1
|
Xiong L, Huang YX, Mao L, Xu Y, Deng YQ. Targeting gut microbiota and its associated metabolites as a potential strategy for promoting would healing in diabetes. World J Diabetes 2025; 16:98788. [DOI: 10.4239/wjd.v16.i5.98788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 01/03/2025] [Accepted: 03/05/2025] [Indexed: 04/25/2025] Open
Abstract
Impaired healing of diabetic wounds is one of the most important complications of diabetes, often leading to lower limb amputations and incurring significant economic and psychosocial costs. Unfortunately, there are currently no effective prevention or treatment strategies available. Recent research has reported that an imbalance in the gut microbiota, known as dysbiosis, was linked to the onset of type 2 diabetes, as well as the development and progression of diabetic complications. Indeed, the gut microbiota has emerged as a promising therapeutic approach for treating type 2 diabetes and related diseases. However, there is few of literatures specifically discussing the relationship between gut microbiota and diabetic wounds. This review aims to explore the potential role of the gut microbiota, especially probiotics, and its associated byproducts such as short chain fatty acids, bile acids, hydrogen sulfide, and tryptophan metabolites on wound healing to provide fresh insights and novel perspectives for the treatment of chronic wounds in diabetes.
Collapse
Affiliation(s)
- Ling Xiong
- Department of Dermatology & STD, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan Province, China
| | - Ya-Xin Huang
- Department of Dermatology & STD, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan Province, China
| | - Lan Mao
- Department of Dermatology & STD, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan Province, China
| | - Yong Xu
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan Province, China
| | - Yong-Qiong Deng
- Department of Dermatology & STD, Chengdu Integrated TCM & Western Medicine Hospital, Chengdu 610000, Sichuan Province, China
- Institute of Cardiovascular Research, Southwest Medical University, Luzhou 646000, Sichuan Province, China
| |
Collapse
|
2
|
Yang S, Liu H, Liu Y. Advances in intestinal epithelium and gut microbiota interaction. Front Microbiol 2025; 16:1499202. [PMID: 40104591 PMCID: PMC11914147 DOI: 10.3389/fmicb.2025.1499202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 02/17/2025] [Indexed: 03/20/2025] Open
Abstract
The intestinal epithelium represents a critical interface between the host and external environment, serving as the second largest surface area in the human body after the lungs. This dynamic barrier is sustained by specialized epithelial cell types and their complex interactions with the gut microbiota. This review comprehensively examines the recent advances in understanding the bidirectional communication between intestinal epithelial cells and the microbiome. We briefly highlight the role of various intestinal epithelial cell types, such as Paneth cells, goblet cells, and enteroendocrine cells, in maintaining intestinal homeostasis and barrier function. Gut microbiota-derived metabolites, particularly short-chain fatty acids and bile acids, influence epithelial cell function and intestinal barrier integrity. Additionally, we highlight emerging evidence of the sophisticated cooperation between different epithelial cell types, with special emphasis on the interaction between tuft cells and Paneth cells in maintaining microbial balance. Understanding these complex interactions has important implications for developing targeted therapeutic strategies for various gastrointestinal disorders, including inflammatory bowel disease, metabolic disorders, and colorectal cancer.
Collapse
Affiliation(s)
- Sen Yang
- Department of Pediatric Pulmonology and Immunology, West China Second University Hospital, Sichuan University, Chengdu, China
- Department of Pediatrics, The Fifth Peoples Hospital of Chengdu, Chengdu, China
| | - Hanmin Liu
- Department of Pediatric Pulmonology and Immunology, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
- NHC Key Laboratory of Chronobiology (Sichuan University), Chengdu, China
- The Joint Laboratory for Lung Development and Related Diseases of West China Second University Hospital, Sichuan University and School of Life Sciences of Fudan University, West China Institute of Women and Children's Health, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Yang Liu
- Department of Pediatric Pulmonology and Immunology, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
- NHC Key Laboratory of Chronobiology (Sichuan University), Chengdu, China
- The Joint Laboratory for Lung Development and Related Diseases of West China Second University Hospital, Sichuan University and School of Life Sciences of Fudan University, West China Institute of Women and Children's Health, West China Second University Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
3
|
Okumura R, Takeda K. The role of the mucosal barrier system in maintaining gut symbiosis to prevent intestinal inflammation. Semin Immunopathol 2024; 47:2. [PMID: 39589551 PMCID: PMC11599372 DOI: 10.1007/s00281-024-01026-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 09/29/2024] [Indexed: 11/27/2024]
Abstract
In the intestinal tract, where numerous intestinal bacteria reside, intestinal epithelial cells produce and release various antimicrobial molecules that form a complex barrier on the mucosal surface. These barrier molecules can be classified into two groups based on their functions: those that exhibit bactericidal activity through chemical reactions, such as antimicrobial peptides, and those that physically hinder bacterial invasion, like mucins, which lack bactericidal properties. In the small intestine, where Paneth cells specialize in producing antimicrobial peptides, the chemical barrier molecules primarily inhibit bacterial growth. In contrast, in the large intestine, where Paneth cells are absent, allowing bacterial growth, the primary defense mechanism is the physical barrier, mainly composed of mucus, which controls bacterial movement and prevents their invasion of intestinal tissues. The expression of these barrier molecules is regulated by metabolites produced by bacteria in the intestinal lumen and cytokines produced by immune cells in the lamina propria. This regulation establishes a defense mechanism that adapts to changes in the intestinal environment, such as alterations in gut microbial composition and the presence of pathogenic bacterial infections. Consequently, when the integrity of the gut mucosal barrier is compromised, commensal bacteria and pathogenic microorganisms from outside the body can invade intestinal tissues, leading to conditions such as intestinal inflammation, as observed in cases of inflammatory bowel disease.
Collapse
Affiliation(s)
- Ryu Okumura
- Department of Microbiology and Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka, 565-0871, Japan
- WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka, 565-0871, Japan
- Institute for Open and Transdisciplinary Research Initiative, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Kiyoshi Takeda
- Department of Microbiology and Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka, 565-0871, Japan.
- WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka, 565-0871, Japan.
- Institute for Open and Transdisciplinary Research Initiative, Osaka University, Suita, Osaka, 565-0871, Japan.
- Center for Infectious Disease Education and Research, Osaka University, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
4
|
Ignatiou A, Pitsouli C. Host-diet-microbiota interplay in intestinal nutrition and health. FEBS Lett 2024; 598:2482-2517. [PMID: 38946050 DOI: 10.1002/1873-3468.14966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 06/11/2024] [Indexed: 07/02/2024]
Abstract
The intestine is populated by a complex and dynamic assortment of microbes, collectively called gut microbiota, that interact with the host and contribute to its metabolism and physiology. Diet is considered a key regulator of intestinal microbiota, as ingested nutrients interact with and shape the resident microbiota composition. Furthermore, recent studies underscore the interplay of dietary and microbiota-derived nutrients, which directly impinge on intestinal stem cells regulating their turnover to ensure a healthy gut barrier. Although advanced sequencing methodologies have allowed the characterization of the human gut microbiome, mechanistic studies assessing diet-microbiota-host interactions depend on the use of genetically tractable models, such as Drosophila melanogaster. In this review, we first discuss the similarities between the human and fly intestines and then we focus on the effects of diet and microbiota on nutrient-sensing signaling cascades controlling intestinal stem cell self-renewal and differentiation, as well as disease. Finally, we underline the use of the Drosophila model in assessing the role of microbiota in gut-related pathologies and in understanding the mechanisms that mediate different whole-body manifestations of gut dysfunction.
Collapse
Affiliation(s)
- Anastasia Ignatiou
- Department of Biological Sciences, University of Cyprus, Nicosia, Cyprus
| | - Chrysoula Pitsouli
- Department of Biological Sciences, University of Cyprus, Nicosia, Cyprus
| |
Collapse
|
5
|
Wang T, Wang RX, Colgan SP. Physiologic hypoxia in the intestinal mucosa: a central role for short-chain fatty acids. Am J Physiol Cell Physiol 2024; 327:C1087-C1093. [PMID: 39159391 PMCID: PMC11482044 DOI: 10.1152/ajpcell.00472.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/09/2024] [Accepted: 08/10/2024] [Indexed: 08/21/2024]
Abstract
The intestinal mucosa is a dynamic surface that facilitates interactions between the host and an outside world that includes trillions of microbes, collectively termed the microbiota. This fine balance is regulated by an energetically demanding physical and biochemical barrier that is formed by the intestinal epithelial cells. In addition, this homeostasis exists at an interface between the anaerobic colonic lumen and a highly oxygenated, vascularized lamina propria. The resultant oxygen gradient within the intestine establishes "physiologic hypoxia" as a central metabolic feature of the mucosa. Although oxygen is vital for energy production to meet cellular metabolism needs, the availability of oxygen has far-reaching influences beyond just energy provision. Recent studies have shown that the intestinal mucosa has purposefully adapted to use differential oxygen levels largely through the presence of short-chain fatty acids (SCFAs), particularly butyrate (BA). Intestinal epithelial cells use butyrate for a multitude of functions that promote mucosal homeostasis. In this review, we explore how the physiologic hypoxia profile interfaces with SCFAs to benefit host mucosal tissues.
Collapse
Affiliation(s)
- Timothy Wang
- Mucosal Inflammation Program, Division of Gastroenterology and Hepatology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
- Department of Healthcare Studies, University of Texas Dallas, Richardson, Texas, United States
| | - Ruth X Wang
- Mucosal Inflammation Program, Division of Gastroenterology and Hepatology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
- Department of Dermatology, University of California San Diego, San Diego, California, United States
| | - Sean P Colgan
- Mucosal Inflammation Program, Division of Gastroenterology and Hepatology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
- Rocky Mountain Regional Veterans Affairs Medical Center, Aurora, Colorado, United States
| |
Collapse
|
6
|
Medina-Rodríguez EM, Martínez-Raga J, Sanz Y. Intestinal Barrier, Immunity and Microbiome: Partners in the Depression Crime. Pharmacol Rev 2024; 76:956-969. [PMID: 39084934 DOI: 10.1124/pharmrev.124.001202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 05/28/2024] [Accepted: 05/29/2024] [Indexed: 08/02/2024] Open
Abstract
Depression is a highly prevalent disorder and a leading cause of disability worldwide. It has a major impact on the affected individual and on society as a whole. Regrettably, current available treatments for this condition are insufficient in many patients. In recent years, the gut microbiome has emerged as a promising alternative target for treating and preventing depressive disorders. However, the microbes that form this ecosystem do not act alone but are part of a complicated network connecting the gut and the brain that influences our mood. Host cells that are in intimate contact with gut microbes, such as the epithelial cells forming the gut barrier and the immune cells in their vicinity, play a key role in the process. These cells continuously shape immune responses to maintain healthy communication between gut microbes and the host. In this article, we review how the interplay among epithelial cells, the immune system, and gut microbes mediates gut-brain communication to influence mood. We also discuss how advances in our knowledge of the mechanisms underlying the gut-brain axis could contribute to addressing depression. SIGNIFICANCE STATEMENT: This review does not aim to systematically describe intestinal microbes that might be beneficial or detrimental for depression. We have adopted a novel point of view by focusing on potential mechanisms underlying the crosstalk between gut microbes and their intestinal environment to control mood. These pathways could be targeted by well defined and individually tailored dietary interventions, microbes, or microbial metabolites to ameliorate depression and decrease its important social and economic impact.
Collapse
Affiliation(s)
- Eva M Medina-Rodríguez
- Psychiatry Service, Doctor Peset University Hospital, FISABIO, Valencia, Spain (E.M.M.-R., J.M.-R.); Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), Valencia, Spain (E.M.M.-R., Y.S.); and University of Valencia, Valencia, Spain (J.M.-R.)
| | - José Martínez-Raga
- Psychiatry Service, Doctor Peset University Hospital, FISABIO, Valencia, Spain (E.M.M.-R., J.M.-R.); Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), Valencia, Spain (E.M.M.-R., Y.S.); and University of Valencia, Valencia, Spain (J.M.-R.)
| | - Yolanda Sanz
- Psychiatry Service, Doctor Peset University Hospital, FISABIO, Valencia, Spain (E.M.M.-R., J.M.-R.); Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), Valencia, Spain (E.M.M.-R., Y.S.); and University of Valencia, Valencia, Spain (J.M.-R.)
| |
Collapse
|
7
|
Popov J, Despot T, Avelar Rodriguez D, Khan I, Mech E, Khan M, Bojadzija M, Pai N. Implications of Microbiota and Immune System in Development and Progression of Metabolic Dysfunction-Associated Steatotic Liver Disease. Nutrients 2024; 16:1668. [PMID: 38892602 PMCID: PMC11175128 DOI: 10.3390/nu16111668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 05/23/2024] [Accepted: 05/27/2024] [Indexed: 06/21/2024] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is the most prevalent type of liver disease worldwide. The exact pathophysiology behind MASLD remains unclear; however, it is thought that a combination of factors or "hits" act as precipitants for disease onset and progression. Abundant evidence supports the roles of diet, genes, metabolic dysregulation, and the intestinal microbiome in influencing the accumulation of lipids in hepatocytes and subsequent progression to inflammation and fibrosis. Currently, there is no cure for MASLD, but lifestyle changes have been the prevailing cornerstones of management. Research is now focusing on the intestinal microbiome as a potential therapeutic target for MASLD, with the spotlight shifting to probiotics, antibiotics, and fecal microbiota transplantation. In this review, we provide an overview of how intestinal microbiota interact with the immune system to contribute to the pathogenesis of MASLD and metabolic dysfunction-associated steatohepatitis (MASH). We also summarize key microbial taxa implicated in the disease and discuss evidence supporting microbial-targeted therapies in its management.
