1
|
Chitsaz M, Yang L, Rayes-Danan R, Savari O, Li B, Shribak M, Eliceiri K, Loeffler A. Polychromatic Polarization Microscopy Differentiates Collagen Fiber Signatures in Benign Pancreatic Tissue and Pancreatic Ductal Adenocarcinoma. Mod Pathol 2025:100768. [PMID: 40210130 DOI: 10.1016/j.modpat.2025.100768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 03/20/2025] [Accepted: 03/30/2025] [Indexed: 04/12/2025]
Abstract
The orientation of collagen fibers in relation to malignant epithelium is known to carry prognostic information in a variety of tissues. The data are strongest for breast and pancreatic ductal adenocarcinoma (PDAC). However, the information inherent in collagen fiber topology in malignant tissues remains untapped in daily surgical pathology practice, largely because collagen fibers within areas of desmoplasia cannot be resolved with standard diagnostic microscopy. The methodologies used to visualize collagen fiber orientation are either of insufficient resolution to consistently capture collagen fiber topology or require resources in time and money that do not fit into the daily surgical pathology workflow. Polychromatic polarization microscopy (PPM) has the potential to bring collagen topology to the attention of pathologists during their routine work. It has been demonstrated to be equivalent to the gold standard methodology used to research collagen, second harmonic generation (SHG). We use PPM to visualize and describe the differences in collagen topology in normal pancreas, chronic pancreatitis, and PDAC with a standard microscope, using H&E-stained sections. In the process, we propose a lexicon with which to describe the morphologic characteristics of collagen in benign and malignant pancreatic tissue.
Collapse
Affiliation(s)
| | - Linlin Yang
- Cleveland Clinic Foundation, Cleveland, Ohio
| | | | - Omid Savari
- University Hospitals Cleveland Medical Center, Cleveland, Ohio
| | - Bin Li
- University of Oxford, Oxford, England
| | | | - Kevin Eliceiri
- Center for Quantitative Cell Imaging, University of Wisconsin, Madison, Wisconsin and Morgidge Institute for Research
| | | |
Collapse
|
2
|
Hu Q, Zhang F, Li B, Jin P, Huang J, Yao Z, Zhao X, Shao S, Wang M, Ping Y, Liang T. Engineered a Gemcitabine Nano-Prodrug Targeting Desmoplastic Pancreatic Tumor with Dual Enhancement of Penetration Dynamics. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2410629. [PMID: 40007057 DOI: 10.1002/smll.202410629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 02/18/2025] [Indexed: 02/27/2025]
Abstract
The desmoplastic nature characterized by dense tissue and poor vascular conditions in pancreatic cancer (PDAC) poses a significant barrier to effective chemotherapy. Targeting the extracellular matrix and reducing desmoplasia in the tumor microenvironment is a rational approach to improve the penetration and efficacy of gemcitabine (GEM) in PDAC. Herein, a small molecular self-assembly nano-prodrug is developed for the "three-in-one" co-delivery of GEM chemotherapeutics, all-trans retinoic acid (ATRA), and nitric oxide (NO) donors, decorated with PDAC-homing targeting peptide. Stimulated by the PDAC microenvironment, the nano-prodrug releases ATRA that quiesces activated pancreatic stellate cells to alleviate stromal desmoplasia. Simultaneously, it generates abundant NO to induce a vasodilatory effect as well as a "nanomotor" effect. This combinational nano-prodrug delivery strategy, with a dual enhancement of drug penetration dynamics, effectively improves the distribution and bioavailability of the co-delivered GEM into the deep and dense pancreatic tumor tissue, which leads to significant amplification of tumor growth inhibition in different PDAC mouse models.
Collapse
Affiliation(s)
- Qida Hu
- Department of Hepatobiliary and Pancreatic Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Fu Zhang
- Department of Hepatobiliary and Pancreatic Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Bowen Li
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive, Singapore, 117585, Singapore
| | - Piaopiao Jin
- Healthcare Management Center, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Junming Huang
- Department of Hepatobiliary and Pancreatic Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Zhuo Yao
- Department of Hepatobiliary and Pancreatic Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xinyu Zhao
- Department of Hepatobiliary and Pancreatic Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Shiyi Shao
- Department of Hepatobiliary and Pancreatic Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Meng Wang
- Department of Hepatobiliary and Pancreatic Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Yuan Ping
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Tingbo Liang
- Department of Hepatobiliary and Pancreatic Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, Hangzhou, 310003, China
- Innovation Center for the Study of Pancreatic Diseases, Hangzhou, 310003, China
- Zhejiang Provincial Clinical Research Center for the Study of Hepatobiliary & Pancreatic Diseases, Hangzhou, 310003, China
- Cancer Center, Zhejiang University, Hangzhou, 310058, China
- Research Center for Healthcare Data Science, Zhejiang Lab., Hangzhou, 311121, China
| |
Collapse
|
3
|
Cereda V, D’Andrea MR. Pancreatic cancer: failures and hopes-a review of new promising treatment approaches. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2025; 6:1002299. [PMID: 40124650 PMCID: PMC11926728 DOI: 10.37349/etat.2025.1002299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 02/22/2025] [Indexed: 03/25/2025] Open
Abstract
Pancreatic cancer is a challenging disease with limited treatment options and a high mortality rate. Just few therapy advances have been made in recent years. Tumor microenvironment, immunosuppressive features and mutational status represent important obstacles in the improvement of survival outcomes. Up to now, first-line therapy did achieve a median overall survival of less than 12 months and this discouraging data lead clinicians all over the world to focus their efforts on various fields of investigation: 1) sequential cycling of different systemic therapy in order to overcome mechanisms of resistance; 2) discovery of new predictive bio-markers, in order to target specific patient population; 3) combination treatment, in order to modulate the tumor microenvironment of pancreatic cancer; 4) new modalities of the delivery of drugs in order to pass the physical barrier of desmoplasia and tumor stroma. This review shows future directions of treatment strategies in advanced pancreatic cancer through a deep analysis of these recent macro areas of research.
Collapse
Affiliation(s)
- Vittore Cereda
- Asl Roma 4, Hospital S. Paolo Civitavecchia, 00053 Civitavecchia, Italy
| | | |
Collapse
|
4
|
Chambers CR, Watakul S, Schofield P, Howell AE, Zhu J, Tran AMH, Kuepper N, Reed DA, Murphy KJ, Channon LM, Pereira BA, Tyma VM, Lee V, Trpceski M, Henry J, Melenec P, Abdulkhalek L, Nobis M, Metcalf XL, Ritchie S, Cadell A, Stoehr J, Magenau A, Chacon-Fajardo D, Chitty JL, O’Connell S, Zaratzian A, Tayao M, Da Silva A, Lyons RJ, Goldstein LD, Dale A, Rookyard A, Connolly A, Crossett B, Tran YTH, Kaltzis P, Vennin C, Dinevska M, Croucher DR, Samra J, Mittal A, Weatheritt RJ, Philp A, Del Monte-Nieto G, Zhang L, Enriquez RF, Cox TR, Shi YCC, Pinese M, Waddell N, Sim HW, Chtanova T, Wang Y, Joshua AM, Chantrill L, Evans TRJ, Gill AJ, Morton JP, Pajic M, Christ D, Herzog H, Timpson P, Herrmann D. Targeting the NPY/NPY1R signaling axis in mutant p53-dependent pancreatic cancer impairs metastasis. SCIENCE ADVANCES 2025; 11:eadq4416. [PMID: 40073121 PMCID: PMC11900870 DOI: 10.1126/sciadv.adq4416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 01/29/2025] [Indexed: 03/14/2025]
Abstract
Pancreatic cancer (PC) is a highly metastatic malignancy. More than 80% of patients with PC present with advanced-stage disease, preventing potentially curative surgery. The neuropeptide Y (NPY) system, best known for its role in controlling energy homeostasis, has also been shown to promote tumorigenesis in a range of cancer types, but its role in PC has yet to be explored. We show that expression of NPY and NPY1R are up-regulated in mouse PC models and human patients with PC. Moreover, using the genetically engineered, autochthonous KPR172HC mouse model of PC, we demonstrate that pancreas-specific and whole-body knockout of Npy1r significantly decreases metastasis to the liver. We identify that treatment with the NPY1R antagonist BIBO3304 significantly reduces KPR172HC migratory capacity on cell-derived matrices. Pharmacological NPY1R inhibition in an intrasplenic model of PC metastasis recapitulated the results of our genetic studies, with BIBO3304 significantly decreasing liver metastasis. Together, our results reveal that NPY/NPY1R signaling is a previously unidentified antimetastatic target in PC.
