1
|
Charras A, Hiraki LT, Lewandowski L, Hedrich CM. Genetic and epigenetic factors shape phenotypes and outcomes in systemic lupus erythematosus - focus on juvenile-onset systemic lupus erythematosus. Curr Opin Rheumatol 2025; 37:149-163. [PMID: 39660463 PMCID: PMC11789615 DOI: 10.1097/bor.0000000000001072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2024]
Abstract
PURPOSE OF REVIEW Systemic lupus erythematosus (SLE) is a severe autoimmune/inflammatory disease. Patients with juvenile disease-onset and those of non-European ancestry are most severely affected. While the exact pathophysiology remains unknown, common and rare gene variants in the context of environmental exposure and epigenetic alterations are involved. This manuscript summarizes the current understanding of genetic and epigenetic contributors to SLE risk, manifestations and outcomes. RECENT FINDINGS Though SLE is a mechanistically complex disease, we are beginning to understand the impact of rare and common gene variants on disease expression and associated outcomes. Recent trans -ancestral and multigenerational studies suggest that differential genetic and environmental impacts shape phenotypic variability between age-groups and ancestries. High genetic burden associates with young age at disease-onset, organ involvement, and severity. Additional epigenetic impact contributes to disease-onset and severity, including SLE-phenotypes caused by rare single gene variants. Studies aiming to identify predictors of organ involvement and disease outcomes promise future patient stratification towards individualized treatment and care. SUMMARY An improved understanding of genetic variation and epigenetic marks explain phenotypic differences between age-groups and ancestries, promising their future exploitation for diagnostic, prognostic and therapeutic considerations.
Collapse
Affiliation(s)
- Amandine Charras
- Department of Women's and Children's Health, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
| | - Linda T. Hiraki
- Genetics & Genome Biology, Research Institute, and Division of Rheumatology, The Hospital for Sick Children, & Division of Rheumatology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Laura Lewandowski
- National Institute of Arthritis and Musculoskeletal and Skin diseases, NIH, Bethesda, Maryland, USA
| | - Christian M. Hedrich
- Department of Women's and Children's Health, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
- Department of Rheumatology, Alder Hey Children's NHS Foundation Trust, Liverpool, UK
| |
Collapse
|
2
|
Zhang TY, Wang W, Gao SH, Yu ZX, Wang W, Zhou Y, Wang CY, Jian S, Wang L, Gou LJ, Li J, Ma MS, Song HM. LASSO-derived nomogram for early identification of pediatric monogenic lupus. World J Pediatr 2024; 20:1155-1167. [PMID: 38970732 PMCID: PMC11582177 DOI: 10.1007/s12519-024-00817-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 05/06/2024] [Indexed: 07/08/2024]
Abstract
BACKGROUND Monogenic lupus is defined as systemic lupus erythematosus (SLE)/SLE-like patients with either dominantly or recessively inherited pathogenic variants in a single gene with high penetrance. However, because the clinical phenotype of monogenic SLE is extensive and overlaps with that of classical SLE, it causes a delay in diagnosis and treatment. Currently, there is a lack of early identification models for clinical practitioners to provide early clues for recognition. Our goal was to create a clinical model for the early identification of pediatric monogenic lupus, thereby facilitating early and precise diagnosis and treatment for patients. METHODS This retrospective cohort study consisted of 41 cases of monogenic lupus treated at the Department of Pediatrics at Peking Union Medical College Hospital from June 2012 to December 2022. The control group consisted of classical SLE patients recruited at a 1:2 ratio. Patients were randomly divided into a training group and a validation group at a 7:3 ratio. A logistic regression model was established based on the least absolute shrinkage and selection operator to generate the coefficient plot. The predictive ability of the model was evaluated using receiver operator characteristic curves and the area under the curve (AUC) index. RESULTS A total of 41 cases of monogenic lupus patients and 82 cases of classical SLE patients were included. Among the monogenic lupus cases (with a male-to-female ratio of 1:1.05 and ages of onset ranging from birth to 15 years), a total of 18 gene mutations were identified. The variables included in the coefficient plot were age of onset, recurrent infections, intracranial calcifications, growth and developmental delay, abnormal muscle tone, lymphadenopathy/hepatosplenomegaly, and chilblain-like skin rash. Our model demonstrated satisfactory diagnostic performance through internal validation, with an AUC value of 0.97 (95% confidence interval = 0.92-0.97). CONCLUSIONS We summarized and analyzed the clinical characteristics of pediatric monogenic lupus and developed a predictive model for early identification by clinicians. Clinicians should exercise high vigilance for monogenic lupus when the score exceeds - 9.032299.