Collapse
Affiliation(s)
- Jelena Popov
- Boston Combined Residency Program, Boston Children’s Hospital & Boston Medical Center, Boston, MA 02115, USA;
| | - Tijana Despot
- College of Medicine and Health, University College Cork, T12 YN60 Cork, Ireland; (T.D.); (I.K.)
| | - David Avelar Rodriguez
- Department of Pediatric Gastroenterology, Hepatology & Nutrition, The Hospital for Sick Children, University of Toronto, Toronto, ON M5G 1E8, Canada;
| | - Irfan Khan
- College of Medicine and Health, University College Cork, T12 YN60 Cork, Ireland; (T.D.); (I.K.)
| | - Eugene Mech
- School of Medicine, University College Dublin, D04 C1P1 Dublin, Ireland;
| | - Mahrukh Khan
- Department of Pediatrics, Faculty of Health Sciences, McMaster University, Hamilton, ON L8S 4L8, Canada;
- Department of Medical Sciences, Faculty of Health Sciences, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Milan Bojadzija
- Department of Internal Medicine, Subotica General Hospital, 24000 Subotica, Serbia;
| | - Nikhil Pai
- Department of Pediatrics, Faculty of Health Sciences, McMaster University, Hamilton, ON L8S 4L8, Canada;
- Division of Gastroenterology, Hepatology and Nutrition, McMaster Children’s Hospital, Hamilton, ON L8S 4L8, Canada
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Division of Gastroenterology, Hepatology, and Nutrition, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| |
Collapse
|
8
|
Karchin JB, Curry D, Friedman ES, Denburg M, Tasian GE. Effects of Medications on the in vitro Growth of Gut Bacteria Associated With Kidney Stones. Kidney Int Rep 2024; 9:1528-1530. [PMID: 38707803 PMCID: PMC11068949 DOI: 10.1016/j.ekir.2024.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/09/2024] [Accepted: 02/05/2024] [Indexed: 05/07/2024] Open
Affiliation(s)
- Jing Bi Karchin
- Department of Surgery, Division of Urology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Dylan Curry
- Division of Gastroenterology and Hepatology, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Elliot S. Friedman
- Division of Gastroenterology and Hepatology, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Michelle Denburg
- Division of Nephrology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Gregory E. Tasian
- Department of Surgery, Division of Urology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Surgery, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
9
|
Facchin S, Bertin L, Bonazzi E, Lorenzon G, De Barba C, Barberio B, Zingone F, Maniero D, Scarpa M, Ruffolo C, Angriman I, Savarino EV. Short-Chain Fatty Acids and Human Health: From Metabolic Pathways to Current Therapeutic Implications. Life (Basel) 2024; 14:559. [PMID: 38792581 PMCID: PMC11122327 DOI: 10.3390/life14050559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/24/2024] [Accepted: 04/25/2024] [Indexed: 05/26/2024] Open
Abstract
The gastrointestinal tract is home to trillions of diverse microorganisms collectively known as the gut microbiota, which play a pivotal role in breaking down undigested foods, such as dietary fibers. Through the fermentation of these food components, short-chain fatty acids (SCFAs) such as acetate, propionate, and butyrate are produced, offering numerous health benefits to the host. The production and absorption of these SCFAs occur through various mechanisms within the human intestine, contingent upon the types of dietary fibers reaching the gut and the specific microorganisms engaged in fermentation. Medical literature extensively documents the supplementation of SCFAs, particularly butyrate, in the treatment of gastrointestinal, metabolic, cardiovascular, and gut-brain-related disorders. This review seeks to provide an overview of the dynamics involved in the production and absorption of acetate, propionate, and butyrate within the human gut. Additionally, it will focus on the pivotal roles these SCFAs play in promoting gastrointestinal and metabolic health, as well as their current therapeutic implications.
Collapse
Affiliation(s)
- Sonia Facchin
- Department of Surgery, Oncology and Gastroenterology (DISCOG), University Hospital of Padua, 35128 Padua, Italy (L.B.); (B.B.)
| | - Luisa Bertin
- Department of Surgery, Oncology and Gastroenterology (DISCOG), University Hospital of Padua, 35128 Padua, Italy (L.B.); (B.B.)
| | - Erica Bonazzi
- Department of Surgery, Oncology and Gastroenterology (DISCOG), University Hospital of Padua, 35128 Padua, Italy (L.B.); (B.B.)
| | - Greta Lorenzon
- Department of Surgery, Oncology and Gastroenterology (DISCOG), University Hospital of Padua, 35128 Padua, Italy (L.B.); (B.B.)
| | - Caterina De Barba
- Department of Surgery, Oncology and Gastroenterology (DISCOG), University Hospital of Padua, 35128 Padua, Italy (L.B.); (B.B.)
| | - Brigida Barberio
- Department of Surgery, Oncology and Gastroenterology (DISCOG), University Hospital of Padua, 35128 Padua, Italy (L.B.); (B.B.)
| | - Fabiana Zingone
- Department of Surgery, Oncology and Gastroenterology (DISCOG), University Hospital of Padua, 35128 Padua, Italy (L.B.); (B.B.)
| | - Daria Maniero
- Department of Surgery, Oncology and Gastroenterology (DISCOG), University Hospital of Padua, 35128 Padua, Italy (L.B.); (B.B.)
| | - Marco Scarpa
- General Surgery Unit, Department of Surgery, Oncology and Gastroenterology, University of Padova, 35138 Padua, Italy (C.R.); (I.A.)
| | - Cesare Ruffolo
- General Surgery Unit, Department of Surgery, Oncology and Gastroenterology, University of Padova, 35138 Padua, Italy (C.R.); (I.A.)
| | - Imerio Angriman
- General Surgery Unit, Department of Surgery, Oncology and Gastroenterology, University of Padova, 35138 Padua, Italy (C.R.); (I.A.)
| | - Edoardo Vincenzo Savarino
- Department of Surgery, Oncology and Gastroenterology (DISCOG), University Hospital of Padua, 35128 Padua, Italy (L.B.); (B.B.)
| |
Collapse
|
10
|
Leoncini G, Cari L, Ronchetti S, Donato F, Caruso L, Calafà C, Villanacci V. Mucin Expression Profiles in Ulcerative Colitis: New Insights on the Histological Mucosal Healing. Int J Mol Sci 2024; 25:1858. [PMID: 38339134 PMCID: PMC10855303 DOI: 10.3390/ijms25031858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 01/30/2024] [Accepted: 02/01/2024] [Indexed: 02/12/2024] Open
Abstract
A structural weakness of the mucus barrier (MB) is thought to be a cause of ulcerative colitis (UC). This study aims to investigate the mucin (MUC) composition of MB in normal mucosa and UC. Ileocolonic biopsies were taken at disease onset and after treatment in 40 patients, including 20 with relapsing and 20 with remitting UC. Ileocolonic biopsies from 10 non-IBD patients were included as controls. Gut-specific MUC1, MUC2, MUC4, MUC5B, MUC12, MUC13, MUC15, and MUC17 were evaluated immunohistochemically. The promoters of mucin genes were also examined. Normal mucosa showed MUC2, MUC5B, and MUC13 in terminal ileum and colon, MUC17 in ileum, and MUC1, MUC4, MUC12, and MUC15 in colon. Membranous, cytoplasmic and vacuolar expressions were highlighted. Overall, the mucin expression was abnormal in UC. Derangements in MUC1, MUC4, and MUC5B were detected both at onset and after treatment. MUC2 and MUC13 were unaffected. Sequence analysis revealed glucocorticoid-responsive elements in the MUC1 promoter, retinoic-acid-responsive elements in the MUC4 promoter, and butyrate-responsive elements in the MUC5B promoter. In conclusion, MUCs exhibited distinct expression patterns in the gut. Their expression was disrupted in UC, regardless of the treatment protocols. Abnormal MUC1, MUC4, and MUC5B expression marked the barrier dysfunction in UC.
Collapse
Affiliation(s)
- Giuseppe Leoncini
- First Pathology Division, Department of Pathology and Laboratory Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy;
| | - Luigi Cari
- Pharmacology Division, Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy
| | - Simona Ronchetti
- Pharmacology Division, Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy
| | - Francesco Donato
- Unit of Hygiene, Epidemiology and Public Health, University of Brescia, 25123 Brescia, Italy
| | - Laura Caruso
- Pathology Unit, Department of Pathology and Laboratory Medicine, Desenzano del Garda Hospital, ASST del Garda, 25015 Brescia, Italy
| | - Cristina Calafà
- Pathology Unit, Department of Pathology and Laboratory Medicine, Desenzano del Garda Hospital, ASST del Garda, 25015 Brescia, Italy
| | | |
Collapse
|
11
|
Han K, Xu J, Xie F, Crowther J, Moon JJ. Engineering Strategies to Modulate the Gut Microbiome and Immune System. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:208-215. [PMID: 38166246 PMCID: PMC10766079 DOI: 10.4049/jimmunol.2300480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 08/28/2023] [Indexed: 01/04/2024]
Abstract
The gut microbiota, predominantly residing in the colon, is a complex ecosystem with a pivotal role in the host immune system. Dysbiosis of the gut microbiota has been associated with various diseases, and there is an urgent need to develop new therapeutics that target the microbiome and restore immune functions. This Brief Review discusses emerging therapeutic strategies that focus on oral delivery systems for modulating the gut microbiome. These strategies include genetic engineering of probiotics, probiotic-biomaterial hybrids, dietary fibers, and oral delivery systems for microbial metabolites, antimicrobial peptides, RNA, and antibiotics. Engineered oral formulations have demonstrated promising outcomes in reshaping the gut microbiome and influencing immune responses in preclinical studies. By leveraging these approaches, the interplay between the gut microbiota and the immune system can be harnessed for the development of novel therapeutics against cancer, autoimmune disorders, and allergies.
Collapse
Affiliation(s)
- Kai Han
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI, USA
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing, China
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
| | - Jin Xu
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
| | - Fang Xie
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
| | - Julia Crowther
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
| | - James J. Moon
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
12
|
Sosnowski K, Przybyłkowski A. Ethanol-induced changes to the gut microbiome compromise the intestinal homeostasis: a review. Gut Microbes 2024; 16:2393272. [PMID: 39224006 PMCID: PMC11376419 DOI: 10.1080/19490976.2024.2393272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 08/06/2024] [Accepted: 08/12/2024] [Indexed: 09/04/2024] Open
Abstract
The intestine is the largest organ in terms of surface area in the human body. It is responsible not only for absorbing nutrients but also for protection against the external world. The gut microbiota is essential in maintaining a properly functioning intestinal barrier, primarily through producing its metabolites: short-chain fatty acids, bile acids, and tryptophan derivatives. Ethanol overconsumption poses a significant threat to intestinal health. Not only does it damage the intestinal epithelium, but, maybe foremostly, it changes the gut microbiome. Those ethanol-driven changes shift its metabolome, depriving the host of the protective effect the physiological gut microbiota has. This literature review discusses the impact of ethanol consumption on the gut, the gut microbiota, and its metabolome, providing a comprehensive overview of the mechanisms through which ethanol disrupts intestinal homeostasis and discussing potential avenues for new therapeutic intervention.
Collapse
Affiliation(s)
- Konrad Sosnowski
- Department of Gastroenterology and Internal Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Adam Przybyłkowski
- Department of Gastroenterology and Internal Medicine, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
13
|
Ambat A, Antony L, Maji A, Ghimire S, Mattiello S, Kashyap PC, More S, Sebastian V, Scaria J. Enhancing recovery from gut microbiome dysbiosis and alleviating DSS-induced colitis in mice with a consortium of rare short-chain fatty acid-producing bacteria. Gut Microbes 2024; 16:2382324. [PMID: 39069899 PMCID: PMC11290756 DOI: 10.1080/19490976.2024.2382324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 05/24/2024] [Accepted: 07/16/2024] [Indexed: 07/30/2024] Open
Abstract
The human gut microbiota is a complex community comprising hundreds of species, with a few present in high abundance and the vast majority in low abundance. The biological functions and effects of these low-abundant species on their hosts are not yet fully understood. In this study, we assembled a bacterial consortium (SC-4) consisting of B. paravirosa, C. comes, M. indica, and A. butyriciproducens, which are low-abundant, short-chain fatty acid (SCFA)-producing bacteria isolated from healthy human gut, and tested its effect on host health using germ-free and human microbiota-associated colitis mouse models. The selection also favored these four bacteria being reduced in abundance in either Ulcerative Colitis (UC) or Crohn's disease (CD) metagenome samples. Our findings demonstrate that SC-4 can colonize germ-free (GF) mice, increasing mucin thickness by activating MUC-1 and MUC-2 genes, thereby protecting GF mice from Dextran Sodium Sulfate (DSS)-induced colitis. Moreover, SC-4 aided in the recovery of human microbiota-associated mice from DSS-induced colitis, and intriguingly, its administration enhanced the alpha diversity of the gut microbiome, shifting the community composition closer to control levels. The results showed enhanced phenotypes across all measures when the mice were supplemented with inulin as a dietary fiber source alongside SC-4 administration. We also showed a functional redundancy existing in the gut microbiome, resulting in the low abundant SCFA producers acting as a form of insurance, which in turn accelerates recovery from the dysbiotic state upon the administration of SC-4. SC-4 colonization also upregulated iNOS gene expression, further supporting its ability to produce an increasing number of goblet cells. Collectively, our results provide evidence that low-abundant SCFA-producing species in the gut may offer a novel therapeutic approach to IBD.
Collapse
Affiliation(s)
- Achuthan Ambat
- Department of Veterinary and Biomedical Sciences, South Dakota State University, Brookings, SD, USA
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK, USA
| | - Linto Antony
- Department of Veterinary and Biomedical Sciences, South Dakota State University, Brookings, SD, USA
| | - Abhijit Maji
- Department of Veterinary and Biomedical Sciences, South Dakota State University, Brookings, SD, USA
| | - Sudeep Ghimire
- Department of Veterinary and Biomedical Sciences, South Dakota State University, Brookings, SD, USA
| | - Samara Mattiello
- Department of Veterinary and Biomedical Sciences, South Dakota State University, Brookings, SD, USA
| | - Purna C. Kashyap
- Enteric Neuroscience Program, Department of Medicine and Physiology, Mayo Clinic, Rochester, MN, USA
| | - Sunil More
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK, USA
| | - Vanessa Sebastian
- Department of Pathology, Jubilee Mission Medical College and Research Institute, Thrissur, India
| | - Joy Scaria
- Department of Veterinary and Biomedical Sciences, South Dakota State University, Brookings, SD, USA
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK, USA
| |
Collapse
|
14
|
Morella I, Negro M, Dossena M, Brambilla R, D'Antona G. Gut-muscle-brain axis: Molecular mechanisms in neurodegenerative disorders and potential therapeutic efficacy of probiotic supplementation coupled with exercise. Neuropharmacology 2023; 240:109718. [PMID: 37774944 DOI: 10.1016/j.neuropharm.2023.109718] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 09/13/2023] [Accepted: 09/16/2023] [Indexed: 10/01/2023]
Abstract
Increased longevity is often associated with age-related conditions. The most common neurodegenerative disorders in the older population are Alzheimer's disease (AD) and Parkinson's disease (PD), associated with progressive neuronal loss leading to functional and cognitive impairments. Although symptomatic treatments are available, there is currently no cure for these conditions. Gut dysbiosis has been involved in the pathogenesis of AD and PD, thus interventions targeting the "gut-brain axis" could potentially prevent or delay these pathologies. Recent evidence suggests that the skeletal muscle and the gut microbiota can affect each other via the "gut-muscle axis". Importantly, cognitive functions in AD and PD patients significantly benefit from physical activity. In this review, we aim to provide a comprehensive picture of the crosstalk between the brain, the skeletal muscle and the gut microbiota, introducing the concept of "gut-muscle-brain axis". Moreover, we discuss human and animal studies exploring the modulatory role of exercise and probiotics on cognition in AD and PD. Collectively, the findings presented here support the potential benefits of physical activity and probiotic supplementation in AD and PD. Further studies will be needed to develop targeted and multimodal strategies, including lifestyle changes, to prevent or delay the course of these pathologies.
