1
|
Wang F, Chen Y, Huang R, Lu D, Zhang J, Yang Y, Dang H, Liu M, Chen Z, Sun X, Wang Z. Identification of SURF4 and RALGAPA1 as promising therapeutic targets in glioblastoma and pan-cancer through integrative multi-omics, CRISPR-Cas9 screening and prognostic meta-analysis. Cancer Immunol Immunother 2025; 74:175. [PMID: 40249536 PMCID: PMC12008100 DOI: 10.1007/s00262-025-04034-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Accepted: 03/24/2025] [Indexed: 04/19/2025]
Abstract
Glioblastoma (GBM) is the most aggressive and malignant type of primary brain tumor, with a median survival time of less than two years and a uniformly poor prognosis, despite multimodal therapeutic approaches, which highlights an urgent need for novel therapeutic targets. In this study, by integrative multi-omics analysis from CPTAC database, DepMap database and seven independent GBM cohorts, four hub genes (CD44, SURF4, IGSF3 and RALGAPA1) were identified as essential genes regulated by cancer driver genes with robust prognostic value. GBM multi-omics data from public and in-house cohorts validated that CD44 and SURF4 might be synthetic lethal partners of loss-of-function tumor suppressor genes. Analysis for immune-related pathway activity revealed complex regulation relationships of the four hub genes in tumor microenvironment (TME). Further investigation on SURF4 in pathway activity, immune therapy response and drug sensitivity proposed that SURF4 emerged as a promising therapeutic target for GBM, even for pan-cancer. Pan-cancer multi-omics exploration suggested that RALGAPA1 may be a tumor suppressor gene. By screening the first-generation and second-generation DepMap database, four genes (CCDC106, GAL3ST1, GDI2 and HSF1) might be considered as synthetic targets after mutation of RALGAPA1 as a tumor suppressor gene.
Collapse
Affiliation(s)
- Fei Wang
- Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou, 215006, Jiangsu Province, China
| | - Yuxuan Chen
- Suzhou Medical College of Soochow University, Suzhou, 215127, Jiangsu Province, China
| | - Run Huang
- Suzhou Medical College of Soochow University, Suzhou, 215127, Jiangsu Province, China
| | - Dengfeng Lu
- Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou, 215006, Jiangsu Province, China
| | - Juyi Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou, 215006, Jiangsu Province, China
| | - Yanbo Yang
- Department of Oncology, Division of Pediatric Oncology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Hanhan Dang
- China-Japan Friendship Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100000, China
| | - Meirong Liu
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, 215000, Jiangsu Province, China
| | - Zhouqing Chen
- Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou, 215006, Jiangsu Province, China.
| | - Xiaoou Sun
- Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou, 215006, Jiangsu Province, China.
| | - Zhong Wang
- Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou, 215006, Jiangsu Province, China.
| |
Collapse
|
2
|
Mu Y, Luo J, Xiong T, Zhang J, Lan J, Zhang J, Tan Y, Yang S. Development and validation of nomogram model predicting overall survival and cancer specific survival in glioblastoma patients. Discov Oncol 2025; 16:562. [PMID: 40249416 PMCID: PMC12008090 DOI: 10.1007/s12672-025-02331-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Accepted: 04/08/2025] [Indexed: 04/19/2025] Open
Abstract
BACKGROUND Identifying the incidence and risk factors of Glioblastoma (GBM) and establishing effective predictive models will benefit the management of these patients. METHODS Using GBM data from the Surveillance, Epidemiology, and End Results (SEER) database, we used Joinpoint software to assess trends in GBM incidence across populations of different age groups. Subsequently, we identified important prognostic factors by stepwise regression and multivariate Cox regression analysis, and established a Nomogram mathematical model. COX regression model combined with restricted cubic splines (RCS) model was used to analyze the relationship between tumor size and prognosis of GBM patients. RESULTS The incidence of GBM has been on the rise since 1978, especially in the age group of 65-84 years. 11498 patients with GBM were included in our study. The multivariate Cox analysis revealed that age, tumor size, sex, primary tumor site, laterality, number of primary tumors, surgery, chemotherapy, radiotherapy, systematic therapy, marital status, median household income, first malignant primary indicator were independent prognostic factors of overall survival (OS) for GBMs. For cancer-specific survival (CSS), race is also independent prognostic factors. Additionally, risk of poor prognosis increased significantly with tumor size in patients with tumors smaller than 49 mm. Moreover, our nomogram model showed favorable discriminative ability. CONCLUSION At the population level, the incidence of GBM is on the rise. The relationship between tumor size and patient prognosis is still worthy of further study. Moreover, the proposed nomogram with good performance was constructed and verified to predict the OS and CSS of patients with GBM.
Collapse
Affiliation(s)
- Yingming Mu
- Department of General Neurology, Ziyun Miao Buyi Autonomous County People's Hospital, Guiyang, China
| | - Junchi Luo
- Department of Neurosurgery, Guizhou Provincial People's Hospital, Guiyang, China
| | - Tao Xiong
- Department of Neurosurgery, Guizhou Provincial People's Hospital, Guiyang, China
| | - Junheng Zhang
- Department of Neurosurgery, Guizhou Provincial People's Hospital, Guiyang, China
| | - Jinhai Lan
- Department of Orthopedics, Ziyun Miao Buyi Autonomous County People's Hospital, Guiyang, China
| | - Jiqin Zhang
- Department of Anesthesiology, Guizhou Provincial People's Hospital, Guiyang, China
| | - Ying Tan
- Department of Neurosurgery, Guizhou Provincial People's Hospital, Guiyang, China.
| | - Sha Yang
- Guizhou University Medical College, Guiyang, 550025, Guizhou, China.
| |
Collapse
|
3
|
Zhou J, Hou Z, Guan X, Zhu Z, Wang H, Wang C, Luo W, Tian C, Yang H, Ye M, Chen S, Zhang X, Zhang B. The diagnostic value of advanced tracer kinetic models in evaluating high grade gliomas recurrence and treatment response using dynamic contrast-enhanced MRI. Front Oncol 2025; 15:1536122. [PMID: 40313253 PMCID: PMC12043873 DOI: 10.3389/fonc.2025.1536122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Accepted: 03/25/2025] [Indexed: 05/03/2025] Open
Abstract
Background The purpose of this study was to investigate the diagnostic value of advanced tracer kinetic models (TKMs) in differentiating HGGs recurrence and treatment response. Methods A total of 52 HGGs were included. DCE images were analyzed using the following TKMs: distributed parameter (DP), tissue homogeneity (TH), Brix's two-compartment (Brix) and extended-Tofts model (ETM), yielding the following parameters: cerebral blood flow (CBF), mean transit time (MTT), plasma volume (Vp), extravascular volume (Ve), vascular permeability (PS) and first-pass extraction ratio (E) in advanced TKMs (DP, TH and Brix); Ktrans, Ve, Vp and Kep in ETM. Two delineation methods were conducted (routine scans and parameter heat maps). The differences between two MRI scanners were compared. Mann-Whitney U test was used to assess the difference of parameter values. Diagnostic performance was assessed using the method of the receiver operating characteristic (ROC) curves, with the areas under the ROC curves (AUC) to determine the discriminating power of DCE parameters between recurrent tumor group and treatment response group . P<0.05 indicates statistical significance. Results The difference on the normalized kinetic parameter value (with respect to contralateral normal-appearing white matter) between two MRI scanners was statistically insignificant (P>0.05). MTT and Vp of advanced TKMs were higher in recurrent than in treatment response group (P<0.05). For ROI delineated on parameter heat maps, MTT(DP) attained the best performance with AUC 0.88, followed by MTT(TH) and Vp (DP, Brix) with AUCs around 0.80 (0.81, 0.80, 0.79 respectively). The best performance in ETM was Vp (AUC = 0.73). Conclusion MTT (DP, TH), and Vp (DP, Brix) could be potential quantitative imaging biomarkers in distinguishing recurrence and treatment response in HGGs.
Collapse
Affiliation(s)
- Jianan Zhou
- Department of Radiology, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China
- Institute of Medical Imaging and Artificial Intelligence, Nanjing University, Nanjing, China
- Medical Imaging Center, Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Zujun Hou
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China
| | - Xiuqi Guan
- FISCA Healthcare Co., Ltd., Nanjing, China
| | - Zhengyang Zhu
- Institute of Medical Imaging and Artificial Intelligence, Nanjing University, Nanjing, China
- Medical Imaging Center, Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Han Wang
- Nanjing Center for Applied Mathematics, Nanjing, China
| | - Cong Wang
- School of Electronics and Information Engineering, Suzhou Vocational University, Suzhou, China
| | - Wei Luo
- FISCA Healthcare Co., Ltd., Nanjing, China
| | - Chuanshuai Tian
- Department of Radiology, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China
- Institute of Medical Imaging and Artificial Intelligence, Nanjing University, Nanjing, China
- Medical Imaging Center, Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Huiquan Yang
- Institute of Medical Imaging and Artificial Intelligence, Nanjing University, Nanjing, China
- Medical Imaging Center, Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Meiping Ye
- Institute of Medical Imaging and Artificial Intelligence, Nanjing University, Nanjing, China
- Medical Imaging Center, Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Sixuan Chen
- Institute of Medical Imaging and Artificial Intelligence, Nanjing University, Nanjing, China
- Medical Imaging Center, Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Xin Zhang
- Department of Radiology, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China
- Institute of Medical Imaging and Artificial Intelligence, Nanjing University, Nanjing, China
- Medical Imaging Center, Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Bing Zhang
- Department of Radiology, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China
- Institute of Medical Imaging and Artificial Intelligence, Nanjing University, Nanjing, China
- Medical Imaging Center, Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| |
Collapse
|
4
|
Liu Z, Wu Y, Xu H, Wang M, Weng S, Pei D, Chen S, Wang W, Yan J, Cui L, Duan J, Zhao Y, Wang Z, Ma Z, Li R, Duan W, Qiu Y, Su D, Li S, Liu H, Li W, Ma C, Yu M, Yu Y, Chen T, Fu J, Zhen Y, Yu B, Ji Y, Zheng H, Liang D, Liu X, Yan D, Han X, Wang F, Li ZC, Zhang Z. Multimodal fusion of radio-pathology and proteogenomics identify integrated glioma subtypes with prognostic and therapeutic opportunities. Nat Commun 2025; 16:3510. [PMID: 40222975 PMCID: PMC11994800 DOI: 10.1038/s41467-025-58675-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 03/26/2025] [Indexed: 04/15/2025] Open
Abstract
Integrating multimodal data can uncover causal features hidden in single-modality analyses, offering a comprehensive understanding of disease complexity. This study introduces a multimodal fusion subtyping (MOFS) framework that integrates radiological, pathological, genomic, transcriptomic, and proteomic data from 122 patients with IDH-wildtype adult glioma, identifying three subtypes: MOFS1 (proneural) with favorable prognosis, elevated neurodevelopmental activity, and abundant neurocyte infiltration; MOFS2 (proliferative) with the worst prognosis, superior proliferative activity, and genome instability; MOFS3 (TME-rich) with intermediate prognosis, abundant immune and stromal components, and sensitive to anti-PD-1 immunotherapy. STRAP emerges as a prognostic biomarker and potential therapeutic target for MOFS2, associated with its proliferative phenotype. Stromal infiltration in MOFS3 serves as a crucial prognostic indicator, allowing for further prognostic stratification. Additionally, we develop a deep neural network (DNN) classifier based on radiological features to further enhance the clinical translatability, providing a non-invasive tool for predicting MOFS subtypes. Overall, these findings highlight the potential of multimodal fusion in improving the classification, prognostic accuracy, and precision therapy of IDH-wildtype glioma, offering an avenue for personalized management.
Collapse
Affiliation(s)
- Zaoqu Liu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Interventional Institute of Zhengzhou University, Zhengzhou, Henan, 450052, China
- Interventional Treatment and Clinical Research Center of Henan Province, Zhengzhou, Henan, 450052, China
| | - Yushuai Wu
- Shanghai Academy of Artificial Intelligence for Science, Shanghai, China
| | - Hui Xu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Minkai Wang
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Siyuan Weng
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Dongling Pei
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Shuang Chen
- Center of Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - WeiWei Wang
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Jing Yan
- Department of MRI, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Li Cui
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Jingxian Duan
- Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Yuanshen Zhao
- Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Zilong Wang
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Zeyu Ma
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Ran Li
- School of Medicine, Hangzhou City University, Hangzhou, Zhejiang, China
| | - Wenchao Duan
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yuning Qiu
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Dingyuan Su
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Sen Li
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Haoran Liu
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Wenyuan Li
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Caoyuan Ma
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Miaomiao Yu
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yinhui Yu
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Te Chen
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Jing Fu
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - YingWei Zhen
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Bin Yu
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yuchen Ji
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Hairong Zheng
- Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Key Laboratory of Biomedical Imaging Science and System, Chinese Academy of Sciences, State Key Laboratory of Biomedical Imaging Science and System, Shenzhen, China
| | - Dong Liang
- Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Key Laboratory of Biomedical Imaging Science and System, Chinese Academy of Sciences, State Key Laboratory of Biomedical Imaging Science and System, Shenzhen, China
| | - Xianzhi Liu
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Dongming Yan
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xinwei Han
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China.
- Interventional Institute of Zhengzhou University, Zhengzhou, Henan, 450052, China.
- Interventional Treatment and Clinical Research Center of Henan Province, Zhengzhou, Henan, 450052, China.
| | - Fubing Wang
- Center for Single-Cell Omics and Tumor Liquid Biopsy, Zhongnan Hospital of Wuhan University, Wuhan, China.
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China.
- Wuhan Research Center for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan, China.
| | - Zhi-Cheng Li
- Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
- Key Laboratory of Biomedical Imaging Science and System, Chinese Academy of Sciences, State Key Laboratory of Biomedical Imaging Science and System, Shenzhen, China.
| | - Zhenyu Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
| |
Collapse
|
5
|
Baxter SM, Bjørge T, Bjerkvig R, Cardwell C, Engeland A, Eriksson J, Habel L, Igland J, Klungsøyr K, Lunde A, Miletic H, Olesen M, Pottegård A, Reutfors J, Sharifian MJ, Linder M, Hicks B. Use of psychotropic medications among glioma patients in Denmark, Norway, Sweden, and Wales. J Neurooncol 2025:10.1007/s11060-025-04996-0. [PMID: 40208515 DOI: 10.1007/s11060-025-04996-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Accepted: 03/01/2025] [Indexed: 04/11/2025]
Abstract
PURPOSE Glioma patients often suffer from psychiatric and neurological conditions. However, little is known about the patterns of use of psychotropic drugs pre- and post-glioma diagnosis. Therefore, we assessed temporal patterns of psychotropic prescriptions among glioma patients, compared to an age and sex matched comparison cohort in four European countries. METHODS Incident gliomas were identified in Wales from the Secured Anonymized Information Linkage Databank (2005-2016) and population-based registries in Denmark (2001-2016), Norway (2006-2019), and Sweden (2008-2018). From each data source, a cancer-free comparison cohort was matched to the glioma cases by age and sex. We calculated rates of new psychotropic prescriptions and any psychotropic prescriptions during the 2 years prior to and post glioma diagnosis. Analyses were stratified by histological subtypes and subclasses of psychotropic medications. RESULTS We identified 16,007 glioma patients. The rate of new psychotropic drug use increased from 7 months before diagnosis, peaking around the month of glioma diagnosis (with peak rates ranging from 227 to 753 new psychotropic drugs per 1000 person-months). New use remained substantially higher among glioma patients than comparators throughout the 2-year follow-up period after glioma diagnosis, though rates of new use continued to decline throughout. New use was largely driven by antiepileptics, anxiolytics, hypnotics, and sedatives. Patterns were similar when analyses were stratified by histological subtype. CONCLUSION Psychotropic drug use among glioma patients was high, and elevations observed around the time of cancer diagnosis, largely driven by antiepileptics, anxiolytics, hypnotics, and sedatives, are likely associated with the consequences of the disease.
Collapse
Affiliation(s)
- Sarah M Baxter
- Centre for Public Health, Queen's University Belfast, Belfast, BT12 6BA, Northern Ireland
| | - Tone Bjørge
- Department of Global Public Health and Primary Care, University of Bergen, N-5020, Bergen, Norway
- Cancer Registry of Norway, Norwegian Institute of Public Health, NO-0304, Oslo, Norway
| | - Rolf Bjerkvig
- Department of Biomedicine, University of Bergen, N-5020, Bergen, Norway
| | - Christopher Cardwell
- Centre for Public Health, Queen's University Belfast, Belfast, BT12 6BA, Northern Ireland
| | - Anders Engeland
- Department of Global Public Health and Primary Care, University of Bergen, N-5020, Bergen, Norway
- Department of Chronic Diseases, Norwegian Institute of Public Health, N-0213, Oslo, Norway
| | - Julia Eriksson
- Centre for Pharmacoepidemiology, Karolinska Institutet, 171 76, Stockholm, Sweden
| | - Laurel Habel
- Division of Research, Kaiser Permanente Northern California, Oakland, CA, 94588, USA
| | - Jannicke Igland
- Department of Global Public Health and Primary Care, University of Bergen, N-5020, Bergen, Norway
- Department of Health and Caring Sciences, Western Norway University of Applied Sciences, 5020, Bergen, Norway
| | - Kari Klungsøyr
- Department of Global Public Health and Primary Care, University of Bergen, N-5020, Bergen, Norway
- Division of Mental and Physical Health, Norwegian Institute of Public Health, N-0213, Oslo, Norway
| | - Astrid Lunde
- Department of Global Public Health and Primary Care, University of Bergen, N-5020, Bergen, Norway
| | - Hrvoje Miletic
- Department of Biomedicine, University of Bergen, N-5020, Bergen, Norway
| | - Morten Olesen
- Clinical Pharmacology, Pharmacy and Environmental Medicine, Department of Public Health, University of Southern Denmark, 5230, Odense, Denmark
| | - Anton Pottegård
- Clinical Pharmacology, Pharmacy and Environmental Medicine, Department of Public Health, University of Southern Denmark, 5230, Odense, Denmark
| | - Johan Reutfors
- Centre for Pharmacoepidemiology, Karolinska Institutet, 171 76, Stockholm, Sweden
| | - Mohammad Jalil Sharifian
- Department of Global Public Health and Primary Care, University of Bergen, N-5020, Bergen, Norway
| | - Marie Linder
- Centre for Pharmacoepidemiology, Karolinska Institutet, 171 76, Stockholm, Sweden
| | - Blánaid Hicks
- Centre for Public Health, Queen's University Belfast, Belfast, BT12 6BA, Northern Ireland.
- Clinical Pharmacology, Pharmacy and Environmental Medicine, Department of Public Health, University of Southern Denmark, 5230, Odense, Denmark.
| |
Collapse
|
6
|
Qiu Q, Deng H, Song P, Liu Y, Zhang M. Lactylation in Glioblastoma: A Novel Epigenetic Modifier Bridging Epigenetic Plasticity and Metabolic Reprogramming. Int J Mol Sci 2025; 26:3368. [PMID: 40244246 PMCID: PMC11989911 DOI: 10.3390/ijms26073368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 03/28/2025] [Accepted: 04/01/2025] [Indexed: 04/18/2025] Open
Abstract
Glioblastoma, the most common and aggressive primary malignant brain tumor, is characterized by a high rate of recurrence, disability, and lethality. Therefore, there is a pressing need to develop more effective prognostic biomarkers and treatment approaches for glioblastoma. Lactylation, an emerging form of protein post-translational modification, has been closely associated with lactate, a metabolite of glycolysis. Since the initial identification of lactylation sites in core histones in 2019, accumulating evidence has shown the critical role that lactylation plays in glioblastoma development, assessment of poor clinical prognosis, and immunosuppression, which provides a fresh angle for investigating the connection between metabolic reprogramming and epigenetic plasticity in glioblastoma cells. The objective of this paper is to present an overview of the metabolic and epigenetic roles of lactylation in the expanding field of glioblastoma research and explore the practical value of developing novel treatment plans combining targeted therapy and immunotherapy.