Collapse
Affiliation(s)
- Tian-Yu Zhang
- Department of Pediatrics, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wei Wang
- Department of Pediatrics, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Si-Hao Gao
- Department of Pediatrics, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhong-Xun Yu
- Department of Pediatrics, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wei Wang
- Department of Pediatrics, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yu Zhou
- Department of Pediatrics, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chang-Yan Wang
- Department of Pediatrics, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shan Jian
- Department of Pediatrics, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lin Wang
- Department of Pediatrics, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Li-Juan Gou
- Department of Pediatrics, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ji Li
- Department of Pediatrics, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ming-Sheng Ma
- Department of Pediatrics, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Hong-Mei Song
- Department of Pediatrics, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
3
|
Ghodke-Puranik Y, Olferiev M, Crow MK. Systemic lupus erythematosus genetics: insights into pathogenesis and implications for therapy. Nat Rev Rheumatol 2024; 20:635-648. [PMID: 39232240 DOI: 10.1038/s41584-024-01152-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/30/2024] [Indexed: 09/06/2024]
Abstract
Systemic lupus erythematosus (SLE) is a prime example of how the interplay between genetic and environmental factors can trigger systemic autoimmunity, particularly in young women. Although clinical disease can take years to manifest, risk is established by the unique genetic makeup of an individual. Genome-wide association studies have identified almost 200 SLE-associated risk loci, yet unravelling the functional effect of these loci remains a challenge. New analytic tools have enabled researchers to delve deeper, leveraging DNA sequencing and cell-specific and immune pathway analysis to elucidate the immunopathogenic mechanisms. Both common genetic variants and rare non-synonymous mutations can interact to increase SLE risk. Notably, variants strongly associated with SLE are often located in genome super-enhancers that regulate MHC class II gene expression. Additionally, the 3D conformations of DNA and RNA contribute to genome regulation and innate immune system activation. Improved therapies for SLE are urgently needed and current and future knowledge from genetic and genomic research should provide new tools to facilitate patient diagnosis, enhance the identification of therapeutic targets and optimize testing of agents.
Collapse
Affiliation(s)
- Yogita Ghodke-Puranik
- Mary Kirkland Center for Lupus Research, Hospital for Special Surgery and Weill Cornell Medicine, New York, NY, USA
| | - Mikhail Olferiev
- Mary Kirkland Center for Lupus Research, Hospital for Special Surgery and Weill Cornell Medicine, New York, NY, USA
| | - Mary K Crow
- Mary Kirkland Center for Lupus Research, Hospital for Special Surgery and Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
4
|
Kim H, Massett MP. Effect of Spermidine on Endothelial Function in Systemic Lupus Erythematosus Mice. Int J Mol Sci 2024; 25:9920. [PMID: 39337408 PMCID: PMC11432455 DOI: 10.3390/ijms25189920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/06/2024] [Accepted: 09/09/2024] [Indexed: 09/30/2024] Open
Abstract
Endothelial dysfunction is common in Systemic Lupus Erythematosus (SLE), even in the absence of cardiovascular disease. Evidence suggests that impaired mitophagy contributes to SLE. Mitochondrial dysfunction is also associated with impaired endothelial function. Spermidine, a natural polyamine, stimulates mitophagy by the PINK1-parkin pathway and counters age-associated endothelial dysfunction. However, the effect of spermidine on mitophagy and vascular function in SLE has not been explored. To address this gap, 9-week-old female lupus-prone (MRL/lpr) and healthy control (MRL/MpJ) mice were randomly assigned to spermidine treatment (lpr_Spermidine and MpJ_Spermidine) for 8 weeks or as control (lpr_Control and MpJ_Control). lpr_Control mice exhibited impaired endothelial function (e.g., decreased relaxation to acetylcholine), increased markers of inflammation, and lower protein content of parkin, a mitophagy marker, in the thoracic aorta. Spermidine treatment prevented endothelial dysfunction in MRL-lpr mice. Furthermore, aortas from lpr_Spermidine mice had lower levels of inflammatory markers and higher levels of parkin. Lupus phenotypes were not affected by spermidine. Collectively, these results demonstrate the beneficial effects of spermidine treatment on endothelial function, inflammation, and mitophagy in SLE mice. These results support future studies of the beneficial effects of spermidine on endothelial dysfunction and cardiovascular disease risk in SLE.
Collapse
Affiliation(s)
| | - Michael P. Massett
- Department of Kinesiology and Sport Management, Texas Tech University, Lubbock, TX 79409, USA
| |
Collapse
|
5
|
Xiong Y, Lei M, Gao Y, Deng Y. ODC1, a key enzyme in polyamine metabolism, plays a regulatory role in B cell differentiation. Asian J Surg 2024:S1015-9584(24)01904-3. [PMID: 39242258 DOI: 10.1016/j.asjsur.2024.08.164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 08/20/2024] [Indexed: 09/09/2024] Open
Affiliation(s)
- Yingzhu Xiong
- Changde Hospital, Xiangya School of Medicine, Central South University (The First People's Hospital of Changde City), China
| | - Ming Lei
- Changde Hospital, Xiangya School of Medicine, Central South University (The First People's Hospital of Changde City), China
| | - Yan Gao
- Changde Hospital, Xiangya School of Medicine, Central South University (The First People's Hospital of Changde City), China.
