1
|
Ziyadullaev SK, Khudaiberdiev SS, Aripova TU, Chirumbolo S, Kamalov ZS, Bjørklund G, Rizaev JA, Tashkenbaeva EN, Khamidov OA, Gaffarov UB. Synovial Fluid as a Crucial Component of the Joint Microenvironment in Rheumatoid Arthritis. Immune Netw 2025; 25:e2. [PMID: 40342839 PMCID: PMC12056296 DOI: 10.4110/in.2025.25.e2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 12/17/2024] [Accepted: 12/22/2024] [Indexed: 05/11/2025] Open
Abstract
Rheumatoid arthritis (RA) is a systemic autoimmune disease closely associated with synovial tissue proliferation, pannus formation in small joints such as the hands, wrists, and feet, cartilage destruction, and systemic complications such as pulmonary, cardiovascular, neurological, and skeletal muscle lesions, glucocorticoid-induced osteoporosis and infections. The importance of confirming the diagnosis and determining local activity is given to the study of synovial fluid. A deep understanding of the pathological process in the joint in RA, characterized by changes in autoreactive CD4+ T cells, B cells, macrophages, inflammatory cytokines, chemokines, and autoantibodies, has now been achieved, although much remains to be explored. This article provides an updated overview of the pathogenesis of RA, revealing even more therapeutic targets for the intra-articular pathological process.
Collapse
Affiliation(s)
| | | | | | | | | | - Geir Bjørklund
- Council for Nutritional and Environmental Medicine, Mo i Rana 8622, Norway
| | | | | | - Obid Abdurakhmanovich Khamidov
- Rehabilitology and Sports Medicine Research Institute of the Samarkand State Medical University, Samarkand 140100, Uzbekistan
| | | |
Collapse
|
2
|
Zhu X, Jia Y, Zhao Z, Zhang X, Zhao Y, Gui S, Yang XA. Cell signaling communication within papillary craniopharyngioma revealed by an integrated analysis of single-cell RNA sequencing and bulk RNA sequencing. J Transl Med 2025; 23:124. [PMID: 39871369 PMCID: PMC11773883 DOI: 10.1186/s12967-025-06149-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 01/18/2025] [Indexed: 01/29/2025] Open
Abstract
OBJECTIVE This study aims to elucidate the primary signaling communication among papillary craniopharyngioma (PCP) tumor cells. METHODS Five samples of PCP were utilized for single-cell RNA sequencing. The most relevant ligand and receptor interactions among different cells were calculated using the CellChat package in R software. Bulk RNA sequencing of 11 tumor samples and five normal controls was used to investigate the pair interactions detected by single-cell RNA sequencing. RESULTS Fibroblasts were not found in ACP, whereas they were detected in PCP. InferCNV revealed high CNV scores for the clusters of epithelial cells and fibroblasts using immune cells as a reference. Epithelial Mesenchymal Transition, Interferon Gamma Response, p53 Pathway, and Estrogen Response Early are pathways commonly shared by fibroblasts and epithelial cells, ranking high in priority. The Wnt signaling pathway and PI3K-Akt signaling pathway play a crucial role in facilitating communication between epithelial cells and fibroblasts. Neutrophils were recognized as the main receivers of incoming signals, with ANXA1-FPR1 and MIF-(CD74 + CXCR2) being identified as the primary signals transmitted from fibroblasts to neutrophils. CONCLUSION Through analyzing the communication of essential signaling pathways, ligands, and receptors among epithelial cells, fibroblasts, and neutrophils in PCP tumor tissues, we have identified certain molecules with promising prognostic and therapeutic potential.
Collapse
Affiliation(s)
- Xiaoyue Zhu
- Laboratory of Gene Engineering and Genomics, School of Basic Medical Sciences, Chengde Medical University, Chengde, 067000, China
- Graduate School of Chengde Medical University, Chengde, 067000, China
- Department of Biomedical Engineering, Chengde Medical University, Chengde, 067000, China
| | - Yanfei Jia
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Zicheng Zhao
- Laboratory of Gene Engineering and Genomics, School of Basic Medical Sciences, Chengde Medical University, Chengde, 067000, China
| | - Xiaoyu Zhang
- Laboratory of Gene Engineering and Genomics, School of Basic Medical Sciences, Chengde Medical University, Chengde, 067000, China
| | - Yunlong Zhao
- Laboratory of Gene Engineering and Genomics, School of Basic Medical Sciences, Chengde Medical University, Chengde, 067000, China
| | - Songbai Gui
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
| | - Xiu-An Yang
- Laboratory of Gene Engineering and Genomics, School of Basic Medical Sciences, Chengde Medical University, Chengde, 067000, China.
- Hebei Key Laboratory of Nerve Injury and Repair, Chengde Medical University, Chengde, China.
| |
Collapse
|
3
|
Gong X, Yang SY, Wang ZY, Tang M. The role of hypoxic microenvironment in autoimmune diseases. Front Immunol 2024; 15:1435306. [PMID: 39575238 PMCID: PMC11578973 DOI: 10.3389/fimmu.2024.1435306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 10/21/2024] [Indexed: 11/24/2024] Open
Abstract
The hypoxic microenvironment, characterized by significantly reduced oxygen levels within tissues, has emerged as a critical factor in the pathogenesis and progression of various autoimmune diseases (AIDs). Central to this process is the hypoxia-inducible factor-1 (HIF-1), which orchestrates a wide array of cellular responses under low oxygen conditions. This review delves into the multifaceted roles of the hypoxic microenvironment in modulating immune cell function, particularly highlighting its impact on immune activation, metabolic reprogramming, and angiogenesis. Specific focus is given to the mechanisms by which hypoxia contributes to the development and exacerbation of diseases such as rheumatoid arthritis (RA), systemic lupus erythematosus (SLE), multiple sclerosis (MS), and dermatomyositis (DM). In these conditions, the hypoxic microenvironment not only disrupts immune tolerance but also enhances inflammatory responses and promotes tissue damage. The review also discusses emerging therapeutic strategies aimed at targeting the hypoxic pathways, including the application of HIF-1α inhibitors, mTOR inhibitors, and other modulators of the hypoxic response. By providing a comprehensive overview of the interplay between hypoxia and immune dysfunction in AIDs, this review offers new perspectives on the underlying mechanisms of these diseases and highlights potential avenues for therapeutic intervention.
Collapse
Affiliation(s)
- Xun Gong
- Department of Rheumatology and Immunology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Su-Yin Yang
- Department of Rheumatology and Immunology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Zhen-Yu Wang
- Department of Rheumatology and Immunology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Min Tang
- School of Life Sciences, Jiangsu University, Zhenjiang, China
| |
Collapse
|
4
|
Cross AL, Wright HL, Choi J, Edwards SW, Ruiz-Opazo N, Herrera VLM. Circulating neutrophil extracellular trap-forming neutrophils in rheumatoid arthritis exacerbation are majority dual endothelin-1/signal peptide receptor+ subtype. Clin Exp Immunol 2024; 218:163-168. [PMID: 39110036 PMCID: PMC11482496 DOI: 10.1093/cei/uxae072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/26/2024] [Accepted: 08/06/2024] [Indexed: 10/18/2024] Open
Abstract
Neutrophil extracellular traps (NETs) are associated with rheumatoid arthritis pathogenesis and severity. Since homeostatic NET-forming neutrophils [NET+Ns] have beneficial roles in defense against pathogens, their distinction from pro-injury [NET+N] subtypes is important, especially if they are to be therapeutically targeted. Having identified circulating, pro-injury DEspR+CD11b+[NET+Ns] in patients with neutrophilic secondary tissue injury, we determined whether DEspR+[NET+Ns] are present in rheumatoid arthritis (RA) flares. Whole blood samples of patients with RA flares on maintenance therapy (n = 6) were analyzed by flow cytometry (FCM) and immunofluorescence cytology followed by semi-automated quantitative confocal microscopy (qIFC). We assessed clinical parameters, levels of neutrophils and [NET+Ns], and plasma S100A8/A9. qIFC detected circulating DEspR+CD11b+neutrophils and [NET+Ns] in RA-flare patients but not healthy controls. DEspR+[NET+Ns] were positive for citrullinated histone H3 (citH3+), extruded DNA, decondensed but recognizable polymorphic nuclei, and [NET+N] doublet interactions in mostly non-ruptured NET-forming neutrophils. Circulating DNA+/DEspR+/CD11b+/citH3+microvesicles (netMVs) were observed. FCM detected increased %DEspR+CD11b+neutrophils and DEspR+ cell-cell doublets whose levels trended with DAS28 scores, as did plasma S100A8/A9 levels. This study identifies circulating DEspR+/CD11b+neutrophils and [NET+Ns] in RA-flare patients on maintenance therapy. Detection of circulating DEspR+citH3+[NET+Ns] and netMVs indicate a systemic neutrophilic source of citH3-antigen concordant with multi-joint RA pathogenesis. Increased S100A8/A9 alarmin levels are associated with cell injury and released upon NET-formation. As a ligand for TLR4, S100A8/A9 forms a positive feedback loop for TLR4-induced DEspR+neutrophils. These data identify DEspR+neutrophils and [NET+Ns] in RA pathogenesis as a potential biomarker and/or therapeutic target.
Collapse
Affiliation(s)
- Andrew L Cross
- Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
| | - Helen L Wright
- Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
| | - Jacqueline Choi
- Whitaker Cardiovascular Institute and Department of Medicine, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA
| | - Steven W Edwards
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Nelson Ruiz-Opazo
- Whitaker Cardiovascular Institute and Department of Medicine, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA
| | - Victoria L M Herrera
- Whitaker Cardiovascular Institute and Department of Medicine, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA
| |
Collapse
|
5
|
Liu P, Liu H, Sang Y, Zhu L, Zhang P, Pang C, Wang Y, Bai L. Triptolide regulates neutrophil function through the Hippo signaling pathway to alleviate rheumatoid arthritis disease progression. J Transl Autoimmun 2024; 8:100242. [PMID: 38765902 PMCID: PMC11101680 DOI: 10.1016/j.jtauto.2024.100242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 04/13/2024] [Accepted: 05/01/2024] [Indexed: 05/22/2024] Open
Abstract
Rheumatoid arthritis (RA) is a chronic autoimmune disease characterized by inflammatory changes in the joints, the etiology of which is unclear. It is now well established that regulated cell death (RCD) and migration of neutrophils play an important role in the pathogenesis of RA. Tripterygium wilfordii Hook.f (TwHF) is a total saponin extracted from the root of Tripterygium wilfordii Hook.f, a plant of the family Wesleyanaceae, which has strong anti-inflammatory and immunomodulatory effects and has been used as a basic drug in the clinical treatment of RA. Despite the good efficacy of TwHF treatment, the mechanism of action of TwHF remains unclear. Several studies have demonstrated that the drug tripterygium glycosides, in which TwHF is the main ingredient, has achieved excellent efficacy in the clinical treatment of RA. Investigations have also found that TwHF can affect cellular RCD, cell migration, cell proliferation, and the apoptosis-related Hippo signaling pathway. In this study, we first analyzed the RCD and migration differences of neutrophils in patients with RA through network pharmacology and transcriptome analysis. Subsequently, we used electron microscopy, immunofluorescence, and other methods to identify the RCD phenotype of neutrophils. In collagen-induced arthritis (CIA) model, we demonstrated that Triptolide (the main active ingredient in TwHF) could alleviate the progression of arthritis by reducing the bone destruction and the infiltration of neutrophils. Furthermore, in vitro experiments showed that Triptolide induced neutrophil apoptosis, inhibited the formation of neutrophil extracellular traps (NETs), and impeded the neutrophil migration process in a Hippo pathway-dependent manner. Taken together, these findings indicate that Triptolide has potential for treating RA and provide theoretical support for the clinical application of TwHF, as a traditional Chinese medicine, in RA.
Collapse
Affiliation(s)
- Pengyuan Liu
- Baotou Medical College, Inner Mongolia University of Science and Technology. Baotou 014000,China
| | - Huiyang Liu
- Department of Rheumatology and Immunology, the First Affiliated Hospital of Baotou Medical College, Baotou 014010, China
| | - Yali Sang
- Baotou Medical College, Inner Mongolia University of Science and Technology. Baotou 014000,China
| | - Lingyan Zhu
- The Central Lab, the First Affiliated Hospital of Baotou Medical College, Baotou 014010, China
- Department of Rheumatology and Immunology, the First Affiliated Hospital of Baotou Medical College, Baotou 014010, China
| | - Peiyao Zhang
- Baotou Medical College, Inner Mongolia University of Science and Technology. Baotou 014000,China
| | - Chunyan Pang
- The Central Lab, the First Affiliated Hospital of Baotou Medical College, Baotou 014010, China
- Inner Mongolia Autoimmune Key Laboratory, Baotou 014010, China
| | - Yongfu Wang
- Department of Rheumatology and Immunology, the First Affiliated Hospital of Baotou Medical College, Baotou 014010, China
- Inner Mongolia Autoimmune Key Laboratory, Baotou 014010, China
| | - Li Bai
- The Central Lab, the First Affiliated Hospital of Baotou Medical College, Baotou 014010, China
- Inner Mongolia Autoimmune Key Laboratory, Baotou 014010, China
| |
Collapse
|
6
|
Lin SH, Hsu CY, Li SC. Increased Circulating CD14+ Monocytes in Patients with Psoriatic Arthritis Presenting Impaired Apoptosis Activity. Biomedicines 2024; 12:775. [PMID: 38672131 PMCID: PMC11048590 DOI: 10.3390/biomedicines12040775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/24/2024] [Accepted: 03/28/2024] [Indexed: 04/28/2024] Open
Abstract
Psoriatic arthritis (PsA) is a chronic inflammatory arthritis primarily affecting peripheral and axial joints. The osteolytic effect in the damaged joint is mediated by osteoclast activation. We aimed to investigate differential gene expression in peripheral CD14+ monocytes between patients with psoriatic arthritis (n = 15) and healthy controls (HCs; n = 15). Circulating CD14+ monocytes were isolated from peripheral blood mononuclear cells using CD14+ magnetic beads. Cell apoptosis was measured via Annexin V using flow cytometry. The gene expression profiling was analyzed via microarray (available in the NCBI GEO database; accession number GSE261765), and the candidate genes were validated using PCR. The results showed a higher number of peripheral CD14+ monocytes in patients with PsA than in the HCs. By analyzing the microarray data, identifying the differentially expressed genes, and conducting pathway enrichment analysis, we found that the apoptosis signaling pathway in CD14+ cells was significantly impaired in patients with PsA compared to the HCs. Among the candidate genes in the apoptotic signaling pathway, the relative expression level of cathepsin L was confirmed to be significantly lower in the PsAs than in the HCs. We concluded that the numbers of peripheral CD14+ monocytes increased, and their apoptosis activity was impaired in patients with PsA, which could lead to enhanced macrophage maturation and osteoclast activation. The resistance of apoptotic death in peripheral CD14+ monocytes may contribute to active joint inflammation in PsA.