Collapse
Affiliation(s)
- Cecilia R. Chambers
- Cancer Ecosystems Program, Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, Sydney, New South Wales, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales (UNSW), Kensington, Sydney, New South Wales, Australia
| | - Supitchaya Watakul
- Cancer Ecosystems Program, Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, Sydney, New South Wales, Australia
| | - Peter Schofield
- Cancer Ecosystems Program, Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, Sydney, New South Wales, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales (UNSW), Kensington, Sydney, New South Wales, Australia
- Immune Biotherapies Program, Garvan Institute of Medical Research, Darlinghurst, Sydney, New South Wales, Australia
| | - Anna E. Howell
- Cancer Ecosystems Program, Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, Sydney, New South Wales, Australia
| | - Jessie Zhu
- Cancer Ecosystems Program, Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, Sydney, New South Wales, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales (UNSW), Kensington, Sydney, New South Wales, Australia
| | - Alice M. H. Tran
- Cancer Ecosystems Program, Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, Sydney, New South Wales, Australia
| | - Nadia Kuepper
- Cancer Ecosystems Program, Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, Sydney, New South Wales, Australia
| | - Daniel A. Reed
- Cancer Ecosystems Program, Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, Sydney, New South Wales, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales (UNSW), Kensington, Sydney, New South Wales, Australia
| | - Kendelle J. Murphy
- Cancer Ecosystems Program, Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, Sydney, New South Wales, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales (UNSW), Kensington, Sydney, New South Wales, Australia
| | - Lily M. Channon
- Cancer Ecosystems Program, Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, Sydney, New South Wales, Australia
| | - Brooke A. Pereira
- Cancer Ecosystems Program, Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, Sydney, New South Wales, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales (UNSW), Kensington, Sydney, New South Wales, Australia
| | - Victoria M. Tyma
- Cancer Ecosystems Program, Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, Sydney, New South Wales, Australia
| | - Victoria Lee
- Cancer Ecosystems Program, Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, Sydney, New South Wales, Australia
| | - Michael Trpceski
- Cancer Ecosystems Program, Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, Sydney, New South Wales, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales (UNSW), Kensington, Sydney, New South Wales, Australia
| | - Jake Henry
- Cancer Ecosystems Program, Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, Sydney, New South Wales, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales (UNSW), Kensington, Sydney, New South Wales, Australia
- Immune Biotherapies Program, Garvan Institute of Medical Research, Darlinghurst, Sydney, New South Wales, Australia
| | - Pauline Melenec
- Cancer Ecosystems Program, Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, Sydney, New South Wales, Australia
| | - Lea Abdulkhalek
- Cancer Ecosystems Program, Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, Sydney, New South Wales, Australia
| | - Max Nobis
- Cancer Ecosystems Program, Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, Sydney, New South Wales, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales (UNSW), Kensington, Sydney, New South Wales, Australia
- VIB-KU Leuven Center for Cancer Biology, Leuven, Belgium
| | - Xanthe L. Metcalf
- Cancer Ecosystems Program, Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, Sydney, New South Wales, Australia
| | - Shona Ritchie
- Cancer Ecosystems Program, Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, Sydney, New South Wales, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales (UNSW), Kensington, Sydney, New South Wales, Australia
| | - Antonia Cadell
- Cancer Ecosystems Program, Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, Sydney, New South Wales, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales (UNSW), Kensington, Sydney, New South Wales, Australia
- Translational Oncology Program, Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, Sydney, New South Wales, Australia
| | - Janett Stoehr
- Cancer Ecosystems Program, Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, Sydney, New South Wales, Australia
| | - Astrid Magenau
- Cancer Ecosystems Program, Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, Sydney, New South Wales, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales (UNSW), Kensington, Sydney, New South Wales, Australia
| | - Diego Chacon-Fajardo
- Cancer Ecosystems Program, Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, Sydney, New South Wales, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales (UNSW), Kensington, Sydney, New South Wales, Australia
- Translational Oncology Program, Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, Sydney, New South Wales, Australia
| | - Jessica L. Chitty
- Cancer Ecosystems Program, Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, Sydney, New South Wales, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales (UNSW), Kensington, Sydney, New South Wales, Australia
| | - Savannah O’Connell
- Immune Biotherapies Program, Garvan Institute of Medical Research, Darlinghurst, Sydney, New South Wales, Australia
| | - Anaiis Zaratzian
- Cancer Ecosystems Program, Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, Sydney, New South Wales, Australia
| | - Michael Tayao
- Cancer Ecosystems Program, Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, Sydney, New South Wales, Australia
| | - Andrew Da Silva
- Cancer Ecosystems Program, Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, Sydney, New South Wales, Australia
| | - Ruth J. Lyons
- Cancer Ecosystems Program, Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, Sydney, New South Wales, Australia
| | - Leonard D. Goldstein
- School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales (UNSW), Kensington, Sydney, New South Wales, Australia
- Data Science Platform, Garvan Institute of Medical Research, Darlinghurst, Sydney, New South Wales, Australia
| | - Ashleigh Dale
- Sydney Mass Spectrometry, University of Sydney, Sydney, New South Wales, Australia
| | - Alexander Rookyard
- Sydney Mass Spectrometry, University of Sydney, Sydney, New South Wales, Australia
| | - Angela Connolly
- Sydney Mass Spectrometry, University of Sydney, Sydney, New South Wales, Australia
| | - Ben Crossett
- Sydney Mass Spectrometry, University of Sydney, Sydney, New South Wales, Australia
| | - Yen T. H. Tran
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Peter Kaltzis
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Claire Vennin
- Cancer Ecosystems Program, Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, Sydney, New South Wales, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales (UNSW), Kensington, Sydney, New South Wales, Australia
| | - Marija Dinevska
- Cancer Ecosystems Program, Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, Sydney, New South Wales, Australia
- Department of Microbiology and Immunology, University of Melbourne, Melbourne, Australia
- Department of Surgery, University of Melbourne, Melbourne, Australia
| | | | | | - David R. Croucher
- School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales (UNSW), Kensington, Sydney, New South Wales, Australia
- Translational Oncology Program, Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, Sydney, New South Wales, Australia
| | - Jaswinder Samra
- Royal North Shore Hospital, St Leonards, Sydney, New South Wales, Australia
| | - Anubhav Mittal
- Royal North Shore Hospital, St Leonards, Sydney, New South Wales, Australia
| | - Robert J. Weatheritt
- Immune Biotherapies Program, Garvan Institute of Medical Research, Darlinghurst, Sydney, New South Wales, Australia
| | - Andrew Philp
- Centre for Healthy Ageing, Centenary Institute, Sydney, New South Wales, Australia
- School of Sport, Exercise and Rehabilitation Sciences, University of Technology Sydney, Sydney, New South Wales, Australia
| | - Gonzalo Del Monte-Nieto
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Lei Zhang
- School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales (UNSW), Kensington, Sydney, New South Wales, Australia
- St. Vincent’s Centre for Applied Medical Research, Darlinghurst, Sydney, New South Wales, Australia
| | - Ronaldo F. Enriquez
- Cancer Ecosystems Program, Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, Sydney, New South Wales, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales (UNSW), Kensington, Sydney, New South Wales, Australia
| | - Thomas R. Cox
- Cancer Ecosystems Program, Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, Sydney, New South Wales, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales (UNSW), Kensington, Sydney, New South Wales, Australia
| | - Yan-Chuan C. Shi
- Cancer Ecosystems Program, Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, Sydney, New South Wales, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales (UNSW), Kensington, Sydney, New South Wales, Australia
| | - Mark Pinese
- School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales (UNSW), Kensington, Sydney, New South Wales, Australia
- Children’s Cancer Institute, Lowy Cancer Research Centre, University of New South Wales (UNSW), Kensington, Sydney, New South Wales, Australia
| | - Nicola Waddell
- QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Hao-Wen Sim
- Cancer Ecosystems Program, Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, Sydney, New South Wales, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales (UNSW), Kensington, Sydney, New South Wales, Australia
- NHMRC Clinical Trials Centre, University of Sydney, Sydney, New South Wales, Australia
| | - Tatyana Chtanova
- Cancer Ecosystems Program, Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, Sydney, New South Wales, Australia
- School of Biotechnology and Biomolecular Sciences, Faculty of Science, University of New South Wales, Sydney, New South Wales, Australia
| | - Yingxiao Wang
- Department of Bioengineering & Institute of Engineering in Medicine, University of California, San Diego, La Jolla, CA 92093, USA
- Alfred E. Mann Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA
| | - Anthony M. Joshua
- School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales (UNSW), Kensington, Sydney, New South Wales, Australia
- Translational Oncology Program, Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, Sydney, New South Wales, Australia
| | - Lorraine Chantrill
- Department of Medical Oncology and Illawarra Shoalhaven Local Health District, Wollongong, New South Wales, Australia
| | - Thomas R. Jeffry Evans
- Cancer Research UK Scotland Institute, Glasgow, UK
- School of Cancer Sciences, Wolfson Wohl Cancer Research Centre, University of Glasgow, Glasgow, UK
| | - Anthony J. Gill
- Cancer Ecosystems Program, Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, Sydney, New South Wales, Australia
- Royal North Shore Hospital, St Leonards, Sydney, New South Wales, Australia
- Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
| | - Jennifer P. Morton
- Cancer Research UK Scotland Institute, Glasgow, UK
- School of Cancer Sciences, Wolfson Wohl Cancer Research Centre, University of Glasgow, Glasgow, UK
| | - Marina Pajic
- School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales (UNSW), Kensington, Sydney, New South Wales, Australia
- Translational Oncology Program, Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, Sydney, New South Wales, Australia
| | - Daniel Christ
- Cancer Ecosystems Program, Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, Sydney, New South Wales, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales (UNSW), Kensington, Sydney, New South Wales, Australia
- Immune Biotherapies Program, Garvan Institute of Medical Research, Darlinghurst, Sydney, New South Wales, Australia
| | - Herbert Herzog
- School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales (UNSW), Kensington, Sydney, New South Wales, Australia
- St. Vincent’s Centre for Applied Medical Research, Darlinghurst, Sydney, New South Wales, Australia
| | - Paul Timpson
- Cancer Ecosystems Program, Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, Sydney, New South Wales, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales (UNSW), Kensington, Sydney, New South Wales, Australia
| | - David Herrmann
- Cancer Ecosystems Program, Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, Sydney, New South Wales, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales (UNSW), Kensington, Sydney, New South Wales, Australia
| |
Collapse
|
5
|
Zeng X. Further Considerations on Dual Targeting of Syndecan-1 and Glucose Transporter-1 in Pancreatic Ductal Adenocarcinoma. Gastroenterology 2025:S0016-5085(25)00369-5. [PMID: 39956332 DOI: 10.1053/j.gastro.2025.01.245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Accepted: 01/22/2025] [Indexed: 02/18/2025]
Affiliation(s)
- Xuefan Zeng
- Chongqing Medical University, Chongqing, China
| |
Collapse
|
6
|
Zheng D, Deng Y, Deng L, He Z, Sun X, Gong Y, Shi B, Lu D, Yu C. CDCA7 enhances STAT3 transcriptional activity to regulate aerobic glycolysis and promote pancreatic cancer progression and gemcitabine resistance. Cell Death Dis 2025; 16:68. [PMID: 39905019 PMCID: PMC11794584 DOI: 10.1038/s41419-025-07399-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 12/10/2024] [Accepted: 01/27/2025] [Indexed: 02/06/2025]
Abstract
Cell division cycle associated 7 (CDCA7) plays a role in various malignancies, especially pancreatic cancer (PC). However, its expression pattern and functional significance in PC require further research. Therefore, this study aimed to investigate CDCA7 expression levels and biological functions in PC using in vitro and in vivo experiments. Western blotting, immunohistochemistry, and real-time polymerase chain reaction were performed to detect CDCA7 expression in PC cells and tissues. Additionally, the biological functions of CDCA7 were assessed using cell proliferation, wound healing, and Transwell assays. CDCA7 overexpression promoted PC cell proliferation, migration, and invasion, and increased resistance to the chemotherapy drug gemcitabine, possibly through enhanced aerobic glycolysis. Additionally, immunoprecipitation assay showed that CDCA7 interacted with STAT3 protein and affected the transcriptional regulation of hexokinase 2. Conclusively, targeting CDCA7 might be a promising therapeutic strategy to increase gemcitabine sensitivity by inhibiting glycolysis in PC cells.