| | - Yi Deng
- Changde Hospital, Xiangya School of Medicine, Central South University (The First People's Hospital of Changde City), China
| |
Collapse
|
6
|
Thuner J, Cognard J, Belot A. How to treat monogenic SLE? Best Pract Res Clin Rheumatol 2024; 38:101962. [PMID: 38876818 DOI: 10.1016/j.berh.2024.101962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/12/2024] [Accepted: 05/29/2024] [Indexed: 06/16/2024]
Abstract
Systemic lupus erythematosus is a rare and life-threatening autoimmune disease characterized by autoantibodies against double-stranded DNA, with an immunopathology that remains partially unclear. New insights into the disease have been provided by the discovery of key mutations leading to the development of monogenic SLE, occurring in the context of early-onset disease, syndromic lupus, or familial clustering. The increased frequency of discovering these mutations in recent years, thanks to the advent of genetic screening, has greatly enhanced our understanding of the immunopathogenesis of SLE. These monogenic defects include defective clearance of apoptotic bodies, abnormalities in nucleic acid sensing, activation of the type-I interferon pathway, and the breakdown of tolerance through B or T cell activation or lymphocyte proliferation due to anomalies in TLR signalling and/or NFκB pathway overactivation. The translation of genetic discoveries into therapeutic strategies is presented here, within the framework of personalized therapy.
Collapse
Affiliation(s)
- Jonathan Thuner
- Internal Medicine Department, Lyon-Sud Hospital, Hospices Civils de Lyon, Pierre-Bénite, France; CIRI, Centre International de Recherche en Infectiologie/International Center for Infectiology Research, Université de Lyon, INSERM, Institut National de La Santé Et de La Recherche Médicale, U1111, Université Claude Bernard Lyon 1, Lyon, France
| | - Jade Cognard
- Pediatric Rheumatology, Nephrology, Dermatology Department, CMR RAISE, Women-Mother-Child Hospital, Hospices Civils de Lyon, Bron, France; CIRI, Centre International de Recherche en Infectiologie/International Center for Infectiology Research, Université de Lyon, INSERM, Institut National de La Santé Et de La Recherche Médicale, U1111, Université Claude Bernard Lyon 1, Lyon, France
| | - Alexandre Belot
- Pediatric Rheumatology, Nephrology, Dermatology Department, CMR RAISE, Women-Mother-Child Hospital, Hospices Civils de Lyon, Bron, France; CIRI, Centre International de Recherche en Infectiologie/International Center for Infectiology Research, Université de Lyon, INSERM, Institut National de La Santé Et de La Recherche Médicale, U1111, Université Claude Bernard Lyon 1, Lyon, France; CNRS, Centre National de La Recherche Scientifique, UMR5308, Lyon, France.
| |
Collapse
|
7
|
Medhavy A, Athanasopoulos V, Bassett K, He Y, Stanley M, Enosi Tuipulotu D, Cappello J, Brown GJ, Gonzalez-Figueroa P, Turnbull C, Shanmuganandam S, Tummala P, Hart G, Lea-Henry T, Wang H, Nambadan S, Shen Q, Roco JA, Burgio G, Wu P, Cho E, Andrews TD, Field MA, Wu X, Ding H, Guo Q, Shen N, Man SM, Jiang SH, Cook MC, Vinuesa CG. A TNIP1-driven systemic autoimmune disorder with elevated IgG4. Nat Immunol 2024; 25:1678-1691. [PMID: 39060650 PMCID: PMC11362012 DOI: 10.1038/s41590-024-01902-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 06/18/2024] [Indexed: 07/28/2024]
Abstract
Whole-exome sequencing of two unrelated kindreds with systemic autoimmune disease featuring antinuclear antibodies with IgG4 elevation uncovered an identical ultrarare heterozygous TNIP1Q333P variant segregating with disease. Mice with the orthologous Q346P variant developed antinuclear autoantibodies, salivary gland inflammation, elevated IgG2c, spontaneous germinal centers and expansion of age-associated B cells, plasma cells and follicular and extrafollicular helper T cells. B cell phenotypes were cell-autonomous and rescued by ablation of Toll-like receptor 7 (TLR7) or MyD88. The variant increased interferon-β without altering nuclear factor kappa-light-chain-enhancer of activated B cells signaling, and impaired MyD88 and IRAK1 recruitment to autophagosomes. Additionally, the Q333P variant impaired TNIP1 localization to damaged mitochondria and mitophagosome formation. Damaged mitochondria were abundant in the salivary epithelial cells of Tnip1Q346P mice. These findings suggest that TNIP1-mediated autoimmunity may be a consequence of increased TLR7 signaling due to impaired recruitment of downstream signaling molecules and damaged mitochondria to autophagosomes and may thus respond to TLR7-targeted therapeutics.
