly/2uK9ZD2
Collapse
Affiliation(s)
- Oliver Distler
- Dept of Rheumatology, University Hospital Zurich, Zurich, Switzerland
| | - Shervin Assassi
- Dept of Rheumatology and Clinical Immunogenetics, McGovern Medical School, University of Texas, Houston, TX, USA
| | - Vincent Cottin
- National Reference Center for Rare Pulmonary Diseases, Louis Pradel Hospital, Hospices Civils de Lyon, Claude Bernard University Lyon 1, UMR754, Lyon, France
| | - Maurizio Cutolo
- Research Laboratory, Clinical Division of Rheumatology, Dept of Internal Medicine DIMI, University of Genoa, IRCSS Polyclinic Hospital San Martino, Genoa, Italy
| | - Sonye K Danoff
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins Medicine, Baltimore, MD, USA
| | - Christopher P Denton
- UCL Centre for Rheumatology and Connective Tissue Diseases, Royal Free Hospital, London, UK
| | - Jörg H W Distler
- Dept of Internal Medicine 3, University of Erlangen-Nuremberg, Erlangen, Germany
| | | | - Sindhu R Johnson
- Toronto Scleroderma Program, Dept of Medicine, Toronto Western and Mount Sinai Hospitals, University of Toronto, Toronto, ON, Canada
| | - Ulf Müller Ladner
- Dept of Rheumatology and Clinical Immunology, Justus-Liebig University Giessen, Campus Kerckhoff, Bad Nauheim, Germany
| | - Vanessa Smith
- Dept of Rheumatology, Ghent University Hospital, Ghent, Belgium.,Dept of Internal Medicine, Ghent University, Unit for Molecular Immunology and Inflammation, VIB Inflammation Research Center (IRC), Ghent, Belgium
| | - Elizabeth R Volkmann
- Dept of Medicine, Division of Rheumatology, University of California, David Geffen School of Medicine, Los Angeles, CA, USA
| | - Toby M Maher
- National Heart and Lung Institute, Imperial College London, London, UK.,NIHR Respiratory Clinical Research Facility, Royal Brompton Hospital, London, UK
| |
Collapse
|
22
|
Hoffmann-Vold AM, Fretheim H, Meier C, Maurer B. Circulating biomarkers of systemic sclerosis - interstitial lung disease. JOURNAL OF SCLERODERMA AND RELATED DISORDERS 2020; 5:41-47. [PMID: 35382223 PMCID: PMC8922568 DOI: 10.1177/2397198319894851] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 11/06/2019] [Indexed: 10/24/2023]
Abstract
Interstitial lung disease is a frequent organ manifestation in systemic sclerosis and is associated with high mortality. It is crucial to diagnose interstitial lung disease in systemic sclerosis and to assess severity and identify patients prone to progression at an early stage to ultimately decrease organ damage and improve outcome. Circulating anti-topoisomerase-I autoantibodies have long been associated with the presence and development of systemic sclerosis - interstitial lung disease, evidence on their potential to further predict the clinical course of systemic sclerosis is however conflicting. C-reactive protein is a marker of infection and systemic inflammation with widespread clinical application and is elevated in systemic sclerosis with a tendency towards higher abundancy in patients with early disease. The role of other circulating biomarkers is promising but hampered by the lack of standardized criteria and guidelines for sample/data collection, analyses, reporting and validation and has not reached prime time for clinical application. However, epithelial markers including Krebs von den Lungen-6 and surfactant protein D and several cytokines and chemokines including CCL2 and CCL18 for severity assessment of systemic sclerosis - interstitial lung disease patients at the time of interstitial lung disease diagnosis and to predict interstitial lung disease progression have been reported and seem to be promising candidate biomarkers in the future.
Collapse
Affiliation(s)
- Anna-Maria Hoffmann-Vold
- Department of Rheumatology, Oslo
University Hospital, Rikshospitalet, Oslo, Norway
- Institute of Clinical Medicine,
University of Oslo, Oslo, Norway
| | - Håvard Fretheim
- Department of Rheumatology, Oslo
University Hospital, Rikshospitalet, Oslo, Norway
- Institute of Clinical Medicine,
University of Oslo, Oslo, Norway
| | - Chantal Meier
- Center of Experimental
Rheumatology, Department of Rheumatology, Zurich University Hospital,
Zurich, Switzerland
| | - Britta Maurer
- Center of Experimental
Rheumatology, Department of Rheumatology, Zurich University Hospital,
Zurich, Switzerland
| |
Collapse
|
23
|
Schniering J, Benešová M, Brunner M, Haller S, Cohrs S, Frauenfelder T, Vrugt B, Feghali-Bostwick C, Schibli R, Distler O, Müller C, Maurer B. 18F-AzaFol for Detection of Folate Receptor-β Positive Macrophages in Experimental Interstitial Lung Disease-A Proof-of-Concept Study. Front Immunol 2019; 10:2724. [PMID: 31824505 PMCID: PMC6883947 DOI: 10.3389/fimmu.2019.02724] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 11/06/2019] [Indexed: 12/14/2022] Open
Abstract
Background: Interstitial lung disease (ILD) is a common and severe complication in rheumatic diseases. Folate receptor-β is expressed on activated, but not resting macrophages which play a key role in dysregulated tissue repair including ILD. We therefore aimed to pre-clinically evaluate the potential of 18F-AzaFol-based PET/CT (positron emission computed tomography/computed tomography) for the specific detection of macrophage-driven pathophysiologic processes in experimental ILD. Methods: The pulmonary expression of folate receptor-β was analyzed in patients with different subtypes of ILD as well as in bleomycin (BLM)-treated mice and respective controls using immunohistochemistry. PET/CT was performed at days 3, 7, and 14 after BLM instillation using the 18F-based folate radiotracer 18F-AzaFol. The specific pulmonary accumulation of the radiotracer was assessed by ex vivo PET/CT scans and quantified by ex vivo biodistribution studies. Results: Folate receptor-β expression was 3- to 4-fold increased in patients with fibrotic ILD, including idiopathic pulmonary fibrosis and connective tissue disease-related ILD, and significantly correlated with the degree of lung remodeling. A similar increase in the expression of folate receptor-β was observed in experimental lung fibrosis, where it also correlated with disease extent. In the mouse model of BLM-induced ILD, pulmonary accumulation of 18F-AzaFol reflected macrophage-related disease development with good correlation of folate receptor-β positivity with radiotracer uptake. In the ex vivo imaging and biodistribution studies, the maximum lung accumulation was observed at day 7 with a mean accumulation of 1.01 ± 0.30% injected activity/lung in BLM-treated vs. control animals (0.31 ± 0.06% % injected activity/lung; p < 0.01). Conclusion: Our preclinical proof-of-concept study demonstrated the potential of 18F-AzaFol as a novel imaging tool for the visualization of macrophage-driven fibrotic lung diseases.