Collapse
Affiliation(s)
- Dijie Zheng
- School of Basic Medical Sciences, Guizhou Medical University, Guiyang, Guizhou Province, 550025, China
- Department of Hepatobiliary Surgery, the Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou Province, 550001, China
- Guizhou Provincial Institute of Hepatobiliary, Pancreatic and Splenic Diseases, Guiyang, Guizhou Province, 550001, China
- Key Laboratory of Liver, Gallbladder, Pancreas and Spleen of Guizhou Medical University, Guiyang, Guizhou Province, 550001, China
| | - Yazhu Deng
- School of Basic Medical Sciences, Guizhou Medical University, Guiyang, Guizhou Province, 550025, China
- Department of Vascular Surgery, the Affiliated Hospital of Guizhou Medical University, Guizhou Medical University, 550001, Guiyang, China
| | - Lu Deng
- Department of Hepatobiliary Surgery, the Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou Province, 550001, China
- Guizhou Provincial Institute of Hepatobiliary, Pancreatic and Splenic Diseases, Guiyang, Guizhou Province, 550001, China
- Key Laboratory of Liver, Gallbladder, Pancreas and Spleen of Guizhou Medical University, Guiyang, Guizhou Province, 550001, China
- School of Clinical Medicine, Guizhou Medical University, Guiyang, Guizhou Province, 550025, China
| | - Zhiwei He
- Department of Hepatobiliary Surgery, the Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou Province, 550001, China
- Guizhou Provincial Institute of Hepatobiliary, Pancreatic and Splenic Diseases, Guiyang, Guizhou Province, 550001, China
- Key Laboratory of Liver, Gallbladder, Pancreas and Spleen of Guizhou Medical University, Guiyang, Guizhou Province, 550001, China
- School of Clinical Medicine, Guizhou Medical University, Guiyang, Guizhou Province, 550025, China
| | - Xinghao Sun
- Department of Hepatobiliary Surgery, the Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou Province, 550001, China
- Guizhou Provincial Institute of Hepatobiliary, Pancreatic and Splenic Diseases, Guiyang, Guizhou Province, 550001, China
- Key Laboratory of Liver, Gallbladder, Pancreas and Spleen of Guizhou Medical University, Guiyang, Guizhou Province, 550001, China
- School of Clinical Medicine, Guizhou Medical University, Guiyang, Guizhou Province, 550025, China
| | - Yanyu Gong
- Department of Hepatobiliary Surgery, the Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou Province, 550001, China
- Guizhou Provincial Institute of Hepatobiliary, Pancreatic and Splenic Diseases, Guiyang, Guizhou Province, 550001, China
- Key Laboratory of Liver, Gallbladder, Pancreas and Spleen of Guizhou Medical University, Guiyang, Guizhou Province, 550001, China
- School of Clinical Medicine, Guizhou Medical University, Guiyang, Guizhou Province, 550025, China
| | - Binbin Shi
- Department of Hepatobiliary Surgery, the Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou Province, 550001, China
- Guizhou Provincial Institute of Hepatobiliary, Pancreatic and Splenic Diseases, Guiyang, Guizhou Province, 550001, China
- Key Laboratory of Liver, Gallbladder, Pancreas and Spleen of Guizhou Medical University, Guiyang, Guizhou Province, 550001, China
- School of Clinical Medicine, Guizhou Medical University, Guiyang, Guizhou Province, 550025, China
| | - Deqin Lu
- School of Basic Medical Sciences, Guizhou Medical University, Guiyang, Guizhou Province, 550025, China.
| | - Chao Yu
- Department of Hepatobiliary Surgery, the Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou Province, 550001, China.
- Guizhou Provincial Institute of Hepatobiliary, Pancreatic and Splenic Diseases, Guiyang, Guizhou Province, 550001, China.
- Key Laboratory of Liver, Gallbladder, Pancreas and Spleen of Guizhou Medical University, Guiyang, Guizhou Province, 550001, China.
- School of Clinical Medicine, Guizhou Medical University, Guiyang, Guizhou Province, 550025, China.
| |
Collapse
|
7
|
Tang R, Tay SS, Sharbeen G, Herrmann D, Youkhana J, Timpson P, Phillips PA, Biro M. Bystander Expression of Atypical Chemokine Receptor 2 Protects T Cells from Chemoattraction towards Cancer-Associated Fibroblasts. Eur J Immunol 2025; 55:e202451215. [PMID: 39931761 PMCID: PMC11811810 DOI: 10.1002/eji.202451215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 11/07/2024] [Accepted: 11/11/2024] [Indexed: 02/13/2025]
Abstract
Atypical chemokine receptors (ACKRs) are a subclass of chemokine receptors that internalise and degrade chemokines instead of eliciting chemotaxis. Scavenging by ACKRs reduces the local bioavailability of chemokines and can thus reshape chemokine gradients that direct leukocyte trafficking during inflammation and anticancer responses. In pancreatic ductal adenocarcinoma (PDAC), chemokine axes, such as CXCL12-CXCR4, are co-opted by cancer-associated fibroblasts (CAFs) for tumour growth and escape, and immunosuppression. Here, we explore the use of ACKRs to reshape chemokine gradients within the PDAC tumour microenvironment. ACKR2, previously only known to scavenge inflammatory CC chemokines, was recently shown to be able to interact with CXCL10 and CXCL14. Here, using a chemokine binding assay and cytometric bead arrays, we reveal that ACKR2 scavenges additional CXC chemokines CXCL12 and CXCL1. ACKR2 scavenges CXCL12 with reduced efficiency compared to ACKR3, previously reported to bind CXCL12. Finally, we demonstrate that the overexpression of ACKR2 on bystander cells protects primary murine cytotoxic T lymphocytes from PDAC CAF-mediated chemoattraction. These findings reveal new CXC chemokine ligands of ACKR2 and indicate that ACKR overexpression may protect T cells from misdirection by CAFs.
Collapse
MESH Headings
- Cancer-Associated Fibroblasts/metabolism
- Cancer-Associated Fibroblasts/immunology
- Mice
- Animals
- Humans
- Chemokine CXCL12/metabolism
- Chemokine CXCL12/genetics
- Tumor Microenvironment/immunology
- Pancreatic Neoplasms/immunology
- Pancreatic Neoplasms/pathology
- Pancreatic Neoplasms/metabolism
- Pancreatic Neoplasms/genetics
- Carcinoma, Pancreatic Ductal/immunology
- Carcinoma, Pancreatic Ductal/pathology
- Carcinoma, Pancreatic Ductal/metabolism
- Carcinoma, Pancreatic Ductal/genetics
- Chemotaxis/immunology
- Chemotaxis/genetics
- Chemokine CXCL1/metabolism
- Chemokine CXCL1/genetics
- Receptors, CXCR/metabolism
- Receptors, CXCR/genetics
- T-Lymphocytes, Cytotoxic/immunology
- Cell Line, Tumor
- Mice, Inbred C57BL
- Chemotaxis, Leukocyte/immunology
- Chemokine Receptor D6
Collapse
Affiliation(s)
- Richard Tang
- EMBL Australia, Single Molecule Science node, School of Biomedical SciencesThe University of New South WalesSydneyNSWAustralia
| | - Szun S. Tay
- EMBL Australia, Single Molecule Science node, School of Biomedical SciencesThe University of New South WalesSydneyNSWAustralia
| | - George Sharbeen
- Pancreatic Cancer Translational Research Group, School of Biomedical Sciences, Faculty of Medicine and Health, Lowy Cancer Research CentreThe University of New South WalesSydneyNSWAustralia
| | - David Herrmann
- Cancer Ecosystems ProgramThe Garvan Institute of Medical Research and The Kinghorn Cancer CentreDarlinghurstNSWAustralia
- School of Clinical MedicineSt Vincent's Healthcare Clinical CampusUNSW Medicine & Health, UNSW SydneySydneyAustralia
| | - Janet Youkhana
- Pancreatic Cancer Translational Research Group, School of Biomedical Sciences, Faculty of Medicine and Health, Lowy Cancer Research CentreThe University of New South WalesSydneyNSWAustralia
| | - Paul Timpson
- Cancer Ecosystems ProgramThe Garvan Institute of Medical Research and The Kinghorn Cancer CentreDarlinghurstNSWAustralia
- School of Clinical MedicineSt Vincent's Healthcare Clinical CampusUNSW Medicine & Health, UNSW SydneySydneyAustralia
| | - Phoebe A. Phillips
- Pancreatic Cancer Translational Research Group, School of Biomedical Sciences, Faculty of Medicine and Health, Lowy Cancer Research CentreThe University of New South WalesSydneyNSWAustralia
| | - Maté Biro
- EMBL Australia, Single Molecule Science node, School of Biomedical SciencesThe University of New South WalesSydneyNSWAustralia
- Cancer Ecosystems ProgramThe Garvan Institute of Medical Research and The Kinghorn Cancer CentreDarlinghurstNSWAustralia
| |
Collapse
|
8
|
Oyon D, Lopez-Pascual A, Castello-Uribe B, Uriarte I, Orsi G, Llorente S, Elurbide J, Adan-Villaescusa E, Valbuena-Goiricelaya E, Irigaray-Miramon A, Latasa MU, Martinez-Perez LA, Bonetti LR, Prosper F, Ponz-Sarvise M, Vicent S, Pineda-Lucena A, Ruiz-Clavijo D, Sangro B, Larracoechea UA, Tian TV, Casadei-Gardini A, Amat I, Arechederra M, Berasain C, Urman JM, Avila MA, Fernandez-Barrena MG. Targeting of the G9a, DNMT1 and UHRF1 epigenetic complex as an effective strategy against pancreatic ductal adenocarcinoma. J Exp Clin Cancer Res 2025; 44:13. [PMID: 39810240 PMCID: PMC11734372 DOI: 10.1186/s13046-024-03268-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Accepted: 12/24/2024] [Indexed: 01/16/2025] Open
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive cancer with limited treatment options and a poor prognosis. The critical role of epigenetic alterations such as changes in DNA methylation, histones modifications, and chromatin remodeling, in pancreatic tumors progression is becoming increasingly recognized. Moreover, in PDAC these aberrant epigenetic mechanisms can also limit therapy efficacy. This study aimed to investigate the expression and prognostic significance of a key epigenetic complex encompassing DNA methyltransferase-1 (DNMT1), the histone methyltransferase G9a, and the scaffold protein UHRF1 in PDAC. We also evaluated the therapeutic potential of an innovative inhibitor targeting these epigenetic effectors. METHODS Immunohistochemical analysis of DNMT1, G9a, and UHRF1 expression was conducted in human PDAC tissue samples. Staining was semi-quantitatively scored, and overexpression was defined as moderate to strong positivity. The prognostic impact was assessed by correlating protein expression with patient survival. The antitumoral effects of the dual DNMT1-G9a inhibitor CM272 were tested in PDAC cell lines, followed by transcriptomic analyses to identify underlying mechanisms. The in vivo antitumoral efficacy of CM272 was evaluated in PDAC xenograft and syngeneic mouse models, both alone and in combination with anti-PD1 immunotherapy. RESULTS DNMT1, G9a, and UHRF1 were significantly overexpressed in PDAC cells and stroma compared to normal pancreatic tissues. Simultaneous overexpression of the three proteins was associated with significantly reduced survival in resected PDAC patients. CM272 exhibited potent antiproliferative activity in PDAC cell lines, inducing apoptosis and altering key metabolic and cell cycle-related genes. CM272 also enhanced chemotherapy sensitivity and significantly inhibited tumor growth in vivo without detectable toxicity. Combination of CM272 with anti-PD1 therapy further improved antitumor responses and immune cell infiltration, particularly CD4 + and CD8 + T cells. CONCLUSIONS The combined overexpression of DNMT1, G9a, and UHRF1 in PDAC is a strong predictor of poor prognosis. CM272, by targeting this epigenetic complex, shows promising therapeutic potential by inducing apoptosis, reprogramming metabolic pathways, and enhancing immune responses. The combination of CM272 with immunotherapy offers a novel, effective treatment strategy for PDAC.