Collapse
Affiliation(s)
- Arti Medhavy
- Division of Immunology and Infectious Disease, John Curtin School of Medical Research, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Vicki Athanasopoulos
- Division of Immunology and Infectious Disease, John Curtin School of Medical Research, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Katharine Bassett
- Division of Immunology and Infectious Disease, John Curtin School of Medical Research, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Yuke He
- China Australia Center for Personalized Immunology, Shanghai Renji Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Maurice Stanley
- Division of Immunology and Infectious Disease, John Curtin School of Medical Research, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Daniel Enosi Tuipulotu
- Division of Immunology and Infectious Disease, John Curtin School of Medical Research, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Jean Cappello
- Division of Immunology and Infectious Disease, John Curtin School of Medical Research, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Grant J Brown
- Division of Immunology and Infectious Disease, John Curtin School of Medical Research, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Paula Gonzalez-Figueroa
- Division of Immunology and Infectious Disease, John Curtin School of Medical Research, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Cynthia Turnbull
- Division of Immunology and Infectious Disease, John Curtin School of Medical Research, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Somasundhari Shanmuganandam
- Division of Immunology and Infectious Disease, John Curtin School of Medical Research, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Padmaja Tummala
- Division of Immunology and Infectious Disease, John Curtin School of Medical Research, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Gemma Hart
- Division of Immunology and Infectious Disease, John Curtin School of Medical Research, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Tom Lea-Henry
- Division of Immunology and Infectious Disease, John Curtin School of Medical Research, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Hao Wang
- Francis Crick Institute, London, UK
| | - Sonia Nambadan
- Division of Immunology and Infectious Disease, John Curtin School of Medical Research, Australian National University, Canberra, Australian Capital Territory, Australia
| | | | - Jonathan A Roco
- Division of Immunology and Infectious Disease, John Curtin School of Medical Research, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Gaetan Burgio
- Division of Immunology and Infectious Disease, John Curtin School of Medical Research, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Phil Wu
- Division of Immunology and Infectious Disease, John Curtin School of Medical Research, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Eun Cho
- Division of Immunology and Infectious Disease, John Curtin School of Medical Research, Australian National University, Canberra, Australian Capital Territory, Australia
| | - T Daniel Andrews
- Division of Immunology and Infectious Disease, John Curtin School of Medical Research, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Matt A Field
- Division of Immunology and Infectious Disease, John Curtin School of Medical Research, Australian National University, Canberra, Australian Capital Territory, Australia
- Center for Tropical Bioinformatics and Molecular Biology, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Queensland, Australia
| | - Xiaoqian Wu
- China Australia Center for Personalized Immunology, Shanghai Renji Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Huihua Ding
- Department of Rheumatology, Renji Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Qiang Guo
- Department of Rheumatology, Renji Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Nan Shen
- China Australia Center for Personalized Immunology, Shanghai Renji Hospital, Shanghai Jiaotong University, Shanghai, China
- Department of Rheumatology, Renji Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Si Ming Man
- Division of Immunology and Infectious Disease, John Curtin School of Medical Research, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Simon H Jiang
- Division of Immunology and Infectious Disease, John Curtin School of Medical Research, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Matthew C Cook
- Division of Immunology and Infectious Disease, John Curtin School of Medical Research, Australian National University, Canberra, Australian Capital Territory, Australia
- Department of Medicine, University of Cambridge, Cambridge, UK
| | - Carola G Vinuesa
- Division of Immunology and Infectious Disease, John Curtin School of Medical Research, Australian National University, Canberra, Australian Capital Territory, Australia.
- China Australia Center for Personalized Immunology, Shanghai Renji Hospital, Shanghai Jiaotong University, Shanghai, China.
- Francis Crick Institute, London, UK.
| |
Collapse
|
8
|
Tsokos GC. The immunology of systemic lupus erythematosus. Nat Immunol 2024; 25:1332-1343. [PMID: 39009839 DOI: 10.1038/s41590-024-01898-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 06/17/2024] [Indexed: 07/17/2024]
Abstract
Understanding the pathogenesis and clinical manifestations of systemic lupus erythematosus (SLE) has been a great challenge. Reductionist approaches to understand the nature of the disease have identified many pathogenetic contributors that parallel clinical heterogeneity. This Review outlines the immunological control of SLE and looks to experimental tools and approaches that are improving our understanding of the complex contribution of interacting genetics, environment, sex and immunoregulatory factors and their interface with processes inherent to tissue parenchymal cells. Efforts to advance precision medicine in the care of patients with SLE along with treatment strategies to correct the immune system hold hope and are also examined.
