1
|
Choi J, Tang Z, Dong W, Ulibarri J, Mehinovic E, Thomas S, Höke A, Jin SC. Unleashing the Power of Multiomics: Unraveling the Molecular Landscape of Peripheral Neuropathy. Ann Clin Transl Neurol 2025; 12:674-685. [PMID: 40126913 PMCID: PMC12040521 DOI: 10.1002/acn3.70019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 01/27/2025] [Accepted: 02/04/2025] [Indexed: 03/26/2025] Open
Abstract
Peripheral neuropathies (PNs) affect over 20 million individuals in the United States, manifesting as a wide range of sensory, motor, and autonomic nerve symptoms. While various conditions such as diabetes, metabolic disorders, trauma, autoimmune disease, and chemotherapy-induced neurotoxicity have been linked to PN, approximately one-third of PN cases remain idiopathic, underscoring a critical gap in our understanding of these disorders. Over the years, considerable efforts have focused on unraveling the complex molecular pathways underlying PN to advance diagnosis and treatment. Traditional methods such as linkage analysis, fluorescence in situ hybridization, polymerase chain reaction, and Sanger sequencing identified initial genetic variants associated with PN. However, the establishment and application of next-generation sequencing (NGS) and, more recently, long-read/single-cell sequencing have revolutionized the field, accelerating the discovery of novel disease-causing variants and challenging previous assumptions about pathogenicity. This review traces the evolution of genomic technologies in PN research, emphasizing the pivotal role of NGS in uncovering genetic complexities. We provide a comprehensive analysis of established genomic approaches such as genome-wide association studies, targeted gene panel sequencing, and whole-exome/genome sequencing, alongside emerging multiomic technologies including RNA sequencing and proteomics. Integrating these approaches promises holistic insights into PN pathophysiology, potentially revealing new biomarkers and therapeutic targets. Furthermore, we discuss the clinical implications of genomic and multiomic integration, highlighting their potential to enhance diagnostic accuracy, prognostic assessment, and personalized treatment strategies for PN. Challenges and questions in standardizing these technologies for clinical use are raised, underscoring the need for robust guidelines to maximize their clinical utility.
Collapse
Affiliation(s)
- Julie Choi
- Department of GeneticsSchool of Medicine, Washington UniversitySt. LouisMissouriUSA
| | - Zitian Tang
- Department of GeneticsSchool of Medicine, Washington UniversitySt. LouisMissouriUSA
| | - Wendy Dong
- Department of GeneticsSchool of Medicine, Washington UniversitySt. LouisMissouriUSA
| | - Jenna Ulibarri
- Department of GeneticsSchool of Medicine, Washington UniversitySt. LouisMissouriUSA
| | - Elvisa Mehinovic
- Department of GeneticsSchool of Medicine, Washington UniversitySt. LouisMissouriUSA
| | - Simone Thomas
- Department of Neurology, Neuromuscular DivisionJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Ahmet Höke
- Department of Neurology, Neuromuscular DivisionJohns Hopkins University School of MedicineBaltimoreMarylandUSA
- Department of NeuroscienceJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Sheng Chih Jin
- Department of GeneticsSchool of Medicine, Washington UniversitySt. LouisMissouriUSA
- Department of PediatricsSchool of Medicine, Washington UniversitySt. LouisMissouriUSA
| |
Collapse
|
2
|
Loret C, Scherrer C, Rovini A, Pyromali I, Faye PA, Nizou A, Sturtz F, Favreau F, Lia AS. Advances in modeling the Charcot-Marie-Tooth disease: Human induced pluripotent stem cell-derived Schwann cells harboring SH3TC2 variants. Eur J Cell Biol 2025; 104:151485. [PMID: 40154263 DOI: 10.1016/j.ejcb.2025.151485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 02/17/2025] [Accepted: 03/20/2025] [Indexed: 04/01/2025] Open
Abstract
Human induced pluripotent stem cells (hiPSCs) represent a powerful tool for investigating neuropathological disorders, such as Charcot-Marie-Tooth disease (CMT), the most prevalent inherited peripheral neuropathy, where the cells of interest are hardly accessible. Advancing the development of appropriate cellular models is crucial for studying the disease's pathophysiology. In this study, we present the first two isogenic hiPSC-derived Schwann cell models for studying CMT4C, also known as AR-CMTde-SH3TC2. This subtype of CMT is associated with alterations in SH3TC2 and is the most prevalent form of autosomal recessive demyelinating CMT. We aimed to study the impact of two nonsense mutations in SH3TC2. To achieve this, we used two CRISPR hiPSC clones, one carrying a homozygous nonsense mutation: c.211C>T, p.Gln71*, and the other one, carrying the most common AR-CMTde-SH3TC2 alteration, c.2860G>A, p.Arg954*. To study the endogenous expression of SH3TC2 in the cells mainly altered in AR-CMTde-SH3TC2, we initiated the differentiation of both our CMT clones and their isogenic control into Schwann cells (SCs). This study represents the first in vitro investigation of human endogenous SH3TC2 expression in AR-CMTde-SH3TC2 hiPSC-derived SC models, allowing for the examination of its expression and of its cellular impact. By comparing this AR-CMTde-SH3TC2 models to the control one, we observed disparities in RNA and protein expression of SH3TC2. Additionally, our RNA and coculture experiments with hiPSC-derived motor neurons (MNs) revealed delayed maturation of SCs and a reduced ability of SH3TC2-deficient SCs to sustain motor neuron culture. Our findings also demonstrated a disability in receptor recycling in SH3TC2-deficient cells, depending on the AR-CMTde-SH3TC2 alteration. These hiPSC-derived-SC models further provide a new modelling tool for studying Schwann cell contribution to CMT4C.
Collapse
Affiliation(s)
- Camille Loret
- University of Limoges, NeurIT UR 20218, GEIST Institute, Limoges F-87000, France.
| | - Camille Scherrer
- University of Limoges, NeurIT UR 20218, GEIST Institute, Limoges F-87000, France
| | - Amandine Rovini
- University of Limoges, NeurIT UR 20218, GEIST Institute, Limoges F-87000, France
| | - Ioanna Pyromali
- University of Limoges, NeurIT UR 20218, GEIST Institute, Limoges F-87000, France
| | - Pierre-Antoine Faye
- University of Limoges, NeurIT UR 20218, GEIST Institute, Limoges F-87000, France; CHU Limoges, Department of Biochemistry and Molecular Genetics, Limoges F-87000, France
| | - Angélique Nizou
- University of Limoges, NeurIT UR 20218, GEIST Institute, Limoges F-87000, France
| | - Franck Sturtz
- University of Limoges, NeurIT UR 20218, GEIST Institute, Limoges F-87000, France; CHU Limoges, Department of Biochemistry and Molecular Genetics, Limoges F-87000, France
| | - Frédéric Favreau
- University of Limoges, NeurIT UR 20218, GEIST Institute, Limoges F-87000, France; CHU Limoges, Department of Biochemistry and Molecular Genetics, Limoges F-87000, France.
| | - Anne-Sophie Lia
- University of Limoges, NeurIT UR 20218, GEIST Institute, Limoges F-87000, France; CHU Limoges, Department of Biochemistry and Molecular Genetics, Limoges F-87000, France; CHU Limoges, Department of Bioinformatics, Limoges F-87000, France
| |
Collapse
|
3
|
Barsa C, Perrin J, David C, Mourier A, Rojo M. A cellular assay to determine the fusion capacity of MFN2 variants linked to Charcot-Marie-Tooth disease of type 2 A. Sci Rep 2025; 15:9971. [PMID: 40121276 PMCID: PMC11929822 DOI: 10.1038/s41598-025-93702-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 03/10/2025] [Indexed: 03/25/2025] Open
Abstract
Charcot-Marie-Tooth Disease (CMT) is an inherited peripheral neuropathy with two main forms: demyelinating CMT1 and axonal CMT2. The most frequent subtype of CMT2 (CMT2A) is linked to mutations of MFN2, encoding a ubiquitously expressed GTP-binding protein anchored to the mitochondrial outer membrane and essential for mitochondrial fusion. The use of Next-Generation Sequencing has led to the identification of increasing numbers of MFN2 variants, yet many of them remain of unknown significance, depriving patients of a clear diagnosis. In this work, we establish a cellular assay allowing to assess the impact of 12 known MFN2 variants linked to CMT2A on mitochondrial fusion. The functional analysis revealed that out of the 12 selected MFN2 mutations, only six exhibited reduced fusion activity. The classification of MFN2 variants according to the results of the functional assay revealed a correlation between the fusion capacity, the age at onset of CMT2A and computational variant effect predictions relying on the analysis of the protein sequence. The functional assay and the results obtained will assist and improve the classification of novel MFN2 variants identified in patients.
Collapse
Affiliation(s)
- Chloe Barsa
- CNRS, IBGC, UMR 5095, Institut de Biochimie et Génétique Cellulaires (IBGC), Université de Bordeaux, 33000, Bordeaux, France
| | - Julian Perrin
- CNRS, IBGC, UMR 5095, Institut de Biochimie et Génétique Cellulaires (IBGC), Université de Bordeaux, 33000, Bordeaux, France
| | - Claudine David
- CNRS, IBGC, UMR 5095, Institut de Biochimie et Génétique Cellulaires (IBGC), Université de Bordeaux, 33000, Bordeaux, France
| | - Arnaud Mourier
- CNRS, IBGC, UMR 5095, Institut de Biochimie et Génétique Cellulaires (IBGC), Université de Bordeaux, 33000, Bordeaux, France
| | - Manuel Rojo
- CNRS, IBGC, UMR 5095, Institut de Biochimie et Génétique Cellulaires (IBGC), Université de Bordeaux, 33000, Bordeaux, France.
| |
Collapse
|
4
|
Berth SH, Vo L, Kwon DH, Grider T, Damayanti YS, Kosmanopoulos G, Fox A, Lau AR, Carr P, Donohue JK, Hoke M, Thomas S, Karam C, Fay AJ, Meltzer E, Crawford TO, Gaudet R, Shy ME, Hellmich UA, Lee SY, Sumner CJ, McCray BA. Combined clinical, structural and cellular studies discriminate pathogenic and benign TRPV4 variants. Brain 2025; 148:564-579. [PMID: 39021275 PMCID: PMC12054728 DOI: 10.1093/brain/awae243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 06/04/2024] [Accepted: 06/28/2024] [Indexed: 07/20/2024] Open
Abstract
Dominant mutations in the calcium-permeable ion channel TRPV4 (transient receptor potential vanilloid 4) cause diverse and largely distinct channelopathies, including inherited forms of neuromuscular disease, skeletal dysplasias and arthropathy. Pathogenic TRPV4 mutations cause gain of ion channel function and toxicity that can be rescued by small molecule TRPV4 antagonists in cellular and animal models, suggesting that TRPV4 antagonism could be therapeutic for patients. Numerous variants in TRPV4 have been detected with targeted and whole exome/genome sequencing, but for the vast majority, their pathogenicity remains unclear. Here, we used a combination of clinical information and experimental structure-function analyses to evaluate 30 TRPV4 variants across various functional protein domains. We report clinical features of seven patients with TRPV4 variants of unknown significance and provide extensive functional characterization of these and an additional 17 variants, including structural position, ion channel function, subcellular localization, expression level, cytotoxicity and protein-protein interactions. We find that gain-of-function mutations within the TRPV4 intracellular ankyrin repeat domain target charged amino acid residues important for RhoA interaction, whereas ankyrin repeat domain residues outside of the RhoA interface have normal or reduced ion channel activity. We further identify a cluster of gain-of-function variants within the intracellular intrinsically disordered region that may cause toxicity via altered interactions with membrane lipids. In contrast, assessed variants in the transmembrane domain and other regions of the intrinsically disordered region do not cause gain of function and are likely benign. Clinical features associated with gain of function and cytotoxicity include congenital onset of disease, vocal cord weakness and motor-predominant disease, whereas patients with likely benign variants often demonstrated late-onset and sensory-predominant disease. These results provide a framework for assessing additional TRPV4 variants with respect to likely pathogenicity, which will yield critical information to inform patient selection for future clinical trials for TRPV4 channelopathies.