Collapse
Affiliation(s)
- Daniel Oyon
- Department of Gastroenterology, Galdakao-Usansolo Hospital, Galdakao, Spain
- Biobizkaia Health Research Institute, Bizkaia, Spain
| | - Amaya Lopez-Pascual
- Hepatology Laboratory, Solid Tumors Program, CIMA, CCUN, University of Navarra, Pamplona, Spain
- Navarra Institute for Health Research, IdiSNA, Pamplona, Spain
| | - Borja Castello-Uribe
- Hepatology Laboratory, Solid Tumors Program, CIMA, CCUN, University of Navarra, Pamplona, Spain
| | - Iker Uriarte
- Hepatology Laboratory, Solid Tumors Program, CIMA, CCUN, University of Navarra, Pamplona, Spain
- CIBERehd, Instituto de Salud Carlos III, Madrid, Spain
| | - Giulia Orsi
- Oncology Department, University Hospital of Modena, Modena, Italy
- Department of Oncology, IRCCS San Raffaele Scientific Institute Hospital, Vita-Salute San Raffaele University, Milan, Italy
| | - Sofia Llorente
- Preclinical and Translational Research Program, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Jasmin Elurbide
- Hepatology Laboratory, Solid Tumors Program, CIMA, CCUN, University of Navarra, Pamplona, Spain
- CIBERehd, Instituto de Salud Carlos III, Madrid, Spain
| | - Elena Adan-Villaescusa
- Hepatology Laboratory, Solid Tumors Program, CIMA, CCUN, University of Navarra, Pamplona, Spain
| | | | - Ainara Irigaray-Miramon
- Hepatology Laboratory, Solid Tumors Program, CIMA, CCUN, University of Navarra, Pamplona, Spain
| | - Maria Ujue Latasa
- Hepatology Laboratory, Solid Tumors Program, CIMA, CCUN, University of Navarra, Pamplona, Spain
| | - Luz A Martinez-Perez
- Hepatology Laboratory, Solid Tumors Program, CIMA, CCUN, University of Navarra, Pamplona, Spain
- Universidad de Guadalajara Centro Universitario de Ciencias de La Salud, Guadalajara, Mexico
| | - Luca Reggiani Bonetti
- Department of Medical and Surgical Sciences for Children and Adults, Division of Pathology University-Hospital of Modena and Reggio Emilia, Modena, Italy
| | - Felipe Prosper
- Navarra Institute for Health Research, IdiSNA, Pamplona, Spain
- Hemato-Oncology Program, CIMA, CCUN, University of Navarra, Pamplona, Spain
- CIBERonc, Instituto de Salud Carlos III, Madrid, Spain
| | - Mariano Ponz-Sarvise
- Navarra Institute for Health Research, IdiSNA, Pamplona, Spain
- CIBERonc, Instituto de Salud Carlos III, Madrid, Spain
- Departments of Oncology and Immunology, Clinica Universidad de Navarra, Pamplona, Spain
| | - Silvestre Vicent
- Navarra Institute for Health Research, IdiSNA, Pamplona, Spain
- CIBERonc, Instituto de Salud Carlos III, Madrid, Spain
- Oncogenes and Effector Targets Laboratory, Solid Tumors Program, CIMA, CCUN, University of Navarra, Pamplona, Spain
| | | | - David Ruiz-Clavijo
- Department of Gastroenterology and Hepatology, Navarra University Hospital Complex, Pamplona, Spain
| | - Bruno Sangro
- Navarra Institute for Health Research, IdiSNA, Pamplona, Spain
- CIBERehd, Instituto de Salud Carlos III, Madrid, Spain
- Hepatology Unit, Clínica Universidad de Navarra, CCUN, Pamplona, Spain
| | - Urko Aguirre Larracoechea
- Research Unit, Osakidetza Basque Health Service, Barrualde-Galdakao Integrated Health Organisation, Galdakao-Usansolo Hospital, Galdakao, Spain
| | - Tian V Tian
- Preclinical and Translational Research Program, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Andrea Casadei-Gardini
- Oncology Department, University Hospital of Modena, Modena, Italy
- Department of Oncology, IRCCS San Raffaele Scientific Institute Hospital, Vita-Salute San Raffaele University, Milan, Italy
| | - Irene Amat
- Navarra Institute for Health Research, IdiSNA, Pamplona, Spain
- Department of Pathology, Navarra University Hospital Complex, Pamplona, Spain
| | - Maria Arechederra
- Hepatology Laboratory, Solid Tumors Program, CIMA, CCUN, University of Navarra, Pamplona, Spain
- Navarra Institute for Health Research, IdiSNA, Pamplona, Spain
- CIBERehd, Instituto de Salud Carlos III, Madrid, Spain
| | - Carmen Berasain
- Hepatology Laboratory, Solid Tumors Program, CIMA, CCUN, University of Navarra, Pamplona, Spain
- CIBERehd, Instituto de Salud Carlos III, Madrid, Spain
| | - Jesus M Urman
- Navarra Institute for Health Research, IdiSNA, Pamplona, Spain
- Department of Gastroenterology and Hepatology, Navarra University Hospital Complex, Pamplona, Spain
| | - Matias A Avila
- Hepatology Laboratory, Solid Tumors Program, CIMA, CCUN, University of Navarra, Pamplona, Spain
- Navarra Institute for Health Research, IdiSNA, Pamplona, Spain
- CIBERehd, Instituto de Salud Carlos III, Madrid, Spain
| | - Maite G Fernandez-Barrena
- Hepatology Laboratory, Solid Tumors Program, CIMA, CCUN, University of Navarra, Pamplona, Spain.
- Navarra Institute for Health Research, IdiSNA, Pamplona, Spain.
- CIBERehd, Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
9
|
Parvaneh S, Miklós V, Páhi ZG, Szűcs D, Monostori T, Póliska S, Venglovecz V, Pankotai T, Kemény L, Veréb Z. Chemoresistance in Pancreatic Cancer: The Role of Adipose-Derived Mesenchymal Stem Cells and Key Resistance Genes. Int J Mol Sci 2025; 26:390. [PMID: 39796244 PMCID: PMC11720846 DOI: 10.3390/ijms26010390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 12/21/2024] [Accepted: 12/23/2024] [Indexed: 01/13/2025] Open
Abstract
Drug resistance is a significant challenge in pancreatic ductal adenocarcinoma (PDAC), where stromal elements such as adipose-derived mesenchymal stem cells (ASCs) contribute to a chemoresistant tumor microenvironment (TME). This study explored the effects of oxaliplatin (OXP) and 5-fluorouracil (5-FU) on PDAC cells (Capan-1) and ASCs to investigate the mechanisms of chemoresistance. While OXP and 5-FU reduced Capan-1 viability in a dose- and time-dependent manner, ASCs demonstrated high resistance, maintaining > 90% viability even at cytotoxic doses. Transcriptomic analyses revealed OXP-induced transcriptional reprogramming in ASCs, with over 7000 differentially expressed genes, highlighting the pathways related to DNA damage response, cell cycle regulation, and stress-related signaling. In contrast, 5-FU elicited limited transcriptional changes, affecting only 192 genes. Cytokine proteome profiling revealed that OXP-treated ASCs significantly influenced the tumor microenvironment by promoting immune evasion (via IL-4, GM-CSF, IP-10, and GROα) and driving extracellular matrix remodeling (through EMMPRIN and DPPIV). In contrast, 5-FU induced comparatively weaker effects, primarily limited to hypoxia-related pathways. Although OXP reduced angiogenic factors, it paradoxically activated pro-survival pathways, thereby enhancing ASC-mediated tumor support. These findings underscore ASCs as modulators of chemoresistance via secretome alterations and stress adaptation. Therefore, future strategies should prioritize the precise targeting of tumor cells while also focusing on the development of personalized treatments to achieve durable therapeutic responses in PDAC.
Collapse
Affiliation(s)
- Shahram Parvaneh
- Regenerative Medicine and Cellular Pharmacology Laboratory, Department of Dermatology and Allergology, University of Szeged, H-6720 Szeged, Hungary; (S.P.); (D.S.); (T.M.); (L.K.)
- Doctoral School of Clinical Medicine, University of Szeged, H-6720 Szeged, Hungary
| | - Vanda Miklós
- Biobank, University of Szeged, H-6725 Szeged, Hungary;
| | - Zoltán Gábor Páhi
- Genome Integrity and DNA Repair Core Group, Hungarian Centre of Excellence for Molecular Medicine (HCEMM), H-6728 Szeged, Hungary; (Z.G.P.); (T.P.)
- Department of Pathology, Albert Szent-Györgyi Medical School, University of Szeged, H-6725 Szeged, Hungary
| | - Diána Szűcs
- Regenerative Medicine and Cellular Pharmacology Laboratory, Department of Dermatology and Allergology, University of Szeged, H-6720 Szeged, Hungary; (S.P.); (D.S.); (T.M.); (L.K.)
- Interdisciplinary Research Development and Innovation, Center of Excellence, University of Szeged, H-6720 Szeged, Hungary
| | - Tamás Monostori
- Regenerative Medicine and Cellular Pharmacology Laboratory, Department of Dermatology and Allergology, University of Szeged, H-6720 Szeged, Hungary; (S.P.); (D.S.); (T.M.); (L.K.)
- Interdisciplinary Research Development and Innovation, Center of Excellence, University of Szeged, H-6720 Szeged, Hungary
| | - Szilárd Póliska
- Genomic Medicine and Bioinformatics Core Facility, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary;
| | - Viktória Venglovecz
- Department of Pharmacology and Pharmacotherapy, University of Szeged, H-6720 Szeged, Hungary;
| | - Tibor Pankotai
- Genome Integrity and DNA Repair Core Group, Hungarian Centre of Excellence for Molecular Medicine (HCEMM), H-6728 Szeged, Hungary; (Z.G.P.); (T.P.)