Collapse
Affiliation(s)
- George C Tsokos
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
9
|
Lin L, Ren R, Xiong Q, Zheng C, Yang B, Wang H. Remodeling of T-cell mitochondrial metabolism to treat autoimmune diseases. Autoimmun Rev 2024; 23:103583. [PMID: 39084278 DOI: 10.1016/j.autrev.2024.103583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/23/2024] [Accepted: 07/24/2024] [Indexed: 08/02/2024]
Abstract
T cells are key drivers of the pathogenesis of autoimmune diseases by producing cytokines, stimulating the generation of autoantibodies, and mediating tissue and cell damage. Distinct mitochondrial metabolic pathways govern the direction of T-cell differentiation and function and rely on specific nutrients and metabolic enzymes. Metabolic substrate uptake and mitochondrial metabolism form the foundational elements for T-cell activation, proliferation, differentiation, and effector function, contributing to the dynamic interplay between immunological signals and mitochondrial metabolism in coordinating adaptive immunity. Perturbations in substrate availability and enzyme activity may impair T-cell immunosuppressive function, fostering autoreactive responses and disrupting immune homeostasis, ultimately contributing to autoimmune disease pathogenesis. A growing body of studies has explored how metabolic processes regulate the function of diverse T-cell subsets in autoimmune diseases such as systemic lupus erythematosus (SLE), multiple sclerosis (MS), autoimmune hepatitis (AIH), inflammatory bowel disease (IBD), and psoriasis. This review describes the coordination of T-cell biology by mitochondrial metabolism, including the electron transport chain (ETC), oxidative phosphorylation, amino acid metabolism, fatty acid metabolism, and one‑carbon metabolism. This study elucidated the intricate crosstalk between mitochondrial metabolic programs, signal transduction pathways, and transcription factors. This review summarizes potential therapeutic targets for T-cell mitochondrial metabolism and signaling in autoimmune diseases, providing insights for future studies.
Collapse
Affiliation(s)
- Liyan Lin
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu 610041, China; Sichuan Clinical Research Center for Laboratory Medicine, Chengdu 610041, China; Laboratory Medicine Research Center of West China Hospital, Sichuan University, Chengdu 610041, China
| | - Ruyu Ren
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu 610041, China; Sichuan Clinical Research Center for Laboratory Medicine, Chengdu 610041, China; Laboratory Medicine Research Center of West China Hospital, Sichuan University, Chengdu 610041, China
| | - Qiao Xiong
- Department of Infectious Disease, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Chunfu Zheng
- Department of Microbiology, Immunology & Infection Diseases, University of Calgary, Calgary, Alberta, Canada.
| | - Bin Yang
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu 610041, China; Sichuan Clinical Research Center for Laboratory Medicine, Chengdu 610041, China; Laboratory Medicine Research Center of West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Huiqing Wang
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
10
|
Zhang YR, Yin Y, Guo SM, Wang YF, Zhao GN, Ji DM, Zhou LQ. The landscape of transcriptional profiles in human oocytes with different chromatin configurations. J Ovarian Res 2024; 17:99. [PMID: 38730385 PMCID: PMC11088011 DOI: 10.1186/s13048-024-01431-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 05/02/2024] [Indexed: 05/12/2024] Open
Abstract
With increasingly used assisted reproductive technology (ART), the acquisition of high-quality oocytes and early embryos has become the focus of much attention. Studies in mice have found that the transition of chromatin conformation from non-surrounded nucleolus (NSN) to surrounded nucleolus (SN) is essential for oocyte maturation and early embryo development, and similar chromatin transition also exists in human oocytes. In this study, we collected human NSN and SN oocytes and investigated their transcriptome. The analysis of differentially expressed genes showed that epigenetic functions, cyclin-dependent kinases and transposable elements may play important roles in chromatin transition during human oocyte maturation. Our findings provide new insights into the molecular mechanism of NSN-to-SN transition of human oocyte and obtained new clues for improvement of oocyte in vitro maturation technique.
Collapse
Affiliation(s)
- Yi-Ran Zhang
- Institute of Reproductive Health/Center of Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Anhui, China
| | - Ying Yin
- Department of Physiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Drug Target Research and Pharmacodynamic Evaluation, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Shi-Meng Guo
- Institute of Reproductive Health/Center of Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yu-Fan Wang
- Institute of Reproductive Health/Center of Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Guang-Nian Zhao
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Key Laboratory of Cancer Invasion and Metastasis (Ministry of Education), Hubei Key Laboratory of Tumor Invasion and Metastasis, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Dong-Mei Ji
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Anhui, China.
| | - Li-Quan Zhou
- Institute of Reproductive Health/Center of Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Anhui, China.
| |
Collapse
|
11
|
Qin Y, Ma J, Vinuesa CG. Monogenic lupus: insights into disease pathogenesis and therapeutic opportunities. Curr Opin Rheumatol 2024; 36:191-200. [PMID: 38420886 PMCID: PMC7616038 DOI: 10.1097/bor.0000000000001008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
PURPOSE OF REVIEW This review aims to provide an overview of the genes and molecular pathways involved in monogenic lupus, the implications for genome diagnosis, and the potential therapies targeting these molecular mechanisms. RECENT FINDINGS To date, more than 30 genes have been identified as contributors to monogenic lupus. These genes are primarily related to complement deficiency, activation of the type I interferon (IFN) pathway, disruption of B-cell and T-cell tolerance and metabolic pathways, which reveal the multifaceted nature of systemic lupus erythematosus (SLE) pathogenesis. SUMMARY In-depth study of the causes of monogenic lupus can provide valuable insights into of pathogenic mechanisms of SLE, facilitate the identification of effective biomarkers, and aid in developing therapeutic strategies.