Collapse
Affiliation(s)
- Sarah H Berth
- Department of Neurology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Linh Vo
- Department of Neurology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Do Hoon Kwon
- Department of Biochemistry, Duke University School of Medicine, Durham, NC 27710, USA
| | - Tiffany Grider
- Department of Neurology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Yasmine S Damayanti
- Faculty of Chemistry and Earth Sciences, Friedrich Schiller University Jena, Institute of Organic Chemistry and Macromolecular Chemistry, Jena 07743, Germany
| | - Gage Kosmanopoulos
- Department of Neurology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Andrew Fox
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Alexander R Lau
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Patrice Carr
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Jack K Donohue
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Maya Hoke
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Simone Thomas
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Chafic Karam
- Department of Neurology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Alex J Fay
- Department of Neurology, UCSF Benioff Children’s Hospital, San Francisco, CA 94158, USA
| | - Ethan Meltzer
- Department of Neurology, Dell Medical School, University of Texas at Austin, Austin, TX 78712, USA
| | - Thomas O Crawford
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Rachelle Gaudet
- Department of Molecular and Cellular Biology, Harvard University, Boston, MA 02138, USA
| | - Michael E Shy
- Department of Neurology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Ute A Hellmich
- Faculty of Chemistry and Earth Sciences, Friedrich Schiller University Jena, Institute of Organic Chemistry and Macromolecular Chemistry, Jena 07743, Germany
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, Jena 07743, Germany
- Center for Biomolecular Magnetic Resonance (BMRZ), Goethe University, Frankfurt 60438, Germany
| | - Seok-Yong Lee
- Department of Biochemistry, Duke University School of Medicine, Durham, NC 27710, USA
| | - Charlotte J Sumner
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Brett A McCray
- Department of Neurology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| |
Collapse
|
5
|
Ahmed AN, Rawlins LE, Khan N, Jan Z, Ubeyratna N, Voutsina N, Azeem A, Khan S, Baple EL, Crosby AH, Saleha S. Expanding the genetic spectrum of hereditary motor sensory neuropathies in Pakistan. BMC Neurol 2024; 24:394. [PMID: 39415096 PMCID: PMC11481789 DOI: 10.1186/s12883-024-03882-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 09/25/2024] [Indexed: 10/18/2024] Open
Abstract
BACKGROUND Hereditary motor and sensory neuropathy (HMSN) refers to a group of inherited progressive peripheral neuropathies characterized by reduced nerve conduction velocity with chronic segmental demyelination and/or axonal degeneration. HMSN is highly clinically and genetically heterogeneous with multiple inheritance patterns and phenotypic overlap with other inherited neuropathies and neurodegenerative diseases. Due to this high complexity and genetic heterogeneity, this study aimed to elucidate the genetic causes of HMSN in Pakistani families using Whole Exome Sequencing (WES) for variant identification and Sanger sequencing for validation and segregation analysis, facilitating accurate clinical diagnosis. METHODS Families from Khyber Pakhtunkhwa with at least two members showing HMSN symptoms, who had not previously undergone genetic analysis, were included. Referrals for genetic investigations were based on clinical features suggestive of HMSN by local neurologists. WES was performed on affected individuals from each family, with Sanger sequencing used to validate and analyze the segregation of identified variants among family members. Clinical data including age of onset were assessed for variability among affected individuals, and the success rate of genetic diagnosis was compared with existing literature using proportional differences and Cohen's h. RESULTS WES identified homozygous pathogenic variants in GDAP1 (c.310 + 4 A > G, p.?), SETX (c.5948_5949del, p.(Asn1984Profs*30), IGHMBP2 (c.1591 C > A, p.(Pro531Thr) and NARS1 (c.1633 C > T, p.(Arg545Cys) as causative for HMSN in five out of nine families, consistent with an autosomal recessive inheritance pattern. Additionally, in families with HMSN, a SETX variant was found to cause cerebellar ataxia, while a NARS1 variant was linked to intellectual disability. Based on American College of Medical Genetics and Genomics criteria, the GDAP1 variant is classified as a variant of uncertain significance, while variants in SETX and IGHMBP2 are classified as pathogenic, and the NARS1 variant is classified as likely pathogenic. The age of onset ranged from 1 to 15 years (Mean = 5.13, SD = 3.61), and a genetic diagnosis was achieved in 55.56% of families with HMSN, with small effect sizes compared to previous studies. CONCLUSIONS This study expands the molecular genetic spectrum of HMSN and HMSN plus type neuropathies in Pakistan and facilitates accurate diagnosis, genetic counseling, and clinical management for affected families.
Collapse
Affiliation(s)
- Asif Naveed Ahmed
- Department of Biotechnology and Genetic Engineering, Kohat University of Science and Technology, Kohat, Khyber Pakhtunkhwa, 26000, Pakistan
| | - Lettie E Rawlins
- Medical Research, RILD Wellcome Wolfson Centre (Level 4), Royal Devon and Exeter NHS Foundation Trust, Exeter, Devon, EX2 5DW, UK.
- Peninsula Clinical Genetics Service, Royal Devon & Exeter Hospital (Heavitree), Exeter, UK.
| | - Niamat Khan
- Department of Biotechnology and Genetic Engineering, Kohat University of Science and Technology, Kohat, Khyber Pakhtunkhwa, 26000, Pakistan
| | - Zakir Jan
- Department of Neurology, Pakistan Institute of Medical Science, Islamabad, 44000, Pakistan
| | - Nishanka Ubeyratna
- Medical Research, RILD Wellcome Wolfson Centre (Level 4), Royal Devon and Exeter NHS Foundation Trust, Exeter, Devon, EX2 5DW, UK
| | - Nikol Voutsina
- Medical Research, RILD Wellcome Wolfson Centre (Level 4), Royal Devon and Exeter NHS Foundation Trust, Exeter, Devon, EX2 5DW, UK
| | - Arfa Azeem
- Department of Biotechnology and Genetic Engineering, Kohat University of Science and Technology, Kohat, Khyber Pakhtunkhwa, 26000, Pakistan
| | - Saadullah Khan
- Department of Biotechnology and Genetic Engineering, Kohat University of Science and Technology, Kohat, Khyber Pakhtunkhwa, 26000, Pakistan
| | - Emma L Baple
- Medical Research, RILD Wellcome Wolfson Centre (Level 4), Royal Devon and Exeter NHS Foundation Trust, Exeter, Devon, EX2 5DW, UK
| | - Andrew H Crosby
- Medical Research, RILD Wellcome Wolfson Centre (Level 4), Royal Devon and Exeter NHS Foundation Trust, Exeter, Devon, EX2 5DW, UK
| | - Shamim Saleha
- Department of Biotechnology and Genetic Engineering, Kohat University of Science and Technology, Kohat, Khyber Pakhtunkhwa, 26000, Pakistan.
| |
Collapse
|
6
|
Record CJ, Pipis M, Skorupinska M, Blake J, Poh R, Polke JM, Eggleton K, Nanji T, Zuchner S, Cortese A, Houlden H, Rossor AM, Laura M, Reilly MM. Whole genome sequencing increases the diagnostic rate in Charcot-Marie-Tooth disease. Brain 2024; 147:3144-3156. [PMID: 38481354 PMCID: PMC11370804 DOI: 10.1093/brain/awae064] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/17/2024] [Accepted: 02/07/2024] [Indexed: 09/04/2024] Open
Abstract
Charcot-Marie-Tooth disease (CMT) is one of the most common and genetically heterogeneous inherited neurological diseases, with more than 130 disease-causing genes. Whole genome sequencing (WGS) has improved diagnosis across genetic diseases, but the diagnostic impact in CMT is yet to be fully reported. We present the diagnostic results from a single specialist inherited neuropathy centre, including the impact of WGS diagnostic testing. Patients were assessed at our specialist inherited neuropathy centre from 2009 to 2023. Genetic testing was performed using single gene testing, next-generation sequencing targeted panels, research whole exome sequencing and WGS and, latterly, WGS through the UK National Health Service. Variants were assessed using the American College of Medical Genetics and Genomics and Association for Clinical Genomic Science criteria. Excluding patients with hereditary ATTR amyloidosis, 1515 patients with a clinical diagnosis of CMT and related disorders were recruited. In summary, 621 patients had CMT1 (41.0%), 294 CMT2 (19.4%), 205 intermediate CMT (CMTi, 13.5%), 139 hereditary motor neuropathy (HMN, 9.2%), 93 hereditary sensory neuropathy (HSN, 6.1%), 38 sensory ataxic neuropathy (2.5%), 72 hereditary neuropathy with liability to pressure palsies (HNPP, 4.8%) and 53 'complex' neuropathy (3.5%). Overall, a genetic diagnosis was reached in 76.9% (1165/1515). A diagnosis was most likely in CMT1 (96.8%, 601/621), followed by CMTi (81.0%, 166/205) and then HSN (69.9%, 65/93). Diagnostic rates remained less than 50% in CMT2, HMN and complex neuropathies. The most common genetic diagnosis was PMP22 duplication (CMT1A; 505/1165, 43.3%), then GJB1 (CMTX1; 151/1165, 13.0%), PMP22 deletion (HNPP; 72/1165, 6.2%) and MFN2 (CMT2A; 46/1165, 3.9%). We recruited 233 cases to the UK 100 000 Genomes Project (100KGP), of which 74 (31.8%) achieved a diagnosis; 28 had been otherwise diagnosed since recruitment, leaving a true diagnostic rate of WGS through the 100KGP of 19.7% (46/233). However, almost half of the solved cases (35/74) received a negative report from the study, and the diagnosis was made through our research access to the WGS data. The overall diagnostic uplift of WGS for the entire cohort was 3.5%. Our diagnostic rate is the highest reported from a single centre and has benefitted from the use of WGS, particularly access to the raw data. However, almost one-quarter of all cases remain unsolved, and a new reference genome and novel technologies will be important to narrow the 'diagnostic gap'.
Collapse
Affiliation(s)
- Christopher J Record
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - Menelaos Pipis
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - Mariola Skorupinska
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - Julian Blake
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
- Department of Clinical Neurophysiology, Norfolk and Norwich University Hospital, Norwich NR4 7UY, UK
| | - Roy Poh
- Neurogenetics Laboratory, National Hospital for Neurology and Neurosurgery, London WC1N 3BG, UK
| | - James M Polke
- Neurogenetics Laboratory, National Hospital for Neurology and Neurosurgery, London WC1N 3BG, UK
| | - Kelly Eggleton
- Neurogenetics Laboratory, National Hospital for Neurology and Neurosurgery, London WC1N 3BG, UK
| | - Tina Nanji
- Neurogenetics Laboratory, National Hospital for Neurology and Neurosurgery, London WC1N 3BG, UK
| | - Stephan Zuchner
- Dr. John T. Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Andrea Cortese
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - Henry Houlden
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - Alexander M Rossor
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - Matilde Laura
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - Mary M Reilly
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| |
Collapse
|
7
|
Loret C, Pauset A, Faye PA, Prouzet-Mauleon V, Pyromali I, Nizou A, Miressi F, Sturtz F, Favreau F, Turcq B, Lia AS. CRISPR Base Editing to Create Potential Charcot-Marie-Tooth Disease Models with High Editing Efficiency: Human Induced Pluripotent Stem Cell Harboring SH3TC2 Variants. Biomedicines 2024; 12:1550. [PMID: 39062123 PMCID: PMC11274897 DOI: 10.3390/biomedicines12071550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/05/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
Human induced pluripotent stem cells (hiPSCs) represent a powerful tool to investigate neuropathological disorders in which the cells of interest are inaccessible, such as in the Charcot-Marie-Tooth disease (CMT), the most common inherited peripheral neuropathy. Developing appropriate cellular models becomes crucial in order to both study the disease's pathophysiology and test new therapeutic approaches. The generation of hiPS cellular models for disorders caused by a single nucleotide variation has been significantly improved following the development of CRISPR-based editing tools. In this study, we efficiently and quickly generated, by CRISPR editing, the two first hiPSCs cellular models carrying alterations involved in CMT4C, also called AR-CMTde-SH3TC2. This subtype of CMT is associated with alterations in the SH3TC2 gene and represents the most prevalent form of autosomal recessive demyelinating CMT. We aimed to develop models for two different SH3TC2 nonsense variants, c.211C>T, p.Gln71* and the most common AR-CMTde-SH3TC2 alteration, c.2860C>T, p.Arg954*. First, in order to determine the best CRISPR strategy to adopt on hiPSCs, we first tested a variety of sgRNAs combined with a selection of recent base editors using the conveniently cultivable and transfectable HEK-293T cell line. The chosen CRISPR base-editing strategy was then applied to hiPSCs derived from healthy individuals to generate isogenic CMT disease models with up to 93% editing efficiency. For point mutation generation, we first recommend to test your strategies on alternative cell line such as HEK-293T before hiPSCs to evaluate a variety of sgRNA-BE combinations, thus boosting the chance of achieving edited cellular clones with the hard-to-culture and to transfect hiPSCs.
Collapse
Affiliation(s)
- Camille Loret
- University of Limoges, NeurIT UR 20218, GEIST Institute, F-87000 Limoges, France; (P.-A.F.); (I.P.); (A.N.); (F.M.); (F.S.); (F.F.); (A.-S.L.)
| | - Amandine Pauset
- University of Bordeaux, CRISP'edit, TBMCore UAR CNRS 3427, US Inserm 005, F-33000 Bordeaux, France (V.P.-M.); (B.T.)
- University of Bordeaux, Modeling Transformation and Resistance in Leukemia, BRIC Inserm U1312, F-33000 Bordeaux, France
| | - Pierre-Antoine Faye
- University of Limoges, NeurIT UR 20218, GEIST Institute, F-87000 Limoges, France; (P.-A.F.); (I.P.); (A.N.); (F.M.); (F.S.); (F.F.); (A.-S.L.)
- CHU Limoges, Department of Biochemistry and Molecular Genetics, F-87000 Limoges, France
| | - Valérie Prouzet-Mauleon
- University of Bordeaux, CRISP'edit, TBMCore UAR CNRS 3427, US Inserm 005, F-33000 Bordeaux, France (V.P.-M.); (B.T.)
- University of Bordeaux, Modeling Transformation and Resistance in Leukemia, BRIC Inserm U1312, F-33000 Bordeaux, France
| | - Ioanna Pyromali
- University of Limoges, NeurIT UR 20218, GEIST Institute, F-87000 Limoges, France; (P.-A.F.); (I.P.); (A.N.); (F.M.); (F.S.); (F.F.); (A.-S.L.)
| | - Angélique Nizou
- University of Limoges, NeurIT UR 20218, GEIST Institute, F-87000 Limoges, France; (P.-A.F.); (I.P.); (A.N.); (F.M.); (F.S.); (F.F.); (A.-S.L.)
| | - Federica Miressi
- University of Limoges, NeurIT UR 20218, GEIST Institute, F-87000 Limoges, France; (P.-A.F.); (I.P.); (A.N.); (F.M.); (F.S.); (F.F.); (A.-S.L.)
| | - Franck Sturtz
- University of Limoges, NeurIT UR 20218, GEIST Institute, F-87000 Limoges, France; (P.-A.F.); (I.P.); (A.N.); (F.M.); (F.S.); (F.F.); (A.-S.L.)
- CHU Limoges, Department of Biochemistry and Molecular Genetics, F-87000 Limoges, France
| | - Frédéric Favreau
- University of Limoges, NeurIT UR 20218, GEIST Institute, F-87000 Limoges, France; (P.-A.F.); (I.P.); (A.N.); (F.M.); (F.S.); (F.F.); (A.-S.L.)
- CHU Limoges, Department of Biochemistry and Molecular Genetics, F-87000 Limoges, France
| | - Béatrice Turcq
- University of Bordeaux, CRISP'edit, TBMCore UAR CNRS 3427, US Inserm 005, F-33000 Bordeaux, France (V.P.-M.); (B.T.)