Collapse
Affiliation(s)
| | | | | | | | - Mengxian Zhang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Q.Q.); (H.D.); (P.S.); (Y.L.)
| |
Collapse
|
7
|
Kastbom L, Karlsson M, Letter N, Degsell E, Malmström A. Our clock is truly ticking-a qualitative study on patients' experiences of tumor treating fields. Neurooncol Pract 2025; 12:325-332. [PMID: 40110062 PMCID: PMC11913639 DOI: 10.1093/nop/npae102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2025] Open
Abstract
Background TTFields is recommended internationally for the treatment of glioblastoma. In Sweden, TTFields requires a possibly challenging collaboration between the patient, next-of-kin, healthcare, and the private company providing the device, both from an ethical and practical perspective. Little is known about glioblastoma patients' own experiences of TTFields treatment. Methods Semi-structured individual interviews were conducted with 31 patients with glioblastoma who had been offered TTFields by the healthcare. These were analyzed by qualitative content analysis. Results Participants described there being multiple actors around them as TTFields users; (1) device prescription from physicians, sometimes providing insufficient information, (2) practical assistance from next-of-kin, necessary to access treatment, (3) home visits from the private company staff for device control, where close bonds between patients and TTFields staff occurred. TTFields treatment created hope and a feeling of control in an otherwise hopeless situation, sometimes evoking worries at the time of planned treatment stop. Some refrained from TTFields or discontinued early due to fear or experience of negative effects on quality of life. Others described finding practical and mental solutions for coping with the treatment in everyday life. Conclusions Our study identified a need for better support and information from healthcare providers for TTFields. A solution is necessary for assistance with TTFields for those without support from next-of-kin. The study raises the question of possible advantages of healthcare handling the technical support of the device instead of a private company, thereby avoiding a true or perceived influence on the patient's decision to continue or stop treatment.
Collapse
Affiliation(s)
- Lisa Kastbom
- Primary Health Care Centre Ekholmen, Linköping and Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
- Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
| | - Marit Karlsson
- Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
- Department of Advanced Home Care in Linköping and Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
| | - Nina Letter
- Department of Advanced Home Care in Linköping and Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
| | - Eskil Degsell
- Swedish Brain Tumor Association and NOCRiiC, Neuro Oncology Clinical Research, innovation, implementation and Collaboration, Karolinska University Hospital, Stockholm, and Department of Micro, Tumor and Cell biology (MTC), Karolinska Institutet, Stockholm, Sweden
| | - Annika Malmström
- Division of Cell and Neurobiology, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
- Department of Advanced Home Care in Linköping and Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| |
Collapse
|
8
|
Mohammadzadeh Z, Khaksari M, Nematollahi MH, Kheirandish R, Moslemizadeh A, Delshad S, Faramarz S, Tezerji SS, Torkashvand M, Shahba S, Bashiri H. Therapeutic efficacy to dose-dependent toxicity of Cabazitaxel in C6-induced glioblastoma model of rats. Toxicol Res (Camb) 2025; 14:tfaf048. [PMID: 40182916 PMCID: PMC11964085 DOI: 10.1093/toxres/tfaf048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 02/07/2025] [Accepted: 03/14/2025] [Indexed: 04/05/2025] Open
Abstract
This study was designed to adjust effective chemotherapy doses of cabazitaxel (CBZ) on cognitive behaviors, inflammatory cytokines and oxidative stress parameters, and survival rate in C6-induced GBM of rats. Male Sprague-Dawley rats bearing intra-caudate nucleus (CN) C6 inoculation were randomly divided into nine groups as follows: sham, tumor, Temozolomide (TMZ) vehicle, TMZ, CBZ vehicle, CBZ at doses of 0.5, 1, 2 and 4 mg/kg. Behavioral tests survival rate, histopathology, immunohistochemistry, oxidative stress, and inflammatory cytokines were evaluated. All drug treatments reduced the volume and number of tumor cells dose-dependently and CBZ4 was able to cause the greatest reduction. The %Survival rate of animals using CBZ1 significantly increased compared to other treatment groups. CBZ1 reduced anxiety-like behaviors and increased the balance of the animal with GBM. CBZ1 and CBZ2 groups improved C6-induced learning disabilities. Treatments could ameliorate tumor-induced dysregulation of oxidative stress. TNF-α/IL-10 decreased in the CBZ1 group compared to other treatment groups, which may indicate an improvement in inflammatory balance. Our findings demonstrate that the administration of CBZ at a dosage of 1 mg/kg exerts advantageous impacts on both the survival rate and neurocognitive performance of rats within the GBM model. However, our results showed that CBZ may have toxic effects, especially in a dose of 4 mg/kg.
Collapse
Affiliation(s)
- Zahra Mohammadzadeh
- Department of Physiology and Pharmacology, Afzalipour School of Medicine, Kerman University of Medical Sciences, Haft-Bagh Highway, P. O. Box 76169 13555, Kerman, Iran
| | - Mohammad Khaksari
- Endocrinology and Metabolism Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Haft-Bagh Highway, P. O. Box 76169 13555, Kerman, Iran
| | - Mohammad Hadi Nematollahi
- Physiology Research Center, Afzalipour School of Medicine, Kerman University of Medical Sciences, Haft-Bagh Highway, P. O. Box 76169 13555, Kerman, Iran
| | - Reza Kheirandish
- Department of Pathobiology, Faculty of Veterinary Medicine, Shahid Bahonar University of Kerman, Imam Khomeni Highway, P. O. Box 76169 13439, Kerman, Iran
| | - Amirhossein Moslemizadeh
- Department of Immunology, Tehran University of Medical Sciences, Dameshgh St., Vali-e Asr Ave., P. O. Box 14167 53955, Tehran, Iran
| | - Sina Delshad
- Department of Pathobiology, Faculty of Veterinary Medicine, Shahid Bahonar University of Kerman, Imam Khomeni Highway, P. O. Box 76169 13439, Kerman, Iran
| | - Sanaz Faramarz
- Department of Biochemistry, Kerman University of Medical Sciences, Haft-Bagh Highway, P. O. Box 76169 13555, Kerman, Iran
| | - Sara Sheibani Tezerji
- Department of Behavioural and Molecular Neurobiology, Regensburg Center for Neuroscience, University of Regensburg, Universitätsstraße 31, 93053 Regensburg, Deutschland, Germany
| | - Mohammad Torkashvand
- College of Engineering, University of Tehran, Dameshgh St., Vali-e Asr Ave., P. O. Box 14167 53955, Tehran, Iran
| | - Samira Shahba
- Department of Biotechnology, School of Medicine, Semnan University of Medical Sciences, Bassij Blvd, P. O. Box 35147-99442, Semnan, Iran
| | - Hamideh Bashiri
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Haft-Bagh Highway, P. O. Box 76169 13555, Kerman, Iran
| |
Collapse
|
9
|
Mason WP, Harrison RA, Lapointe S, Lim-Fat MJ, MacNeil MV, Mathieu D, Perry JR, Pitz MW, Roberge D, Tsang DS, Tsien C, van Landeghem FKH, Zadeh G, Easaw J. Canadian Expert Consensus Recommendations for the Diagnosis and Management of Glioblastoma: Results of a Delphi Study. Curr Oncol 2025; 32:207. [PMID: 40277764 PMCID: PMC12026134 DOI: 10.3390/curroncol32040207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Revised: 03/24/2025] [Accepted: 03/25/2025] [Indexed: 04/26/2025] Open
Abstract
Glioblastoma is the most common and aggressive malignant brain tumor in adults, with an increasing incidence and a poor prognosis. Current challenges in glioblastoma management include rapid tumor growth, limited treatment effectiveness, high recurrence rates, and a significant impact on patients' quality of life. Given the complexity of glioblastoma care and recent advancements in diagnostic and treatment modalities, updated guidelines are needed in Canada. This Delphi study aimed to develop Canadian consensus recommendations for the diagnosis, classification, and management of newly diagnosed and recurrent glioblastoma. A multidisciplinary panel of 14 Canadian experts in glioblastoma care was convened, and a comprehensive literature review was conducted to synthesize evidence and formulate initial recommendations. Consensus was achieved through three Delphi rounds, in which panelists rated their agreement with recommendation statements on a five-point Likert scale. Statements with ≥75% agreement were accepted, and others were revised for re-voting. Final recommendations were formulated based on the consensus level, strength of evidence, clinical expertise, and consideration of the Canadian healthcare context. These recommendations aim to standardize glioblastoma diagnosis and classification across Canada, provide evidence-based guidance for optimal treatment selection, integrate novel therapies, and enhance the overall quality of care for glioblastoma patients.
Collapse
Affiliation(s)
- Warren P. Mason
- Department of Medicine, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5G 2M9, Canada
| | - Rebecca A. Harrison
- Department of Medicine, University of British Columbia, Vancouver, BC V5Z 4E6, Canada
| | - Sarah Lapointe
- Department of Medicine, Centre Hospitalier Universitaire de Montreal, Montreal, QC H2X 3J4, Canada
- Faculty of Neuroscience, University of Montreal, Montreal, QC H3T 1J4, Canada
| | - Mary Jane Lim-Fat
- Department of Medicine, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON M4N 3M5, Canada
| | - Mary V. MacNeil
- Department of Medicine, Dalhousie University, QE II Health Science Centre, Halifax, NS B3H 2Y9, Canada
- Department of Medicine, Nova Scotia Cancer Care, Halifax, NS B3H 1V8, Canada
| | - David Mathieu
- Department of Surgery, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - James R. Perry
- Odette Cancer Centre, Sunnybrook Health Sciences Centre, Toronto, ON M4N 3M5, Canada
- Department of Medicine, University of Toronto, Toronto, ON M5S 1A4, Canada
| | - Marshall W. Pitz
- Department of Internal Medicine, University of Manitoba, Winnipeg, MB R3E 0V9, Canada
- Medical Oncology and Hematology, CancerCare Manitoba, Winnipeg, MB R3E 0V9, Canada
| | - David Roberge
- Division of Radiation Oncology, Centre Hospitalier Universitaire de Montreal, Montreal, QC H2X 0C1, Canada
- Department of Radiology, Radiation-Oncology and Nuclear Medicine, University of Montreal, Montreal, QC H3T 1J4, Canada
| | - Derek S. Tsang
- Department of Radiation Oncology, Princess Margaret Cancer Centre, Toronto, ON M5G 2M9, Canada
| | - Christina Tsien
- Department of Radiation Oncology, McGill University, Montreal, QC H4A 3J1, Canada
| | - Frank K. H. van Landeghem
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB T6G 2B7, Canada
| | - Gelareh Zadeh
- Department of Surgery, University of Toronto, Toronto, ON M5T 1P5, Canada
- Krembil Brain Institute, University Health Network, Toronto, ON M5T 1M8, Canada
| | - Jacob Easaw
- Department of Oncology, University of Alberta, Edmonton, AB T6G 1Z2, Canada
| |
Collapse
|
10
|
Saad K, Elgenidy A, Gad EF, Hamed Y, Aboelgheet A, Zidan MM, Alsayed NA, Alzu’bi M, Abdelfattah AA, Abdulrahim MH, Sapoor S, Gamal DA, El-Shokhaiby U, Hashem HA, Elhoufey A, Alruwaili TA, Atef Abdelsattar Ibrahim H, Mohamed KR, Mahmoud KH, Temsah MH, Ahmed S. Relative, Conditional, and Overall Survival and Causes of Death in Patients With Glioblastoma: A Retrospective Longitudinal Cohort Study. J Clin Med Res 2025; 17:208-222. [PMID: 40322721 PMCID: PMC12045778 DOI: 10.14740/jocmr6192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2025] [Accepted: 04/03/2025] [Indexed: 05/03/2025] Open
Abstract
Background Our goal in this manuscript was to perform a survival analysis and understand the causes of death (CODs) in patients with glioblastoma using the Surveillance, Epidemiology, and End Results (SEER) database. Methods A retrospective cohort study was conducted using version 8.3.9.2 of SEER*Stat software to extract data from the SEER 17 Plus database. Patients with World Health Organization (WHO) grade IV glioblastoma diagnosed between 2000 and 2019 were included to calculate overall survival (OS), relative survival (RS), and conditional survival. R software was used to calculate univariate and multivariate Cox regression models for age, sex, and race to identify their effect on survival. Results We included 45,071 patients with grade IV glioblastoma according to WHO 2016 classification. The observed 1-year, 3-year, and 5-year survival rates showed a decline to 40.1%, 9.8%, and 5.2%, respectively. Similarly, the relative 1-year, 3-year, and 5-year survival rates were 40.7%, 10.2%, and 5.4%, respectively. The conditional 3-year survival rates improved up to 16.9%, 42.9%, and 60.2% after 1, 3, and 5 years of survival, correspondingly, with females showing better estimates. The most common cancer CODs were the brain and other central nervous system (CNS) cancers. Among non-glioblastoma cancer CODs, breast cancer was the most common cause. Additionally, cardiovascular diseases, cerebrovascular diseases, and septicemia were the most common non-cancer CODs. Conclusion In this study, patients with glioblastoma showed a sharp decline in OS and RS over time after diagnosis. However, there was a notable improvement in conditional 3-year survival over time. Cardiovascular diseases emerged as the most common non-cancer COD, with lower survival rates in males and advanced age.
Collapse
Affiliation(s)
- Khaled Saad
- Department of Pediatrics, Assiut University, Assiut, Egypt
- These authors contributed equally to this work and shared the first authorship
| | - Anas Elgenidy
- Department of Neurology, Cairo University, Cairo, Egypt
- These authors contributed equally to this work and shared the first authorship
| | - Eman F. Gad
- Department of Pediatrics, Assiut University, Assiut, Egypt
| | - Yasser Hamed
- Department of Neurology, Al-Azhar University, Assiut, Egypt
| | | | - Mazen M. Zidan
- Faculty of Medicine, Misr University for Science and Technology, Cairo, Egypt
| | - Nada A. Alsayed
- Faculty of Medicine, Misr University for Science and Technology, Cairo, Egypt
| | | | | | | | - Shady Sapoor
- Faculty of Medicine, Benha University, Benha, Egypt
| | - Doaa Ali Gamal
- Department of Clinical Oncology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | | | | | - Amira Elhoufey
- Department of Community Health Nursing, Alddrab University College, Jazan University, Jazan, Saudi Arabia
- Department of Community Health Nursing, Faculty of Nursing, Assiut University, Assiut, Egypt
| | - Thamer A.M. Alruwaili
- Department of Pediatrics, College of Medicine, Jouf University, Sakaka, Saudi Arabia
| | | | | | - Khalid Hashim Mahmoud
- Department of Pediatrics, Faculty of Medicine, Shaqra University, Dawadmi, Saudi Arabia
| | - Mohamad-Hani Temsah
- Pediatric Intensive Care Unit, King Saud University Medical City, King Saud University, Riyadh, Saudi Arabia
| | - Sandra Ahmed
- Department of Neurology, Cairo University, Cairo, Egypt
| |
Collapse
|
11
|
Lu C, Kang T, Zhang J, Yang K, Liu Y, Song K, Lin Q, Dixit D, Gimple RC, Zhang Q, Shi Z, Fan X, Wu Q, Li D, Shan D, Gao J, Gu D, You H, Li Y, Yang J, Zhao L, Qiu Z, Yang H, Zhao N, Gao W, Tao W, Lu Y, Chen Y, Ji J, Zhu Z, Kang C, Man J, Agnihotri S, Wang Q, Lin F, Qian X, Mack SC, Hu Z, Li C, Taylor MD, Liu N, Zhang N, Lu M, You Y, Rich JN, Zhang W, Wang X. Combined targeting of glioblastoma stem cells of different cellular states disrupts malignant progression. Nat Commun 2025; 16:2974. [PMID: 40140646 PMCID: PMC11947120 DOI: 10.1038/s41467-025-58366-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 03/19/2025] [Indexed: 03/28/2025] Open
Abstract
Glioblastoma (GBM) is the most lethal primary brain tumor with intra-tumoral hierarchy of glioblastoma stem cells (GSCs). The heterogeneity of GSCs within GBM inevitably leads to treatment resistance and tumor recurrence. Molecular mechanisms of different cellular state GSCs remain unclear. Here, we find that classical (CL) and mesenchymal (MES) GSCs are enriched in reactive immune region and high CL-MES signature informs poor prognosis in GBM. Through integrated analyses of GSCs RNA sequencing and single-cell RNA sequencing datasets, we identify specific GSCs targets, including MEOX2 for the CL GSCs and SRGN for the MES GSCs. MEOX2-NOTCH and SRGN-NFκB axes play important roles in promoting proliferation and maintaining stemness and subtype signatures of CL and MES GSCs, respectively. In the tumor microenvironment, MEOX2 and SRGN mediate the resistance of CL and MES GSCs to macrophage phagocytosis. Using genetic and pharmacologic approaches, we identify FDA-approved drugs targeting MEOX2 and SRGN. Combined CL and MES GSCs targeting demonstrates enhanced efficacy, both in vitro and in vivo. Our results highlighted a therapeutic strategy for the elimination of heterogeneous GSCs populations through combinatorial targeting of MEOX2 and SRGN in GSCs.
Collapse
Affiliation(s)
- Chenfei Lu
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Cell Biology, National Health Commission Key Laboratory of Antibody Techniques, Jiangsu Provincial Key Laboratory of Human Functional Genomics, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China
- Institute for Brain Tumors, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Tao Kang
- Department of Cell Biology, National Health Commission Key Laboratory of Antibody Techniques, Jiangsu Provincial Key Laboratory of Human Functional Genomics, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China
- Institute for Brain Tumors, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Junxia Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Kailin Yang
- Department of Radiation Oncology, Taussig Cancer Center, Cleveland Clinic, Cleveland, OH, USA
| | - Yang Liu
- Department of Pharmacology, School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Kefan Song
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Qiankun Lin
- Department of Cell Biology, National Health Commission Key Laboratory of Antibody Techniques, Jiangsu Provincial Key Laboratory of Human Functional Genomics, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China
- Institute for Brain Tumors, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Deobrat Dixit
- University of Pittsburgh Medical Center Hillman Cancer Center, Pittsburgh, PA, USA
| | - Ryan C Gimple
- Department of Radiation Oncology, Taussig Cancer Center, Cleveland Clinic, Cleveland, OH, USA
| | - Qian Zhang
- Department of Cell Biology, National Health Commission Key Laboratory of Antibody Techniques, Jiangsu Provincial Key Laboratory of Human Functional Genomics, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China
- Institute for Brain Tumors, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Zhumei Shi
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xiao Fan
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Qiulian Wu
- University of Pittsburgh Medical Center Hillman Cancer Center, Pittsburgh, PA, USA
| | - Daqi Li
- Department of Cell Biology, National Health Commission Key Laboratory of Antibody Techniques, Jiangsu Provincial Key Laboratory of Human Functional Genomics, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China
- Institute for Brain Tumors, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Danyang Shan
- Department of Cell Biology, National Health Commission Key Laboratory of Antibody Techniques, Jiangsu Provincial Key Laboratory of Human Functional Genomics, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China
- Institute for Brain Tumors, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jiancheng Gao
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Cell Biology, National Health Commission Key Laboratory of Antibody Techniques, Jiangsu Provincial Key Laboratory of Human Functional Genomics, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China
- Institute for Brain Tumors, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Danling Gu
- Department of Cell Biology, National Health Commission Key Laboratory of Antibody Techniques, Jiangsu Provincial Key Laboratory of Human Functional Genomics, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China
- Institute for Brain Tumors, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Hao You
- Department of Cell Biology, National Health Commission Key Laboratory of Antibody Techniques, Jiangsu Provincial Key Laboratory of Human Functional Genomics, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China
- Institute for Brain Tumors, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yangqing Li
- Department of Cell Biology, National Health Commission Key Laboratory of Antibody Techniques, Jiangsu Provincial Key Laboratory of Human Functional Genomics, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China
- Institute for Brain Tumors, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Junlei Yang
- Department of Cell Biology, National Health Commission Key Laboratory of Antibody Techniques, Jiangsu Provincial Key Laboratory of Human Functional Genomics, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China
- Institute for Brain Tumors, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Linjie Zhao
- University of Pittsburgh Medical Center Hillman Cancer Center, Pittsburgh, PA, USA
| | - Zhixin Qiu
- Department of Anesthesiology, Zhongshan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
| | - Hui Yang
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Ningwei Zhao
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Wei Gao
- Department of Cell Biology, National Health Commission Key Laboratory of Antibody Techniques, Jiangsu Provincial Key Laboratory of Human Functional Genomics, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Weiwei Tao
- College of Biomedicine and Health & College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Yingmei Lu
- Department of Cell Biology, National Health Commission Key Laboratory of Antibody Techniques, Jiangsu Provincial Key Laboratory of Human Functional Genomics, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yun Chen
- Department of Cell Biology, National Health Commission Key Laboratory of Antibody Techniques, Jiangsu Provincial Key Laboratory of Human Functional Genomics, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jing Ji
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Zhe Zhu
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Chunsheng Kang
- Laboratory of Neuro-oncology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Jianghong Man
- State Key Laboratory of Proteomics, National Center of Biomedical Analysis, Beijing, China
| | - Sameer Agnihotri
- University of Pittsburgh Medical Center Hillman Cancer Center, Pittsburgh, PA, USA
| | - Qianghu Wang
- Institute for Brain Tumors, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Fan Lin
- Department of Cell Biology, National Health Commission Key Laboratory of Antibody Techniques, Jiangsu Provincial Key Laboratory of Human Functional Genomics, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xu Qian
- Institute for Brain Tumors, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Stephen C Mack
- Department of Developmental Neurobiology, Neurobiology and Brain Tumor Program, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Zhibin Hu
- Institute for Brain Tumors, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Chaojun Li
- Institute for Brain Tumors, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Michael D Taylor
- Department of Pediatrics- Hematology/Oncology and Neurosurgery, Texas Children's Cancer Center, Hematology-Oncology Section, Baylor College of Medicine, Houston, Texas, USA
| | - Ning Liu
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Nu Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Ming Lu
- Department of Cell Biology, National Health Commission Key Laboratory of Antibody Techniques, Jiangsu Provincial Key Laboratory of Human Functional Genomics, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yongping You
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China.