Collapse
Affiliation(s)
- Shang-Hung Lin
- Department of Dermatology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan;
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan;
- College of Medicine, National Sun Yat-sen University, No. 70, Lianhai Road, Gushan District, Kaohsiung City 804, Taiwan
| | - Chung-Yuan Hsu
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan;
- College of Medicine, National Sun Yat-sen University, No. 70, Lianhai Road, Gushan District, Kaohsiung City 804, Taiwan
- Division of Rheumatology, Allergy, and Immunology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
| | - Sung-Chou Li
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, No. 386, Dazhong 1st Rd, Zuoying District, Kaohsiung 813414, Taiwan
- Department of Dental Technology, Shu-Zen Junior College of Medicine and Management, Kaohsiung 821004, Taiwan
- Department of Nursing, Meiho University, Pingtung 912009, Taiwan
| |
Collapse
|
7
|
Li Y, Wu Y, Huang J, Cao X, An Q, Peng Y, Zhao Y, Luo Y. A variety of death modes of neutrophils and their role in the etiology of autoimmune diseases. Immunol Rev 2024; 321:280-299. [PMID: 37850797 DOI: 10.1111/imr.13284] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2023]
Abstract
Neutrophils are important in the context of innate immunity and actively contribute to the progression of diverse autoimmune disorders. Distinct death mechanisms of neutrophils may exhibit specific and pivotal roles in autoimmune diseases and disease pathogenesis through the orchestration of immune homeostasis, the facilitation of autoantibody production, the induction of tissue and organ damage, and the incitement of pathological alterations. In recent years, more studies have provided in-depth examination of various neutrophil death modes, revealing nuances that challenge conventional understanding and underscoring their potential clinical utility in diagnosis and treatment. This review explores the multifaceted processes and characteristics of neutrophil death, with a focus on tailored investigations within various autoimmune diseases. It also highlights the potential interplay between neutrophil death and the landscape of autoimmune disorders. The review encapsulates the pertinent pathways implicated in various neutrophil death mechanisms across diverse autoimmune diseases while also charts possible avenues for future research.
Collapse
Affiliation(s)
- Yanhong Li
- Department of Rheumatology & Immunology, Laboratory of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yinlan Wu
- Department of Rheumatology & Immunology, Laboratory of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jingang Huang
- Medical Research Center, Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Xue Cao
- Department of Rheumatology and Immunology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, Henan, China
| | - Qiyuan An
- School of Inspection and Biotechnology, Southern Medical University, Guangzhou, China
| | - Yun Peng
- Department of Rheumatology and Clinical Immunology, School of Medicine, The First Affiliated Hospital of Xiamen University, Xiamen University, Xiamen, Fujian, China
| | - Yi Zhao
- Department of Rheumatology & Immunology, Laboratory of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yubin Luo
- Department of Rheumatology & Immunology, Laboratory of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Institute of Immunology and Inflammation, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
8
|
Li Y, Li H, Wang L, Xie W, Yuan D, Wen Z, Zhang T, Lai J, Xiong Z, Shan Y, Jiang W. The p65-LOC727924-miR-26a/KPNA3-p65 regulatory loop mediates vasoactive intestinal peptide effects on osteoarthritis chondrocytes. Int Immunopharmacol 2023; 122:110518. [PMID: 37392568 DOI: 10.1016/j.intimp.2023.110518] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 02/10/2023] [Accepted: 06/13/2023] [Indexed: 07/03/2023]
Abstract
Loss and dysfunction of articular chondrocytes, which disrupt the homeostasis of extracellular matrix formation and breakdown, promote the onset of osteoarthritis (OA). Targeting inflammatory pathways is an important therapeutic strategy for OA. Vasoactive intestinal peptide (VIP) is an immunosuppressive neuropeptide with potent anti-inflammatory effects; however, its role and mechanism in OA remain unclear. In this study, microarray expression profiling from the Gene Expression Omnibus database and integrative bioinformatics analyses were performed to identify differentially expressed lncRNAs in OA samples. qRT-PCR validation of the top ten different expressed lncRNAs indicated that the expression level of intergenic non-protein coding RNA 2203 (LINC02203, also named LOC727924) was the highest in OA cartilage compared to normal cartilage. Hence, the LOC727924 function was further investigated. LOC727924 was upregulated in OA chondrocytes, with a dominant sub-localization in the cytoplasm. In OA chondrocytes, LOC727924 knockdown boosted cell viability, suppressed cell apoptosis, reactive oxygen species (ROS) accumulation, increased aggrecan and collagen II, decreased matrix metallopeptidase (MMP)-3/13 and ADAM metallopeptidase with thrombospondin type 1 motif (ADAMTS)-4/5 levels, and reduced the levels of tumor necrosis factor alpha (TNF-α), interleukin 1 beta (IL-1β), and interleukin 6 (IL-6). LOC727924 could interact with the microRNA 26a (miR-26a)/ karyopherin subunit alpha 3 (KPNA3) axis by competitively targeting miR-26a for KPNA3 binding, therefore down-regulating miR-26a and upregulating KPNA3; in OA chondrocytes, miR-26a inhibition partially abolished LOC727924 knockdown effects on chondrocytes. miR-26a inhibited the nuclear translocation of p65 through targeting KPNA3 and p65 transcriptionally activated LOC727924, forming a p65-LOC727924-miR-26a/KPNA3-p65 regulatory loop to modulate OA chondrocyte phenotypes. In vitro, VIP improved OA chondrocyte proliferation and functions, down-regulated LOC727924, KPNA3, and p65 expression, and upregulated miR-26a expression; in vivo, VIP ameliorated destabilization of the medial meniscus (DMM)-induced damages on the mouse knee joint, down-regulated KPNA3, inhibited the nuclear translocation of p65. In conclusion, the p65-LOC727924-miR-26a/KPNA3-p65 regulatory loop modulates OA chondrocyte apoptosis, ROS accumulation, extracellular matrix (ECM) deposition, and inflammatory response in vitro and OA development in vivo, being one of the mechanisms mediating VIP ameliorating OA.
Collapse
Affiliation(s)
- Yusheng Li
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Hengzhen Li
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Lijie Wang
- Department of Bone and Joint, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, Guangdong, China
| | - Wenqing Xie
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Dongliang Yuan
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China; Xiangya School of Medicine, Central South University, Changsha 410083, Hunan, China
| | - Zeqin Wen
- Xiangya School of Medicine, Central South University, Changsha 410083, Hunan, China
| | - Tiancheng Zhang
- Department of Bone and Joint, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, Guangdong, China
| | - Jieyu Lai
- Xiangya School of Medicine, Central South University, Changsha 410083, Hunan, China
| | - Zixuan Xiong
- Xiangya School of Medicine, Central South University, Changsha 410083, Hunan, China
| | - Yunhan Shan
- Xiangya School of Medicine, Central South University, Changsha 410083, Hunan, China
| | - Wei Jiang
- Department of Bone and Joint, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, Guangdong, China.
| |
Collapse
|
9
|
Cross AL, Hawkes J, Frankland H, Mediana A, Wright HL, Goodson NJ, Edwards SW, Moots RJ. Neutrophil function following treatment of psoriatic arthritis patients with secukinumab: altered cytokine signalling but no impairment of host defence. Rheumatology (Oxford) 2023; 62:3025-3034. [PMID: 36617171 DOI: 10.1093/rheumatology/kead007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 10/25/2022] [Accepted: 11/01/2022] [Indexed: 01/09/2023] Open
Abstract
OBJECTIVES Identifying that dysfunction of the IL-23/17 axis underlies PsA has led to the development of effective targeted therapies such as the IL-17A inhibitor secukinumab. As IL-17A stimulates the secretion of neutrophil chemoattractants, such as CXCL8 (IL-8), we examined the effect of secukinumab on neutrophil function in PsA. METHODS Nineteen patients with active PsA were treated with secukinumab. Clinical response [PsA Response Criteria (PsARC) and Psoriasis Area and Severity Index (PASI)] and peripheral blood neutrophil function (apoptosis, receptor expression, phagocytosis/killing, chemotaxis and RNA expression) were measured at 12 week intervals for 48 weeks and compared with age- and sex-matched healthy controls. RESULTS At 12 weeks, 12/16 (75%) patients had a PsARC response (100% at 36 weeks) and 10/14 (71%) achieved a 90% PASI response. At baseline, there were no differences in PsA neutrophil reactive oxygen species generation, constitutive or cytokine-delayed apoptosis, chemotaxis or phagocytosis of opsonized Staphylococcus aureus compared with healthy controls. Similarly, there were no differences in these functions from baseline to 12 weeks of therapy. However, surface levels of CD11b/CD18 and CD63 increased and expression of CD16 decreased during therapy. In addition, in a subgroup of early (12 week) responders to secukinumab, RNA sequencing revealed transcriptome changes predicting down-regulation of cytokine signalling and chemotaxis pathways and up-regulation of de novo gene expression pathways, including translation initiation, mRNA catabolism and translation. CONCLUSION Complex changes in the properties of circulating neutrophils occur with secukinumab treatment in PsA that may indicate altered responsiveness to changes in both local and systemic levels of pro-inflammatory cytokines. However, host defence processes of neutrophils were unaltered.
Collapse
Affiliation(s)
- Andrew L Cross
- Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
| | - Jenny Hawkes
- Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
| | - Helen Frankland
- Department of Rheumatology, Aintree University Hospital, Liverpool, UK
| | - Ayren Mediana
- Department of Rheumatology, Aintree University Hospital, Liverpool, UK
| | - Helen L Wright
- Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
| | - Nicola J Goodson
- Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
| | - Steven W Edwards
- Institute of Infection, Veterinary and Ecological Sciences, Liverpool, UK
| | - Robert J Moots
- Department of Rheumatology, Aintree University Hospital, Liverpool, UK
- Faculty of Health, Social Care and Medicine, Edge Hill University, Ormskirk, UK
| |
Collapse
|
10
|
Wei Q, Zhu X, Wang L, Zhang W, Yang X, Wei W. Extracellular matrix in synovium development, homeostasis and arthritis disease. Int Immunopharmacol 2023; 121:110453. [PMID: 37331300 DOI: 10.1016/j.intimp.2023.110453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/27/2023] [Accepted: 06/02/2023] [Indexed: 06/20/2023]
Abstract
Extracellular matrix (ECM) is a three-dimensional network entity composed of extracellular macromolecules. ECM in synovium not only supports the structural integrity of synovium, but also plays a crucial role in regulating homeostasis and damage repair response in synovium. Obvious disorders in the composition, behavior and function of synovial ECM will lead to the occurrence and development of arthritis diseases such as rheumatoid arthritis (RA), osteoarthritis (OA) and psoriatic arthritis (PsA). Based on the importance of synovial ECM, targeted regulation of the composition and structure of ECM is considered to be an effective measure for the treatment of arthritis disease. This paper reviews the current research status of synovial ECM biology, discusses the role and mechanism of synovial ECM in physiological status and arthritis disease, and summarizes the current strategies for targeting synovial ECM to provide information for the pathogenesis, diagnosis and treatment of arthritis disease.