Collapse
Affiliation(s)
- Ilaria Morella
- Neuroscience and Mental Health Innovation Institute, School of Biosciences, Cardiff University, Cardiff, UK
| | - Massimo Negro
- Centro di Ricerca Interdipartimentale Nelle Attività Motorie e Sportive (CRIAMS)-Sport Medicine Centre, University of Pavia, Voghera, Italy
| | - Maurizia Dossena
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, 27100 Pavia, Italy
| | - Riccardo Brambilla
- Neuroscience and Mental Health Innovation Institute, School of Biosciences, Cardiff University, Cardiff, UK; Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, 27100 Pavia, Italy
| | - Giuseppe D'Antona
- Centro di Ricerca Interdipartimentale Nelle Attività Motorie e Sportive (CRIAMS)-Sport Medicine Centre, University of Pavia, Voghera, Italy; Department of Public Health, Experimental and Forensic Medicine, University of Pavia, Pavia, Italy.
| |
Collapse
|
15
|
Qu S, Gao Y, Ma J, Yan Q. Microbiota-derived short-chain fatty acids functions in the biology of B lymphocytes: From differentiation to antibody formation. Biomed Pharmacother 2023; 168:115773. [PMID: 39491858 DOI: 10.1016/j.biopha.2023.115773] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 10/15/2023] [Accepted: 10/20/2023] [Indexed: 11/05/2024] Open
Abstract
Gut bacteria produce various metabolites from dietary fiber, the most abundant of which are short-chain fatty acids (SCFAs) such as acetate, propionate, and butyrate. Many biological functions, such as host metabolism and the immune system, are regulated by SCFAs because they act on a wide variety of cell types. A growing body of documents has shown that microbiota SCFAs directly regulate B-cell growth, proliferation, and immunoglobulin (Ig) production. As histone deacetylase (HDAC) inhibitors, SCFAs alter gene expression to enhance the expression of critical regulators of B cell growth. In particular, microbiota SCFAs increase the production of acetyl coenzyme A (acetyl-CoA), adenosine triphosphate (ATP), and fatty acids in B cells, which provide the energy and building blocks needed for the growth of plasma B cells. SCFAs play a significant role in promoting the involvement of B cells in host immunity during both homeostatic conditions and disease states. In this context, SCFAs stimulate B-cell activation and promote the differentiation of plasma B cells in response to B cell receptor (BCR)-activating antigens or co-stimulatory receptor ligands. The result may be increased production of IgA. Microbiota SCFAs were found to lower both overall and antigen-specific IgE levels, indicating their potential to mitigate IgE-related allergic reactions, much like their effect on class-switch recombination (CSR) towards IgG and IgA. Therefore, in the future, the therapeutic advantage should be to use specific and diffusible chemicals, such as SCFAs, which show a strong immunoregulatory function of B cells. This review focuses on the role of microbiota-produced SCFAs in regulating B cell development and antibody production, both in health and diseases.
Collapse
Affiliation(s)
- Shengming Qu
- Department of Dermatology, the Second Hospital of Jilin University, Changchun 130000, China
| | - Yihang Gao
- Department of Clinical Laboratory, the Second Hospital of Jilin University, Changchun 130000, China.
| | - Jingru Ma
- Department of Clinical Laboratory, the Second Hospital of Jilin University, Changchun 130000, China
| | - Qingzhu Yan
- Department of Ultrasound Medicine, the Second Hospital of Jilin University, Changchun 130000, China
| |
Collapse
|
16
|
Brasil VP, Siqueira RM, Campos FG, Yoshitani MM, Pereira GP, Mendonça RLDS, Kanno DT, Pereira JA, Martinez CAR. Mucin levels in glands of the colonic mucosa of rats with diversion colitis subjected to enemas containing sucralfate and n-acetylcysteine alone or in combination. Acta Cir Bras 2023; 38:e384023. [PMID: 37851785 PMCID: PMC10578094 DOI: 10.1590/acb384023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 07/17/2023] [Indexed: 10/20/2023] Open
Abstract
PURPOSE To evaluate the tissue content of neutral and acidic mucins, sulfomucins and sialomucins in colonic glands devoid of intestinal transit after enemas containing sucralfate and n-acetylcysteine alone or in combination. METHODS Sixty-four rats underwent intestinal transit bypass. A colonic segment was collected to compose the white group (without intervention). After derivation, the animals were divided into two groups according to whether enemas were performed daily for two or four weeks. Each group was subdivided into four subgroups according to the substance used: control group: saline 0.9%; sucralfate group (SCF): SCF 2 g/kg/day; n-acetylcysteine group (NAC): NAC 100 mg/kg/day; and SCF+NAC group: SCF 2 g/kg/day + NAC 100 mg/kg/day.Neutral and acidic mucins were stained by periodic acid-Schiff and alcian-blue techniques, respectively. The distinction between sulfomucins and sialomucin was made by the high alcian-blue iron diamine technique. The content of mucins in the colonic glands was measured by computerized morphometry. The inflammatory score was assessed using a validated scale. The results between the groups were compared by the Mann-Whitney's test, while the variation according to time by the Kruskal-Wallis' test (Dunn's post-test). A significance level of 5% was adopted. RESULTS There was reduction in the inflammatory score regardless of the application of isolated or associated substances. Intervention with SCF+NAC increased the content of all mucin subtypes regardless of intervention time. CONCLUSIONS The application of SCF+NAC reduced the inflammatory process of the colonic mucosa and increased the content of different types of mucins in the colonic glands of segments excluded from fecal transit.
Collapse
Affiliation(s)
- Verena Palmeiras Brasil
- Universidade Estadual de Campinas – Postgraduate Program in Surgical Sciences – Campinas (São Paulo) – Brazil
| | - Rayama Moreira Siqueira
- Universidade Estadual de Campinas – Postgraduate Program in Surgical Sciences – Campinas (São Paulo) – Brazil
| | - Fabio Guilherme Campos
- Universidade de São Paulo – Department of Gastroenterology – Faculty of Medicine – São Paulo (São Paulo) – Brazil
| | - Mateus Magami Yoshitani
- Universidade São Francisco – Faculty of Medicine – Medical School – Bragança Paulista (São Paulo) – Brazil
| | - Geovanna Pacciulli Pereira
- Universidade São Francisco – Faculty of Medicine – Medical School – Bragança Paulista (São Paulo) – Brazil
| | | | - Danilo Toshio Kanno
- Universidade São Francisco – Faculty of Medicine – Medical School – Bragança Paulista (São Paulo) – Brazil
| | - José Aires Pereira
- Universidade São Francisco – Faculty of Medicine – Medical School – Bragança Paulista (São Paulo) – Brazil
| | - Carlos Augusto Real Martinez
- Universidade Estadual de Campinas – Postgraduate Program in Surgical Sciences – Campinas (São Paulo) – Brazil
- Universidade São Francisco – Faculty of Medicine – Medical School – Bragança Paulista (São Paulo) – Brazil
| |
Collapse
|
17
|
Lauterbach AL, Slezak AJ, Wang R, Cao S, Raczy MM, Watkins EA, Jimenez CJM, Hubbell JA. Mannose-Decorated Co-Polymer Facilitates Controlled Release of Butyrate to Accelerate Chronic Wound Healing. Adv Healthc Mater 2023; 12:e2300515. [PMID: 37503634 PMCID: PMC11468131 DOI: 10.1002/adhm.202300515] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 05/25/2023] [Indexed: 07/29/2023]
Abstract
Butyrate is a key bacterial metabolite that plays an important and complex role in modulation of immunity and maintenance of epithelial barriers. Its translation to clinic is limited by poor bioavailability, pungent smell, and the need for high doses, and effective delivery strategies have yet to realize clinical potential. Here, a novel polymeric delivery platform for tunable and sustainable release of butyrate consisting of a methacrylamide backbone with butyryl ester or phenyl ester side chains as well as mannosyl side chains, which is also applicable to other therapeutically relevant metabolites is reported. This platform's utility in the treatment of non-healing diabetic wounds is explored. This butyrate-containing material modulated immune cell activation in vitro and induced striking changes in the milieu of soluble cytokine and chemokine signals present within the diabetic wound microenvironment in vivo. This novel therapy shows efficacy in the treatment of non-healing wounds through the modulation of the soluble signals present within the wound, and importantly accommodates the critical temporal regulation associated with the wound healing process. Currently, the few therapies to address non-healing wounds demonstrate limited efficacy. This novel platform is positioned to address this large unmet clinical need and improve the closure of otherwise non-healing wounds.
Collapse
Affiliation(s)
| | - Anna J. Slezak
- Pritzker School of Molecular EngineeringUniversity of ChicagoChicagoIL60637USA
| | - Ruyi Wang
- Pritzker School of Molecular EngineeringUniversity of ChicagoChicagoIL60637USA
| | - Shijie Cao
- Pritzker School of Molecular EngineeringUniversity of ChicagoChicagoIL60637USA
| | - Michal M. Raczy
- Pritzker School of Molecular EngineeringUniversity of ChicagoChicagoIL60637USA
| | - Elyse A. Watkins
- Pritzker School of Molecular EngineeringUniversity of ChicagoChicagoIL60637USA
| | | | - Jeffrey A. Hubbell
- Pritzker School of Molecular EngineeringUniversity of ChicagoChicagoIL60637USA
| |
Collapse
|
18
|
Wei L, Ji L, Miao Y, Han X, Li Y, Wang Z, Fu J, Guo L, Su Y, Zhang Y. Constipation in DM are associated with both poor glycemic control and diabetic complications: Current status and future directions. Biomed Pharmacother 2023; 165:115202. [PMID: 37506579 DOI: 10.1016/j.biopha.2023.115202] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/15/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
Constipation is a major complications of diabetes mellitus. With the accelerating prevalence of diabetes worldwide and an aging population, there is considerable research interest regarding the altered function and structure of the gastrointestinal tract in diabetic patients. Despite current advances in hyperglycemic treatment strategies, the specific pathogenesis of diabetic constipation remains unknown. Patients with constipation, may be reluctant to eat regularly, which may worsen glycemic control and thus worsen symptoms associated with underlying diabetic bowel disease. This paper presents a review of the complex relationship between diabetes and constipation, exploring the morphological alterations and biomechanical remodeling associated with intestinal motility dysfunction, as well as alterations in intestinal neurons, cellular signaling pathways, and oxidative stress. Further studies focusing on new targets that may play a role in the pathogenesis of diabetic constipation may, provide new ideas for the development of novel therapies to treat or even prevent diabetic constipation.
Collapse
Affiliation(s)
- Luge Wei
- Tianjin University of Traditional Chinese Medicine, China.
| | - Lanqi Ji
- Tianjin University of Traditional Chinese Medicine, China
| | - Yulu Miao
- Tianjin University of Traditional Chinese Medicine, China
| | - Xu Han
- Tianjin University of Traditional Chinese Medicine, China
| | - Ying Li
- Tianjin University of Traditional Chinese Medicine, China
| | - Zhe Wang
- Tianjin University of Traditional Chinese Medicine, China
| | - Jiafeng Fu
- Tianjin University of Traditional Chinese Medicine, China
| | - Liuli Guo
- Tianjin University of Traditional Chinese Medicine, China
| | - Yuanyuan Su
- Tianjin University of Traditional Chinese Medicine, China
| | - Yanjun Zhang
- Tianjin University of Traditional Chinese Medicine, China; First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, China
| |
Collapse
|
19
|
Feitelson MA, Arzumanyan A, Medhat A, Spector I. Short-chain fatty acids in cancer pathogenesis. Cancer Metastasis Rev 2023; 42:677-698. [PMID: 37432606 PMCID: PMC10584782 DOI: 10.1007/s10555-023-10117-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 06/05/2023] [Indexed: 07/12/2023]
Abstract
Cancer is a multi-step process that can be viewed as a cellular and immunological shift away from homeostasis in response to selected infectious agents, mutations, diet, and environmental carcinogens. Homeostasis, which contributes importantly to the definition of "health," is maintained, in part by the production of short-chain fatty acids (SCFAs), which are metabolites of specific gut bacteria. Alteration in the composition of gut bacteria, or dysbiosis, is often a major risk factor for some two dozen tumor types. Dysbiosis is often characterized by diminished levels of SCFAs in the stool, and the presence of a "leaky gut," permitting the penetration of microbes and microbial derived molecules (e.g., lipopolysaccharides) through the gut wall, thereby triggering chronic inflammation. SCFAs attenuate inflammation by inhibiting the activation of nuclear factor kappa B, by decreasing the expression of pro-inflammatory cytokines such as tumor necrosis factor alpha, by stimulating the expression of anti-inflammatory cytokines such as interleukin-10 and transforming growth factor beta, and by promoting the differentiation of naïve T cells into T regulatory cells, which down-regulate immune responses by immunomodulation. SCFA function epigenetically by inhibiting selected histone acetyltransferases that alter the expression of multiple genes and the activity of many signaling pathways (e.g., Wnt, Hedgehog, Hippo, and Notch) that contribute to the pathogenesis of cancer. SCFAs block cancer stem cell proliferation, thereby potentially delaying or inhibiting cancer development or relapse by targeting genes and pathways that are mutated in tumors (e.g., epidermal growth factor receptor, hepatocyte growth factor, and MET) and by promoting the expression of tumor suppressors (e.g., by up-regulating PTEN and p53). When administered properly, SCFAs have many advantages compared to probiotic bacteria and fecal transplants. In carcinogenesis, SCFAs are toxic against tumor cells but not to surrounding tissue due to differences in their metabolic fate. Multiple hallmarks of cancer are also targets of SCFAs. These data suggest that SCFAs may re-establish homeostasis without overt toxicity and either delay or prevent the development of various tumor types.