- Institute for Brain Tumors, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu, China.
| | - Jeremy N Rich
- University of Pittsburgh Medical Center Hillman Cancer Center, Pittsburgh, PA, USA.
| | - Wei Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
| | - Xiuxing Wang
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China.
- Department of Cell Biology, National Health Commission Key Laboratory of Antibody Techniques, Jiangsu Provincial Key Laboratory of Human Functional Genomics, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China.
- Institute for Brain Tumors, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu, China.
- Jiangsu Cancer Hospital, Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, Jiangsu, China.
| |
Collapse
|
12
|
Delgado-Miranda AL, Gomez-Flores R, Rodríguez-Garza NE, Pérez-González O, Tamez-Guerra P, Caballero-Hernández D, Clark-Pérez DL, Quintanilla-Licea R, García A, Romo-Sáenz CI. In Vitro Anti-Glioblastoma Activity of Echinocereus engelmannii- and Echinocereus pectinatus-Associated Bacterial Endophyte Extracts. Life (Basel) 2025; 15:519. [PMID: 40283074 PMCID: PMC12028645 DOI: 10.3390/life15040519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 03/15/2025] [Accepted: 03/17/2025] [Indexed: 04/29/2025] Open
Abstract
Glioblastoma is the most common and aggressive brain tumor in adults. However, due to the limitations of conventional treatments, as well as their side effects, there is a need to develop more effective and less harmful therapy strategies. There is evidence that plants endemic to northern Mexico possess biological activities that positively impact human health, particularly against cancer. Echinocereus engelmannii and Echinocereus pectinatus are cacti from the north of Mexico that produce bioactive compounds with antitumor activity. We obtained methanol extracts from previously isolated and fermented microorganisms associated with these cacti. Cell lines of extracts with cytotoxicity against glioblastoma cells U87, neuroblastoma cells SH-S5Y5, and Schwann neuronal cells (healthy control) were evaluated, using a colorimetric 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazole bromide (MTT) reduction technique. The selective cytotoxicity extracts were analyzed using liquid chromatography tandem mass spectrometry (LC/MS2). We isolated 19 endophytic and soil-associated microorganisms from both cacti. Two of them were selected for their high percentages of tumor growth inhibition. The microorganism ES4 possessed the best activity with an IC50 of 17.31 ± 1.70 µg/mL and a selectivity index of 3.11. We identified the bacterium Stenotrophomonas maltophilia by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) from the most active microorganisms against tumor growth. LC/MS2 characterized the HS4 extract, and the most abundant group (50.0%) identified included carboxylic acids and derivatives, particularly bisgerayafolin A, Cyclo (Pro-Leu), maculosin, and tryptophan. In conclusion S. maltophilia extract inhibit the growth of glioma cells, showing greater sensitivity in the U87 cell line.
Collapse
Affiliation(s)
- Ana L. Delgado-Miranda
- Departamento de Microbiología e Inmunología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza 66455, Nuevo León, Mexico; (A.L.D.-M.); (N.E.R.-G.); (O.P.-G.); (P.T.-G.); (D.C.-H.)
| | - Ricardo Gomez-Flores
- Departamento de Microbiología e Inmunología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza 66455, Nuevo León, Mexico; (A.L.D.-M.); (N.E.R.-G.); (O.P.-G.); (P.T.-G.); (D.C.-H.)
| | - Nancy E. Rodríguez-Garza
- Departamento de Microbiología e Inmunología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza 66455, Nuevo León, Mexico; (A.L.D.-M.); (N.E.R.-G.); (O.P.-G.); (P.T.-G.); (D.C.-H.)
- Grupo de Enfermedades Infecciosas y Tropicales (e-INTRO), Facultad de Farmacia, Instituto de Investigación Biomédica de Salamanca-Centro de Investigación de Enfermedades Tropicales de la Universidad de Salamanca (IBSAL-CIETUS), Universidad de Salamanca, 37007 Salamanca, Spain
| | - Orquídea Pérez-González
- Departamento de Microbiología e Inmunología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza 66455, Nuevo León, Mexico; (A.L.D.-M.); (N.E.R.-G.); (O.P.-G.); (P.T.-G.); (D.C.-H.)
| | - Patricia Tamez-Guerra
- Departamento de Microbiología e Inmunología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza 66455, Nuevo León, Mexico; (A.L.D.-M.); (N.E.R.-G.); (O.P.-G.); (P.T.-G.); (D.C.-H.)
| | - Diana Caballero-Hernández
- Departamento de Microbiología e Inmunología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza 66455, Nuevo León, Mexico; (A.L.D.-M.); (N.E.R.-G.); (O.P.-G.); (P.T.-G.); (D.C.-H.)
| | - Diana L. Clark-Pérez
- Departamento de Microbiología e Inmunología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza 66455, Nuevo León, Mexico; (A.L.D.-M.); (N.E.R.-G.); (O.P.-G.); (P.T.-G.); (D.C.-H.)
| | - Ramiro Quintanilla-Licea
- Departamento de Química, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza 66455, Nuevo León, Mexico;
| | - Andrés García
- Laboratorio de Biotecnología Ambiental, Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Cuernavaca 62209, Morelos, Mexico
| | - César I. Romo-Sáenz
- Departamento de Microbiología e Inmunología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza 66455, Nuevo León, Mexico; (A.L.D.-M.); (N.E.R.-G.); (O.P.-G.); (P.T.-G.); (D.C.-H.)
- Facultad de Medicina y Ciencias Biomédicas, Universidad Autónoma de Chihuahua, Chihuahua 31109, Chihuahua, Mexico
| |
Collapse
|
13
|
Yang J, Shen L, Cai Y, Wu J, Chen K, Xu D, Lei Y, Chai S, Xiong N. The Role of Coagulation-Related Genes in Glioblastoma: A Comprehensive Analysis of the Tumor Microenvironment, Prognosis, and Treatment. Biochem Genet 2025:10.1007/s10528-025-11086-3. [PMID: 40113719 DOI: 10.1007/s10528-025-11086-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 03/10/2025] [Indexed: 03/22/2025]
Abstract
The influence of coagulation on glioma biology has not been comprehensively elucidated. This study explores the role of coagulation-related genes (CRGs) in glioblastoma (GBM) from the perspectives of the tumor microenvironment (TME), differences in coagulation function among GBM patients, treatment, and prognosis. Somatic mutation analysis was performed on single nucleotide polymorphism (SNP) and copy number variation data from GBM patients in the TCGA cohort. Publicly available single-cell RNA sequencing data were used to analyze the role of coagulation in the GBM TME and its underlying biological mechanisms. Unsupervised clustering of GBM patients from the CGGA693 cohort was conducted, and coagulation function for each patient was assessed using ssGSEA scoring. Prognosis was assessed with Kaplan-Meier survival analysis, and immune infiltration was analyzed through ESTIMATE. A risk signature based on five CRGs (CFI, GNG12, MMP2, LEFTY2, and SERPINC1) was constructed and validated using LASSO regression and random survival forest analyses to predict responses to immunotherapy and identify potential sensitive drugs. Finally, the roles of LEFTY2 and SERPINC1 in GBM progression was verified by immunohistochemistry, cell counting kit-8 (CCK8) assay and wound healing assay, and the anti-GBM effect of the drug PLX4720 was verified by CCK8 assay, wound healing assay, and colony formation assay. Somatic mutation analysis revealed SNP events of CRG mutations in 117 out of 461 GBM cases (25.38%). Single-cell analysis of the GBM TME revealed significant activation of the coagulation pathway in endothelial cells, with intercellular communication mediated via the SPP1-integrin pathway (p < 0.01). Clustering analysis and ssGSEA identified two coagulation-related subtypes in GBM: coagulation-activated and coagulation-inhibited subtypes. Patients in the coagulation-activated subtype exhibited shorter overall survival and poorer prognosis compared to those in the coagulation-inhibited subtype (p = 0.0085). Immune infiltration analysis showed lower tumor purity and higher levels of immune-suppressive cells in the coagulation-activated subtype (p < 0.001). The CRG-based risk signature accurately predicted prognosis (p < 0.0001) and responses to immunotherapy in the IMvigor210 cohort (p = 0.0062). Based on the risk model, PLX4720 was identified as a potential sensitive drug (p < 0.001), and drug validation experiments demonstrated that PLX4720 inhibited the proliferation and migration of glioma cells (p < 0.0001). In vitro experiments demonstrated that LEFTY2 and SERPINC1 were significantly overexpressed in GBM compared to normal brain tissue, and knockdown of LEFTY2 and SERPINC1 inhibited glioma cell proliferation and migration (p < 0.05). The CRG-based risk signature model effectively predicts the prognosis of GBM patients and aids in assessing the efficacy of ICI therapy and chemotherapy. Furthermore, the genes LEFTY2, SERPINC1 and the drug PLX4720 offer potential directions for the development of novel therapeutic strategies for GBM.
Collapse
Affiliation(s)
- Jingyi Yang
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Donghu Road 169, Wuhan, 430071, China
| | - Lei Shen
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Donghu Road 169, Wuhan, 430071, China
| | - Yuankun Cai
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Donghu Road 169, Wuhan, 430071, China
| | - Ji Wu
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Donghu Road 169, Wuhan, 430071, China
| | - Keyu Chen
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Donghu Road 169, Wuhan, 430071, China
| | - Dongyuan Xu
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Donghu Road 169, Wuhan, 430071, China
| | - Yu Lei
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Donghu Road 169, Wuhan, 430071, China
| | - Songshan Chai
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Donghu Road 169, Wuhan, 430071, China.
| | - Nanxiang Xiong
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Donghu Road 169, Wuhan, 430071, China.
| |
Collapse
|
14
|
Zhao R, Pan Z, Qiu J, Li B, Qi Y, Gao Z, Qiu W, Tang W, Guo X, Deng L, Li G, Xue H. Blocking ITGA5 potentiates the efficacy of anti-PD-1 therapy on glioblastoma by remodeling tumor-associated macrophages. Cancer Commun (Lond) 2025. [PMID: 40084746 DOI: 10.1002/cac2.70016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 02/27/2025] [Accepted: 03/03/2025] [Indexed: 03/16/2025] Open
Abstract
BACKGROUND Glioblastoma (GBM) is largely refractory to antibodies against programmed cell death 1 (anti-PD-1) therapy. Fully understanding the cellular heterogeneity and immune adaptations in response to anti-PD-1 therapy is necessary to design more effective immunotherapies for GBM. This study aimed to dissect the molecular mechanisms of specific immunosuppressive subpopulations to drive anti-PD-1 resistance in GBM. METHODS We systematically analysed single-cell RNA sequencing and spatial transcriptomics data from GBM tissues receiving anti-PD-1 therapy to characterize the microenvironment alterations. The biological functions of a novel circular RNA (circRNA) were validated both in vitro and in vivo. Mechanically, co-immunoprecipitation, RNA immunoprecipitation and pull-down assays were conducted. RESULTS Mesenchymal GBM (MES-GBM) cells, which were associated with a poor prognosis, and secreted phosphoprotein 1 (SPP1)+ myeloid-derived macrophages (SPP1+ MDMs), a unique subpopulation of MDMs with complex functions, preferentially accumulated in non-responders to anti-PD-1 therapy, indicating that MES-GBM cells and SPP1+ MDMs were the main anti-PD-1-resistant cell subpopulations. Functionally, we determined that circular RNA succinate dehydrogenase complex assembly factor 2 (circSDHAF2), which was positively associated with the abundance of these two anti-PD-1-resistant cell subpopulations, facilitated the formation of a regional MES-GBM and SPP1+ MDM cell interaction loop, resulting in a spatially specific adaptive immunosuppressive microenvironment. Mechanically, we found that circSDHAF2 promoted MES-GBM cell formation by stabilizing the integrin alpha 5 (ITGA5) protein through N-glycosylation. Meanwhile, the N-glycosylation of the ITGA5 protein facilitated its translocation into exosomes and subsequent delivery to MDMs to induce the formation of SPP1+ MDMs, which in turn maintained the MES-GBM cell status and induced T-cell dysfunction via the SPP1-ITGA5 pathway, ultimately promoting GBM immune escape. Importantly, our findings demonstrated that antibody-mediated ITGA5 blockade enhanced anti-PD-1-mediated antitumor immunity. CONCLUSIONS This work elucidated the potential tissue adaptation mechanism of intratumoral dynamic interactions between MES-GBM cells, MDMs and T cells in anti-PD-1 non-responders and identified the therapeutic potential of targeting ITGA5 to reduce anti-PD-1 resistance in GBM.
Collapse
Affiliation(s)
- Rongrong Zhao
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, Shandong, P. R. China
- Shandong Key Laboratory of Brain Health and Function Remodeling, Jinan, P. R. China
| | - Ziwen Pan
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, Shandong, P. R. China
- Shandong Key Laboratory of Brain Health and Function Remodeling, Jinan, P. R. China
| | - Jiawei Qiu
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, Shandong, P. R. China
- Shandong Key Laboratory of Brain Health and Function Remodeling, Jinan, P. R. China
| | - Boyan Li
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, Shandong, P. R. China
- Shandong Key Laboratory of Brain Health and Function Remodeling, Jinan, P. R. China
| | - Yanhua Qi
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, Shandong, P. R. China
- Shandong Key Laboratory of Brain Health and Function Remodeling, Jinan, P. R. China
| | - Zijie Gao
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, Shandong, P. R. China
- Shandong Key Laboratory of Brain Health and Function Remodeling, Jinan, P. R. China
| | - Wei Qiu
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, Shandong, P. R. China
- Shandong Key Laboratory of Brain Health and Function Remodeling, Jinan, P. R. China
| | - Weijie Tang
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, Shandong, P. R. China
- Shandong Key Laboratory of Brain Health and Function Remodeling, Jinan, P. R. China
| | - Xiaofan Guo
- Department of Neurology, Loma Linda University Health, Loma Linda, California, USA
| | - Lin Deng
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, Shandong, P. R. China
- Shandong Key Laboratory of Brain Health and Function Remodeling, Jinan, P. R. China
| | - Gang Li
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, Shandong, P. R. China
- Shandong Key Laboratory of Brain Health and Function Remodeling, Jinan, P. R. China
| | - Hao Xue
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, Shandong, P. R. China
- Shandong Key Laboratory of Brain Health and Function Remodeling, Jinan, P. R. China
| |
Collapse
|
15
|
Sun S, Qian S, Wang R, Zhao M, Li R, Gu W, Zhao M, Qian C, Liu L, Tang X, Li Y, Shi H, Pan Y, Xiao H, Yang K, Hu C, Huang Y, Wei L, Zhang Y, Ji J, Chen Y, Liu H. Targeting GOLPH3L improves glioblastoma radiotherapy by regulating STING-NLRP3-mediated tumor immune microenvironment reprogramming. Sci Transl Med 2025; 17:eado0020. [PMID: 40043140 DOI: 10.1126/scitranslmed.ado0020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 08/04/2024] [Accepted: 02/12/2025] [Indexed: 04/18/2025]
Abstract
Radiotherapy (RT) has been the standard-of-care treatment for patients with glioblastoma (GBM); however, the clinical effectiveness is hindered by therapeutic resistance. Here, we demonstrated that the tumor immune microenvironment (TIME) exhibited immunosuppressive properties and high expression of Golgi phosphoprotein 3 like (GOLPH3L) in RT-resistant GBM. Our study showed that GOLPH3L interacted with stimulator of interferon genes (STING) at the aspartic acid residue 184 in Golgi after RT, leading to coat protein complex II-mediated retrograde transport of STING from Golgi to endoplasmic reticulum. This suppressed the STING-NOD-like receptor thermal protein domain associated protein 3 (NLRP3)-mediated pyroptosis, resulting in suppressive TIME, driving GBM resistance to RT. Genetic GOLPH3L ablation in RT-resistant GBM cells augmented antitumor immunity and overcame tumor resistance to RT. Moreover, we have identified a small molecular inhibitor of GOLPH3L, vitamin B5 calcium (VB5), which improved the therapeutic efficacy of RT and immune checkpoint blockade by inducing a robust antitumor immune response in mouse models. Clinically, patients with GBM treated with VB5 exhibited improved responses to RT. Thus, reprogramming the TIME by targeting GOLPH3L may offer a potential opportunity to improve RT in GBM.
Collapse
Affiliation(s)
- Shuo Sun
- Department of Neurosurgery, First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Shiyu Qian
- Department of Pharmacy, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China
| | - Ran Wang
- Department of Neurosurgery, Affiliated Brain Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Mengya Zhao
- Department of Immunology, Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Nanjing 211166, China
- Research Center of Surgery, Nanjing BenQ Medical Center, Affiliated BenQ Hospital of Nanjing Medical University, Department of Immunology, Nanjing Medical University, Nanjing 211166, China
| | - Ran Li
- Department of Immunology, Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Nanjing 211166, China
| | - Wei Gu
- Department of Neurosurgery, First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Mengjie Zhao
- Department of Neurosurgery, Affiliated Brain Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Chunfa Qian
- Department of Neurosurgery, Affiliated Brain Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Liang Liu
- Department of Neurosurgery, Affiliated Brain Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Xianglong Tang
- Department of Neurosurgery, Affiliated Brain Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Yangyang Li
- Department of Neurosurgery, Affiliated Brain Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Hui Shi
- Department of Neurosurgery, First Hospital of Lianyungang, Lianyungang 222000, China
| | - Yunsong Pan
- Department of Neurosurgery, First Hospital of Lianyungang, Lianyungang 222000, China
| | - Hong Xiao
- Department of Neurosurgery, Affiliated Brain Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Kun Yang
- Department of Neurosurgery, Affiliated Brain Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Chupeng Hu
- Department of Immunology, Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Nanjing 211166, China
| | - Yedi Huang
- Department of Immunology, Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Nanjing 211166, China
| | - Liangnian Wei
- Department of Immunology, Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Nanjing 211166, China
| | - Yuhan Zhang
- Department of Immunology, Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Nanjing 211166, China
| | - Jing Ji
- Department of Neurosurgery, First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing 211166, China
| | - Yun Chen
- Department of Immunology, Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Nanjing 211166, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing 211166, China
| | - Hongyi Liu
- Department of Neurosurgery, Affiliated Brain Hospital of Nanjing Medical University, Nanjing 210029, China
| |
Collapse
|
16
|
Vollmuth P, Karschnia P, Sahm F, Park YW, Ahn SS, Jain R. A Radiologist's Guide to IDH-Wildtype Glioblastoma for Efficient Communication With Clinicians: Part I-Essential Information on Preoperative and Immediate Postoperative Imaging. Korean J Radiol 2025; 26:246-268. [PMID: 39999966 PMCID: PMC11865903 DOI: 10.3348/kjr.2024.0982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 12/02/2024] [Accepted: 12/04/2024] [Indexed: 02/27/2025] Open
Abstract
The paradigm of isocitrate dehydrogenase (IDH)-wildtype glioblastoma is rapidly evolving, reflecting clinical, pathological, and imaging advancements. Thus, it remains challenging for radiologists, even those who are dedicated to neuro-oncology imaging, to keep pace with this rapidly progressing field and provide useful and updated information to clinicians. Based on current knowledge, radiologists can play a significant role in managing patients with IDH-wildtype glioblastoma by providing accurate preoperative diagnosis as well as preoperative and postoperative treatment planning including accurate delineation of the residual tumor. Through active communication with clinicians, extending far beyond the confines of the radiology reading room, radiologists can impact clinical decision making. This Part 1 review provides an overview about the neuropathological diagnosis of glioblastoma to understand the past, present, and upcoming revisions of the World Health Organization classification. The imaging findings that are noteworthy for radiologists while communicating with clinicians on preoperative and immediate postoperative imaging of IDH-wildtype glioblastomas will be summarized.