- University of Bordeaux, Modeling Transformation and Resistance in Leukemia, BRIC Inserm U1312, F-33000 Bordeaux, France
| | - Anne-Sophie Lia
- University of Limoges, NeurIT UR 20218, GEIST Institute, F-87000 Limoges, France; (P.-A.F.); (I.P.); (A.N.); (F.M.); (F.S.); (F.F.); (A.-S.L.)
- CHU Limoges, Department of Biochemistry and Molecular Genetics, F-87000 Limoges, France
- CHU Limoges, Department of Bioinformatics, F-87000 Limoges, France
| |
Collapse
|
8
|
Maggi J, Koller S, Feil S, Bachmann-Gagescu R, Gerth-Kahlert C, Berger W. Limited Added Diagnostic Value of Whole Genome Sequencing in Genetic Testing of Inherited Retinal Diseases in a Swiss Patient Cohort. Int J Mol Sci 2024; 25:6540. [PMID: 38928247 PMCID: PMC11203445 DOI: 10.3390/ijms25126540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/11/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024] Open
Abstract
The purpose of this study was to assess the added diagnostic value of whole genome sequencing (WGS) for patients with inherited retinal diseases (IRDs) who remained undiagnosed after whole exome sequencing (WES). WGS was performed for index patients in 66 families. The datasets were analyzed according to GATK's guidelines. Additionally, DeepVariant was complemented by GATK's workflow, and a novel structural variant pipeline was developed. Overall, a molecular diagnosis was established in 19/66 (28.8%) index patients. Pathogenic deletions and one deep-intronic variant contributed to the diagnostic yield in 4/19 and 1/19 index patients, respectively. The remaining diagnoses (14/19) were attributed to exonic variants that were missed during WES analysis due to bioinformatic limitations, newly described loci, or unclear pathogenicity. The added diagnostic value of WGS equals 5/66 (9.6%) for our cohort, which is comparable to previous studies. This figure would decrease further to 1/66 (1.5%) with a standardized and reliable copy number variant workflow during WES analysis. Given the higher costs and limited added value, the implementation of WGS as a first-tier assay for inherited eye disorders in a diagnostic laboratory remains untimely. Instead, progress in bioinformatic tools and communication between diagnostic and clinical teams have the potential to ameliorate diagnostic yields.
Collapse
Affiliation(s)
- Jordi Maggi
- Institute of Medical Molecular Genetics, University of Zurich, 8952 Schlieren, Switzerland; (J.M.); (S.K.); (S.F.)
| | - Samuel Koller
- Institute of Medical Molecular Genetics, University of Zurich, 8952 Schlieren, Switzerland; (J.M.); (S.K.); (S.F.)
| | - Silke Feil
- Institute of Medical Molecular Genetics, University of Zurich, 8952 Schlieren, Switzerland; (J.M.); (S.K.); (S.F.)
| | | | - Christina Gerth-Kahlert
- Department of Ophthalmology, University Hospital Zurich and University of Zurich, 8091 Zurich, Switzerland;
| | - Wolfgang Berger
- Institute of Medical Molecular Genetics, University of Zurich, 8952 Schlieren, Switzerland; (J.M.); (S.K.); (S.F.)
- Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, 8057 Zurich, Switzerland
- Neuroscience Center Zurich (ZNZ), University and ETH Zurich, 8057 Zurich, Switzerland
| |
Collapse
|
9
|
Dellatte J, Lievens I, Wang FC. Could some mutations of the KIF5A gene be responsible for a dominant CMT2 phenotype? (Case report). Acta Neurol Belg 2023; 123:2435-2438. [PMID: 37084037 DOI: 10.1007/s13760-023-02248-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 03/20/2023] [Indexed: 04/22/2023]
Affiliation(s)
- Julien Dellatte
- Department of Neurophysiology, CHU Liège, Sart-Tilman B35, 4000, Liege, Belgium.
| | - Isabelle Lievens
- Department of Neurology, CHU Liège, Sart-Tilman B35, 4000, Liege, Belgium
| | | |
Collapse
|
10
|
Ashrafi MR, Dehnavi AZ, Tavasoli AR, Heidari M, Ghahvechi Akbari M, Ronagh AR, Ghafouri M, Mahdieh N, Mohammadi P, Rezaei Z. Expanding the genetic spectrum of giant axonal neuropathy: Two novel variants in Iranian families. Mol Genet Genomic Med 2023. [PMID: 36866531 DOI: 10.1002/mgg3.2159] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023] Open
Abstract
BACKGROUND Giant axonal neuropathy (GAN) is a progressive childhood hereditary polyneuropathy that affects both the peripheral and central nervous systems. Disease-causing variants in the gigaxonin gene (GAN) cause autosomal recessive giant axonal neuropathy. Facial weakness, nystagmus, scoliosis, kinky or curly hair, pyramidal and cerebellar signs, and sensory and motor axonal neuropathy are the main symptoms of this disorder. Here, we report two novel variants in the GAN gene from two unrelated Iranian families. METHODS Clinical and imaging data of patients were recorded and evaluated, retrospectively. Whole-exome sequencing (WES) was undertaken in order to detect disease-causing variants in participants. Confirmation of a causative variant in all three patients and their parents was carried out using Sanger sequencing and segregation analysis. In addition, for comparing to our cases, we reviewed all relevant clinical data of previously published cases of GAN between the years 2013-2020. RESULTS Three patients from two unrelated families were included. Using WES, we identified a novel nonsense variant [NM_022041.3:c.1162del (p.Leu388Ter)], in a 7-year-old boy of family 1, and a likely pathogenic missense variant [NM_022041.3:c.370T>A (p.Phe124Ile)], in two affected siblings of the family 2. Clinical examination revealed typical features of GAN-1 in all three patients, including walking difficulties, ataxic gait, kinky hair, sensory-motor polyneuropathy, and nonspecific neuroimaging abnormalities. Review of 63 previously reported cases of GAN indicated unique kinky hair, gait problem, hyporeflexia/areflexia, and sensory impairment were the most commonly reported clinical features. CONCLUSIONS One homozygous nonsense variant and one homozygous missense variant in the GAN gene were discovered for the first time in two unrelated Iranian families that expand the mutation spectrum of GAN. Imaging findings are nonspecific, but the electrophysiological study in addition to history is helpful to achieve the diagnosis. The molecular test confirms the diagnosis.
Collapse
Affiliation(s)
- Mahmoud Reza Ashrafi
- Ataxia Clinic, Pediatric Neurology Division, Children's Medical Center, Pediatrics Center of Excellence, Tehran University of Medical Sciences, Tehran, Iran.,Department of Paediatrics, Division of Paediatric Neurology, Growth and Development Research Center, Children's Medical Centre, Paediatrics Centre of Excellence, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Zare Dehnavi
- Ataxia Clinic, Pediatric Neurology Division, Children's Medical Center, Pediatrics Center of Excellence, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Reza Tavasoli
- Ataxia Clinic, Pediatric Neurology Division, Children's Medical Center, Pediatrics Center of Excellence, Tehran University of Medical Sciences, Tehran, Iran.,Myelin Disorders Clinic, Pediatric Neurology Division, Children's Medical Center, Pediatrics Center of Excellence, Tehran University of Medical Sciences, Tehran, Iran.,Jefferson Institute of Molecular Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Morteza Heidari
- Ataxia Clinic, Pediatric Neurology Division, Children's Medical Center, Pediatrics Center of Excellence, Tehran University of Medical Sciences, Tehran, Iran.,Myelin Disorders Clinic, Pediatric Neurology Division, Children's Medical Center, Pediatrics Center of Excellence, Tehran University of Medical Sciences, Tehran, Iran
| | - Masoud Ghahvechi Akbari
- Ataxia Clinic, Pediatric Neurology Division, Children's Medical Center, Pediatrics Center of Excellence, Tehran University of Medical Sciences, Tehran, Iran.,Physical Medicine and Rehabilitation department, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Reza Ronagh
- Pediatric Neurology Department, Alborz University of Medical Sciences, Karaj, Iran
| | - Mohammad Ghafouri
- Ataxia Clinic, Pediatric Neurology Division, Children's Medical Center, Pediatrics Center of Excellence, Tehran University of Medical Sciences, Tehran, Iran
| | - Nejat Mahdieh
- Genetic Research Center, Rajaei Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Pouria Mohammadi
- Ataxia Clinic, Pediatric Neurology Division, Children's Medical Center, Pediatrics Center of Excellence, Tehran University of Medical Sciences, Tehran, Iran.,Department of Medical Genetics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Zahra Rezaei
- Ataxia Clinic, Pediatric Neurology Division, Children's Medical Center, Pediatrics Center of Excellence, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
11
|
Masingue M, Fernández-Eulate G, Debs R, Tard C, Labeyrie C, Leonard-Louis S, Dhaenens CM, Masson MA, Latour P, Stojkovic T. Strategy for genetic analysis in hereditary neuropathy. Rev Neurol (Paris) 2023; 179:10-29. [PMID: 36566124 DOI: 10.1016/j.neurol.2022.11.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/26/2022] [Accepted: 11/28/2022] [Indexed: 12/24/2022]
Abstract
Inherited neuropathies are a heterogeneous group of slowly progressive disorders affecting either motor, sensory, and/or autonomic nerves. Peripheral neuropathy may be the major component of a disease such as Charcot-Marie-Tooth disease or a feature of a more complex multisystemic disease involving the central nervous system and other organs. The goal of this review is to provide the clinical clues orientating the genetic diagnosis in a patient with inherited peripheral neuropathy. This review focuses on primary inherited neuropathies, amyloidosis, inherited metabolic diseases, while detailing clinical, neurophysiological and potential treatment of these diseases.
Collapse
Affiliation(s)
- M Masingue
- Centre de référence des maladies neuromusculaires Nord/Est/Île-de-France, hôpital Pitié-Salpêtrière, AP-HP, Paris, France.
| | - G Fernández-Eulate
- Centre de référence des maladies neuromusculaires Nord/Est/Île-de-France, hôpital Pitié-Salpêtrière, AP-HP, Paris, France
| | - R Debs
- Service de neurophysiologie, hôpital Pitié-Salpêtrière, AP-HP, Paris, France
| | - C Tard
- CHU de Lille, clinique neurologique, centre de référence des maladies neuromusculaires Nord/Est/Île-de-France, 59037 Lille cedex, France
| | - C Labeyrie
- Service de neurologie, hôpital Kremlin-Bicêtre, AP-HP, Le Kremlin-Bicêtre, France
| | - S Leonard-Louis
- Centre de référence des maladies neuromusculaires Nord/Est/Île-de-France, hôpital Pitié-Salpêtrière, AP-HP, Paris, France
| | - C-M Dhaenens
- Université de Lille, Inserm, CHU de Lille, U1172-LilNCog-Lille Neuroscience & Cognition, 59000 Lille, France
| | - M A Masson
- Inserm U1127, Paris Brain Institute, ICM, Sorbonne Université, CNRS UMR 7225, hôpital Pitié-Salpêtrière, Paris, France
| | - P Latour
- Service de biochimie biologie moléculaire, CHU de Lyon, centre de biologie et pathologie Est, 69677 Bron cedex, France
| | - T Stojkovic
- Centre de référence des maladies neuromusculaires Nord/Est/Île-de-France, hôpital Pitié-Salpêtrière, AP-HP, Paris, France
| |
Collapse
|
12
|
Setlere S, Jurcenko M, Gailite L, Rots D, Kenina V. Alanyl-tRNA Synthetase 1 Gene Variants in Hereditary Neuropathy. Neurol Genet 2022; 8:e200019. [PMID: 36092982 PMCID: PMC9450682 DOI: 10.1212/nxg.0000000000200019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 07/01/2022] [Indexed: 11/15/2022]
Abstract
Background and ObjectivesOur objective was to report 2 novel variants and to reclassify previously reported alanyl-tRNA synthetase 1 (AARS1) variants associated with hereditary neuropathy and to summarize the clinical features of a previously published cohort of patients.MethodsWe performed detailed neurologic and electrophysiologic assessments and segregation analysis of 2 unrelated families with Charcot-Marie-Tooth (CMT) disease with novel variants in the AARS1 gene. Via literature search, we found studies that included neuropathy cases with AARS1 variants; we then reviewed and reclassified these variants.ResultsWe identified 2 CMT families harboring previously unreported likely pathogenic AARS1 variants: c.1823C>A p.(Thr608Lys) and c.1815C>G p.(His605Gln). In addition, we reinterpreted a total of 35 different AARS1 variants reported in cases with neuropathy from the literature: 9 variants fulfilled the current criteria for being (likely) pathogenic. We compiled and summarized standardized clinical and genotypic information for 90 affected individuals from 32 families with (likely) pathogenic AARS1 variants. Most experienced motor weakness and sensory loss in the lower limbs.DiscussionIn total, 11 AARS1 variants can currently be classified as pathogenic or likely pathogenic and are associated with sensorimotor axonal or intermediate, slowly progressive polyneuropathy with common asymmetry and variable age of symptom onset with no apparent involvement of other organ systems.