Collapse
Affiliation(s)
- Qi Wei
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-Inflammatory and Immune Medicine, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Ministry of Education, Hefei 230032, China
| | - Xuemin Zhu
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-Inflammatory and Immune Medicine, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Ministry of Education, Hefei 230032, China
| | - Luping Wang
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-Inflammatory and Immune Medicine, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Ministry of Education, Hefei 230032, China
| | - Wankang Zhang
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-Inflammatory and Immune Medicine, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Ministry of Education, Hefei 230032, China
| | - Xuezhi Yang
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-Inflammatory and Immune Medicine, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Ministry of Education, Hefei 230032, China.
| | - Wei Wei
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-Inflammatory and Immune Medicine, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Ministry of Education, Hefei 230032, China.
| |
Collapse
|
11
|
Chen T, Zhou Z, Peng M, Hu H, Sun R, Xu J, Zhu C, Li Y, Zhang Q, Luo Y, Yang B, Dai L, Liu Y, Muñoz LE, Meng L, Herrmann M, Zhao Y. Glutathione peroxidase 3 is a novel clinical diagnostic biomarker and potential therapeutic target for neutrophils in rheumatoid arthritis. Arthritis Res Ther 2023; 25:66. [PMID: 37087463 PMCID: PMC10122307 DOI: 10.1186/s13075-023-03043-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 03/29/2023] [Indexed: 04/24/2023] Open
Abstract
BACKGROUND Neutrophils have a critical role in the pathogenesis of rheumatoid arthritis (RA) with immune system dysfunction. However, the molecular mechanisms of this process mediated by neutrophils still remain elusive. The purpose of the present study is to identify hub genes in neutrophils for diagnosis and treatment of RA utilizing publicly available datasets. METHODS Gene expression profiles were downloaded from the Gene Expression Omnibus, and batch-corrected and normalized expression data were obtained using the ComBat package. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analysis were used to conduct significantly functional analysis and crucial pathways. The resulting co-expression genes modules and hub genes were generated based on the weighted gene co-expression network analysis and visualization by Cytoscape. Flow cytometry was conducted to detect reactive oxygen species (ROS) levels in neutrophils. RESULTS Neutrophils underwent transcriptional changes in synovial fluid (SF) of RA patients, different from peripheral blood of healthy controls or patients with RA. Especially, glycolysis, HIF-1 signaling, NADH metabolism, and oxidative stress were affected. These hub genes were strongly linked with classical glycolysis-related genes (ENO1, GAPDH, and PKM) responsible for ROS production. The antioxidant enzyme glutathione peroxidase 3 (GPX3), a ROS scavenger, was first identified as a hub gene in RA neutrophils. Neutrophils from patients with autoinflammatory and autoimmune diseases had markedly enhanced ROS levels, most notably in RA SF. CONCLUSION This research recognized hub genes and explored the characteristics of neutrophils in RA. Our findings suggest that the novel hub gene GPX3 is involved in the neutrophil-driven oxidative stress-mediated pathogenesis of RA. It has the potency to be a target for neutrophil-directed RA therapy.
Collapse
Affiliation(s)
- Tao Chen
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
- Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Zhen Zhou
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
- Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Minge Peng
- Chengdu Seventh People's Hospital, Chengdu, 610041, Sichuan, China
| | - Huifang Hu
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
- Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Rui Sun
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
- Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Jiayi Xu
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
- Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Chenxi Zhu
- Frontiers Science Center for Disease-Related Molecular Network, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yanhong Li
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
- Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Qiuping Zhang
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yubin Luo
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
- Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Bin Yang
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Lunzhi Dai
- Department of Rheumatology and Immunology, National Clinical Research Center for Geriatrics and Department of General Practice, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yi Liu
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Luis E Muñoz
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum Für Immuntherapie (DZI), Friedrich Alexander University Erlangen-Nuremberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Liesu Meng
- Institute of Molecular and Translational Medicine (IMTM), and Department of Biochemistry and Molecular Biology, Xi'an Jiaotong University Health Science Center, Shaanxi, Xi'an 710061, China
| | - Martin Herrmann
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum Für Immuntherapie (DZI), Friedrich Alexander University Erlangen-Nuremberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Yi Zhao
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
- Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
12
|
Abstract
Neutrophils or polymorphonuclear neutrophils (PMNs) are an important component of innate host defense. These phagocytic leukocytes are recruited to infected tissues and kill invading microbes. There are several general characteristics of neutrophils that make them highly effective as antimicrobial cells. First, there is tremendous daily production and turnover of granulocytes in healthy adults-typically 1011 per day. The vast majority (~95%) of these cells are neutrophils. In addition, neutrophils are mobilized rapidly in response to chemotactic factors and are among the first leukocytes recruited to infected tissues. Most notably, neutrophils contain and/or produce an abundance of antimicrobial molecules. Many of these antimicrobial molecules are toxic to host cells and can destroy host tissues. Thus, neutrophil activation and turnover are highly regulated processes. To that end, aged neutrophils undergo apoptosis constitutively, a process that contains antimicrobial function and proinflammatory capacity. Importantly, apoptosis facilitates nonphlogistic turnover of neutrophils and removal by macrophages. This homeostatic process is altered by interaction with microbes and their products, as well as host proinflammatory molecules. Microbial pathogens can delay neutrophil apoptosis, accelerate apoptosis following phagocytosis, or cause neutrophil cytolysis. Here, we review these processes and provide perspective on recent studies that have potential to impact this paradigm.
Collapse
Affiliation(s)
- Scott D Kobayashi
- Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Frank R DeLeo
- Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Mark T Quinn
- Department of Microbiology & Cell Biology, Montana State University, Bozeman, Montana, USA
| |
Collapse
|
13
|
Putative Role of Neutrophil Extracellular Trap Formation in Chronic Myeloproliferative Neoplasms. Int J Mol Sci 2023; 24:ijms24054497. [PMID: 36901933 PMCID: PMC10003516 DOI: 10.3390/ijms24054497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 02/17/2023] [Accepted: 02/20/2023] [Indexed: 03/03/2023] Open
Abstract
Myeloproliferative neoplasms (MPNs) are hematologic malignancies characterized by gene mutations that promote myeloproliferation and resistance to apoptosis via constitutively active signaling pathways, with Janus kinase 2-signal transducers and the activators of transcription (JAK-STAT) axis as a core part. Chronic inflammation has been described as a pivot for the development and advancement of MPNs from early stage cancer to pronounced bone marrow fibrosis, but there are still unresolved questions regarding this issue. The MPN neutrophils are characterized by upregulation of JAK target genes, they are in a state of activation and with deregulated apoptotic machinery. Deregulated neutrophil apoptotic cell death supports inflammation and steers them towards secondary necrosis or neutrophil extracellular trap (NET) formation, a trigger of inflammation both ways. NETs in proinflammatory bone marrow microenvironment induce hematopoietic precursor proliferation, which has an impact on hematopoietic disorders. In MPNs, neutrophils are primed for NET formation, and even though it seems obvious for NETs to intervene in the disease progression by supporting inflammation, no reliable data are available. We discuss in this review the potential pathophysiological relevance of NET formation in MPNs, with the intention of contributing to a better understanding of how neutrophils and neutrophil clonality can orchestrate the evolution of a pathological microenvironment in MPNs.
Collapse
|
14
|
Yang P, Zeng Y, Yang F, Peng X, Hu Y, Tan X, Zhang R. Transmembrane TNF-α as a Novel Biomarker for the Diagnosis of Cytokine Storms in a Mouse Model of Multiple Organ Failure. Inflammation 2023; 46:359-369. [PMID: 36104516 PMCID: PMC9473472 DOI: 10.1007/s10753-022-01738-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 09/08/2022] [Accepted: 09/08/2022] [Indexed: 11/05/2022]
Abstract
A cytokine storm (CS) is an out-of-control inflammatory response closely associated with the progression of diseases, such as multiple organ failure (MOF), severe sepsis, and severe or critical COVID-19. However, there is currently a lack of reliable diagnostic markers to distinguish CS from normal inflammatory responses. Tumor necrosis factor-α (TNF-α) includes transmembrane TNF-α (tmTNF-α) and secreted TNF-α (sTNF-α). The MOF mouse model in this study showed that the tmTNF-α expression changes in the neutrophils differed from the serum TNF-α and serum IL-18, INF-γ, IL-4, and IL-6. Furthermore, tmTNF-α, instead of serum TNF-α, IL-18, INF-γ, IL-4, and IL-6, reflected liver and kidney tissue damage and increased with the aggravation of these injuries. Analysis of the ROC results showed that tmTNF-α effectively distinguished between inflammatory responses and CS and efficiently differentiated between surviving and dead mice. It also significantly improved the diagnostic value of the traditional CRP marker for CS. These results indicated that the tmTNF-α expressed in the neutrophils could be used to diagnose CS in MOF mice, providing an experimental basis to further develop tmTNF-α for diagnosing CS patients.
Collapse
Affiliation(s)
- Peng Yang
- grid.443382.a0000 0004 1804 268XDepartment of Clinical Laboratory, The Second Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang, 550001 China
| | - Yimin Zeng
- grid.443382.a0000 0004 1804 268XDepartment of Clinical Laboratory, The Second Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang, 550001 China
| | - Fang Yang
- grid.443382.a0000 0004 1804 268XDepartment of Clinical Laboratory, The Second Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang, 550001 China
| | - Xin Peng
- grid.443382.a0000 0004 1804 268XDepartment of Clinical Laboratory, The Second Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang, 550001 China
| | - Yongsheng Hu
- grid.443382.a0000 0004 1804 268XDepartment of Clinical Laboratory, The Second Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang, 550001 China
| | - Xuhong Tan
- grid.443382.a0000 0004 1804 268XDepartment of Clinical Laboratory, The Second Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang, 550001 China
| | - Ruping Zhang
- Department of Clinical Laboratory, The Second Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang, 550001, China.
| |
Collapse
|
15
|
Revealing the Immune Heterogeneity between Systemic Lupus Erythematosus and Rheumatoid Arthritis Based on Multi-Omics Data Analysis. Int J Mol Sci 2022; 23:ijms23095166. [PMID: 35563556 PMCID: PMC9101622 DOI: 10.3390/ijms23095166] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 04/26/2022] [Accepted: 04/29/2022] [Indexed: 02/01/2023] Open
Abstract
The pathogenesis of systemic lupus erythematosus (SLE) and rheumatoid arthritis (RA) are greatly influenced by different immune cells. Nowadays both T-cell receptor (TCR) and B-cell receptor (BCR) sequencing technology have emerged with the maturity of NGS technology. However, both SLE and RA peripheral blood TCR or BCR repertoire sequencing remains lacking because repertoire sequencing is an expensive assay and consumes valuable tissue samples. This study used computational methods TRUST4 to construct TCR repertoire and BCR repertoire from bulk RNA-seq data of both SLE and RA patients’ peripheral blood and analyzed the clonality and diversity of the immune repertoire between the two diseases. Although the functions of immune cells have been studied, the mechanism is still complicated. Differentially expressed genes in each immune cell type and cell–cell interactions between immune cell clusters have not been covered. In this work, we clustered eight immune cell subsets from original scRNA-seq data and disentangled the characteristic alterations of cell subset proportion under both SLE and RA conditions. The cell–cell communication analysis tool CellChat was also utilized to analyze the influence of MIF family and GALECTIN family cytokines, which were reported to regulate SLE and RA, respectively. Our findings correspond to previous findings that MIF increases in the serum of SLE patients. This work proved that the presence of LGALS9, PTPRC and CD44 in platelets could serve as a clinical indicator of rheumatoid arthritis. Our findings comprehensively illustrate dynamic alterations in immune cells during pathogenesis of SLE and RA. This work identified specific V genes and J genes in TCR and BCR that could be used to expand our understanding of SLE and RA. These findings provide a new insight inti the diagnosis and treatment of the two autoimmune diseases.
Collapse
|
16
|
Stojkov D, Gigon L, Peng S, Lukowski R, Ruth P, Karaulov A, Rizvanov A, Barlev NA, Yousefi S, Simon HU. Physiological and Pathophysiological Roles of Metabolic Pathways for NET Formation and Other Neutrophil Functions. Front Immunol 2022; 13:826515. [PMID: 35251008 PMCID: PMC8889909 DOI: 10.3389/fimmu.2022.826515] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 01/20/2022] [Indexed: 12/12/2022] Open
Abstract
Neutrophils are the most numerous cells in the leukocyte population and essential for innate immunity. To limit their effector functions, neutrophils are able to modulate glycolysis and other cellular metabolic pathways. These metabolic pathways are essential not only for energy usage, but also for specialized effector actions, such as the production of reactive oxygen species (ROS), chemotaxis, phagocytosis, degranulation, and the formation of neutrophil extracellular traps (NETs). It has been demonstrated that activated viable neutrophils can produce NETs, which consists of a DNA scaffold able to bind granule proteins and microorganisms. The formation of NETs requires the availability of increased amounts of adenosine triphosphate (ATP) as it is an active cellular and therefore energy-dependent process. In this article, we discuss the glycolytic and other metabolic routes in association with neutrophil functions focusing on their role for building up NETs in the extracellular space. A better understanding of the requirements of metabolic pathways for neutrophil functions may lead to the discovery of molecular targets suitable to develop novel anti-infectious and/or anti-inflammatory drugs.
Collapse
Affiliation(s)
- Darko Stojkov
- Institute of Pharmacology, University of Bern, Bern, Switzerland.,Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tübingen, Tübingen, Germany
| | - Lea Gigon
- Institute of Pharmacology, University of Bern, Bern, Switzerland
| | - Shuang Peng
- Institute of Pharmacology, University of Bern, Bern, Switzerland
| | - Robert Lukowski
- Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tübingen, Tübingen, Germany
| | - Peter Ruth
- Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tübingen, Tübingen, Germany
| | - Alexander Karaulov
- Department of Clinical Immunology and Allergology, Sechenov University, Moscow, Russia
| | - Albert Rizvanov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Nickolai A Barlev
- Institute of Cytology, Russian Academy of Sciences, St. Petersburg, Russia.,Regulation of Cell Signaling Laboratory, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Shida Yousefi
- Institute of Pharmacology, University of Bern, Bern, Switzerland
| | - Hans-Uwe Simon
- Institute of Pharmacology, University of Bern, Bern, Switzerland.,Department of Clinical Immunology and Allergology, Sechenov University, Moscow, Russia.,Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia.,Institute of Biochemistry, Brandenburg Medical School, Neuruppin, Germany
| |
Collapse
|
17
|
Kaushal J, Kamboj A, Anupam K, Tandon A, Sharma A, Bhatnagar A. Interplay of redox imbalance with matrix gelatinases in neutrophils and their association with disease severity in rheumatoid arthritis patients. Clin Immunol 2022; 237:108965. [PMID: 35263664 DOI: 10.1016/j.clim.2022.108965] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 02/22/2022] [Accepted: 03/02/2022] [Indexed: 11/03/2022]
Abstract
Rheumatoid arthritis (RA) etiopathogenesis still remains complex, but involvement of several immune cells is evident. Present study focusses on evaluation of polymorphonuclear neutrophils (PMNs) in RA patients and healthy controls. From generation of oxidative species, release of inflammatory cytokines and matrix-degrading proteases, PMNs possess the ability to mediate immunological responses. Intracellular and mitochondrial ROS in PMNs and other oxidative parameters including catalase, superoxide dismutase, glutathione peroxidase, reduced glutathione and lipid peroxidation were measured in PMNs and serum samples. Gene regulation studies involved in oxidative (Keap1 and Nrf2) and degradative pathways (MMP2 and MMP9) were done using DNA methylation analysis. Intracellular expression levels of Keap1, Nrf2, Dnmt1, MMP2, and MMP9 were analyzed using flowcytometry in patients and controls. Moreover, serum levels of pro-inflammatory cytokines IL-1β, IL-6, and TNF-α were also measured. Comparative measurements amongst patients and controls were statistically analyzed, and correlations were made with disease severity scores (DAS28 ESR).
