1
|
Zhou Z, Chen F, Hao H, Wang KJ. A novel antimicrobial peptide Larimicin 78-102 from large yellow croaker (Larimichthys crocea) shows potent antibacterial activity in vitro and enhances resistance to vibrio fluvialis infection in vivo. FISH & SHELLFISH IMMUNOLOGY 2025; 161:110279. [PMID: 40089087 DOI: 10.1016/j.fsi.2025.110279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Revised: 03/10/2025] [Accepted: 03/13/2025] [Indexed: 03/17/2025]
Abstract
Antimicrobial peptides (AMPs) are considered a key component of innate immunity, playing a vital role in host defense. In the study, a novel functional gene, named Larimicin, was identified from large yellow croaker Larimichthys crocea. The Larimicin gene was widely distributed in multiple tissues of healthy L. crocea and was significantly induced in the liver after Vibrio alginolyticus or Vibrio parahaemolyticus infection. Larimicin78-102, a truncated peptide derived from Larimicin, showed broad-spectrum antimicrobial activity and a binding affinity with LPS. It exhibited effective bactericidal activity against the common aquatic pathogens Vibrio fluvialis, Pseudomonas fluorescens, and Pseudomonas putida. It also showed anti-biofilm activity against three aquatic pathogens. Moreover, Larimicin78-102 disrupted the integrity of the outer and inner membranes, resulting in ATP leakage and intracellular ROS accumulation, which ultimately led to bacterial cell death. Larimicin78-102 exhibited good thermal stability and cation tolerance, with no obvious cytotoxicity or hemolytic activity. Notably, Larimicin78-102 significantly improved the survival rate of L. crocea infected with V. fluvialis, raising it to 95 %, indicating its anti-infective role in vivo. In addition, Larimicin78-102 significantly reduced the expression of the pro-inflammatory cytokines TNF-α and IL-1β, while up-regulating the anti-inflammatory factor IL-4 mRNA level. It also elevated the expression levels of piscidin, hepcidin, and lysozyme, as well as enhanced the enzymatic activity of lysozyme. Taken together, Larimicin78-102 is a potential antibacterial agent for use in aquaculture to combat V. fluvialis infection diseases in the future.
Collapse
Affiliation(s)
- Zhenzhen Zhou
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - Fangyi Chen
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China; State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China; Fujian Innovation Research Institute for Marine Biological Antimicrobial Peptide Industrial Technology, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China.
| | - Hua Hao
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China; State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China; Fujian Innovation Research Institute for Marine Biological Antimicrobial Peptide Industrial Technology, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - Ke-Jian Wang
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China; State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China; Fujian Innovation Research Institute for Marine Biological Antimicrobial Peptide Industrial Technology, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China.
| |
Collapse
|
2
|
Huo G, Lan Y, Feng Y, Gao X, Chen C. The Efficacy for Hypertensive Intracerebral Hemorrhage Between Neuroendoscopic Surgery and Conservative Treatment: A Retrospective Observational Study. Neurologist 2025; 30:109-115. [PMID: 39575625 DOI: 10.1097/nrl.0000000000000597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
OBJECTIVES This study aims to investigate the efficacy of neuroendoscopic surgery in the treatment of hypertensive intracerebral hemorrhage (HICH). METHODS A total of 193 patients diagnosed with HICH were divided into 2 groups in this study: the observation group (n=101) received neuroendoscopic surgery, whereas the control group (n=92) underwent conservative treatment. Then, the outcomes between these 2 groups were compared and assessed. RESULTS In the pretreatment phase, there were no significant differences in the levels of inflammation and neurological function scores between these 2 groups ( P >0.05). After 3 months of treatment, the observation group displayed significantly shorter median hospital stay, lower average hospital costs, and faster hematoma resorption time, along with reduced levels of tumor necrosis factor-alpha (TNF-α), C-reactive protein (CRP), interleukin (IL)-6 and IL-8, aquaporin-4 (AQP4), macrophage migration inhibitory factor (MIF), matrix metalloproteinase-9 (MMP-9), granulocyte macrophage colony stimulating factor (GM-CSF), Nerve Deficiency Scale (NDS), Graeb score, and national institute of health stroke scale (NIHSS) compared with the control group ( P <0.05). In addition, the observation group exhibited higher rate of hematoma clearance and better glasgow outcome scale (GOS) score compared with the control group ( P <0.05). The effective treatment rate in the observation group was notably superior to that in the control group (89.11% vs. 73.91%, P <0.05). CONCLUSIONS Neuroendoscopic surgery is an effective treatment for HICH, with alleviating the inflammatory response and enhancing the neurological function. The treatment shows promising outcomes and justifies extensive implementation.
Collapse
Affiliation(s)
- Guojin Huo
- Department of Neurosurgery, Yulin No. 1 Hospital, Yulin City, Shaanxi
| | - Yanping Lan
- Department of Neurosurgery, People's Hospital of Ningxia Hui Autonomous Region, Yinchuan City, Ningxia, China
| | - Yi Feng
- Department of Neurosurgery, Yulin No. 1 Hospital, Yulin City, Shaanxi
| | - Xiang Gao
- Department of Neurosurgery, Yulin No. 1 Hospital, Yulin City, Shaanxi
| | - Chen Chen
- Department of Neurosurgery, Yulin No. 1 Hospital, Yulin City, Shaanxi
| |
Collapse
|
3
|
Tan F, Ren L, Kong CS. Therapeutic Effect of Lactiplantibacillus plantarun HFY11 Isolated from Naturally Fermented Yak Yogurt on Lincomycin Hydrochloride-Induced Diarrhea in Mice. Microorganisms 2024; 12:2307. [PMID: 39597698 PMCID: PMC11596483 DOI: 10.3390/microorganisms12112307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/29/2024] [Accepted: 11/12/2024] [Indexed: 11/29/2024] Open
Abstract
This study aimed to observe the therapeutic effect of Lactiplantibacillus plantarun HFY11 (LP-HFY11) on lincomycin hydrochloride-induced diarrhea in mice. The results showed that LP-HFY11 alleviated weight loss and intestinal and colon tissue lesions caused by diarrhea. The serum assay showed that LP-HFY11 decreased interleukin 17A (IL-17A), IL-6, 5-hydroxytryptamine, and malondialdehyde levels and increased total antioxidant capacity in mice with diarrhea. LP-HFY11 also downregulated the mRNA expression of cystic fibrosis transmembrane conductance regulator (CFTR), epidermal growth factor receptor (EGFR), and transforming growth factor beta 1 (TGFβ1) and upregulated the expression of recombinant sodium/hydrogen exchanger 1 (NHE1) and NHE4 in the colon tissues of mice with diarrhea. In conclusion, the study showed that LP-HFY11 could effectively inhibit diarrhea, and the effect was better than that of the drug Bifidobacterium tetragenous viable bacteria tablets (Bifidobacterium-TVBT).
Collapse
Affiliation(s)
- Fang Tan
- Department of Bioscience, Silla University, Busan 46958, Republic of Korea; (F.T.); (L.R.)
| | - Lixuan Ren
- Department of Bioscience, Silla University, Busan 46958, Republic of Korea; (F.T.); (L.R.)
| | - Chang-Suk Kong
- Department of Bioscience, Silla University, Busan 46958, Republic of Korea; (F.T.); (L.R.)
- Department of Food Science and Nutrition, Silla University, Busan 46958, Republic of Korea
- Marine Biotechnology Center for Pharmaceuticals and Foods, Silla University, Busan 46958, Republic of Korea
| |
Collapse
|
4
|
Szymaszek P, Tyszka-Czochara M, Ortyl J. Iridium(III) complexes as novel theranostic small molecules for medical diagnostics, precise imaging at a single cell level and targeted anticancer therapy. Eur J Med Chem 2024; 276:116648. [PMID: 38968786 DOI: 10.1016/j.ejmech.2024.116648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/01/2024] [Accepted: 07/02/2024] [Indexed: 07/07/2024]
Abstract
Medical applications of iridium (III) complexes include their use as state-of-the-art theranostic agents - molecules that combine therapeutic and diagnostic functions into a single entity. These complexes offer a promising avenue in medical diagnostics, precision imaging at single-cell resolution and targeted anticancer therapy due to their unique properties. In this review we report a short summary of their application in medical diagnostics, imaging at single-cell level and targeted anticancer therapy. The exceptional photophysical properties of Iridium (III) complexes, including their brightness and photostability, make them excellent candidates for bioimaging. They can be used to image cellular processes and the microenvironment within single cells with unprecedented clarity, aiding in the understanding of disease mechanisms at the molecular level. Moreover the iridium (III) complexes can be designed to selectively target cancer cells,. Upon targeting, these complexes can act as photosensitizers for photodynamic therapy (PDT), generating reactive oxygen species (ROS) upon light activation to induce cell death. The integration of diagnostic and therapeutic capabilities in Iridium (III) complexes offers the potential for a holistic approach to cancer treatment, enabling not only the precise eradication of cancer cells but also the real-time monitoring of treatment efficacy and disease progression. This aligns with the goals of personalized medicine, offering hope for more effective and less invasive cancer treatment strategies.
Collapse
Affiliation(s)
- Patryk Szymaszek
- Department of Biotechnology and Physical Chemistry, Faculty of Chemical Engineering and Technology, Cracow University of Technology, Warszawska 24, 31-155, Kraków, Poland
| | | | - Joanna Ortyl
- Department of Biotechnology and Physical Chemistry, Faculty of Chemical Engineering and Technology, Cracow University of Technology, Warszawska 24, 31-155, Kraków, Poland; Photo HiTech Ltd., Bobrzyńskiego 14, 30-348, Kraków, Poland; Photo4Chem ltd., Juliusza Lea 114/416A-B, 31-133, Kraków, Poland.
| |
Collapse
|
5
|
Yesilcimen A, Callahan AJ, Travaline TL, Gandhesiri S, Tokareva OS, Loas A, McGee JH, Pentelute BL. Rapid Production of Native and Mirror-Image Tumor Necrosis Factor-α Enabled by Automated Flow Peptide Synthesis Technology. J Org Chem 2024; 89:12886-12893. [PMID: 39255342 DOI: 10.1021/acs.joc.4c01866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Tumor necrosis factor-α (TNF-α) plays a central role in immune response regulation. Because elevated TNF-α production is correlated with a range of diseases, inhibiting the interaction of this protein with its native receptors has been thoroughly explored as a therapeutic avenue. Despite advancements in the development of TNF-α inhibitors, concerns remain regarding immunogenicity and loss of activity in vivo. To facilitate the discovery of stable and less immunogenic therapeutic modalities, we applied a single-shot automated fast-flow peptide synthesis (AFPS) strategy to produce full-length TNF-α, resulting in a complex reaction mixture. Leveraging the ability of AFPS to generate long peptides with high purity, we combined this technology with native chemical ligation (NCL). An NCL reaction using two fragments readily produced by AFPS afforded synthetic L- and D-TNF-α in milligram quantities (up to 5.5 mg, ∼28% yield). Following the oxidative folding of synthetic TNF-α using established conditions, higher molecular weight species were generated. Through high-throughput screening of refolding conditions, functional synthetic L- and mirror-image D-TNF-α were obtained, exhibiting characteristics analogous to those of the recombinant TNF-α. Overall, this approach can serve as a general protocol for accessing proteins that are intractable by modern protein synthesis methods, therefore, streamlining the development of novel therapeutics.
Collapse
Affiliation(s)
- Ahmet Yesilcimen
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Alex J Callahan
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Tara L Travaline
- FOG Pharmaceuticals Inc., 30 Acorn Park Drive, Cambridge, Massachusetts 02140, United States
| | - Satish Gandhesiri
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Olena S Tokareva
- FOG Pharmaceuticals Inc., 30 Acorn Park Drive, Cambridge, Massachusetts 02140, United States
| | - Andrei Loas
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - John H McGee
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Bradley L Pentelute
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
- The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, Massachusetts 02142, United States
- Center for Environmental Health Sciences, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
- Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, Massachusetts 02142, United States
| |
Collapse
|
6
|
Liu J, Gong W, Liu P, Li Y, Jiang H, Wu C, Wu X, Zhao Y, Ren J. Osteopontin regulation of MerTK + macrophages promotes Crohn's disease intestinal fibrosis. iScience 2024; 27:110226. [PMID: 39021800 PMCID: PMC11253513 DOI: 10.1016/j.isci.2024.110226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 04/04/2024] [Accepted: 06/06/2024] [Indexed: 07/20/2024] Open
Abstract
The pathogenesis of intestinal fibrosis in Crohn's disease (CD) remains unclear. Mer receptor tyrosine kinase (MerTK) is an immunosuppressive protein specifically expressed in macrophages. Osteopontin (OPN), also known as secreted phosphoprotein 1, contributes to inflammation and wound repair. This study investigates the potential profibrotic pathway in MerTK+ macrophages in order to provide a possible therapeutic target for intestinal fibrosis. MerTK expression in the inflamed and stenotic bowels was evaluated. The MerTK/ERK/TGF-β1 pathway was overactivated in the fibrotic intestinal tissues of patients with CD. This pathway was induced by epithelial cell apoptosis, resulting in activated fibroblasts with increased TGF-β1 secretion. OPN upregulated TGF production by altering ERK1/2 phosphorylation, as evidenced by OPN or MerTK knockdown and OPN overexpression in vitro. MerTK inhibitor UNC2025 alleviated intestinal fibrosis in mouse colitis models, suggesting a potential therapeutic target for intestinal fibrosis in patients with CD.
Collapse
Affiliation(s)
- Juanhan Liu
- Department of General Surgery, Research Institute of General Surgery, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Wenbin Gong
- Department of General Surgery, School of Medicine, Southeast University, Nanjing, China
| | - Peizhao Liu
- Department of General Surgery, Research Institute of General Surgery, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Yangguang Li
- Department of General Surgery, Research Institute of General Surgery, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Haiyang Jiang
- Department of General Surgery, BenQ Medical Center, Nanjing Medical School, Nanjing, China
| | - Cunxia Wu
- Department of General Surgery, BenQ Medical Center, Nanjing Medical School, Nanjing, China
| | - Xiuwen Wu
- Department of General Surgery, Research Institute of General Surgery, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Yun Zhao
- Department of General Surgery, BenQ Medical Center, Nanjing Medical School, Nanjing, China
| | - Jianan Ren
- Department of General Surgery, Research Institute of General Surgery, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| |
Collapse
|
7
|
Ouahed JD, Griffith A, Collen LV, Snapper SB. Breaking Down Barriers: Epithelial Contributors to Monogenic IBD Pathogenesis. Inflamm Bowel Dis 2024; 30:1189-1206. [PMID: 38280053 PMCID: PMC11519031 DOI: 10.1093/ibd/izad319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Indexed: 01/29/2024]
Abstract
Monogenic causes of inflammatory bowel diseases (IBD) are increasingly being discovered. To date, much attention has been placed in those resulting from inborn errors of immunity. Therapeutic efforts have been largely focused on offering personalized immune modulation or curative bone marrow transplant for patients with IBD and underlying immune disorders. To date, less emphasis has been placed on monogenic causes of IBD that pertain to impairment of the intestinal epithelial barrier. Here, we provide a comprehensive review of monogenic causes of IBD that result in impaired intestinal epithelial barrier that are categorized into 6 important functions: (1) epithelial cell organization, (2) epithelial cell intrinsic functions, (3) epithelial cell apoptosis and necroptosis, (4) complement activation, (5) epithelial cell signaling, and (6) control of RNA degradation products. We illustrate how impairment of any of these categories can result in IBD. This work reviews the current understanding of the genes involved in maintaining the intestinal barrier, the inheritance patterns that result in dysfunction, features of IBD resulting from these disorders, and pertinent translational work in this field.