Collapse
Affiliation(s)
- Mark A Feitelson
- Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA, 19122, USA.
| | - Alla Arzumanyan
- Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA, 19122, USA
| | - Arvin Medhat
- Department of Molecular Cell Biology, Islamic Azad University Tehran North Branch, Tehran, 1975933411, Iran
| | - Ira Spector
- SFA Therapeutics, Jenkintown, PA, 19046, USA
| |
Collapse
|
20
|
Stummer N, Feichtinger RG, Weghuber D, Kofler B, Schneider AM. Role of Hydrogen Sulfide in Inflammatory Bowel Disease. Antioxidants (Basel) 2023; 12:1570. [PMID: 37627565 PMCID: PMC10452036 DOI: 10.3390/antiox12081570] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 07/28/2023] [Accepted: 08/04/2023] [Indexed: 08/27/2023] Open
Abstract
Hydrogen sulfide (H2S), originally known as toxic gas, has now attracted attention as one of the gasotransmitters involved in many reactions in the human body. H2S has been assumed to play a role in the pathogenesis of many chronic diseases, of which the exact pathogenesis remains unknown. One of them is inflammatory bowel disease (IBD), a chronic intestinal disease subclassified as Crohn's disease (CD) and ulcerative colitis (UC). Any change in the amount of H2S seems to be linked to inflammation in this illness. These changes can be brought about by alterations in the microbiota, in the endogenous metabolism of H2S and in the diet. As both too little and too much H2S drive inflammation, a balanced level is needed for intestinal health. The aim of this review is to summarize the available literature published until June 2023 in order to provide an overview of the current knowledge of the connection between H2S and IBD.
Collapse
Affiliation(s)
- Nathalie Stummer
- Department of Pediatrics, University Hospital of the Paracelsus Medical University, 5020 Salzburg, Austria; (N.S.); (R.G.F.); (D.W.); (B.K.)
| | - René G. Feichtinger
- Department of Pediatrics, University Hospital of the Paracelsus Medical University, 5020 Salzburg, Austria; (N.S.); (R.G.F.); (D.W.); (B.K.)
| | - Daniel Weghuber
- Department of Pediatrics, University Hospital of the Paracelsus Medical University, 5020 Salzburg, Austria; (N.S.); (R.G.F.); (D.W.); (B.K.)
| | - Barbara Kofler
- Department of Pediatrics, University Hospital of the Paracelsus Medical University, 5020 Salzburg, Austria; (N.S.); (R.G.F.); (D.W.); (B.K.)
- Research Program for Receptor Biochemistry and Tumor Metabolism, Paracelsus Medical University (PMU), 5020 Salzburg, Austria
| | - Anna M. Schneider
- Department of Pediatrics, University Hospital of the Paracelsus Medical University, 5020 Salzburg, Austria; (N.S.); (R.G.F.); (D.W.); (B.K.)
| |
Collapse
|
21
|
Stolfi C, Pacifico T, Monteleone G, Laudisi F. Impact of Western Diet and Ultra-Processed Food on the Intestinal Mucus Barrier. Biomedicines 2023; 11:2015. [PMID: 37509654 PMCID: PMC10377275 DOI: 10.3390/biomedicines11072015] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/19/2023] [Accepted: 07/15/2023] [Indexed: 07/30/2023] Open
Abstract
The intestinal epithelial barrier plays a key role in the absorption of nutrients and water, in the regulation of the interactions between luminal contents and the underlying immune cells, and in the defense against enteric pathogens. Additionally, the intestinal mucus layer provides further protection due to mucin secretion and maturation by goblet cells, thus representing a crucial player in maintaining intestinal homeostasis. However, environmental factors, such as dietary products, can disrupt this equilibrium, leading to the development of inflammatory intestinal disorders. In particular, ultra-processed food, which is broadly present in the Western diet and includes dietary components containing food additives and/or undergoing multiple industrial processes (such as dry heating cooking), was shown to negatively impact intestinal health. In this review, we summarize and discuss current knowledge on the impact of a Western diet and, in particular, ultra-processed food on the mucus barrier and goblet cell function, as well as potential therapeutic approaches to maintain and restore the mucus layer under pathological conditions.
Collapse
Affiliation(s)
- Carmine Stolfi
- Department of Systems Medicine, University of Rome "Tor Vergata", 00133 Rome, Italy
| | - Teresa Pacifico
- Department of Systems Medicine, University of Rome "Tor Vergata", 00133 Rome, Italy
| | - Giovanni Monteleone
- Department of Systems Medicine, University of Rome "Tor Vergata", 00133 Rome, Italy
- Gastroenterology Unit, Policlinico Universitario Tor Vergata, 00133 Rome, Italy
| | - Federica Laudisi
- Department of Systems Medicine, University of Rome "Tor Vergata", 00133 Rome, Italy
| |
Collapse
|
22
|
Ikegami S, Nakamura M, Honda T, Yamamura T, Maeda K, Sawada T, Ishikawa E, Yamamoto K, Furune S, Ishikawa T, Furukawa K, Ohno E, Ishigami M, Kinoshita F, Kadota Y, Tochio T, Shimomura Y, Hirooka Y, Kawashima H. Efficacy of 1-kestose supplementation in patients with mild to moderate ulcerative colitis: A randomised, double-blind, placebo-controlled pilot study. Aliment Pharmacol Ther 2023; 57:1249-1257. [PMID: 36644995 DOI: 10.1111/apt.17387] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/21/2022] [Accepted: 12/29/2022] [Indexed: 01/17/2023]
Abstract
BACKGROUND Ulcerative colitis involves an excessive immune response to intestinal bacteria. Whether administering prebiotic 1-kestose is effective for active ulcerative colitis remains controversial. AIMS This randomised, double-blind, placebo-controlled pilot trial investigated the efficacy of 1-kestose against active ulcerative colitis. METHODS Forty patients with mild to moderate active ulcerative colitis were randomly treated with 1-kestose (N = 20) or placebo (maltose, N = 20) orally for 8 weeks in addition to the standard treatment. The Lichtiger clinical activity index and Ulcerative Colitis Endoscopic Index of Severity were determined. Faecal samples were analysed to evaluate the gut microbiome and metabolites. RESULTS The clinical activity index at week 8 was significantly lower in the 1-kestose group than in the placebo group (3.8 ± 2.7 vs. 5.6 ± 2.1, p = 0.026). Clinical remission and response rates were higher in the 1-kestose group than in the placebo group (remission: 55% vs. 20%, p = 0.048; response: 60% vs. 25%, p = 0.054). The Ulcerative Colitis Endoscopic Index of Severity at week 8 was not significantly different (2.8 ± 1.6 vs. 3.5 ± 1.6, p = 0.145). Faecal analysis showed significantly reduced alpha-diversity in the 1-kestose group, with a decreased relative abundance of several bacteria, including Ruminococcus gnavus group. The short-chain fatty acid levels were not significantly different between the groups. The incidence of adverse events was comparable between the groups. DISCUSSION Oral 1-kestose is well tolerated and provides clinical improvement for patients with mild to moderate ulcerative colitis through modulation of the gut microbiome.
Collapse
Affiliation(s)
- Shuji Ikegami
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Masanao Nakamura
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Takashi Honda
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Takeshi Yamamura
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Keiko Maeda
- Department of Endoscopy, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Tsunaki Sawada
- Department of Endoscopy, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Eri Ishikawa
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kenta Yamamoto
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Satoshi Furune
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Takuya Ishikawa
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kazuhiro Furukawa
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Eizaburo Ohno
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Masatoshi Ishigami
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Fumie Kinoshita
- Department of Advanced Medicine, Nagoya University Hospital, Nagoya, Japan
| | | | | | - Yoshiharu Shimomura
- Department of Food and Nutritional Sciences, College of Bioscience and Biotechnology, Chubu University, Kasugai, Japan
| | - Yoshiki Hirooka
- Department of Liver, Biliary Tract, and Pancreas Diseases, Fujita Health University School of Medicine, Toyoake, Aichi, Japan
| | - Hiroki Kawashima
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
23
|
Zha Z, Wang X, Wang G, Yin H, Wang H. Synthesis and structural characterization of xylan acetate ester and its antinephritic effects in rats with experimental chronic kidney disease. Int J Biol Macromol 2023; 240:124413. [PMID: 37059278 DOI: 10.1016/j.ijbiomac.2023.124413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 03/24/2023] [Accepted: 04/07/2023] [Indexed: 04/16/2023]
Abstract
Acetic acid has been shown to be effective in chronic kidney disease (CKD). However, it is a low-molecular-weight compound that allows it to be absorbed in the upper digestive tract so that it cannot function in colon. To overcome these deficiencies, an acetate-releasing xylan derivative, xylan acetate ester (XylA), was synthesized and selected in this study for its potential in the treatment of CKD. IR, NMR and HPGPC were used to characterize the structure of XylA and its antinephritic effects was evaluated in vivo. The results showed that acetate was successfully grafted onto the C-2 and C-3 positions of xylan and with a molecular weight at 69157 Da. XylA treatments could relieve the symptoms of CKD in an adenine-induced chronic renal failure (CRF) model and an adriamycin-induced focal segmental glomerulosclerosis (FSGS) model in SD rats. Further study indicated that XylA could upregulate the short-chain fatty acids (SCFAs) in vitro and vivo. Nevertheless, the relative abundance of Phascolarctobacterium in colon was increased after XylA treatment. XylA could upregulate G-protein-coupled receptor 41 (GPR41) expression, inhibit glomerular cell apoptosis and promoting proliferation. Our study expands the application of xylan and provides a new idea for the treatment of CKD with acetic acid.
Collapse
Affiliation(s)
- Zhengqi Zha
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Xiaoning Wang
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Guoqing Wang
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Hongping Yin
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, People's Republic of China.
| | - Hang Wang
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, People's Republic of China.
| |
Collapse
|
24
|
Vernia F, Burrelli Scotti G, Bertetti NS, Donato G, Necozione S, Vernia P, Pallotta N. Low Vitamin K and Vitamin D Dietary Intake in Patients with Inflammatory Bowel Diseases. Nutrients 2023; 15:nu15071678. [PMID: 37049518 PMCID: PMC10096607 DOI: 10.3390/nu15071678] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 03/26/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023] Open
Abstract
The inadequate dietary intake of Vitamin D and Vitamin K is an easily reversible factor favoring IBD-associated bone loss, but data on Vitamin K are lacking. A 28-item quantitative food frequency questionnaire was administered to 193 IBD patients (89 Crohn’s disease and 104 ulcerative colitis), and 199 controls. Patients’ demographics, clinical and laboratory findings were analyzed in relation to recommended daily allowances. VitD intake was inadequate both in the IBD and control patients (8.3 ± 4.5 µg/day in IBD, 53.1% RDA, and 9.7 ± 5.9 µg/day, 63.2% RDA, respectively). Conversely, the mean ViK intake was less than adequate in IBD, at 116.7 ± 116.3 µg/day (78.7% RDA), and high in controls, at 203.1 ± 166.9 µg/day (138.8% RDA). Nonetheless, due to marked inter-individual differences, diets were severely lacking VitK in 40% of UC and 49% of CD patients, more so in females and those with active disease. The intake of Vit D was non-significantly lower in colitis than that in Crohn’s disease (7.9 vs. 8.7 µg/day). The opposite was observed for VitK (123.5 vs. 107.0 µg/day). Thus, the diet lacks the micronutrients involved in bone wellbeing in a large proportion of IBD patients. While VitD supplementation is the rule, VitK shortages need proactive nutritional intervention.
Collapse
Affiliation(s)
- Filippo Vernia
- Division of Gastroenterology, Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy
- Correspondence: ; Tel.: +39-0862-368760
| | - Giorgia Burrelli Scotti
- Department of Translational and Precision Medicine, Sapienza University of Rome, 00185 Rome, Italy
| | - Noemi Sara Bertetti
- Department of Translational and Precision Medicine, Sapienza University of Rome, 00185 Rome, Italy
| | - Giuseppe Donato
- Department of Translational and Precision Medicine, Sapienza University of Rome, 00185 Rome, Italy
| | - Stefano Necozione
- Epidemiology Unit, Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy
| | - Piero Vernia
- Department of Translational and Precision Medicine, Sapienza University of Rome, 00185 Rome, Italy
| | - Nadia Pallotta
- Department of Translational and Precision Medicine, Sapienza University of Rome, 00185 Rome, Italy
| |
Collapse
|
25
|
Hodgkinson K, El Abbar F, Dobranowski P, Manoogian J, Butcher J, Figeys D, Mack D, Stintzi A. Butyrate's role in human health and the current progress towards its clinical application to treat gastrointestinal disease. Clin Nutr 2023; 42:61-75. [PMID: 36502573 DOI: 10.1016/j.clnu.2022.10.024] [Citation(s) in RCA: 106] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 10/17/2022] [Accepted: 10/29/2022] [Indexed: 11/06/2022]
Abstract
Butyrate is a key energy source for colonocytes and is produced by the gut microbiota through fermentation of dietary fiber. Butyrate is a histone deacetylase inhibitor and also signals through three G-protein coupled receptors. It is clear that butyrate has an important role in gastrointestinal health and that butyrate levels can impact both host and microbial functions that are intimately coupled with each other. Maintaining optimal butyrate levels improves gastrointestinal health in animal models by supporting colonocyte function, decreasing inflammation, maintaining the gut barrier, and promoting a healthy microbiome. Butyrate has also shown protective actions in the context of intestinal diseases such as inflammatory bowel disease, graft-versus-host disease of the gastrointestinal tract, and colon cancer, whereas lower levels of butyrate and/or the microbes which are responsible for producing this metabolite are associated with disease and poorer health outcomes. However, clinical efforts to increase butyrate levels in humans and reverse these negative outcomes have generated mixed results. This article discusses our current understanding of the molecular mechanisms of butyrate action with a focus on the gastrointestinal system, the links between host and microbial factors, and the efforts that are currently underway to apply the knowledge gained from the bench to bedside.