Collapse
Affiliation(s)
- Philipp Vollmuth
- Division for Computational Radiology & Clinical AI (CCIBonn.ai), Clinic for Neuroradiology, University Hospital Bonn, Bonn, Germany
- Medical Faculty Bonn, University of Bonn, Bonn, Germany
- Division of Medical Image Computing, German Cancer Research Center, Heidelberg, Germany
| | - Philipp Karschnia
- Department of Neurosurgery, Ludwig-Maximilians-University, Munich, Germany
- Department of Neurosurgery, Friedrich-Alexander-University University, Erlangen-Nuremberg, Germany
| | - Felix Sahm
- Department of Neuropathology, Heidelberg University Hospital, Heidelberg, Germany
- Clinical Cooperation Unit Neuropathology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Yae Won Park
- Department of Radiology and Research Institute of Radiological Science and Center for Clinical Imaging Data Science, Yonsei University College of Medicine, Seoul, Republic of Korea.
| | - Sung Soo Ahn
- Department of Radiology and Research Institute of Radiological Science and Center for Clinical Imaging Data Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Rajan Jain
- Department of Radiology, New York University Grossman School of Medicine, New York, USA
- Department of Neurosurgery, New York University Grossman School of Medicine, New York, USA
| |
Collapse
|
17
|
Moshref R, Elashaal A. Glioblastoma Masquerading as Metastasis in a Routine Follow-Up of a 79-Year-Old Woman. Cureus 2025; 17:e81231. [PMID: 40291335 PMCID: PMC12024517 DOI: 10.7759/cureus.81231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/26/2025] [Indexed: 04/30/2025] Open
Abstract
Glioblastoma is the most aggressive and common primary brain tumor. Diagnosis is based on imaging and is confirmed through a brain biopsy. Multimodal treatment, including gross total resection, radiotherapy, and chemotherapy, is typically required. We report a case of a 79-year-old woman, a former smoker, who presented with a headache and generalized weakness and was found to have multiple brain lesions. The patient was diagnosed with glioblastoma and underwent partial resection. Multiple glioblastomas are a rare presentation and can be multicentric or multifocal. Patients with this presentation typically exhibit symptoms of high intracranial pressure. Glioblastomas have a poor prognosis despite multidisciplinary management. Glioblastoma should be considered a differential diagnosis for patients with multiple brain lesions.
Collapse
Affiliation(s)
- Rana Moshref
- Neurosurgery, London Health Sciences Centre, London, CAN
| | | |
Collapse
|
18
|
Guo Y, Jin L, Shen Z, Fan L, Yu X, Kuang Y, Cai L, Zhou J, Chen Z, Yan F, Zhang J, Tong M, Yuan J, Mao Z, Chen G. Biomimetic Membrane Vesicles Reprogram Microglia Polarization and Remodel the Immunosuppressive Microenvironment of Glioblastoma via PERK/HIF-1α/Glycolysis Pathway. Adv Healthc Mater 2025; 14:e2404782. [PMID: 39757442 DOI: 10.1002/adhm.202404782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Indexed: 01/07/2025]
Abstract
The malignant interaction between tumor cells and immune cells is one of the important reasons for the rapid progression and refractoriness of glioblastoma (GBM). As an essential metabolic center of M2 macrophages, the inhibition of protein kinase RNA-like endoplasmic reticulum kinase (PERK) leads to the reduction of M2 macrophages. Nevertheless, the restriction of the blood-brain barrier (BBB) and non-specific cell targeting hinder the application of PERK inhibitors in GBM. Herein, the optimal NP-M-M2pep is developed successfully, which has shown the capacity of BBB penetration and specific targeting of M2 microglia. In addition to inhibiting the polarization of M2 microglia, the administration of iPERK@NP-M-M2pep reprogrammed M2 microglia into M1 ones in vitro via PERK/HIF-1α/glycolysis pathway. Efficient brain accumulation of nanoparticles is achieved after tail vein injection, with effective inhibition of GBM progression after one course of treatment. The glioma-associated microglia and macrophages (GAM) with M2 type are induced to M1 and the immunosuppressive TME is remodeled by upregulating immunostimulatory cells and downregulating immunosuppressive cells. In summary, the biomimetic membrane vesicles (BMVs) specifically delivered iPERK to GAMs offer an inspiring strategy to reprogram microglia polarization, re-educate immunosuppressive TME, and inhibit the progression of GBM.
Collapse
Affiliation(s)
- Yinghan Guo
- Department of Neurosurgery, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310009, China
- Zhejiang Key Laboratory of Research and Transformation for Major Neurosurgical Diseases, Hangzhou, Zhejiang, 310009, China
| | - Lulu Jin
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Zhipeng Shen
- Department of Neurosurgery, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310009, China
- Zhejiang Key Laboratory of Research and Transformation for Major Neurosurgical Diseases, Hangzhou, Zhejiang, 310009, China
| | - Linfeng Fan
- Department of Neurosurgery, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310009, China
- Zhejiang Key Laboratory of Research and Transformation for Major Neurosurgical Diseases, Hangzhou, Zhejiang, 310009, China
| | - Xian Yu
- Department of Neurosurgery, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310009, China
- Zhejiang Key Laboratory of Research and Transformation for Major Neurosurgical Diseases, Hangzhou, Zhejiang, 310009, China
| | - Yirui Kuang
- Department of Neurosurgery, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310009, China
- Zhejiang Key Laboratory of Research and Transformation for Major Neurosurgical Diseases, Hangzhou, Zhejiang, 310009, China
| | - Lingxin Cai
- Department of Neurosurgery, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310009, China
- Zhejiang Key Laboratory of Research and Transformation for Major Neurosurgical Diseases, Hangzhou, Zhejiang, 310009, China
| | - Jiayin Zhou
- Department of Neurosurgery, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310009, China
- Zhejiang Key Laboratory of Research and Transformation for Major Neurosurgical Diseases, Hangzhou, Zhejiang, 310009, China
| | - Zihang Chen
- Department of Neurosurgery, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310009, China
- Zhejiang Key Laboratory of Research and Transformation for Major Neurosurgical Diseases, Hangzhou, Zhejiang, 310009, China
| | - Feng Yan
- Department of Neurosurgery, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310009, China
- Zhejiang Key Laboratory of Research and Transformation for Major Neurosurgical Diseases, Hangzhou, Zhejiang, 310009, China
| | - Jianmin Zhang
- Department of Neurosurgery, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310009, China
- Zhejiang Key Laboratory of Research and Transformation for Major Neurosurgical Diseases, Hangzhou, Zhejiang, 310009, China
| | - Minfeng Tong
- Department of Neurosurgery, affiliated Jinhua Hospital, School of Medicine, Zhejiang University, Jinhua, Zhejiang, 321000, China
| | - Jianlie Yuan
- Department of Neurosurgery, affiliated Jinhua Hospital, School of Medicine, Zhejiang University, Jinhua, Zhejiang, 321000, China
| | - Zhengwei Mao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Gao Chen
- Department of Neurosurgery, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310009, China
- Zhejiang Key Laboratory of Research and Transformation for Major Neurosurgical Diseases, Hangzhou, Zhejiang, 310009, China
| |
Collapse
|
19
|
Smith R, Sapkota R, Antony B, Sun J, Aboud O, Bloch O, Daly M, Fragoso R, Yiu G, Liu YA. A novel predictive model utilizing retinal microstructural features for estimating survival outcome in patients with glioblastoma. Clin Neurol Neurosurg 2025; 250:108790. [PMID: 39987704 PMCID: PMC11911018 DOI: 10.1016/j.clineuro.2025.108790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Accepted: 02/15/2025] [Indexed: 02/25/2025]
Abstract
PURPOSE Glioblastoma is a highly aggressive brain tumor with poor prognosis despite surgery and chemoradiation. The visual sequelae of glioblastoma have not been well characterized. This study assessed visual outcomes in glioblastoma patients through neuro-ophthalmic exams, imaging of the retinal microstructures/microvasculature, and perimetry. METHODS A total of 19 patients with glioblastoma (9 male, 10 female, average age at diagnosis 69 years) were enrolled. Tumor characteristic, neuro-ophthalmic exam data, Optical Coherence Tomography (OCT) and OCT-Angiography data of all patient eyes were analyzed using Microsoft Excel and a Machine Learning algorithm. RESULTS Best-corrected visual acuity ranged from 20/20 - 20/50. Occipital tumors showed worse visual fields than frontal tumors (mean deviation -14.9 and -0.23, respectively, p < 0.0001). Those with overall survival (OS)< 15 months demonstrated thinner retinal nerve fiber layer and ganglion cell complex (p < 0.0001) and enlarged foveal avascular zone starting from 4 months post-diagnosis (p = 0.006). There was no significant difference between eyes ipsilateral and contralateral to radiation fields (average doses were 1370 cGy and 1180 cGy, respectively, p = 0.42). A machine learning algorithm using retinal microstructure and visual fields predicted patients with long (≥15 months) progression-free and overall survival with 78 % accuracy. CONCLUSION Glioblastoma patients frequently present with visual field defects despite normal visual acuity. Patients with poor survival duration demonstrated significant retinal thinning and decreased microvascular density. A machine learning algorithm predicted survival though further validation is warranted.
Collapse
Affiliation(s)
- Rebekah Smith
- School of Medicine, University of California, Davis, USA
| | - Ranjit Sapkota
- Institute of Innovation, Science & Sustainability, Federation University Australia, Mt Helen, Australia
| | - Bhavna Antony
- Institute of Innovation, Science & Sustainability, Federation University Australia, Mt Helen, Australia
| | - Jinger Sun
- Department of Radiation Oncology, University of California, Davis, USA
| | - Orwa Aboud
- Department of Neurology, University of California, Davis, USA; Comprehensive Cancer Center, University of California, Davis, USA; Department of Neurological Surgery, University of California, Davis, USA
| | - Orin Bloch
- Comprehensive Cancer Center, University of California, Davis, USA; Department of Neurological Surgery, University of California, Davis, USA
| | - Megan Daly
- Department of Radiation Oncology, University of California, Davis, USA; Comprehensive Cancer Center, University of California, Davis, USA
| | - Ruben Fragoso
- Department of Radiation Oncology, University of California, Davis, USA; Comprehensive Cancer Center, University of California, Davis, USA
| | - Glenn Yiu
- Department of Ophthalmology & Vision Science, University of California, Davis, USA
| | - Yin Allison Liu
- Department of Neurology, University of California, Davis, USA; Department of Neurological Surgery, University of California, Davis, USA; Department of Ophthalmology & Vision Science, University of California, Davis, USA.
| |
Collapse
|
20
|
Ul Hassan MH, Shahbaz M, Imran M, Momal U, Naeem H, Mujtaba A, Hussain M, Anwar MJ, Alsagaby SA, Al Abdulmonem W, Yehuala TF, Abdelgawad MA, El‐Ghorab AH, Selim S, Mostafa EM. Isoflavones: Promising Natural Agent for Cancer Prevention and Treatment. Food Sci Nutr 2025; 13:e70091. [PMID: 40078339 PMCID: PMC11896816 DOI: 10.1002/fsn3.70091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 02/22/2025] [Accepted: 02/25/2025] [Indexed: 03/14/2025] Open
Abstract
Isoflavones are currently being investigated by researchers in order to demonstrate their ability to prevent the proliferation of cancer cells. The current review aimed to demonstrate the potential of isoflavones to eliminate cancerous cells in the stomach, liver, lung, breast, and prostate, as their anticancer properties are due to the ability to block the signaling pathways of the extracellular signal-controlled kinase (MAPK/ERK) and proteasome (PI3K/AKT/mTOR). Isoflavones can inhibit the cell division of various cancer cells. Isoflavones can block the androgen receptor (AR), a protein that is required for the growth and dissemination of prostate cancer. It initiates the caspase cascade and obstructs the production of new proteins to eliminate lung cancer cells. These inhibit colon cancer cells by entering their G2/M cell cycle phase and inducing apoptosis. These are also known to inhibit the production of cyclin-dependent kinase 2 and cyclin B1, two proteins that are related to an enhanced risk of colon cancer. These suppress the breakdown of cyclin B1 and CDK2 to stop the development of cancer. Preclinical evidence consistently supports the efficacy of isoflavones in suppressing tumor growth; however, human clinical trials show variability due to differences in bioavailability, metabolism, and dosage. Despite their promise as alternative or adjunctive cancer therapies, limitations such as low solubility, interindividual metabolic variations, and inconsistent clinical outcomes necessitate further large-scale, controlled trials. Future research should focus on improving bioavailability and exploring synergistic effects with conventional therapies.
Collapse
Affiliation(s)
- Muhammad Hammad Ul Hassan
- Department of Food Science and TechnologyMuhammad Nawaz Shareef University of AgricultureMultanPakistan
| | - Muhammad Shahbaz
- Department of Food Science and TechnologyMuhammad Nawaz Shareef University of AgricultureMultanPakistan
| | - Muhammad Imran
- Department of Food Science and TechnologyUniversity of NarowalNarowalPakistan
| | - Ushna Momal
- Department of Food Science and TechnologyMuhammad Nawaz Shareef University of AgricultureMultanPakistan
| | - Hammad Naeem
- Department of Food Science and TechnologyMuhammad Nawaz Shareef University of AgricultureMultanPakistan
- Post Harvest Research CentreAyub Agricultural Research InstituteFaisalabadPakistan
| | - Ahmed Mujtaba
- Department of Food Science and Technology, Faculty of Engineering Sciences and TechnologyHamdard University Islamabad CampusIslamabadPakistan
| | - Muzzamal Hussain
- Department of Food ScienceGovernment College University FaisalabadFaisalabadPakistan
| | - Muhammad Junaid Anwar
- Department of Food Science and Technology, Faculty of Food Science and NutritionBahauddin Zakariya UniversityMultanPakistan
| | - Suliman A. Alsagaby
- Department of Medical Laboratory Sciences, College of Applied Medical SciencesMajmaah UniversityAl‐MajmaahSaudi Arabia
| | - Waleed Al Abdulmonem
- Department of Pathology, College of MedicineQassim UniversityBuraidahSaudi Arabia
| | - Tadesse Fenta Yehuala
- Faculty of Chemical and Food Engineering, Bahir Dar Institute of TechnologyBahir Dar UniversityBahir Dar CityEthiopia
| | - Mohamed A. Abdelgawad
- Department of Pharmaceutical Chemistry, College of PharmacyJouf UniversitySakakaAljoufSaudi Arabia
| | - Ahmed H. El‐Ghorab
- Department of Chemistry, College of ScienceJouf UniversitySakakaSaudi Arabia
| | - Samy Selim
- Department of Clinical Laboratory Sciences, College of Applied Medical SciencesJouf UniversitySakakaSaudi Arabia
| | - Ehab M. Mostafa
- Department of Pharmacognosy, College of PharmacyJouf UniversitySakakaSaudi Arabia
- Pharmacognosy and Medicinal Plants Department, Faculty of Pharmacy (Boys)Al‐Azhar UniversityCairoEgypt
| |
Collapse
|
21
|
Gu S, Zheng Y, Chen C, Liu J, Wang Y, Wang J, Li Y. Research progress on the molecular mechanisms of Saikosaponin D in various diseases (Review). Int J Mol Med 2025; 55:37. [PMID: 39717942 PMCID: PMC11722148 DOI: 10.3892/ijmm.2024.5478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 12/04/2024] [Indexed: 12/25/2024] Open
Abstract
Bupleurum, a Traditional Chinese Medicine (TCM) herb, is widely used in China and other Asian countries to manage chronic liver inflammation and viral hepatitis. Saikosaponin D (SSD), a triterpenoid saponin extracted from Bupleurum, exhibits extensive pharmacological properties, including anti‑inflammatory, antioxidant, anti‑apoptotic, anti‑fibrotic and anti‑cancer effects, making it a therapeutic candidate for numerous diseases. Clarifying the targets and molecular mechanisms underlying TCM compounds is essential for scientifically validating TCM's therapeutic roles in disease prevention and treatment, as well as for identifying novel therapeutic targets and lead compounds. This analysis comprehensively examines SSD's mechanisms across various conditions, such as myocardial injury, pulmonary diseases, hepatic disorders, renal pathologies, neurological disorders, diabetes and cancer. In addition, challenges and potential solutions encountered in SSD research are addressed. SSD is posited as a promising monomer for multifaceted therapeutic applications and this article aims to enhance researchers' understanding of the current landscape of SSD studies, offering strategic insights to guide future investigations.
Collapse
Affiliation(s)
- Simin Gu
- Department of Gastroenterology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, P.R. China
| | - Yiyuan Zheng
- Department of Gastroenterology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, P.R. China
| | - Chong Chen
- Department of Gastroenterology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, P.R. China
| | - Jing Liu
- Department of Gastroenterology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, P.R. China
| | - Yanping Wang
- Department of Gastroenterology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, P.R. China
| | - Junmin Wang
- Department of Gastroenterology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, P.R. China
| | - Yong Li
- Department of Gastroenterology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, P.R. China
| |
Collapse
|
22
|
Orasanu CI, Aschie M, Deacu M, Bosoteanu M, Vamesu S, Enciu M, Cozaru GC, Mitroi AF, Ghitoi SA, Cretu AM, Ursica OA, Voda RI. Comparative Clinical-Imaging and Histogenetic Analysis Between Astrocytoma IDH-Mutant Grade 4 and Glioblastoma IDH-Wildtype-Is There Really a Worse One? Diagnostics (Basel) 2025; 15:438. [PMID: 40002588 PMCID: PMC11854731 DOI: 10.3390/diagnostics15040438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Revised: 02/02/2025] [Accepted: 02/10/2025] [Indexed: 02/27/2025] Open
Abstract
Background: Brain tumors pose a significant health threat, leading to high morbidity and mortality rates. Astrocytoma IDH-mutant grade 4 (A4IDHmt) and glioblastoma IDH-wildtype (G4IDHwt) exhibit similar clinical and imaging characteristics. This study aims to highlight the differences in their clinical evolution and histogenetic aspects with the possible therapeutic impact, as well as the adverse prognostic factors in patient survival. Methods: We performed a 10-year retrospective study of grade 4 gliomas, evaluating immunomarkers and FISH tests. We also quantified tumor necrosis and microvascular density. Results: A total of 81 cases were identified; 54.32% were A4IDHmt. We observed that A4IDHmt patients were younger (34.10% under 50) and had a higher survival rate (4.55%). This group also exhibited a more pronounced microvascular density (p = 0.010) and proliferative index (p = 0.026). G4IDHwt was associated with larger tumor volumes (94.84 cm3 vs. 86.14 cm3), lower resectability rates (82.88% vs. 87.67%), and a more significant immature cell population (83.78% vs. 68.18%). In the case of both, the negative risk on survival in the univariate analysis is given by advanced age (A4IDHmt: HR = 1.035, G4IDHwt: HR = 1.045) and p53 immunopositivity (A4IDHmt: HR = 6.962, G4IDHwt: HR = 4.680). Conclusions: The negative risk factors for A4IDHmt include the rapid onset of clinical symptoms (HR = 2.038), diabetes mellitus (HR = 2.311), arterial hypertension (HR = 2.325), residual tumor (HR = 2.662), increased residual tumor volume (HR = 1.060), increased microvascular density (HR = 1.096), and high tumor necrosis (HR = 1.097). For G4IDHwt, the negative risk factors consist of increased residual volume (HR = 1.023), lost PTEN immunoreaction (HR = 33.133), and unmethylated DNA status (HR = 6.765, respectively HR = 20.573). Even if it has more risk factors, A4IDHmt is the lesser evil.