Collapse
|
13
|
Høyer H, Busk ØL, Esbensen QY, Røsby O, Hilmarsen HT, Russell MB, Nyman TA, Braathen GJ, Nilsen HL. Clinical characteristics and proteome modifications in two Charcot-Marie-Tooth families with the AARS1 Arg326Trp mutation. BMC Neurol 2022; 22:299. [PMID: 35971119 PMCID: PMC9377087 DOI: 10.1186/s12883-022-02828-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 08/03/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Aminoacyl tRNA-synthetases are ubiquitously-expressed enzymes that attach amino acids to their cognate tRNA molecules. Mutations in several genes encoding aminoacyl tRNA-synthetases, have been associated with peripheral neuropathy, i.e. AARS1, GARS1, HARS1, YARS1 and WARS1. The pathogenic mechanism underlying AARS1-related neuropathy is not known. METHODS From 2012 onward, all probands presenting at Telemark Hospital (Skien, Norway) with peripheral neuropathy were screened for variants in AARS1 using an "in-house" next-generation sequencing panel. DNA from patient's family members was examined by Sanger sequencing. Blood from affected family members and healthy controls were used for quantification of AARS1 mRNA and alanine. Proteomic analyses were conducted in peripheral blood mononuclear cells (PBMC) from four affected family members and five healthy controls. RESULTS Seventeen individuals in two Norwegian families affected by Charcot-Marie-Tooth disease (CMT) were characterized in this study. The heterozygous NM_001605.2:c.976C > T p.(Arg326Trp) AARS1 mutation was identified in ten affected family members. All living carriers had a mild to severe length-dependent sensorimotor neuropathy. Three deceased obligate carriers aged 74-98 were reported to be unaffected, but were not examined in the clinic. Proteomic studies in PBMC from four affected individuals suggest an effect on the immune system mediated by components of a systemic response to chronic injury and inflammation. Furthermore, altered expression of proteins linked to mitochondrial function/dysfunction was observed. Proteomic data are available via ProteomeXchange using identifier PXD023842. CONCLUSION This study describes clinical and neurophysiological features linked to the p.(Arg326Trp) variant of AARS1 in CMT-affected members of two Norwegian families. Proteomic analyses based on of PBMC from four CMT-affected individuals suggest that involvement of inflammation and mitochondrial dysfunction might contribute to AARS1 variant-associated peripheral neuropathy.
Collapse
Affiliation(s)
- Helle Høyer
- Department of Medical Genetics, Telemark Hospital, PB 2900 Kjørbekk, 3710, Skien, Norway.
| | - Øyvind L Busk
- Department of Medical Genetics, Telemark Hospital, PB 2900 Kjørbekk, 3710, Skien, Norway
| | - Q Ying Esbensen
- Department of Clinical Molecular Biology, University of Oslo and Akershus University Hospital, 1478, Lørenskog, Norway
| | - Oddveig Røsby
- Department of Medical Genetics, Telemark Hospital, PB 2900 Kjørbekk, 3710, Skien, Norway.,Department of Medical Genetics, Oslo University Hospital, 0424, Oslo, Norway
| | - Hilde T Hilmarsen
- Department of Medical Genetics, Telemark Hospital, PB 2900 Kjørbekk, 3710, Skien, Norway
| | - Michael B Russell
- Head and Neck Research Group, Division for Research and Innovation, Akershus University Hospital, 1478, Lørenskog, Norway.,Institute of Clinical Medicine, Campus Akershus University Hospital, University of Oslo, 1474, Norbyhagen, Norway
| | - Tuula A Nyman
- Department of Immunology, Institute of Clinical Medicine, University of Oslo and Rikshospitalet, 0372, Oslo, Norway
| | - Geir J Braathen
- Department of Medical Genetics, Telemark Hospital, PB 2900 Kjørbekk, 3710, Skien, Norway
| | - Hilde L Nilsen
- Department of Clinical Molecular Biology, University of Oslo and Akershus University Hospital, 1478, Lørenskog, Norway
| |
Collapse
|
14
|
Baudou E, Cances C, Magdelaine C, Latour P, Louvier UW, Juntas-Morales R, Cintas P, Rivier F. Unexpected Intermediate Nerve Conduction Velocity Findings in Charcot-Marie-Tooth Syndromes Classified as Demyelinated or Axonal in a Pediatric Population. Neuropediatrics 2022; 53:182-187. [PMID: 35297028 DOI: 10.1055/s-0042-1743438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
INTRODUCTION Among the hereditary motor and sensory neuropathies (HMSN), demyelinating forms are the best characterized, with a clear predominance of CMT1A. The axonal and intermediate forms are less described. The aim of this study is to report the genetic diagnosis of Charcot-Marie-Tooth (CMT) according to the nerve conduction velocity (NCV) findings in a pediatric population. METHODS We retrospectively described a population of HMSN children with a confirmed genetic diagnosis of demyelinated, intermediate, or axonal forms. We compared the results of the genetic analyses with those of motor NCV in median nerve according to whether they were below 25 m/s (demyelinating group); between 25 and 45 m/s (intermediate group), or above 45 m/s (axonal group). RESULTS Among the 143 children with an HMSN, 107 had a genetic diagnosis of which 61 had an electromyogram. On NCV findings: seven (11%) pertain to the axonal group, 20 (32%) to the intermediate group, and 34 (55%) to the demyelinating group. When NCV was above 45 m/s, CMT2A was the predominant genetic diagnosis (70%) when NCV were below 25 m/s, CMT1A was the predominant genetic diagnosis (71%). Intermediate NCV findings group was the more heterogeneous with seven genetic CMT subgroups (60% CMT1A, CMT1B, CMT1X, CMT2A, CMT2N, CMT4G). CONCLUSION Taking NCV values between 25 and 45 m/s to define an intermediate group of CMT in children leads to the inclusion of non-typically "intermediate", especially CMT1A. We emphasize the broad spectrum of NCV in CMT1A that justified the systematic search of PMP22 duplication/deletion screening before next generation sequencing panel.
Collapse
Affiliation(s)
- Eloïse Baudou
- Unit of Pediatric Neurology, AOC (Atlantique-Occitanie-Caraïbes) Reference Centre for Neuromuscular Diseases, Hôpital des Enfants, CHU Toulouse, Toulouse Cedex, France
| | - Claude Cances
- Unit of Pediatric Neurology, AOC (Atlantique-Occitanie-Caraïbes) Reference Centre for Neuromuscular Diseases, Hôpital des Enfants, CHU Toulouse, Toulouse Cedex, France
| | - Corinne Magdelaine
- Service de Biochimie et de Génétique Moléculaire Centre de Biologie et de Recherche en Santé CBRS, CHU de Limoges-Hôpital Dupuytren, Limoges, France
| | - Philippe Latour
- Centre de Biologie et Pathologie Est-Service de Biochimie Biologie Moléculaire Grand Est CHU de Lyon HCL - GH Est, Bron France
| | - Ulrike Walther Louvier
- Department of Pediatric Neurology, AOC (Atlantique-Occitanie-Caraïbes) Reference Centers for Neuromuscular Diseases, CHU Montpellier, France
| | - Raul Juntas-Morales
- Department of Neurology, AOC (Atlantique-Occitanie-Caraïbes) Reference Centre for Neuromuscular Diseases, CHU Montpellier, France
| | - Pascal Cintas
- Department of Neurology, AOC (Atlantique-Occitanie-Caraïbes) Reference Centre for Neuromuscular Diseases, Pierre Paul Riquet Hospital, CHU Toulouse, France
| | - François Rivier
- Department of Pediatric Neurology, AOC (Atlantique-Occitanie-Caraïbes) Reference Centers for Neuromuscular Diseases, CHU Montpellier, France.,PhyMedExp, University of Montpellier, INSERM, CNRS, Montpellier, France
| |
Collapse
|
15
|
Genetic Workup for Charcot–Marie–Tooth Neuropathy: A Retrospective Single-Site Experience Covering 15 Years. Life (Basel) 2022; 12:life12030402. [PMID: 35330153 PMCID: PMC8948690 DOI: 10.3390/life12030402] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/04/2022] [Accepted: 03/07/2022] [Indexed: 11/16/2022] Open
Abstract
Charcot–Marie–Tooth (CMT) disease is the most commonly inherited neurological disorder. This study includes patients affected by CMT during regular follow-ups at the CMT clinic in Genova, a neuromuscular university center in the northwest of Italy, with the aim of describing the genetic distribution of CMT subtypes in our cohort and reporting a peculiar phenotype. Since 2004, 585 patients (447 index cases) have been evaluated at our center, 64.9% of whom have a demyelinating neuropathy and 35.1% of whom have an axonal neuropathy. A genetic diagnosis was achieved in 66% of all patients, with the following distribution: CMT1A (48%), HNPP (14%), CMT1X (13%), CMT2A (5%), and P0-related neuropathies (7%), accounting all together for 87% of all the molecularly defined neuropathies. Interestingly, we observe a peculiar phenotype with initial exclusive lower limb involvement as well as lower limb involvement that is maintained over time, which we have defined as a “strictly length-dependent” phenotype. Most patients with this clinical presentation shared variants in either HSPB1 or MPZ genes. The identification of distinctive phenotypes such as this one may help to address genetic diagnosis. In conclusion, we describe our diagnostic experiences as a multidisciplinary outpatient clinic, combining a gene-by-gene approach or targeted gene panels based on clinical presentation.
Collapse
|
16
|
A National French Consensus on Gene List for the Diagnosis of Charcot–Marie–Tooth Disease and Related Disorders Using Next-Generation Sequencing. Genes (Basel) 2022; 13:genes13020318. [PMID: 35205364 PMCID: PMC8871532 DOI: 10.3390/genes13020318] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 02/01/2022] [Accepted: 02/03/2022] [Indexed: 12/10/2022] Open
Abstract
Next generation sequencing (NGS) is strategically used for genetic diagnosis in patients with Charcot–Marie–Tooth disease (CMT) and related disorders called non-syndromic inherited peripheral neuropathies (NSIPN) in this paper. With over 100 different CMT-associated genes involved and ongoing discoveries, an important interlaboratory diversity of gene panels exists at national and international levels. Here, we present the work of the French National Network for Rare Neuromuscular Diseases (FILNEMUS) genetic diagnosis section which coordinates the seven French diagnosis laboratories using NGS for peripheral neuropathies. This work aimed to establish a unique, simple and accurate gene classification based on literature evidence. In NSIPN, three subgroups were usually distinguished: (1) HMSN, Hereditary Motor Sensory Neuropathy, (2) dHMN, distal Hereditary Motor Neuropathy, and (3) HSAN, Hereditary Sensory Autonomic Neuropathy. First, we reported ClinGen evaluation, and second, for the genes not evaluated yet by ClinGen, we classified them as “definitive” if reported in at least two clinical publications and associated with one report of functional evidence, or “limited” otherwise. In total, we report a unique consensus gene list for NSIPN including the three subgroups with 93 genes definitive and 34 limited, which is a good rate for our gene’s panel for molecular diagnostic use.
Collapse
|
17
|
Nagappa M, Sharma S, Govindaraj P, Chickabasaviah Y, Siram R, Shroti A, Seshagiri D, Debnath M, Bindu P, Taly A. Genetic spectrum of inherited neuropathies in India. Ann Indian Acad Neurol 2022; 25:407-416. [PMID: 35936615 PMCID: PMC9350795 DOI: 10.4103/aian.aian_269_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/29/2022] [Accepted: 04/30/2022] [Indexed: 11/17/2022] Open
Abstract
Background and Objectives: Charcot-Marie-Tooth (CMT) disease is the commonest inherited neuromuscular disorder and has heterogeneous manifestations. Data regarding genetic basis of CMT from India is limited. This study aims to report the variations by using high throughput sequencing in Indian CMT cohort. Methods: Fifty-five probands (M:F 29:26) with suspected inherited neuropathy underwent genetic testing (whole exome: 31, clinical exome: 17 and targeted panel: 7). Their clinical and genetic data were analysed. Results: Age at onset ranged from infancy to 54 years. Clinical features included early-onset neuropathy (n=23), skeletal deformities (n=45), impaired vision (n=8), impaired hearing (n=6), facial palsy (n=8), thickened nerves (n=4), impaired cognition (n=5), seizures (n=5), pyramidal signs (n=7), ataxia (n=8) and vocal cord palsy, slow tongue movements and psychosis in one patient each. Twenty-eight patients had demyelinating electrophysiology. Abnormal visual and auditory evoked potentials were noted in 60.60% and 37.5% respectively. Sixty two variants were identified in 37 genes including variants of uncertain significance (n=34) and novel variants (n=45). Eleven patients had additional variations in genes implicated in CMTs/ other neurological disorders. Ten patients did not have variations in neuropathy associated genes, but had variations in genes implicated in other neurological disorders. In seven patients, no variations were detected. Conclusion: In this single centre cohort study from India, genetic diagnosis could be established in 87% of patients with inherited neuropathy. The identified spectrum of genetic variations adds to the pool of existing data and provides a platform for validation studies in cell culture or animal model systems.
Collapse
|
18
|
Apgar TL, Sanders CR. Compendium of causative genes and their encoded proteins for common monogenic disorders. Protein Sci 2022; 31:75-91. [PMID: 34515378 PMCID: PMC8740837 DOI: 10.1002/pro.4183] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/29/2021] [Accepted: 08/31/2021] [Indexed: 01/19/2023]
Abstract
A compendium is presented of inherited monogenic disorders that have a prevalence of >1:20,000 in the human population, along with their causative genes and encoded proteins. "Simple" monogenic diseases are those for which the clinical features are caused by mutations impacting a single gene, usually in a manner that alters the sequence of the encoded protein. Of course, for a given "monogenic disorder", there is sometimes more than one potential disease gene, mutations in any one of which is sufficient to cause phenotypes of that disorder. Disease-causing mutations for monogenic disorders are usually passed on from generation to generation in a Mendelian fashion, and originate from spontaneous (de novo) germline founder mutations. In the past monogenic disorders have often been written off as targets for drug discovery because they sometimes are assumed to be rare disorders, for which the meager projected financial payoff of drug discovery and development has discouraged investment. However, not all monogenic diseases are rare. Here, we report that that currently available data identifies 72 disorders with a prevalence of at least 1 in 20,000 humans. For each, we tabulate the gene(s) for which mutations cause the spectrum of phenotypes associated with that disorder. We also identify the gene and protein that most commonly causes each disease. 34 of these disorders are caused exclusively by mutations in only a single gene and encoded protein.