Collapse
Affiliation(s)
- Kendra Hodgkinson
- Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Faiha El Abbar
- Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Peter Dobranowski
- Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Juliana Manoogian
- Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - James Butcher
- Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Daniel Figeys
- Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada; School of Pharmaceutical Sciences, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - David Mack
- Department of Paediatrics, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8L1, Canada; Children's Hospital of Eastern Ontario Inflammatory Bowel Disease Centre and Research Institute, Ottawa, ON K1H 8L1, Canada
| | - Alain Stintzi
- Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada.
| |
Collapse
|
26
|
Moran ET, Bedford MR. Large intestinal dynamics differ between fowl and swine: Anatomical modifications, microbial collaboration, and digestive advantages from fibrolytic enzymes. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2022; 11:160-170. [PMID: 36254218 PMCID: PMC9550523 DOI: 10.1016/j.aninu.2022.07.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 04/21/2022] [Accepted: 07/14/2022] [Indexed: 06/16/2023]
Abstract
The large intestinal systems of fowl and swine recover nutrients from ileal indigesta by a strategically different manner. Indigesta with fowl enter a short colon where retro-peristalsis using urine from the urodeum carries small particulates and solutes into both ceca while coarse materials collect in the cloaca. Fowl repetitively add fine and soluble materials into both ceca to continue fermentation until complexity of the remainder exceeds microbial action, then contents apart from faeces are entirely evacuated. Indigesta with swine initially enter a short cecum followed by a lengthy progression through to the rectal ampulla. Wall out-pocketings of circular muscle or haustrae occur throughout the length of the pig's cecum and helicoidal colon. Each pocket carries contents acquired earlier in the cecum. Motility collects fines and solutes into haustrae during their progression through the colon whereas coarse particulates assemble in the core. Haustrae contents continually ferment during movement to the distal colon with resulting volatile fatty acids (VFA) and electrolytes being absorbed. Mucin loosely covers the lumen surface in caeca as well as helicoidal colon that may capture microbes from active intestinal contents as well as release others to sustain fermentation. The microbial community continually modifies to accommodate fibre complexity as encountered. Resistant starches (RS) and simple oligosaccharides rapidly ferment to yield VFA while encouraging butyric acid in the cecum and anterior colon, whereas non-starch polysaccharides (NSP) complexity requires extended durations through the remaining colon that enhance acetic acid. Residual fibre eventually results in undue complexity for fermentation and consolidates at termination of the colon. These compact pellets are placed on core contents to form faeces having a nodular surface. Acetic, propionic, and butyric acids represent the bulk of VFA and are derived from non-digestible carbohydrates. Fibrolytic enzymes, when supplemented to feed, may increase the proportion of oligosaccharides and simpler NSP to further the rate as well as extent of fermentation. Active absorption of VFA by mucosal enterocytes employs its ionized form together with Na+, whereas direct membrane passage occurs when non-dissociated. Most absorbed VFA favour use by the host with a portion of butyric acid together with by-products from protein digestion being retained to reform mucin and sustain mucosal integrity.
Collapse
Affiliation(s)
- Edwin T. Moran
- Poultry Science Department, Auburn University, AL 36830-5416, USA
| | - Michael R. Bedford
- AB Vista, Woodstock Court, Blenheim Road, Marlborough, Wiltshire SN8 4AN, UK
| |
Collapse
|
27
|
Liu Y, Li B, Wei Y. New understanding of gut microbiota and colorectal anastomosis leak: A collaborative review of the current concepts. Front Cell Infect Microbiol 2022; 12:1022603. [PMID: 36389160 PMCID: PMC9663802 DOI: 10.3389/fcimb.2022.1022603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 10/06/2022] [Indexed: 01/24/2023] Open
Abstract
Anastomotic leak (AL) is a life-threatening postoperative complication following colorectal surgery, which has not decreased over time. Until now, no specific risk factors or surgical technique could be targeted to improve anastomotic healing. In the past decade, gut microbiota dysbiosis has been recognized to contribute to AL, but the exact effects are still vague. In this context, interpretation of the mechanisms underlying how the gut microbiota contributes to AL is significant for improving patients' outcomes. This review concentrates on novel findings to explain how the gut microbiota of patients with AL are altered, how the AL-specific pathogen colonizes and is enriched on the anastomosis site, and how these pathogens conduct their tissue breakdown effects. We build up a framework between the gut microbiota and AL on three levels. Firstly, factors that shape the gut microbiota profiles in patients who developed AL after colorectal surgery include preoperative intervention and surgical factors. Secondly, AL-specific pathogenic or collagenase bacteria adhere to the intestinal mucosa and defend against host clearance, including the interaction between bacterial adhesion and host extracellular matrix (ECM), the biofilm formation, and the weakened host commercial bacterial resistance. Thirdly, we interpret the potential mechanisms of pathogen-induced poor anastomotic healing.
Collapse
Affiliation(s)
- Yang Liu
- Pancreatic and Gastrointestinal Surgery Division, HwaMei Hospital, University of Chinese Academy of Science, Ningbo, China,Ningbo Clinical Research Center for Digestive System Tumors, Ningbo, China
| | - Bowen Li
- Pancreatic and Gastrointestinal Surgery Division, HwaMei Hospital, University of Chinese Academy of Science, Ningbo, China,Department of Oncology and Laparoscopy Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yunwei Wei
- Pancreatic and Gastrointestinal Surgery Division, HwaMei Hospital, University of Chinese Academy of Science, Ningbo, China,Ningbo Clinical Research Center for Digestive System Tumors, Ningbo, China,*Correspondence: Yunwei Wei,
| |
Collapse
|
28
|
Jiang W, Wu J, Zhu S, Xin L, Yu C, Shen Z. The Role of Short Chain Fatty Acids in Irritable Bowel Syndrome. J Neurogastroenterol Motil 2022; 28:540-548. [PMID: 36250361 PMCID: PMC9577580 DOI: 10.5056/jnm22093] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 10/07/2022] [Indexed: 11/20/2022] Open
Abstract
Irritable bowel syndrome (IBS) is a functional gastrointestinal disorder that is characterized by abdominal pain and disordered bowel habits. The etiology of IBS is multifactorial, including abnormal gut-brain interactions, visceral hypersensitivity, altered colon motility, and psychological factors. Recent studies have shown that the intestinal microbiota and its metabolites short chain fatty acids (SCFAs) may be involved in the pathogenesis of IBS. SCFAs play an important role in the pathophysiology of IBS. We discuss the underlying mechanisms of action of SCFAs in intestinal inflammation and immunity, intestinal barrier integrity, motility, and the microbiota-gut-brain axis. Limited to previous studies, further studies are required to investigate the mechanisms of action of SCFAs in IBS and provide more precise therapeutic strategies for IBS.
Collapse
Affiliation(s)
- Wenxi Jiang
- Department of Gastroenterology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Jiali Wu
- Department of Gastroenterology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Shefeng Zhu
- Department of Gastroenterology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Linying Xin
- Department of Gastroenterology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Chaohui Yu
- Department of Gastroenterology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Zhe Shen
- Department of Gastroenterology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
29
|
van Deuren T, Blaak EE, Canfora EE. Butyrate to combat obesity and obesity-associated metabolic disorders: Current status and future implications for therapeutic use. Obes Rev 2022; 23:e13498. [PMID: 35856338 PMCID: PMC9541926 DOI: 10.1111/obr.13498] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 06/04/2022] [Accepted: 06/28/2022] [Indexed: 12/17/2022]
Abstract
Evidence is increasing that disturbances in the gut microbiome may play a significant role in the etiology of obesity and type 2 diabetes. The short chain fatty acid butyrate, a major end product of the bacterial fermentation of indigestible carbohydrates, is reputed to have anti-inflammatory properties and positive effects on body weight control and insulin sensitivity. However, whether butyrate has therapeutic potential for the treatment and prevention of obesity and obesity-related complications remains to be elucidated. Overall, animal studies strongly indicate that butyrate administered via various routes (e.g., orally) positively affects adipose tissue metabolism and functioning, energy and substrate metabolism, systemic and tissue-specific inflammation, and insulin sensitivity and body weight control. A limited number of human studies demonstrated interindividual differences in clinical effectiveness suggesting that outcomes may depend on the metabolic, microbial, and lifestyle-related characteristics of the target population. Hence, despite abundant evidence from animal data, support of human data is urgently required for the implementation of evidence-based oral and gut-derived butyrate interventions. To increase the efficacy of butyrate-focused interventions, future research should investigate which factors impact treatment outcomes including baseline gut microbial activity and functionality, thereby optimizing targeted-interventions and identifying individuals that merit most from such interventions.
Collapse
Affiliation(s)
- Thirza van Deuren
- Department of Human Biology, School for Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Ellen E Blaak
- Department of Human Biology, School for Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Emanuel E Canfora
- Department of Human Biology, School for Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University Medical Center+, Maastricht, The Netherlands
| |
Collapse
|
30
|
Madella AM, Van Bergenhenegouwen J, Garssen J, Masereeuw R, Overbeek SA. Microbial-Derived Tryptophan Catabolites, Kidney Disease and Gut Inflammation. Toxins (Basel) 2022; 14:toxins14090645. [PMID: 36136583 PMCID: PMC9505404 DOI: 10.3390/toxins14090645] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/14/2022] [Accepted: 09/16/2022] [Indexed: 11/16/2022] Open
Abstract
Uremic metabolites, molecules either produced by the host or from the microbiota population existing in the gastrointestinal tract that gets excreted by the kidneys into urine, have significant effects on both health and disease. Tryptophan-derived catabolites are an important group of bacteria-produced metabolites with an extensive contribution to intestinal health and, eventually, chronic kidney disease (CKD) progression. The end-metabolite, indoxyl sulfate, is a key contributor to the exacerbation of CKD via the induction of an inflammatory state and oxidative stress affecting various organ systems. Contrastingly, other tryptophan catabolites positively contribute to maintaining intestinal homeostasis and preventing intestinal inflammation—activities signaled through nuclear receptors in particular—the aryl hydrocarbon receptor (AhR) and the pregnane X receptor (PXR). This review discusses the origins of these catabolites, their effect on organ systems, and how these can be manipulated therapeutically in the future as a strategy to treat CKD progression and gut inflammation management. Furthermore, the use of biotics (prebiotics, probiotics, synbiotics) as a means to increase the presence of beneficial short-chain fatty acids (SCFAs) to achieve intestinal homeostasis is discussed.
Collapse
Affiliation(s)
- Avra Melina Madella
- Department of Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
- Correspondence: (A.M.M.); or (S.A.O.); Tel.: +31-30-209-5000 (S.A.O.)
| | - Jeroen Van Bergenhenegouwen
- Department of Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
- Danone Nutricia Research, Uppsalalaan 12, Utrecht Science Park, 3584 CT Utrecht, The Netherlands
| | - Johan Garssen
- Department of Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
- Danone Nutricia Research, Uppsalalaan 12, Utrecht Science Park, 3584 CT Utrecht, The Netherlands
| | - Rosalinde Masereeuw
- Department of Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Saskia Adriana Overbeek
- Department of Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
- Danone Nutricia Research, Uppsalalaan 12, Utrecht Science Park, 3584 CT Utrecht, The Netherlands
- Correspondence: (A.M.M.); or (S.A.O.); Tel.: +31-30-209-5000 (S.A.O.)
| |
Collapse
|
31
|
Martínez-Montoro JI, Martínez-Sánchez MA, Balaguer-Román A, Gil-Martínez J, Mesa-López MJ, Egea-Valenzuela J, Ruiz-Alcaraz AJ, Queipo-Ortuño MI, Ferrer M, Fernández-García JC, Ramos-Molina B. Dietary modulation of gut microbiota in patients with colorectal cancer undergoing surgery: A review. Int J Surg 2022; 104:106751. [PMID: 35803517 DOI: 10.1016/j.ijsu.2022.106751] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 06/19/2022] [Accepted: 06/20/2022] [Indexed: 11/16/2022]
Abstract
Colorectal cancer (CRC) is the third most frequent malignancy and the second cause of cancer death worldwide. Several factors have been postulated to be involved in CRC pathophysiology, including physical inactivity, unhealthy dietary habits, obesity, and the gut microbiota. Emerging data suggest that the microbiome may play a key role in CRC prognosis and derived complications in patients undergoing colorectal surgery. On the other hand, dietary intervention has been demonstrated to be able to induce significant changes in the gut microbiota and related metabolites in different conditions; therefore, the manipulation of gut microbiota through dietary intervention may constitute a useful approach to improve perioperative dysbiosis and post-surgical outcomes in patients with CRC. In this article, we review the role of the gut microbiota in CRC surgery complications and the potential therapeutic modulation of gut microbiome through nutritional intervention in patients with CRC undergoing surgery.