Collapse
Affiliation(s)
- Cristian Ionut Orasanu
- Department of Pathology, Clinical Service of Pathology, “Sf. Apostol Andrei” Emergency County Hospital, 900591 Constanta, Romania
- Faculty of Medicine, “Ovidius” University of Constanta, 900470 Constanta, Romania
- Center for Research and Development of the Morphological and Genetic Studies of Malignant Pathology (CEDMOG), “Ovidius” University, 900591 Constanta, Romania
| | - Mariana Aschie
- Department of Pathology, Clinical Service of Pathology, “Sf. Apostol Andrei” Emergency County Hospital, 900591 Constanta, Romania
- Faculty of Medicine, “Ovidius” University of Constanta, 900470 Constanta, Romania
- Center for Research and Development of the Morphological and Genetic Studies of Malignant Pathology (CEDMOG), “Ovidius” University, 900591 Constanta, Romania
- Department of Anatomy, Academy of Medical Sciences of Romania, 030171 Bucharest, Romania
- Department VIII—Medical Sciences, The Romanian Academy of Scientists, 030167 Bucharest, Romania
| | - Mariana Deacu
- Department of Pathology, Clinical Service of Pathology, “Sf. Apostol Andrei” Emergency County Hospital, 900591 Constanta, Romania
- Faculty of Medicine, “Ovidius” University of Constanta, 900470 Constanta, Romania
| | - Madalina Bosoteanu
- Department of Pathology, Clinical Service of Pathology, “Sf. Apostol Andrei” Emergency County Hospital, 900591 Constanta, Romania
- Faculty of Medicine, “Ovidius” University of Constanta, 900470 Constanta, Romania
| | - Sorin Vamesu
- Department of Pathology, Clinical Service of Pathology, “Sf. Apostol Andrei” Emergency County Hospital, 900591 Constanta, Romania
| | - Manuela Enciu
- Department of Pathology, Clinical Service of Pathology, “Sf. Apostol Andrei” Emergency County Hospital, 900591 Constanta, Romania
- Faculty of Medicine, “Ovidius” University of Constanta, 900470 Constanta, Romania
| | - Georgeta Camelia Cozaru
- Center for Research and Development of the Morphological and Genetic Studies of Malignant Pathology (CEDMOG), “Ovidius” University, 900591 Constanta, Romania
- Department of Genetics, Clinical Service of Pathology, “Sf. Apostol Andrei” Emergency County Hospital, 900591 Constanta, Romania
| | - Anca Florentina Mitroi
- Center for Research and Development of the Morphological and Genetic Studies of Malignant Pathology (CEDMOG), “Ovidius” University, 900591 Constanta, Romania
- Department of Genetics, Clinical Service of Pathology, “Sf. Apostol Andrei” Emergency County Hospital, 900591 Constanta, Romania
| | - Sinziana Andra Ghitoi
- Department of Pathology, Clinical Service of Pathology, “Sf. Apostol Andrei” Emergency County Hospital, 900591 Constanta, Romania
- Faculty of Medicine, “Ovidius” University of Constanta, 900470 Constanta, Romania
| | - Ana Maria Cretu
- Department of Pathology, Clinical Service of Pathology, “Sf. Apostol Andrei” Emergency County Hospital, 900591 Constanta, Romania
- Center for Research and Development of the Morphological and Genetic Studies of Malignant Pathology (CEDMOG), “Ovidius” University, 900591 Constanta, Romania
| | - Oana Andreea Ursica
- Department of Pathology, Clinical Service of Pathology, “Sf. Apostol Andrei” Emergency County Hospital, 900591 Constanta, Romania
- Faculty of Medicine, “Ovidius” University of Constanta, 900470 Constanta, Romania
| | - Raluca Ioana Voda
- Department of Pathology, Clinical Service of Pathology, “Sf. Apostol Andrei” Emergency County Hospital, 900591 Constanta, Romania
- Faculty of Medicine, “Ovidius” University of Constanta, 900470 Constanta, Romania
- Center for Research and Development of the Morphological and Genetic Studies of Malignant Pathology (CEDMOG), “Ovidius” University, 900591 Constanta, Romania
| |
Collapse
|
23
|
Liu Y, Wu H, Liang G. Combined Strategies for Nanodrugs Noninvasively Overcoming the Blood-Brain Barrier and Actively Targeting Glioma Lesions. Biomater Res 2025; 29:0133. [PMID: 39911305 PMCID: PMC11794768 DOI: 10.34133/bmr.0133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 12/10/2024] [Accepted: 12/17/2024] [Indexed: 02/07/2025] Open
Abstract
Drugs for tumor treatment face various challenges, including poor solubility, poor stability, short blood half-life, nontargeting ability, and strong toxic side effects. Fortunately, nanodrug delivery systems provide excellent solution to these problems. However, nanodrugs for glioma treatment also face some key challenges including overcoming the blood-brain barrier (BBB) and, specifically, accumulation in glioma lesions. In this review, we systematically summarize the advantages and disadvantages of combined strategies for nanodrugs noninvasively overcoming BBB and actively targeting glioma lesions to achieve effective glioma therapy. Common noninvasive strategies for nanodrugs overcoming the BBB include bypassing the BBB via the nose-to-brain route, opening the tight junction of the BBB by focused ultrasound with microbubbles, and transendothelial cell transport by intact cell loading, ligand decoration, or cell membrane camouflage of nanodrugs. Actively targeting glioma lesions after overcoming the BBB is another key factor helping nanodrugs accurately treat in situ gliomas. This aim can also be achieved by loading nanodrugs into intact cells and modifying ligand or cell membrane fragments on the surface of nanodrugs. Targeting decorated nanodrugs can guarantee precise glioma killing and avoid side effects on normal brain tissues that contribute to the specific recognition of glioma lesions. Furthermore, the challenges and prospects of nanodrugs in clinical glioma treatment are discussed.
Collapse
Affiliation(s)
- Yuanyuan Liu
- College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang, Henan Province 471000, China
| | - Haigang Wu
- Henan Key Laboratory of Brain Targeted Bio-nanomedicine, School of Life Sciences, Henan University, Kaifeng, Henan Province 475004, China
| | - Gaofeng Liang
- College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang, Henan Province 471000, China
| |
Collapse
|
24
|
Nateghi S, Rezayof A, Kouhkan F, Delphi L, Davisaraei YB, Rostami F, Tirgar F, Sepehri H. Growth of the prefrontal cortical glioblastoma altered cognitive and emotional behaviors via mediating miRNAs and GABA-A receptor signaling pathways in rats. Brain Res Bull 2025; 221:111227. [PMID: 39875028 DOI: 10.1016/j.brainresbull.2025.111227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 01/23/2025] [Accepted: 01/24/2025] [Indexed: 01/30/2025]
Abstract
The present study investigated the impact of GABAergic signaling and miRNA expression on glioblastoma multiforme (GBM) growth within the medial prefrontal cortex (mPFC) and its associated cognitive and emotional impairments. The implantation of C6 cells into the mPFC induced GBM in this brain region (referred to as the mPFC-GBM) in male Wistar rats via stereotaxic surgery, as confirmed by Magnetic Resonance Imaging (MRI), and Hematoxylin and Eosin (H&E) staining. Repeated microinjections of muscimol, a potent GABAA receptor agonist, directly into the mPFC-GBM (1 µg/rat/2.5 μl) following tumor induction decreased tumor volume and weight, resulting in an increased survival rate. Conversely, a higher dose of muscimol (6 µg/rat/2.5 μl) increased tumor size and reduced survival. Behavioral alterations induced by GBM, including anxiety-like responses, exploratory behaviors, locomotor activity, and memory formation, were assessed using anxiety-like behavior task, the hole-board test, and the novel object recognition test. Muscimol treatment dose-dependently affected these behaviors in the animals with the mPFC-GBM, bringing their performance with that of the sham group at the dose of 1 µg/rat/2.5 μl. Changes in specific miRNAs expressions, including miR-208, -290-295, -345, -743 and -802 were associated with the growth of the mPFC-GBM under muscimol treatment. These findings suggest that GBM growth into the mPFC profoundly impacts cognitive and emotional behaviors which can be improved by muscimol treatment. Considering that the expression levels of targeted miRNAs could be influenced by the growth of the mPFC-GBM, both with or without muscimol treatment, these non-coding RNAs might serve as potential biomarkers for GBM.
Collapse
Affiliation(s)
- Sepide Nateghi
- Department of Animal Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Ameneh Rezayof
- Department of Animal Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran.
| | - Fatemeh Kouhkan
- Stem Cell Technology Research Center (STRC), Iran University of Medical Sciences (IUMS), Tehran, Iran.
| | - Ladan Delphi
- Department of Animal Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Yavar Bagheri Davisaraei
- Department of Animal Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Fatemeh Rostami
- Stem Cell Technology Research Center (STRC), Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Fatemeh Tirgar
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran; Iranian National Center for Addictions Studies, Tehran University of Medical Sciences, Tehran, Iran
| | - Houri Sepehri
- Department of Animal Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| |
Collapse
|
25
|
Tang ZQ, Ye YR, Shen Y. Molecular Mechanisms and Strategies for Inducing Neuronal Differentiation in Glioblastoma Cells. Cell Reprogram 2025; 27:24-32. [PMID: 39880036 DOI: 10.1089/cell.2024.0087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2025] Open
Abstract
Glioblastoma multiforme (GBM) is a highly invasive brain tumor, and traditional treatments combining surgery with radiochemotherapy have limited effects, with tumor recurrence being almost inevitable. Given the lack of proliferative capacity in neurons, inducing terminal differentiation of GBM cells or glioma stem cells (GSCs) into neuron-like cells has emerged as a promising strategy. This approach aims to suppress their proliferation and self-renewal capabilities through differentiation. This review summarizes the methods involved in recent research on the neuronal differentiation of GBM cells or GSCs, including the regulation of transcription factors, signaling pathways, miRNA, and the use of small molecule drugs, among various strategies. It also outlines the interconnections between the mechanisms studied, hoping to provide ideas for exploring new therapeutic avenues for GBM and the development of differentiation-inducing drugs for GBM.
Collapse
Affiliation(s)
- Zhao-Qi Tang
- Department of Pharmacy, Zhongshan Hospital (Xiamen), Fudan University, Xiamen, China
- Xiamen Clinical Research Center for Cancer Therapy, Xiamen, China
| | - Yan-Rong Ye
- Department of Pharmacy, Zhongshan Hospital (Xiamen), Fudan University, Xiamen, China
- Department of Pharmacy, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yun Shen
- Department of Pharmacy, Zhongshan Hospital (Xiamen), Fudan University, Xiamen, China
- Department of Pharmacy, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
26
|
Tang ZQ, Xu HB, Cao C, Liu YJ, Ye YR, Shen Y. Induction of neuronal differentiation in glioma cells by histone deacetylase inhibitors based on Connectivity Map discovery. Anticancer Drugs 2025; 36:104-113. [PMID: 39589225 DOI: 10.1097/cad.0000000000001667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2024]
Abstract
Neuron conversion leads to proliferation inhibition of glioma cells and may be an effective strategy to combat glioma and prevent recurrence. In this study, drug repositioning based on Connectivity Map (CMap) was conducted to discover drugs that could induce the differentiation of glioma cells into neuron-like cells, complemented by in vitro experimental validation. Downregulated neuronal genes in glioma were identified by the Human Protein Atlas database and the GeneCards database, and enrichment analysis and Gene Expression Profiling Interactive Analysis (GEPIA) were performed to ensure their reliability before they were uploaded to CMap for drug screening. The potential drug targets were screened through GEPIA and validated by the Chinese Glioma Genome Atlas database. Cell morphology, proliferation, and neuronal marker expression were detected to evaluate the differentiation-inducing effect of the selected drugs. The bioinformatics analysis identified histone deacetylase (HDAC) inhibitors as potential drugs. HDAC1/3/7 showed the relationship with neuronal genes, and HDAC1 showed the highest level of inverse correlation with neuronal gene expression and had the highest hazard ratio. In vitro study showed that both the pan-HDAC inhibitor belinostat, class I and class IIa HDAC inhibitor valproic acid, and selective HDAC1 inhibitor parthenolide induce morphology alteration, proliferation inhibition, expression of neuronal markers including microtubule-associated protein 2, neuronal nuclei antigen, and synaptophysin in U87 cells. This study suggests that the HDAC inhibitors belinostat, valproic acid, and parthenolide can induce glioma cells to differentiate into neuron-like cells, with HDAC1/3/7 being the likely drug targets and HDAC1 potentially playing an important role in this.
Collapse
Affiliation(s)
- Zhao-Qi Tang
- Department of Pharmacy, Zhongshan Hospital (Xiamen), Fudan University
- Xiamen Clinical Research Center for Cancer Therapy, Xiamen
| | - Hong-Bin Xu
- Department of Pharmacy, Ningbo First Hospital, Ningbo University, Ningbo
| | - Chang Cao
- Department of Pharmacy, Zhongshan Hospital (Xiamen), Fudan University
- Xiamen Clinical Research Center for Cancer Therapy, Xiamen
| | - Yue-Jin Liu
- Department of Pharmacy, Zhongshan Hospital (Xiamen), Fudan University
- Xiamen Clinical Research Center for Cancer Therapy, Xiamen
| | - Yan-Rong Ye
- Department of Pharmacy, Zhongshan Hospital (Xiamen), Fudan University
- Department of Pharmacy, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yun Shen
- Department of Pharmacy, Zhongshan Hospital (Xiamen), Fudan University
- Department of Pharmacy, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
27
|
Hou L, Chen Z, Chen F, Sheng L, Ye W, Dai Y, Guo X, Dong C, Li G, Liao K, Li Y, Ma J, Wei H, Ran W, Shang J, Ling X, Patel JS, Liang SH, Xu H, Wang L. Synthesis, preclinical assessment, and first-in-human study of [ 18F]d 4-FET for brain tumor imaging. Eur J Nucl Med Mol Imaging 2025; 52:864-875. [PMID: 39482500 DOI: 10.1007/s00259-024-06964-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 10/18/2024] [Indexed: 11/03/2024]
Abstract
PURPOSE Tumor-to-background ratio (TBR) is a critical metric in oncologic PET imaging. This study aims to enhance the TBR of [18F]FET in brain tumor imaging by substituting deuterium ("D") for hydrogen ("H"), thereby improving the diagnostic sensitivity and accuracy. METHODS [18F]d4-FET was synthesised by two automated radiochemistry modules. Biodistribution studies and imaging efficacy were evaluated in vivo and ex vivo in rodent models, while metabolic stability and radiation dosimetry were assessed in non-human primates. Additionally, preliminary imaging evaluations were carried out in five brain tumor patients: three glioma patients underwent imaging with both [18F]d4-FET and [18F]FET, and two patients with brain metastases were imaged using [18F]d4-FET and [18F]FDG. RESULTS [18F]d4-FET demonstrated high radiochemical purity and yield. PET/MRI in rodent models demonstrated superior TBR for [18F]d4-FET compared to [18F]FET, and autoradiography showed tumor margins that correlated well with pathological extents. Studies in cynomolgus monkeys indicated comparable in vivo stability and effective dose with [18F]FET. In glioma patients, [18F]d4-FET showed enhanced TBR, while in patients with brain metastases, [18F]d4-FET displayed superior lesion delineation compared to [18F]FDG, especially in smaller metastatic sites. CONCLUSION We successfully synthesized the novel PET radiotracer [18F]d4-FET, which retains the advantageous properties of [18F]FET while potentially enhancing TBR for glioma imaging. Preliminary studies indicate excellent stability, efficacy, and sensitivity of [18F]d4-FET, suggesting its potential in clinical evaluations of brain tumors. TRIAL REGISTRATION ChiCTR2400081576, registration date: 2024-03-05, https://www.chictr.org.cn/bin/project/edit?pid=206162.
Collapse
Affiliation(s)
- Lu Hou
- Center of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine, & Key Laboratory of Basic and Translational Research On Radiopharmaceuticals, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - Zhiyong Chen
- Department of Neurosurgery, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - Fanfan Chen
- Department of Neurosurgery, Shenzhen Key Laboratory of Neurosurgery, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, 518025, China
| | - Lianghe Sheng
- Department of Oncology, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - Weijian Ye
- Center of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine, & Key Laboratory of Basic and Translational Research On Radiopharmaceuticals, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - Yingchu Dai
- Department of Radiotherapy and Oncology, The Affiliated Hospital of Jiangnan University, Wuxi, 214122, China
| | - Xiaoyu Guo
- Department of Neurosurgery, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - Chenchen Dong
- Center of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine, & Key Laboratory of Basic and Translational Research On Radiopharmaceuticals, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - Guocong Li
- Center of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine, & Key Laboratory of Basic and Translational Research On Radiopharmaceuticals, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - Kai Liao
- Center of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine, & Key Laboratory of Basic and Translational Research On Radiopharmaceuticals, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - Yinlong Li
- Department of Radiology and Imaging Sciences, Emory University, 1364 Clifton Rd, Atlanta, GA, 30322, USA
| | - Jie Ma
- Center of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine, & Key Laboratory of Basic and Translational Research On Radiopharmaceuticals, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - Huiyi Wei
- Center of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine, & Key Laboratory of Basic and Translational Research On Radiopharmaceuticals, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - Wenqing Ran
- Center of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine, & Key Laboratory of Basic and Translational Research On Radiopharmaceuticals, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - Jingjie Shang
- Center of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine, & Key Laboratory of Basic and Translational Research On Radiopharmaceuticals, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - Xueying Ling
- Center of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine, & Key Laboratory of Basic and Translational Research On Radiopharmaceuticals, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - Jimmy S Patel
- Department of Radiology and Imaging Sciences, Emory University, 1364 Clifton Rd, Atlanta, GA, 30322, USA
| | - Steven H Liang
- Department of Radiology and Imaging Sciences, Emory University, 1364 Clifton Rd, Atlanta, GA, 30322, USA.
| | - Hao Xu
- Center of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine, & Key Laboratory of Basic and Translational Research On Radiopharmaceuticals, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China.
| | - Lu Wang
- Center of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine, & Key Laboratory of Basic and Translational Research On Radiopharmaceuticals, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China.
| |
Collapse
|
28
|
Shu Y, Li J. Disulfidptosis as a key regulator of glioblastoma progression and immune cell impairment. Front Immunol 2025; 16:1526296. [PMID: 39949776 PMCID: PMC11821639 DOI: 10.3389/fimmu.2025.1526296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 01/13/2025] [Indexed: 02/16/2025] Open
Abstract
Background Glioblastoma, associated with poor prognosis and impaired immune function, shows potential interactions between newly identified disulfidptosis mechanisms and T cell exhaustion, yet these remain understudied. Methods Key genes were identified using Lasso regression, followed by multivariate analysis to develop a prognostic model. Single-cell pseudotemporal analysis explored disulfidptosis T-cell exhaustion (Tex) signaling in cell differentiation. Immune infiltration was assessed via ssGSEA, while transwell assays and immunofluorescence examined the effects of disulfidptosis-Tex genes on glioma cell behavior and immune response. Results Eleven disulfidptosis-Tex genes were found critical for glioblastoma survival outcomes. This gene set underpinned a model predicting patient prognosis. Single-cell analysis showed high disulfidptosis-Tex activity in endothelial cells. Memory T cell populations were linked to these genes. SMC4 inhibition reduced LN299 cell migration and increased chemotherapy sensitivity, decreasing CD4 and CD8 T cell activation. Conclusions Disulfidptosis-Tex genes are pivotal in glioblastoma progression and immune interactions, offering new avenues for improving anti-glioblastoma therapies through modulation of T cell exhaustion.