Collapse
Affiliation(s)
- Jyotsana Kaushal
- Department of Biochemistry, Panjab University, Chandigarh 160014, India
| | - Akhil Kamboj
- Department of Biochemistry, Panjab University, Chandigarh 160014, India
| | - Kumari Anupam
- Department of Biochemistry, AIIMS, Bilaspur, HP, India
| | - Ankit Tandon
- Department of Biochemistry, Panjab University, Chandigarh 160014, India
| | - Aman Sharma
- Department of Internal Medicine, PGIMER, Chandigarh 160012, India
| | - Archana Bhatnagar
- Department of Biochemistry, Panjab University, Chandigarh 160014, India.
| |
Collapse
|
18
|
Pharmacogenomics of Anti-TNF Treatment Response Marks a New Era of Tailored Rheumatoid Arthritis Therapy. Int J Mol Sci 2022; 23:ijms23042366. [PMID: 35216481 PMCID: PMC8879844 DOI: 10.3390/ijms23042366] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 02/19/2022] [Accepted: 02/19/2022] [Indexed: 12/12/2022] Open
Abstract
Rheumatoid arthritis (RA) is the most commonly occurring chronic inflammatory arthritis, the exact mechanism of which is not fully understood. Tumor Necrosis Factor (TNF)-targeting drugs has been shown to exert high effectiveness for RA, which indicates the key importance of this cytokine in this disease. Nevertheless, the response to TNF inhibitors varies, and approximately one third of RA patients are non-responders, which is explained by the influence of genetic factors. Knowledge in the field of pharmacogenomics of anti-TNF drugs is growing, but has not been applied in the clinical practice so far. Different genome-wide association studies identified a few single nucleotide polymorphisms associated with anti-TNF treatment response, which largely map genes involved in T cell function. Studies of the gene expression profile of RA patients have also indicated specific gene signatures that may be useful to develop novel prognostic tools. In this article, we discuss the significance of TNF in RA and present the current knowledge in pharmacogenomics related to anti-TNF treatment response.
Collapse
|
19
|
Polymorphonuclear Neutrophils in Rheumatoid Arthritis and Systemic Lupus Erythematosus: More Complicated Than Anticipated. IMMUNO 2022. [DOI: 10.3390/immuno2010007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Polymorphonuclear neutrophils (PMN) are the most abundant leucocytes in the circulation in humans. They represent a heterogeneous population exerting diverse functions through several activities. Usually described as typical pro-inflammatory cells, immunomodulatory properties of PMNs have been reported. Among others, once activated and depending on the stimulus, PMNs expel neutrophil extracellular traps (NET) in the extracellular space. NETs are complexes made of DNA and granule proteins representing an innate immune mechanism fighting infections. Nevertheless, an excess of NET formation might be involved in the development of inflammatory or autoimmune responses. Systemic lupus erythematosus (SLE) and rheumatoid arthritis (RA) are two chronic, inflammatory, autoimmune diseases of unknown etiology and affecting mostly women. Several abnormal or non-classical functions of PMNs or PMN sub-populations have been described in SLE and RA. Particularly, NETs have been suggested to trigger pro-inflammatory responses by exposing pro-inflammatory mediators. Likewise, NETs may be the targets of autoantibodies or even might trigger the development of autoantibodies by exposing autoantigens. In the present review, we will summarize heterogeneous properties of human PMNs and we will discuss recent evidence linking PMNs and NETs to the pathogenesis of both SLE and RA.
Collapse
|
20
|
Karmakar U, Vermeren S. Crosstalk between B cells and neutrophils in rheumatoid arthritis. Immunology 2021; 164:689-700. [PMID: 34478165 PMCID: PMC8561113 DOI: 10.1111/imm.13412] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 08/30/2021] [Indexed: 12/13/2022] Open
Abstract
Rheumatoid arthritis (RA) is a chronic, systemic autoimmune disease without known cure that primarily affects synovial joints. RA has a prevalence of approximately 1% of the population worldwide. A vicious circle between two critical immune cell types, B cells and neutrophils, develops and promotes disease. Pathogenic anti‐citrullinated protein antibodies (ACPA) directed against a range of citrullinated epitopes are abundant in both plasma and synovial fluid of RA patients. In addition to stimulating numerous cell types, ACPA and other autoantibodies, notably rheumatoid factor, form immune complexes (ICs) that potently activate neutrophils. Attracted to the synovium by abundant chemokines, neutrophils are locally stimulated by ICs. They generate cytokines and release cytotoxic compounds including neutrophil extracellular traps (NETs), strands of decondensed chromatin decorated with citrullinated histones and granule‐derived neutrophil proteins, which are particularly abundant in the synovial fluid. In this way, neutrophils generate citrullinated epitopes and release peptidylarginine deiminase (PAD) enzymes capable of citrullinating extracellular proteins in the rheumatic joint, contributing to renewed ACPA generation. This review article focusses on the central function of citrullination, a post‐translational modification of arginine residues in RA. The discussion includes ACPA and related autoantibodies, somatic hypermutation‐mediated escape from negative selection by autoreactive B cells, promotion of the dominance of citrullinated antigens by genetic and lifestyle susceptibility factors and the vicious circle between ACPA‐producing pathogenic B cells and NET‐producing neutrophils in RA.
Collapse
Affiliation(s)
- Utsa Karmakar
- Centre for Inflammation Research, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh, UK
| | - Sonja Vermeren
- Centre for Inflammation Research, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh, UK
| |
Collapse
|
21
|
Diallo K, Simons N, Sayegh S, Baron M, Degboé Y, Boyer JF, Kruglov A, Nedospasov S, Novarino J, Aloulou M, Fazilleau N, Constantin A, Cantagrel A, Davignon JL, Rauwel B. Evidence for tmTNF reverse signaling in vivo: Implications for an arginase-1-mediated therapeutic effect of TNF inhibitors during inflammation. iScience 2021; 24:102331. [PMID: 33889824 PMCID: PMC8050384 DOI: 10.1016/j.isci.2021.102331] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 11/05/2020] [Accepted: 03/16/2021] [Indexed: 12/20/2022] Open
Abstract
In order to ascertain the significance of transmembrane tumor necrosis factor (tmTNF) reverse signaling in vivo, we generated a triple transgenic mouse model (3TG, TNFR1−/−, TNFR2−/−, and tmTNFKI/KI) in which all canonical tumor necrosis factor (TNF) signaling was abolished. In bone-marrow-derived macrophages harvested from these mice, various anti-TNF biologics induced the expression of genes characteristic of alternative macrophages and also inhibited the expression of pro-inflammatory cytokines mainly through the upregulation of arginase-1. Injections of TNF inhibitors during arthritis increased pro-resolutive markers in bone marrow precursors and joint cells leading to a decrease in arthritis score. These results demonstrate that the binding of anti-TNF biologics to tmTNF results in decreased arthritis severity. Collectively, our data provide evidence for the significance of tmTNF reverse signaling in the modulation of arthritis. They suggest a complementary interpretation of anti-TNF biologics effects in the treatment of inflammatory diseases and pave the way to studies focused on new arginase-1-dependent therapeutic targets. In vivo demonstration of tmTNF reverses signaling existence tmTNF reverse signaling induces anti-oxidative stress response tmTNF reverse signaling induces an arginase-1-mediated anti-inflammatory response Reverse signaling is a complementary mechanism to TNF neutralization by anti-TNF
Collapse
Affiliation(s)
- Katy Diallo
- INFINITy, Toulouse Institute for Infectious and Inflammatory Diseases, INSERM U1291, CNRS U5051, University Toulouse III, Toulouse, France
| | - Numa Simons
- INFINITy, Toulouse Institute for Infectious and Inflammatory Diseases, INSERM U1291, CNRS U5051, University Toulouse III, Toulouse, France.,Centre de Rhumatologie, CHU de Toulouse, Toulouse, France
| | - Souraya Sayegh
- INFINITy, Toulouse Institute for Infectious and Inflammatory Diseases, INSERM U1291, CNRS U5051, University Toulouse III, Toulouse, France
| | - Michel Baron
- INFINITy, Toulouse Institute for Infectious and Inflammatory Diseases, INSERM U1291, CNRS U5051, University Toulouse III, Toulouse, France
| | - Yannick Degboé
- INFINITy, Toulouse Institute for Infectious and Inflammatory Diseases, INSERM U1291, CNRS U5051, University Toulouse III, Toulouse, France.,Centre de Rhumatologie, CHU de Toulouse, Toulouse, France.,Faculté de Médecine, Université Paul Sabatier Toulouse III, Toulouse, France
| | | | - Andrey Kruglov
- German Rheumatism Research Center (DRFZ), a Leibniz Institute Berlin 10117, Germany.,Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia
| | - Sergei Nedospasov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia
| | - Julien Novarino
- INFINITy, Toulouse Institute for Infectious and Inflammatory Diseases, INSERM U1291, CNRS U5051, University Toulouse III, Toulouse, France
| | - Meryem Aloulou
- INFINITy, Toulouse Institute for Infectious and Inflammatory Diseases, INSERM U1291, CNRS U5051, University Toulouse III, Toulouse, France
| | - Nicolas Fazilleau
- INFINITy, Toulouse Institute for Infectious and Inflammatory Diseases, INSERM U1291, CNRS U5051, University Toulouse III, Toulouse, France
| | - Arnaud Constantin
- INFINITy, Toulouse Institute for Infectious and Inflammatory Diseases, INSERM U1291, CNRS U5051, University Toulouse III, Toulouse, France.,Centre de Rhumatologie, CHU de Toulouse, Toulouse, France.,Faculté de Médecine, Université Paul Sabatier Toulouse III, Toulouse, France
| | - Alain Cantagrel
- INFINITy, Toulouse Institute for Infectious and Inflammatory Diseases, INSERM U1291, CNRS U5051, University Toulouse III, Toulouse, France.,Centre de Rhumatologie, CHU de Toulouse, Toulouse, France.,Faculté de Médecine, Université Paul Sabatier Toulouse III, Toulouse, France
| | - Jean-Luc Davignon
- INFINITy, Toulouse Institute for Infectious and Inflammatory Diseases, INSERM U1291, CNRS U5051, University Toulouse III, Toulouse, France.,Centre de Rhumatologie, CHU de Toulouse, Toulouse, France
| | - Benjamin Rauwel
- INFINITy, Toulouse Institute for Infectious and Inflammatory Diseases, INSERM U1291, CNRS U5051, University Toulouse III, Toulouse, France
| |
Collapse
|
22
|
Duvvuri B, Baddour AA, Deane KD, Feser ML, Nelson JL, Demoruelle MK, Lood C. Mitochondrial N-formyl methionine peptides associate with disease activity as well as contribute to neutrophil activation in patients with rheumatoid arthritis. J Autoimmun 2021; 119:102630. [PMID: 33713887 DOI: 10.1016/j.jaut.2021.102630] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 02/23/2021] [Accepted: 02/25/2021] [Indexed: 12/25/2022]
Abstract
OBJECTIVES Literature suggests that neutrophils of patients with rheumatoid arthritis (RA) are primed to respond to N-formyl methionine group (formylated peptides). Animal models indicate that formylated peptides contribute to joint damage via neutrophil recruitment and inflammation in joints. Non-steroidal anti-inflammatory drugs are also known to inhibit formyl peptide-induced neutrophil activation. The predominant source of formylated peptides in sterile inflammatory conditions like RA is mitochondria, organelles with prokaryotic molecular signatures. However, there is no direct evidence of mitochondrial formyl peptides (mtNFPs) in the circulation of patients with RA and their potential role in neutrophil-mediated inflammation in RA, including their clinical significance. METHODS Levels of mtNFPs (total fMet, MT-ND6) were analyzed using ELISA in plasma and serum obtained from patients in 3 cross-sectional RA cohorts (n = 275), a longitudinal inception cohort (n = 192) followed for a median of 8 years, and age/gender-matched healthy controls (total n = 134). Neutrophil activation assays were done in the absence or presence of formyl peptide receptor 1 (FPR1) inhibitor cyclosporine H. RESULTS Elevated levels of total fMet were observed in the circulation of patients with RA as compared to healthy controls (p < 0.0001) associating with disease activity and could distinguish patients with the active disease from patients with inactive disease or patients in remission. Baseline levels of total fMet correlated with current and future joint involvement, respectively and predicted the development of rheumatoid nodules (OR = 1.2, p = 0.04). Further, total fMet levels improved the prognostic ability of ACPA in predicting erosive disease (OR of 7.9, p = 0.001). Total fMet levels correlated with markers of inflammation and neutrophil activation. Circulating mtNFPs induced neutrophil activation in vitro through FPR1-dependent mechanisms. CONCLUSIONS Circulating mtNFPs could be novel biomarkers of disease monitoring and prognosis for RA and in investigating neutrophil-mediated inflammation in RA. We propose, FPR1 as a novel therapeutic target for RA.