Collapse
Affiliation(s)
- Jodie D Ouahed
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Boston Children’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Alexandra Griffith
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Boston Children’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Lauren V Collen
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Boston Children’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Scott B Snapper
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Boston Children’s Hospital and Harvard Medical School, Boston, MA, USA
- Division of Gastroenterology, Department of Medicine, Brigham & Women’s Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
8
|
Oyeyemi A, Owonikoko W, Okoro T, Adagbonyi O, Ajeigbe K. Water contamination: A culprit of serum heavy metals concentration, oxidative stress and health risk among residents of a Nigerian crude oil-producing community. Toxicol Rep 2024; 12:375-388. [PMID: 38584719 PMCID: PMC10995875 DOI: 10.1016/j.toxrep.2024.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/16/2024] [Accepted: 03/16/2024] [Indexed: 04/09/2024] Open
Abstract
Niger Delta has become popular for crude oil extraction for the past few decades. This uncoordinated activity has made it a hotspot for xenobiotics exposure and water bodies remain the environmental matrix significantly affected. One of the most deleterious components of crude oil is heavy metals (HMs). This study investigates HMs concentration in water and serum of humans residing in an oil-host community with the consideration of systemic effects, pollution status, carcinogenic and non-carcinogenic health risks and comparison made with residents from a non-oil-producing community. Heavy metal analysis, serum electrolytes, Urea, Creatinine, and liver enzymes were assessed using standard procedures; malondialdehyde, catalase, SOD, glutathione reductase, GPx and total antioxidant capacity (TAC) by spectrophotometry and TNF-α and 8-OHdG assessed via ELISA method. We found altered serum electrolytes; increased serum Pb and Cd levels; increased AST, ALT, ALP and lipid peroxidation; and decreased enzymes antioxidants including TAC among Ugbegugun community residents compared with control. We observed an association between environmental crude oil contamination, ecological and health risks in the community. We concluded that protracted exposure to HMs induces multi-systemic toxicities characterized by DNA damage, depletion of the antioxidant system, and increased free radical generation culminating lipo-peroxidation with significant ecological, carcinogenic, and non-carcinogenic risks characterize crude oil water contamination.
Collapse
Affiliation(s)
- A.W. Oyeyemi
- Laboratory for Environmental Physiology and Toxicology Research Unit, Department of Physiology, Igbinedion University, Okada, Nigeria
- Department of Physiology, Osun State University, Osogbo, Nigeria
| | - W.M. Owonikoko
- Laboratory for Environmental Physiology and Toxicology Research Unit, Department of Physiology, Igbinedion University, Okada, Nigeria
| | - T.D. Okoro
- Laboratory for Environmental Physiology and Toxicology Research Unit, Department of Physiology, Igbinedion University, Okada, Nigeria
| | - O. Adagbonyi
- Department of Anatomy, Igbinedion University, Okada, Nigeria
| | - K.O. Ajeigbe
- Laboratory for Environmental Physiology and Toxicology Research Unit, Department of Physiology, Igbinedion University, Okada, Nigeria
- Department of Physiology, Federal University, Oye-Ekiti, Nigeria
| |
Collapse
|
9
|
Liu Y, Zhu Q, Guo G, Xie Z, Li S, Lai C, Wu Y, Wang L, Zhong S. Causal associations of genetically predicted gut microbiota and blood metabolites with inflammatory states and risk of infections: a Mendelian randomization analysis. Front Microbiol 2024; 15:1342653. [PMID: 38585702 PMCID: PMC10995310 DOI: 10.3389/fmicb.2024.1342653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 02/28/2024] [Indexed: 04/09/2024] Open
Abstract
Background Inflammation serves as a key pathologic mediator in the progression of infections and various diseases, involving significant alterations in the gut microbiome and metabolism. This study aims to probe into the potential causal relationships between gut microbial taxa and human blood metabolites with various serum inflammatory markers (CRP, SAA1, IL-6, TNF-α, WBC, and GlycA) and the risks of seven common infections (gastrointestinal infections, dysentery, pneumonia, bacterial pneumonia, bronchopneumonia and lung abscess, pneumococcal pneumonia, and urinary tract infections). Methods Two-sample Mendelian randomization (MR) analysis was performed using inverse variance weighted (IVW), maximum likelihood, MR-Egger, weighted median, and MR-PRESSO. Results After adding other MR models and sensitivity analyses, genus Roseburia was simultaneously associated adversely with CRP (Beta IVW = -0.040) and SAA1 (Beta IVW = -0.280), and family Bifidobacteriaceae was negatively associated with both CRP (Beta IVW = -0.034) and pneumonia risk (Beta IVW = -0.391). After correction by FDR, only glutaroyl carnitine remained significantly associated with elevated CRP levels (Beta IVW = 0.112). Additionally, threonine (Beta IVW = 0.200) and 1-heptadecanoylglycerophosphocholine (Beta IVW = -0.246) were found to be significantly associated with WBC levels. Three metabolites showed similar causal effects on different inflammatory markers or infectious phenotypes, stearidonate (18:4n3) was negatively related to SAA1 and urinary tract infections, and 5-oxoproline contributed to elevated IL-6 and SAA1 levels. In addition, 7-methylguanine showed a positive correlation with dysentery and bacterial pneumonia. Conclusion This study provides novel evidence confirming the causal effects of the gut microbiome and the plasma metabolite profile on inflammation and the risk of infection. These potential molecular alterations may aid in the development of new targets for the intervention and management of disorders associated with inflammation and infections.
Collapse
Affiliation(s)
- Yingjian Liu
- Department of Pharmacy, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Qian Zhu
- Department of Neurosurgery, Huizhou Third People's Hospital, Guangzhou Medical University, Huizhou, Guangdong, China
| | - Gongjie Guo
- Department of Pharmacy, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
- School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Zhipeng Xie
- Department of Pharmacy, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
- School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Senlin Li
- Department of Pharmacy, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
- School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Chengyang Lai
- Department of Pharmacy, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
- School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Yonglin Wu
- School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Liansheng Wang
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Shilong Zhong
- Department of Pharmacy, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
- School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| |
Collapse
|
10
|
Sunil AA, Jose D, Karri SK, Pukhraj P, Varughese JK, Skaria T. Biomolecular interactions between the antibacterial ceftolozane and the human inflammatory disease target ADAM17: a drug repurposing study. J Biomol Struct Dyn 2023; 42:11706-11716. [PMID: 37798935 DOI: 10.1080/07391102.2023.2263895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 09/21/2023] [Indexed: 10/07/2023]
Abstract
Inhibition of a disintegrin and metalloproteinase-17 (ADAM17), a metzincin, is proposed as a novel therapeutic strategy to suppress overproduction of the proinflammatory cytokine TNF-α in rheumatoid arthritis and inflammatory bowel disease. Existing ADAM17 inhibitors generate toxic metabolites in-vivo or haven't progressed in clinical trials. Previous studies suggest that ligands which bind to ADAM17 active site by interacting with the Zn ion and L-shaped hydrophobic S1'- and S3'-pockets and forming favorable hydrogen bonds could act as potential ADAM17 inhibitors. Here, we investigated whether the FDA-approved anti-bacterial drug ceftolozane, a cephalosporin containing aromatic groups and carboxyl groups as probable zinc binding groups (ZBGs), forms non-covalent interactions resulting in its binding in the active site of ADAM17. In this study, the density functional theory (DFT), molecular docking and molecular dynamics calculations with the catalytic chain of ADAM17 show that carboxyl group of ceftolozane acts as moderate ZBG, and its extended geometry forms hydrogen bonds and hydrophobic interactions resulting in a binding affinity comparable to the co-crystallized known ADAM17 inhibitor. The favorable binding interactions identified here suggest the potential of ceftolozane to modulate ADAM17 activity in inflammatory diseases. ADAM17 cleaves and releases epidermal growth factor (EGF) ligands from the cell surface. The shed EGF ligands then bind to the EGF receptors to drive embryonic development. Therefore, our findings also suggest that use of ceftolozane during pregnancy may inhibit ADAM17-mediated shedding of EGF and thus increase the risk of birth defects in humans.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Ahsan Anjoom Sunil
- School of Biotechnology, National Institute of Technology Calicut, Calicut, India
| | - Deepthi Jose
- Department of Chemistry, Providence Women's College, Calicut, India
| | - Sai Kumar Karri
- School of Biotechnology, National Institute of Technology Calicut, Calicut, India
| | - Pukhraj Pukhraj
- School of Biotechnology, National Institute of Technology Calicut, Calicut, India
| | | | - Tom Skaria
- School of Biotechnology, National Institute of Technology Calicut, Calicut, India
| |
Collapse
|
11
|
Sahoo DK, Heilmann RM, Paital B, Patel A, Yadav VK, Wong D, Jergens AE. Oxidative stress, hormones, and effects of natural antioxidants on intestinal inflammation in inflammatory bowel disease. Front Endocrinol (Lausanne) 2023; 14:1217165. [PMID: 37701897 PMCID: PMC10493311 DOI: 10.3389/fendo.2023.1217165] [Citation(s) in RCA: 102] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 08/07/2023] [Indexed: 09/14/2023] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic, relapsing gastrointestinal (GI) disorder characterized by intestinal inflammation. The etiology of IBD is multifactorial and results from a complex interplay between mucosal immunity, environmental factors, and host genetics. Future therapeutics for GI disorders, including IBD, that are driven by oxidative stress require a greater understanding of the cellular and molecular mechanisms mediated by reactive oxygen species (ROS). In the GI tract, oxidative stressors include infections and pro-inflammatory responses, which boost ROS generation by promoting the production of pro-inflammatory cytokines. Nuclear factor kappa B (NF-κB) and nuclear factor erythroid 2-related factor 2 (Nrf2) represent two important signaling pathways in intestinal immune cells that regulate numerous physiological processes, including anti-inflammatory and antioxidant activities. Natural antioxidant compounds exhibit ROS scavenging and increase antioxidant defense capacity to inhibit pro-oxidative enzymes, which may be useful in IBD treatment. In this review, we discuss various polyphenolic substances (such as resveratrol, curcumin, quercetin, green tea flavonoids, caffeic acid phenethyl ester, luteolin, xanthohumol, genistein, alpinetin, proanthocyanidins, anthocyanins, silymarin), phenolic compounds including thymol, alkaloids such as berberine, storage polysaccharides such as tamarind xyloglucan, and other phytochemicals represented by isothiocyanate sulforaphane and food/spices (such as ginger, flaxseed oil), as well as antioxidant hormones like melatonin that target cellular signaling pathways to reduce intestinal inflammation occurring with IBD.
Collapse
Affiliation(s)
- Dipak Kumar Sahoo
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, United States
| | - Romy M. Heilmann
- Department for Small Animals, Veterinary Teaching Hospital, College of Veterinary Medicine, University of Leipzig, Leipzig, SN, Germany
| | - Biswaranjan Paital
- Redox Regulation Laboratory, Department of Zoology, College of Basic Science and Humanities, Odisha University of Agriculture and Technology, Bhubaneswar, India
| | - Ashish Patel
- Department of Life Sciences, Hemchandracharya North Gujarat University, Patan, Gujarat, India
| | - Virendra Kumar Yadav
- Department of Life Sciences, Hemchandracharya North Gujarat University, Patan, Gujarat, India
| | - David Wong
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, United States
| | - Albert E. Jergens
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, United States
| |
Collapse
|
12
|
Li Y, Long Y, Zhi X, Hao H, Wang X, Liu H, Wang L. miR-339-3p promotes AT1-AA-induced vascular inflammation by upregulating NFATc3 protein expression in vascular smooth muscle cells. Acta Biochim Biophys Sin (Shanghai) 2023; 55:295-303. [PMID: 36825443 PMCID: PMC10157516 DOI: 10.3724/abbs.2023009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Vascular inflammation induced by angiotensin II-1 receptor autoantibody (AT1-AA) is involved in the occurrence and development of various cardiovascular diseases. miR-339-3p is closely related to the degree of vasodilation of aortic aneurysm and is also involved in the occurrence and development of acute pancreatitis. However, it is still unclear whether miR-339-3p influences AT1-AA-induced vascular inflammation. In this study, the role and mechanism of miR-339-3p in AT1-AA-induced vascular inflammation are studied. RT-PCR detection shows that the miR-339-3p levels in the thoracic aorta and serum exosomes of AT1-AA-positive rats are significantly increased. The miRwalk database predicts the mRNAs that miR-339-3p can bind to their 5'UTR. Subsequently, it is found that the number of genes contained in the T cell receptor pathway is high through KEGG analysis, and NFATc3 among them can promote the secretion of various inflammatory cytokines. AT1-AA-induced upregulation of miR-339-3p expression in vascular smooth muscle cells (VSMCs) can lead to a significant increase in NFATc3 protein level and promote vascular inflammation. Inhibition of miR-339-3p with antagomir-339-3p can significantly reverse AT1-AA-induced high expressions of IL-6, IL-1β and TNF-α proteins in rat thoracic aorta and VSMCs. That is, AT1-AA can upregulate the expression of miR-339-3p in VSMCs, and the increased miR-339-3p targets the 5'UTR of NFATc3 mRNA to increase the protein level of NFATc3, thereby aggravating the occurrence of vascular inflammation. These findings provide new experimental evidence for the involvement of miRNAs in regulating vascular inflammatory diseases.
Collapse
Affiliation(s)
- Yang Li
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan 030001, China
| | - Yaolin Long
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan 030001, China
| | - Xiaoyan Zhi
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan 030001, China
| | - Haihu Hao
- Department of Orthopedics, Shanxi Bethune Hospital & Shanxi Academy of Medical Sciences, Taiyuan 030032, China
| | - Xiaohui Wang
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan 030001, China
| | - Huirong Liu
- School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Li Wang
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan 030001, China
| |
Collapse
|
13
|
Arai J, Otoyama Y, Nozawa H, Kato N, Yoshida H. The immunological role of ADAMs in the field of gastroenterological chronic inflammatory diseases and cancers: a review. Oncogene 2023; 42:549-558. [PMID: 36572816 PMCID: PMC9937921 DOI: 10.1038/s41388-022-02583-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 12/09/2022] [Accepted: 12/13/2022] [Indexed: 12/27/2022]
Abstract
Metalloproteinases cleave transmembrane proteins that play critical roles in inflammation and cancers. Metalloproteinases include a disintegrin and metalloprotease (ADAM), which we previously examined using a fluorescence assay system, and described their association with resistance to systemic therapy in cancer patients. There are also many reports on the relation between ADAM expression and the prognosis of patients with gastroenterological chronic inflammatory diseases and cancers. Inhibiting their immunomodulating activity in chronic inflammation restores innate immunity and potentially prevents the development of various cancers. Among the numerous critical immune system-related molecules, we focus on major histocompatibility complex class I polypeptide-related sequence A (MICA), MICB, intracellular adhesion molecule (ICAM)-1, TNF-α, IL-6 receptor (IL-6R), and Notch. This review summarizes our current understanding of the role of ADAMs in gastroenterological diseases with regard to the immune system. Several Food and Drug Administration (FDA)-approved inhibitors of ADAMs have been identified, and potential therapies for targeting ADAMs in the treatment of chronic inflammatory diseases and cancers are discussed. Some ongoing clinical trials for cancers targeting ADAMs are also introduced.