Collapse
Affiliation(s)
- Yuting Qin
- China Australia Centre for Personalized Immunology (CACPI), Renji Hospital, Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, China
| | - Jianyang Ma
- China Australia Centre for Personalized Immunology (CACPI), Renji Hospital, Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, China
| | - Carola G. Vinuesa
- China Australia Centre for Personalized Immunology (CACPI), Renji Hospital, Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, China
- The Francis Crick Institute, London, UK
| |
Collapse
|
12
|
Tusseau M, Khaldi-Plassart S, Cognard J, Viel S, Khoryati L, Benezech S, Mathieu AL, Rieux-Laucat F, Bader-Meunier B, Belot A. Mendelian Causes of Autoimmunity: the Lupus Phenotype. J Clin Immunol 2024; 44:99. [PMID: 38619739 DOI: 10.1007/s10875-024-01696-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 03/25/2024] [Indexed: 04/16/2024]
Abstract
Systemic lupus erythematosus (SLE) is a chronic autoimmune disease that is characterized by its large heterogeneity in terms of clinical presentation and severity. The pathophysiology of SLE involves an aberrant autoimmune response against various tissues, an excess of apoptotic bodies, and an overproduction of type-I interferon. The genetic contribution to the disease is supported by studies of monozygotic twins, familial clustering, and genome-wide association studies (GWAS) that have identified numerous risk loci. In the early 70s, complement deficiencies led to the description of familial forms of SLE caused by a single gene defect. High-throughput sequencing has recently identified an increasing number of monogenic defects associated with lupus, shaping the concept of monogenic lupus and enhancing our insights into immune tolerance mechanisms. Monogenic lupus (moSLE) should be suspected in patients with either early-onset lupus or syndromic lupus, in male, or in familial cases of lupus. This review discusses the genetic basis of monogenic SLE and proposes its classification based on disrupted pathways. These pathways include defects in the clearance of apoptotic cells or immune complexes, interferonopathies, JAK-STATopathies, TLRopathies, and T and B cell dysregulations.
Collapse
Affiliation(s)
- Maud Tusseau
- Centre International de Recherche en Infectiologie, Inserm, U1111, University Claude Bernard, Lyon 1, Centre National de La Recherche Scientifique, UMR5308, ENS de Lyon, Lyon, France
| | - Samira Khaldi-Plassart
- National Referee Centre for Rheumatic and AutoImmune and Systemic Diseases in Children, European Reference Network (ERN) for Rare Immunodeficiency, Autoinflammatory and Autoimmune Diseases (RITA) Center, Hospices Civils de Lyon, Lyon, France
- Pediatric Nephrology, Rheumatology, Dermatology Unit, Hôpital Femme Mère Enfant, Hospices Civils de Lyon, Lyon, France
| | - Jade Cognard
- Centre International de Recherche en Infectiologie, Inserm, U1111, University Claude Bernard, Lyon 1, Centre National de La Recherche Scientifique, UMR5308, ENS de Lyon, Lyon, France
- Pediatric Nephrology, Rheumatology, Dermatology Unit, Hôpital Femme Mère Enfant, Hospices Civils de Lyon, Lyon, France
| | - Sebastien Viel
- Centre International de Recherche en Infectiologie, Inserm, U1111, University Claude Bernard, Lyon 1, Centre National de La Recherche Scientifique, UMR5308, ENS de Lyon, Lyon, France
| | - Liliane Khoryati
- Centre International de Recherche en Infectiologie, Inserm, U1111, University Claude Bernard, Lyon 1, Centre National de La Recherche Scientifique, UMR5308, ENS de Lyon, Lyon, France
| | - Sarah Benezech
- Centre International de Recherche en Infectiologie, Inserm, U1111, University Claude Bernard, Lyon 1, Centre National de La Recherche Scientifique, UMR5308, ENS de Lyon, Lyon, France
| | - Anne-Laure Mathieu
- Centre International de Recherche en Infectiologie, Inserm, U1111, University Claude Bernard, Lyon 1, Centre National de La Recherche Scientifique, UMR5308, ENS de Lyon, Lyon, France
| | - Fréderic Rieux-Laucat
- Laboratory of Immunogenetics of Pediatric Autoimmune Diseases, Imagine Institute, INSERM UMR 1163, Université Paris Cité, Paris, France
| | - Brigitte Bader-Meunier
- National Referee Centre for Rheumatic and AutoImmune and Systemic Diseases in Children, European Reference Network (ERN) for Rare Immunodeficiency, Autoinflammatory and Autoimmune Diseases (RITA) Center, Hospices Civils de Lyon, Lyon, France
- Laboratory of Immunogenetics of Pediatric Autoimmune Diseases, Imagine Institute, INSERM UMR 1163, Université Paris Cité, Paris, France
- Department for Immunology, Hematology and Pediatric Rheumatology, Necker Hospital, APHP, Institut IMAGINE, Paris, France
| | - Alexandre Belot
- Centre International de Recherche en Infectiologie, Inserm, U1111, University Claude Bernard, Lyon 1, Centre National de La Recherche Scientifique, UMR5308, ENS de Lyon, Lyon, France.