- Department of Pathology, Albert Szent-Györgyi Medical School, University of Szeged, H-6725 Szeged, Hungary
- Interdisciplinary Research Development and Innovation, Center of Excellence, University of Szeged, H-6720 Szeged, Hungary
| | - Lajos Kemény
- Regenerative Medicine and Cellular Pharmacology Laboratory, Department of Dermatology and Allergology, University of Szeged, H-6720 Szeged, Hungary; (S.P.); (D.S.); (T.M.); (L.K.)
- Interdisciplinary Research Development and Innovation, Center of Excellence, University of Szeged, H-6720 Szeged, Hungary
- HCEMM-SZTE Skin Research Group, University of Szeged, H-6720 Szeged, Hungary
| | - Zoltán Veréb
- Regenerative Medicine and Cellular Pharmacology Laboratory, Department of Dermatology and Allergology, University of Szeged, H-6720 Szeged, Hungary; (S.P.); (D.S.); (T.M.); (L.K.)
- Biobank, University of Szeged, H-6725 Szeged, Hungary;
- Interdisciplinary Research Development and Innovation, Center of Excellence, University of Szeged, H-6720 Szeged, Hungary
| |
Collapse
|
10
|
Hashimoto A, Hashimoto S. Plasticity and Tumor Microenvironment in Pancreatic Cancer: Genetic, Metabolic, and Immune Perspectives. Cancers (Basel) 2024; 16:4094. [PMID: 39682280 DOI: 10.3390/cancers16234094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 11/29/2024] [Accepted: 12/03/2024] [Indexed: 12/18/2024] Open
Abstract
Cancer has long been believed to be a genetic disease caused by the accumulation of mutations in key genes involved in cellular processes. However, recent advances in sequencing technology have demonstrated that cells with cancer driver mutations are also present in normal tissues in response to aging, environmental damage, and chronic inflammation, suggesting that not only intrinsic factors within cancer cells, but also environmental alterations are important key factors in cancer development and progression. Pancreatic cancer tissue is mostly comprised of stromal cells and immune cells. The desmoplasmic microenvironment characteristic of pancreatic cancer is hypoxic and hypotrophic. Pancreatic cancer cells may adapt to this environment by rewiring their metabolism through epigenomic changes, enhancing intrinsic plasticity, creating an acidic and immunosuppressive tumor microenvironment, and inducing noncancerous cells to become tumor-promoting. In addition, pancreatic cancer has often metastasized to local and distant sites by the time of diagnosis, suggesting that a similar mechanism is operating from the precancerous stage. Here, we review key recent findings on how pancreatic cancers acquire plasticity, undergo metabolic reprogramming, and promote immunosuppressive microenvironment formation during their evolution. Furthermore, we present the following two signaling pathways that we have identified: one based on the small G-protein ARF6 driven by KRAS/TP53 mutations, and the other based on the RNA-binding protein Arid5a mediated by inflammatory cytokines, which promote both metabolic reprogramming and immune evasion in pancreatic cancer. Finally, the striking diversity among pancreatic cancers in the relative importance of mutational burden and the tumor microenvironment, their clinical relevance, and the potential for novel therapeutic strategies will be discussed.
Collapse
Affiliation(s)
- Ari Hashimoto
- Department of Molecular Biology, Graduate School of Medicine, Hokkaido University, Sapporo 060-8638, Japan
| | - Shigeru Hashimoto
- Division of Molecular Psychoimmunology, Institute for Genetic Medicine, Hokkaido University, Sapporo 060-0818, Japan
| |
Collapse
|
11
|
Wu B, Wang Z, Liu J, Li N, Wang X, Bai H, Wang C, Shi J, Zhang S, Song J, Li Y, Nie G. Dual rectification of metabolism abnormality in pancreatic cancer by a programmed nanomedicine. Nat Commun 2024; 15:10526. [PMID: 39627234 PMCID: PMC11615375 DOI: 10.1038/s41467-024-54963-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 11/19/2024] [Indexed: 12/06/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive and lethal malignancy characterized by dysregulated energy and stromal metabolism. It is strongly supported by activated pancreatic stellate cells (PSC) which drive excessive desmoplasia and tumor growth via metabolic crosstalk. Herein, a programmed nanosystem is designed to dual rectify the metabolism abnormalities of the PDAC cells, which overexpress glucose transporter 1(GLUT1) and CD71, and the PSC for oncotherapy. The nanosystem is based on a tumor microenvironment-responsive liposome encapsulating an NF-κB inhibitor (TPCA-1) and a CD71 aptamer-linked Glut1 siRNA. TPCA-1 reverses the activated PSC to quiescence, which hampers metabolic support of the PSC to PDAC cells and bolsters the PDAC cell-targeting delivery of the siRNA. Aerobic glycolysis and the following enhancement of oxidative phosphorylation are restrained by the nano-modulation so as to amplify anti-PDAC efficacy in an orthotopic xenograft mouse model, which implies more personalized PDAC treatment based on different energy metabolic profiles.
Collapse
MESH Headings
- Animals
- Humans
- Pancreatic Neoplasms/metabolism
- Pancreatic Neoplasms/pathology
- Pancreatic Neoplasms/genetics
- Carcinoma, Pancreatic Ductal/metabolism
- Carcinoma, Pancreatic Ductal/pathology
- Carcinoma, Pancreatic Ductal/genetics
- Cell Line, Tumor
- Mice
- Nanomedicine/methods
- Liposomes/metabolism
- Pancreatic Stellate Cells/metabolism
- Pancreatic Stellate Cells/pathology
- Tumor Microenvironment
- Glucose Transporter Type 1/metabolism
- Glucose Transporter Type 1/genetics
- RNA, Small Interfering/metabolism
- RNA, Small Interfering/genetics
- NF-kappa B/metabolism
- Xenograft Model Antitumor Assays
- Receptors, Transferrin/metabolism
- Receptors, Transferrin/genetics
- Oxidative Phosphorylation
- Glycolysis
- Mice, Nude
- Aptamers, Nucleotide/metabolism
Collapse
Affiliation(s)
- Bowen Wu
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, PR China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, PR China
- Henan Institute of Advanced Technology, Henan, PR China
| | - Zhiqin Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, PR China
- College of Pharmaceutical Science, Jilin University, Changchun, PR China
| | - Jingyuan Liu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, PR China
| | - Naishi Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, PR China
| | - Xudong Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, PR China
| | - HaoChen Bai
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, PR China
| | - Chunling Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, PR China
| | - Jian Shi
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, PR China
| | - Saiyang Zhang
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, PR China
| | - Jian Song
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, PR China
| | - Yiye Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, PR China.
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, PR China.
| | - Guangjun Nie
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, PR China.
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, PR China.
- Henan Institute of Advanced Technology, Henan, PR China.
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, PR China.
| |
Collapse
|
12
|
Zhang H, Liu A, Bo W, Zhang M, Wang H, Feng X, Wu Y. Upregulation of HSD11B1 promotes cortisol production and inhibits NK cell activation in pancreatic adenocarcinoma. Mol Immunol 2024; 175:10-19. [PMID: 39276709 DOI: 10.1016/j.molimm.2024.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 08/12/2024] [Accepted: 08/22/2024] [Indexed: 09/17/2024]
Abstract
Cortisol is a glucocorticoid hormone that has immunosuppressive function. Elevated basal cortisol levels are present in patients with some kinds of cancers, but its role in the microenvironment of pancreatic adenocarcinoma (PAAD) remains unclear. This study analyzed the expression of genes involved in cortisol generation by using high-throughput sequencing data from TCGA portal and found HSD11B1 was significantly upregulated in patients with PAAD. The correlations between HSD11B1 level and the expression of 23 immunosuppressive receptors were analyzed by Spearman's correlation analysis. The function of HSD11B1 was examined in primary NK cells and PAAD cell lines. The levels of cortisol in medium and cell lysates were detected by ELISA. In vitro killing assay was used to evaluate the cytotoxicity of NK cells. Cell surface levels of CD96, Tim-3, PD-1, TIGIT, CTLA-4, NKp46, NKp30, NKD2G and LFA-1A, and intracellular levels of CD107a and IFN-γ were examined by flow cytometry. We observed that patients with higher HSD11B1 level had shorter survival time. HSD11B1 is positively correlated with the mRNA levels of 11 immunosuppressive receptors in PAAD. Higher HSD11B1 level relates to reduced abundance of activated NK cells in the tumors. HSD11B1 overexpressed NK cells exhibit exhausted phenotype with increased cortisol production, reduced viability, and reduced cytotoxicity against cancer cells. Overexpression of HSD11B1 did not change the viability of tumor cells but upregulated cortisol production. Targeting HSD11B1 by a specific inhibitor improved the NK cells responsiveness. In conclusion, HSD11B1 is upregulated in patients with PAAD, and higher HSD11B1 level is related to poor prognosis. Upregulation of HSD11B1 in NK and tumor cells increased the production and secretion of cortisol and induces NK cell exhaustion.
Collapse
Affiliation(s)
- Hui Zhang
- Department of Hepatopancreatobiliary Surgery, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Aixiang Liu
- Department of Hepatopancreatobiliary Surgery, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Wentao Bo
- Department of Hepatopancreatobiliary Surgery, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Mingyi Zhang
- Department of Hepatopancreatobiliary Surgery, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Haiqing Wang
- Department of Hepatopancreatobiliary Surgery, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Xielin Feng
- Department of Hepatopancreatobiliary Surgery, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Ying Wu
- Department of Hepatopancreatobiliary Surgery, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China; Department of Medical Oncology, Daytime Medical Treatment Area, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China.