Collapse
Affiliation(s)
- José Ignacio Martínez-Montoro
- Department of Endocrinology and Nutrition, Virgen de la Victoria University Hospital, Instituto de Investigacion Biomedica de Malaga (IBIMA), Faculty of Medicine, University of Malaga, Malaga, Spain
| | | | - Andrés Balaguer-Román
- Obesity and Metabolism Laboratory, Biomedical Research Institute of Murcia (IMIB), Murcia, Spain; Department of General and Digestive System Surgery, Virgen de la Arrixaca University Hospital, Murcia, Spain
| | - José Gil-Martínez
- Department of General and Digestive System Surgery, Virgen de la Arrixaca University Hospital, Murcia, Spain
| | - María José Mesa-López
- Department of Digestive Diseases- Unit of Gastrointestinal Endoscopy, Virgen de la Arrixaca University Hospital, Murcia, Spain
| | - Juan Egea-Valenzuela
- Department of Digestive Diseases- Unit of Gastrointestinal Endoscopy, Virgen de la Arrixaca University Hospital, Murcia, Spain
| | - Antonio José Ruiz-Alcaraz
- Department of Biochemistry, Molecular Biology B and Immunology, Faculty of Medicine, University of Murcia, Murcia, Spain
| | - María Isabel Queipo-Ortuño
- Department of Medical Oncology, Virgen de la Victoria and Regional University Hospitals-IBIMA, UMA-CIMES, Malaga, Spain
| | - Mercedes Ferrer
- Obesity and Metabolism Laboratory, Biomedical Research Institute of Murcia (IMIB), Murcia, Spain; Department of Endocrinology and Nutrition, Virgen de la Arrixaca University Hospital, Murcia, Spain
| | - José Carlos Fernández-García
- Department of Endocrinology and Nutrition, Regional University Hospital of Malaga, Instituto de Investigacion Biomedica de Malaga (IBIMA), Faculty of Medicine, University of Malaga, Malaga, Spain.
| | - Bruno Ramos-Molina
- Obesity and Metabolism Laboratory, Biomedical Research Institute of Murcia (IMIB), Murcia, Spain.
| |
Collapse
|
32
|
Stricker S, Hain T, Chao CM, Rudloff S. Respiratory and Intestinal Microbiota in Pediatric Lung Diseases-Current Evidence of the Gut-Lung Axis. Int J Mol Sci 2022; 23:ijms23126791. [PMID: 35743234 PMCID: PMC9224356 DOI: 10.3390/ijms23126791] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/13/2022] [Accepted: 06/14/2022] [Indexed: 02/07/2023] Open
Abstract
The intestinal microbiota is known to influence local immune homeostasis in the gut and to shape the developing immune system towards elimination of pathogens and tolerance towards self-antigens. Even though the lung was considered sterile for a long time, recent evidence using next-generation sequencing techniques confirmed that the lower airways possess their own local microbiota. Since then, there has been growing evidence that the local respiratory and intestinal microbiota play a role in acute and chronic pediatric lung diseases. The concept of the so-called gut–lung axis describing the mutual influence of local microbiota on distal immune mechanisms was established. The mechanisms by which the intestinal microbiota modulates the systemic immune response include the production of short-chain fatty acids (SCFA) and signaling through pattern recognition receptors (PRR) and segmented filamentous bacteria. Those factors influence the secretion of pro- and anti-inflammatory cytokines by immune cells and further modulate differentiation and recruitment of T cells to the lung. This article does not only aim at reviewing recent mechanistic evidence from animal studies regarding the gut–lung axis, but also summarizes current knowledge from observational studies and human trials investigating the role of the respiratory and intestinal microbiota and their modulation by pre-, pro-, and synbiotics in pediatric lung diseases.
Collapse
Affiliation(s)
- Sebastian Stricker
- Department of Pediatrics, Justus Liebig University Giessen, 35392 Giessen, Germany;
- Correspondence: ; Tel.: +49-641-985-56617
| | - Torsten Hain
- Institute of Medical Microbiology, Justus Liebig University Giessen, 35392 Giessen, Germany;
- German Center for Infection Research (DZIF), Partner Site Giessen-Marburg-Langen, Justus Liebig University Giessen, 35392 Giessen, Germany
| | - Cho-Ming Chao
- Department of Pediatrics, University Medical Center Rostock, 18057 Rostock, Germany;
| | - Silvia Rudloff
- Department of Pediatrics, Justus Liebig University Giessen, 35392 Giessen, Germany;
- Department of Nutritional Science, Justus Liebig University Giessen, 35392 Giessen, Germany
| |
Collapse
|
33
|
Ornelas A, Dowdell AS, Lee JS, Colgan SP. Microbial Metabolite Regulation of Epithelial Cell-Cell Interactions and Barrier Function. Cells 2022; 11:cells11060944. [PMID: 35326394 PMCID: PMC8946845 DOI: 10.3390/cells11060944] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/04/2022] [Accepted: 03/07/2022] [Indexed: 02/04/2023] Open
Abstract
Epithelial cells that line tissues such as the intestine serve as the primary barrier to the outside world. Epithelia provide selective permeability in the presence of a large constellation of microbes, termed the microbiota. Recent studies have revealed that the symbiotic relationship between the healthy host and the microbiota includes the regulation of cell–cell interactions at the level of epithelial tight junctions. The most recent findings have identified multiple microbial-derived metabolites that influence intracellular signaling pathways which elicit activities at the epithelial apical junction complex. Here, we review recent findings that place microbiota-derived metabolites as primary regulators of epithelial cell–cell interactions and ultimately mucosal permeability in health and disease.
Collapse
Affiliation(s)
- Alfredo Ornelas
- Mucosal Inflammation Program, Department of Medicine, University of Colorado Anschutz Medical Campus, 12700 E. 19th Ave, Mailstop B146, Aurora, CO 80045, USA; (A.O.); (A.S.D.); (J.S.L.)
| | - Alexander S. Dowdell
- Mucosal Inflammation Program, Department of Medicine, University of Colorado Anschutz Medical Campus, 12700 E. 19th Ave, Mailstop B146, Aurora, CO 80045, USA; (A.O.); (A.S.D.); (J.S.L.)
| | - J. Scott Lee
- Mucosal Inflammation Program, Department of Medicine, University of Colorado Anschutz Medical Campus, 12700 E. 19th Ave, Mailstop B146, Aurora, CO 80045, USA; (A.O.); (A.S.D.); (J.S.L.)
| | - Sean P. Colgan
- Mucosal Inflammation Program, Department of Medicine, University of Colorado Anschutz Medical Campus, 12700 E. 19th Ave, Mailstop B146, Aurora, CO 80045, USA; (A.O.); (A.S.D.); (J.S.L.)
- Rocky Mountain Regional Veterans Affairs Medical Center, 1700 N. Wheeling St., Aurora, CO 80045, USA
- Correspondence:
| |
Collapse
|
34
|
Bansal R, Park H, Taborda CC, Gordillo C, Mapara MY, Assal A, Uhlemann AC, Reshef R. Antibiotic Exposure, Not Alloreactivity, Is the Major Driver of Microbiome Changes in Hematopoietic Cell Transplantation. Transplant Cell Ther 2022; 28:135-144. [PMID: 34958974 PMCID: PMC8923982 DOI: 10.1016/j.jtct.2021.12.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 12/17/2021] [Accepted: 12/19/2021] [Indexed: 12/31/2022]
Abstract
Both autologous hematopoietic cell transplantation (auto-HCT) and allogeneic hematopoietic cell transplantation (allo-HCT) are associated with significant alterations in the intestinal microbiome. The relative contributions of antibiotic use and alloreactivity to microbiome dynamics have not yet been elucidated, however. There is a lack of data on the kinetics of microbiome changes beyond 30 days post-transplantation and how they might differ between different transplantation modalities. A direct comparison of the differential effects of auto-HCT and allo-HCT on the microbiome may shed light on these dynamics. This study was conducted to compare intestinal microbial diversity between auto-HCT recipients and allo-HCT recipients from pre-transplantation to 100 days post-transplantation, and to examine the effect of antibiotics, transplant type (auto versus allo), and conditioning regimens on the dynamics of microbiome recovery. We conducted a longitudinal analysis of changes in the intestinal microbiome in 35 patients undergoing HCT (17 auto-HCT, 18 allo-HCT) at 4 time points: pre-conditioning and 14, 28, and 100 days post-transplantation. Granular data on antibiotic exposure from day -30 pre-transplantation to day +100 post-transplantation were collected. Pre-transplantation, allo-HCT recipients had lower α-diversity in the intestinal microbiome compared with auto-HCT recipients, which correlated with greater pre-transplantation antibiotic use in allo-HCT recipients. The microbiome diversity declined at days +14 and +28 post-transplantation in both cohorts but generally returned to baseline by day +100. Conditioning regimen intensity did not significantly affect post-transplantation α-diversity. Through differential abundance analysis, we show that commensal bacterial taxa involved with maintenance of gut epithelial integrity and production of short-chain fatty acids were depleted after both auto-HCT and allo-HCT. In our dataset, antibiotic exposure was the major driver of post-transplantation microbiome changes rather than alloreactivity, conditioning intensity, or immunosuppression. Our findings also suggest that interventions to limit microbiome injury, such as limiting the use of broad-spectrum antibiotics, should target the pre-transplantation period and not only the peri-transplantation period.
Collapse
Affiliation(s)
- Rajat Bansal
- Blood and Marrow Transplantation and Cell Therapy Program,
Columbia University Irving Medical Center,Division of Hematologic Malignancies and Cellular
Therapeutics, University of Kansas Medical Center
| | - Heekuk Park
- Division of Infectious Diseases, Columbia University Irving
Medical Center
| | - Cristian C Taborda
- Columbia Center for Translational Immunology, Columbia
University Irving Medical Center
| | - Christian Gordillo
- Blood and Marrow Transplantation and Cell Therapy Program,
Columbia University Irving Medical Center,Columbia Center for Translational Immunology, Columbia
University Irving Medical Center
| | - Markus Y Mapara
- Blood and Marrow Transplantation and Cell Therapy Program,
Columbia University Irving Medical Center,Columbia Center for Translational Immunology, Columbia
University Irving Medical Center
| | - Amer Assal
- Blood and Marrow Transplantation and Cell Therapy Program,
Columbia University Irving Medical Center
| | | | - Ran Reshef
- Blood and Marrow Transplantation and Cell Therapy Program, Columbia University Irving Medical Center, New York, New York; Columbia Center for Translational Immunology, Columbia University Irving Medical Center, New York, New York.
| |
Collapse
|
35
|
Chemically Protected Sodium Butyrate Improves Growth Performance and Early Development and Function of Small Intestine in Broilers as One Effective Substitute for Antibiotics. Antibiotics (Basel) 2022; 11:antibiotics11020132. [PMID: 35203735 PMCID: PMC8868412 DOI: 10.3390/antibiotics11020132] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/07/2022] [Accepted: 01/12/2022] [Indexed: 01/14/2023] Open
Abstract
The purpose of this study was to investigate the effects of chemically protected sodium butyrate (CSB) on growth performance and the early development and function of small intestine in broilers as one potential substitute for antibiotics. A total of 192 one-day-old Arbor Acres male broilers were randomly assigned into three dietary treatment groups (eight replicates per treatment): the control (CON) diet; ANT diet, CON diet supplemented with the antibiotics (enramycin, 8 mg/kg and aureomycin, 100 mg/kg); CSB diet, CON diet supplemented with 1000 mg/kg CSB, respectively. The results showed that dietary CSB and antibiotics addition significantly improved the growth performance of broilers by increasing the body weight gain (BWG) and feed conversion ratio (FCR) during different stages (p < 0.05). On day 21, the supplement of CSB in diet improved the structure of small intestine (duodenum, jejunum, and ileum) in broilers by increasing the ratio of villus height to crypt depth (VH/CD) (p < 0.05) and enhanced the butyric acid (BA) (p < 0.05) and total short chain fatty acids (SCFA) concentrations of small intestine (jejunum and ileum) compared with the CON and ANT diets. Besides that, the superoxide dismutase (SOD), total antioxidant capacity (TAC) and TAC to malondialdehyde (TAC/MDA) ratio of the ileal and jejunal mucosa were significantly higher (p < 0.05) in the CSB and ANT than in the CON. In addition, the supplement of CSB in diet markedly significantly enhanced α-amylase, lipase, and trypsin activities of the ileum (p < 0.05) as compared to the ANT diet. 16S rRNA gene sequencing indicated that CSB markedly increased the microbiota diversity of ileum in broilers at 21 days of age as compared to CON and ANT (p < 0.05). Furthermore, we found that Firmicutes was the predominant phyla and Lactobacillus was the major genus in the ileum of broilers. Compared with the ANT diet, the supplement of CSB in diet increased the relative abundance of some genera microbiota (e.g., Candidatus_Arthromitus, Romboutsia) by decreasing the relative abundance of Lactobacillus. Moreover, Akkermansia in the CSB was the highest in comparison to that in the CON and ANT. In addition, Kitasatospora that belongs to the phylum Actinobacteriota was only found in ileum of broilers fed the ANT diet. In summary, the supplement of 1000 mg/kg CSB in the diet improved the growth performance by promoting early development and function of the small intestine, which is associated with the regulation of intestinal flora and reestablishment of micro-ecological balance in broilers. Thus, CSB has great potential value as one of effective substitutes for in-feed antibiotics in the broiler industry.
Collapse
|
36
|
Bielka W, Przezak A, Pawlik A. The Role of the Gut Microbiota in the Pathogenesis of Diabetes. Int J Mol Sci 2022; 23:ijms23010480. [PMID: 35008906 PMCID: PMC8745411 DOI: 10.3390/ijms23010480] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 12/26/2021] [Accepted: 12/29/2021] [Indexed: 02/06/2023] Open
Abstract
Diabetes mellitus is a significant clinical and therapeutic problem because it can lead to serious long-term complications. Its pathogenesis is not fully understood, but there are indications that dysbiosis can play a role in the development of diabetes, or that it appears during the course of the disease. Changes in microbiota composition are observed in both type 1 diabetes (T1D) and type 2 diabetes (T2D) patients. These modifications are associated with pro-inflammation, increased intestinal permeability, endotoxemia, impaired β-cell function and development of insulin resistance. This review summarizes the role of the gut microbiota in healthy individuals and the changes in bacterial composition that can be associated with T1D or T2D. It also presents new developments in diabetes therapy based on influencing the gut microbiota as a promising method to alter the course of diabetes. Moreover, it highlights the lacking data and suggests future directions needed to prove the causal relationship between dysbiosis and diabetes, both T1D and T2D.
Collapse
|
37
|
Mucins Dynamics in Physiological and Pathological Conditions. Int J Mol Sci 2021; 22:ijms222413642. [PMID: 34948435 PMCID: PMC8707880 DOI: 10.3390/ijms222413642] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 12/10/2021] [Accepted: 12/16/2021] [Indexed: 12/14/2022] Open
Abstract
Maintaining intestinal health requires clear segregation between epithelial cells and luminal microbes. The intestinal mucus layer, produced by goblet cells (GCs), is a key element in maintaining the functional protection of the epithelium. The importance of the gut mucus barrier is highlighted in mice lacking Muc2, the major form of secreted mucins. These mice show closer bacterial residence to epithelial cells, develop spontaneous colitis and became moribund when infected with the attaching and effacing pathogen, Citrobacter rodentium. Furthermore, numerous observations have associated GCs and mucus layer dysfunction to the pathogenesis of inflammatory bowel disease (IBD). However, the molecular mechanisms that regulate the physiology of GCs and the mucus layer remain obscured. In this review, we consider novel findings describing divergent functionality and expression profiles of GCs subtypes within intestinal crypts. We also discuss internal (host) and external (diets and bacteria) factors that modulate different aspects of the mucus layer as well as the contribution of an altered mucus barrier to the onset of IBD.