Collapse
Affiliation(s)
- Jun Arai
- Division of Gastroenterology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan.
| | - Yumi Otoyama
- grid.410714.70000 0000 8864 3422Division of Gastroenterology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Hisako Nozawa
- grid.410714.70000 0000 8864 3422Division of Gastroenterology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Naoya Kato
- grid.136304.30000 0004 0370 1101Department of Gastroenterology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Hitoshi Yoshida
- grid.410714.70000 0000 8864 3422Division of Gastroenterology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| |
Collapse
|
14
|
Li Z, Yang H, Hai Y, Cheng Y. Regulatory Effect of Inflammatory Mediators in Intervertebral Disc Degeneration. Mediators Inflamm 2023; 2023:6210885. [PMID: 37101594 PMCID: PMC10125773 DOI: 10.1155/2023/6210885] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 11/11/2022] [Accepted: 03/18/2023] [Indexed: 04/28/2023] Open
Abstract
Intervertebral disc degeneration (IDD) is a major contributor to back, neck, and radicular pain. It is related to changes in tissue structure and function, including the breakdown of the extracellular matrix (ECM), aging, apoptosis of the nucleus pulposus, and biomechanical tissue impairment. Recently, an increasing number of studies have demonstrated that inflammatory mediators play a crucial role in IDD, and they are being explored as potential treatment targets for IDD and associated disorders. For example, interleukins (IL), tumour necrosis factor-α (TNF-α), chemokines, and inflammasomes have all been linked to the pathophysiology of IDD. These inflammatory mediators are found in high concentrations in intervertebral disc (IVD) tissues and cells and are associated with the severity of LBP and IDD. It is feasible to reduce the production of these proinflammatory mediators and develop a novel therapy for IDD, which will be a hotspot of future research. In this review, the effects of inflammatory mediators in IDD were described.
Collapse
Affiliation(s)
- Zhangfu Li
- Department of Orthopedic Surgery, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
| | - Honghao Yang
- Department of Orthopedic Surgery, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
| | - Yong Hai
- Department of Orthopedic Surgery, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
| | - Yunzhong Cheng
- Department of Orthopedic Surgery, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
| |
Collapse
|
15
|
Javaid N, Patra MC, Cho DE, Batool M, Kim Y, Choi GM, Kim MS, Hahm DH, Choi S. An orally active, small-molecule TNF inhibitor that disrupts the homotrimerization interface improves inflammatory arthritis in mice. Sci Signal 2022; 15:eabi8713. [DOI: 10.1126/scisignal.abi8713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Excessive signaling by the proinflammatory cytokine TNF is involved in several autoimmune diseases, including rheumatoid arthritis (RA). However, unlike the approved biologics currently used to treat this and other conditions, commercially available small-molecule inhibitors of TNF trimerization are cytotoxic or exhibit low potency. Here, we report a TNF-inhibitory molecule (TIM) that reduced TNF signaling in vitro and was an effective treatment in a mouse model of RA. The initial lead compound, TIM1, attenuated TNF-induced apoptosis of human and mouse cells by delaying the induction of proinflammatory NF-κB and MAPK signaling and caspase 3– and caspase 8–dependent apoptosis. TIM1 inhibited the secretion of the proinflammatory cytokines IL-6 and IL-8 by disrupting TNF homotrimerization, thereby preventing its association with the TNF receptor. In a mouse model of collagen-induced polyarthritis, the more potent TIM1 analog TIM1c was orally bioavailable and reduced paw swelling, histological indicators of knee joint pathology, inflammatory infiltration of the joint, and the overall arthritis index. Orally delivered TIM1c showed immunological effects similar to those elicited by intraperitoneal injection of the FDA-approved TNF receptor decoy etanercept. Thus, TIM1c is a promising lead compound for the development of small-molecule therapies for the treatment of RA and other TNF-dependent systemic inflammation disorders.
Collapse
Affiliation(s)
- Nasir Javaid
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Korea
| | - Mahesh Chandra Patra
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Korea
| | - Da-Eun Cho
- Department of Biomedical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Korea
| | - Maria Batool
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Korea
- S&K Therapeutics, Ajou University Campus Plaza 418, 199 Worldcup-ro, Yeongtong-gu, Suwon 16502, Korea
| | - Yoongeun Kim
- Department of Biomedical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Korea
| | - Gwang Muk Choi
- Department of Biomedical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Korea
| | - Moon Suk Kim
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Korea
| | - Dae-Hyun Hahm
- Department of Biomedical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Korea
- Department of Physiology, College of Medicine, Kyung Hee University, Seoul 02447, Korea
| | - Sangdun Choi
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Korea
- S&K Therapeutics, Ajou University Campus Plaza 418, 199 Worldcup-ro, Yeongtong-gu, Suwon 16502, Korea
| |
Collapse
|
16
|
Yang M, Jalava P, Hakkarainen H, Roponen M, Leskinen A, Komppula M, Dong GP, Lao XQ, Wu QZ, Xu SL, Lin LZ, Liu RQ, Hu LW, Yang BY, Zeng XW, Dong GH. Fine and ultrafine airborne PM influence inflammation response of young adults and toxicological responses in vitro. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 836:155618. [PMID: 35513150 DOI: 10.1016/j.scitotenv.2022.155618] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 04/05/2022] [Accepted: 04/26/2022] [Indexed: 06/14/2023]
Abstract
Little evidence is available regarding the impact of different sizes of inhaled particulate matter (PM) on inflammatory responses in healthy young adults in connection with toxicological responses. We conducted a five-time repeated measurement panel study on 88 healthy young college students in Guangzhou, China from December 2017 to January 2018. Blood samples were collected from each participant and tested for tumor necrosis factor alpha (TNF-α) levels every week for 5 consecutive weeks. Mass concentrations of ambient PM2.5, PM1, PM0.5 and number concentrations of ambient PM0.1 were measured. RAW 264.7 macrophages were exposed to PM (PM10-2.5, PM2.5-1, PM1-0.2, PM0.2) collected at the same time as the panel study. Cytotoxicity, oxidation and inflammatory parameters, cell cycle and genotoxicity were tested. Particles were characterized for their chemical composition. The trends of associations between PM2.5, PM1, PM0.5 and TNF-α level were consistent in lag 0 and 3 days, and the relative risk decreased as the particle size decreased. All the ambient air pollutants had the similar change trends in lag 1, 4 and 5 days. Similar results in RAW 264.7 macrophages were found; PM10-2.5 induced the greatest TNF-α and macrophage inflammatory protein 2 (MIP-2) productions and oxidative damage. PM1-0.2 and PM0.2 induced more significant dose-dependent increases of cell cycle and genotoxic response. In the component concentrations of PM samples, metal elements were PM10-2.5 > PM2.5-1 > PM0.2 ≥ PM1-0.2; ions and polycyclic aromatic hydrocarbons (PAHs) were PM0.2 > PM1-0.2 > PM2.5-1 > PM10-2.5. Our results suggested that exposure to all particle sizes was significantly associated with inflammation among healthy young adults and toxicological responses in RAW 264.7 macrophages. Different human and toxicological reactions caused by PM samples indicated the importance of investigating various particle sizes.
Collapse
Affiliation(s)
- Mo Yang
- Department of Environmental and Biological Science, University of Eastern Finland, Yliopistonranta 1, 1627, FI-70211 Kuopio, Finland; Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Pasi Jalava
- Department of Environmental and Biological Science, University of Eastern Finland, Yliopistonranta 1, 1627, FI-70211 Kuopio, Finland
| | - Henri Hakkarainen
- Department of Environmental and Biological Science, University of Eastern Finland, Yliopistonranta 1, 1627, FI-70211 Kuopio, Finland
| | - Marjut Roponen
- Department of Environmental and Biological Science, University of Eastern Finland, Yliopistonranta 1, 1627, FI-70211 Kuopio, Finland
| | - Ari Leskinen
- Finnish Meteorological Institute, Yliopistonranta 1, 1627, FI-70211 Kuopio, Finland; Department of Applied Physics, University of Eastern Finland, Yliopistonranta 1, 1627, FI-70211 Kuopio, Finland
| | - Mika Komppula
- Finnish Meteorological Institute, Yliopistonranta 1, 1627, FI-70211 Kuopio, Finland
| | - Guo-Ping Dong
- Department of Accounting, Guangzhou Huashang College, Guangzhou 51000, China
| | - Xiang-Qian Lao
- Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, 421, 4/F School of Public Health, Prince of Wales Hospital, Sha Tin, N.T., Hong Kong, China
| | - Qi-Zhen Wu
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Shu-Li Xu
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Li-Zi Lin
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Ru-Qing Liu
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Li-Wen Hu
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Bo-Yi Yang
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Xiao-Wen Zeng
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Guang-Hui Dong
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
| |
Collapse
|
17
|
Huang S, Liu Y, Guo N, Liu X, Li G, Du Q. Serum profiles of inflammatory cytokines associated with intrahepatic cholestasis of pregnancy. J Matern Fetal Neonatal Med 2022; 35:10072-10081. [PMID: 35762044 DOI: 10.1080/14767058.2022.2089551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND The pathogenesis of intrahepatic cholestasis of pregnancy (ICP) is not clear, and some researchers have compared the differences in serum levels of inflammatory cytokines between ICP patients and normal pregnant women, but there are few studies and different conclusions. AIM To investigate the levels of inflammatory cytokines such as interleukins (IL) -4, IL-6, IL-8, and tumor necrosis factor alpha (TNF-α) in patients with ICP and their potential role in pathophysiology. METHODS This case-control study was conducted in Shanghai First Maternity and Infant Health Hospital, and we recruited ICP patients and age-matched healthy pregnant women as a control group. Plasma samples from 40 subjects with ICP and 40 subjects without ICP were tested for concentration of the following inflammatory cytokines: interferon-gamma, IL-1 alpha, IL-1 beta, IL-2, IL-4, IL-6, IL-8, IL-10, and TNF-α. Analyzed inflammatory cytokines were then assessed, either individually or in combination with regard to ICP. RESULTS The cytokine composition of the ICP and CTL group was significantly different. We compared levels of inflammatory cytokines with regard to the presence of ICP symptoms. Levels of IL-4, IL-6, and TNF-α were significantly lower in ICP subjects, and IL-8 were significantly higher in ICP subjects, compared with CTL subjects. The TNF-α showed the best performance for ICP identification (area under the curve [AUC]: 0.829). Performance was increased when TNF-α was combined with IL-4 and IL-8 analysis (AUC, 0.901). Spearman correlation and linear regression analysis revealed that the TNF-α concentrations correlated with IL-4 and IL-6 levels, and inversely correlated to TBA, ALT, AST, and IL-8 levels. CONCLUSION IL-4, IL-6, and TNF-α were significantly decreased, while IL-8 was significantly increased in the ICP group compared with the healthy control group. TNF showed the best single marker discriminatory potential; however, combining TNF-α, IL-4, and IL-8 analyses increased performance for ICP identification.
Collapse
Affiliation(s)
- Shijia Huang
- Department of Obstetrics, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Yang Liu
- Department of Obstetrics, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Nafei Guo
- Department of Nursing, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Xiaosong Liu
- Department of Obstetrics, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Guohua Li
- Department of Reproductive Immunology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Qiaoling Du
- Department of Obstetrics, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| |
Collapse
|
18
|
Luo Y, Yu X, Zhao P, Huang J, Huang X. Effects of Resveratrol on Tight Junction Proteins and the Notch1 Pathway in an HT-29 Cell Model of Inflammation Induced by Lipopolysaccharide. Inflammation 2022; 45:2449-2464. [PMID: 35705831 DOI: 10.1007/s10753-022-01704-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/01/2022] [Accepted: 06/07/2022] [Indexed: 11/05/2022]
Abstract
Ulcerative colitis (UC) is closely associated with disruption of intestinal epithelial tight junction proteins. A variety of studies have confirmed that resveratrol (RSV), a natural polyphenolic compound, has a potential anti-inflammatory effect and can regulate the expression of tight junction proteins. However, the mechanism by which RSV regulates the expression of tight junction proteins in the intestinal epithelium remains unclear. Therefore, we investigated the potential effect of RSV on tight junction proteins in an HT-29 cell model of inflammation induced by lipopolysaccharide (LPS) and explored its mechanism of action. First, the downregulated expression of the tight junction proteins occludin, ZO-1, and claudin-1 in the HT-29 cell model of inflammation induced by LPS was reversed by incubation with RSV, accompanied by a decrease in the expression of tumor necrosis factor α-converting enzyme (TACE). Additionally, the Notch1 pathway was attenuated and the expression of the inflammatory factors IL-6 and TNF-α was decreased by treatment with RSV. Second, after Jagged-1 was used in combination with RSV to reactivate the Notch1 pathway, the protective effects of RSV against the LPS-induced reductions in the expression of the tight junction proteins occludin, ZO-1, and claudin-1 and the decreases in the levels of the inflammatory factors IL-6 and TNF-α were abolished. These results suggest that RSV might regulate the expression of tight junction proteins by attenuating the Notch1 pathway.
Collapse
Affiliation(s)
- Yihua Luo
- Department of Gerontology and Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Xueyan Yu
- Department of Gerontology and Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Peizhuang Zhao
- Department of Gerontology and Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Jun Huang
- Department of Gerontology and Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Xue Huang
- Department of Gerontology and Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, China.
| |
Collapse
|
19
|
Thymus fontanesii attenuates CCl4-induced oxidative stress and inflammation in mild liver fibrosis. Biomed Pharmacother 2022; 148:112738. [DOI: 10.1016/j.biopha.2022.112738] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/17/2022] [Accepted: 02/17/2022] [Indexed: 12/20/2022] Open
|
20
|
Anti-Inflammatory Properties of MSF, a Lactiplantibacillus plantarum K8 Lysate Fermented with Filipendula glaberrima Extract. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12052602] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Inflammation plays an important role in the pathogenesis of metabolic syndrome, which increases the risk of heart disease, stroke, type 2 diabetes, atherosclerosis, non-alcoholic fatty liver disease (NAFLD), and obesity. Here, we produced potent anti-inflammatory probiotic lysates, termed MSF (miracle synergistic material made using Filipendula glaberrima), using fermentation with F. glaberrima extracts. MSF inhibited lipopolysaccharide (LPS)-induced tumor necrosis factor (TNF)-α production through down-regulation of c-Jun N-terminal kinase (JNK) signaling. MSF-induced tolerance for TNF-α was mediated by induction of TNF alpha-induced protein 3 (TNFAIP3 or A20). On the other hand, MSF showed a synergistic effect on interleukin (IL)-1β production in LPS-stimulated human monocytic leukemia cell line (THP-1 cells). This synergistic effect of the combination of MSF and LPS might be mediated by nuclear factor kappa B (NF-kB) signaling. The inhibitory effect of TNF-α and synergistic effect of IL-1β due to combining MSF and LPS were significantly higher than those of a combination of L. plantarum K8 lysates and LPS. The MSF and LPS combination showed reduced mouse mortality compared to a combination of L. plantarum K8 lysates and LPS, which correlated with decreased levels of cytokines, hepatic alanine aminotransferase (ALT), and aspartate aminotransferase (AST) in the blood and liver. These results show that probiotic lysates fermented with natural extracts such as F. glaberrima have higher anti-inflammatory efficacy than conventional probiotic lysates or natural extracts.