Collapse
Affiliation(s)
- Bhargavi Duvvuri
- Department of Medicine, Division of Rheumatology, University of Washington, Seattle, WA, USA
| | - Al Anoud Baddour
- Department of Medicine, Division of Rheumatology, University of Washington, Seattle, WA, USA
| | - Kevin D Deane
- Division of Rheumatology, University of Colorado-Denver, Aurora, CO, USA
| | - Marie L Feser
- Division of Rheumatology, University of Colorado-Denver, Aurora, CO, USA
| | - J Lee Nelson
- Department of Medicine, Division of Rheumatology, University of Washington, Seattle, WA, USA; Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | | | - Christian Lood
- Department of Medicine, Division of Rheumatology, University of Washington, Seattle, WA, USA.
| |
Collapse
|
23
|
Pérez-Figueroa E, Álvarez-Carrasco P, Ortega E, Maldonado-Bernal C. Neutrophils: Many Ways to Die. Front Immunol 2021; 12:631821. [PMID: 33746968 PMCID: PMC7969520 DOI: 10.3389/fimmu.2021.631821] [Citation(s) in RCA: 119] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Accepted: 02/08/2021] [Indexed: 12/21/2022] Open
Abstract
Neutrophils or polymorphonuclear leukocytes (PMN) are key participants in the innate immune response for their ability to execute different effector functions. These cells express a vast array of membrane receptors that allow them to recognize and eliminate infectious agents effectively and respond appropriately to microenvironmental stimuli that regulate neutrophil functions, such as activation, migration, generation of reactive oxygen species, formation of neutrophil extracellular traps, and mediator secretion, among others. Currently, it has been realized that activated neutrophils can accomplish their effector functions and simultaneously activate mechanisms of cell death in response to different intracellular or extracellular factors. Although several studies have revealed similarities between the mechanisms of cell death of neutrophils and other cell types, neutrophils have distinctive properties, such as a high production of reactive oxygen species (ROS) and nitrogen species (RNS), that are important for their effector function in infections and pathologies such as cancer, autoimmune diseases, and immunodeficiencies, influencing their cell death mechanisms. The present work offers a synthesis of the conditions and molecules implicated in the regulation and activation of the processes of neutrophil death: apoptosis, autophagy, pyroptosis, necroptosis, NETosis, and necrosis. This information allows to understand the duality encountered by PMNs upon activation. The effector functions are carried out to eliminate invading pathogens, but in several instances, these functions involve activation of signaling cascades that culminate in the death of the neutrophil. This process guarantees the correct elimination of pathogenic agents, damaged or senescent cells, and the timely resolution of the inflammation that is essential for the maintenance of homeostasis in the organism. In addition, they alert the organism when the immunological system is being deregulated, promoting the activation of other cells of the immune system, such as B and T lymphocytes, which produce cytokines that potentiate the microbicide functions.
Collapse
Affiliation(s)
- Erandi Pérez-Figueroa
- Unidad de Investigación en Inmunología y Proteómica, Hospital Infantil de México Federico Gómez, Secretaría de Salud, Mexico City, Mexico
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico City, Mexico
| | - Pablo Álvarez-Carrasco
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico City, Mexico
| | - Enrique Ortega
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico City, Mexico
| | - Carmen Maldonado-Bernal
- Unidad de Investigación en Inmunología y Proteómica, Hospital Infantil de México Federico Gómez, Secretaría de Salud, Mexico City, Mexico
| |
Collapse
|
24
|
Fresneda Alarcon M, McLaren Z, Wright HL. Neutrophils in the Pathogenesis of Rheumatoid Arthritis and Systemic Lupus Erythematosus: Same Foe Different M.O. Front Immunol 2021; 12:649693. [PMID: 33746988 PMCID: PMC7969658 DOI: 10.3389/fimmu.2021.649693] [Citation(s) in RCA: 135] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 02/12/2021] [Indexed: 12/14/2022] Open
Abstract
Dysregulated neutrophil activation contributes to the pathogenesis of autoimmune diseases including rheumatoid arthritis (RA) and systemic lupus erythematosus (SLE). Neutrophil-derived reactive oxygen species (ROS) and granule proteases are implicated in damage to and destruction of host tissues in both conditions (cartilage in RA, vascular tissue in SLE) and also in the pathogenic post-translational modification of DNA and proteins. Neutrophil-derived cytokines and chemokines regulate both the innate and adaptive immune responses in RA and SLE, and neutrophil extracellular traps (NETs) expose nuclear neoepitopes (citrullinated proteins in RA, double-stranded DNA and nuclear proteins in SLE) to the immune system, initiating the production of auto-antibodies (ACPA in RA, anti-dsDNA and anti-acetylated/methylated histones in SLE). Neutrophil apoptosis is dysregulated in both conditions: in RA, delayed apoptosis within synovial joints contributes to chronic inflammation, immune cell recruitment and prolonged release of proteolytic enzymes, whereas in SLE enhanced apoptosis leads to increased apoptotic burden associated with development of anti-nuclear auto-antibodies. An unbalanced energy metabolism in SLE and RA neutrophils contributes to the pathology of both diseases; increased hypoxia and glycolysis in RA drives neutrophil activation and NET production, whereas decreased redox capacity increases ROS-mediated damage in SLE. Neutrophil low-density granulocytes (LDGs), present in high numbers in the blood of both RA and SLE patients, have opposing phenotypes contributing to clinical manifestations of each disease. In this review we will describe the complex and contrasting phenotype of neutrophils and LDGs in RA and SLE and discuss their discrete roles in the pathogenesis of each condition. We will also review our current understanding of transcriptomic and metabolomic regulation of neutrophil phenotype in RA and SLE and discuss opportunities for therapeutic targeting of neutrophil activation in inflammatory auto-immune disease.
Collapse
Affiliation(s)
- Michele Fresneda Alarcon
- Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Zoe McLaren
- Liverpool University Hospitals National Health Service (NHS) Foundation Trust, Liverpool, United Kingdom
| | - Helen Louise Wright
- Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
25
|
Wright HL, Lyon M, Chapman EA, Moots RJ, Edwards SW. Rheumatoid Arthritis Synovial Fluid Neutrophils Drive Inflammation Through Production of Chemokines, Reactive Oxygen Species, and Neutrophil Extracellular Traps. Front Immunol 2021; 11:584116. [PMID: 33469455 PMCID: PMC7813679 DOI: 10.3389/fimmu.2020.584116] [Citation(s) in RCA: 110] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 11/20/2020] [Indexed: 12/14/2022] Open
Abstract
Rheumatoid arthritis (RA) is a chronic inflammatory disorder affecting synovial joints. Neutrophils are believed to play an important role in both the initiation and progression of RA, and large numbers of activated neutrophils are found within both synovial fluid (SF) and synovial tissue from RA joints. In this study we analyzed paired blood and SF neutrophils from patients with severe, active RA (DAS28>5.1, n=3) using RNA-seq. 772 genes were significantly different between blood and SF neutrophils. IPA analysis predicted that SF neutrophils had increased expression of chemokines and ROS production, delayed apoptosis, and activation of signaling cascades regulating the production of NETs. This activated phenotype was confirmed experimentally by incubating healthy control neutrophils in cell-free RA SF, which was able to delay apoptosis and induce ROS production in both unprimed and TNFα primed neutrophils (p<0.05). RA SF significantly increased neutrophil migration through 3μM transwell chambers (p<0.05) and also increased production of NETs by healthy control neutrophils (p<0.001), including exposure of myeloperoxidase (MPO) and citrullinated histone-H3-positive DNA NETs. IPA analysis predicted NET production was mediated by signaling networks including AKT, RAF1, SRC, and NF-κB. Our results expand the understanding of the molecular changes that take place in the neutrophil transcriptome during migration into inflamed joints in RA, and the altered phenotype in RA SF neutrophils. Specifically, RA SF neutrophils lose their migratory properties, residing within the joint to generate signals that promote joint damage, as well as inflammation via recruitment and activation of both innate and adaptive immune cells. We propose that this activated SF neutrophil phenotype contributes to the chronic inflammation and progressive damage to cartilage and bone observed in patients with RA.
Collapse
Affiliation(s)
- Helen L. Wright
- Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Max Lyon
- Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Elinor A. Chapman
- Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Robert J. Moots
- Department of Rheumatology, Aintree University Hospital, Liverpool, United Kingdom
- Faculty of Health, Social Care and Medicine, Edge Hill University, Ormskirk, United Kingdom
| | - Steven W. Edwards
- Faculty of Health, Social Care and Medicine, Edge Hill University, Ormskirk, United Kingdom
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
26
|
Glennon-Alty L, Moots RJ, Edwards SW, Wright HL. Type I interferon regulates cytokine-delayed neutrophil apoptosis, reactive oxygen species production and chemokine expression. Clin Exp Immunol 2020; 203:151-159. [PMID: 32990354 PMCID: PMC7806414 DOI: 10.1111/cei.13525] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 08/21/2020] [Accepted: 09/14/2020] [Indexed: 02/06/2023] Open
Abstract
Interferons (IFNs) are key regulators of a number of inflammatory conditions in which neutrophils play an important role in pathology, such as rheumatoid arthritis (RA) and systemic lupus erythematosus (SLE), where type I IFNs are implicated in disease pathology. However, IFNs are usually generated in vivo together with other cytokines that also have immunoregulatory functions, but such interactions are poorly defined experimentally. We measured the effects of type I (IFN-α) IFN, elevated in both RA and SLE, on the functions of healthy neutrophils incubated in vitro in the absence and presence of proinflammatory cytokines typically elevated in inflammatory diseases [tumour necrosis factor (TNF-α), granulocyte-macrophage colony-stimulating factor (GM-CSF)]. IFN-α alone had no effect on neutrophil apoptosis; however, it abrogated the anti-apoptotic effect of GM-CSF (18 h, P < 0·01). The enhanced stability of the anti-apoptotic protein myeloid cell leukaemia 1 (Mcl-1) and delayed activation of caspase activation normally regulated by GM-CSF were blocked by IFN-α: this effect was mediated, in part, by activation of p38 mitogen-activated protein kinase (MAPK). IFN-α alone also primed reactive oxygen species (ROS) production and maintained the transient priming effect of TNF-α for up to 4 h: it also down-regulated GM-CSF- and TNF-α-activated expression of chemokine (C-X-C motif) ligand (CXCL)1, CXCL2, CXCL3, CXCL8, CCL3 and CCL4 but, in contrast, increased the expression of CXCL10. These novel data identify complex regulatory signalling networks in which type I IFNs profoundly alter the response of neutrophils to inflammatory cytokines. This is likely to have important consequences in vivo and may explain the complexity and heterogeneity of inflammatory diseases such as RA, in which multiple cytokine cascades have been activated.
Collapse
Affiliation(s)
- L Glennon-Alty
- Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, Merseyside, UK.,Liverpool Health Partners, University of Liverpool, Liverpool, Merseyside, UK
| | - R J Moots
- Department of Rheumatology, Aintree University Hospital, Liverpool, UK
| | - S W Edwards
- Institute of Infection, Veterinary and Ecological Science, University of Liverpool, Liverpool, Merseyside, UK
| | - H L Wright
- Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, Merseyside, UK
| |
Collapse
|
27
|
Cross AL, Hawkes J, Wright HL, Moots RJ, Edwards SW. APPA (apocynin and paeonol) modulates pathological aspects of human neutrophil function, without supressing antimicrobial ability, and inhibits TNFα expression and signalling. Inflammopharmacology 2020; 28:1223-1235. [PMID: 32383062 PMCID: PMC7525285 DOI: 10.1007/s10787-020-00715-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 04/24/2020] [Indexed: 12/19/2022]
Abstract
Neutrophils are key players in the pathophysiological process underlying inflammatory conditions not only by release of tissue-damaging cytotoxic enzymes, reactive oxygen species (ROS) but also by secretion of important immunomodulatory chemokines and cytokines. Here, we report the effects of the novel agent APPA, undergoing formal clinical development for treatment of osteoarthritis, and its constituent components, apocynin (AP) and paeonol (PA) on a number of neutrophil functions, including effects on TNFα- expression and signalling. Neutrophils were treated with APPA (10-1000 µg/mL) prior to the measurement of cell functions, including ROS production, chemotaxis, apoptosis and surface receptor expression. Expression levels of several key genes and proteins were measured after incubation with APPA and the chromatin re-modelling agent, R848. APPA did not significantly affect phagocytosis, bacterial killing or expression of surface receptors, while chemotactic migration was affected only at the highest concentrations. However, APPA down-regulated neutrophil degranulation and ROS levels, and decreased the formation of neutrophil extracellular traps. APPA also decreased cytokine-stimulated gene expression, inhibiting both TNFα- and GM-CSF-induced cell signalling. APPA was as effective as infliximab in down-regulating chemokine and IL-6 expression following incubation with R848. Whilst APPA does not interfere with neutrophil host defence against infections, it does inhibit neutrophil degranulation, and cytokine-driven signalling pathways (e.g. autocrine signalling and NF-κB activation), processes that are associated with inflammation. These observations may explain the mechanisms by which APPA exerts anti-inflammatory effects and suggests a potential therapeutic role in inflammatory diseases in which neutrophils and TNFα signalling are important in pathology, such as rheumatoid arthritis.
Collapse
Affiliation(s)
- A L Cross
- Institute of Ageing and Chronic Disease, Aintree University Hospital, Longmoor Lane, Liverpool, L9 7AL, UK
| | - J Hawkes
- Institute of Ageing and Chronic Disease, Aintree University Hospital, Longmoor Lane, Liverpool, L9 7AL, UK
| | - H L Wright
- Institute of Ageing and Chronic Disease, Aintree University Hospital, Longmoor Lane, Liverpool, L9 7AL, UK
| | - R J Moots
- Institute of Ageing and Chronic Disease, Aintree University Hospital, Longmoor Lane, Liverpool, L9 7AL, UK
| | - S W Edwards
- Institute of Integrative Biology, University of Liverpool, Liverpool, L69 7ZB, UK.
- Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Liverpool, L69 7ZB, UK.
| |
Collapse
|
28
|
Cappelli LC, Thomas MA, Bingham CO, Shah AA, Darrah E. Immune checkpoint inhibitor-induced inflammatory arthritis as a model of autoimmune arthritis. Immunol Rev 2020; 294:106-123. [PMID: 31930524 PMCID: PMC7047521 DOI: 10.1111/imr.12832] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 12/04/2019] [Indexed: 02/06/2023]
Abstract
The development of inflammatory arthritis in patients receiving immune checkpoint inhibitor therapy is increasingly recognized due to the growing use of these drugs for the treatment of cancer. This represents an important opportunity not only to define the mechanisms responsible for the development of this immune-related adverse event and to ultimately predict or prevent its development, but also to provide a unique window into early events in the development of inflammatory arthritis. Knowledge gained through the study of this patient population, for which the inciting event is known, could shed light into the pathogenesis of autoimmune arthritis. This review will highlight the clinical and immunologic features of these entities to define common elements for future study.
Collapse
Affiliation(s)
- Laura C. Cappelli
- Johns Hopkins School of Medicine, Division of Rheumatology, Baltimore, MD, USA
| | - Mekha A. Thomas
- Johns Hopkins School of Medicine, Division of Rheumatology, Baltimore, MD, USA
| | - Clifton O. Bingham
- Johns Hopkins School of Medicine, Division of Rheumatology, Baltimore, MD, USA
| | - Ami A. Shah
- Johns Hopkins School of Medicine, Division of Rheumatology, Baltimore, MD, USA
| | - Erika Darrah
- Johns Hopkins School of Medicine, Division of Rheumatology, Baltimore, MD, USA
| |
Collapse
|
29
|
Zhang L, Yuan Y, Xu Q, Jiang Z, Chu CQ. Contribution of neutrophils in the pathogenesis of rheumatoid arthritis. J Biomed Res 2020; 34:86-93. [PMID: 32305962 DOI: 10.7555/jbr.33.20190075] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Neutrophils are major innate immune effector cells for host defense and have been a topic of active research for their participation in the pathogenesis of autoimmune inflammatory diseases including rheumatoid arthritis (RA) due to recently discovered neutrophil extracellular trap (NET) formation. NET formation and other mechanisms leading to the release of neutrophil nuclear and cytoplasmic contents are implicated as a source of citrullinated antigens in RA. Further investigations are required to delineate what factors diverge neutrophils from host defense to autoimmune response in RA.
Collapse
Affiliation(s)
- Lingshu Zhang
- Division of Arthritis and Rheumatic Diseases, Oregon Health & Science University, Portland, OR 97239, USA;Rheumatology Section, VA Portland Healthcare System, Portland, OR 97239, USA
| | - Yi Yuan
- Department of Rheumatology and Immunology, the First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Qiang Xu
- Division of Arthritis and Rheumatic Diseases, Oregon Health & Science University, Portland, OR 97239, USA;Rheumatology Section, VA Portland Healthcare System, Portland, OR 97239, USA
| | - Zhengyu Jiang
- Department of Rheumatology and Immunology, the First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Cong-Qiu Chu
- Division of Arthritis and Rheumatic Diseases, Oregon Health & Science University, Portland, OR 97239, USA;Rheumatology Section, VA Portland Healthcare System, Portland, OR 97239, USA
| |
Collapse
|
30
|
Chen SJ, Lin GJ, Chen JW, Wang KC, Tien CH, Hu CF, Chang CN, Hsu WF, Fan HC, Sytwu HK. Immunopathogenic Mechanisms and Novel Immune-Modulated Therapies in Rheumatoid Arthritis. Int J Mol Sci 2019; 20:ijms20061332. [PMID: 30884802 PMCID: PMC6470801 DOI: 10.3390/ijms20061332] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Revised: 02/17/2019] [Accepted: 03/12/2019] [Indexed: 12/16/2022] Open
Abstract
Rheumatoid arthritis (RA) is a chronic, inflammatory autoimmune disease of unknown etiology. It is characterized by the presence of rheumatoid factor and anticitrullinated peptide antibodies. The orchestra of the inflammatory process among various immune cells, cytokines, chemokines, proteases, matrix metalloproteinases (MMPs), and reactive oxidative stress play critical immunopathologic roles in the inflammatory cascade of the joint environment, leading to clinical impairment and RA. With the growing understanding of the immunopathogenic mechanisms, increasingly novel marked and potential biologic agents have merged for the treatment of RA in recent years. In this review, we focus on the current understanding of pathogenic mechanisms, highlight novel biologic disease-modifying antirheumatic drugs (DMRADs), targeted synthetic DMRADs, and immune-modulating agents, and identify the applicable immune-mediated therapeutic strategies of the near future. In conclusion, new therapeutic approaches are emerging through a better understanding of the immunopathophysiology of RA, which is improving disease outcomes better than ever.
Collapse
Affiliation(s)
- Shyi-Jou Chen
- Department of Pediatrics, Tri-Service General Hospital, National Defense Medical Center, No. 325, Section 2, Chenggong Rd., Neihu District, Taipei City 114, Taiwan.
- Department of Microbiology and Immunology, National Defense Medical Center, No. 161, Section 6, MinChuan East Road, Neihu, Taipei City 114, Taiwan.
- Department of Pediatrics, Penghu Branch of Tri-Service General Hospital, National Defense Medical Center, No. 90, Qianliao, Magong City, Penghu County 880, Taiwan.
- Graduate Institute of Medical Sciences, National Defense Medical Center, No. 161, Section 6, MinChuan East Road, Neihu, Taipei City 114, Taiwan.
| | - Gu-Jiun Lin
- Department of Biology and Anatomy, National Defense Medical Center, No. 161, Section 6, MinChuan East Road, Neihu, Taipei City 114, Taiwan.
| | - Jing-Wun Chen
- Graduate Institute of Life Sciences, National Defense Medical Center, No. 161, Section 6, MinChuan East Road, Neihu, Taipei City 114, Taiwan.
| | - Kai-Chen Wang
- School of Medicine, National Yang-Ming University, No. 155, Section 2, Linong Street, Taipei City 112, Taiwan.
- Department of Neurology, Cheng Hsin General Hospital, No. 45, Cheng Hsin St., Pai-Tou, Taipei City 112, Taiwan.
| | - Chiung-Hsi Tien
- Department of Pediatrics, Tri-Service General Hospital, National Defense Medical Center, No. 325, Section 2, Chenggong Rd., Neihu District, Taipei City 114, Taiwan.
- Graduate Institute of Medical Sciences, National Defense Medical Center, No. 161, Section 6, MinChuan East Road, Neihu, Taipei City 114, Taiwan.
| | - Chih-Fen Hu
- Department of Pediatrics, Tri-Service General Hospital, National Defense Medical Center, No. 325, Section 2, Chenggong Rd., Neihu District, Taipei City 114, Taiwan.
- Graduate Institute of Medical Sciences, National Defense Medical Center, No. 161, Section 6, MinChuan East Road, Neihu, Taipei City 114, Taiwan.
| | - Chia-Ning Chang
- Department of Pediatrics, Tri-Service General Hospital, National Defense Medical Center, No. 325, Section 2, Chenggong Rd., Neihu District, Taipei City 114, Taiwan.
- Department of Pediatrics, Penghu Branch of Tri-Service General Hospital, National Defense Medical Center, No. 90, Qianliao, Magong City, Penghu County 880, Taiwan.
| | - Wan-Fu Hsu
- Department of Pediatrics, Tri-Service General Hospital, National Defense Medical Center, No. 325, Section 2, Chenggong Rd., Neihu District, Taipei City 114, Taiwan.
- Department of Pediatrics, Penghu Branch of Tri-Service General Hospital, National Defense Medical Center, No. 90, Qianliao, Magong City, Penghu County 880, Taiwan.
| | - Hueng-Chuen Fan
- Department of Pediatrics, Tri-Service General Hospital, National Defense Medical Center, No. 325, Section 2, Chenggong Rd., Neihu District, Taipei City 114, Taiwan.
- Department of Pediatrics, Tungs' Taichung MetroHarborHospital, No. 699, Section 8, Taiwan Blvd., Taichung City 435, Taiwan.
| | - Huey-Kang Sytwu
- Department of Microbiology and Immunology, National Defense Medical Center, No. 161, Section 6, MinChuan East Road, Neihu, Taipei City 114, Taiwan.
- Graduate Institute of Medical Sciences, National Defense Medical Center, No. 161, Section 6, MinChuan East Road, Neihu, Taipei City 114, Taiwan.
- Graduate Institute of Life Sciences, National Defense Medical Center, No. 161, Section 6, MinChuan East Road, Neihu, Taipei City 114, Taiwan.
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, No. 35, Keyan Road, Zhunan, Miaoli County 350, Taiwan.
| |
Collapse
|
31
|
Chapman EA, Lyon M, Simpson D, Mason D, Beynon RJ, Moots RJ, Wright HL. Caught in a Trap? Proteomic Analysis of Neutrophil Extracellular Traps in Rheumatoid Arthritis and Systemic Lupus Erythematosus. Front Immunol 2019; 10:423. [PMID: 30915077 PMCID: PMC6421309 DOI: 10.3389/fimmu.2019.00423] [Citation(s) in RCA: 139] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 02/18/2019] [Indexed: 12/22/2022] Open
Abstract
Neutrophil Extracellular Traps (NETs) are implicated in the development of auto-immunity in diseases such as rheumatoid arthritis (RA) and systemic lupus erythematosus (SLE) through the externalization of intracellular neoepitopes e.g., dsDNA and nuclear proteins in SLE and citrullinated peptides in RA. The aim of this work was to use quantitative proteomics to identify and measure NET proteins produced by neutrophils from healthy controls, and from patients with RA and SLE to determine if NETs can be differentially-generated to expose different sets of neoepitopes. Ultra-pure neutrophils (>99%) from healthy individuals (n = 3) and patients with RA or SLE (n = 6 each) were incubated ± PMA (50 nM, PKC super-activator) or A23187 (3.8 μM, calcium ionophore) for 4 h. NETs were liberated by nuclease digestion and concentrated onto Strataclean beads prior to on-bead digestion with trypsin. Data-dependent LC-MS/MS analyses were conducted on a QExactive HF quadrupole-Orbitrap mass spectrometer, and label-free protein quantification was carried out using Progenesis QI. PMA-induced NETs were decorated with annexins, azurocidin and histone H3, whereas A23187-induced NETs were decorated with granule proteins including CAMP/LL37, CRISP3, lipocalin and MMP8, histones H1.0, H1.4, and H1.5, interleukin-8, protein-arginine deiminase-4 (PADI4), and α-enolase. Four proteins were significantly different between PMA-NETs from RA and SLE neutrophils (p < 0.05): RNASE2 was higher in RA, whereas MPO, leukocyte elastase inhibitor and thymidine phosphorylase were higher in SLE. For A23187-NETs, six NET proteins were higher in RA (p < 0.05), including CAMP/LL37, CRISP3, interleukin-8, MMP8; Thirteen proteins were higher in SLE, including histones H1.0, H2B, and H4. This work provides the first, direct comparison of NOX2-dependent (PMA) and NOX2-independent (A23187) NETs using quantitative proteomics, and the first direct comparison of RA and SLE NETs using quantitative proteomics. We show that it is the nature of the stimulant rather than neutrophil physiology that determines NET protein profiles in disease, since stimulation of NETosis in either a NOX2-dependent or a NOX2-independent manner generates broadly similar NET proteins irrespective of the disease background. We also use our proteomics pipeline to identify an extensive range of post-translationally modified proteins in RA and SLE, including histones and granule proteins, many of which are known targets of auto-antibodies in each disease.
Collapse
Affiliation(s)
- Elinor A Chapman
- Department of Musculoskeletal Biology I, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, United Kingdom
| | - Max Lyon
- Department of Musculoskeletal Biology I, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, United Kingdom
| | - Deborah Simpson
- Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom.,Centre for Proteome Research, University of Liverpool, Liverpool, United Kingdom
| | - David Mason
- Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom.,Centre for Cell Imaging, University of Liverpool, Liverpool, United Kingdom
| | - Robert J Beynon
- Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom.,Centre for Proteome Research, University of Liverpool, Liverpool, United Kingdom
| | - Robert J Moots
- Department of Musculoskeletal Biology I, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, United Kingdom.,University of Liverpool and Aintree University Hospital, Members of Liverpool Health Partners, Liverpool, United Kingdom
| | - Helen L Wright
- Department of Musculoskeletal Biology I, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
32
|
Different Faces for Different Places: Heterogeneity of Neutrophil Phenotype and Function. J Immunol Res 2019; 2019:8016254. [PMID: 30944838 PMCID: PMC6421822 DOI: 10.1155/2019/8016254] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 09/22/2018] [Accepted: 01/03/2019] [Indexed: 02/05/2023] Open
Abstract
As the most abundant leukocytes in the circulation, neutrophils are committed to innate and adaptive immune effector function to protect the human body. They are capable of killing intruding microbes through various ways including phagocytosis, release of granules, and formation of extracellular traps. Recent research has revealed that neutrophils are heterogeneous in phenotype and function and can display outstanding plasticity in both homeostatic and disease states. The great flexibility and elasticity arm neutrophils with important regulatory and controlling functions in various disease states such as autoimmunity and inflammation as well as cancer. Hence, this review will focus on recent literature describing neutrophils' variable and diverse phenotypes and functions in different contexts.