| |
Collapse
|
13
|
Xia C, Qu JR, Jiao YP, Lu CQ, Zhao B, Ge RJ, Qiu Y, Cao BY, Yu Q, Xia TY, Meng XP, Song Y, Zhang LH, Long XY, Ye J, Ding ZM, Cai W, Ju SH. Signal enhancement ratio of multi-phase contrast-enhanced MRI: an imaging biomarker for survival in pancreatic adenocarcinoma. Eur Radiol 2024; 34:7460-7470. [PMID: 38750169 PMCID: PMC11519106 DOI: 10.1007/s00330-024-10746-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 03/07/2024] [Accepted: 03/30/2024] [Indexed: 10/29/2024]
Abstract
OBJECTIVES To evaluate signal enhancement ratio (SER) for tissue characterization and prognosis stratification in pancreatic adenocarcinoma (PDAC), with quantitative histopathological analysis (QHA) as the reference standard. METHODS This retrospective study included 277 PDAC patients who underwent multi-phase contrast-enhanced (CE) MRI and whole-slide imaging (WSI) from three centers (2015-2021). SER is defined as (SIlt - SIpre)/(SIea - SIpre), where SIpre, SIea, and SIlt represent the signal intensity of the tumor in pre-contrast, early-, and late post-contrast images, respectively. Deep-learning algorithms were implemented to quantify the stroma, epithelium, and lumen of PDAC on WSIs. Correlation, regression, and Bland-Altman analyses were utilized to investigate the associations between SER and QHA. The prognostic significance of SER on overall survival (OS) was evaluated using Cox regression analysis and Kaplan-Meier curves. RESULTS The internal dataset comprised 159 patients, which was further divided into training, validation, and internal test datasets (n = 60, 41, and 58, respectively). Sixty-five and 53 patients were included in two external test datasets. Excluding lumen, SER demonstrated significant correlations with stroma (r = 0.29-0.74, all p < 0.001) and epithelium (r = -0.23 to -0.71, all p < 0.001) across a wide post-injection time window (range, 25-300 s). Bland-Altman analysis revealed a small bias between SER and QHA for quantifying stroma/epithelium in individual training, validation (all within ± 2%), and three test datasets (all within ± 4%). Moreover, SER-predicted low stromal proportion was independently associated with worse OS (HR = 1.84 (1.17-2.91), p = 0.009) in training and validation datasets, which remained significant across three combined test datasets (HR = 1.73 (1.25-2.41), p = 0.001). CONCLUSION SER of multi-phase CE-MRI allows for tissue characterization and prognosis stratification in PDAC. CLINICAL RELEVANCE STATEMENT The signal enhancement ratio of multi-phase CE-MRI can serve as a novel imaging biomarker for characterizing tissue composition and holds the potential for improving patient stratification and therapy in PDAC. KEY POINTS Imaging biomarkers are needed to better characterize tumor tissue in pancreatic adenocarcinoma. Signal enhancement ratio (SER)-predicted stromal/epithelial proportion showed good agreement with histopathology measurements across three distinct centers. Signal enhancement ratio (SER)-predicted stromal proportion was demonstrated to be an independent prognostic factor for OS in PDAC.
Collapse
Affiliation(s)
- Cong Xia
- Cultivation and Construction Site of the State Key Laboratory of Intelligent Imaging and Interventional Medicine, Department of Radiology, Zhongda Hospital, Medical School of Southeast University, 87 Dingjiaqiao Road, 210009, Nanjing, Jiangsu, China
| | - Jin-Rong Qu
- Department of Radiology, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, Henan, China
| | - Yi-Ping Jiao
- Institute for AI in Medicine, School of Artificial Intelligence, Nanjing University of Information Science and Technology, Nanjing, China
| | - Chun-Qiang Lu
- Cultivation and Construction Site of the State Key Laboratory of Intelligent Imaging and Interventional Medicine, Department of Radiology, Zhongda Hospital, Medical School of Southeast University, 87 Dingjiaqiao Road, 210009, Nanjing, Jiangsu, China
| | - Ben Zhao
- Cultivation and Construction Site of the State Key Laboratory of Intelligent Imaging and Interventional Medicine, Department of Radiology, Zhongda Hospital, Medical School of Southeast University, 87 Dingjiaqiao Road, 210009, Nanjing, Jiangsu, China
| | - Rong-Jun Ge
- School of Instrument Science and Engineering, Southeast University, Nanjing, China
| | - Yue Qiu
- Cultivation and Construction Site of the State Key Laboratory of Intelligent Imaging and Interventional Medicine, Department of Radiology, Zhongda Hospital, Medical School of Southeast University, 87 Dingjiaqiao Road, 210009, Nanjing, Jiangsu, China
| | - Bu-Yue Cao
- Cultivation and Construction Site of the State Key Laboratory of Intelligent Imaging and Interventional Medicine, Department of Radiology, Zhongda Hospital, Medical School of Southeast University, 87 Dingjiaqiao Road, 210009, Nanjing, Jiangsu, China
| | - Qian Yu
- Cultivation and Construction Site of the State Key Laboratory of Intelligent Imaging and Interventional Medicine, Department of Radiology, Zhongda Hospital, Medical School of Southeast University, 87 Dingjiaqiao Road, 210009, Nanjing, Jiangsu, China
| | - Tian-Yi Xia
- Cultivation and Construction Site of the State Key Laboratory of Intelligent Imaging and Interventional Medicine, Department of Radiology, Zhongda Hospital, Medical School of Southeast University, 87 Dingjiaqiao Road, 210009, Nanjing, Jiangsu, China
| | - Xiang-Pan Meng
- Cultivation and Construction Site of the State Key Laboratory of Intelligent Imaging and Interventional Medicine, Department of Radiology, Zhongda Hospital, Medical School of Southeast University, 87 Dingjiaqiao Road, 210009, Nanjing, Jiangsu, China
| | - Yang Song
- MR Scientific Marketing, Siemens Healthineers Ltd., Shanghai, China
| | - Li-Hua Zhang
- Department of Pathology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Xue-Ying Long
- Department of Radiology, The Xiangya Hospital of Central South University, Changsha, China
| | - Jing Ye
- Department of Medical Imaging, Subei People's Hospital, Medical School of Yangzhou University, Yangzhou, China
| | - Zhi-Min Ding
- Department of Radiology, Yijishan Hospital of Wannan Medical College, Wuhu, China
| | - Wu Cai
- Department of Radiology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Sheng-Hong Ju
- Cultivation and Construction Site of the State Key Laboratory of Intelligent Imaging and Interventional Medicine, Department of Radiology, Zhongda Hospital, Medical School of Southeast University, 87 Dingjiaqiao Road, 210009, Nanjing, Jiangsu, China.
| |
Collapse
|
14
|
Wu C, Zhai Y, Ji J, Yang X, Ye L, Lu G, Shi X, Zhai G. Advances in tumor stroma-based targeted delivery. Int J Pharm 2024; 664:124580. [PMID: 39142464 DOI: 10.1016/j.ijpharm.2024.124580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 08/06/2024] [Accepted: 08/10/2024] [Indexed: 08/16/2024]
Abstract
The tumor stroma plays a crucial role in tumor progression, and the interactions between the extracellular matrix, tumor cells, and stromal cells collectively influence tumor progression and the efficacy of therapeutic agents. Currently, utilizing components of the tumor stroma for drug delivery is a noteworthy strategy. A number of targeted drug delivery systems designed based on tumor stromal components are entering clinical trials. Therefore, this paper provides a thorough examination of the function of tumor stroma in the advancement of targeted drug delivery systems. One approach is to use tumor stromal components for targeted drug delivery, which includes certain stromal components possessing inherent targeting capabilities like HA, laminin, along with targeting stromal cells homologously. Another method entails directly focusing on tumor stromal components to reshape the tumor stroma and facilitate drug delivery. These drug delivery systems exhibit great potential in more effective cancer therapy strategies, such as precise targeting, enhanced penetration, improved safety profile, and biocompatibility. Ultimately, the deployment of these drug delivery systems can deepen our comprehension of tumor stroma and the advanced development of corresponding drug delivery systems.
Collapse
Affiliation(s)
- Chunyan Wu
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, PR China
| | - Yujia Zhai
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT 84124, United States
| | - Jianbo Ji
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, PR China
| | - Xiaoye Yang
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, PR China
| | - Lei Ye
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, PR China
| | - Guoliang Lu
- Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand; Maurice Wilkins Centre, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Xiaoqun Shi
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, PR China.
| | - Guangxi Zhai
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, PR China.
| |
Collapse
|
15
|
Gaebler D, Hachey SJ, Hughes CCW. Improving tumor microenvironment assessment in chip systems through next-generation technology integration. Front Bioeng Biotechnol 2024; 12:1462293. [PMID: 39386043 PMCID: PMC11461320 DOI: 10.3389/fbioe.2024.1462293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 09/10/2024] [Indexed: 10/12/2024] Open
Abstract
The tumor microenvironment (TME) comprises a diverse array of cells, both cancerous and non-cancerous, including stromal cells and immune cells. Complex interactions among these cells play a central role in driving cancer progression, impacting critical aspects such as tumor initiation, growth, invasion, response to therapy, and the development of drug resistance. While targeting the TME has emerged as a promising therapeutic strategy, there is a critical need for innovative approaches that accurately replicate its complex cellular and non-cellular interactions; the goal being to develop targeted, personalized therapies that can effectively elicit anti-cancer responses in patients. Microfluidic systems present notable advantages over conventional in vitro 2D co-culture models and in vivo animal models, as they more accurately mimic crucial features of the TME and enable precise, controlled examination of the dynamic interactions among multiple human cell types at any time point. Combining these models with next-generation technologies, such as bioprinting, single cell sequencing and real-time biosensing, is a crucial next step in the advancement of microfluidic models. This review aims to emphasize the importance of this integrated approach to further our understanding of the TME by showcasing current microfluidic model systems that integrate next-generation technologies to dissect cellular intra-tumoral interactions across different tumor types. Carefully unraveling the complexity of the TME by leveraging next generation technologies will be pivotal for developing targeted therapies that can effectively enhance robust anti-tumoral responses in patients and address the limitations of current treatment modalities.
Collapse
Affiliation(s)
- Daniela Gaebler
- Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, United States
| | - Stephanie J. Hachey
- Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, United States
| | - Christopher C. W. Hughes
- Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, United States
- Biomedical Engineering, University of California, Irvine, Irvine, CA, United States
| |
Collapse
|
16
|
Xiao C, Xie N, Shu Q, Liang X, Wang Z, Wu J, Shi N, Huang X, Wei ZC, Gao X, Liu H, Wu K, Xu J, Wang JH, Liu N, Xu F. Synergistic Effects of Matrix Biophysical Properties on Gastric Cancer Cell Behavior via Integrin-Mediated Cell-ECM Interactions. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309907. [PMID: 38712486 DOI: 10.1002/smll.202309907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 04/26/2024] [Indexed: 05/08/2024]
Abstract
The biophysical properties of the extracellular matrix (ECM) play a pivotal role in modulating cancer progression via cell-ECM interactions. However, the biophysical properties specific to gastric cancer (GC) remain largely unexplored. Pertinently, GC ECM shows significantly heterogeneous metamorphoses, such as matrix stiffening and intricate restructuring. By combining collagen I and alginate, this study designs an in vitro biomimetic hydrogel platform to independently modulate matrix stiffness and structure across a physiological stiffness spectrum while preserving consistent collagen concentration and fiber topography. With this platform, this study assesses the impacts of matrix biophysical properties on cell proliferation, migration, invasion, and other pivotal dynamics of AGS. The findings spotlight a compelling interplay between matrix stiffness and structure, influencing both cellular responses and ECM remodeling. Furthermore, this investigation into the integrin/actin-collagen interplay reinforces the central role of integrins in mediating cell-ECM interactions, reciprocally sculpting cell conduct, and ECM adaptation. Collectively, this study reveals a previously unidentified role of ECM biophysical properties in GC malignant potential and provides insight into the bidirectional mechanical cell-ECM interactions, which may facilitate the development of novel therapeutic horizons.