Collapse
|
29
|
Du R, Zhang J, Lukas RV, Tripathi S, Ahrendsen JT, Curran MA, Dmello C, Zhang P, Stupp R, Rao G, Heimberger AB. Is modulation of immune checkpoints on glioblastoma-infiltrating myeloid cells a viable therapeutic strategy? Neuro Oncol 2025; 27:33-49. [PMID: 39427326 PMCID: PMC11726257 DOI: 10.1093/neuonc/noae193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2024] Open
Abstract
The field of immunology has traditionally focused on immune checkpoint modulation of adaptive immune cells. However, many malignancies such as glioblastoma are mostly devoid of T cells and rather are enriched with immunosuppressive myeloid cells of the innate immune system. While some immune checkpoint targets are shared between adaptive and innate immunity, myeloid-specific checkpoints could also serve as potential therapeutics. To better understand the impact of immune checkpoint blockade on myeloid cells, we systematically summarize the current literature focusing on the direct immunological effects of PD-L1/PD-1, CD24/Siglec-10, collagen/LAIR-1, CX3CL1/CX3CR1, and CXCL10/CXCR3. By synthesizing the molecular mechanisms and the translational implications, we aim to prioritize agents in this category of therapeutics for glioblastoma.
Collapse
Affiliation(s)
- Ruochen Du
- Lou and Jean Malnati Brain Tumor Institute, Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Jianzhong Zhang
- Lou and Jean Malnati Brain Tumor Institute, Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Rimas V Lukas
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
- Lou and Jean Malnati Brain Tumor Institute, Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Shashwat Tripathi
- Lou and Jean Malnati Brain Tumor Institute, Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Jared T Ahrendsen
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA (J.T.A.)
- Lou and Jean Malnati Brain Tumor Institute, Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Michael A Curran
- Department of Immunology, MD Anderson Cancer Center, the University of Texas, Houston, Texas, USA
| | - Crismita Dmello
- Lou and Jean Malnati Brain Tumor Institute, Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Peng Zhang
- Lou and Jean Malnati Brain Tumor Institute, Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Roger Stupp
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
- Lou and Jean Malnati Brain Tumor Institute, Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Ganesh Rao
- Department of Neurosurgery, Baylor College of Medicine, Houston, Texas, USA
| | - Amy B Heimberger
- Lou and Jean Malnati Brain Tumor Institute, Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| |
Collapse
|
30
|
Sipos D, Raposa BL, Freihat O, Simon M, Mekis N, Cornacchione P, Kovács Á. Glioblastoma: Clinical Presentation, Multidisciplinary Management, and Long-Term Outcomes. Cancers (Basel) 2025; 17:146. [PMID: 39796773 PMCID: PMC11719842 DOI: 10.3390/cancers17010146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 12/24/2024] [Accepted: 01/02/2025] [Indexed: 01/13/2025] Open
Abstract
Glioblastoma, the most common and aggressive primary brain tumor in adults, presents a formidable challenge due to its rapid progression, treatment resistance, and poor survival outcomes. Standard care typically involves maximal safe surgical resection, followed by fractionated external beam radiation therapy and concurrent temozolomide chemotherapy. Despite these interventions, median survival remains approximately 12-15 months, with a five-year survival rate below 10%. Prognosis is influenced by factors such as patient age, molecular characteristics, and the extent of resection. Patients with IDH-mutant tumors or methylated MGMT promoters generally have improved survival, while recurrent glioblastoma is associated with a median survival of only six months, as therapies in these cases are often palliative. Innovative treatments, including TTFields, add incremental survival benefits, extending median survival to around 20.9 months for eligible patients. Symptom management-addressing seizures, headaches, and neurological deficits-alongside psychological support for patients and caregivers is essential to enhance quality of life. Emerging targeted therapies and immunotherapies, though still limited in efficacy, show promise as part of an evolving treatment landscape. Continued research and clinical trials remain crucial to developing more effective treatments. This multidisciplinary approach, incorporating diagnostics, personalized therapy, and supportive care, aims to improve outcomes and provides a hopeful foundation for advancing glioblastoma management.
Collapse
Affiliation(s)
- David Sipos
- Department of Medical Imaging, Faculty of Health Sciences, University of Pécs, 7621 Pécs, Hungary;
- Dr. József Baka Diagnostic, Radiation Oncology, Research and Teaching Center, “Moritz Kaposi” Teaching Hospital, Guba Sándor Street 40, 7400 Kaposvár, Hungary
| | - Bence L. Raposa
- Institute of Pedagogy of Health and Nursing Sciences, Faculty of Health Sciences, University of Pécs, Vörösmarty Str. 4, 7621 Pécs, Hungary;
| | - Omar Freihat
- Department of Public Health, College of Health Science, Abu Dhabi University, Abu Dhabi P.O. Box 59911, United Arab Emirates;
| | - Mihály Simon
- Department of Oncoradiology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary;
| | - Nejc Mekis
- Medical Imaging and Radiotherapy Department, University of Ljubljana, Zdravstvena Pot 5, 100 Ljubljana, Slovenia;
| | - Patrizia Cornacchione
- Dipartimento di Diagnostica per Immagini e Radioterapia Oncologica, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy;
| | - Árpád Kovács
- Department of Medical Imaging, Faculty of Health Sciences, University of Pécs, 7621 Pécs, Hungary;
- Department of Oncoradiology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary;
| |
Collapse
|
31
|
Gough R, Treffy RW, Krucoff MO, Desai R. Advances in Glioblastoma Diagnosis: Integrating Genetics, Noninvasive Sampling, and Advanced Imaging. Cancers (Basel) 2025; 17:124. [PMID: 39796751 PMCID: PMC11720166 DOI: 10.3390/cancers17010124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 12/30/2024] [Accepted: 12/31/2024] [Indexed: 01/13/2025] Open
Abstract
Glioblastoma is the most common primary brain tumor in adult patients, and despite standard-of-care treatment, median survival has remained less than two years. Advances in our understanding of molecular mutations have led to changes in the diagnostic criteria of glioblastoma, with the WHO classification integrating important mutations into the grading system in 2021. We sought to review the basics of the important genetic mutations associated with glioblastoma, including known mechanisms and roles in disease pathogenesis/treatment. We also examined new advances in image processing as well as less invasive and noninvasive diagnostic tools that can aid in the diagnosis and surveillance of those undergoing treatment for glioblastoma. Our review is intended to serve as an overview of the current state-of-the-art in the diagnosis and management of glioblastoma.
Collapse
Affiliation(s)
| | | | | | - Rupen Desai
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI 53226, USA; (R.G.); (R.W.T.); (M.O.K.)
| |
Collapse
|
32
|
Škarková A, Pelantová M, Tolde O, Legátová A, Mateu R, Bušek P, Garcia‐Borja E, Šedo A, Etienne‐Manneville S, Rösel D, Brábek J. Microtubule-associated NAV3 regulates invasive phenotypes in glioblastoma cells. Brain Pathol 2025; 35:e13294. [PMID: 39097525 PMCID: PMC11669409 DOI: 10.1111/bpa.13294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 07/17/2024] [Indexed: 08/05/2024] Open
Abstract
Glioblastomas are aggressive brain tumors for which effective therapy is still lacking, resulting in dismal survival rates. These tumors display significant phenotypic plasticity, harboring diverse cell populations ranging from tumor core cells to dispersed, highly invasive cells. Neuron navigator 3 (NAV3), a microtubule-associated protein affecting microtubule growth and dynamics, is downregulated in various cancers, including glioblastoma, and has thus been considered a tumor suppressor. In this study, we challenge this designation and unveil distinct expression patterns of NAV3 across different invasion phenotypes. Using glioblastoma cell lines and patient-derived glioma stem-like cell cultures, we disclose an upregulation of NAV3 in invading glioblastoma cells, contrasting with its lower expression in cells residing in tumor spheroid cores. Furthermore, we establish an association between low and high NAV3 expression and the amoeboid and mesenchymal invasive phenotype, respectively, and demonstrate that overexpression of NAV3 directly stimulates glioblastoma invasive behavior in both 2D and 3D environments. Consistently, we observed increased NAV3 expression in cells migrating along blood vessels in mouse xenografts. Overall, our results shed light on the role of NAV3 in glioblastoma invasion, providing insights into this lethal aspect of glioblastoma behavior.
Collapse
Affiliation(s)
- Aneta Škarková
- Laboratory of Cancer Cell Invasion, Department of Cell Biology, BIOCEV, Faculty of ScienceCharles UniversityVestecCzech Republic
| | - Markéta Pelantová
- Laboratory of Cancer Cell Invasion, Department of Cell Biology, BIOCEV, Faculty of ScienceCharles UniversityVestecCzech Republic
| | - Ondřej Tolde
- Laboratory of Cancer Cell Invasion, Department of Cell Biology, BIOCEV, Faculty of ScienceCharles UniversityVestecCzech Republic
| | - Anna Legátová
- Laboratory of Cancer Cell Invasion, Department of Cell Biology, BIOCEV, Faculty of ScienceCharles UniversityVestecCzech Republic
| | - Rosana Mateu
- Laboratory of Cancer Cell Biology, Institute of Biochemistry and Experimental Oncology, First Faculty of MedicineCharles UniversityPragueCzech Republic
| | - Petr Bušek
- Laboratory of Cancer Cell Biology, Institute of Biochemistry and Experimental Oncology, First Faculty of MedicineCharles UniversityPragueCzech Republic
| | - Elena Garcia‐Borja
- Laboratory of Cancer Cell Biology, Institute of Biochemistry and Experimental Oncology, First Faculty of MedicineCharles UniversityPragueCzech Republic
| | - Aleksi Šedo
- Laboratory of Cancer Cell Biology, Institute of Biochemistry and Experimental Oncology, First Faculty of MedicineCharles UniversityPragueCzech Republic
| | | | - Daniel Rösel
- Laboratory of Cancer Cell Invasion, Department of Cell Biology, BIOCEV, Faculty of ScienceCharles UniversityVestecCzech Republic
| | - Jan Brábek
- Laboratory of Cancer Cell Invasion, Department of Cell Biology, BIOCEV, Faculty of ScienceCharles UniversityVestecCzech Republic
| |
Collapse
|
33
|
Dhanavath N, Bisht P, Jamadade MS, Murti K, Wal P, Kumar N. Olaparib: A Chemosensitizer for the Treatment of Glioblastoma. Mini Rev Med Chem 2025; 25:374-385. [PMID: 39444180 DOI: 10.2174/0113895575318854241014101928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 08/29/2024] [Accepted: 09/07/2024] [Indexed: 10/25/2024]
Abstract
Glioblastoma (GBM) is the most prevalent and deadly primary brain tumor. The current treatment for GBM includes adjuvant chemotherapy with temozolomide (TMZ), radiation therapy, and surgical tumor excision. There is still an issue because 50% of patients with GBM who get TMZ have low survival rates due to TMZ resistance. The activation of several DNA repair mechanisms, such as Base Excision Repair (BER), DNA Mismatch Repair (MMR), and O-6- Methylguanine-DNA Methyltransferase (MGMT), is the main mechanism via which TMZ resistance develops. The zinc-finger DNA-binding enzyme poly (ADP-ribose) polymerase-1 (PARP1), which is activated by binding to DNA breaks, affects the activation of the MGMT, BER, and MMR pathway deficiency, which results in TMZ resistance in GBM. PARP inhibitors have been studied recently as sensitizing medications to increase TMZ potency. The first member of the PARP inhibitor family to be identified was Olaparib. It inhibits PARP1 and PARP2, which causes apoptosis in cancer cells and DNA strand break. Olaparib is currently investigated as a radio- and/or chemo-sensitizer in addition to being used as a single agent because it may increase the cytotoxic effects of other treatments. This review addresses Olaparib and its significance in treating TMZ resistance in GBM.
Collapse
Affiliation(s)
- Naresh Dhanavath
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Export Promotion Industrial Park (EPIP), Zandaha Road, NH322, Hajipur, Bihar, 844102, India
| | - Priya Bisht
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Export Promotion Industrial Park (EPIP), Zandaha Road, NH322, Hajipur, Bihar, 844102, India
| | - Mohini Santosh Jamadade
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Export Promotion Industrial Park (EPIP), Zandaha Road, NH322, Hajipur, Bihar, 844102, India
| | - Krishna Murti
- Department of Pharmacy Practice, National Institute of Pharmaceutical Education and Research (NIPER), Export Promotion Industrial Park (EPIP), Zandaha Road, NH322, Hajipur, Bihar, 844102, India
| | - Pranay Wal
- Institute of Pharmacy, Pranveer Singh Institute of Technology, Kanpur, Uttar Pradesh, India
| | - Nitesh Kumar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Export Promotion Industrial Park (EPIP), Zandaha Road, NH322, Hajipur, Bihar, 844102, India
| |
Collapse
|
34
|
Caro C, Paez-Muñoz JM, Pernía Leal M, Carayol M, Feijoo-Cuaresma M, García-Martín ML. Metabolically-Driven Active Targeting of Magnetic Nanoparticles Functionalized with Glucuronic Acid to Glioblastoma: Application to MRI-Tracked Magnetic Hyperthermia Therapy. Adv Healthc Mater 2025; 14:e2404391. [PMID: 39578332 DOI: 10.1002/adhm.202404391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Indexed: 11/24/2024]
Abstract
Glioblastoma continues to pose a major global health challenge due to its incurable nature. The need for new strategies to combat this devastating tumor is therefore paramount. Nanotechnology offers unique opportunities to develop innovative and more effective therapeutic approaches. However, most nanosystems developed to treat glioblastomas, especially those based on metallic nanoparticles (NPs), have proven unsuccessful due to their inability to efficiently target these tumors, which are particularly inaccessible due to the restrictions imposed by the blood-brain tumor barrier (BBTB). Here, an innovative strategy is presented to efficiently target metallic NPs to glioblastomas through glucose transporters (GLUT) overexpressed on the endothelial cells of glioblastoma microvasculature, particularly GLUT1. Specifically, Iron Oxide Nanoparticles (IONPs) are functionalized with glucuronic acid to promote GLUT-mediated transcytosis which is drastically boosted by inducing mild hypoglycemia. This metabolically-driven active targeting strategy has yielded unprecedented efficacy in targeting metallic NPs to glioblastomas. Moreover, these IONPs, designed to act as magnetic hyperthermia (MH) mediators, are used to conduct a proof-of-concept preclinical study on MRI-tracked MH therapy following intravenous administration, resulting in significant tumor growth delay. These findings demonstrate unparalleled efficiency in glioblastoma targeting and lay the ground for developing alternative therapeutic strategies to combat glioblastoma.
Collapse
Affiliation(s)
- Carlos Caro
- Biomedical Magnetic Resonance Laboratory-BMRL, Andalusian Public Foundation Progress and Health-FPS, Seville, 41092, Spain
- Biomedical Research Institute of Malaga and Nanomedicine Platform (IBIMA-BIONAND Platform), University of Malaga, C/Severo Ochoa, 35, Malaga, 29590, Spain
| | - José M Paez-Muñoz
- Biomedical Magnetic Resonance Laboratory-BMRL, Andalusian Public Foundation Progress and Health-FPS, Seville, 41092, Spain
- Biomedical Research Institute of Malaga and Nanomedicine Platform (IBIMA-BIONAND Platform), University of Malaga, C/Severo Ochoa, 35, Malaga, 29590, Spain
| | - Manuel Pernía Leal
- Departamento de Química Orgánica y Farmacéutica, Facultad de Farmacia, Universidad de Sevilla, C/ Profesor García González 2, Seville, 41012, Spain
| | - Marta Carayol
- Biomedical Research Institute of Malaga and Nanomedicine Platform (IBIMA-BIONAND Platform), University of Malaga, C/Severo Ochoa, 35, Malaga, 29590, Spain
| | - Mónica Feijoo-Cuaresma
- Biomedical Research Institute of Malaga and Nanomedicine Platform (IBIMA-BIONAND Platform), University of Malaga, C/Severo Ochoa, 35, Malaga, 29590, Spain
| | - María L García-Martín
- Biomedical Magnetic Resonance Laboratory-BMRL, Andalusian Public Foundation Progress and Health-FPS, Seville, 41092, Spain
- Biomedical Research Institute of Malaga and Nanomedicine Platform (IBIMA-BIONAND Platform), University of Malaga, C/Severo Ochoa, 35, Malaga, 29590, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials & Nanomedicine (CIBER-BBN), Madrid, 28029, Spain
| |
Collapse
|
35
|
Shyntar A, Hillen T. Mathematical modeling of microtube-driven regrowth of gliomas after local resection. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2025; 22:52-72. [PMID: 39949162 DOI: 10.3934/mbe.2025003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2025]
Abstract
Recently, glioblastoma tumors were shown to form tumor microtubes, which are thin, long protrusions that help the tumor grow and spread. Follow-up experiments were conducted on mice in order to test what impact the tumor microtubes have on tumor regrowth after the partial removal of a tumor region. The surgery was performed in isolation and along with growth-inhibiting treatments such as a tumor microtube-inhibiting treatment and an anti-inflammatory treatment. Here, we have proposed a partial differential equation model applicable to describe the microtube-driven regrowth of the cancer in the lesion. We found that the model is able to replicate the main trends seen in the experiments such as fast regrowth, larger cancer density in the lesion, and further spread into healthy tissue. The model indicates that the dominant mechanisms of re-growth are growth-inducing wound-healing mechanisms and the proliferative advantage from the tumor microtubes. In addition, tumor microtubes provide orientational guidance from the untreated tissue into the lesion.
Collapse
Affiliation(s)
- Alexandra Shyntar
- Department of Mathematical and Statistical Science, University of Alberta, Edmonton, AB T6G 2G1, Canada
| | - Thomas Hillen
- Department of Mathematical and Statistical Science, University of Alberta, Edmonton, AB T6G 2G1, Canada
| |
Collapse
|
36
|
Ahmadi M, Ashoub MH, Heydaryan K, Abolghasemi S, Dawi EA, Khajouei G, Amiri M. Magnetic and pH sensitive nanocomposite microspheres for controlled temozolomide delivery in glioblastoma cells. Sci Rep 2024; 14:29897. [PMID: 39622938 PMCID: PMC11612508 DOI: 10.1038/s41598-024-80596-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 11/19/2024] [Indexed: 12/06/2024] Open
Abstract
Controlled drug delivery systems have been intensively researched for cancer treatment to increase precision targeting and therapeutic efficacy. In this context, novel magnetic-/pH-sensitive graphene oxide/chitosan/iron oxide magnetic nanocomposite microspheres were synthesized. Fe3O4 (IO) nanoparticles (NPs) were synthesized via the green synthesis method in the presence of Salvia officinalis extract. The graphene oxide (GO) NPs were prepared using the Staudenmaier method, and synthesized materials were characterized. Chitosan (CS) was used to prepare microspheres. GO/CS/IO microspheres were investigated as prospective vehicles for controlled temozolomide delivery in the presence and absence of an external magnetic field. The release percentage of temozolomide molecules in the presence of 100 Hz reached a maximum in 90 min. This is approximately twice the amount of drug release in the absence of a magnetic field and more than that in the presence of a 50 Hz magnetic field. Also, the highest degree of swelling was observed at a pH of 4.5, higher than at a pH of 7.4. Also, the MTT assay results indicated the cytotoxicity of the synthesized microspheres for glioblastoma cells; notably, a significant difference was observed between the groups exposed to the magnetic field and those not, with exposure to the magnetic field further reducing survival. These results indicated that the magnetic microspheres potentially apply to controlled drug delivery systems.