Collapse
|
38
|
Singh SB, Lin HC. Role of Intestinal Alkaline Phosphatase in Innate Immunity. Biomolecules 2021; 11:biom11121784. [PMID: 34944428 PMCID: PMC8698947 DOI: 10.3390/biom11121784] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 11/23/2021] [Accepted: 11/23/2021] [Indexed: 12/14/2022] Open
Abstract
Intestinal alkaline phosphatase (IAP) is a multi-functional protein that has been demonstrated to primarily protect the gut. The role of IAP in maintaining intestinal homeostasis is underscored by the observation that IAP expression is defective in many gastrointestinal-related disorders such as inflammatory bowel disease IBD, necrotizing enterocolitis, and metabolic syndrome and that exogenous IAP supplementation improves the outcomes associated with these disorders. Additionally, studies using transgenic IAP-knock out (IAP-KO) mouse models further support the importance of the defensive role of IAP in the intestine. Supplementation of exogenous IAP and cellular overexpression of IAP have also been used in vitro to dissect out the downstream mechanisms of this protein in mammalian cell lines. Some of the innate immune functions of IAP include lipopolysaccharide (LPS) detoxification, protection of gut barrier integrity, regulation of gut microbial communities and its anti-inflammatory roles. A novel function of IAP recently identified is the induction of autophagy. Due to its critical role in the gut physiology and its excellent safety profile, IAP has been used in phase 2a clinical trials for treating conditions such as sepsis-associated acute kidney injury. Many excellent reviews discuss the role of IAP in physiology and pathophysiology and here we extend these to include recent updates on this important host defense protein and discuss its role in innate immunity via its effects on bacteria as well as on host cells. We will also discuss the relationship between IAP and autophagy and how these two pathways may act in concert to protect the gut.
Collapse
Affiliation(s)
- Sudha B. Singh
- Biomedical Research Institute of New Mexico, Albuquerque, NM 87108, USA;
| | - Henry C. Lin
- Medicine Service, New Mexico VA Health Care System, Albuquerque, NM 87108, USA
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of New Mexico, Albuquerque, NM 87131, USA
- Correspondence:
| |
Collapse
|
39
|
Liu L, Li Q, Yang Y, Guo A. Biological Function of Short-Chain Fatty Acids and Its Regulation on Intestinal Health of Poultry. Front Vet Sci 2021; 8:736739. [PMID: 34733901 PMCID: PMC8558227 DOI: 10.3389/fvets.2021.736739] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 09/16/2021] [Indexed: 12/12/2022] Open
Abstract
Short-chain fatty acids (SCFAs) are metabolites generated by bacterial fermentation of dietary fiber (DF) in the hindgut. SCFAs are mainly composed of acetate, propionate and butyrate. Many studies have shown that SCFAs play a significant role in the regulation of intestinal health in poultry. SCFAs are primarily absorbed from the intestine and used by enterocytes as a key substrate for energy production. SCFAs can also inhibit the invasion and colonization of pathogens by lowering the intestinal pH. Additionally, butyrate inhibits the expression of nitric oxide synthase (NOS), which encodes inducible nitric oxide synthase (iNOS) in intestinal cells via the PPAR-γ pathway. This pathway causes significant reduction of iNOS and nitrate, and inhibits the proliferation of Enterobacteriaceae to maintain overall intestinal homeostasis. SCFAs can enhance the immune response by stimulating cytokine production (e.g. TNF-α, IL-2, IL-6, and IL-10) in the immune cells of the host. Similarly, it has been established that SCFAs promote the differentiation of T cells into T regulatory cells (Tregs) and expansion by binding to receptors, such as Toll-like receptors (TLR) and G protein-coupled receptors (GPRs), on immune cells. SCFAs have been shown to repair intestinal mucosa and alleviate intestinal inflammation by activating GPRs, inhibiting histone deacetylases (HDACs), and downregulating the expression of pro-inflammatory factor genes. Butyrate improves tight-junction-dependent intestinal barrier function by promoting tight junction (TJ) assembly. In recent years, the demand for banning antibiotics has increased in poultry production. Therefore, it is extremely important to maintain the intestinal health and sustainable production of poultry. Taking nutrition strategies is important to regulate SCFA production by supplementing dietary fiber and prebiotics, SCFA-producing bacteria (SPB), and additives in poultry diet. However, excessive SCFAs will lead to the enteritis in poultry production. There may be an optimal level and proportion of SCFAs in poultry intestine, which benefits to gut health of poultry. This review summarizes the biological functions of SCFAs and their role in gut health, as well as nutritional strategies to regulate SCFA production in the poultry gut.
Collapse
Affiliation(s)
- Lixuan Liu
- Faculty of Life Sciences, Southwest Forestry University, Kunming, China
| | - Qingqing Li
- Faculty of Life Sciences, Southwest Forestry University, Kunming, China
- Kunming Xianghao Technology Co., Ltd., Kunming, China
| | - Yajin Yang
- Faculty of Life Sciences, Southwest Forestry University, Kunming, China
| | - Aiwei Guo
- Faculty of Life Sciences, Southwest Forestry University, Kunming, China
| |
Collapse
|
40
|
Gut Microbiota and Dietary Factors as Modulators of the Mucus Layer in Inflammatory Bowel Disease. Int J Mol Sci 2021; 22:ijms221910224. [PMID: 34638564 PMCID: PMC8508624 DOI: 10.3390/ijms221910224] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 09/20/2021] [Indexed: 12/14/2022] Open
Abstract
The gastrointestinal tract is optimized to efficiently absorb nutrients and provide a competent barrier against a variety of lumen environmental compounds. Different regulatory mechanisms jointly collaborate to maintain intestinal homeostasis, but alterations in these mechanisms lead to a dysfunctional gastrointestinal barrier and are associated to several inflammatory conditions usually found in chronic pathologies such as inflammatory bowel disease (IBD). The gastrointestinal mucus, mostly composed of mucin glycoproteins, covers the epithelium and plays an essential role in digestive and barrier functions. However, its regulation is very dynamic and is still poorly understood. This review presents some aspects concerning the role of mucus in gut health and its alterations in IBD. In addition, the impact of gut microbiota and dietary compounds as environmental factors modulating the mucus layer is addressed. To date, studies have evidenced the impact of the three-way interplay between the microbiome, diet and the mucus layer on the gut barrier, host immune system and IBD. This review emphasizes the need to address current limitations on this topic, especially regarding the design of robust human trials and highlights the potential interest of improving our understanding of the regulation of the intestinal mucus barrier in IBD.
Collapse
|
41
|
Glutamine deficiency links clindamycin-induced dysbiosis and intestinal barrier dysfunction in mice. Br J Nutr 2021; 126:366-374. [PMID: 33087187 DOI: 10.1017/s0007114520004195] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Antibiotics rank as the most powerful weapons against bacterial infection, but their use is often limited by antibiotic-associated diarrhoea (AAD). Here, we reported that glutamine deficiency might act as a new link between clindamycin-induced dysbiosis and intestinal barrier dysfunction during AAD progression. Using a mouse model, we demonstrated that glutamine became a conditionally essential amino acid upon persistent therapeutic-dose clindamycin exposure, evidenced by a dramatic decrease in intestinal glutamine level and glutaminase expression. Mechanistically, clindamycin substantially confounded the abundance of butyrate-producing strains, leading to the deficiency of faecal butyrate which is normally a fundamental fuel for enterocytes, and in turn increased the compensatory use of glutamine. In addition to its pivotal roles in colonic epithelial cell turnover, glutamine was required for nitric oxide production in classic macrophage-driven host defence facilitating pathogen removal. Importantly, oral administration of glutamine effectively attenuated clindamycin-induced dysbiosis and restored intestinal barrier dysfunction in mice. Collectively, the present study highlighted the importance of gut microbiota in host energy homoeostasis and provided a rationale for introducing glutamine supplementation to patients receiving long-term antibiotic treatment.
Collapse
|
42
|
Kayama H, Okumura R, Takeda K. Interaction Between the Microbiota, Epithelia, and Immune Cells in the Intestine. Annu Rev Immunol 2021; 38:23-48. [PMID: 32340570 DOI: 10.1146/annurev-immunol-070119-115104] [Citation(s) in RCA: 416] [Impact Index Per Article: 104.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The gastrointestinal tract harbors numerous commensal bacteria, referred to as the microbiota, that benefit host health by digesting dietary components and eliminating pathogens. The intestinal microbiota maintains epithelial barrier integrity and shapes the mucosal immune system, balancing host defense and oral tolerance with microbial metabolites, components, and attachment to host cells. To avoid aberrant immune responses, epithelial cells segregate the intestinal microbiota from immune cells by constructing chemical and physical barriers, leading to the establishment of host-commensal mutualism. Furthermore, intestinal immune cells participate in the maintenance of a healthy microbiota community and reinforce epithelial barrier functions. Perturbations of the microbiota composition are commonly observed in patients with autoimmune diseases and chronic inflammatory disorders. An understanding of the intimate interactions between the intestinal microbiota, epithelial cells, and immune cells that are crucial for the maintenance of intestinal homeostasis might promote advances in diagnostic and therapeutic approaches for various diseases.
Collapse
Affiliation(s)
- Hisako Kayama
- Department of Microbiology and Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan; , , .,WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan.,Institute for Advanced Co-Creation Studies, Osaka University, Suita, Osaka 565-0871, Japan
| | - Ryu Okumura
- Department of Microbiology and Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan; , , .,WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan
| | - Kiyoshi Takeda
- Department of Microbiology and Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan; , , .,WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
43
|
Luo X, Kong Q, Wang Y, Duan X, Wang P, Li C, Huan Y. Colonization of Clostridium butyricum in Rats and Its Effect on Intestinal Microbial Composition. Microorganisms 2021; 9:1573. [PMID: 34442652 PMCID: PMC8401576 DOI: 10.3390/microorganisms9081573] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/14/2021] [Accepted: 07/19/2021] [Indexed: 12/31/2022] Open
Abstract
Gut microorganisms participate in many physiological processes. In particular, Clostridium butyricum can modulate gut microorganisms and treat diseases. The colonization and persistence of strains in the gut contribute to beneficial effects, and the colonization by C. butyricum in the gut is currently unknown. We investigated the total intestinal contents of C. butyricum at 12 h, 24 h, 48 h, and four and six days using real-time reverse transcription-PCR, after oral administration of C. butyricum to rats for seven consecutive days. We assessed the bacterial community structure using Illumina MiSeq sequencing. The results showed that C. butyricum was mainly colonized in the colon. The total content of C. butyricum in the gut increased significantly at 12 h after administration. Exogenous C. butyricum could still be detected in the gut six days after administration. Administration of C. butyricum significantly enhanced gut microbial diversity. The relative abundance of short-chain fatty acid-producing bacterial genera was shown to be higher than that of the control group, and treatment with C. butyricum elevated Firmicutes and diminished Bacteroidetes phyla compared with to the control group. These findings laid the foundation for the study of probiotic colonization capacity and the improvement of microflora for the prevention of gut diseases.
Collapse
Affiliation(s)
| | - Qing Kong
- School of Food Science and Engineering, Ocean University of China, Qingdao 266003, China; (X.L.); (Y.W.); (X.D.); (P.W.); (C.L.); (Y.H.)
| | | | | | | | | | | |
Collapse
|
44
|
Polysaccharide from Artocarpus heterophyllus Lam. (jackfruit) pulp modulates gut microbiota composition and improves short-chain fatty acids production. Food Chem 2021; 364:130434. [PMID: 34182368 DOI: 10.1016/j.foodchem.2021.130434] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 05/06/2021] [Accepted: 06/18/2021] [Indexed: 12/13/2022]
Abstract
This study aimed to investigate the effects of polysaccharide from Artocarpus heterophyllus Lam. pulp (JFP-Ps) on gut microbiota composition and short-chain fatty acids production in mice. The microbial communities of V3 and V4 region 16S rRNA gene was amplified by PCR, then sequenced on an Illumina MiSeq PE250 platform and analyzed by multivariate statistical methods. The concentrations of short-chain fatty acids (SCFAs) were measured using gas chromatography (GC) equipped with a flame ionization detector (FID). The results showed that JFP-Ps significantly affected the levels of intestinal bacteria, including Bacteroidetes, Firmicutes, Proteobacteria, Cyanobacteria, Actinobacteria, Tenericutes, Deferribacteres and TM7. The concentrations of acetic acid, propionic acid, n-butyric acid and total SCFAs in mouse feces were significantly increased by treatment with JFP-Ps for 2 weeks. These results indicate that JFP-Ps is beneficial to the gut health and can be developed as a functional ingredient in relation to gut health.
Collapse
|
45
|
Patnaude L, Mayo M, Mario R, Wu X, Knight H, Creamer K, Wilson S, Pivorunas V, Karman J, Phillips L, Dunstan R, Kamath RV, McRae B, Terrillon S. Mechanisms and regulation of IL-22-mediated intestinal epithelial homeostasis and repair. Life Sci 2021; 271:119195. [PMID: 33581125 DOI: 10.1016/j.lfs.2021.119195] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 01/27/2021] [Accepted: 02/03/2021] [Indexed: 12/19/2022]
Abstract
AIMS Ulcerative colitis and Crohn's disease, collectively known as inflammatory bowel disease (IBD), are chronic inflammatory disorders of the intestine for which key elements in disease initiation and perpetuation are defects in epithelial barrier integrity. Achieving mucosal healing is essential to ameliorate disease outcome and so new therapies leading to epithelial homeostasis and repair are under investigation. This study was designed to determine the mechanisms by which IL-22 regulates intestinal epithelial cell function. MAIN METHODS Human intestinal organoids and resections, as well as mice were used to evaluate the effect of IL-22 on stem cell expansion, proliferation and expression of mucus components. IL-22 effect on barrier function was assessed in polarized T-84 cell monolayers. Butyrate co-treatments and organoid co-cultures with immune cells were performed to monitor the impact of microbial-derived metabolites and inflammatory environments on IL-22 responses. KEY FINDINGS IL-22 led to epithelial stem cell expansion, proliferation, barrier dysfunction and anti-microbial peptide production in human and mouse models evaluated. IL-22 also altered the mucus layer by inducing an increase in membrane mucus but a decrease in secreted mucus and goblet cell content. IL-22 had the same effect on anti-microbial peptides and membrane mucus in both healthy and IBD human samples. In contrast, this IL-22-associated epithelial phenotype was different when treatments were performed in presence of butyrate and organoids co-cultured with immune cells. SIGNIFICANCE Our data indicate that IL-22 promotes epithelial regeneration, innate defense and membrane mucus production, strongly supporting the potential clinical utility of IL-22 as a mucosal healing therapy in IBD.