- National Referee Centre for Rheumatic and AutoImmune and Systemic Diseases in Children, European Reference Network (ERN) for Rare Immunodeficiency, Autoinflammatory and Autoimmune Diseases (RITA) Center, Hospices Civils de Lyon, Lyon, France.
- Pediatric Nephrology, Rheumatology, Dermatology Unit, Hôpital Femme Mère Enfant, Hospices Civils de Lyon, Lyon, France.
| |
Collapse
|
13
|
Tao T, Tang A, Lv L, Yuan J, Wu L, Zhao L, Chen J. Investigating the causal relationship and potential shared diagnostic genes between primary biliary cholangitis and systemic lupus erythematosus using bidirectional Mendelian randomization and transcriptomic analyses. Front Immunol 2024; 15:1270401. [PMID: 38464525 PMCID: PMC10921416 DOI: 10.3389/fimmu.2024.1270401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 02/05/2024] [Indexed: 03/12/2024] Open
Abstract
Background The co-occurrence of primary biliary cholangitis (PBC) and systemic lupus erythematosus (SLE) has been consistently reported in observational studies. Nevertheless, the underlying causal correlation between these two conditions still needs to be established. Methods We performed a bidirectional two-sample Mendelian randomization (MR) study to assess their causal association. Five MR analysis methods were utilized for causal inference, with inverse-variance weighted (IVW) selected as the primary method. The Mendelian Randomization Pleiotropy RESidual Sum and Outlier (MR-PRESSO) and the IVW Radial method were applied to exclude outlying SNPs. To assess the robustness of the MR results, five sensitivity analyses were carried out. Multivariable MR (MVMR) analysis was also employed to evaluate the effect of possible confounders. In addition, we integrated transcriptomic data from PBC and SLE, employing Weighted Gene Co-expression Network Analysis (WGCNA) to explore shared genes between the two diseases. Then, we used Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment methods to perform on the shared genes. The Least Absolute Shrinkage and Selection Operator (LASSO) regression algorithm was utilized to identify potential shared diagnostic genes. Finally, we verified the potential shared diagnostic genes in peripheral blood mononuclear cells (PBMCs)-specific cell populations of SLE patients by single-cell analysis. Results Our MR study provided evidence that PBC had a causal relationship with SLE (IVW, OR: 1.347, 95% CI: 1.276 - 1.422, P < 0.001) after removing outliers (MR-PRESSO, rs35464393, rs3771317; IVW Radial, rs11065987, rs12924729, rs3745516). Conversely, SLE also had a causal association with PBC (IVW, OR: 1.225, 95% CI: 1.141 - 1.315, P < 0.001) after outlier correction (MR-PRESSO, rs11065987, rs3763295, rs7774434; IVW Radial, rs2297067). Sensitivity analyses confirmed the robustness of the MR findings. MVMR analysis indicated that body mass index (BMI), smoking and drinking were not confounding factors. Moreover, bioinformatic analysis identified PARP9, ABCA1, CEACAM1, and DDX60L as promising diagnostic biomarkers for PBC and SLE. These four genes are highly expressed in CD14+ monocytes in PBMCs of SLE patients and potentially associated with innate immune responses and immune activation. Conclusion Our study confirmed the bidirectional causal relationship between PBC and SLE and identified PARP9, ABCA1, CEACAM1, and DDX60L genes as the most potentially shared diagnostic genes between the two diseases, providing insights for the exploration of the underlying mechanisms of these disorders.
Collapse
Affiliation(s)
- Tian Tao
- Department of Nephrology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Anqi Tang
- Department of Nephrology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lizeyu Lv
- Department of Nephrology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jianhua Yuan
- Department of Cardiovascular Medicine, Chengdu Second People’s Hospital, Chengdu, Chengdu, China
| | - Ling Wu
- Department of Nephrology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Liangbin Zhao
- Department of Nephrology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jun Chen
- Department of Intensive Care Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
14
|
Vinuesa CG, Shen N, Ware T. Genetics of SLE: mechanistic insights from monogenic disease and disease-associated variants. Nat Rev Nephrol 2023; 19:558-572. [PMID: 37438615 DOI: 10.1038/s41581-023-00732-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/25/2023] [Indexed: 07/14/2023]
Abstract
The past few years have provided important insights into the genetic architecture of systemic autoimmunity through aggregation of findings from genome-wide association studies (GWAS) and whole-exome or whole-genome sequencing studies. In the prototypic systemic autoimmune disease systemic lupus erythematosus (SLE), monogenic disease accounts for a small fraction of cases but has been instrumental in the elucidation of disease mechanisms. Defects in the clearance or digestion of extracellular or intracellular DNA or RNA lead to increased sensing of nucleic acids, which can break B cell tolerance and induce the production of type I interferons leading to tissue damage. Current data suggest that multiple GWAS SLE risk alleles act in concert with rare functional variants to promote SLE development. Moreover, introduction of orthologous variant alleles into mice has revealed that pathogenic X-linked dominant and recessive SLE can be caused by novel variants in TLR7 and SAT1, respectively. Such bespoke models of disease help to unravel pathogenic pathways and can be used to test targeted therapies. Cell type-specific expression data revealed that most GWAS SLE risk genes are highly expressed in age-associated B cells (ABCs), which supports the view that ABCs produce lupus autoantibodies and contribute to end-organ damage by persisting in inflamed tissues, including the kidneys. ABCs have thus emerged as key targets of promising precision therapeutics.