Collapse
|
33
|
Luo Q, Feng Y, Xie Y, Shao Y, Wu M, Deng X, Yuan WE, Chen Y, Shi X. Nanoparticle-microRNA-146a-5p polyplexes ameliorate diabetic peripheral neuropathy by modulating inflammation and apoptosis. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2019; 17:188-197. [PMID: 30721753 DOI: 10.1016/j.nano.2019.01.007] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Revised: 12/19/2018] [Accepted: 01/10/2019] [Indexed: 01/22/2023]
Abstract
Nontoxic and nonimmunogenic nanoparticles play an increasingly important role in the application of pharmaceutical nanocarriers. The pathogenesis of diabetic peripheral neuropathy (DPN) has been extensively studied. However, the role of microRNAs in DPN remains to be clarified. We verified in vitro that miR-146a-5p mimics inhibited the expression of proinflammatory cytokines and apoptosis. Then, we explored the protective effect of nanoparticle-miRNA-146a-5p polyplexes (nano-miR-146a-5p) on DPN rats. We demonstrated that nano-miR-146a-5p improved nerve conduction velocity and alleviated the morphological damage and demyelination of the sciatic nerve of DPN rats. The expression of the inflammatory cytokines, caspase-3, and cleaved caspase-3 in the sciatic nerve was inhibited by nano-miR-146a-5p. Additionally, nano-miR-146a-5p increased the expression of myelin basic protein. These results all indicated that nano-miR-146a-5p had a protective effect on peripheral nerves in the DPN rat model, which may occur through the regulation of the inflammatory response and apoptosis.
Collapse
Affiliation(s)
- Qiong Luo
- Department of Endocrinology, Jinshan Hospital, Fudan University, Shanghai, China; Department of Neurology, Jinshan Hospital, Fudan University, Shanghai, China
| | - Yonghao Feng
- Department of Endocrinology, Jinshan Hospital, Fudan University, Shanghai, China
| | - Yangmei Xie
- Department of Neurology, Jinshan Hospital, Fudan University, Shanghai, China
| | - Yiye Shao
- Department of Neurology, Jinshan Hospital, Fudan University, Shanghai, China
| | - Men Wu
- Department of Endocrinology, Jinshan Hospital, Fudan University, Shanghai, China
| | - Xiaolin Deng
- Department of Endocrinology, Jinshan Hospital, Fudan University, Shanghai, China
| | - Wei-En Yuan
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, and School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Yinghui Chen
- Department of Neurology, Huashan Hospital North, Fudan University, Shanghai, China.
| | - Xiaohong Shi
- Department of Endocrinology, Jinshan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
34
|
O'Neil LJ, Kaplan MJ. Neutrophils in Rheumatoid Arthritis: Breaking Immune Tolerance and Fueling Disease. Trends Mol Med 2019; 25:215-227. [PMID: 30709614 DOI: 10.1016/j.molmed.2018.12.008] [Citation(s) in RCA: 147] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Revised: 12/19/2018] [Accepted: 12/20/2018] [Indexed: 12/15/2022]
Abstract
Rheumatoid arthritis (RA), a common autoimmune disease, is characterized by a highly coordinated inflammatory response that involves innate and adaptive immunity. One of the hallmarks of RA is an immune response directed at citrullinated peptides that are specifically targeted by anticitrullinated protein antibodies (ACPAs). Among the various mechanisms by which neutrophils may promote immune dysregulation in RA, their ability to extrude neutrophil extracellular traps has recently been implicated in the development of ACPAs. In the synovium, neutrophils interact with resident fibroblast-like synoviocytes to endow them with antigen-presenting cell capabilities and an inflammatory phenotype. Further understanding how neutrophils modulate autoimmunity and tissue damage in RA may lead to the development of novel effective therapies.
Collapse
Affiliation(s)
- Liam J O'Neil
- Systemic Autoimmunity Branch, Intramural Research Program, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA.
| | - Mariana J Kaplan
- Systemic Autoimmunity Branch, Intramural Research Program, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
35
|
Ciechanowicz P, Rakowska A, Sikora M, Rudnicka L. JAK-inhibitors in dermatology: current evidence and future applications. J DERMATOL TREAT 2018; 30:648-658. [DOI: 10.1080/09546634.2018.1546043] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Piotr Ciechanowicz
- Department of Dermatology, Medical University of Warsaw, Koszykowa 82a, Warsaw 00-008, Poland
| | - Adriana Rakowska
- Department of Dermatology, Medical University of Warsaw, Koszykowa 82a, Warsaw 00-008, Poland
| | - Mariusz Sikora
- Department of Dermatology, Medical University of Warsaw, Koszykowa 82a, Warsaw 00-008, Poland
| | - Lidia Rudnicka
- Department of Neuropeptides, Mossakowski Medical Research Centre Polish Academy of Science, Warsaw, Poland
| |
Collapse
|
36
|
Neutrophil Function in an Inflammatory Milieu of Rheumatoid Arthritis. J Immunol Res 2018; 2018:8549329. [PMID: 30622982 PMCID: PMC6304923 DOI: 10.1155/2018/8549329] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 10/31/2018] [Accepted: 11/15/2018] [Indexed: 12/14/2022] Open
Abstract
Rheumatoid arthritis (RA) is an inflammatory autoimmune disease characterized by the presence of autoantibodies against citrullinated protein antigens and proinflammatory cytokines which cause chronic synovitis, bone erosion, and eventual deformity; however, the precise etiology of RA is unclear. In the early stage of RA, neutrophils migrate into the articular cavity, become activated, and exert their function in an inflammatory process, suggesting an essential role of neutrophils in the initial events contributing to the pathogenesis of RA. Solid evidence exists that supports the contribution of neutrophil extracellular traps (NETs) to the production of autoantibodies against citrullinated proteins which can trigger the immune reaction in RA. Concurrently, proinflammatory cytokines regulate the neutrophil migration, apoptosis, and NET formation. As a result, the inflammatory neutrophils produce more cytokines and influence other immune cells thereby perpetuating the inflammatory condition in RA. In this review, we summarize the advances made in improving our understanding of neutrophil migration, apoptosis, and NET formation in the presence of an RA inflammatory milieu. We will also discuss the most recent strategies in modulating the inflammatory microenvironment that have an impact on neutrophil function which may provide alternative novel therapies for RA.
Collapse
|
37
|
NF-kappaB: Two Sides of the Same Coin. Genes (Basel) 2018; 9:genes9010024. [PMID: 29315242 PMCID: PMC5793177 DOI: 10.3390/genes9010024] [Citation(s) in RCA: 160] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 01/02/2018] [Accepted: 01/05/2018] [Indexed: 01/05/2023] Open
Abstract
Nuclear Factor-kappa B (NF-κB) is a transcription factor family that regulates a large number of genes that are involved in important physiological processes, including survival, inflammation, and immune responses. More recently, constitutive expression of NF-κB has been associated with several types of cancer. In addition, microorganisms, such as viruses and bacteria, cooperate in the activation of NF-κB in tumors, confirming the multifactorial role of this transcription factor as a cancer driver. Recent reports have shown that the NF-κB signaling pathway should receive attention for the development of therapies. In addition to the direct effects of NF-κB in cancer cells, it might also impact immune cells that can both promote or prevent tumor development. Currently, with the rise of cancer immunotherapy, the link among immune cells, inflammation, and cancer is a major focus, and NF-κB could be an important regulator for the success of these therapies. This review discusses the contrasting roles of NF-κB as a regulator of pro- and antitumor processes and its potential as a therapeutic target.
Collapse
|
38
|
|
39
|
Mitchell TS, Moots RJ, Wright HL. Janus kinase inhibitors prevent migration of rheumatoid arthritis neutrophils towards interleukin-8, but do not inhibit priming of the respiratory burst or reactive oxygen species production. Clin Exp Immunol 2017; 189:250-258. [PMID: 28369741 DOI: 10.1111/cei.12970] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/22/2017] [Indexed: 01/08/2023] Open
Abstract
Neutrophils play a crucial role in the pathophysiology of rheumatoid arthritis (RA) via the release of reactive oxygen species (ROS), proteases and cytokines. Orally active Janus kinase (JAK) inhibitors (JAKi), e.g. baricitinib and tofacitinib, have high clinical efficacy in RA but are linked with neutropenia and increased infections. Our aim was to determine the effect of JAK inhibition with baricitinib and tofacitinib on healthy control and RA neutrophil lifespan and function. RA (n = 7) and healthy control (n = 7) neutrophils were treated with baricitinib or tofacitinib for 30 min, prior to incubation in the absence or presence of granulocyte-macrophage colony-stimulating factor (GM-CSF) or interferon (IFN)-γ. JAKi prevented GM-CSF- and IFN-γ-induced apoptosis delay in RA and healthy control neutrophils in a dose-dependent manner. Baricitinib decreased the rate of chemotaxis towards interleukin (IL)-8, but not f-Met-Leu-Phe (fMLP) in RA neutrophils. While healthy control neutrophils incubated with GM-CSF became primed to produce ROS in response to stimulation with fMLP and phorbol-12-myristate-12-acetate (PMA), RA neutrophils produced increased levels of ROS without the need for priming. JAKi prevented ROS release from primed healthy control neutrophils in response to fMLP, but had no effect on ROS production by RA neutrophils. Baricitinib reversed GM-CSF priming of ROS production in response to fMLP in healthy control, but not RA, neutrophils. We conclude that incubation with JAKi prevents chemotaxis of RA neutrophils towards IL-8, but does not prevent the production of ROS or increase the level of apoptosis. This may be due to the in-vivo exposure of RA neutrophils to priming agents other than those that activate JAK/signal transducer and activator of transcription (STAT) signalling.
Collapse
Affiliation(s)
- T S Mitchell
- Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, UK
| | - R J Moots
- Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, UK
| | - H L Wright
- Institute of Integrative Biology, University of Liverpool, Liverpool, UK
| |
Collapse
|
40
|
Immune modulation of some autoimmune diseases: the critical role of macrophages and neutrophils in the innate and adaptive immunity. J Transl Med 2017; 15:36. [PMID: 28202039 PMCID: PMC5312441 DOI: 10.1186/s12967-017-1141-8] [Citation(s) in RCA: 239] [Impact Index Per Article: 29.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 02/03/2017] [Indexed: 12/16/2022] Open
Abstract
Macrophages and neutrophils are key components involved in the regulation of numerous chronic inflammatory diseases, infectious disorders, and especially certain autoimmune disease. However, little is known regarding the contribution of these cells to the pathogenesis of autoimmune disorders. Recent studies have aimed to clarify certain important factors affecting the immunogenicity of these cells, including the type and dose of antigen, the microenvironment of the cell-antigen encounter, and the number, subset, and phenotype of these cells, which can prevent or induce autoimmune responses. This review highlights the role of macrophage subsets and neutrophils in injured tissues, supporting their cooperation during the pathogenesis of certain autoimmune diseases.
Collapse
|
41
|
Thieblemont N, Wright HL, Edwards SW, Witko-Sarsat V. Human neutrophils in auto-immunity. Semin Immunol 2016; 28:159-73. [DOI: 10.1016/j.smim.2016.03.004] [Citation(s) in RCA: 109] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2016] [Revised: 03/08/2016] [Accepted: 03/12/2016] [Indexed: 01/06/2023]
|
42
|
Christensen AD, Haase C, Cook AD, Hamilton JA. Granulocyte colony-stimulating factor (G-CSF) plays an important role in immune complex-mediated arthritis. Eur J Immunol 2016; 46:1235-45. [DOI: 10.1002/eji.201546185] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 12/22/2015] [Accepted: 01/29/2016] [Indexed: 12/14/2022]
Affiliation(s)
- Anne D. Christensen
- Department of Medicine; University of Melbourne; Parkville Victoria Australia
- Novo Nordisk A/S; Måløv Denmark
| | | | - Andrew D. Cook
- Department of Medicine; University of Melbourne; Parkville Victoria Australia
| | - John A. Hamilton
- Department of Medicine; University of Melbourne; Parkville Victoria Australia
| |
Collapse
|
43
|
Fattori V, Amaral FA, Verri WA. Neutrophils and arthritis: Role in disease and pharmacological perspectives. Pharmacol Res 2016; 112:84-98. [PMID: 26826283 DOI: 10.1016/j.phrs.2016.01.027] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2015] [Revised: 01/20/2016] [Accepted: 01/21/2016] [Indexed: 12/25/2022]
Abstract
The inflammatory response in the joint can induce an intense accumulation of leukocytes in the tissue that frequently results in severe local damage and loss of function. Neutrophils are essential cells to combat many pathogens, but their arsenal can contribute or aggravate articular inflammation. Here we summarized some aspects of neutrophil biology, their role in inflammation and indicated how the modulation of neutrophil functions could be useful for the treatment of different forms of arthritis.
Collapse
Affiliation(s)
- Victor Fattori
- Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, Paraná, Brazil
| | - Flavio A Amaral
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Laboratório de Imunofarmacologia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.
| | - Waldiceu A Verri
- Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, Paraná, Brazil.
| |
Collapse
|
44
|
Hurley K, Reeves EP, Carroll TP, McElvaney NG. Tumor necrosis factor-α driven inflammation in alpha-1 antitrypsin deficiency: a new model of pathogenesis and treatment. Expert Rev Respir Med 2015; 10:207-22. [PMID: 26634397 DOI: 10.1586/17476348.2016.1127759] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Alpha-1 antitrypsin (AAT) deficiency (AATD) has traditionally been thought of as a genetic disorder characterized by lung destruction and early emphysema in a low AAT, and high neutrophil elastase (NE) environment in the lungs of affected individuals. Recently, a growing body of evidence has emerged to support the hypothesis that tumor necrosis factor alpha (TNF-α) is essential in the pathogenesis of both genetic AATD and non-genetic chronic obstructive pulmonary disease (COPD). Reports have highlighted the importance of TNF-α driven immune cell dysfunction in the development of lung disease in AATD. The authors discuss the role of AAT as a key modulator of TNF-α signaling firstly in the setting of AATD and secondly in other conditions where AAT augmentation therapy has potential utility as a novel therapy.