Collapse
Affiliation(s)
- Tucker L. Apgar
- Department of Biochemistry and Center for Structural BiologyVanderbilt University School of Medicine Basic SciencesNashvilleTennesseeUSA
| | - Charles R. Sanders
- Department of Biochemistry and Center for Structural BiologyVanderbilt University School of Medicine Basic SciencesNashvilleTennesseeUSA
| |
Collapse
|
19
|
Guo Y, Su Q, Zhu X, Wang J, Lou Y, Miao P, Wang Y, Zhang B, Jin Y, Gao L, Xu X, Chen W, Sheng M, Feng J. Giant axonal neuropathy (GAN) in an 8-year-old girl caused by a homozygous pathogenic splicing variant in GAN gene. Am J Med Genet A 2021; 188:836-846. [PMID: 34889507 DOI: 10.1002/ajmg.a.62592] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 10/18/2021] [Accepted: 11/02/2021] [Indexed: 11/11/2022]
Abstract
Giant axonal neuropathy (GAN) is a progressive disease that involves the peripheral and central nervous systems. This neurodegenerative disease is caused by variants in the GAN gene encoding gigaxonin, and is inherited in an autosomal recessive manner. Herein, we performed whole-exome sequencing on a 8-year-old child with dense, curly hair, weakness in both lower limbs, and abnormal MRI. The child was born to consanguineous parents. Our results revealed that the child carried the c.1373+1G>A homozygous pathogenic variant of the GAN gene, while both parents were heterozygous carriers. According to the validation at the cDNA levels, the splicing variant led to the skipping of exon 8 and affected the Kelch domain's formation. Unlike the previously reported cases of GAN, the child's clinical manifestations revealed peripheral nervous system involvement, no vertebral signs, cerebellar signs, and spasticity, but only MRI abnormalities. These results suggested that the patient's central nervous system was mildly involved, which may be related to the genotype. In order to further clarify the correlation between GAN genotype and phenotype, combined with this patient, 54 cases of reported homozygous variants of the GAN gene were merged for the analysis of genotype and phenotype. The results revealed a certain correlation between the GAN gene variant domain and the patient's clinical phenotype, such as central nervous system involvement and age of onset.
Collapse
Affiliation(s)
- Yufan Guo
- Department of Pediatrics, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Qunyan Su
- Taizhou Women and Children's Hospital, Hangzhou, Zhejiang, China
| | - Xueying Zhu
- Lanxi People's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jianda Wang
- Department of Pediatrics, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yuting Lou
- Department of Pediatrics, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Pu Miao
- Department of Pediatrics, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Ye Wang
- Department of Pediatrics, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Bijun Zhang
- Department of Pediatrics, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yuting Jin
- Department of Pediatrics, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Liuyan Gao
- Department of Pediatrics, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xiaoxiao Xu
- Department of Pediatrics, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Wangyang Chen
- Kaiumph Medical Diagnostics Co., Ltd., Beijing, China
| | - Min Sheng
- Kaiumph Medical Diagnostics Co., Ltd., Beijing, China
| | - Jianhua Feng
- Department of Pediatrics, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
20
|
刘 梅, 方 朴, 王 严, 丛 璐, 范 洋, 袁 远, 徐 燕, 张 俊, 洪 道. [Clinical, pathological and genetic characteristics of 8 patients with distal hereditary motor neuropathy]. BEIJING DA XUE XUE BAO. YI XUE BAN = JOURNAL OF PEKING UNIVERSITY. HEALTH SCIENCES 2021; 53:957-963. [PMID: 34650302 PMCID: PMC8517674 DOI: 10.19723/j.issn.1671-167x.2021.05.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Indexed: 06/13/2023]
Abstract
OBJECTIVE Distal hereditary motor neuropathy (dHMN) comprises a heterogeneous group of inherited disorders associated with neurodegeneration of motor nerves and neurons, mainly charac-terized by progressive atrophy and weakness of distal muscle without clinical or electrophysiological sensory abnormalities. To improve the recognition and diagnosis of the disease, we summarized the clinical manifestations, electrophysiological, pathological, and genetic characteristics in eight patients with dHMN. METHODS Eight probands from different families diagnosed with dHMN were recruited in this study between June 2018 and April 2019 at Peking University People's Hospital. Eight patients underwent complete neurological examination and standard electrophysiological examinations. The clinical criteria were consistent with the patients presenting with a pure motor neuropathy with no sensory changes on electrophysiology. The detailed clinical symptoms, neurophysiological examinations, pathological features and gene mutations were analyzed retrospectively. Genetic testing was performed on the eight patients using targeted next-generation sequencing panel for inherited neuromuscular disorder and was combined with segregation analysis. RESULTS The age of onset ranged between 11 and 64 years (median 39.5 years) in our dHMN patients. All the cases showed a slowly progressive disease course, mainly characterized by distal limb muscle weakness and atrophy. The motor nerve conduction revealed decreased compound muscle action potential amplitude and velocity, while the sensory nerve conduction velocities and action potentials were not affected. Needle electromyography indicated neurogenic chronic denervation in all patients. Muscle biopsy performed in two patients demonstrated neurogenic skeletal muscle damage. Sural nerve biopsy was performed in one patient, Semithin sections shows relatively normal density and structure of large myelinated fibers, except very few fibers with thin myelin sheaths, which suggested very mild sensory nerve involvement. Eight different genes known to be associated with dHMN were identified in the patients by next-generation sequencing, pathogenic dHMN mutations were identified in three genes, and the detection rate of confirmed genetic diagnosis of dHMN was 37.5% (3/8). Whereas five variants of uncertain significance (VUS) were identified, among which two novel variants co-segregated the phenotype. CONCLUSION dHMN is a group of inherited peripheral neuropathies with great clinical and genetic heterogeneity. Next-generation sequencing is widely used to discover pathogenic genes in patients with dHMN, but more than half of the patients still remain genetically unknown.
Collapse
Affiliation(s)
- 梅歌 刘
- 北京大学人民医院神经内科,北京 100044Department of Neurology, Peking University People's Hospital, Beijing 100044, China
| | - 朴 方
- 南昌大学第一附属医院神经内科,南昌 330006Department of Neurology, the First Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - 严 王
- 北京大学人民医院神经内科,北京 100044Department of Neurology, Peking University People's Hospital, Beijing 100044, China
| | - 璐 丛
- 北京大学人民医院神经内科,北京 100044Department of Neurology, Peking University People's Hospital, Beijing 100044, China
| | - 洋溢 范
- 北京大学人民医院神经内科,北京 100044Department of Neurology, Peking University People's Hospital, Beijing 100044, China
| | - 远 袁
- 北京大学人民医院神经内科,北京 100044Department of Neurology, Peking University People's Hospital, Beijing 100044, China
| | - 燕 徐
- 北京大学人民医院神经内科,北京 100044Department of Neurology, Peking University People's Hospital, Beijing 100044, China
| | - 俊 张
- 北京大学人民医院神经内科,北京 100044Department of Neurology, Peking University People's Hospital, Beijing 100044, China
| | - 道俊 洪
- 北京大学人民医院神经内科,北京 100044Department of Neurology, Peking University People's Hospital, Beijing 100044, China
- 南昌大学第一附属医院神经内科,南昌 330006Department of Neurology, the First Affiliated Hospital of Nanchang University, Nanchang 330006, China
| |
Collapse
|
21
|
Abstract
Almost 25 years have passed since a mutation of a formin gene, DIAPH1, was identified as being responsible for a human inherited disorder: a form of sensorineural hearing loss. Since then, our knowledge of the links between formins and disease has deepened considerably. Mutations of DIAPH1 and six other formin genes (DAAM2, DIAPH2, DIAPH3, FMN2, INF2 and FHOD3) have been identified as the genetic cause of a variety of inherited human disorders, including intellectual disability, renal disease, peripheral neuropathy, thrombocytopenia, primary ovarian insufficiency, hearing loss and cardiomyopathy. In addition, alterations in formin genes have been associated with a variety of pathological conditions, including developmental defects affecting the heart, nervous system and kidney, aging-related diseases, and cancer. This review summarizes the most recent discoveries about the involvement of formin alterations in monogenic disorders and other human pathological conditions, especially cancer, with which they have been associated. In vitro results and experiments in modified animal models are discussed. Finally, we outline the directions for future research in this field.
Collapse
Affiliation(s)
| | - Miguel A. Alonso
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, 28049 Madrid, Spain;
| |
Collapse
|
22
|
Zuko A, Mallik M, Thompson R, Spaulding EL, Wienand AR, Been M, Tadenev ALD, van Bakel N, Sijlmans C, Santos LA, Bussmann J, Catinozzi M, Das S, Kulshrestha D, Burgess RW, Ignatova Z, Storkebaum E. tRNA overexpression rescues peripheral neuropathy caused by mutations in tRNA synthetase. Science 2021; 373:1161-1166. [PMID: 34516840 DOI: 10.1126/science.abb3356] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Amila Zuko
- Department of Molecular Neurobiology, Donders Institute for Brain, Cognition and Behaviour and Faculty of Science, Radboud University, Nijmegen, Netherlands
| | - Moushami Mallik
- Department of Molecular Neurobiology, Donders Institute for Brain, Cognition and Behaviour and Faculty of Science, Radboud University, Nijmegen, Netherlands.,Molecular Neurogenetics Laboratory, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Robin Thompson
- Biochemistry and Molecular Biology, Department of Chemistry, University of Hamburg, Hamburg, Germany
| | - Emily L Spaulding
- The Jackson Laboratory, Bar Harbor, ME, USA.,Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, ME, USA
| | - Anne R Wienand
- Department of Molecular Neurobiology, Donders Institute for Brain, Cognition and Behaviour and Faculty of Science, Radboud University, Nijmegen, Netherlands
| | - Marije Been
- Department of Molecular Neurobiology, Donders Institute for Brain, Cognition and Behaviour and Faculty of Science, Radboud University, Nijmegen, Netherlands
| | | | - Nick van Bakel
- Department of Molecular Neurobiology, Donders Institute for Brain, Cognition and Behaviour and Faculty of Science, Radboud University, Nijmegen, Netherlands
| | - Céline Sijlmans
- Department of Molecular Neurobiology, Donders Institute for Brain, Cognition and Behaviour and Faculty of Science, Radboud University, Nijmegen, Netherlands
| | - Leonardo A Santos
- Biochemistry and Molecular Biology, Department of Chemistry, University of Hamburg, Hamburg, Germany
| | - Julia Bussmann
- Molecular Neurogenetics Laboratory, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Marica Catinozzi
- Department of Molecular Neurobiology, Donders Institute for Brain, Cognition and Behaviour and Faculty of Science, Radboud University, Nijmegen, Netherlands.,Molecular Neurogenetics Laboratory, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Sarada Das
- Biochemistry and Molecular Biology, Department of Chemistry, University of Hamburg, Hamburg, Germany
| | - Divita Kulshrestha
- Department of Molecular Neurobiology, Donders Institute for Brain, Cognition and Behaviour and Faculty of Science, Radboud University, Nijmegen, Netherlands.,Molecular Neurogenetics Laboratory, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Robert W Burgess
- The Jackson Laboratory, Bar Harbor, ME, USA.,Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, ME, USA
| | - Zoya Ignatova
- Biochemistry and Molecular Biology, Department of Chemistry, University of Hamburg, Hamburg, Germany
| | - Erik Storkebaum
- Department of Molecular Neurobiology, Donders Institute for Brain, Cognition and Behaviour and Faculty of Science, Radboud University, Nijmegen, Netherlands.,Molecular Neurogenetics Laboratory, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| |
Collapse
|
23
|
Ferese R, Campopiano R, Scala S, D'Alessio C, Storto M, Buttari F, Centonze D, Logroscino G, Zecca C, Zampatti S, Fornai F, Cianci V, Manfroi E, Giardina E, Magnani M, Suppa A, Novelli G, Gambardella S. Cohort Analysis of 67 Charcot-Marie-Tooth Italian Patients: Identification of New Mutations and Broadening of Phenotype Expression Produced by Rare Variants. Front Genet 2021; 12:682050. [PMID: 34354735 PMCID: PMC8329958 DOI: 10.3389/fgene.2021.682050] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 06/17/2021] [Indexed: 11/13/2022] Open
Abstract
Charcot-Marie-Tooth (CMT) disease is the most prevalent inherited motor sensory neuropathy, which clusters a clinically and genetically heterogeneous group of disorders with more than 90 genes associated with different phenotypes. The goal of this study is to identify the genetic features in the recruited cohort of patients, highlighting the role of rare variants in the genotype-phenotype correlation. We enrolled 67 patients and applied a diagnostic protocol including multiple ligation-dependent probe amplification for copy number variation (CNV) detection of PMP22 locus, and next-generation sequencing (NGS) for sequencing of 47 genes known to be associated with CMT and routinely screened in medical genetics. This approach allowed the identification of 26 patients carrying a whole gene CNV of PMP22. In the remaining 41 patients, NGS identified the causative variants in eight patients in the genes HSPB1, MFN2, KIF1A, GDAP1, MTMR2, SH3TC2, KIF5A, and MPZ (five new vs. three previously reported variants; three sporadic vs. five familial variants). Familial segregation analysis allowed to correctly interpret two variants, initially reported as "variants of uncertain significance" but re-classified as pathological. In this cohort is reported a patient carrying a novel familial mutation in the tail domain of KIF5A [a protein domain previously associated with familial amyotrophic lateral sclerosis (ALS)], and a CMT patient carrying a HSPB1 mutation, previously reported in ALS. These data indicate that combined tools for gene association in medical genetics allow dissecting unexpected phenotypes associated with previously known or unknown genotypes, thus broadening the phenotype expression produced by either pathogenic or undefined variants. Clinical trial registration: ClinicalTrials.gov (NCT03084224).