Collapse
Affiliation(s)
- Carola G Vinuesa
- The Francis Crick Institute, London, UK.
- University College London, London, UK.
- China Australia Centre for Personalized Immunology (CACPI), Renji Hospital, Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, China.
| | - Nan Shen
- Shanghai Institute of Rheumatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, China
- Center for Autoimmune Genomics and Aetiology, Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Paediatrics, University of Cincinnati, Cincinnati, OH, USA
| | - Thuvaraka Ware
- The Francis Crick Institute, London, UK
- University College London, London, UK
| |
Collapse
|
15
|
Pan L, Liu J, Liu C, Guo L, Punaro M, Yang S. Childhood-onset systemic lupus erythematosus: characteristics and the prospect of glucocorticoid pulse therapy. Front Immunol 2023; 14:1128754. [PMID: 37638017 PMCID: PMC10448525 DOI: 10.3389/fimmu.2023.1128754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 07/21/2023] [Indexed: 08/29/2023] Open
Abstract
Childhood-onset systemic lupus erythematosus (cSLE) is an autoimmune disease that results in significant damage and often needs more aggressive treatment. Compared to adult-onset SLE, cSLE has a stronger genetic background and more prevalent elevated type I Interferon expression. The management of cSLE is more challenging because the disease itself and treatment can affect physical, psychological and emotional growth and development. High dose oral glucocorticoid (GC) has become the rule for treating moderate to severe cSLE activity. However, GC-related side effects and potential toxicities are problems that cannot be ignored. Recent studies have suggested that GC pulse therapy can achieve disease remission rapidly and reduce GC-related side effects with a reduction in oral prednisone doses. This article reviews characteristics, including pathogenesis and manifestations of cSLE, and summarized the existing evidence on GC therapy, especially on GC pulse therapy in cSLE, followed by our proposal for GC therapy according to the clinical effects and pathogenesis.
Collapse
Affiliation(s)
- Lu Pan
- Department of Pediatric Rheumatology, Immunology and Allergy, The First Hospital, Jilin University, Changchun, China
| | - Jinxiang Liu
- Department of Pediatric Rheumatology, Immunology and Allergy, The First Hospital, Jilin University, Changchun, China
| | - Congcong Liu
- Department of Pediatric Rheumatology, Immunology and Allergy, The First Hospital, Jilin University, Changchun, China
| | - Lishuang Guo
- Department of Pediatric Rheumatology, Immunology and Allergy, The First Hospital, Jilin University, Changchun, China
| | - Marilynn Punaro
- Pediatric Rheumatology, University of Texas Southwestern Medical Center, Dallas, TX, United States
- Rheumatology, Texas Scottish Rite Hospital for Children, Houston, TX, United States
- Pediatric Rheumatology, Children’s Medical Center of Dallas, Dallas, TX, United States
| | - Sirui Yang
- Department of Pediatric Rheumatology, Immunology and Allergy, The First Hospital, Jilin University, Changchun, China
| |
Collapse
|
16
|
Abstract
Autoreactive B cells and interferons are central players in systemic lupus erythematosus (SLE) pathogenesis. The partial success of drugs targeting these pathways, however, supports heterogeneity in upstream mechanisms contributing to disease pathogenesis. In this review, we focus on recent insights from genetic and immune monitoring studies of patients that are refining our understanding of these basic mechanisms. Among them, novel mutations in genes affecting intrinsic B cell activation or clearance of interferogenic nucleic acids have been described. Mitochondria have emerged as relevant inducers and/or amplifiers of SLE pathogenesis through a variety of mechanisms that include disruption of organelle integrity or compartmentalization, defective metabolism, and failure of quality control measures. These result in extra- or intracellular release of interferogenic nucleic acids as well as in innate and/or adaptive immune cell activation. A variety of classic and novel SLE autoantibody specificities have been found to recapitulate genetic alterations associated with monogenic lupus or to trigger interferogenic amplification loops. Finally, atypical B cells and novel extrafollicular T helper cell subsets have been proposed to contribute to the generation of SLE autoantibodies. Overall, these novel insights provide opportunities to deepen the immunophenotypic surveillance of patients and open the door to patient stratification and personalized, rational approaches to therapy.
Collapse
Affiliation(s)
- Simone Caielli
- Drukier Institute for Children's Health and Department of Pediatrics, Weill Cornell Medical Center, New York, NY, USA; , ,
| | - Zurong Wan
- Drukier Institute for Children's Health and Department of Pediatrics, Weill Cornell Medical Center, New York, NY, USA; , ,
| | - Virginia Pascual
- Drukier Institute for Children's Health and Department of Pediatrics, Weill Cornell Medical Center, New York, NY, USA; , ,
| |
Collapse
|