Collapse
Affiliation(s)
- Cailan Xiao
- Department of Gastroenterology, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, P. R. China
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, P. R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, P. R. China
| | - Ning Xie
- Department of Gastroenterology, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, P. R. China
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, P. R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, P. R. China
| | - Qiuai Shu
- Department of Gastroenterology, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, P. R. China
| | - Xiru Liang
- Department of Gastroenterology, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, P. R. China
| | - Ziwei Wang
- Department of Gastroenterology, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, P. R. China
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, P. R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, P. R. China
| | - Jian Wu
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Xijing Hospital of Digestive Diseases, Air Force Military Medical University, Xi'an, Shaanxi, 710032, P. R. China
| | - Nianyuan Shi
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, P. R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, P. R. China
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, Shaanxi Provincial Key Laboratory of Magnetic Medicine, Department of Hepatobiliary Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Xindi Huang
- Department of Gastroenterology, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, P. R. China
| | - Zhong-Cao Wei
- Department of Gastroenterology, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, P. R. China
| | - Xiaoliang Gao
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Xijing Hospital of Digestive Diseases, Air Force Military Medical University, Xi'an, Shaanxi, 710032, P. R. China
| | - Hao Liu
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Xijing Hospital of Digestive Diseases, Air Force Military Medical University, Xi'an, Shaanxi, 710032, P. R. China
| | - Kaichun Wu
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Xijing Hospital of Digestive Diseases, Air Force Military Medical University, Xi'an, Shaanxi, 710032, P. R. China
| | - Jingyuan Xu
- Department of Gastroenterology, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, P. R. China
- Department of Gastroenterology, the Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, 215001, P. R. China
| | - Jin-Hai Wang
- Department of Gastroenterology, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, P. R. China
| | - Na Liu
- Department of Gastroenterology, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, 570311, P. R. China
| | - Feng Xu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, P. R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, P. R. China
| |
Collapse
|
17
|
Grisendi G, Dall'Ora M, Casari G, Spattini G, Farshchian M, Melandri A, Masciale V, Lepore F, Banchelli F, Costantini RC, D'Esposito A, Chiavelli C, Spano C, Spallanzani A, Petrachi T, Veronesi E, Ferracin M, Roncarati R, Vinet J, Magistri P, Catellani B, Candini O, Marra C, Eccher A, Bonetti LR, Horwtiz EM, Di Benedetto F, Dominici M. Combining gemcitabine and MSC delivering soluble TRAIL to target pancreatic adenocarcinoma and its stroma. Cell Rep Med 2024; 5:101685. [PMID: 39168103 PMCID: PMC11384958 DOI: 10.1016/j.xcrm.2024.101685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 05/13/2024] [Accepted: 07/22/2024] [Indexed: 08/23/2024]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) still has a poor response to therapies, partly due to their cancer-associated fibroblasts (CAFs). Here, we investigate the synergistic impact of a combinatory approach between a known chemotherapy agent, such as gemcitabine (GEM), and gene-modified human mesenchymal stromal/stem cells (MSCs) secreting the pro-apoptotic soluble (s)TRAIL (sTRAIL MSCs) on both PDAC cells and CAFs. The combo significantly impacts on PDAC survival in 2D and 3D models. In orthotopic xenograft models, GEM and sTRAIL MSCs induce tumor architecture shredding with a reduction of CK7- and CK8/18-positive cancer cells and the abrogation of spleen metastases. A cytotoxic effect on primary human CAFs is also observed along with an alteration of their transcriptome and a reduction of the related desmoplasia. Collectively, we demonstrate a promising therapeutic profile of combining GEM and sTRAIL MSCs to target both tumoral and stromal compartments in PDAC.
Collapse
Affiliation(s)
- Giulia Grisendi
- Laboratory of Cellular Therapy, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia (UNIMORE), Modena, Italy.
| | | | - Giulia Casari
- Department of Clinical Sciences, Section of Biochemistry, Biology and Physics, Polytechnic University of Marche, Ancona
| | | | - Moein Farshchian
- Laboratory of Cellular Therapy, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia (UNIMORE), Modena, Italy
| | - Aurora Melandri
- Laboratory of Cellular Therapy, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia (UNIMORE), Modena, Italy
| | - Valentina Masciale
- Laboratory of Cellular Therapy, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia (UNIMORE), Modena, Italy
| | - Fabio Lepore
- Laboratory of Cellular Therapy, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia (UNIMORE), Modena, Italy
| | - Federico Banchelli
- Center of Statistic, Department of Medical and Surgical Sciences, UNIMORE, Modena, Italy
| | | | - Angela D'Esposito
- Laboratory of Cellular Therapy, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia (UNIMORE), Modena, Italy
| | - Chiara Chiavelli
- Laboratory of Cellular Therapy, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia (UNIMORE), Modena, Italy
| | - Carlotta Spano
- Department of Biomedical, Metabolic, and Neural Sciences, UNIMORE, Modena, Italy
| | | | | | | | - Manuela Ferracin
- Department of Medical and Surgical Sciences, University of Bologna, Bologna; IRCCS AOU di Bologna, Policlinico S. Orsola-Malpighi, Bologna
| | | | | | - Paolo Magistri
- Hepato-pancreato-biliary Surgery and Liver Transplantation Unit, UNIMORE, Modena, Italy
| | - Barbara Catellani
- Hepato-pancreato-biliary Surgery and Liver Transplantation Unit, UNIMORE, Modena, Italy
| | | | - Caterina Marra
- Division of Plastic Surgery, University-Hospital of Modena and Reggio Emilia, Modena, Italy
| | | | | | - Edwin M Horwtiz
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Fabrizio Di Benedetto
- Hepato-pancreato-biliary Surgery and Liver Transplantation Unit, UNIMORE, Modena, Italy
| | - Massimo Dominici
- Laboratory of Cellular Therapy, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia (UNIMORE), Modena, Italy; Division of Oncology, University-Hospital of Modena, Modena, Italy; Division of Medical Oncology, Residency School of Medical Oncology, Program in Cellular Therapy and Immuno-oncology, Laboratory of Cellular Therapy, University Hospital of Modena and Reggio Emilia, Modena, Italy.
| |
Collapse
|
18
|
Gupta P, Bermejo-Rodriguez C, Kocher H, Pérez-Mancera PA, Velliou EG. Chemotherapy Assessment in Advanced Multicellular 3D Models of Pancreatic Cancer: Unravelling the Importance of Spatiotemporal Mimicry of the Tumor Microenvironment. Adv Biol (Weinh) 2024; 8:e2300580. [PMID: 38327154 DOI: 10.1002/adbi.202300580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 01/10/2024] [Indexed: 02/09/2024]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a challenge for global health with very low survival rate and high therapeutic resistance. Hence, advanced preclinical models for treatment screening are of paramount importance. Herein, chemotherapeutic (gemcitabine) assessment on novel (polyurethane) scaffold-based spatially advanced 3D multicellular PDAC models is carried out. Through comprehensive image-based analysis at the protein level, and expression analysis at the mRNA level, the importance of stromal cells is confirmed, primarily activated stellate cells in the chemoresistance of PDAC cells within the models. Furthermore, it is demonstrated that, in addition to the presence of activated stellate cells, the spatial architecture of the scaffolds, i.e., segregation/compartmentalization of the cancer and stromal zones, affect the cellular evolution and is necessary for the development of chemoresistance. These results highlight that, further to multicellularity, mapping the tumor structure/architecture and zonal complexity in 3D cancer models is important for better mimicry of the in vivo therapeutic response.
Collapse
Affiliation(s)
- Priyanka Gupta
- Centre for 3D Models of Health and Disease, Division of Surgery and Interventional Science, University College London, London, W1W 7TY, UK
| | - Camino Bermejo-Rodriguez
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Ashton Street, Liverpool, L69 3GE, UK
| | - Hemant Kocher
- Centre for Tumour Biology and Experimental Cancer Medicine, Barts Cancer Institute, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Pedro A Pérez-Mancera
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Ashton Street, Liverpool, L69 3GE, UK
| | - Eirini G Velliou
- Centre for 3D Models of Health and Disease, Division of Surgery and Interventional Science, University College London, London, W1W 7TY, UK
| |
Collapse
|
19
|
Knoll L, Hamm J, Stroebel P, Jovan T, Goetze R, Singh S, Hessmann E, Ellenrieder V, Ammer-Herrmenau C, Neesse A. Expression of gemcitabine metabolizing enzymes and stromal components reveal complexities of preclinical pancreatic cancer models for therapeutic testing. Neoplasia 2024; 53:101002. [PMID: 38744194 PMCID: PMC11109879 DOI: 10.1016/j.neo.2024.101002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/20/2024] [Accepted: 04/26/2024] [Indexed: 05/16/2024]
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma (PDAC) poorly responds to antineoplastic agents. Discrepancies between preclinical success and clinical failure of compounds has been a continuous challenge and major obstacle in PDAC research. AIM To investigate the association of the tumor microenvironment (TME) composition and gemcitabine metabolizing enzyme (GME) expression in vitro and several in vivo models. METHODS mRNA expression and protein levels of GME (cytosolic 5'-nucleotidase 1 A; NT5C1A, cytidine deaminase; CDA, deoxycytidine kinase; DCK), gemcitabine transporters (ENT1, ENT2, RRM1, RRM2) and stromal components (hyaluroninc acid, podoplanin, masson trichrome, picrosirius) were assessed by qRT-PCR and immunohistochemistry in murine LSL-KrasG12D/+;LSL-Trp53R172 H/+; Pdx-1-Cre (KPC), orthotopically transplanted mice (OTM), human primary resected PDAC tissue (hPRT), corresponding patient-derived xenograft (PDX) mice, and KPC-SPARC-/- mice. mRNA expression of GME was analyzed in PDAC cell lines (Panc-1, MIA PaCa, BXPC3 and L3.6) upon incubation on collagen or pancreatic stellate cell (PSC) conditioned media by qRT-PCR. RESULTS Endogenous KPC tumors exhibited significantly higher levels of GME compared to OTM. However, GME levels did not differ between hPRT and corresponding PDX mice. Using Kendalls Tau correlation coefficient we did not show a significant correlation of GME and components of the TME except for NT5C1A and hyaluronic acid in PDX mice (p=0.029). GME were not significantly altered upon SPARC depletion in vivo, and upon treatment with PSC-conditioned media or incubation on collagen plated dishes in vitro. CONCLUSIONS Our findings suggest that the expression of GME is independent from the deposition of stromal components. KPC mice are most appropriate to study stromal composition whereas PDX mice maintain GME expression of the corresponding hPRT and could be best suited for pharmacokinetic studies.