Collapse
Affiliation(s)
| | | | | | | | | | | | - Diego Centonze
- IRCCS Neuromed, Pozzilli, Italy.,Laboratory of Synaptic Immunopathology, Department of Systems Medicine, Tor Vergata University, Rome, Italy
| | - Giancarlo Logroscino
- Center for Neurodegenerative Diseases and the Aging Brain, Department of Clinical Research in Neurology, The University of Bari "Aldo Moro," "Pia Fondazione Card G. Panico" Hospital Tricase, Lecce, Italy.,Department of Basic Medicine Neuroscience and Sense Organs, University "Aldo Moro" Bari, Bari, Italy
| | - Chiara Zecca
- Center for Neurodegenerative Diseases and the Aging Brain, Department of Clinical Research in Neurology, The University of Bari "Aldo Moro," "Pia Fondazione Card G. Panico" Hospital Tricase, Lecce, Italy
| | - Stefania Zampatti
- IRCCS Neuromed, Pozzilli, Italy.,Genomic Medicine Laboratory, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Francesco Fornai
- IRCCS Neuromed, Pozzilli, Italy.,Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Vittoria Cianci
- Regional Epilepsy Centre, Great Metropolitan Hospital Bianchi-Melacrino-Morelli, Reggio Calabria, Italy
| | - Elisabetta Manfroi
- Department of Neuroscience- Neurogenetics, Santa Maria Hospital, Terni, Italy
| | - Emiliano Giardina
- Genomic Medicine Laboratory, IRCCS Fondazione Santa Lucia, Rome, Italy.,Department of Biomedicine and Prevention, University of Rome "Tor Vergata," Rome, Italy
| | - Mauro Magnani
- Department of Biomolecular Sciences, University of Urbino "Carlo Bo," Urbino, Italy
| | - Antonio Suppa
- IRCCS Neuromed, Pozzilli, Italy.,Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
| | - Giuseppe Novelli
- IRCCS Neuromed, Pozzilli, Italy.,Department of Biomedicine and Prevention, University of Rome "Tor Vergata," Rome, Italy
| | - Stefano Gambardella
- IRCCS Neuromed, Pozzilli, Italy.,Department of Biomolecular Sciences, University of Urbino "Carlo Bo," Urbino, Italy
| |
Collapse
|
24
|
Abati E, Magri S, Meneri M, Manenti G, Velardo D, Balistreri F, Pisciotta C, Saveri P, Bresolin N, Comi GP, Ronchi D, Pareyson D, Taroni F, Corti S. Charcot-Marie-Tooth disease type 2F associated with biallelic HSPB1 mutations. Ann Clin Transl Neurol 2021; 8:1158-1164. [PMID: 33943041 PMCID: PMC8108422 DOI: 10.1002/acn3.51364] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 03/19/2021] [Accepted: 03/24/2021] [Indexed: 12/21/2022] Open
Abstract
Objective This work aims to expand knowledge regarding the genetic spectrum of HSPB1‐related diseases. HSPB1 is a gene encoding heat shock protein 27, and mutations in HSPB1 have been identified as the cause of axonal Charcot–Marie–Tooth (CMT) disease type 2F and distal hereditary motor neuropathy (dHMN). Methods Two patients with axonal sensorimotor neuropathy underwent detailed clinical examinations, neurophysiological studies, and next‐generation sequencing with subsequent bioinformatic prioritization of genetic variants and in silico analysis of the likely causal mutation. Results The HSPB1 p.S135F and p.R136L mutations were identified in homozygosis in the two affected individuals. Both mutations affect the highly conserved alpha‐crystallin domain and have been previously described as the cause of severe CMT2F/dHMN, showing a strictly dominant inheritance pattern. Interpretation Thus, we report for the first time two cases of biallelic HSPB1 p.S135F and p.R136L mutations in two families.
Collapse
Affiliation(s)
- Elena Abati
- Department of Pathophysiology and Transplantation (DEPT), Dino Ferrari Centre, Neuroscience Section, University of Milan, Milan, Italy
| | - Stefania Magri
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Megi Meneri
- Neurology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Giulia Manenti
- Department of Pathophysiology and Transplantation (DEPT), Dino Ferrari Centre, Neuroscience Section, University of Milan, Milan, Italy
| | - Daniele Velardo
- Neurology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Francesca Balistreri
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Chiara Pisciotta
- Rare Neurodegenerative and Neurometabolic Diseases Unit, Department of Clinical Neurosciences, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Paola Saveri
- Rare Neurodegenerative and Neurometabolic Diseases Unit, Department of Clinical Neurosciences, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Nereo Bresolin
- Department of Pathophysiology and Transplantation (DEPT), Dino Ferrari Centre, Neuroscience Section, University of Milan, Milan, Italy.,Neurology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Giacomo Pietro Comi
- Department of Pathophysiology and Transplantation (DEPT), Dino Ferrari Centre, Neuroscience Section, University of Milan, Milan, Italy.,Neurology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Dario Ronchi
- Department of Pathophysiology and Transplantation (DEPT), Dino Ferrari Centre, Neuroscience Section, University of Milan, Milan, Italy
| | - Davide Pareyson
- Rare Neurodegenerative and Neurometabolic Diseases Unit, Department of Clinical Neurosciences, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Franco Taroni
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Stefania Corti
- Department of Pathophysiology and Transplantation (DEPT), Dino Ferrari Centre, Neuroscience Section, University of Milan, Milan, Italy.,Neurology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| |
Collapse
|
25
|
Beijer D, Baets J. The expanding genetic landscape of hereditary motor neuropathies. Brain 2021; 143:3540-3563. [PMID: 33210134 DOI: 10.1093/brain/awaa311] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 07/15/2020] [Accepted: 07/27/2020] [Indexed: 12/12/2022] Open
Abstract
Hereditary motor neuropathies are clinically and genetically diverse disorders characterized by length-dependent axonal degeneration of lower motor neurons. Although currently as many as 26 causal genes are known, there is considerable missing heritability compared to other inherited neuropathies such as Charcot-Marie-Tooth disease. Intriguingly, this genetic landscape spans a discrete number of key biological processes within the peripheral nerve. Also, in terms of underlying pathophysiology, hereditary motor neuropathies show striking overlap with several other neuromuscular and neurological disorders. In this review, we provide a current overview of the genetic spectrum of hereditary motor neuropathies highlighting recent reports of novel genes and mutations or recent discoveries in the underlying disease mechanisms. In addition, we link hereditary motor neuropathies with various related disorders by addressing the main affected pathways of disease divided into five major processes: axonal transport, tRNA aminoacylation, RNA metabolism and DNA integrity, ion channels and transporters and endoplasmic reticulum.
Collapse
Affiliation(s)
- Danique Beijer
- Translational Neurosciences, Faculty of Medicine and Health Sciences, University of Antwerp, Belgium.,Laboratory of Neuromuscular Pathology, Institute Born-Bunge, University of Antwerp, Belgium
| | - Jonathan Baets
- Translational Neurosciences, Faculty of Medicine and Health Sciences, University of Antwerp, Belgium.,Laboratory of Neuromuscular Pathology, Institute Born-Bunge, University of Antwerp, Belgium.,Neuromuscular Reference Centre, Department of Neurology, Antwerp University Hospital, Belgium
| |
Collapse
|
26
|
Reilich P, Schlotter B, Montagnese F, Jordan B, Stock F, Schäff-Vogelsang M, Hotter B, Eger K, Diebold I, Erdmann H, Becker K, Schön U, Abicht A. Location matters - Genotype-phenotype correlation in LRSAM1 mutations associated with rare Charcot-Marie-Tooth neuropathy CMT2P. Neuromuscul Disord 2021; 31:123-133. [PMID: 33414056 DOI: 10.1016/j.nmd.2020.11.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 11/16/2020] [Accepted: 11/23/2020] [Indexed: 01/01/2023]
Abstract
More than 80 genes are known to be associated with Charcot-Marie-Tooth disease (CMT). Mutations of LRSAM1 were identified as a rare cause and define the subgroup of axonal neuropathy CMT2P. We identified additional 14 patients out of 12 families. Clinical and electrophysiological data confirm a late-onset axonal neuropathy with a predominance of sensorimotor impairment. The patients harbored ten different variants in LRSAM1, seven of which were novel. Due to variable inheritance patterns and clustering of pathogenic variants in 3´-prime exons, interpretation of genetic variants in LRSAM1 is challenging. The majority follows dominant inheritance, whereas recessive inheritance has been described for one variant. Variants at the 3`end may or may not escape from nonsense-mediated decay, thereby defining the pattern of inheritance. Our data emphasize the importance of the C-terminal RING domain, which exerts a dominant-negative effect on protein function, whenever affected by an altered or truncated protein. In conclusion, CMT2P is a rare, but nevertheless relevant cause of adult-onset axonal and painful neuropathy. ACMG (American College of Medical Genetics and genomics) criteria should be carefully applied in variant interpretation, with special attention to premature termination codon-introducing variants and their location within the gene.
Collapse
Affiliation(s)
- Peter Reilich
- Department of Neurology, Friedrich-Baur-Institute, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Beate Schlotter
- Department of Neurology, Friedrich-Baur-Institute, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Federica Montagnese
- Department of Neurology, Friedrich-Baur-Institute, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Berit Jordan
- Department of Neurology, University Hospital of Halle, Halle, Germany; Department of Neurology, University Hospital of Heidelberg, Heidelberg, Germany
| | - Friedrich Stock
- Institute of Human Genetics, Universitätsklinikum Münster, Münster, Germany
| | | | - Benjamin Hotter
- Department of Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt- Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Katherina Eger
- Gemeinschaftspraxis für Neurologie und Psychiatrie, Leipzig, Germany
| | - Isabel Diebold
- Department of Pediatrics, Technical University of Munich School of Medicine, Munich, Germany; Medical Genetics Centre, Bayerstr. 3-5, 80335 Munich, Germany
| | - Hannes Erdmann
- Medical Genetics Centre, Bayerstr. 3-5, 80335 Munich, Germany
| | - Kerstin Becker
- Medical Genetics Centre, Bayerstr. 3-5, 80335 Munich, Germany
| | - Ulrike Schön
- Medical Genetics Centre, Bayerstr. 3-5, 80335 Munich, Germany
| | - Angela Abicht
- Department of Neurology, Friedrich-Baur-Institute, Ludwig-Maximilians-University Munich, Munich, Germany; Medical Genetics Centre, Bayerstr. 3-5, 80335 Munich, Germany.
| |
Collapse
|
27
|
Paketci C, Karakaya M, Edem P, Bayram E, Keller N, Daimagüler HS, Cirak S, Jordanova A, Hiz S, Wirth B, Yiş U. Clinical, electrophysiological and genetic characteristics of childhood hereditary polyneuropathies. Rev Neurol (Paris) 2020; 176:846-855. [DOI: 10.1016/j.neurol.2020.04.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 04/04/2020] [Accepted: 04/07/2020] [Indexed: 12/26/2022]
|
28
|
Abstract
Abstract
Inherited peripheral neuropathy is the most common hereditary neuromuscular disease with a prevalence of about 1:2,500. The most frequent form is Charcot-Marie-Tooth disease (CMT, or hereditary motor and sensory neuropathy [HMSN]). Other clinical entities are hereditary neuropathy with liability to pressure palsies (HNPP), distal hereditary motor neuropathies (dHMN), and hereditary sensory and autonomic neuropathies (HSAN). With the exception of HNPP, which is almost always caused by defects of the PMP22 gene, all other forms show genetic heterogeneity with altogether more than 100 genes involved. Mutation detection rates vary considerably, reaching up to 80 % in demyelinating CMT (CMT1) but are still as low as 10–30 % in axonal CMT (CMT2), dHMN, and HSAN. Based on current information, analysis of only four genes (PMP22, GJB1, MPZ, MFN2) identifies 80–90 % of CMT-causing mutations that can be detected in all known disease genes. For the remaining patients, parallel analysis of multiple neuropathy genes using next-generation sequencing is now replacing phenotype-oriented multistep gene-by-gene sequencing. Such approaches tend to generate a wealth of genetic information that requires comprehensive evaluation of the pathogenic relevance of identified variants. In this review, we present current classification systems, specific phenotypic clues, and diagnostic yields in the different subgroups of hereditary CMT and motor neuropathies.
Collapse
|
29
|
Padilha JPD, Brasil CS, Hoefel AML, Winckler PB, Donis KC, Brusius-Facchin AC, Saute JAM. Diagnostic yield of targeted sequential and massive panel approaches for inherited neuropathies. Clin Genet 2020; 98:185-190. [PMID: 32506583 DOI: 10.1111/cge.13793] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 05/28/2020] [Accepted: 06/02/2020] [Indexed: 12/01/2022]
Abstract
Diagnostic yield of genetic studies for Charcot-Marie-Tooth disease (CMT) is little known, with a lack of epidemiological data to build better diagnostic strategies outside the United States and Europe. We aimed to evaluate the performance of two molecular diagnostic strategies for patients with CMT, and to characterize epidemiological findings of these conditions in southern Brazil. We performed a single-center cross-sectional study, in which 94 patients (55 families) with CMT suspicion were evaluated. Overall, the diagnostic yield of the combined strategy of Multiplex-ligation-dependent-probe-amplification (MLPA) of PMP22/GJB1/MPZ and GJB1/MPZ/PMP22 Sanger sequencing was 63.6% (28/44) for index cases with demyelinating/intermediate CMT suspicion (21 CMT1A-PMP22, 5 CMTX1-GJB1 and 2 with probably CMT1B-MPZ diagnosis). Five of the 11 index cases (45.4%) with axonal CMT had at least a possible diagnosis with next generation sequencing (NGS) panel of 104 inherited neuropathies-related genes (one each with CMT1A-PMP22, CMT2A-MFN2, CMT2K-GDAP1, CMT2U-MARS, CMT2W-HARS1). Detailed clinical, neurophysiological and molecular data of families are provided. Sequential molecular diagnosis strategies with MLPA plus target Sanger sequencing for demyelinating/intermediate CMT had high diagnostic yield, and almost half of axonal CMT families had at least a possible diagnosis with the comprehensive NGS panel. Most frequent subtypes of CMT in our region are CMT1A-PMP22 and CMTX1-GJB1.