Collapse
|
21
|
Sobolewska-Włodarczyk A, Włodarczyk M, Talar M, Wiśniewska-Jarosińska M, Gąsiorowska A, Fichna J. The association of the quality of sleep with proinflammatory cytokine profile in inflammatory bowel disease patients. Pharmacol Rep 2021; 73:1660-1669. [PMID: 34694623 PMCID: PMC8599325 DOI: 10.1007/s43440-021-00333-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 10/10/2021] [Accepted: 10/11/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND The role of circadian rhythm abnormalities in patients with inflammatory bowel disease (IBD) remains relatively unknown. The aim of this study was to identify the inflammatory cytokine profile in the IBD patients and its relationship with the quality of sleep. METHODS Prospective, single-center observational cohort study was performed. In all enrolled adult IBD patients, the disease activity was assessed using Crohn's Disease Activity Index (CDAI) for Crohn's disease (CD) and Partial Mayo Score for ulcerative colitis (UC), respectively. To assess the quality of sleep, all patients were asked to respond to a questionnaire to define Pittsburgh Quality Sleep Index (PSQI). From all enrolled patients, 15 ml venous blood was taken to determine serum inflammatory cytokine levels and perform standard laboratory tests. RESULTS Fifty-two IBD patients were enrolled in the study: 32 with CD and 20 with UC. The poor sleep was noted in 69.4% of patients with clinically active and in 6.3% of patients with inactive disease. In the group of IBD patients with poor sleep, the significantly higher level of serum IL-6, IL-17, and IL-23 were observed. In IBD patients with exacerbation, the significantly higher level of serum IL-6, IL-17, and IL-23 were recorded. CONCLUSIONS The relationship between quality of sleep and proinflammatory cytokine profile may show us a predisposition for the development of inflammatory intestinal lesions in IBD patients with sleep disturbances. This knowledge may allow the pharmacological and behavioral therapies of circadian rhythm abnormalities to become new significant targets in IBD patients.
Collapse
Affiliation(s)
- Aleksandra Sobolewska-Włodarczyk
- Department of Biochemistry, Medical University of Lodz, 92-215, Lodz, Lodz, Poland. .,Department of Gastroenterology, Medical University of Lodz, Lodz, Poland.
| | - Marcin Włodarczyk
- Department of Biochemistry, Medical University of Lodz, 92-215, Lodz, Lodz, Poland.,Department of General and Oncological Surgery, Medical University of Lodz, Lodz, Poland
| | - Marcin Talar
- Department of Biochemistry, Medical University of Lodz, 92-215, Lodz, Lodz, Poland
| | | | - Anita Gąsiorowska
- Department of Gastroenterology, Medical University of Lodz, Lodz, Poland
| | - Jakub Fichna
- Department of Biochemistry, Medical University of Lodz, 92-215, Lodz, Lodz, Poland
| |
Collapse
|
22
|
Garg SS, Sharma A, Gupta J. Immunomodulation and immunotherapeutics of COVID-19. Clin Immunol 2021; 231:108842. [PMID: 34461289 PMCID: PMC8393504 DOI: 10.1016/j.clim.2021.108842] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/17/2021] [Accepted: 08/25/2021] [Indexed: 12/12/2022]
Abstract
Severe acute respiratory syndrome coronavirus-2 causes coronavirus disease 2019, a pandemic which was originated from Wuhan city of China. The pandemic has affected millions of people worldwide. The pathogenesis of SARS-CoV-2 is characterized by a cytokine storm in the blood (cytokinemia) and tissues, especially the lungs. One of the major repercussions of this inflammatory process is the endothelial injury-causing intestinal bleeding, coagulopathy, and thromboembolism which result in various sudden and unexpected post-COVID complications including kidney failure, myocardial infarction, or multiorgan failure. In this review, we have summarized the immune responses, biochemical changes, and inflammatory responses in the human body after infection with the SARS-CoV-2 virus. The increased amount of inflammatory cytokines, chemokines, and involvement of complement proteins in inflammatory reaction increase the risk of occurrence of disease.
Collapse
Affiliation(s)
- Sourbh Suren Garg
- Department of Biochemistry, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India
| | - Atulika Sharma
- Department of Chemistry, School of Chemical Engineering and Physical Science, Lovely Professional University, Phagwara, Punjab, India
| | - Jeena Gupta
- Department of Biochemistry, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India.
| |
Collapse
|
23
|
Cheng W, Wang Z, Xiong Y, Wu Z, Tan X, Yang Y, Zhang H, Zhu X, Wei H, Tao S. N-(3-oxododecanoyl)-homoserine lactone disrupts intestinal barrier and induces systemic inflammation through perturbing gut microbiome in mice. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 778:146347. [PMID: 34030388 DOI: 10.1016/j.scitotenv.2021.146347] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 02/16/2021] [Accepted: 03/03/2021] [Indexed: 06/12/2023]
Abstract
As a quorum sensing signal molecule, N-(3-oxododecanoyl)-homoserine lactone (3OC12) regulate the population behavior of microorganisms. Many studies have proved that 3OC12 harm the physiological function of host intestinal epithelial cells. However, the detrimental effects of 3OC12 on intestinal health need verification in animals. Besides, the role of gut microbiome in 3OC12-induced intestinal damage also needs further understanding. In our study, 3OC12 was first administered to specific pathogen-free (SPF) mice, then the fecal microbiome of SPF mice was transplanted into germ-free (GF) mice to reveal the effects of 3OC12 on intestinal health and regulatory mechanisms of the intestinal microbiome. 3OC12 treatment significantly decreased body weight, shortened colonic length, disrupted the morphology of the colonic epithelium and increased the histopathological score of the colon in SPF mice. The levels of diamine peroxidase, d-lactate, TNF-α, IL-1β, and IL-8 were found to be significantly elevated in the serum of 3OC12 mice, while the levels of IL-10 were significantly reduced. Besides, the fecal microbial community of mice was also altered in the 3OC12-treated SPF mice. The results of fecal microbial transplantation (FMT) experiment showed that the phenotypes in SPF mice were almost reproduced in GF mice, manifested by body weight loss, colon damage and changed in serum chemical markers. More importantly, a joint analysis of fecal microbes in SPF and GF mice revealed Feature14_Elizabethkingia spp. was common differential bacteria in the feces of two kinds of mice treated with and without FMT. Our results demonstrated that 3OC12 challenge led to systemic inflammation and body weight loss in mice by disrupting intestinal barrier function, in which gut microbiome played a key role. These findings increased our understanding of the mechanism of intestinal injury caused by 3CO12, providing new ideas for the prevention and therapy of diseases caused by bacterial infection from the perspective of intestinal microbiome.
Collapse
Affiliation(s)
- Wei Cheng
- College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhenyu Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Yi Xiong
- Hubei Key Laboratory of Animal Nutrition and Feed Science, College of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Zhifeng Wu
- College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiang Tan
- College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yapeng Yang
- College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Hang Zhang
- College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Xi Zhu
- College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Hong Wei
- College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Shiyu Tao
- College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
24
|
Kim G, Choi KH, Kim H, Chung DK. Alleviation of LPS-Induced Inflammation and Septic Shock by Lactiplantibacillus plantarum K8 Lysates. Int J Mol Sci 2021; 22:ijms22115921. [PMID: 34072918 PMCID: PMC8197946 DOI: 10.3390/ijms22115921] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/18/2021] [Accepted: 05/26/2021] [Indexed: 01/08/2023] Open
Abstract
We previously showed that Lactiplantibacillus plantarum K8 and its cell wall components have immunoregulatory effects. In this study, we demonstrate that pre-treatment of L. plantarum K8 lysates reduced LPS-induced TNF-α production in THP-1 cells by down-regulating the early signals of mitogen-activated protein kinase (MAPK) and nuclear factor-κB (NF-κB). The down-regulation of signals may be caused by the induction of negative regulators involved in toll-like receptor (TLR)-mediated signaling. However, co-treatment with high concentrations of L. plantarum K8 lysates and lipopolysaccharide (LPS) activated the late signaling of extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK), and NF-κB pathways and resulted in the induction of absent in melanoma 2 (AIM2) inflammasome-mediated interleukin (IL)-1β secretion. Intraperitoneal injection of L. plantarum K8 lysates in LPS-induced endotoxin shock mice alleviated mortality and reduced serum tumor-necrosis factor (TNF)-α, IL-1β, aspartate aminotransferase (AST) and alanine aminotransferase (ALT) levels. In addition, the mRNA levels of TNF-α, IL-1β, and IL-6 decreased in livers from mice injected with L. plantarum K8 followed by LPS. Hematoxylin and eosin (H&E) staining of the liver showed that the cell size was enlarged by LPS injection and slightly reduced by L. plantarum K8 lysate pre-injection followed by LPS injection. Macrophage infiltration of the liver also decreased in response to the combination injection compared with mice injected with only LPS. Taken together, our results show that although L. plantarum K8 lysates differentially regulated the production of LPS-induced inflammatory cytokines in THP-1 cells, the lysates inhibited overall inflammation in mice. Thus, this study suggests that L. plantarum K8 lysates could be developed as a substance that modulates immune homeostasis by regulating inflammation.
Collapse
Affiliation(s)
- Gayoung Kim
- Graduate School of Biotechnology, Kyung Hee University, Yongin 17104, Korea; (G.K.); (K.-H.C.)
| | - Kyeong-Hun Choi
- Graduate School of Biotechnology, Kyung Hee University, Yongin 17104, Korea; (G.K.); (K.-H.C.)
| | - Hangeun Kim
- Research and Development Center, Skin Biotechnology Center Inc., Yongin 17104, Korea
- Correspondence: (H.K.); (D.-K.C.); Tel.: +82-31-201-2465 (H.K.); +82-31-888-6170 (D.-K.C.); Fax: +82-31-888-6173 (D.-K.C.)
| | - Dae-Kyun Chung
- Graduate School of Biotechnology, Kyung Hee University, Yongin 17104, Korea; (G.K.); (K.-H.C.)
- Research and Development Center, Skin Biotechnology Center Inc., Yongin 17104, Korea
- Skin Biotechnology Center, Kyung Hee University, Suwon 16229, Korea
- Correspondence: (H.K.); (D.-K.C.); Tel.: +82-31-201-2465 (H.K.); +82-31-888-6170 (D.-K.C.); Fax: +82-31-888-6173 (D.-K.C.)
| |
Collapse
|
25
|
Rojas A, Schneider I, Lindner C, Gonzàlez I, Morales MA. Receptor for advanced glycation end-products axis and coronavirus disease 2019 in inflammatory bowel diseases: A dangerous liaison? World J Gastroenterol 2021; 27:2270-2280. [PMID: 34040321 PMCID: PMC8130044 DOI: 10.3748/wjg.v27.i19.2270] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 02/22/2021] [Accepted: 04/13/2021] [Indexed: 02/06/2023] Open
Abstract
Compelling evidence supports the crucial role of the receptor for advanced glycation end-products (RAGE) axis activation in many clinical entities. Since the beginning of the coronavirus disease 2019 pandemic, there is an increasing concern about the risk and handling of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in inflammatory gastrointestinal disorders, such as inflammatory bowel diseases (IBD). However, clinical data raised during pandemic suggests that IBD patients do not have an increased risk of contracting SARS-CoV-2 infection or develop a more severe course of infection. In the present review, we intend to highlight how two potentially important contributors to the inflammatory response to SARS-CoV-2 infection in IBD patients, the RAGE axis activation as well as the cross-talk with the renin-angiotensin system, are dampened by the high expression of soluble forms of both RAGE and the angiotensin-converting enzyme (ACE) 2. The soluble form of RAGE functions as a decoy for its ligands, and soluble ACE2 seems to be an additionally attenuating contributor to RAGE axis activation, particularly by avoiding the transactivation of the RAGE axis that can be produced by the virus-mediated imbalance of the ACE/angiotensin II/angiotensin II receptor type 1 pathway.
Collapse
Affiliation(s)
- Armando Rojas
- Biomedical Research Labs, Medicine Faculty, Catholic University of Maule, Talca 3634000, Chile
| | - Iván Schneider
- Biomedical Research Labs, Medicine Faculty, Catholic University of Maule, Talca 3634000, Chile
| | - Cristian Lindner
- Biomedical Research Labs, Medicine Faculty, Catholic University of Maule, Talca 3634000, Chile
| | - Ileana Gonzàlez
- Biomedical Research Labs, Medicine Faculty, Catholic University of Maule, Talca 3634000, Chile
| | - Miguel Angel Morales
- Department of Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, University of Chile, Santiago 8320000, Chile
| |
Collapse
|
26
|
Magro F, Dias CC, Morato M. Aminosalicylates and COVID-19: Facts or Coincidences? Gastroenterology 2021; 160:1884-1885. [PMID: 32553757 PMCID: PMC7837222 DOI: 10.1053/j.gastro.2020.05.092] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 05/28/2020] [Indexed: 01/31/2023]
Affiliation(s)
| | - Claudia Camila Dias
- Centre for Health Technology and Services Research (CINTESIS); Department of Community Medicine, Information and Health Decision Sciences, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Manuela Morato
- LAQV@REQUIMTE, Laboratory of Pharmacology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| |
Collapse
|
27
|
Qi M, Tan B, Wang J, Liao S, Li J, Cui Z, Shao Y, Ji P, Yin Y. Postnatal growth retardation is associated with deteriorated intestinal mucosal barrier function using a porcine model. J Cell Physiol 2021; 236:2631-2648. [PMID: 32853405 DOI: 10.1002/jcp.30028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 07/18/2020] [Accepted: 08/14/2020] [Indexed: 12/26/2022]
Abstract
Individuals with postnatal growth retardation (PGR) are prone to developing chronic diseases. Abnormal development in small intestine is casually implicated in impaired growth. However, the exact mechanism is still implausible. In this present study, PGR piglets (aged 42 days) were employed as a good model to analyze developmental changes in intestinal mucosal barrier function. Our data demonstrated that PGR piglets exhibited impaired jejunal and ileal epithelial villous morphology and permeability, accompanied by decreased cell proliferation ability and increased apoptosis rate. In addition, the expression of tight junction proteins (ZO-1, claudin 1, and occludin) and E-cadherin was markedly inhibited by PGR. The expression of P-glycoprotein was significantly reduced in PGR piglets, as well as decreased activity of lysozyme. Moreover, the mRNA abundance and content of inflammatory cytokines were significantly increased in the intestinal mucosa and plasma of PGR piglets, respectively. PGR also contributed to lower level of sIgA, and higher level of CD68-positive rate, β-defensins, and protein expression involved p38 MAPK/NF-κB pathway. Furthermore, PGR altered the intestinal microbial community such as decreased genus Alloprevotella and Oscillospira abundances, and led to lower microbial-derived butyrate production, which may be potential targets for treatment. Collectively, our findings indicated that the intestinal mucosal barrier function of PGR piglets could develop the nutritional intervention strategies in prevention and treatment of the intestinal mucosal barrier dysfunction in piglets and humans.