Collapse
Affiliation(s)
- Killian Hurley
- a Respiratory Research Division, Department of Medicine, Royal College of Surgeons in Ireland Education and Research Centre , Beaumont Hospital , Dublin , Ireland
| | - Emer P Reeves
- a Respiratory Research Division, Department of Medicine, Royal College of Surgeons in Ireland Education and Research Centre , Beaumont Hospital , Dublin , Ireland
| | - Tomás P Carroll
- a Respiratory Research Division, Department of Medicine, Royal College of Surgeons in Ireland Education and Research Centre , Beaumont Hospital , Dublin , Ireland
| | - Noel G McElvaney
- a Respiratory Research Division, Department of Medicine, Royal College of Surgeons in Ireland Education and Research Centre , Beaumont Hospital , Dublin , Ireland
| |
Collapse
|
45
|
Chiewchengchol D, Wright HL, Thomas HB, Lam CW, Roberts KJ, Hirankarn N, Beresford MW, Moots RJ, Edwards SW. Differential changes in gene expression in human neutrophils following TNF-α stimulation: Up-regulation of anti-apoptotic proteins and down-regulation of proteins involved in death receptor signaling. IMMUNITY INFLAMMATION AND DISEASE 2015; 4:35-44. [PMID: 27042300 PMCID: PMC4768069 DOI: 10.1002/iid3.90] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Revised: 10/30/2015] [Accepted: 11/04/2015] [Indexed: 01/14/2023]
Abstract
Responses of human neutrophils to TNF‐α are complex and multifactorial. Exposure of human neutrophils to TNF‐α in vitro primes the respiratory burst, delays apoptosis and induces the expression of several genes including chemokines, and TNF‐α itself. This study aimed to determine the impact of TNF‐α exposure on the expression of neutrophil genes and proteins that regulate apoptosis. Quantitative PCR and RNA‐Seq, identified changes in expression of several apoptosis regulating genes in response to TNF‐α exposure. Up‐regulated genes included TNF‐α itself, and several anti‐apoptotic genes, including BCL2A1, CFLAR (cFLIP) and TNFAIP3, whose mRNA levels increased above control values by between 4‐20 fold (n = 3, P < 0.05). In contrast, the expression of pro‐apoptotic genes, including CASP8, FADD and TNFRSF1A and TNFRSF1B, were significantly down‐regulated following TNF‐α treatment. These changes in mRNA levels were paralleled by decreases in protein levels of caspases 8 and 10, TRADD, FADD, TNFRSF1A and TNFRSF1B, and increased cFLIP protein levels, as detected by western blotting. These data indicate that when neutrophils are triggered by TNF‐α exposure, they undergo molecular changes in transcriptional expression to up‐regulate expression of specific anti‐apoptotic proteins and concomitantly decrease expression of specific proteins involved in death receptor signaling which will alter their function in TNF‐α rich environments.
Collapse
Affiliation(s)
- Direkrit Chiewchengchol
- Institutes of Integrative BiologyUniversity of LiverpoolLiverpoolUnited Kingdom; Immunology Unit & Center of Excellence in Immunology and Immune-mediated DiseaseDepartment of Microbiology, Faculty of Medicine, Chulalongkorn UniversityBangkokThailand
| | - Helen L Wright
- Institutes of Integrative Biology University of Liverpool Liverpool United Kingdom
| | - Huw B Thomas
- Institutes of Integrative Biology University of Liverpool Liverpool United Kingdom
| | - Connie W Lam
- Institutes of Integrative Biology University of Liverpool Liverpool United Kingdom
| | - Kate J Roberts
- Institutes of Integrative Biology University of Liverpool Liverpool United Kingdom
| | - Nattiya Hirankarn
- Immunology Unit & Center of Excellence in Immunology and Immune-mediated Disease Department of Microbiology, Faculty of Medicine, Chulalongkorn University Bangkok Thailand
| | | | - Robert J Moots
- Ageing and Chronic Disease University of Liverpool Liverpool United Kingdom
| | - Steven W Edwards
- Institutes of Integrative Biology University of Liverpool Liverpool United Kingdom
| |
Collapse
|
46
|
Effects of Soothing Liver and Invigorating Spleen Recipes on the IKKβ-NF-κB Signaling Pathway in Kupffer Cells of Nonalcoholic Steatohepatitis Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 2015:687690. [PMID: 26504479 PMCID: PMC4609424 DOI: 10.1155/2015/687690] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Revised: 05/19/2015] [Accepted: 05/31/2015] [Indexed: 12/24/2022]
Abstract
This study investigates the effect of soothing liver and invigorating spleen recipes on steatohepatitis examining the IKKβ-NF-κB signaling pathway in KCs of NASH rats. SD male rats were randomly divided into 8 groups, and the NASH model was induced by a high-fat diet (HFD). After 26 weeks, liver tissue was examined in H&E stained sections and liver function was monitored biochemically. KCs were isolated by Seglen's method, with some modifications. The mRNA and protein expression of the IKKβ-NF-κB signaling pathway components was examined by quantitative PCR and Western blotting. The results show that the high-fat diet induced NASH in the rats, and the soothing liver recipe and invigorating spleen recipe decreased the levels of TNF-α, IL-1, and IL-6 in KCs, as well as inhibiting the mRNA and protein expression of the IKKβ-NF-κB signaling pathway components. In conclusion, the experiment indicated the importance of the IKKβ-NF-κB signaling pathway in KCs for the anti-inflammatory effects of the soothing liver and invigorating spleen recipes.
Collapse
|
47
|
Yang P, Zhou W, Li C, Zhang M, Jiang Y, Jiang R, Ba H, Li C, Wang J, Yin B, Gong F, Li Z. Kupffer-cell-expressed transmembrane TNF-α is a major contributor to lipopolysaccharide and D-galactosamine-induced liver injury. Cell Tissue Res 2015; 363:371-83. [PMID: 26267221 DOI: 10.1007/s00441-015-2252-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2014] [Accepted: 06/11/2015] [Indexed: 12/22/2022]
Abstract
Tumor necrosis factor (TNF)-α exists in two bioactive forms, a 26-kDa transmembrane form (tmTNF-α) and a 17-kDa soluble form (sTNF-α). sTNF-α has been recognized as a key regulator of hepatitis; however, serum sTNF-α disappears in mice during the development of severe liver injury, and high levels of serum sTNF-α do not necessarily result in liver damage. Interestingly, in a mouse model of acute hepatitis, we have found that tmTNF-α expression on Kupffer cells (KCs) significantly increases when mice develop severe liver injury caused by lipopolysaccharide (LPS)/D-galactosamine (D-gal), and the level of tmTNF-α expression is positively related to the activity of serum transaminases. Therefore, we hypothesized that KC-expressed tmTNF-α constitutes a pathomechanism in hepatitis and have explored the role of tmTNF-α in this disease model. Here, we have compared the impact of KCs(tmTNFlow) and KCs(tmTNFhigh) on acute hepatitis in vivo and ex vivo and have further demonstrated that KCs(tmTNFhigh), rather than KCs(tmTNFlow), not only exhibit an imbalance in secretion of pro- and anti-inflammatory cytokines, favoring inflammatory response and exacerbating liver injury, but also induce hepatocellular apoptosis via tmTNF-α and the expression of another pro-apoptotic factor, Fas ligand. Our data suggest that KC(tmTNFhigh) is a major contributor to liver injury in LPS/D-gal-induced hepatitis.
Collapse
Affiliation(s)
- Peng Yang
- Department of Immunology, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei, 430030, People's Republic of China
| | - Wenjing Zhou
- Department of Immunology, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei, 430030, People's Republic of China
| | - Chenxi Li
- Department of Immunology, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei, 430030, People's Republic of China
| | - Meng Zhang
- Department of Immunology, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei, 430030, People's Republic of China
| | - Yaping Jiang
- Department of Immunology, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei, 430030, People's Republic of China
| | - Rui Jiang
- Department of Immunology, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei, 430030, People's Republic of China
| | - Hongping Ba
- Department of Immunology, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei, 430030, People's Republic of China
| | - Cheng Li
- Department of Immunology, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei, 430030, People's Republic of China
| | - Jing Wang
- Department of Immunology, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei, 430030, People's Republic of China
| | - Bingjiao Yin
- Department of Immunology, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei, 430030, People's Republic of China
| | - Feili Gong
- Department of Immunology, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei, 430030, People's Republic of China
| | - Zhuoya Li
- Department of Immunology, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei, 430030, People's Republic of China.
| |
Collapse
|
48
|
Chang CZ, Wu SC, Lin CL, Kwan AL. Curcumin, encapsulated in nano-sized PLGA, down-regulates nuclear factor κB (p65) and subarachnoid hemorrhage induced early brain injury in a rat model. Brain Res 2015; 1608:215-24. [PMID: 25747863 DOI: 10.1016/j.brainres.2015.02.039] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Revised: 02/02/2015] [Accepted: 02/18/2015] [Indexed: 12/22/2022]
Abstract
BACKGROUND More and more evidence revealed early brain injury (EBI) may determine the final outcome in aneurismal subarachnoid hemorrhage (SAH) patients. This study is of interest to examine the efficacy of nano-particle curcumin (nanocurcumin), a diarylheptanoid, on a SAH-induced EBI model. METHODS A rodent double hemorrhage model was employed. Nanocurcumin (75/150/300μg/kg/day) was administered via osmotic mini-pump post-SAH. CSF samples were collected to examine IL-1β, IL-6, IL-8 and TNF-α (rt-PCR). Cerebral cortex was harvested for NF-κB (p50/p65) (western blot), caspases (rt-PCR) measurement. RESULTS Nanocurcumin significantly reduced the bio-expression of NF-κB (p65), when compared with the SAH groups. The levels of IL-1β and IL-6 were increased in animals subjected to SAH, compared with the healthy controls, but absent in the high dose nanocurcumin+SAH group. Moreover, the levels of TNF-α in the SAH groups were significantly elevated. Treatment with nanocurcumin (300μg/kg) reduced the level to the healthy control. The cleaved caspase-3 and -9a was significantly reduced in 300μg/kg nanocurcumin treatment groups (P<0.05). CONCLUSION Treatment with nanocurcumin exerts its neuroprotective effect through the upward regulation of NF-κB (p65) and also reduced mitochondrion related caspase-9a expression. Besides, nanocurcumin decreased CSF levels of TNF-α and IL-1β, which may contribute to the extrinsic antiapoptotic effect. This study shows promise to support curcuminin, in a nano-particle, could attenuate SAH induced EBI.
Collapse
Affiliation(s)
- Chih-Zen Chang
- Department of Surgery, Faculty of Medicine, School of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Division of Neurosurgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan; Department of Surgery, Kaohsiung Municipal Ta Tung Hospital, Kaohsiung, Taiwan.
| | - Shu-Chuan Wu
- Division of Neurosurgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Chih-Lung Lin
- Department of Surgery, Faculty of Medicine, School of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Division of Neurosurgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Aij-Lie Kwan
- Department of Surgery, Faculty of Medicine, School of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Division of Neurosurgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| |
Collapse
|
49
|
Ternant D, Berkane Z, Picon L, Gouilleux-Gruart V, Colombel JF, Allez M, Louis E, Paintaud G. Assessment of the Influence of Inflammation and FCGR3A Genotype on Infliximab Pharmacokinetics and Time to Relapse in Patients with Crohn’s Disease. Clin Pharmacokinet 2014; 54:551-62. [DOI: 10.1007/s40262-014-0225-3] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
50
|
Meusch U, Klingner M, Baerwald C, Rossol M, Wagner U. Deficient spontaneous in vitro apoptosis and increased tmTNF reverse signaling-induced apoptosis of monocytes predict suboptimal therapeutic response of rheumatoid arthritis to TNF inhibition. Arthritis Res Ther 2014; 15:R219. [PMID: 24354986 PMCID: PMC4029313 DOI: 10.1186/ar4416] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Accepted: 11/28/2013] [Indexed: 02/02/2023] Open
Abstract
Introduction In vitro apoptosis of peripheral monocytes in rheumatoid arthritis (RA) is disturbed and influenced by cytokine production and transmembrane TNF (tmTNF) reverse signaling. The goal of the study was the analysis of the predictive value of the rate of in vitro apoptosis for the therapeutic response to anti-TNF treatment. Methods Spontaneous and tmTNF reverse signaling-induced apoptosis were determined in vitro in monocytes from 20 RA patients prior to initiation of therapeutic TNF inhibition with etanercept, and the subsequent clinical response was monitored. Results Spontaneous in vitro apoptosis was significantly reduced in RA patients compared to controls. Deficiency in spontaneous apoptosis was associated with an insufficient therapeutic response according to the European League Against Rheumatism (EULAR) response criteria and less reduction of the disease activity determined by disease activity score (DAS) 28. High susceptibility to reverse signaling-induced apoptosis was also associated with less efficient reduction in the DAS28. Of note, a strong negative correlation between the two apoptotic parameters was discernible, possibly indicative of two pathogenetically relevant processes counter-regulating each other. tmTNF reverse signaling induced in vitro production of soluble IL1-RI and IL-1RII only in monocytes not deficient in spontaneous apoptosis, and the levels of soluble IL1-RII were found to be predictive of a good clinical response to Etanercept. Conclusion Although tmTNF reverse signaling is able to induce apoptosis of RA monocytes in vitro, this process appears to occur in vitro preferentially in patients with suboptimal therapeutic response. Resistance to spontaneous in vitro apoptosis, in contrast, is a predictor of insufficient response to treatment.
Collapse
|