Collapse
Affiliation(s)
- Janice Pacheco Dias Padilha
- Graduate Program in Medicine, Medical Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Translational Neurogenetics Laboratory, Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil
| | - Carolina Serpa Brasil
- Division of Medical Genetics, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil
| | - Alice Maria Luderitz Hoefel
- Graduate Program in Medicine, Medical Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Neurogenetics Clinical Research Center, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil
| | - Pablo Brea Winckler
- Graduate Program in Medicine, Medical Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Neurogenetics Clinical Research Center, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil
- Division of Neurology, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil
| | - Karina Carvalho Donis
- Division of Medical Genetics, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil
- Neurogenetics Clinical Research Center, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil
- Graduate Program in Genetics and Molecular Biology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Ana Carolina Brusius-Facchin
- Graduate Program in Medicine, Medical Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Division of Medical Genetics, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil
| | - Jonas Alex Morales Saute
- Graduate Program in Medicine, Medical Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Translational Neurogenetics Laboratory, Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil
- Division of Medical Genetics, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil
- Neurogenetics Clinical Research Center, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil
- Division of Neurology, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil
- Internal Medicine Department, Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
30
|
Frasquet M, Camacho A, Vílchez R, Argente‐Escrig H, Millet E, Vázquez‐Costa JF, Silla R, Sánchez‐Monteagudo A, Vílchez JJ, Espinós C, Lupo V, Sevilla T. Clinical spectrum of
BICD2
mutations. Eur J Neurol 2020; 27:1327-1335. [DOI: 10.1111/ene.14173] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 02/03/2020] [Indexed: 11/27/2022]
Affiliation(s)
- M. Frasquet
- Neuromuscular Diseases Unit Neurology Department Hospital Universitari i Politècnic La Fe ValenciaSpain
- Neuromuscular & Ataxias Research Group Instituto de Investigación Sanitaria La Fe ValenciaSpain
- Joint Unit for Research on Rare Diseases CIPF‐IISLa Fe Valencia Spain
| | - A. Camacho
- Division of Child Neurology Hospital Universitario 12 de Octubre MadridSpain
- Faculty of Medicine Complutense University of Madrid Madrid Spain
| | - R. Vílchez
- Neuromuscular & Ataxias Research Group Instituto de Investigación Sanitaria La Fe ValenciaSpain
| | - H. Argente‐Escrig
- Neuromuscular Diseases Unit Neurology Department Hospital Universitari i Politècnic La Fe ValenciaSpain
- Neuromuscular & Ataxias Research Group Instituto de Investigación Sanitaria La Fe ValenciaSpain
- Joint Unit for Research on Rare Diseases CIPF‐IISLa Fe Valencia Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER) ValenciaSpain
| | - E. Millet
- Department of Clinical Neurophysiology Hospital Universitari i Politècnic La Fe ValenciaSpain
| | - J. F. Vázquez‐Costa
- Neuromuscular Diseases Unit Neurology Department Hospital Universitari i Politècnic La Fe ValenciaSpain
- Neuromuscular & Ataxias Research Group Instituto de Investigación Sanitaria La Fe ValenciaSpain
- Joint Unit for Research on Rare Diseases CIPF‐IISLa Fe Valencia Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER) ValenciaSpain
- Department of Medicine Universitat de València ValenciaSpain
| | - R. Silla
- Neurology Department Hospital Clínico Universitario ValenciaSpain
| | - A. Sánchez‐Monteagudo
- Joint Unit for Research on Rare Diseases CIPF‐IISLa Fe Valencia Spain
- Service of Genomics and Translational Genetics Centro de Investigación Príncipe Felipe (CIPF) ValenciaSpain
| | - J. J. Vílchez
- Neuromuscular Diseases Unit Neurology Department Hospital Universitari i Politècnic La Fe ValenciaSpain
- Neuromuscular & Ataxias Research Group Instituto de Investigación Sanitaria La Fe ValenciaSpain
- Joint Unit for Research on Rare Diseases CIPF‐IISLa Fe Valencia Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER) ValenciaSpain
| | - C. Espinós
- Joint Unit for Research on Rare Diseases CIPF‐IISLa Fe Valencia Spain
- Service of Genomics and Translational Genetics Centro de Investigación Príncipe Felipe (CIPF) ValenciaSpain
- Unit of Genetics and Genomics of Neuromuscular and Neurodegenerative Disorders ValenciaSpain
- Department of Genetics Universitat de València Valencia Spain
| | - V. Lupo
- Joint Unit for Research on Rare Diseases CIPF‐IISLa Fe Valencia Spain
- Service of Genomics and Translational Genetics Centro de Investigación Príncipe Felipe (CIPF) ValenciaSpain
- Unit of Genetics and Genomics of Neuromuscular and Neurodegenerative Disorders ValenciaSpain
| | - T. Sevilla
- Neuromuscular Diseases Unit Neurology Department Hospital Universitari i Politècnic La Fe ValenciaSpain
- Neuromuscular & Ataxias Research Group Instituto de Investigación Sanitaria La Fe ValenciaSpain
- Joint Unit for Research on Rare Diseases CIPF‐IISLa Fe Valencia Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER) ValenciaSpain
- Department of Medicine Universitat de València ValenciaSpain
| |
Collapse
|
31
|
Mortreux J, Bacquet J, Boyer A, Alazard E, Bellance R, Giguet-Valard AG, Cerino M, Krahn M, Audic F, Chabrol B, Laugel V, Desvignes JP, Béroud C, Nguyen K, Verschueren A, Lévy N, Attarian S, Delague V, Missirian C, Bonello-Palot N. Identification of novel pathogenic copy number variations in Charcot-Marie-Tooth disease. J Hum Genet 2019; 65:313-323. [PMID: 31852984 DOI: 10.1038/s10038-019-0710-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 12/03/2019] [Accepted: 12/08/2019] [Indexed: 12/13/2022]
Abstract
Charcot-Marie-Tooth disease (CMT) is a hereditary sensory-motor neuropathy characterized by a strong clinical and genetic heterogeneity. Over the past few years, with the occurrence of whole-exome sequencing (WES) or whole-genome sequencing (WGS), the molecular diagnosis rate has been improved by allowing the screening of more than 80 genes at one time. In CMT, except the recurrent PMP22 duplication accounting for about 60% of pathogenic variations, pathogenic copy number variations (CNVs) are rarely reported and only a few studies screening specifically CNVs have been performed. The aim of the present study was to screen for CNVs in the most prevalent genes associated with CMT in a cohort of 200 patients negative for the PMP22 duplication. CNVs were screened using the Exome Depth software on next generation sequencing (NGS) data obtained by targeted capture and sequencing of a panel of 81 CMT associated genes. Deleterious CNVs were identified in four patients (2%), in four genes: GDAP1, LRSAM1, GAN, and FGD4. All CNVs were confirmed by high-resolution oligonucleotide array Comparative Genomic Hybridization (aCGH) and/or quantitative PCR. By identifying four new CNVs in four different genes, we demonstrate that, although they are rare mutational events in CMT, CNVs might contribute significantly to mutational spectrum of Charcot-Marie-Tooth disease and should be searched in routine NGS diagnosis. This strategy increases the molecular diagnosis rate of patients with neuropathy.
Collapse
Affiliation(s)
- J Mortreux
- Département de génétique médicale, Hôpital Timone enfants, Assistance-Publique Hôpitaux de Marseille, Marseille, France.,Aix Marseille Univ, INSERM, MMG, U1251, Marseille, France
| | - J Bacquet
- Département de génétique médicale, Hôpital Timone enfants, Assistance-Publique Hôpitaux de Marseille, Marseille, France.,Aix Marseille Univ, INSERM, MMG, U1251, Marseille, France
| | - A Boyer
- Département de génétique médicale, Hôpital Timone enfants, Assistance-Publique Hôpitaux de Marseille, Marseille, France
| | - E Alazard
- Département de génétique médicale, Hôpital Timone enfants, Assistance-Publique Hôpitaux de Marseille, Marseille, France
| | - R Bellance
- Centre de référence Caribéen pour les maladies neuromusculaires, CeRCa, Hôpital Pierre-Zobda-Quitman, CHU de Martinique, France
| | - A G Giguet-Valard
- Centre de référence Caribéen pour les maladies neuromusculaires, CeRCa, Hôpital Pierre-Zobda-Quitman, CHU de Martinique, France
| | - M Cerino
- Département de génétique médicale, Hôpital Timone enfants, Assistance-Publique Hôpitaux de Marseille, Marseille, France.,Aix Marseille Univ, INSERM, MMG, U1251, Marseille, France
| | - M Krahn
- Département de génétique médicale, Hôpital Timone enfants, Assistance-Publique Hôpitaux de Marseille, Marseille, France.,Aix Marseille Univ, INSERM, MMG, U1251, Marseille, France
| | - F Audic
- Centre de référence des maladies neuromusculaires, Hôpital de la Timone enfant, Assistance-Publique Hôpitaux de Marseille, Marseille, France
| | - B Chabrol
- Centre de référence des maladies neuromusculaires, Hôpital de la Timone enfant, Assistance-Publique Hôpitaux de Marseille, Marseille, France
| | - V Laugel
- Centre de référence des maladies neuromusculaires, Service de pédiatrie, CHU Strasbourg, France
| | - J P Desvignes
- Aix Marseille Univ, INSERM, MMG, U1251, Marseille, France
| | - C Béroud
- Département de génétique médicale, Hôpital Timone enfants, Assistance-Publique Hôpitaux de Marseille, Marseille, France.,Aix Marseille Univ, INSERM, MMG, U1251, Marseille, France
| | - K Nguyen
- Département de génétique médicale, Hôpital Timone enfants, Assistance-Publique Hôpitaux de Marseille, Marseille, France.,Aix Marseille Univ, INSERM, MMG, U1251, Marseille, France
| | - A Verschueren
- Centre de référence des maladies neuromusculaires, Hôpital de la Timone Adulte, Assistance-Publique Hôpitaux de Marseille, Marseille, France
| | - N Lévy
- Département de génétique médicale, Hôpital Timone enfants, Assistance-Publique Hôpitaux de Marseille, Marseille, France.,Aix Marseille Univ, INSERM, MMG, U1251, Marseille, France
| | - S Attarian
- Centre de référence des maladies neuromusculaires, Hôpital de la Timone Adulte, Assistance-Publique Hôpitaux de Marseille, Marseille, France
| | - V Delague
- Aix Marseille Univ, INSERM, MMG, U1251, Marseille, France
| | - C Missirian
- Département de génétique médicale, Hôpital Timone enfants, Assistance-Publique Hôpitaux de Marseille, Marseille, France.,Aix Marseille Univ, INSERM, MMG, U1251, Marseille, France
| | - N Bonello-Palot
- Département de génétique médicale, Hôpital Timone enfants, Assistance-Publique Hôpitaux de Marseille, Marseille, France. .,Aix Marseille Univ, INSERM, MMG, U1251, Marseille, France.
| |
Collapse
|
32
|
Whole exome sequencing reveals a broader variant spectrum of Charcot-Marie-Tooth disease type 2. Neurogenetics 2019; 21:79-86. [PMID: 31832804 DOI: 10.1007/s10048-019-00591-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 09/12/2019] [Indexed: 12/21/2022]
Abstract
Charcot-Marie-Tooth disease type 2 (CMT2) is a clinically and genetically heterogeneous inherited neuropathy. Although new causative and disease-associated genes have been identified for CMT2 in recent years, molecular diagnoses are still lacking for a majority of patients. We here studied a cohort of 35 CMT2 patients of Chinese descent, using whole exome sequencing to investigate gene mutations and then explored relationships among genotypes, clinical features, and mitochondrial DNA levels in blood as assessed by droplet digital PCR. We identified pathogenic variants in 57% of CMT2 patients. The most common genetic causes in the cohort were MFN2 mutations. Two patients with typical CMT phenotype and neuromyotonia were detected to harbor compound heterozygous variations in the HINT1 gene. In conclusion, our work supports that the molecular diagnostic rate of CMT2 patients can be increased via whole exome sequencing, and our data suggest that assessment of possible HINT1 mutations should be undertaken for CMT2 patients with neuromyotonia.
Collapse
|
33
|
Echaniz-Laguna A, Cuisset JM, Guyant-Marechal L, Aubourg P, Kremer L, Baaloul N, Verloes A, Beladgham K, Perrot J, Francou B, Latour P. Giant axonal neuropathy: a multicenter retrospective study with genotypic spectrum expansion. Neurogenetics 2019; 21:29-37. [PMID: 31655922 DOI: 10.1007/s10048-019-00596-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 10/06/2019] [Indexed: 10/25/2022]
Abstract
Giant axonal neuropathy (GAN) is an autosomal recessive disease caused by mutations in the GAN gene encoding gigaxonin. Patients develop a progressive sensorimotor neuropathy affecting peripheral nervous system (PNS) and central nervous system (CNS). Methods: In this multicenter observational retrospective study, we recorded French patients with GAN mutations, and 10 patients were identified. Mean age of patients was 9.7 years (2-18), eight patients were female (80%), and all patients met infant developmental milestones and had a family history of consanguinity. Mean age at disease onset was 3.3 years (1-5), and progressive cerebellar ataxia and distal motor weakness were the initial symptoms in all cases. Proximal motor weakness and bulbar symptoms appeared at a mean age of 12 years (8-14), and patients used a wheelchair at a mean age of 16 years (14-18). One patient died at age 18 years from aspiration pneumonia. In all cases, nerve conduction studies showed a mixed demyelinating and axonal sensorimotor neuropathy and MRI showed brain and cerebellum white matter abnormalities. Polyneuropathy and encephalopathy both aggravated during the course of the disease. Patients also showed a variety of associated findings, including curly hair (100% of cases), pes cavus (80%), ophthalmic abnormalities (30%), and scoliosis (30%). Five new GAN mutations were found, including the first synonymous mutation and a large intragenic deletion. Our findings expand the genotypic spectrum of GAN mutations, with relevant implications for molecular analysis of this gene, and confirm that GAN is an age-related progressive neurodegenerative disease involving PNS and CNS.