Collapse
Affiliation(s)
- Ming Qi
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Bie Tan
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China
- College of Animal Science and Technolaogy, Hunan Agricultural University, Changsha, Hunan, China
| | - Jing Wang
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China
| | - Simeng Liao
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jianjun Li
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China
| | - Zhijuan Cui
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China
- College of Animal Science and Technolaogy, Hunan Agricultural University, Changsha, Hunan, China
| | - Yirui Shao
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Peng Ji
- Department of Nutrition, University of California, Davis, California
| | - Yulong Yin
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China
- College of Animal Science and Technolaogy, Hunan Agricultural University, Changsha, Hunan, China
| |
Collapse
|
28
|
A Rational Insight into the Effect of Dimethyl Sulfoxide on TNF-α Activity. Int J Mol Sci 2020; 21:ijms21249450. [PMID: 33322533 PMCID: PMC7763846 DOI: 10.3390/ijms21249450] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 12/07/2020] [Accepted: 12/09/2020] [Indexed: 12/13/2022] Open
Abstract
Direct inhibition of tumor necrosis factor-alpha (TNF-α) action is considered a promising way to prevent or treat TNF-α-associated diseases. The trimeric form of TNF-α binds to its receptor (TNFR) and activates the downstream signaling pathway. The interaction of TNF-α with molecular-grade dimethyl sulfoxide (DMSO) in an equal volumetric ratio renders TNF-α inert, in this state, TNF-α fails to activate TNFR. Here, we aimed to examine the inhibition of TNF-α function by various concentrations of DMSO. Its higher concentration led to stronger attenuation of TNF-α-induced cytokine secretion by fibroblasts, and of their death. We found that this inhibition was mediated by a perturbation in the formation of the functional TNF-α trimer. Molecular dynamics simulations revealed a transient interaction between DMSO molecules and the central hydrophobic cavity of the TNF-α homodimer, indicating that a brief interaction of DMSO with the TNF-α homodimer may disrupt the formation of the functional homotrimer. We also found that the sensitizing effect of actinomycin D on TNF-α-induced cell death depends upon the timing of these treatments and on the cell type. This study will help to select an appropriate concentration of DMSO as a working solvent for the screening of water-insoluble TNF-α inhibitors.
Collapse
|
29
|
Elrasoul ASA, Mousa AA, Orabi SH, Mohamed MAEG, Gad-Allah SM, Almeer R, Abdel-Daim MM, Khalifa SAM, El-Seedi HR, Eldaim MAA. Antioxidant, Anti-Inflammatory, and Anti-Apoptotic Effects of Azolla pinnata Ethanolic Extract against Lead-Induced Hepatotoxicity in Rats. Antioxidants (Basel) 2020; 9:1014. [PMID: 33086604 PMCID: PMC7603163 DOI: 10.3390/antiox9101014] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/13/2020] [Accepted: 10/15/2020] [Indexed: 12/12/2022] Open
Abstract
The current study investigated the protective potential of Azolla pinnate ethanolic extract (APE) against lead-induced hepatotoxicity in rats. Sixty male Wistar albino rats were randomly allocated into six groups (n = 10). The control group was orally administrated with saline. The second group received lead acetate (100 mg/kg body weight (BW) orally for 60 days). The third group was fed with APE (10 mg/kg BW orally for 60 days). The fourth group was administrated with lead acetate like the second group and APE like the third group, concomitantly, for 60 days. The fifth group was administrated with APE like the third group for 30 days, then orally administrated with the lead acetate like the second group for another 30 days. The sixth group was administrated with lead acetate like the second group for 30 days, then with APE like the third group for a further 30 days. Phytochemical analysis of APE indicated the presence of peonidin 3-O-glucoside cation, vitexin, rutin, thiamine, choline, tamarixetin, hyperoside, astragalin, and quercetin. The latter has been elucidated using one- and two-dimensional nuclear magnetic resonance (1D and 2D NMR) and liquid chromatography-mass spectrometry (LC-MS-MS). Lead acetate increased the serum levels of alanine and aspartate aminotransferases and that of urea, creatinine, tumor necrosis factor alpha, and interleukin 1β, hepatic tissue malondialdehyde contents, and caspase 3 protein expression, as well as altering the hepatic tissue architecture. However, it decreased the serum levels of interleukin 10 and glutathione (GSH) contents, and the activities of catalase and superoxide dismutase in hepatic tissue. In contrast, the administration of APE ameliorated the lead-induced alterations in liver function and structure, exemplifying the benefits of Azolla's phytochemical contents. Collectively, A. pinnate extract is a protective and curative agent against lead-induced hepatotoxicity via its antioxidant, anti-inflammatory, and anti-apoptotic impacts.
Collapse
Affiliation(s)
- Ahmed Shaaban Abd Elrasoul
- Department of Biochemistry and Chemistry of Nutrition, Faculty of Veterinary Medicine, University of Sadat City, Sadat City, Menoufia 32897, Egypt; (A.S.A.E.); (A.A.M.); (S.H.O.)
| | - Ahmed Abdelmoniem Mousa
- Department of Biochemistry and Chemistry of Nutrition, Faculty of Veterinary Medicine, University of Sadat City, Sadat City, Menoufia 32897, Egypt; (A.S.A.E.); (A.A.M.); (S.H.O.)
| | - Sahar Hassan Orabi
- Department of Biochemistry and Chemistry of Nutrition, Faculty of Veterinary Medicine, University of Sadat City, Sadat City, Menoufia 32897, Egypt; (A.S.A.E.); (A.A.M.); (S.H.O.)
| | | | - Shaban M. Gad-Allah
- Department of Surgery, Faculty of Veterinary Medicine, University of Sadat City, Sadat City 32958, Egypt;
| | - Rafa Almeer
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (R.A.); (M.M.A.-D.)
| | - Mohamed M. Abdel-Daim
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (R.A.); (M.M.A.-D.)
- Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Shaden A. M. Khalifa
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, SE-106 91 Stockholm, Sweden;
| | - Hesham R. El-Seedi
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, SE-106 91 Stockholm, Sweden;
- Department of Chemistry, Faculty of Science, Menoufia University, Shebin El-Kom 32512, Egypt
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China
| | - Mabrouk Attia Abd Eldaim
- Department of Biochemistry and Chemistry of Nutrition, Faculty of Veterinary Medicine, Menoufia University, Shebin El-Kom, Menoufia 32512, Egypt
| |
Collapse
|
30
|
Wang Y, Che M, Xin J, Zheng Z, Li J, Zhang S. The role of IL-1β and TNF-α in intervertebral disc degeneration. Biomed Pharmacother 2020; 131:110660. [PMID: 32853910 DOI: 10.1016/j.biopha.2020.110660] [Citation(s) in RCA: 356] [Impact Index Per Article: 71.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 08/10/2020] [Accepted: 08/17/2020] [Indexed: 12/20/2022] Open
Abstract
Low back pain (LBP), a prevalent and costly disease around the world, is predominantly caused by intervertebral disc (IVD) degeneration (IDD). LBP also presents a substantial burden to public health and the economy. IDD is mainly caused by aging, trauma, genetic susceptibility, and other factors. It is closely associated with changes in tissue structure and function, including progressive destruction of the extracellular matrix (ECM), enhanced senescence, disc cell death, and impairment of tissue biomechanical function. The inflammatory process, exacerbated by cytokines interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α), are considered to be the key mediators of IDD and LBP. IL-1β and TNF-α are the most important proinflammatory cytokines, as they have powerful proinflammatory activities and can promote the secretion of a variety of proinflammatory mediators. They are also upregulated in the degenerative IVDs, and they are closely related to various pathological IDD processes, including inflammatory response, matrix destruction, cellular senescence, autophagy, apoptosis, pyroptosis, and proliferation. Therefore, anti-IL-1β and anti-TNF-α therapies may have the potential to alleviate disc degeneration and LBP. In this paper, we reviewed the expression pattern and signal transduction pathways of IL-1β and TNF-α, and we primarily focused on their similar and different roles in IDD. Because IL-1β and TNF-α inhibition have the potential to alleviate IDD, an in-depth understanding of the role of IL-1β and TNF-α in IDD will benefit the development of new treatment methods for disc degeneration with IL-1β and TNF-α at the core.
Collapse
Affiliation(s)
- Yongjie Wang
- Department of Spinal Surgery, The First Hospital of Jilin University, Changchun, 130021, China
| | - Mingxue Che
- Department of Spinal Surgery, The First Hospital of Jilin University, Changchun, 130021, China
| | - Jingguo Xin
- Department of Spinal Surgery, The First Hospital of Jilin University, Changchun, 130021, China
| | - Zhi Zheng
- Department of Spinal Surgery, The First Hospital of Jilin University, Changchun, 130021, China
| | - Jiangbi Li
- Department of Spinal Surgery, The First Hospital of Jilin University, Changchun, 130021, China
| | - Shaokun Zhang
- Department of Spinal Surgery, The First Hospital of Jilin University, Changchun, 130021, China.
| |
Collapse
|
31
|
Park HH, Lee S, Yu Y, Yoo SM, Baek SY, Jung N, Seo KW, Kang KS. TGF-β secreted by human umbilical cord blood-derived mesenchymal stem cells ameliorates atopic dermatitis by inhibiting secretion of TNF-α and IgE. Stem Cells 2020; 38:904-916. [PMID: 32277785 DOI: 10.1002/stem.3183] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 03/03/2020] [Accepted: 03/17/2020] [Indexed: 12/20/2022]
Abstract
Human mesenchymal stem cells (MSCs) are promising therapeutics for autoimmune diseases due to their immunomodulatory effects. In particular, human umbilical cord blood-derived MSCs (hUCB-MSCs) have a prominent therapeutic effect on atopic dermatitis (AD). However, the underlying mechanism is unclear. This study investigated the role of transforming growth factor-beta (TGF-β) in the therapeutic effect of hUCB-MSCs on AD. Small interfering RNA (siRNA)-mediated depletion of TGF-β disrupted the therapeutic effect of hUCB-MSCs in a mouse model of AD by attenuating the beneficial changes in histopathology, mast cell infiltration, tumor necrosis factor-alpha (TNF-α) expression, and the serum IgE level. To confirm that hUCB-MSCs regulate secretion of TNF-α, we investigated whether they inhibit TNF-α secretion by activated LAD2 cells. Coculture with hUCB-MSCs significantly inhibited secretion of TNF-α by LAD2 cells. However, this effect was abolished by siRNA-mediated depletion of TGF-β in hUCB-MSCs. TNF-α expression in activated LAD2 cells was regulated by the extracellular signal-related kinase signaling pathway and was suppressed by TGF-β secreted from hUCB-MSCs. In addition, TGF-β secreted by hUCB-MSCs inhibited maturation of B cells. Taken together, our findings suggest that TGF-β plays a key role in the therapeutic effect of hUCB-MSCs on AD by regulating TNF-α in mast cells and maturation of B cells.
Collapse
Affiliation(s)
- Hwan Hee Park
- Stem Cell and Regenerative Bioengineering Institute, Kangstem Biotech Co., Ltd., Biotechnology Center, Seoul National University, Seoul, South Korea
| | - Seunghee Lee
- Stem Cell and Regenerative Bioengineering Institute, Kangstem Biotech Co., Ltd., Biotechnology Center, Seoul National University, Seoul, South Korea
| | - Yeonsil Yu
- Stem Cell and Regenerative Bioengineering Institute, Kangstem Biotech Co., Ltd., Biotechnology Center, Seoul National University, Seoul, South Korea
| | - Sae Mi Yoo
- Stem Cell and Regenerative Bioengineering Institute, Kangstem Biotech Co., Ltd., Biotechnology Center, Seoul National University, Seoul, South Korea
| | - Song Yi Baek
- Stem Cell and Regenerative Bioengineering Institute, Kangstem Biotech Co., Ltd., Biotechnology Center, Seoul National University, Seoul, South Korea
| | - Namhee Jung
- Stem Cell and Regenerative Bioengineering Institute, Kangstem Biotech Co., Ltd., Biotechnology Center, Seoul National University, Seoul, South Korea
| | - Kwang-Won Seo
- Stem Cell and Regenerative Bioengineering Institute, Kangstem Biotech Co., Ltd., Biotechnology Center, Seoul National University, Seoul, South Korea
| | - Kyung-Sun Kang
- Stem Cell and Regenerative Bioengineering Institute, Kangstem Biotech Co., Ltd., Biotechnology Center, Seoul National University, Seoul, South Korea
- Adult Stem Cell Research Center, College of Veterinary Medicine, Seoul National University, Seoul, South Korea
- Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, South Korea
| |
Collapse
|
32
|
Ho PY, Ho CL, Wong WY. Recent advances of iridium(III) metallophosphors for health-related applications. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2020.213267] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
33
|
Patsalos O, Dalton B, Leppanen J, Ibrahim MAA, Himmerich H. Impact of TNF-α Inhibitors on Body Weight and BMI: A Systematic Review and Meta-Analysis. Front Pharmacol 2020; 11:481. [PMID: 32351392 PMCID: PMC7174757 DOI: 10.3389/fphar.2020.00481] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 03/27/2020] [Indexed: 12/12/2022] Open
Abstract
Objective The aim of this systematic review and meta-analysis of longitudinal studies was to ascertain to effects of TNF-α inhibitor therapy on body weight and BMI. Methods Three databases (PubMed, OVID, and EMBASE) were systematically searched from inception to August 2018. We identified prospective, retrospective, and randomized controlled studies in adults with immune-mediated inflammatory diseases treated with TNF-α inhibitors based on pre-specified inclusion criteria. A random-effects model was used to estimate standardised mean change (SMCC). Results Twenty-six longitudinal studies with a total of 1,245 participants were included in the meta-analysis. We found evidence for a small increase in body weight (SMCC = 0.24, p = .0006, 95% CI [0.10, 0.37]) and in BMI (SMCC = 0.26, p < .0001, 95% CI [0.13, 0.39]). On average, patients gained 0.90kg (SD = 5.13) under infliximab, 2.34kg (D = 5.65) under etanercept and 2.27kg (SD = 4.69) during treatment with adalimumab within the duration of the respective studies (4–104 weeks). Conclusion Our results yield further support the for the view that TNF-α inhibitors increase body weight and BMI as a potential side effect. Modulating cytokine signaling could be a future therapeutic mechanism to treat disorders associated with weight changes such as anorexia nervosa.
Collapse
Affiliation(s)
- Olivia Patsalos
- Department of Psychological Medicine, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom
| | - Bethan Dalton
- Department of Psychological Medicine, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom
| | - Jenni Leppanen
- Department of Psychological Medicine, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom
| | - Mohammad A A Ibrahim
- Department of Clinical Immunological Medicine and Allergy, King's Health Partners, King's College Hospital, London, United Kingdom
| | - Hubertus Himmerich
- Department of Psychological Medicine, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom
| |
Collapse
|
34
|
Heib M, Rose-John S, Adam D. Necroptosis, ADAM proteases and intestinal (dys)function. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2020; 353:83-152. [PMID: 32381179 DOI: 10.1016/bs.ircmb.2020.02.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Recently, an unexpected connection between necroptosis and members of the a disintegrin and metalloproteinase (ADAM) protease family has been reported. Necroptosis represents an important cell death routine which helps to protect from viral, bacterial, fungal and parasitic infections, maintains adult T cell homeostasis and contributes to the elimination of potentially defective organisms before parturition. Equally important for organismal homeostasis, ADAM proteases control cellular processes such as development and differentiation, immune responses or tissue regeneration. Notably, necroptosis as well as ADAM proteases have been implicated in the control of inflammatory responses in the intestine. In this review, we therefore provide an overview of the physiology and pathophysiology of necroptosis, ADAM proteases and intestinal (dys)function, discuss the contribution of necroptosis and ADAMs to intestinal (dys)function, and review the current knowledge on the role of ADAMs in necroptotic signaling.