Collapse
Affiliation(s)
- Janine Schniering
- Department of Rheumatology, Center of Experimental Rheumatology, University Hospital Zurich, Zurich, Switzerland
| | - Martina Benešová
- Center for Radiopharmaceutical Sciences, Paul Scherrer Institute, Villigen, Switzerland
- Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland
| | - Matthias Brunner
- Department of Rheumatology, Center of Experimental Rheumatology, University Hospital Zurich, Zurich, Switzerland
| | - Stephanie Haller
- Center for Radiopharmaceutical Sciences, Paul Scherrer Institute, Villigen, Switzerland
| | - Susan Cohrs
- Center for Radiopharmaceutical Sciences, Paul Scherrer Institute, Villigen, Switzerland
| | - Thomas Frauenfelder
- Institute of Diagnostic and Interventional Radiology, University Hospital Zurich, Zurich, Switzerland
| | - Bart Vrugt
- Institute of Pathology and Molecular Pathology, University Hospital Zurich, Zurich, Switzerland
| | - Carol Feghali-Bostwick
- Division of Rheumatology & Immunology, Medical University of South Carolina, Charleston, SC, United States
| | - Roger Schibli
- Center for Radiopharmaceutical Sciences, Paul Scherrer Institute, Villigen, Switzerland
- Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland
| | - Oliver Distler
- Department of Rheumatology, Center of Experimental Rheumatology, University Hospital Zurich, Zurich, Switzerland
| | - Cristina Müller
- Center for Radiopharmaceutical Sciences, Paul Scherrer Institute, Villigen, Switzerland
- Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland
| | - Britta Maurer
- Department of Rheumatology, Center of Experimental Rheumatology, University Hospital Zurich, Zurich, Switzerland
| |
Collapse
|
24
|
DeMizio DJ, Bernstein EJ. Detection and classification of systemic sclerosis-related interstitial lung disease: a review. Curr Opin Rheumatol 2019; 31:553-560. [PMID: 31415029 PMCID: PMC7250133 DOI: 10.1097/bor.0000000000000660] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
PURPOSE OF REVIEW Systemic sclerosis (SSc) is a heterogeneous disease with a variable disease course. Interstitial lung disease (ILD) is one of the leading causes of morbidity and mortality in patients with SSc. The present review highlights recent advances in the classification, diagnosis, and early detection of SSc-associated ILD (SSc-ILD). RECENT FINDINGS Risk stratification through measurement of disease extent on high-resolution computed tomography (HRCT) of the chest, longitudinal declines in pulmonary function tests (PFTs), and mortality prediction models have formed the basis for classifying clinically significant ILD. HRCT may be preferred over PFTs for screening, as PFTs lack sensitivity and have a high false-negative rate. Novel imaging modalities and biomarkers hold promise as adjunct methods for assessing the presence and severity of SSc-ILD, and predicting risk for progressive disease. Further validation is required prior to their use in clinical settings. SUMMARY Classification of SSc-ILD has shifted to a personalized approach that considers an individual patient's probability of progressive disease through identification of risk factors, measurement of disease extent on HRCT, longitudinal declines in PFTs, and mortality prediction models. There remains an unmet need to develop screening guidelines for SSc-ILD.
Collapse
Affiliation(s)
- Daniel J DeMizio
- Division of Rheumatology, Department of Medicine, Vagelos College of Physicians and Surgeons - Columbia University Irving Medical Center, New York, New York, USA
| | | |
Collapse
|
25
|
Martinović Kaliterna D, Petrić M. Biomarkers of skin and lung fibrosis in systemic sclerosis. Expert Rev Clin Immunol 2019; 15:1215-1223. [DOI: 10.1080/1744666x.2020.1670062] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
| | - Marin Petrić
- Department of Clinical Immunology and Rheumatology, Department of Internal Medicine, University Hospital of Split, Split, Croatia
| |
Collapse
|