Collapse
Affiliation(s)
- Meysam Ahmadi
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Science, Kerman, Iran
| | - Muhammad Hossein Ashoub
- Department of Hematology and Medical Laboratory Sciences, Faculty of Allied Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Kamran Heydaryan
- Department of Medical Biochemical Analysis, Cihan University-Erbil, Kurdistan Region, Iraq
| | - Sanaz Abolghasemi
- Department of Microbiology, Faculty of Science, Islamic Azad University, Kerman Branch, Kerman, Iran
| | - Elmuez A Dawi
- Nonlinear Dynamic Research Center (NDRC), College of Humanities and Sciences, Ajman University, P.O. Box 346, Ajman, United Arab Emirates
| | - Ghazal Khajouei
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Science, Kerman, Iran.
| | - Mahnaz Amiri
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Science, Kerman, Iran.
| |
Collapse
|
37
|
Bulbeck H, Noble K, Oliver K, Skinner TM. Challenges and opportunities in newly diagnosed glioblastoma in the United Kingdom: A Delphi panel. Neurooncol Pract 2024; 11:740-752. [PMID: 39554782 PMCID: PMC11567735 DOI: 10.1093/nop/npae058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2024] Open
Abstract
Background Glioblastoma is the deadliest primary malignant brain tumor in adults with limited treatment options and an average survival time of 12-18 months in the United Kingdom. In addition, glioblastoma has a highly detrimental impact on physical, cognitive, and emotional well-being, leaving substantial unmet needs for patients and caregivers. This study aimed to identify unmet needs in people with newly diagnosed glioblastoma and opportunities to mitigate them. Methods Utilizing Delphi methodology, an initial roundtable discussion with patient advocacy experts from 5 brain tumor organizations in the United Kingdom informed the development of 2 rounds of surveys across 9 domains (diagnosis, treatment, integrated care, support beyond treatment, quality of life, access to new treatments, access to trials, measures to ease the burden, and impact of COVID-19). Consensus was predefined as ≥70% agreement. Results A total of 17 Delphi panelists (glioblastoma patients, caregivers, and patient representatives) completed the first round of questionnaires and 26 completed the second. Consensus was reached on 16/21 questions (76.2%) and 7/9 domains. Panelists reached a consensus on key questions including the high frequency of diagnosis via emergency departments, the lack of effective personalized treatments and holistic care, the high caregiver burden, the lack of awareness and availability of access to clinical trials, and the negative impact of COVID-19 on glioblastoma care. Conclusions Significant unmet needs exist for newly diagnosed glioblastoma patients in the United Kingdom, highlighting the demand for increased research funding, comprehensive patient care, caregiver support, enhanced awareness and access to clinical trials, and new treatments.
Collapse
Affiliation(s)
| | | | - Kathy Oliver
- The International Brain Tumour Alliance (IBTA), Tadworth, UK
| | | |
Collapse
|
38
|
Li J, Yang J, Jiang S, Tian Y, Zhang Y, Xu L, Hu B, Shi H, Li Z, Ran G, Huang Y, Ruan S. Targeted reprogramming of tumor-associated macrophages for overcoming glioblastoma resistance to chemotherapy and immunotherapy. Biomaterials 2024; 311:122708. [PMID: 39047538 DOI: 10.1016/j.biomaterials.2024.122708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 06/07/2024] [Accepted: 07/18/2024] [Indexed: 07/27/2024]
Abstract
The resistance of glioblastoma multiforme (GBM) to standard chemotherapy is primarily attributed to the existence of tumor-associated macrophages (TAMs) in the GBM microenvironment, particularly the anti-inflammatory M2 phenotype. Targeted modulation of M2-TAMs is emerging as a promising strategy to enhance chemotherapeutic efficacy. However, combination TAM-targeted therapy with chemotherapy faces substantial challenges, notably in terms of delivery efficiency and targeting specificity. In this study, we designed a pH-responsive hierarchical brain-targeting micelleplex loaded with temozolomide (TMZ) and resiquimod (R848) for combination chemo-immunotherapy against GBM. This delivery system, termed PCPA&PPM@TR, features a primary Angiopep-2 decoration on the outer layer via a pH-cleavable linker and a secondary mannose analogue (MAN) on the middle layer. This pH-responsive hierarchical targeting strategy enables effective BBB permeability while simultaneous GBM- and TAMs-targeting delivery. GBM-targeted delivery of TMZ induces alkylation and triggers an anti-GBM immune response. Concurrently, TAM-targeted delivery of R848 reprograms their phenotype from M2 to pro-inflammatory M1, thereby diminishing GBM resistance to TMZ and amplifying the immune response. In vivo studies demonstrated that targeted modulation of TAMs using PCPA&PPM@TR significantly enhanced anti-GBM efficacy. In summary, this study proposes a promising brain-targeting delivery system for the targeted modulation of TAMs to combat GBM.
Collapse
Affiliation(s)
- Jianan Li
- School of Life Science, Advanced Research Institute of Multidisciplinary Science, Key Laboratory of Molecular Medicine and Biotherapy, Beijing Institute of Technology, Beijing, 100081, China
| | - Jun Yang
- School of Life Science, Advanced Research Institute of Multidisciplinary Science, Key Laboratory of Molecular Medicine and Biotherapy, Beijing Institute of Technology, Beijing, 100081, China
| | - Shaoping Jiang
- School of Life Science, Advanced Research Institute of Multidisciplinary Science, Key Laboratory of Molecular Medicine and Biotherapy, Beijing Institute of Technology, Beijing, 100081, China
| | - Yunxin Tian
- School of Life Science, Advanced Research Institute of Multidisciplinary Science, Key Laboratory of Molecular Medicine and Biotherapy, Beijing Institute of Technology, Beijing, 100081, China
| | - Yuquan Zhang
- School of Life Science, Advanced Research Institute of Multidisciplinary Science, Key Laboratory of Molecular Medicine and Biotherapy, Beijing Institute of Technology, Beijing, 100081, China
| | - Lin Xu
- School of Life Science, Advanced Research Institute of Multidisciplinary Science, Key Laboratory of Molecular Medicine and Biotherapy, Beijing Institute of Technology, Beijing, 100081, China
| | - Bo Hu
- School of Life Science, Advanced Research Institute of Multidisciplinary Science, Key Laboratory of Molecular Medicine and Biotherapy, Beijing Institute of Technology, Beijing, 100081, China
| | - Huiping Shi
- School of Life Science, Advanced Research Institute of Multidisciplinary Science, Key Laboratory of Molecular Medicine and Biotherapy, Beijing Institute of Technology, Beijing, 100081, China
| | - Zhaohan Li
- School of Life Science, Advanced Research Institute of Multidisciplinary Science, Key Laboratory of Molecular Medicine and Biotherapy, Beijing Institute of Technology, Beijing, 100081, China
| | - Guangyao Ran
- College of Pharmacy, Chongqing Medical University, Chongqing, 400016, China
| | - Yuanyu Huang
- School of Life Science, Advanced Research Institute of Multidisciplinary Science, Key Laboratory of Molecular Medicine and Biotherapy, Beijing Institute of Technology, Beijing, 100081, China.
| | - Shaobo Ruan
- School of Life Science, Advanced Research Institute of Multidisciplinary Science, Key Laboratory of Molecular Medicine and Biotherapy, Beijing Institute of Technology, Beijing, 100081, China.
| |
Collapse
|
39
|
Lei J, Yang J, Cheng S, Lu F, Wu Z, Wang Z, Wang Z, Sun C, Lin L. Peimine induces apoptosis of glioblastoma cells through regulation of the PI3K/AKT signaling pathway. Exp Ther Med 2024; 28:447. [PMID: 39430343 PMCID: PMC11487465 DOI: 10.3892/etm.2024.12737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 08/22/2024] [Indexed: 10/22/2024] Open
Abstract
Glioblastoma (GBM) is one of the most malignant forms of intracranial tumors, with high mortality rates and invariably poor prognosis, due to the limited clinical treatment strategies available. As a natural compound, peimine's favorable pharmacological activities have been widely revealed. However, potential inhibitory effects of peimine on GBM have not been explored. In the present study, both in vitro and in vivo experiments were performed to elucidate the effects of peimine on GBM and to further delineate the underlying molecular mechanism of action. Different doses (0, 25 and 50 µM) of peimine were added to U87 cells, before MTT, colony formation, wound healing, Transwell migration and invasion, reactive oxygen species and mitochondrial transmembrane potential assays were used to measure proliferation, migration, invasion and apoptosis. Furthermore, western blotting was used to examine the possible effects of peimine on the expression of proteins associated with apoptosis and the PI3K/AKT signaling pathway. Subsequently, a GBM mouse xenograft model was used to assess the effects of peimine in vivo. The findings showed that peimine inhibited GBM proliferation, migration and invasion in a dose-dependent manner, whilst also inducing apoptosis. Peimine also reduced tumor growth in vivo. Mechanistically, peimine downregulated the expression of Bcl-2 and Caspase 3, whilst upregulating the protein expression levels of p53, Bax and Cleaved-Caspase 3 in a dose-dependent manner. In addition, PI3K and AKT phosphorylation levels were found to be decreased by peimine in a dose-dependent manner. In conclusion, these findings suggest that peimine may limit GBM growth by regulating the PI3K/AKT signaling pathway both in vitro and in vivo. These findings may have promising clinical implications.
Collapse
Affiliation(s)
- Jiaming Lei
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning, Hubei 437100, P.R. China
- Key Laboratory of Environmental Related Diseases and One Health, School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, Hubei 437100, P.R. China
| | - Jianbao Yang
- School of Public Health, Xianning Medical College, Hubei University of Science and Technology, Xianning, Hubei 437100, P.R. China
| | - Shijiao Cheng
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning, Hubei 437100, P.R. China
- Key Laboratory of Environmental Related Diseases and One Health, School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, Hubei 437100, P.R. China
| | - Feifei Lu
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning, Hubei 437100, P.R. China
- Key Laboratory of Environmental Related Diseases and One Health, School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, Hubei 437100, P.R. China
| | - Zihan Wu
- Department of Ultrasound, Xianning Traditional Chinese Medicine Hospital, Xianning, Hubei 437100, P.R. China
| | - Ziyi Wang
- Department of Medicine, Hubei University of Science and Technology, Xianning, Hubei 437100, P.R. China
| | - Ziqi Wang
- Department of Medicine, Hubei University of Science and Technology, Xianning, Hubei 437100, P.R. China
| | - Chenyu Sun
- Department of Medicine, Hubei University of Science and Technology, Xianning, Hubei 437100, P.R. China
| | - Li Lin
- Key Laboratory of Environmental Related Diseases and One Health, School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, Hubei 437100, P.R. China
| |
Collapse
|
40
|
Wang Z, Zhai B, Sun J, Zhang X, Zou J, Shi Y, Guo D. Recent advances of injectable in situ-forming hydrogels for preventing postoperative tumor recurrence. Drug Deliv 2024; 31:2400476. [PMID: 39252545 PMCID: PMC11389645 DOI: 10.1080/10717544.2024.2400476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 07/17/2024] [Accepted: 08/30/2024] [Indexed: 09/11/2024] Open
Abstract
The unavoidable residual tumor tissue from surgery and the strong aggressiveness of tumor cells pose challenges to the postoperative treatment of tumor patients, accompanied by in situ tumor recurrence and decreased quality of life. Therefore, there is an urgent need to explore appropriate postoperative therapeutic strategies to remove residual tumor cells after surgery to inhibit tumor recurrence and metastasis after surgery. In recent years, with the rapid development of biomedical materials, the study of local delivery systems as postoperative delivery of therapeutic agents has gradually attracted the attention of researchers. Injectable in situ-forming hydrogel is a locally administered agent injected in situ as a solution that can be loaded with various therapeutic agents and rapidly gels to form a semi-solid gel at the treatment site. This type of hydrogel tightly fills the surgical site and covers irregular excision surfaces. In this paper, we review the recent advances in the application of injectable in situ-forming hydrogels in postoperative therapy, focusing on the matrix materials of this type of hydrogel and its application in the postoperative treatment of different types of tumors, as well as discussing the challenges and prospects of its clinical application.
Collapse
Affiliation(s)
- Zhanpeng Wang
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an, People's Republic of China
| | - Bingtao Zhai
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an, People's Republic of China
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi University of Chinese Medicine, Xi'an, People's Republic of China
| | - Jing Sun
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an, People's Republic of China
| | - Xiaofei Zhang
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an, People's Republic of China
| | - Junbo Zou
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an, People's Republic of China
| | - Yajun Shi
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an, People's Republic of China
| | - Dongyan Guo
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an, People's Republic of China
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, Shaanxi University of Chinese Medicine, Xi'an, People's Republic of China
| |
Collapse
|
41
|
Ye L, Ye C, Li P, Wang Y, Ma W. Inferring the genetic relationships between unsupervised deep learning-derived imaging phenotypes and glioblastoma through multi-omics approaches. Brief Bioinform 2024; 26:bbaf037. [PMID: 39879386 PMCID: PMC11775472 DOI: 10.1093/bib/bbaf037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 12/20/2024] [Accepted: 01/15/2025] [Indexed: 01/31/2025] Open
Abstract
This study aimed to investigate the genetic association between glioblastoma (GBM) and unsupervised deep learning-derived imaging phenotypes (UDIPs). We employed a combination of genome-wide association study (GWAS) data, single-nucleus RNA sequencing (snRNA-seq), and scPagwas (pathway-based polygenic regression framework) methods to explore the genetic links between UDIPs and GBM. Two-sample Mendelian randomization analyses were conducted to identify causal relationships between UDIPs and GBM. Colocalization analysis was performed to validate genetic associations, while scPagwas analysis was used to evaluate the relevance of key UDIPs to GBM at the cellular level. Among 512 UDIPs tested, 23 were found to have significant causal associations with GBM. Notably, UDIPs such as T1-33 (OR = 1.007, 95% CI = 1.001 to 1.012, P = .022), T1-34 (OR = 1.012, 95% CI = 1.001-1.023, P = .028), and T1-96 (OR = 1.009, 95% CI = 1.001-1.019, P = .046) were found to have a genetic association with GBM. Furthermore, T1-34 and T1-96 were significantly associated with GBM recurrence, with P-values < .0001 and P < .001, respectively. In addition, scPagwas analysis revealed that T1-33, T1-34, and T1-96 are distinctively linked to different GBM subtypes, with T1-33 showing strong associations with the neural progenitor-like subtype (NPC2), T1-34 with mesenchymal (MES2) and neural progenitor (NPC1) cells, and T1-96 with the NPC2 subtype. T1-33, T1-34, and T1-96 hold significant potential for predicting tumor recurrence and aiding in the development of personalized GBM treatment strategies.
Collapse
Affiliation(s)
- Liguo Ye
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Cheng Ye
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Pengtao Li
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Yu Wang
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Wenbin Ma
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| |
Collapse
|
42
|
Tang Z, Cao C, Tang W, Ye Y, Chen Z, Shen Y. Neuronal Differentiation of Human Glioma Cells Induced by Parthenolide Under In Vitro Conditions. Biomedicines 2024; 12:2543. [PMID: 39595109 PMCID: PMC11591755 DOI: 10.3390/biomedicines12112543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 10/21/2024] [Accepted: 11/05/2024] [Indexed: 11/28/2024] Open
Abstract
Objective: Previous drug repositioning studies have suggested that parthenolide may be a differentiation-inducing agent for glioma cells. This study aimed to experimentally verify the neuronal differentiation-inducing effects and proliferative impact of parthenolide on human glioma cells and explore its potential mechanisms. Methods: HE staining was used to observe the morphological changes in human glioma cell lines U87 and A172 induced by parthenolide. Immunocytochemistry was conducted to detect the expression of differentiation markers. The Ki-67 detection and CCK-8 assay were used to assess the effects of parthenolide on cell proliferation. The sphere formation assay was conducted to evaluate the self-renewal. Glioma stem cells (GSCs) derived from U87 cells were utilized to assess the ability of parthenolide to induce differentiation in GSCs. Western blot was used to detect the expression of histone deacetylase 1 (HDAC1). Bioinformatics analysis based on the CGGA database was conducted to evaluate the role of HDAC1 in glioma. Results: Parthenolide (4 μM) altered the morphology of U87 and A172 cells, as elongated cell projections were observed. Parthenolide induced glioma cells to express neuronal markers NeuN, MAP2, SYP, and NEFL, but not astrocyte or oligodendrocyte markers. Parthenolide significantly inhibited proliferation and self-renewal in glioma cells. Similar effects were observed in U87 GSCs. Furthermore, parthenolide downregulated HDAC1 expression in glioma cells, and the bioinformatics analysis revealed a potential relationship between neuronal characteristics and low expression of HDAC1 in glioma. Conclusion: Parthenolide induced neuronal differentiation and inhibited the cell proliferation in human glioma cells, which might be associated with the inhibition of HDAC1.
Collapse
Affiliation(s)
- Zhaoqi Tang
- Department of Pharmacy, Zhongshan Hospital (Xiamen), Fudan University, Xiamen 361015, China
- Xiamen Clinical Research Center for Cancer Therapy, Xiamen 361015, China
| | - Chang Cao
- Department of Pharmacy, Zhongshan Hospital (Xiamen), Fudan University, Xiamen 361015, China
- Xiamen Clinical Research Center for Cancer Therapy, Xiamen 361015, China
| | - Weiwei Tang
- Department of Medical Oncology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361003, China
- Department of Medical Oncology, The First Affiliated Hospital of Xiamen University, School of Clinical Medicine, Fujian Medical University, Xiamen 361003, China
- Xiamen Key Laboratory of Antitumor Drug Transformation Research, The First Affiliated Hospital of Xiamen University, Xiamen 361003, China
| | - Yanrong Ye
- Department of Pharmacy, Zhongshan Hospital (Xiamen), Fudan University, Xiamen 361015, China
- Department of Pharmacy, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Zhenhui Chen
- Department of Pharmacy, Zhongshan Hospital (Xiamen), Fudan University, Xiamen 361015, China
- Xiamen Clinical Research Center for Cancer Therapy, Xiamen 361015, China
| | - Yun Shen
- Department of Pharmacy, Zhongshan Hospital (Xiamen), Fudan University, Xiamen 361015, China
- Department of Pharmacy, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| |
Collapse
|
43
|
Chang X, Liu J, Li Y, Li W. Pluronic F127-Complexed PEGylated Poly(glutamic acid)-Cisplatin Nanomedicine for Enhanced Glioblastoma Therapy. Macromol Rapid Commun 2024; 45:e2400662. [PMID: 39264576 DOI: 10.1002/marc.202400662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
Glioblastoma is one of the most aggressive and treatment-resistant forms of primary brain cancer, posing significant challenges in effective therapy. This study aimed to enhance the effectiveness of glioblastoma therapy by developing a unique nanomedicine composed of Pluronic F127-complexed PEGylated poly(glutamic acid)-cisplatin (PLG-PEG/PF127-CDDP). PLG-PEG/PF127-CDDP demonstrated an optimal size of 133.97 ± 12.60 nm, facilitating efficient cell uptake by GL261 glioma cells. In vitro studies showed significant cytotoxicity against glioma cells with a half-maximal (50%) inhibitory concentration (IC50) of 12.61 µg mL-1 at 48 h and a 72.53% ± 1.89% reduction in cell invasion. Furthermore, PLG-PEG/PF127-CDDP prolonged the circulation half-life of cisplatin to 9.75 h in vivo, leading to a more than 50% reduction in tumor size on day 16 post-treatment initiation in a murine model of glioma. The treatment significantly elevated lactate levels in GL261 cells, indicating enhanced metabolic disruption. Therefore, PLG-PEG/PF127-CDDP offers a promising approach for glioblastoma therapy due to its effects on improving drug delivery efficiency, therapeutic outcomes, and safety while minimizing systemic side effects. This work underscores the potential of polymer-based nanomedicines in overcoming the challenges of treating brain tumors, paving the way for future clinical applications.