Collapse
Affiliation(s)
- Michelle Heib
- Institut für Immunologie, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Stefan Rose-John
- Institut für Biochemie, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Dieter Adam
- Institut für Immunologie, Christian-Albrechts-Universität zu Kiel, Kiel, Germany.
| |
Collapse
|
35
|
Arkteg CB, Goll R, Gundersen MD, Anderssen E, Fenton C, Florholmen J. Mucosal gene transcription of ulcerative colitis in endoscopic remission. Scand J Gastroenterol 2020; 55:139-147. [PMID: 31918598 DOI: 10.1080/00365521.2019.1710245] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Aim/Objective: Ulcerative colitis (UC) is a chronic inflammatory bowel disease. In UC, a wide range of criteria are used for disease remission, with few studies investigating the differences between disease remission and normal control groups. This paper compares known inflammatory and healing mediators in the mucosa of UC in clinical remission and normal controls, in order to better describe the remission state.Method: Mucosal biopsies from 72 study participants (48 UC and 24 normal controls) were included from the Advanced Study of Inflammatory Bowel Disease (ASIB Study), Arctic University of Norway, Norway. Clinical remission was defined as Mayo clinical score ≤ 2, with endoscopic subscores of ≤ 1. Targeted gene transcription analyses were performed using hydrolysis probes and SYBR-green.Results: Among the mucosal transcripts examined, 10 genes were regulated in remission versus normal controls, 8 upregulated pro-inflammatory transcripts (IL1B, IL33, TNF, TRAF1, CLDN2, STAT1, STAT3 and IL13Ra2) and 2 downregulated (pro-inflammatory TBX21 and anti-inflammatory TGFB1). In total, 14 transcripts were regulated between the investigated groups. Several master transcription factors for T-cell development were upregulated in patients with Mayo endoscopic score of 1 in comparison to 0.Conclusions: The mucosa of UC in clinical and endoscopic remission differs from normal mucosa, suggesting a remaining dysregulation of inflammatory and wound healing mechanisms.
Collapse
Affiliation(s)
- Christian Børde Arkteg
- Research Group Gastroenterology Nutrition, Institute of Clinical Medicine, UiT the Arctic University of Norway, Tromsø, Norway
| | - Rasmus Goll
- Research Group Gastroenterology Nutrition, Institute of Clinical Medicine, UiT the Arctic University of Norway, Tromsø, Norway.,Department of Gastroenterology, Division of Internal Medicine, University Hospital of North Norway, Tromsø, Norway
| | - Mona Dixon Gundersen
- Research Group Gastroenterology Nutrition, Institute of Clinical Medicine, UiT the Arctic University of Norway, Tromsø, Norway.,Department of Gastroenterology, Division of Internal Medicine, University Hospital of North Norway, Tromsø, Norway
| | - Endre Anderssen
- Research Group Gastroenterology Nutrition, Institute of Clinical Medicine, UiT the Arctic University of Norway, Tromsø, Norway
| | - Christopher Fenton
- Research Group Gastroenterology Nutrition, Institute of Clinical Medicine, UiT the Arctic University of Norway, Tromsø, Norway
| | - Jon Florholmen
- Research Group Gastroenterology Nutrition, Institute of Clinical Medicine, UiT the Arctic University of Norway, Tromsø, Norway.,Department of Gastroenterology, Division of Internal Medicine, University Hospital of North Norway, Tromsø, Norway
| |
Collapse
|
36
|
Ragab FAEF, Mohammed EI, Abdel Jaleel GA, Selim AAMAER, Nissan YM. Synthesis of Hydroxybenzofuranyl-pyrazolyl and Hydroxyphenyl-pyrazolyl Chalcones and Their Corresponding Pyrazoline Derivatives as COX Inhibitors, Anti-inflammatory and Gastroprotective Agents. Chem Pharm Bull (Tokyo) 2020; 68:742-752. [PMID: 32741915 DOI: 10.1248/cpb.c20-00193] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Five new series of hydroxybenzofuranyl-pyrazolyl chalcones 3a,b, hydroxyphenyl-pyrazolyl chalcones 6a-c and their corresponding pyrazolylpyrazolines 4a, d, 7a-c and 8a-f have been synthesized and evaluated for their in vitro cyclooxygenase (COX)-1 and COX-2 inhibitory activity. All the synthesized compounds exhibited dual COX-1 and COX-2 inhibitory activity with obvious selectivity against COX-2. The pyrazolylpyrazolines 4a-d and 8a-f bearing two vicinal aryl moieties in the pyrazoline nucleus showed more selectivity towards COX-2. Within these two series, derivatives 4c, d and 8d-f bearing the benzenesulfonamide group were the most selective. Compounds 4a-d and 8a-f were further subjected to in vivo anti-inflammatory screening, ulcerogenic liability and showed good anti-inflammatory activity with no ulcerogenic effect. In addition compounds 4c and 8d as examples showed prostaglandin (PG)E2 inhibition % 44.23 and 51.4 respectively, tumor necrosis factor α (TNFα) inhibition % 33.48 and 41.41 respectively and gastroprotective effect in ethanol induced rodent gastric ulcer model. In addition, to explore the binding mode and selectivity of our compounds, 8d and celecoxib were docked into the active site of COX-1 and COX-2. It was found that compound 8d exhibited a binding pattern and interactions similar to that of celecoxib with COX-2 active site, while bitter manner of interaction than celecoxib to COX-1 active site.
Collapse
Affiliation(s)
| | | | | | | | - Yassin Mohammed Nissan
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Cairo University
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA)
| |
Collapse
|
37
|
Tao S, Bai Y, Li T, Li N, Wang J. Original low birth weight deteriorates the hindgut epithelial barrier function in pigs at the growing stage. FASEB J 2019; 33:9897-9912. [PMID: 31170357 DOI: 10.1096/fj.201900204rr] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
The deteriorative effect of low birth weight (LBW) on the mucosal permeability of the small intestine in piglets has been widely confirmed. However, whether the hindgut epithelial barrier function in LBW pigs is deteriorated during the growing stage is still unclear. Our study investigated differences in the hindgut epithelial barrier function between LBW and normal birth weight pigs during the growing stage (d 90). Our data demonstrated that the hindgut epithelium of LBW pigs has a high histopathological score, accompanied by decreased antioxidant capacity and increased apoptosis rate, as well as elevated expression and activity of caspase-3. In addition, the number of intestinal goblet cells and gene expression of mucin 2 were significantly down-regulated in LBW pigs. The expression of tight junction proteins (ZO-1 and occludin) was markedly inhibited by the LBW. The mRNA abundance of inflammatory cytokines such as TNF-α, IL-1β, and IL-8 was significantly increased in the hindgut mucosa of LBW pigs. Furthermore, our data revealed that LBW altered the intestinal microbial community in the hindgut mucosa of pigs. Collectively, these finding add to our understanding of the mechanisms responsible for hindgut epithelial barrier dysfunction in LBW pigs during the growing stage and facilitate the development of nutritional intervention strategies.-Tao, S., Bai, Y., Li, T., Li, N., Wang, J. Original low birth weight deteriorates the hindgut epithelial barrier function in pigs at the growing stage.
Collapse
Affiliation(s)
- Shiyu Tao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yu Bai
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Tiantian Li
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Na Li
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Junjun Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
38
|
Xiong W, Ma H, Zhang Z, Jin M, Wang J, Xu Y, Wang Z. The protective effect of icariin and phosphorylated icariin against LPS-induced intestinal goblet cell dysfunction. Innate Immun 2019; 26:97-106. [PMID: 31390916 PMCID: PMC7016409 DOI: 10.1177/1753425919867746] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
In this study, we used LS174T cells as a model to investigate the protective effects of icariin and phosphorylated icariin on LPS-induced goblet cell dysfunction. Our results indicated that icariin and phosphorylated icariin increased the cell viability and decreased lactate dehydrogenase activity in LPS-treated LS174T cells. Icariin and phosphorylated icariin attenuated LPS-induced changes in mucin 2 synthesis and secretion. Besides, Icariin and phosphorylated icariin reduced the levels of ROS, MDA, and H2O2 and increased the activity of SOD, GPx, CAT, and T-AOC in LPS-treated LS174T cells. Moreover, the levels of IL-1β, IL-6, IL-8, and TNF-α were reduced in the Icariin and phosphorylated icariin group. Furthermore, Icariin and phosphorylated icariin decreased gene abundance or enzyme activity of Bip, XBP1, GRP78, CHOP, caspase-3, and caspase-4 in LPS-treated LS174T cells. Our data suggest that Icariin and phosphorylated icariin effectively attenuate LPS-induced intestinal goblet cell function damage through regulating oxidative stress, inflammation, apoptosis, and mucin expression.
Collapse
Affiliation(s)
- Wen Xiong
- College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Haoyue Ma
- College of Pharmaceutical Sciences, Southwest University, Chongqing, China
| | - Zhu Zhang
- College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Meilan Jin
- College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Jian Wang
- College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Yuwei Xu
- College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Zili Wang
- College of Animal Science and Technology, Southwest University, Chongqing, China
| |
Collapse
|
39
|
Xiong W, Ma H, Zhang Z, Jin M, Wang J, Xu Y, Wang Z. The protective effect of icariin and phosphorylated icariin against LPS-induced intestinal epithelial cells injury. Biomed Pharmacother 2019; 118:109246. [PMID: 31387006 DOI: 10.1016/j.biopha.2019.109246] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 07/17/2019] [Accepted: 07/18/2019] [Indexed: 02/07/2023] Open
Abstract
Icariin (ICA) and phosphorylated icariin (pICA) have excellent antiviral and antioxidant effects. However, whether ICA and pICA cause anti-LPS-induced intestinal damage remains unclear. In this study, we used Caco-2 cells as a model to investigate the protective effects of ICA and pICA on human colonic epithelial cells and explore their potential mechanisms. Our results indicated that ICA and pICA increased cell viability and decreased lactate dehydrogenase activity in Caco-2 cells. ICA and pICA also attenuated LPS-induced changes in intestinal epithelial cell permeability and reduced the levels of oxidative stress indicators, such as reactive oxygen species, malondialdehyde, and hydrogen peroxide, in Caco-2 cells. Antioxidant indicators, such as superoxide dismutase, glutathione peroxidase, catalase and total antioxidant capacity, were increased, while the levels of IL-1β, IL-6, IL-8 and TNF-α were reduced in the ICA and pICA groups. Furthermore, ICA and pICA decreased the gene abundance and enzyme activities of caspase-3, -8, -9 and -10 in Caco-2 cells. Our data suggest that ICA and pICA effectively attenuated LPS-induced changes in the oxidative stress, inflammation, apoptosis and intestinal permeability of intestinal epithelial cells. These findings provide new insight for treating LPS-induced intestinal injury.
Collapse
Affiliation(s)
- Wen Xiong
- College of Animal Science and Technology, Southwest University, Chongqing, China.
| | - Haoyue Ma
- College of Pharmaceutical Sciences, Southwest University, Chongqing, China.
| | - Zhu Zhang
- College of Animal Science and Technology, Southwest University, Chongqing, China.
| | - Meilan Jin
- College of Animal Science and Technology, Southwest University, Chongqing, China.
| | - Jian Wang
- College of Animal Science and Technology, Southwest University, Chongqing, China.
| | - Yuwei Xu
- College of Animal Science and Technology, Southwest University, Chongqing, China.
| | - Zili Wang
- College of Animal Science and Technology, Southwest University, Chongqing, China.
| |
Collapse
|
40
|
Heidari Z, Moudi B, Mahmoudzadeh-Sagheb H. Immunomodulatory factors gene polymorphisms in chronic periodontitis: an overview. BMC Oral Health 2019; 19:29. [PMID: 30755190 PMCID: PMC6373099 DOI: 10.1186/s12903-019-0715-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 01/14/2019] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Chronic periodontitis (CP), defines as destruction of the supporting tissues of the teeth and resorption of the alveolar bone. It is widespread in human populations and represent an important problem for public health. CP results from inflammatory mechanisms created by the interaction between environmental and host genetic factors that confer the individual susceptibility to the disease. AIM The aim of the current study was to explore and summarize some functional biomarkers that are associated with CP susceptibility. METHODS CP is considered to be a multifactorial disease. The pathogenesis of multifactorial diseases is characterized by various biological pathways. The studies revealed that polymorphisms were associated with susceptibility to periodontal diseases. In other word, genetic variations can change the development of CP. However, there are some conflicting results, because there are different variations in frequency of some alleles in any populations. Therefore, we conducted the current review to completely understanding the special biomarkers for CP. RESULTS There is some evidence that SNPs in the IL-1α, IL-1β, IL1RN, IL-6, IL-10, TNF-α, TGF-β1, IFN-γ and VDR may be associated with CP susceptibility. CONCLUSION In conclusion, numerous studies have reported the host genetic factors associated with CP susceptibility and related traits. Therefore, it is prevail to study the multiple SNPs and their effects to find the useful diagnosis methods. The current study will investigate the relationship between polymorphisms in cytokine genes and the susceptibility to the chronic periodontitis.