Collapse
Affiliation(s)
- Andoni Echaniz-Laguna
- Neurology Department, APHP, CHU de Bicêtre, 78 rue du Général Leclerc, 94276, Le Kremlin-Bicêtre Cedex, France. .,French National Reference Center for Rare Neuropathies (NNERF), 94276, Le Kremlin-Bicêtre, France. .,INSERM U1195 Paris-Sud University, 94276, Le Kremlin-Bicêtre, France.
| | | | | | - Patrick Aubourg
- Department of Pediatric Neurology, APHP, Bicêtre University Hospital, Le Kremlin-Bicêtre, France.,Paris-Sud University, Inserm U 1169, Le Kremlin-Bicêtre, France
| | - Laurent Kremer
- Department of Neurology, Hôpitaux Universitaires, 67098, Strasbourg, France.,INSERM U1119, FMTS, UDS, Strasbourg, France
| | | | - Alain Verloes
- Genetics Department, APHP, Robert Debré Hospital, Paris, France
| | | | - Jimmy Perrot
- Biology and Pathology Department, Hospices Civils, Lyon, Bron, France
| | - Bruno Francou
- Department of Molecular Genetics Pharmacogenomics and Hormonology, APHP, CHU de Bicêtre, 94276, Le Kremlin-Bicêtre, France
| | - Philippe Latour
- Biology and Pathology Department, Hospices Civils, Lyon, Bron, France
| |
Collapse
|
34
|
Bis-Brewer DM, Fazal S, Züchner S. Genetic modifiers and non-Mendelian aspects of CMT. Brain Res 2019; 1726:146459. [PMID: 31525351 DOI: 10.1016/j.brainres.2019.146459] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 09/04/2019] [Accepted: 09/12/2019] [Indexed: 12/14/2022]
Abstract
Charcot-Marie-Tooth (CMT) neuropathies are amongst the most common inherited diseases in neurology. While great strides have been made to identify the genesis of these diseases, a diagnostic gap of 30-60% remains. Classic models of genetic causation may be limited to fully close this gap and, thus, we review the current state and future role of alternative, non-Mendelian forms of genetics in CMT. Promising synergies exist to further define the full genetic architecture of inherited neuropathies, including affordable whole-genome sequencing, increased data aggregation and clinical collaboration, improved bioinformatics and statistical methodology, and vastly improved computational resources. Given the recent advances in genetic therapies for rare diseases, it becomes a matter of urgency to diagnose CMT patients with great fidelity. Otherwise, they will not be able to benefit from such therapeutic options, or worse, suffer harm when pathogenicity of genetic variation is falsely evaluated. In addition, the newly identified modifier and risk genes may offer alternative targets for pharmacotherapy of inherited and, potentially, even acquired forms of neuropathies.
Collapse
Affiliation(s)
- Dana M Bis-Brewer
- Dr. John T. Macdonald Foundation, Department of Human Genetics and John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Sarah Fazal
- Dr. John T. Macdonald Foundation, Department of Human Genetics and John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Stephan Züchner
- Dr. John T. Macdonald Foundation, Department of Human Genetics and John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA.
| |
Collapse
|
35
|
Peretti A, Perie M, Vincent D, Bouhour F, Dieterich K, Mallaret M, Duval F, Goizet C, Juntas-Morales R, Magy L, Solé G, Nollet S, Not A, Léonard-Louis S, Francou B, Leguern E, Lia AS, Magdelaine C, Latour P, Stojkovic T. LRSAM1 variants and founder effect in French families with ataxic form of Charcot-Marie-Tooth type 2. Eur J Hum Genet 2019; 27:1406-1418. [PMID: 30996334 PMCID: PMC6777460 DOI: 10.1038/s41431-019-0403-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 03/17/2019] [Accepted: 03/26/2019] [Indexed: 11/08/2022] Open
Abstract
Currently only 25-30% of patients with axonal forms of Charcot-Marie-Tooth disease (CMT) receive a genetic diagnosis. We aimed to identify the causative gene of CMT type 2 in 8 non-related French families with a distinct clinical phenotype. We collected clinical, electrophysiological, and laboratory findings and performed genetic analyses in four different French laboratories. Seventy-two patients with autosomal dominant inheritance were identified. The disease usually started in the fourth decade and the clinical picture was dominated by sensory ataxia (80%), neuropathic pain (38%), and length-dependent sensory loss to all modalities. Electrophysiological studies showed a primarily axonal neuropathy, with possible isolated sensory involvement in milder phenotypes. Disease severity varied greatly but the clinical course was generally mild. We identified 2 novel variants in LRSAM1 gene: a deletion of 4 amino acids, p.(Gln698_Gln701del), was found in 7 families and a duplication of a neighboring region of 10 amino acids, p.(Pro702_Gln711dup), in the remaining family. A common haplotype of ~450 kb suggesting a founder effect was noted around LRSAM1 in 4 families carrying the first variant. LRSAM1 gene encodes for an E3 ubiquitin ligase important for neural functioning. Our results confirm the localization of variants in its catalytic C-terminal RING domain and broaden the phenotypic spectrum of LRSAM1-related neuropathies, including painful and predominantly sensory ataxic forms.
Collapse
Affiliation(s)
- Alessia Peretti
- AP-HP, G-H Pitié-Salpêtrière, Centre de Référence des Maladies neuromusculaires, Paris Nord/Est/Ile de france, Paris, France.
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy.
| | - Maud Perie
- Service de Neurologie CHU Gabriel Montpied, Clermont Ferrand, France
| | - Didier Vincent
- Service de Neurologie, Groupe Hospitalier La Rochelle-Ré-Aunis, La Rochelle, France
| | - Françoise Bouhour
- Hôpital Neurologique Pierre Wertheimer, Service d'ENMG-Pathologies Neuromusculaires, Lyon-Bron, France
| | - Klaus Dieterich
- Service de Génétique Clinique, Hôpital Couple Enfant, CHU Grenoble Alpes, Grenoble, France
| | - Martial Mallaret
- Centre de Compétences des Maladies Neuro Musculaires, CHU Grenoble Alpes, Grenoble, France
| | - Fanny Duval
- Département de Neurologie, CHU Bordeaux (Pellegrin Hospital), Bordeaux, France
| | - Cyril Goizet
- Centre de Référence neurogénétique, Hôpital Pellegrin, CHU Bordeaux, Bordeaux, France
- Laboratoire MRGM, INSERM U1211, Univ. Bordeaux, Bordeaux, France
| | | | - Laurent Magy
- Service et Laboratoire de Neurologie, Centre de Référence Neuropathies Périphériques rares, CHU Limoges, Limoges, France
| | - Guilhem Solé
- Département de Neurologie, CHU Bordeaux (Pellegrin Hospital), Bordeaux, France
| | - Sylvain Nollet
- Service Explorations et Pathologies Neuromusculaires, CHRU Besançon, Besançon, France
| | - Adeline Not
- AP-HP, Service de Neurologie, CHU Bicêtre, Le Kremlin-Bicêtre, France
- Centre de Référence national des Neuropathies amyloïdes familiales et Autres Neuropathies périphériques rares (NNERF), Le Kremlin-Bicêtre, France
| | - Sarah Léonard-Louis
- AP-HP, G-H Pitié-Salpêtrière, Centre de Référence des Maladies neuromusculaires, Paris Nord/Est/Ile de france, Paris, France
| | - Bruno Francou
- AP-HP, Bicêtre Paris Sud Hospital, Service Génétique moléculaire pharmacogénétique et Hormonologie, Le Kremlin-Bicêtre, France
| | - Eric Leguern
- Département de Génétique, AP-HP, Sorbonne Université, Paris, France
- Hôpital Pitié-Salpêtrière, Paris, France
| | | | | | - Philippe Latour
- Service de Biochimie et Biologie moléculaire Grand Est, Unité Médicale Pathologies neurologiques et cardiologiques, Centre de Biologie et de Pathologie Est, Hospices Civils de Lyon, Bron, France
| | - Tanya Stojkovic
- AP-HP, G-H Pitié-Salpêtrière, Centre de Référence des Maladies neuromusculaires, Paris Nord/Est/Ile de france, Paris, France
| |
Collapse
|
36
|
Chen C, Dong H, Wei Q, Li L, Yu H, Li J, Liu G, Li H, Bai G, Ma H, Wu Z. Genetic spectrum and clinical profiles in a southeast Chinese cohort of Charcot‐Marie‐Tooth disease. Clin Genet 2019; 96:439-448. [PMID: 31372974 DOI: 10.1111/cge.13616] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 07/19/2019] [Accepted: 07/23/2019] [Indexed: 02/06/2023]
Affiliation(s)
- Cong‐Xin Chen
- Department of Neurology and Research Center of Neurology in Second Affiliated Hospital, and Key Laboratory of Medical Neurobiology of Zhejiang ProvinceZhejiang University School of Medicine Hangzhou China
- Department of Neurology and Institute of NeurologyFirst Affiliated Hospital, Fujian Medical University Fuzhou China
| | - Hai‐Lin Dong
- Department of Neurology and Research Center of Neurology in Second Affiliated Hospital, and Key Laboratory of Medical Neurobiology of Zhejiang ProvinceZhejiang University School of Medicine Hangzhou China
| | - Qiao Wei
- Department of Neurology and Research Center of Neurology in Second Affiliated Hospital, and Key Laboratory of Medical Neurobiology of Zhejiang ProvinceZhejiang University School of Medicine Hangzhou China
| | - Li‐Xi Li
- Department of Neurology and Institute of NeurologyHuashan Hospital, Shanghai Medical College, Fudan University Shanghai China
| | - Hao Yu
- Department of Neurology and Research Center of Neurology in Second Affiliated Hospital, and Key Laboratory of Medical Neurobiology of Zhejiang ProvinceZhejiang University School of Medicine Hangzhou China
| | - Jia‐Qi Li
- Department of Neurology and Research Center of Neurology in Second Affiliated Hospital, and Key Laboratory of Medical Neurobiology of Zhejiang ProvinceZhejiang University School of Medicine Hangzhou China
| | - Gong‐Lu Liu
- Department of Neurology and Research Center of Neurology in Second Affiliated Hospital, and Key Laboratory of Medical Neurobiology of Zhejiang ProvinceZhejiang University School of Medicine Hangzhou China
| | - Hong‐Fu Li
- Department of Neurology and Research Center of Neurology in Second Affiliated Hospital, and Key Laboratory of Medical Neurobiology of Zhejiang ProvinceZhejiang University School of Medicine Hangzhou China
| | - Ge Bai
- Institute of Neuroscience and Key Laboratory of Medical Neurobiology of Zhejiang ProvinceZhejiang University School of Medicine Hangzhou China
| | - Huan Ma
- Institute of Neuroscience and Key Laboratory of Medical Neurobiology of Zhejiang ProvinceZhejiang University School of Medicine Hangzhou China
| | - Zhi‐Ying Wu
- Department of Neurology and Research Center of Neurology in Second Affiliated Hospital, and Key Laboratory of Medical Neurobiology of Zhejiang ProvinceZhejiang University School of Medicine Hangzhou China
| |
Collapse
|
37
|
Charcot-Marie-Tooth: From Molecules to Therapy. Int J Mol Sci 2019; 20:ijms20143419. [PMID: 31336816 PMCID: PMC6679156 DOI: 10.3390/ijms20143419] [Citation(s) in RCA: 119] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 07/03/2019] [Accepted: 07/03/2019] [Indexed: 01/08/2023] Open
Abstract
Charcot-Marie-Tooth (CMT) is the most prevalent category of inherited neuropathy. The most common inheritance pattern is autosomal dominant, though there also are X-linked and autosomal recessive subtypes. In addition to a variety of inheritance patterns, there are a myriad of genes associated with CMT, reflecting the heterogeneity of this disorder. Next generation sequencing (NGS) has expanded and simplified the diagnostic yield of genes/molecules underlying and/or associated with CMT, which is of paramount importance in providing a substrate for current and future targeted disease-modifying treatment options. Considerable research attention for disease-modifying therapy has been geared towards the most commonly encountered genetic mutations (PMP22, GJB1, MPZ, and MFN2). In this review, we highlight the clinical background, molecular understanding, and therapeutic investigations of these CMT subtypes, while also discussing therapeutic research pertinent to the remaining less common CMT subtypes.
Collapse
|
38
|
Charcot-Marie-Tooth 2F (Hsp27 mutations): A review. Neurobiol Dis 2019; 130:104505. [PMID: 31212070 DOI: 10.1016/j.nbd.2019.104505] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 06/11/2019] [Accepted: 06/13/2019] [Indexed: 12/13/2022] Open
Abstract
Charcot-Marie-Tooth disease is a commonly inherited form of neuropathy. Although named over 100 years ago, identification of subtypes of Charcot-Marie-Tooth has rapidly expanded in the preceding decades with the advancement of genetic sequencing, including type 2F (CMT2F), due to mutations in heat shock protein 27 (Hsp27). However, despite CMT being one of the most common inherited neurological diseases, definitive mechanistic models of pathology and effective treatments for CMT2F are lacking. This review extensively profiles the published literature on CMT2F and distal hereditary motor neuropathy II (dHMN II), a similar neuropathy with exclusively motor symptoms that is also due to mutations in Hsp27. This includes a review of case reports and sequencing studies detailing disease course. Included are tables listing of all known published mutations of Hsp27 that cause symptoms of CMT2F and dHMN II. Furthermore, pathological mechanisms are assessed. While many groups have established pathologies relating to defective chaperone function, cellular neurofilament and microtubule structure and function, and mitochondrial and metabolic dysfunction, there are still discrepancies in results between different model systems. Moreover, initial mouse models have also produced promising results with similar phenotypes to humans, however discrepancies still exist. Both patient-focused and scientific studies have demonstrated variability in phenotypes even considering specific mutations. Given the clinical heterogeneity in presentation, CMT2F and dHMN II likely result from similar pathological mechanisms of the same general disease process that may present distinctly due to other genetic and environment influences. Determining how these influences exert their effects to produce pathology contributing to the disease phenotype will be a major future challenge ahead in the field.
Collapse
|