Collapse
Affiliation(s)
- Xiaoyu Chang
- Department of Neurosurgery, the First Hospital of Jilin University, 1 Xinmin Street, Changchun, 130061, P. R. China
| | - Jiaxue Liu
- Jilin Collaborative Innovation Center for Antibody Engineering, Jilin Medical University, 5 Jilin Street, Jilin, 132000, P. R. China
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, 130022, P. R. China
| | - Yunqian Li
- Department of Neurosurgery, the First Hospital of Jilin University, 1 Xinmin Street, Changchun, 130061, P. R. China
| | - Wenliang Li
- Jilin Collaborative Innovation Center for Antibody Engineering, Jilin Medical University, 5 Jilin Street, Jilin, 132000, P. R. China
| |
Collapse
|
44
|
Dutt R, Thorpe C, Galileo DS. QSOX1 Modulates Glioblastoma Cell Proliferation and Migration In Vitro and Invasion In Vivo. Cancers (Basel) 2024; 16:3620. [PMID: 39518060 PMCID: PMC11545231 DOI: 10.3390/cancers16213620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 10/16/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024] Open
Abstract
Background: Quiescin Sulfhydryl Oxidase 1 (QSOX1) is an enzyme that catalyzes the oxidation of free thiols to generate disulfide bonds in a variety of proteins, including the cell surface and extracellular matrix. QSOX1 has been reported to be upregulated in a number of cancers, and the overexpression of QSOX1 has been correlated with aggressive cancers and poor patient prognosis. Glioblastoma (GBM) brain cancer has been practically impossible to treat effectively, with cells that rapidly invade normal brain tissue and escape surgery and other treatment. Thus, there is a crucial need to understand the multiple mechanisms that facilitate GBM cell invasion and to determine if QSOX1 is involved. Methods and Results: Here, we investigated the function of QSOX1 in human glioblastoma cells using two cell lines derived from T98G cells, whose proliferation, motility, and invasiveness has been shown by us to be dependent on disulfide bond-containing adhesion and receptor proteins, such as L1CAM and the FGFR. We lentivirally introduced shRNA to attenuate the QSOX1 protein expression in one cell line, and a Western blot analysis confirmed the decreased QSOX1 expression. A DNA content/cell cycle analysis using flow cytometry revealed 27% fewer knockdown cells in the S-phase of the cell cycle, indicating a reduced proliferation. A cell motility analysis utilizing our highly quantitative SuperScratch time-lapse microscopy assay revealed that knockdown cells migrated more slowly, with a 45% decrease in migration velocity. Motility was partly rescued by the co-culture of knockdown cells with control cells, indicating a paracrine effect. Surprisingly, knockdown cells exhibited increased motility when assayed using a Transwell migration assay. Our novel chick embryo orthotopic xenograft model was used to assess the in vivo invasiveness of knockdown vs. control cells, and tumors developed from both cell types. However, fewer invasive knockdown cells were observed after about a week. Conclusions: Our results indicate that an experimental reduction in QSOX1 expression in GBM cells leads to decreased cell proliferation, altered in vitro migration, and decreased in vivo invasion.
Collapse
Affiliation(s)
- Reetika Dutt
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, USA; (R.D.); (C.T.)
| | - Colin Thorpe
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, USA; (R.D.); (C.T.)
| | - Deni S. Galileo
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| |
Collapse
|
45
|
Tuoheti M, Li J, Zhang C, Gao F, Wang J, Wu Y. MiR-124-3p inhibits cell stemness in glioblastoma via targeting EPHA2 through ALKBH5-mediated m6A modification. Hum Cell 2024; 38:10. [PMID: 39460871 DOI: 10.1007/s13577-024-01129-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 10/10/2024] [Indexed: 10/28/2024]
Abstract
Glioblastoma (GBM) is the most aggressive form of glioma, characterized by high mortality and poor prognosis. Dysregulation of microRNAs (miRNAs) plays a critical role in the progression and metastasis of GBM. This study aimed to investigate the role and molecular mechanism of miR-124-3p in GBM. Levels of miR-124-3p, EPHA2, and ALKBH5 were measured using quantitative real-time polymerase chain reaction (qRT-PCR). Cell proliferation, migration, invasion, and stemness were assessed using the Cell Counting Kit-8 (CCK-8), colony formation, Transwell, and sphere formation assays, respectively. Bioinformatics prediction, dual-luciferase reporter assays, and RNA pull-down experiments were employed to validate the target of miR-124-3p. RNA binding protein immunoprecipitation (RIP) and methylated RNA immunoprecipitation (Me-RIP) were utilized to evaluate the regulation of miR-124-3p maturation by ALKBH5. The results indicated that overexpression of miR-124-3p inhibited the proliferation, migration, invasion, and stemness of GBM cells. EPHA2 was identified as a direct downstream target of miR-124-3p, and its overexpression reversed the inhibitory effects of miR-124-3p on cellular functions. Furthermore, miR-124-3p targeted EPHA2 to inactivate the Wnt/β-catenin pathway. Additionally, ALKBH5 negatively regulated miR-124-3p by impeding its processing. In conclusion, knockdown of ALKBH5 promoted the processing of pri-miR-124-3p, increasing mature miR-124-3p levels, which inhibited the malignant behaviors of GBM cells by targeting EPHA2. These findings highlight the importance of the ALKBH5/miR-124-3p/EPHA2 axis in GBM.
Collapse
Affiliation(s)
- Maimaitiyiming Tuoheti
- Department of Neurosurgery, The People's Hospital of Xinjiang Uygur Autonomous Region, #91 Tianchi Road, Tianshan District, Urumqi, 830001, Xinjiang, China
| | - Jinxian Li
- Department of Rehabilitative Medicine, The People's Hospital of Xinjiang Uygur Autonomous Region, #91 Tianchi Road, Tianshan District, Urumqi, 830001, Xinjiang, China
| | - Cheng Zhang
- Department of Neurosurgery, The People's Hospital of Xinjiang Uygur Autonomous Region, #91 Tianchi Road, Tianshan District, Urumqi, 830001, Xinjiang, China
| | - Feng Gao
- Department of Neurosurgery, The People's Hospital of Xinjiang Uygur Autonomous Region, #91 Tianchi Road, Tianshan District, Urumqi, 830001, Xinjiang, China
| | - Jichao Wang
- Department of Neurosurgery, The People's Hospital of Xinjiang Uygur Autonomous Region, #91 Tianchi Road, Tianshan District, Urumqi, 830001, Xinjiang, China
| | - Yonggang Wu
- Department of Neurosurgery, The People's Hospital of Xinjiang Uygur Autonomous Region, #91 Tianchi Road, Tianshan District, Urumqi, 830001, Xinjiang, China.
| |
Collapse
|
46
|
Shen H, Mei Q, Chai X, Jiang Y, Liu A, Liu J. The prognostic significance of synchronous metastasis in glioblastoma multiforme patients: a propensity score-matched analysis using SEER data. Front Neurol 2024; 15:1429826. [PMID: 39440248 PMCID: PMC11493671 DOI: 10.3389/fneur.2024.1429826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 09/19/2024] [Indexed: 10/25/2024] Open
Abstract
Background Glioblastoma multiforme (GBM) with synchronous metastasis(SM) is a rare occurrence. We extracted the data of GBM patients from the SEER database to look into the incidence of SM in GBM, determine the prognostic significance of SM in GBM, and assess therapeutic options for patients presenting with SM. Methods From 2004 to 2015, information on GBM patients was obtained from the Surveillance, Epidemiology, and End Results (SEER) database. The propensity score matching (PSM) method was employed to mitigate confounding factors between SM and non-SM groups, subsequently investigating the prognostic significance of SM in patients with GBM. Multivariate Cox proportional hazards regression analyses were employed to identify independent prognostic variables for GBM patients with SM. A forest plot was used to visualize the results. Results A cohort of 19,708 patients was obtained from the database, among which 272 (1.4%) had SM at the time of diagnosis. Following PSM at a 3:1 ratio, in both univariate and multivariate cox regression analysis, SM (HR = 1.27, 95% CI: 1.09-1.46) was found to be an independent predictive predictor for GBM patients. Furthermore, the Cox proportional hazard forest plot demonstrated that independent risk variables for GBM patients with SM included age (Old vs. Young, HR = 1.44, 95% CI: 1.11-1.88), surgery (biopsy vs. no surgery, HR = 0.67, 95% CI: 0.46-0.96;Subtotal resection vs. no surgery, HR = 0.47, 95% CI: 0.32-0.68;Gross total resection vs. no surgery, HR = 0.44, 95% CI: 0.31-0.62), radiotherapy (HR = 0.58, 95% CI: 0.41-0.83), and chemotherapy (HR = 0.51, 95% CI: 0.36-0.72). Conclusion The predictive value of SM in GBM was determined by this propensity-matched analysis using data from the SEER database. Radiotherapy, chemotherapy, and surgery constitute an effective treatment regimen for patients with SM. A more positive approach toward the use of aggressive treatment for GBM patients with SM may be warranted.
Collapse
Affiliation(s)
- Hui Shen
- Department of Interventional Neuroradiology, Sanbo Brain Hospital, Capital Medical University, Beijing, China
- Department of Interventional Neuroradiology, Beijing Tiantan Hospital, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Qing Mei
- Department of Neurology, Beijing Pinggu Hospital, Beijing, China
| | - Xubin Chai
- Department of Interventional Neuroradiology, Beijing Tiantan Hospital, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Yuanfeng Jiang
- Department of Interventional Neuroradiology, Sanbo Brain Hospital, Capital Medical University, Beijing, China
| | - Aihua Liu
- Department of Interventional Neuroradiology, Beijing Tiantan Hospital, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Jiachun Liu
- Department of Interventional Neuroradiology, Sanbo Brain Hospital, Capital Medical University, Beijing, China
- Department of Neurosurgery, Beijing Hospital, Beijing, China
| |
Collapse
|
47
|
Zhang J, Zheng H, Liang P. SENP7 inhibits glioblastoma metastasis and invasion by dissociating SUMO2/3 binding to specific target proteins. Open Med (Wars) 2024; 19:20241052. [PMID: 39381427 PMCID: PMC11459272 DOI: 10.1515/med-2024-1052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 09/07/2024] [Accepted: 09/09/2024] [Indexed: 10/10/2024] Open
Abstract
Background The poor surgical efficacy and recurrence of glioblastoma (GBM) are due to its lack of visible infiltrative features. Our bioinformatics study suggests that low expression of small ubiquitin-like modifier (SUMO)-specific protease 7 (SENP7) indicates poor prognosis in GBM. Objectives This study investigated the effect of SENP7 expression on the invasion, migration, and proliferation of GBM cells and aims to identify the SUMO target proteins affected by SENP7. Methods SENP7 expression was analyzed in eight GBM tumor samples and four GBM cell lines, comparing them to normal brain tissue. The effect of SENP7 overexpression on GBM LN229 cell migration, invasion, and proliferation was examined through in vitro assays. Furthermore, four SUMO target proteins involved in tumor invasion and proliferation (CDK6, matrix metalloproteinase-9 [MMP9], AKT, and HIF-1α) were studied to explore SENP7's molecular mechanism. Results SENP7 expression was significantly lower in GBM tumors compared to normal tissue. SENP7 overexpression in LN229 cells inhibited migration and invasion without affecting proliferation. Overexpression reduced the levels of MMP9, AKT, and HIF-1α, but not CDK6. Immunohistochemical analysis showed decreased MMP9 and CD31 levels, suggesting reduced tumor invasion and angiogenesis. However, SENP7 overexpression did not affect tumor growth in vivo. Conclusions SENP7 inhibits GBM invasion by dissociating proteins associated with tumor invasion from SUMO2/3, providing a potential target for future GBM therapies.
Collapse
Affiliation(s)
- Jixing Zhang
- Harbin Medical University Cancer Hospital, Harbin, China
| | | | - Peng Liang
- Harbin Medical University Cancer Hospital, Harbin, China
| |
Collapse
|
48
|
Hu J, Yang J, Hu N, Shi Z, Hu T, Mi B, Wang H, Chen W. Identification and Verification of Key Genes Associated with Temozolomide Resistance in Glioblastoma Based on Comprehensive Bioinformatics Analysis. IRANIAN JOURNAL OF BIOTECHNOLOGY 2024; 22:e3892. [PMID: 40225293 PMCID: PMC11993235 DOI: 10.30498/ijb.2024.448826.3892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 11/26/2024] [Indexed: 04/15/2025]
Abstract
Background Glioblastoma (GBM) is the most aggressive form of brain cancer, with poor prognosis despite treatments like temozolomide (TMZ). Resistance to TMZ is a significant clinical challenge, and understanding the genes involved is crucial for developing new therapies and prognostic markers. This study aims to identify key genes associated with TMZ resistance in GBM, which could serve as valuable biomarkers for predicting patient outcomes and potential targets for treatment. Objectives This study aimed to identify genes involved in TMZ resistance in GBM and to assess the value of these genes in GBM treatment and prognosis evaluation. Materials and Methods Bioinformatics analysis of Gene Expression Omnibus (GEO) datasets (GSE113510 and GSE199689) and The Chinese Glioblastoma Genome Atlas (CGGA) database was performed to identify differentially expressed genes (DEGs) between GBM cell lines with and without TMZ resistance. Subsequently, the key modules associated with GBM patient prognosis were identified by weighted gene coexpression network analysis (WGCNA). Furthermore, hub genes related to TMZ resistance were accurately screened and confirmed using three machine learning algorithms. In addition, immune cell infiltration analysis, TF-miRNA coregulatory network analysis, drug sensitivity prediction, and gene set enrichment analysis (GSEA) were also performed for temozolomide resistance-specific genes. Finally, the expression levels of key genes were validated in our constructed TMZ-resistant cell lines by real-time quantitative polymerase chain reaction (RT-qPCR) and Western blotting (WB). Results Integrated analysis of the GEO and CGGA datasets revealed 769 differentially expressed genes (DEGs), comprising 350 downregulated and 419 upregulated genes, between GBM patients and normal controls. Among these DEGs, three key genes, namely, PITX1, TNFRSF11B, and IGFBP2, exhibited significant differences in expression between groups and were prioritized via machine learning algorithms. The expression levels of these genes were found to be closely related to adverse clinical features and immune cell infiltration levels in GBM patients. These genes were also found to participate in several biological pathways and processes. RT‒qPCR and WB confirmed the differential expression of these genes in vitro, indicating that they play vital roles in GBM patients with TMZ resistance. Conclusions PITX1, TNFRSF11B, and IGFBP2 are key genes associated with the prognosis of GBM patients with TMZ resistance. The differential expression of these genes correlates with adverse outcomes in GBM patients, suggesting that they are valuable biomarkers for predicting patient prognosis and that they could serve as diagnostic biomarkers or treatment targets.
Collapse
Affiliation(s)
- Jun Hu
- The Third Affiliated Hospital of Beijing University of Chinese Medicine, Beijing, China
| | - Jingyan Yang
- The Third Clinical School of Beijing University of Chinese Medicine, Beijing, China
| | - Na Hu
- The Third Affiliated Hospital of Beijing University of Chinese Medicine, Beijing, China
| | - Zongting Shi
- The Third Affiliated Hospital of Beijing University of Chinese Medicine, Beijing, China
| | - Tiemin Hu
- Department of Neurosurgery, Affiliated Hospital of Chengde Medical University, Chengde, Hebei, China
| | - Baohong Mi
- The Third Affiliated Hospital of Beijing University of Chinese Medicine, Beijing, China
- Engineering Research Center of Chinese Orthopaedics and Sports Rehabilitation Artificial Intelligent, Ministry of Education, Beijing, China
| | - Hong Wang
- Department of Neurosurgery, Affiliated Hospital of Hebei University, Baoding, Hebei, China
| | - Weiheng Chen
- The Third Affiliated Hospital of Beijing University of Chinese Medicine, Beijing, China
- Engineering Research Center of Chinese Orthopaedics and Sports Rehabilitation Artificial Intelligent, Ministry of Education, Beijing, China
| |
Collapse
|
49
|
Zhao C, Wu Z, Yao Z, Zhang F, Zhao R, Cao X, Ling S, Jiang X. The tumorigenic effect of the high expression of ABRACL in glioma and its potential as a therapeutic target. Heliyon 2024; 10:e36597. [PMID: 39286126 PMCID: PMC11402703 DOI: 10.1016/j.heliyon.2024.e36597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 08/19/2024] [Accepted: 08/19/2024] [Indexed: 09/19/2024] Open
Abstract
Gliomas are the most common malignant intracranial tumors, with no effective treatments. Better understanding and identification of novel targets are urgently warranted. Actin-binding Rho activating C-terminal like (ABRACL) has been reported as an oncogene in several cancer types. However, the potential roles of ABRACL in the tumorigenesis of malignant glioma remain unknown. We discovered that ABRACL is highly expressed in different sub-types of gliomas in both CGGA and TCGA databases, which was further validated in glioblastoma cell lines and normal human astrocyte lines. RT-qPCR, Western blotting and immunohistochemistry demonstrated that ABRACL expression in glioma tissues was upregulated along with the increasing WHO grades. Further survival analysis of glioma patients also revealed that the overall survival of patients in the ABRACL high expression level group were significantly shorter than those in the low expression level group. Knockdown of ABRACL inhibited the proliferation, cell migration, invasion and cytodynamics behaviors in glioma cell lines via activating STAT3 signaling, which also induced apoptosis and cell cycle arrest. Conversely, overexpressing ABRACL promoted cell renewing and migration, enabled more flexible cell deformation, supporting ABRACL being a bona fide oncogene. Intracranial orthotopic xenograft experiment further confirmed that ABRACL downregulation significantly suppressed glioma growth. These results have demonstrated that the tumorigenic effect of ABRACL is partly mediated by STAT3, whose expression also correlates with clinical prognosis. ABRACL facilitates glioma malignancy phenotype through regulating the cytoskeleton by activating STAT3 pathway, suggesting that it may represent a potential therapeutic target for glioblastoma.
Collapse
Affiliation(s)
- Chenhui Zhao
- Department of Neurosurgery, Shandong Provincial Third Hospital, Shandong University, Jinan, China
| | - Zeyu Wu
- Translational Research Institute for Neurological Disorders, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wannan Medical College, Wuhu, China
| | - Zhipeng Yao
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, China
| | - Fan Zhang
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, China
| | - Rui Zhao
- Translational Research Institute for Neurological Disorders, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wannan Medical College, Wuhu, China
| | - Xiaoxiang Cao
- Translational Research Institute for Neurological Disorders, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wannan Medical College, Wuhu, China
| | - Shizhang Ling
- Translational Research Institute for Neurological Disorders, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wannan Medical College, Wuhu, China
| | - Xiaochun Jiang
- Department of Neurosurgery, Shandong Provincial Third Hospital, Shandong University, Jinan, China
| |
Collapse
|
50
|
Gravesen CD, Chanchiri I, Kristensen IB, Jensen MB, Harbo FSG, Dahlrot RH. Ibrutinib as treatment for Bing-Neel syndrome reclassified as glioblastoma: a case report. J Med Case Rep 2024; 18:424. [PMID: 39256774 PMCID: PMC11389307 DOI: 10.1186/s13256-024-04757-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 08/03/2024] [Indexed: 09/12/2024] Open
Abstract
BACKGROUND Glioblastoma is a highly malignant disease with limited treatment options. Ibrutinib, a covalent Bruton tyrosine kinase inhibitor, is an oral agent with manageable side effects used for hematological diseases including Waldenström macroglobulinemia. We present the case of a 69-year-old Caucasian male patient treated with ibrutinib for suspected Bing-Neel syndrome (BNS), which following a biopsy, was reclassified as glioblastoma. CASE PRESENTATION In December 2018, a 69-year-old Caucasian male patient was diagnosed with Waldenström macroglobulinemia. As the patient was asymptomatic, without bone marrow failure or high M-component count, watchful waiting was initiated. Due to increasing neurological symptoms, the patient, based on magnetic resonance imaging, was diagnosed with Bing-Neel syndrome in May 2019. The patient received different treatments before starting ibrutinib monotherapy in August 2019 due to disease progression, both on magnetic resonance imaging and clinically. The patient remained clinically stable for 7 months. In March 2020, the patient developed headaches, and both magnetic resonance imaging and a biopsy revealed glioblastoma IDH-wildtype. Treatment was changed in line with the new diagnosis, but the patient died at the end of 2020. CONCLUSION We present a case in which a patient with glioblastoma IDH-wildtype remained clinically stable for 7 months when treated with ibrutinib monotherapy, which is similar to what would be expected for the standard treatment for glioblastoma. To our knowledge, this is the first patient receiving ibrutinib for a glioblastoma IDH-wildtype with a meaningful clinical outcome. Our case may therefore support previous nonclinical findings, indicating a therapeutic value of ibrutinib in patients with glioblastoma and support for further investigation of ibrutinib as a possible treatment for glioblastoma.
Collapse
Affiliation(s)
| | - Imanl Chanchiri
- Department of Hematology, Odense University Hospital, Odense, Denmark
| | | | | | | | - Rikke Hedegaard Dahlrot
- Department of Oncology, Odense University Hospital, Odense, Denmark
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| |
Collapse
|