Collapse
Affiliation(s)
- Zahra Heidari
- Infectious Diseases and Tropical Medicine Research Center, Zahedan University of Medical Sciences, Zahedan, Iran
- Department of Histology, School of Medicine, Zahedan University of Medical Sciences, Zahedan, 98167-43175 Iran
| | - Bita Moudi
- Infectious Diseases and Tropical Medicine Research Center, Zahedan University of Medical Sciences, Zahedan, Iran
- Department of Histology, School of Medicine, Zahedan University of Medical Sciences, Zahedan, 98167-43175 Iran
| | - Hamidreza Mahmoudzadeh-Sagheb
- Infectious Diseases and Tropical Medicine Research Center, Zahedan University of Medical Sciences, Zahedan, Iran
- Department of Histology, School of Medicine, Zahedan University of Medical Sciences, Zahedan, 98167-43175 Iran
| |
Collapse
|
41
|
Proestling K, Yotova I, Gamperl S, Hauser C, Wenzl R, Schneeberger C, Szabo L, Mairhofer M, Husslein H, Kuessel L. Enhanced expression of TACE contributes to elevated levels of sVCAM-1 in endometriosis. Mol Hum Reprod 2019; 25:76-87. [PMID: 30395261 DOI: 10.1093/molehr/gay042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 11/02/2018] [Indexed: 11/13/2022] Open
Abstract
STUDY QUESTION Are increased sVCAM-1 and sICAM-1 levels associated with tumor necrosis factor-alpha-converting enzyme (TACE) activity in endometriosis? SUMMARY ANSWER Here we provide the first functional evidence that induced TACE activity in human endometriotic epithelial cells is at least in part responsible for the enhanced release of sVCAM-1 from these cells. WHAT IS KNOWN ALREADY We and others have shown that serum-soluble (s)VCAM-1 levels are significantly higher in women with endometriosis, compared to disease-free controls. Experimental evidence exists suggesting a role of sICAM-1 and sVCAM-1 in the pathogenesis of endometriosis. TACE was identified as the protease responsible for phorbol 12-myristate 13-acetate (PMA)-induced VCAM-1 release in murine endothelial cells. Additionally, it has recently been shown that TACE is upregulated in the endometrial luminal epithelium of the mid-secretory phase in infertile women. STUDY DESIGN, SIZE, DURATION This study was conducted at the Tertiary Endometriosis Referral Center of the Medical University of Vienna. Samples from a total number of 97 women were collected between July 2013 and September 2014. PARTICIPANTS/MATERIALS, SETTING, METHODS After complete surgical exploration of the abdominopelvic cavity, 49 women with histologically proven endometriosis and 48 endometriosis-free control women were enrolled. Each participating woman contributed only one sample of eutopic endometrium and normal peritoneum, and some of the women with endometriosis contributed samples of diverse types of endometriotic lesions (in total 52 ectopic samples). Among the 49 women with endometriosis, 36 matched samples of endometriotic lesions and corresponding eutopic endometrium were collected. In order to detect sVCAM-1 and TACE protein by ELISA, peritoneal fluid (PF) samples were collected from 44 cases and 32 controls during surgery. Expression of TACE mRNA was analyzed by qRT-PCR in 111 endometrium tissue samples (28 eutopic control samples, 33 eutopic samples from women with endometriosis, 50 ectopic samples from lesions) and 37 healthy peritoneum samples. Immunohistochemistry was performed in 123 tissue samples (39 eutopic control samples, 42 eutopic samples from women with endometriosis, 42 ectopic samples from lesions) and the relation between tissue TACE protein levels and sVCAM-1 secretion was examined. PMA-induced sVCAM-1 release, and TACE- and VCAM-1-transcripts or proteins were measured in an immortalized endometriotic epithelial cell line (11Z) pre-incubated either with TACE inhibitors or following TACE siRNA knockdown. MAIN RESULTS AND THE ROLE OF CHANCE Here, we demonstrate that TACE protein is overexpressed in epithelium of tissue samples of both eutopic endometrium and ectopic lesions of women with endometriosis compared to disease-free controls (P < 0.001 both) and that the overexpression of the protein in the lesions is due to activation of TACE gene transcription (P < 0.001). Moreover, epithelial TACE protein was significantly higher in ectopic samples than in corresponding eutopic tissue of women with the disease (P < 0.001). High endometrial tissue TACE protein expression correlated with higher serum sVCAM-1 levels (P < 0.05) but not with sICAM-1 levels. Inhibition of TACE either by TACE inhibitors or by TACE siRNA knockdown resulted in decreased PMA-induced shedding of sVCAM-1 in vitro (P < 0.005 or P < 0.01, respectively), but the TACE inhibitors did not affect transcription of TACE or VCAM-1. Additionally, we observed an upregulation of TACE in proliferative endometrial epithelium of infertile (P < 0.005), compared to fertile women. TACE was increased in infertile women with endometriosis (P = 0.051) but not in infertile women without endometriosis. LIMITATIONS, REASONS FOR CAUTION Albeit well characterized, our control population included women with other gynecologic diseases, which may have impacted the levels of sVCAM-1 and tissue TACE expression levels, e.g. benign ovarian cysts or uterine fibroids. Thus, the results of our analysis have to be interpreted carefully and in the context of the current experimental settings. WIDER IMPLICATIONS OF THE FINDINGS The dysregulation of TACE substrate shedding represents a promising yet relatively unexplored area of endometriosis progression and could serve as a basis for the development of new treatments of the disease. STUDY FUNDING AND COMPETING INTEREST(S) This work was supported by the Ingrid Flick Foundation. The authors have no competing interests to declare.
Collapse
Affiliation(s)
- Katharina Proestling
- Department of Obstetrics and Gynecology, Medical University of Vienna, Waehringer Guertel 18-20, Vienna, Austria
| | - Iveta Yotova
- Department of Obstetrics and Gynecology, Medical University of Vienna, Waehringer Guertel 18-20, Vienna, Austria
| | - Susanne Gamperl
- Department of Internal Medicine I, Medical University of Vienna, Waehringer Guertel 18-20, Vienna, Austria
| | - Christoph Hauser
- Department of Obstetrics and Gynecology, Medical University of Vienna, Waehringer Guertel 18-20, Vienna, Austria
| | - Rene Wenzl
- Department of Obstetrics and Gynecology, Medical University of Vienna, Waehringer Guertel 18-20, Vienna, Austria
| | - Christian Schneeberger
- Department of Obstetrics and Gynecology, Medical University of Vienna, Waehringer Guertel 18-20, Vienna, Austria
| | - Ladislaus Szabo
- Department of Obstetrics and Gynecology, Medical University of Vienna, Waehringer Guertel 18-20, Vienna, Austria
| | - Mario Mairhofer
- TIMed CENTER, University of Applied Sciences Upper Austria, Linz, Austria
| | - Heinrich Husslein
- Department of Obstetrics and Gynecology, Medical University of Vienna, Waehringer Guertel 18-20, Vienna, Austria
| | - Lorenz Kuessel
- Department of Obstetrics and Gynecology, Medical University of Vienna, Waehringer Guertel 18-20, Vienna, Austria
| |
Collapse
|
42
|
Wasilczuk KM, Bayer KC, Somann JP, Albors GO, Sturgis J, Lyle LT, Robinson JP, Irazoqui PP. Modulating the Inflammatory Reflex in Rats Using Low-Intensity Focused Ultrasound Stimulation of the Vagus Nerve. ULTRASOUND IN MEDICINE & BIOLOGY 2019; 45:481-489. [PMID: 30396599 DOI: 10.1016/j.ultrasmedbio.2018.09.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 08/31/2018] [Accepted: 09/05/2018] [Indexed: 06/08/2023]
Abstract
Tumor necrosis factor α (TNF-α) is linked to several chronic inflammatory diseases. Electrical vagus nerve stimulation reduces serum TNF-α levels but may cause chronic nerve damage and requires surgery. Alternatively, we proposed focused ultrasound stimulation of the vagus nerve (uVNS), which can be applied non-invasively. In this study, we induced an inflammatory response in rats using lipopolysaccharides (LPS) and collected blood to analyze the effects of uVNS on cytokine concentrations. We applied one or three 5-min pulsed focused ultrasound stimulation treatments to the vagus nerve (250 kHz, ISPPA = 3 W/cm2). Animals receiving a single ultrasound application had an average reduction in TNF-α levels of 19%, similar to the 16% reduction observed in electrically stimulated animals. With multiple applications, uVNS therapy statistically reduced serum TNF-α levels by 73% compared with control animals without any observed damage to the nerve. These findings suggest that uVNS is a suitable way to attenuate TNF-α levels.
Collapse
Affiliation(s)
- Kelsey M Wasilczuk
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana, USA.
| | - Kelsey C Bayer
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana, USA
| | - Jesse P Somann
- Department of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana, USA
| | - Gabriel O Albors
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana, USA
| | - Jennifer Sturgis
- Purdue University Cytometry Laboratories, Purdue University, West Lafayette, Indiana, USA
| | - L Tiffany Lyle
- College of Veterinary Medicine, Purdue University, West Lafayette, Indiana, USA
| | - J Paul Robinson
- Purdue University Cytometry Laboratories, Purdue University, West Lafayette, Indiana, USA
| | - Pedro P Irazoqui
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana, USA; Department of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana, USA
| |
Collapse
|
43
|
Qasem A, Ramesh S, Naser SA. Genetic polymorphisms in tumour necrosis factor receptors ( TNFRSF1A/1B) illustrate differential treatment response to TNFα inhibitors in patients with Crohn's disease. BMJ Open Gastroenterol 2019; 6:e000246. [PMID: 30815272 PMCID: PMC6361334 DOI: 10.1136/bmjgast-2018-000246] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 11/26/2018] [Accepted: 12/06/2018] [Indexed: 12/14/2022] Open
Abstract
Background Monoclonal antibodies inhibiting tumour necrosis factor-α (TNFα) signalling pathway (anti-TNFα) have been widely used in Crohn’s disease (CD). However, treatment response varies among patients with CD and the clinical outcome is dependent on single nucleotide polymorphisms (SNP) in TNFα receptor superfamily 1A and 1B (TNFRSF1A/1B). Methods We tested nine SNPs in TNFα, TNFRSF1A and TNFRSF1B by TaqMan genotyping from peripheral blood samples of 104 subjects. Additionally, we quantified the effects of these SNPs on their corresponding gene expression by RT-PCR and susceptibility to Mycobacterium avium subsp paratuberculosis (MAP) infection by IS900 nested PCR. Results Four SNPs (TNFα:rs1800629, TNFRSF1A:rs767455, TNFRSF1B:rs1061624 and TNFRSF1B:rs3397) were over-represented significantly (p<0.05) among patients with CD compared with healthy controls. The TNFRSF1A:rs767455 GG genotype was found in 15/54 patients with CD (28%), while it was only found in 2/50 healthy controls (4%) (OR 9.2, 95% CI 1.98 to 42.83). The TNFRSF1B:rs3397 TT genotype was found in 15/54 patients with CD (28%) compared with (4/50) healthy controls (8%) (OR 4.4, 95% CI 1.36 to 14.14). Furthermore, the SNPs TNFRSF1A:rs767455 and TNFRSF1B:rs3397 were associated with downregulating their corresponding genes significantly (p<0.05). MAP infection was predominantly found among patients with CD in comparison to healthy controls (57% vs 8%, respectively), which was also dependent on the SNPs TNFRSF1A:rs767455 and TNFRSF1B:rs3397. Our SNP haplotype analysis of TNFRSF1A:rs767455 and TNFRSF1B:rs3397 indicates that the G–T haplotype is significantly distributed among patients with CD (46%) and MAP infection susceptibility is also associated with this specific haplotype (31%). Conclusion The SNPs TNFRSF1A:rs767455 and TNFRSF1B:rs3397, which are known to affect anti-TNFα clinical outcome in CD, were associated with lower corresponding gene expression and higher MAP infection susceptibility.
Collapse
Affiliation(s)
- Ahmad Qasem
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida, USA
| | - Seela Ramesh
- Digestive and Liver Center of Florida, Orlando, Florida, USA
| | - Saleh A Naser
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida, USA
| |
Collapse
|
44
|
Geesala R, Schanz W, Biggs M, Dixit G, Skurski J, Gurung P, Meyerholz DK, Elliott D, Issuree PD, Maretzky T. Loss of RHBDF2 results in an early-onset spontaneous murine colitis. J Leukoc Biol 2019; 105:767-781. [PMID: 30694569 DOI: 10.1002/jlb.4a0718-283rr] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 01/16/2019] [Accepted: 01/17/2019] [Indexed: 12/16/2022] Open
Abstract
Inflammatory bowel disease (IBD) is a heterogeneous group of inflammation-mediated pathologies that include Crohn's disease and ulcerative colitis and primarily affects the colon and small intestine. Previous studies have shown that a disintegrin and metalloprotease (ADAM) 17, a membrane-bound sheddase, capable of cleaving the proinflammatory cytokine TNF and epidermal growth factor receptor ligands, plays a critical role in maintaining gut homeostasis and modulating intestinal inflammation during IBD. Rhomboid 5 homolog 2 (RHBDF2), a catalytically inactive member of the rhomboid family of intramembrane serine proteases, was recently identified as a crucial regulator of ADAM17. Here, we assessed the role of RHBDF2 in the development of colitis in the context of IL10 deficiency. Il10-/- /Rhbdf2-/- mice developed spontaneous colitis and experienced severe weight loss starting at 8 wk of age, without the need for exogenous triggers. Severity of disease pathology in Il10-/- /Rhbdf2-/- mice correlated with a dysbiotic gut microbiota and elevated Th1-associated immune responses with increased interferon gamma and IL2 production. In addition, Il10-/- /Rhbdf2-/- mice failed to maintain their epithelial cell homeostasis, although the intestinal epithelial barrier of Rhbdf2-/- mice is intact and loss of Rhbdf2 did not significantly exacerbate sensitivity to dextran sulfate sodium-induced colitis, suggesting differences in the underlying disease pathway of intestinal inflammation in this model. Taken together, our results demonstrate a critical regulatory role for RHBDF2 in the maintenance of the unique homeostasis between intestinal microbiota and host immune responses in the gut that is dysregulated during the pathogenesis of IBD.
Collapse
Affiliation(s)
- Ramasatyaveni Geesala
- Inflammation Program, Roy J. and Lucille A. Carver College of Medicine University of Iowa, Iowa City, Iowa, USA.,Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine University of Iowa, Iowa City, Iowa, USA
| | - Willow Schanz
- Inflammation Program, Roy J. and Lucille A. Carver College of Medicine University of Iowa, Iowa City, Iowa, USA.,Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine University of Iowa, Iowa City, Iowa, USA
| | - Mikayla Biggs
- Inflammation Program, Roy J. and Lucille A. Carver College of Medicine University of Iowa, Iowa City, Iowa, USA.,Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine University of Iowa, Iowa City, Iowa, USA
| | - Garima Dixit
- Inflammation Program, Roy J. and Lucille A. Carver College of Medicine University of Iowa, Iowa City, Iowa, USA.,Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine University of Iowa, Iowa City, Iowa, USA
| | - Joseph Skurski
- Inflammation Program, Roy J. and Lucille A. Carver College of Medicine University of Iowa, Iowa City, Iowa, USA.,Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine University of Iowa, Iowa City, Iowa, USA.,Immunology Graduate Program, Iowa City, Iowa, USA
| | - Prajwal Gurung
- Inflammation Program, Roy J. and Lucille A. Carver College of Medicine University of Iowa, Iowa City, Iowa, USA.,Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine University of Iowa, Iowa City, Iowa, USA.,Immunology Graduate Program, Iowa City, Iowa, USA
| | - David K Meyerholz
- Department of Pathology, Roy J. and Lucille A. Carver College of Medicine, Iowa City, Iowa, USA
| | - David Elliott
- Department of Veterans Affairs Medical Center, Roy J. and Lucille A. Carver College of Medicine, Iowa City, Iowa, USA
| | - Priya D Issuree
- Inflammation Program, Roy J. and Lucille A. Carver College of Medicine University of Iowa, Iowa City, Iowa, USA.,Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine University of Iowa, Iowa City, Iowa, USA
| | - Thorsten Maretzky
- Inflammation Program, Roy J. and Lucille A. Carver College of Medicine University of Iowa, Iowa City, Iowa, USA.,Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine University of Iowa, Iowa City, Iowa, USA.,Immunology Graduate Program, Iowa City, Iowa, USA.,Holden Comprehensive Cancer Center, University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
45
|
Fu H, Song P, Wu Q, Zhao C, Pan P, Li X, Li-Jessen NYK, Liu X. A paper-based microfluidic platform with shape-memory-polymer-actuated fluid valves for automated multi-step immunoassays. MICROSYSTEMS & NANOENGINEERING 2019; 5:50. [PMID: 31636936 PMCID: PMC6799814 DOI: 10.1038/s41378-019-0091-0] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 05/31/2019] [Accepted: 06/10/2019] [Indexed: 05/04/2023]
Abstract
Smart fluid manipulation with automatically controlled paper valves will enable automated and multi-step immunoassays on paper-based microfluidic devices. In this work, we present an integrated paper-based microfluidic platform with shape-memory polymer (SMP)-actuated fluid valves capable of automated colorimetric enzyme-linked immunosorbent assays (ELISAs). A single-layer microfluidic paper-based analytical device (μPAD) was designed to store all the reagents on the chip, and sequentially transfer reagents to a paper test zone following a specific ELISA protocol through automatic fluidic flow control by the multiple SMP-actuated valves. The actuation of a paper valve was based on the thermally responsive, duel-state shape transformation of a SMP sheet attached to the root of a paper cantilever beam for driving a hydrophilic paper bridge to connect and disconnect two paper channels. A portable colorimetric reader was developed to control the on-chip valve operations, quantify the colorimetric signal output, display the assay result, and wirelessly transmit the data to a smart phone for the application of telemedicine. Reliable operations of the paper valve and the entire μPAD were demonstrated with success rates of 97% and 93%, respectively. A detection mechanism for valve malfunction was designed and confirmed effective to identify any mal-operation of individual valves, thus rendering our platform reliable in real assays. For device calibration, we conducted direct ELISAs of rabbit IgG in phosphate-buffered saline (PBS), and achieved a low limit of detection (LOD) of 27 pM (comparable to that of standard and paper-based ELISAs). In order to demonstrate the clinical application of our multi-step immunoassay platform, we also conducted sandwich ELISAs to quantify the protein level of an inflammatory cytokine, namely tumor necrosis factor (TNF)-α, in surgically injured laryngeal tissues of rats. The protein levels of TNF-α were shown similar between the conventional and μPAD ELISAs.