Collapse
Affiliation(s)
- Lori Patnaude
- AbbVie Bioresearch Center, 100 Research Drive, Worcester, MA 01605, USA
| | - Martha Mayo
- AbbVie Bioresearch Center, 100 Research Drive, Worcester, MA 01605, USA
| | - Regina Mario
- AbbVie Bioresearch Center, 100 Research Drive, Worcester, MA 01605, USA
| | - Xiaoming Wu
- AbbVie Bioresearch Center, 100 Research Drive, Worcester, MA 01605, USA
| | - Heather Knight
- AbbVie Bioresearch Center, 100 Research Drive, Worcester, MA 01605, USA
| | - Kelly Creamer
- AbbVie Bioresearch Center, 100 Research Drive, Worcester, MA 01605, USA
| | - Sarah Wilson
- Abbvie, Cambridge Research Center, 200 Sidney Street, Cambridge, MA 02139, USA
| | - Valerie Pivorunas
- AbbVie Bioresearch Center, 100 Research Drive, Worcester, MA 01605, USA
| | - Jozsef Karman
- Abbvie, Cambridge Research Center, 200 Sidney Street, Cambridge, MA 02139, USA
| | - Lucy Phillips
- AbbVie Bioresearch Center, 100 Research Drive, Worcester, MA 01605, USA
| | - Robert Dunstan
- AbbVie Bioresearch Center, 100 Research Drive, Worcester, MA 01605, USA
| | - Rajesh V Kamath
- AbbVie Bioresearch Center, 100 Research Drive, Worcester, MA 01605, USA
| | - Bradford McRae
- AbbVie Bioresearch Center, 100 Research Drive, Worcester, MA 01605, USA
| | - Sonia Terrillon
- AbbVie Bioresearch Center, 100 Research Drive, Worcester, MA 01605, USA.
| |
Collapse
|
46
|
Gasaly N, Hermoso MA, Gotteland M. Butyrate and the Fine-Tuning of Colonic Homeostasis: Implication for Inflammatory Bowel Diseases. Int J Mol Sci 2021; 22:ijms22063061. [PMID: 33802759 PMCID: PMC8002420 DOI: 10.3390/ijms22063061] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 12/08/2020] [Accepted: 12/08/2020] [Indexed: 02/06/2023] Open
Abstract
This review describes current evidence supporting butyrate impact in the homeostatic regulation of the digestive ecosystem in health and inflammatory bowel diseases (IBDs). Butyrate is mainly produced by bacteria from the Firmicutes phylum. It stimulates mature colonocytes and inhibits undifferentiated malignant and stem cells. Butyrate oxidation in mature colonocytes (1) produces 70–80% of their energetic requirements, (2) prevents stem cell inhibition by limiting butyrate access to crypts, and (3) consumes oxygen, generating hypoxia and maintaining luminal anaerobiosis favorable to the microbiota. Butyrate stimulates the aryl hydrocarbon receptor (AhR), the GPR41 and GPR109A receptors, and inhibits HDAC in different cell types, thus stabilizing the gut barrier function and decreasing inflammatory processes. However, some studies indicate contrary effects according to butyrate concentrations. IBD patients exhibit a lower abundance of butyrate-producing bacteria and butyrate content. Additionally, colonocyte butyrate oxidation is depressed in these subjects, lowering luminal anaerobiosis and facilitating the expansion of Enterobacteriaceae that contribute to inflammation. Accordingly, gut dysbiosis and decreased barrier function in IBD seems to be secondary to the impaired mitochondrial disturbance in colonic epithelial cells.
Collapse
Affiliation(s)
- Naschla Gasaly
- Department of Nutrition, Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile;
- Laboratory of Innate Immunity, Program of Immunology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile;
| | - Marcela A. Hermoso
- Laboratory of Innate Immunity, Program of Immunology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile;
| | - Martín Gotteland
- Department of Nutrition, Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile;
- Department of Human Nutrition, Institute of Nutrition and Food Technology (INTA), Universidad de Chile, Santiago 7830490, Chile
- Millennium Nucleus in the Biology of Intestinal Microbiota, Santiago 8380453, Chile
- Correspondence: ; Tel.: +56-989-059-222
| |
Collapse
|
47
|
ALVES JR AJT, GOTO EFK, PEREIRA JA, DOMINGUES FA, ÁVILA MGD, COY CSR, MARTINEZ CAR. EXPRESSÃO DE E-CADERINA E CLAUDINA-3 NO EPITÉLIO CÓLICO APÓS TERAPIA COM INFLIXIMABE: MODELO EXPERIMENTAL DE COLITE DE EXCLUSÃO. ABCD-ARQUIVOS BRASILEIROS DE CIRURGIA DIGESTIVA 2021; 34:e1639. [PMID: 35107501 PMCID: PMC8846491 DOI: 10.1590/0102-672020210002e1639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 10/30/2021] [Indexed: 11/22/2022]
Abstract
RESUMO - RACIONAL: A etiopatogenia da colite por desuso (DC) ainda não foi totalmente elucidada. As principais teorias consideram que a doença pode estar relacionada ao aumento de bactérias anaeróbias, falta de suprimento de ácidos graxos de cadeia curta (AGCC) e distúrbios imunológicos que se desenvolvem em segmentos colorretais desprovidos de trânsito fecal. OBJETIVO: Verificar se a aplicação de infliximabe modifica o conteúdo tecidual das proteínas E-caderina e claudina-3 no epitélio cólico de ratos sem trânsito intestinal. MÉTODOS: Vinte dois ratos foram submetidos a derivação do trânsito intestinal pelo procedimento de Hartmann. Eles permaneceram com o ostoma por 12 semanas para permitir o desenvolvimento da colite de exclusão. Em seguida, foram divididos em três grupos experimentais: seis animais receberam 2,0 ml de solução salina/semana, oito infliximabe na dose de 5 mg/Kg/semana e, os demais, infliximabe na dose de 10 mg/Kg/semana por 5 semanas consecutivas. Em seguida, os animais foram eutanasiados e os segmentos cólicos com e sem trânsito intestinal foram removidos. A colite por desuso foi diagnosticada pelas alterações histológicas definidas por uma escala previamente validada. Expressão tecidual de E-caderina e claudina-3 foi avaliada por imuno-histoquímica, e o conteúdo tecidual de ambas as proteínas foi quantificado por análise de imagem assistida por computador. RESULTADOS: Segmentos cólicos exclusos de trânsito fecal apresentaram maior grau de inflamação do que os expostos ao trânsito fecal. Inflamação foi menor nos animais tratados com infliximabe, independente da dose utilizada. Níveis de E-caderina e claudina-3 estavam reduzidos no cólon excluso. O tratamento com infliximabe aumentou os níveis das proteínas em segmentos do cólon sem trânsito intestinal, principalmente nos animais que receberam a dose de 10mg/kg/semana. CONCLUSÃO: Infliximabe reduz inflamação nos segmentos do cólon excluso e aumenta o conteúdo tecidual de E-caderina e claudina-3, especialmente na concentração de 10mg/kg/semana.
Collapse
|
48
|
Lee JS, Wang RX, Alexeev EE, Colgan SP. Intestinal Inflammation as a Dysbiosis of Energy Procurement: New Insights into an Old Topic. Gut Microbes 2021; 13:1-20. [PMID: 33583319 PMCID: PMC7889129 DOI: 10.1080/19490976.2021.1880241] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 01/04/2021] [Accepted: 01/11/2021] [Indexed: 02/07/2023] Open
Abstract
Inflammatory bowel disease (IBD) coincides with profound shifts in microbiota and host metabolic energy supply and demand. The gastrointestinal epithelium is anatomically positioned to provide a selective barrier between the anaerobic luminal microbiota and host lamina propria, with the microbiota and epithelium participating in an intricate energy exchange necessary for homeostasis. Maintenance and restoration of the barrier requires high energy flux and places significant demands on available substrates to generate ATP. It is recently appreciated that components of the microbiota contribute significantly to a multitude of biochemical pathways within and outside of the mucosa. Decades-old studies have appreciated that byproducts of the microbiota provide essential sources of energy to the intestinal epithelium, especially the colon. More recent work has unveiled the existence of numerous microbial-derived metabolites that support energy procurement within the mucosa. It is now appreciated that disease-associated shifts in the microbiota, termed dysbiosis, places significant demands on energy acquisition within the mucosa. Here, we review the topic of host- and microbial-derived components that influence tissue energetics in health and during disease.
Collapse
Affiliation(s)
- J. Scott Lee
- Department of Medicine and the Mucosal Inflammation Program, University of Colorado School of Medicine, Aurora, United States
| | - Ruth X. Wang
- Department of Medicine and the Mucosal Inflammation Program, University of Colorado School of Medicine, Aurora, United States
| | - Erica E. Alexeev
- Department of Medicine and the Mucosal Inflammation Program, University of Colorado School of Medicine, Aurora, United States
- Department of Gastroenterology, Inflammatory Bowel and Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles, United States
| | - Sean P. Colgan
- Department of Medicine and the Mucosal Inflammation Program, University of Colorado School of Medicine, Aurora, United States
| |
Collapse
|
49
|
Wark G, Samocha-Bonet D, Ghaly S, Danta M. The Role of Diet in the Pathogenesis and Management of Inflammatory Bowel Disease: A Review. Nutrients 2020; 13:nu13010135. [PMID: 33396537 PMCID: PMC7823614 DOI: 10.3390/nu13010135] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 12/21/2020] [Accepted: 12/29/2020] [Indexed: 02/07/2023] Open
Abstract
Inflammatory bowel diseases, which include ulcerative colitis and Crohn’s disease, are chronic relapsing and remitting inflammatory diseases of the gastrointestinal tract that are increasing in prevalence and incidence globally. They are associated with significant morbidity, reduced quality of life to individual sufferers and are an increasing burden on society through direct and indirect costs. Current treatment strategies rely on immunosuppression, which, while effective, is associated with adverse events. Epidemiological evidence suggests that diet impacts the risk of developing IBD and modulates disease activity. Using diet as a therapeutic option is attractive to patients and clinicians alike due to its availability, low cost and few side effects. Diet may influence IBD risk and disease behaviour through several mechanisms. Firstly, some components of the diet influence microbiota structure and function with downstream effects on immune activity. Secondly, dietary components act to alter the structure and permeability of the mucosal barrier, and lastly dietary elements may have direct interactions with components of the immune response. This review will summarise the mechanisms of diet–microbial–immune system interaction, outline key studies examining associations between diet and IBD and evidence demonstrating the impact of diet on disease control. Finally, this review will outline current prescribed dietary therapies for active CD.
Collapse
Affiliation(s)
- Gabrielle Wark
- St Vincent’s Clinical School, UNSW, Sydney, NSW 2052, Australia; (G.W.); (D.S.-B.); (S.G.)
- Department of Gastroenterology and Hepatology, St Vincent’s Hospital, Sydney, SW 2010, Australia
| | - Dorit Samocha-Bonet
- St Vincent’s Clinical School, UNSW, Sydney, NSW 2052, Australia; (G.W.); (D.S.-B.); (S.G.)
- Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
| | - Simon Ghaly
- St Vincent’s Clinical School, UNSW, Sydney, NSW 2052, Australia; (G.W.); (D.S.-B.); (S.G.)
- Department of Gastroenterology and Hepatology, St Vincent’s Hospital, Sydney, SW 2010, Australia
| | - Mark Danta
- St Vincent’s Clinical School, UNSW, Sydney, NSW 2052, Australia; (G.W.); (D.S.-B.); (S.G.)
- Department of Gastroenterology and Hepatology, St Vincent’s Hospital, Sydney, SW 2010, Australia
- Correspondence:
| |
Collapse
|
50
|
Bilotta AJ, Ma C, Yang W, Yu Y, Yu Y, Zhao X, Zhou Z, Yao S, Dann SM, Cong Y. Propionate Enhances Cell Speed and Persistence to Promote Intestinal Epithelial Turnover and Repair. Cell Mol Gastroenterol Hepatol 2020; 11:1023-1044. [PMID: 33238220 PMCID: PMC7898181 DOI: 10.1016/j.jcmgh.2020.11.011] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 11/13/2020] [Accepted: 11/16/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND AND AIMS Gut bacteria-derived short-chain fatty acids (SCFAs) play crucial roles in the maintenance of intestinal homeostasis. However, how SCFAs regulate epithelial turnover and tissue repair remain incompletely understood. In this study, we investigated how the SCFA propionate regulates cell migration to promote epithelial renewal and repair. METHODS Mouse small intestinal epithelial cells (MSIE) and human Caco-2 cells were used to determine the effects of SCFAs on gene expression, proliferation, migration, and cell spreading in vitro. Video microscopy and single cell tracking were used to assess cell migration kinetically. 5-bromo-2'-deoxyuridine (BrdU) and hydroxyurea were used to assess the effects of SCFAs on migration in vivo. Lastly, an acute colitis model using dextran sulfate sodium (DSS) was used to examine the effects of SCFAs in vivo. RESULTS Using video microscopy and single cell tracking, we found that propionate promoted intestinal epithelial cell migration by enhancing cell spreading and polarization, which led to increases in both cell speed and persistence. This novel function of propionate was dependent on inhibition of class I histone deacetylases (HDAC) and GPR43 and required signal transducer and activator of transcription 3 (STAT3). Furthermore, using 5-bromo-2'-deoxyuridine (BrdU) and hydroxyurea in vivo, we found that propionate enhanced cell migration up the crypt-villus axis under homeostatic conditions, while also protecting against ulcer formation in experimental colitis. CONCLUSION Our results demonstrate a mechanism by which propionate stimulates cell migration in an HDAC inhibition, GPR43, and STAT3 dependent manner, and suggest that propionate plays an important role in epithelial migration independent of proliferation.
Collapse
Affiliation(s)
- Anthony J Bilotta
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas
| | - Chunyan Ma
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas; Department of Central Laboratory, Shandong Provincial Hospital Shandong First Medical University, Jinan, China
| | - Wenjing Yang
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas
| | - Yanbo Yu
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas
| | - Yu Yu
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas
| | - Xiaojing Zhao
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas
| | - Zheng Zhou
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas
| | - Suxia Yao
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas
| | - Sara M Dann
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, Texas
| | - Yingzi Cong
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas; Department of Pathology, University of Texas Medical Branch, Galveston, Texas.
| |
Collapse
|