Collapse
Affiliation(s)
- Hao Fu
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON M5S 3G8 Canada
- Department of Mechanical Engineering, McGill University, Montreal, QC H3A 0C3 Canada
| | - Pengfei Song
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON M5S 3G8 Canada
- Department of Mechanical Engineering, McGill University, Montreal, QC H3A 0C3 Canada
- Department of Electrical and Electronic Engineering, Xi’an Jiaotong-Liverpool University, 215123 Suzhou, Jiangsu China
| | - Qiyang Wu
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON M5S 3G8 Canada
- Department of Mechanical Engineering, McGill University, Montreal, QC H3A 0C3 Canada
| | - Chen Zhao
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON M5S 3G8 Canada
| | - Peng Pan
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON M5S 3G8 Canada
- Department of Mechanical Engineering, McGill University, Montreal, QC H3A 0C3 Canada
| | - Xiao Li
- Department of Mechanical Engineering, McGill University, Montreal, QC H3A 0C3 Canada
- Present Address: Department of Chemistry, Stanford University, Stanford, CA 94305 USA
| | - Nicole Y. K. Li-Jessen
- School of Communication Sciences and Disorders, McGill University, Montreal, QC H3A 1G1 Canada
| | - Xinyu Liu
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON M5S 3G8 Canada
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9 Canada
| |
Collapse
|
46
|
Niture S, Moore J, Kumar D. TNFAIP8: Inflammation, Immunity and Human Diseases. JOURNAL OF CELLULAR IMMUNOLOGY 2019; 1:29-34. [PMID: 31723944 PMCID: PMC6853632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Tumor necrosis factor (TNF)-alpha-induced protein 8 (TNFAIP8 /TIPE) family proteins are known to be involved in maintaining immune homeostasis. The TIPE family contains four members: tumor necrosis factor-α-induced protein 8 (TNFAIP8), TNFAIP8 like 1 (TIPE1), TNFAIP8 like 2 (TIPE2), and TNFAIP8 like 3 (TIPE3). Here we review the latest roles and associations of a founding member of TIPE family protein - TNFAIP8 in cellular function/signaling, inflammation, and immunity related human diseases.
Collapse
Affiliation(s)
- Suryakant Niture
- Julius L. Chambers Biomedical Biotechnology Research Institute, North Carolina Central University Durham, NC 27707, USA
| | - John Moore
- Julius L. Chambers Biomedical Biotechnology Research Institute, North Carolina Central University Durham, NC 27707, USA
| | - Deepak Kumar
- Julius L. Chambers Biomedical Biotechnology Research Institute, North Carolina Central University Durham, NC 27707, USA,Correspondence should be addressed to Deepak Kumar;
| |
Collapse
|
47
|
Niture S, Dong X, Arthur E, Chimeh U, Niture SS, Zheng W, Kumar D. Oncogenic Role of Tumor Necrosis Factor α-Induced Protein 8 (TNFAIP8). Cells 2018; 8:cells8010009. [PMID: 30586922 PMCID: PMC6356598 DOI: 10.3390/cells8010009] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 12/20/2018] [Accepted: 12/21/2018] [Indexed: 12/19/2022] Open
Abstract
Tumor necrosis factor (TNF)-α-induced protein 8 (TNFAIP8) is a founding member of the TIPE family, which also includes TNFAIP8-like 1 (TIPE1), TNFAIP8-like 2 (TIPE2), and TNFAIP8-like 3 (TIPE3) proteins. Expression of TNFAIP8 is strongly associated with the development of various cancers including cancer of the prostate, liver, lung, breast, colon, esophagus, ovary, cervix, pancreas, and others. In human cancers, TNFAIP8 promotes cell proliferation, invasion, metastasis, drug resistance, autophagy, and tumorigenesis by inhibition of cell apoptosis. In order to better understand the molecular aspects, biological functions, and potential roles of TNFAIP8 in carcinogenesis, in this review, we focused on the expression, regulation, structural aspects, modifications/interactions, and oncogenic role of TNFAIP8 proteins in human cancers.
Collapse
Affiliation(s)
- Suryakant Niture
- Julius L. Chambers Biomedical Biotechnology Research Institute (BBRI), North Carolina Central University, Durham, NC 27707, USA.
| | - Xialan Dong
- Bio-manufacturing Research Institute and Technology Enterprise (BRITE), North Carolina Central University, Durham, NC 27707, USA.
| | - Elena Arthur
- Julius L. Chambers Biomedical Biotechnology Research Institute (BBRI), North Carolina Central University, Durham, NC 27707, USA.
| | - Uchechukwu Chimeh
- Julius L. Chambers Biomedical Biotechnology Research Institute (BBRI), North Carolina Central University, Durham, NC 27707, USA.
| | | | - Weifan Zheng
- Bio-manufacturing Research Institute and Technology Enterprise (BRITE), North Carolina Central University, Durham, NC 27707, USA.
| | - Deepak Kumar
- Julius L. Chambers Biomedical Biotechnology Research Institute (BBRI), North Carolina Central University, Durham, NC 27707, USA.
- Department of Pharmaceutical Sciences, North Carolina Central University, Durham, NC 27707, USA.
| |
Collapse
|
48
|
Ciebiera M, Włodarczyk M, Zgliczyńska M, Łukaszuk K, Męczekalski B, Kobierzycki C, Łoziński T, Jakiel G. The Role of Tumor Necrosis Factor α in the Biology of Uterine Fibroids and the Related Symptoms. Int J Mol Sci 2018; 19:E3869. [PMID: 30518097 PMCID: PMC6321234 DOI: 10.3390/ijms19123869] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 11/27/2018] [Accepted: 11/28/2018] [Indexed: 12/20/2022] Open
Abstract
Uterine fibroids (UFs) are the most common benign tumors of the female genital tract. The incidence of UFs has been estimated at 25⁻80% depending on selected population. The pathophysiology of UFs remains poorly understood. The transformation of smooth muscle cells of the uterus into abnormal, immortal cells, capable of clonal division, is the main component of all pathways leading to UF tumor formation and tumor necrosis factor α (TNF-α) is believed to be one of the key factors in this field. TNF-α is a cell signaling protein involved in systemic inflammation and is one of the cytokines responsible for the acute phase reaction. This publication presents current data about the role of tumor necrosis factor α in the biology of UFs and the related symptoms. TNF-α is an extremely important cytokine associated with the biology of UFs, UF-related symptoms and complaints. Its concentration has been proven to be elevated in women with clinically symptomatic UFs. The presented data suggest the presence of an "inflammation-like" state in women with UFs where TNF-α is a potent inflammation inducer. The origin of numerous symptoms reported by women with UFs can be traced back to the TNF-α influence. Nevertheless, our knowledge on this subject remains limited and TNF-α dependent pathways in UF pathophysiology should be investigated further.
Collapse
Affiliation(s)
- Michał Ciebiera
- Second Department of Obstetrics and Gynecology, The Center of Postgraduate Medical Education, 01-809 Warsaw, Poland.
| | - Marta Włodarczyk
- Department of Biochemistry and Clinical Chemistry, Department of Pharmacogenomics, Medical University of Warsaw, 02-097 Warsaw, Poland.
| | - Magdalena Zgliczyńska
- Students' Scientific Association at the I Department of Obstetrics and Gynecology, Medical University of Warsaw, 02-015 Warsaw, Poland.
| | - Krzysztof Łukaszuk
- Department of Obstetrics and Gynecological Nursing, Faculty of Health Sciences, Medical University of Gdansk, 80-210 Gdansk, Poland.
- INVICTA Fertility and Reproductive Center, 80-172 Gdansk, Poland.
| | - Błażej Męczekalski
- Department of Gynecological Endocrinology, Poznan University of Medical Sciences, 60-513 Poznan, Poland.
| | - Christopher Kobierzycki
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland.
| | - Tomasz Łoziński
- Department of Obstetrics and Gynecology Pro-Familia Hospital, 35-001 Rzeszów, Poland.
| | - Grzegorz Jakiel
- First Department of Obstetrics and Gynecology, The Center of Postgraduate Medical Education, 01-004 Warsaw, Poland.
| |
Collapse
|
49
|
Aulova KS, Toporkova LB, Lopatnikova JA, Alshevskaya AA, Sedykh SE, Buneva VN, Budde T, Meuth SG, Popova NA, Orlovskaya IA, Nevinsky GA. Changes in cell differentiation and proliferation lead to production of abzymes in EAE mice treated with DNA-Histone complexes. J Cell Mol Med 2018; 22:5816-5832. [PMID: 30265424 PMCID: PMC6237594 DOI: 10.1111/jcmm.13850] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 06/28/2018] [Accepted: 07/20/2018] [Indexed: 01/02/2023] Open
Abstract
Experimental autoimmune encephalomyelitis (EAE)-prone C57BL/6 mice are used as a model of human multiple sclerosis. We immunize mice with myelin oligodendrocyte glycoprotein (MOG), DNA-histone and DNA-methylated bovine serum albumin (met-BSA) complexes to reveal different characteristics of EAE development including bone marrow lymphocyte proliferation and differentiation profiles of hematopoietic stem cells. Immunization of C57BL/6 mice with MOG35-55 results in the acceleration of EAE development. Anti-DNA antibodies are usually directed against DNA-histone complexes resulting from cell apoptosis. During the acute EAE phase (7-20 days after immunization), catalytic antibodies efficiently hydrolysing myelin basic protein (MBP), MOG and DNA are produced with parallel suppression of antibodies hydrolysing histones. We could show that in contrast to MOG, immunization with histone-DNA results in a reduction of proteinuria, a significant increase in anti-DNA, anti-MBP and anti-MOG antibody titres, as well as an increase in their catalytic activities for antigen hydrolysis, but slightly changes the concentration of cytokines. Contrary to MOG, DNA-histone and DNA-met-BSA only stimulated the formation of anti-DNA antibodies hydrolysing DNA with a long delay (15-20 days after immunization). Our data indicate that for C57BL/6 mice immunization with DNA-met-BSA and DNA-histone complexes may have opposing effects compared to MOG. DNA-histone stimulates the appearance of histone-hydrolysing abzymes in the acute EAE phase, while abzymes with DNase activity appear at significantly later time-points. We conclude that MOG, DNA-histone and DNA-met-BSA have different effects on numerous bone marrow, cellular, immunological and biochemical parameters of immunized mice, but all antigens finally significantly stimulate the development of the EAE.
Collapse
Affiliation(s)
- Kseniya S. Aulova
- Institute of Chemical Biology and Fundamental MedicineSiberian Branch of the Russian Academy of SciencesNovosibirskRussia
| | - Ludmila B. Toporkova
- Institute of Fundamental and Clinical ImmunologySiberian Branch of the Russian Academy of SciencesNovosibirskRussia
| | - Julia A. Lopatnikova
- Institute of Fundamental and Clinical ImmunologySiberian Branch of the Russian Academy of SciencesNovosibirskRussia
| | - Alina A. Alshevskaya
- Institute of Fundamental and Clinical ImmunologySiberian Branch of the Russian Academy of SciencesNovosibirskRussia
| | - Sergey E. Sedykh
- Institute of Chemical Biology and Fundamental MedicineSiberian Branch of the Russian Academy of SciencesNovosibirskRussia
| | - Valentina N. Buneva
- Institute of Chemical Biology and Fundamental MedicineSiberian Branch of the Russian Academy of SciencesNovosibirskRussia
| | - Thomas Budde
- Institut für Physiologie IWestfälische Wilhelms‐UniversitätMünsterGermany
| | - Sven G. Meuth
- Department of NeurologyWestfälische Wilhelms‐UniversitätMünsterGermany
| | - Nelly A. Popova
- Institute Cytology and GeneticsSiberian Branch of the Russian Academy of SciencesNovosibirskRussia
- Novosibirsk State UniversityNovosibirskRussia
| | - Irina A. Orlovskaya
- Institute of Fundamental and Clinical ImmunologySiberian Branch of the Russian Academy of SciencesNovosibirskRussia
| | - Georgy A. Nevinsky
- Institute of Chemical Biology and Fundamental MedicineSiberian Branch of the Russian Academy of SciencesNovosibirskRussia
- Novosibirsk State UniversityNovosibirskRussia
| |
Collapse
|
50
|
Choe JY, Han HS, Lee SD, Lee H, Lee DE, Ahn JY, Ryoo HW, Seo KS, Kim JK. A comparative study of three different gene expression analysis methods. Technol Health Care 2018; 25:1073-1080. [PMID: 28854526 DOI: 10.3233/thc-170967] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
BACKGROUND TNF-α regulates immune cells and acts as an endogenous pyrogen. Reverse transcription polymerase chain reaction (RT-PCR) is one of the most commonly used methods for gene expression analysis. Among the alternatives to PCR, loop-mediated isothermal amplification (LAMP) shows good potential in terms of specificity and sensitivity. OBJECTIVE However, few studies have compared RT-PCR and LAMP for human gene expression analysis. Therefore, in the present study, we compared one-step RT-PCR, two-step RT-LAMP and one-step RT-LAMP for human gene expression analysis. METHODS We compared three gene expression analysis methods using the human TNF-α gene as a biomarker from peripheral blood cells. Total RNA from the three selected febrile patients were subjected to the three different methods of gene expression analysis. RESULTS In the comparison of three gene expression analysis methods, the detection limit of both one-step RT-PCR and one-step RT-LAMP were the same, while that of two-step RT-LAMP was inferior. One-step RT-LAMP takes less time, and the experimental result is easy to determine. CONCLUSIONS One-step RT-LAMP is a potentially useful and complementary tool that is fast and reasonably sensitive. In addition, one-step RT-LAMP could be useful in environments lacking specialized equipment or expertise.
Collapse
Affiliation(s)
- Jae Young Choe
- Department of Pediatrics, Kyungpook National University School of Medicine, Daegu, Korea
| | - Hyung Soo Han
- Department of Physiology, Kyungpook National University School of Medicine, Daegu, Korea
| | - Seon Duk Lee
- Department of Physiology, Kyungpook National University School of Medicine, Daegu, Korea
| | - Hanna Lee
- Department of Physiology, Kyungpook National University School of Medicine, Daegu, Korea
| | - Dong Eun Lee
- Department of Emergency Medicine, Kyungpook National University School of Medicine, Daegu, Korea
| | - Jae Yun Ahn
- Department of Emergency Medicine, Kyungpook National University School of Medicine, Daegu, Korea
| | - Hyun Wook Ryoo
- Department of Emergency Medicine, Kyungpook National University School of Medicine, Daegu, Korea
| | - Kang Suk Seo
- Department of Emergency Medicine, Kyungpook National University School of Medicine, Daegu, Korea
| | - Jong Kun Kim
- Department of Emergency Medicine, Kyungpook National University School of Medicine, Daegu, Korea
| |
Collapse
|