Collapse
Affiliation(s)
- Lisa Knoll
- Department of Nephrology and Hypertension, University Hospital Hannover, Carl-Neuberg-Straße 1, 30625 Hannover, Germany
| | - Jacob Hamm
- Department of Gastroenterology, Gastrointestinal Oncology and Endocrinology, University Medical Centre Goettingen, Robert-Koch-Straße 40, 37075 Goettingen, Germany
| | - Philipp Stroebel
- Institute of Pathology, University Medical Center Goettingen, Goettingen, Germany; Clinical Research Unit KFO5002, University Medical Center Goettingen, Goettingen, Germany
| | - Todorovic Jovan
- Institute of Pathology, University Medical Center Goettingen, Goettingen, Germany; Clinical Research Unit KFO5002, University Medical Center Goettingen, Goettingen, Germany
| | - Robert Goetze
- Department of Gastroenterology, Gastrointestinal Oncology and Endocrinology, University Medical Centre Goettingen, Robert-Koch-Straße 40, 37075 Goettingen, Germany
| | - Shiv Singh
- Department of Gastroenterology, Gastrointestinal Oncology and Endocrinology, University Medical Centre Goettingen, Robert-Koch-Straße 40, 37075 Goettingen, Germany; Clinical Research Unit KFO5002, University Medical Center Goettingen, Goettingen, Germany
| | - Elisabeth Hessmann
- Department of Gastroenterology, Gastrointestinal Oncology and Endocrinology, University Medical Centre Goettingen, Robert-Koch-Straße 40, 37075 Goettingen, Germany; Clinical Research Unit KFO5002, University Medical Center Goettingen, Goettingen, Germany
| | - Volker Ellenrieder
- Department of Gastroenterology, Gastrointestinal Oncology and Endocrinology, University Medical Centre Goettingen, Robert-Koch-Straße 40, 37075 Goettingen, Germany; Clinical Research Unit KFO5002, University Medical Center Goettingen, Goettingen, Germany
| | - Christoph Ammer-Herrmenau
- Department of Gastroenterology, Gastrointestinal Oncology and Endocrinology, University Medical Centre Goettingen, Robert-Koch-Straße 40, 37075 Goettingen, Germany; Clinical Research Unit KFO5002, University Medical Center Goettingen, Goettingen, Germany
| | - Albrecht Neesse
- Department of Gastroenterology, Gastrointestinal Oncology and Endocrinology, University Medical Centre Goettingen, Robert-Koch-Straße 40, 37075 Goettingen, Germany; Clinical Research Unit KFO5002, University Medical Center Goettingen, Goettingen, Germany.
| |
Collapse
|
20
|
Yin T, Han J, Cui Y, Shang D, Xiang H. Prospect of Gold Nanoparticles in Pancreatic Cancer. Pharmaceutics 2024; 16:806. [PMID: 38931925 PMCID: PMC11207630 DOI: 10.3390/pharmaceutics16060806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/13/2024] [Accepted: 02/23/2024] [Indexed: 06/28/2024] Open
Abstract
Pancreatic cancer (PC) is characterized by its notably poor prognosis and high mortality rate, underscoring the critical need for advancements in its diagnosis and therapy. Gold nanoparticles (AuNPs), with their distinctive physicochemical characteristics, demonstrate significant application potential in cancer therapy. For example, upon exposure to lasers of certain wavelengths, they facilitate localized heating, rendering them extremely effective in photothermal therapy. Additionally, their extensive surface area enables the conjugation of therapeutic agents or targeting molecules, increasing the accuracy of drug delivery systems. Moreover, AuNPs can serve as radiosensitizers, enhancing the efficacy of radiotherapy by boosting the radiation absorption in tumor cells. Here, we systematically reviewed the application and future directions of AuNPs in the diagnosis and treatment of PC. Although AuNPs have advantages in improving diagnostic and therapeutic efficacy, as well as minimizing damage to normal tissues, concerns about their potential toxicity and safety need to be comprehensively evaluated.
Collapse
Affiliation(s)
- Tianyi Yin
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China; (T.Y.); (J.H.)
- Clinical Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China;
| | - Jingrun Han
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China; (T.Y.); (J.H.)
- Clinical Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China;
| | - Yuying Cui
- Clinical Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China;
| | - Dong Shang
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China; (T.Y.); (J.H.)
- Clinical Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China;
- Institute of Integrative Medicine, Dalian Medical University, Dalian 116044, China
| | - Hong Xiang
- Clinical Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China;
| |
Collapse
|
21
|
Qin Q, Yu R, Eriksson JE, Tsai HI, Zhu H. Cancer-associated fibroblasts in pancreatic ductal adenocarcinoma therapy: Challenges and opportunities. Cancer Lett 2024; 591:216859. [PMID: 38615928 DOI: 10.1016/j.canlet.2024.216859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 03/30/2024] [Accepted: 04/02/2024] [Indexed: 04/16/2024]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a solid organ malignancy with a high mortality rate. Statistics indicate that its incidence has been increasing as well as the associated deaths. Most patients with PDAC show poor response to therapies making the clinical management of this cancer difficult. Stromal cells in the tumor microenvironment (TME) contribute to the development of resistance to therapy in PDAC cancer cells. Cancer-associated fibroblasts (CAFs), the most prevalent stromal cells in the TME, promote a desmoplastic response, produce extracellular matrix proteins and cytokines, and directly influence the biological behavior of cancer cells. These multifaceted effects make it difficult to eradicate tumor cells from the body. As a result, CAF-targeting synergistic therapeutic strategies have gained increasing attention in recent years. However, due to the substantial heterogeneity in CAF origin, definition, and function, as well as high plasticity, majority of the available CAF-targeting therapeutic approaches are not effective, and in some cases, they exacerbate disease progression. This review primarily elucidates on the effect of CAFs on therapeutic efficiency of various treatment modalities, including chemotherapy, radiotherapy, immunotherapy, and targeted therapy. Strategies for CAF targeting therapies are also discussed.
Collapse
Affiliation(s)
- Qin Qin
- Institute of Medical Imaging and Artificial Intelligence, Jiangsu University, Zhenjiang, 212001, China
| | - Rong Yu
- Institute of Medical Imaging and Artificial Intelligence, Jiangsu University, Zhenjiang, 212001, China
| | - John E Eriksson
- Cell Biology, Biosciences, Faculty of Science and Engineering, Åbo Akademi University, Turku, FI-20520 Finland
| | - Hsiang-I Tsai
- Institute of Medical Imaging and Artificial Intelligence, Jiangsu University, Zhenjiang, 212001, China; Department of Medical Imaging, The Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China.
| | - Haitao Zhu
- Institute of Medical Imaging and Artificial Intelligence, Jiangsu University, Zhenjiang, 212001, China; Department of Medical Imaging, The Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China.
| |
Collapse
|
22
|
Hong L, Xu K, Yang M, Zhu L, Chen C, Xu L, Zhu W, Jin L, Wang L, Lin J, Wang J, Ren W, Wu A. VISTA antibody-loaded Fe 3O 4@TiO 2 nanoparticles for sonodynamic therapy-synergistic immune checkpoint therapy of pancreatic cancer. Mater Today Bio 2024; 26:101106. [PMID: 38883421 PMCID: PMC11176928 DOI: 10.1016/j.mtbio.2024.101106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/24/2024] [Accepted: 05/27/2024] [Indexed: 06/18/2024] Open
Abstract
Breaking the poor permeability of immune checkpoint inhibitors (ICIs) caused by the stromal barrier and reversing the immunosuppressive microenvironment are significant challenges in pancreatic cancer immunotherapy. In this study, we synthesized core-shell Fe3O4@TiO2 nanoparticles to act as carriers for loading VISTA monoclonal antibodies to form Fe3O4@TiO2@VISTAmAb (FTV). The nanoparticles are designed to target the overexpressed ICIs VISTA in pancreatic cancer, aiming to improve magnetic resonance imaging-guided sonodynamic therapy (SDT)-facilitated immunotherapy. Laser confocal microscopy and flow cytometry results demonstrate that FTV nanoparticles are specifically recognized and phagocytosed by Panc-2 cells. In vivo experiments reveal that ultrasound-triggered TiO2 SDT can induce tumor immunogenic cell death (ICD) and recruit T-cell infiltration within the tumor microenvironment by releasing damage-associated molecular patterns (DAMPs). Furthermore, ultrasound loosens the dense fibrous stroma surrounding the pancreatic tumor and increases vascular density, facilitating immune therapeutic efficiency. In summary, our study demonstrates that FTV nanoparticles hold great promise for synergistic SDT and immunotherapy in pancreatic cancer.
Collapse
Affiliation(s)
- Lu Hong
- The First Affiliated Hospital of Ningbo University, Ningbo, 315010, PR China
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Ningbo Cixi Institute of Biomedical Engineering, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, PR China
| | - Kaiwei Xu
- The First Affiliated Hospital of Ningbo University, Ningbo, 315010, PR China
- Health Science Center, Ningbo University, Ningbo, 315210, PR China
| | - Ming Yang
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Ningbo Cixi Institute of Biomedical Engineering, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, PR China
| | - Lubing Zhu
- The First Affiliated Hospital of Ningbo University, Ningbo, 315010, PR China
- Health Science Center, Ningbo University, Ningbo, 315210, PR China
| | - Chunqu Chen
- The First Affiliated Hospital of Ningbo University, Ningbo, 315010, PR China
- Health Science Center, Ningbo University, Ningbo, 315210, PR China
| | - Liu Xu
- The First Affiliated Hospital of Ningbo University, Ningbo, 315010, PR China
| | - Weihao Zhu
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Ningbo Cixi Institute of Biomedical Engineering, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, PR China
| | - Lufei Jin
- The First Affiliated Hospital of Ningbo University, Ningbo, 315010, PR China
| | - Linwei Wang
- The First Affiliated Hospital of Ningbo University, Ningbo, 315010, PR China
- Health Science Center, Ningbo University, Ningbo, 315210, PR China
| | - Jie Lin
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Ningbo Cixi Institute of Biomedical Engineering, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, PR China
- Advanced Energy Science and Technology Guangdong Laboratory, Huizhou, 516000, PR China
| | - Jianhua Wang
- The First Affiliated Hospital of Ningbo University, Ningbo, 315010, PR China
- Health Science Center, Ningbo University, Ningbo, 315210, PR China
| | - Wenzhi Ren
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Ningbo Cixi Institute of Biomedical Engineering, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, PR China
- Advanced Energy Science and Technology Guangdong Laboratory, Huizhou, 516000, PR China
| | - Aiguo Wu
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Ningbo Cixi Institute of Biomedical Engineering, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, PR China
- Advanced Energy Science and Technology Guangdong Laboratory, Huizhou, 516000, PR China
| |
Collapse
|
23
|
Elechalawar CK, Gulla SK, Roy RV, Means N, Zhang Y, Asifa S, Robertson DJ, Xu C, Bhattacharya R, Mukherjee P. Biodistribution and therapeutic efficacy of a gold nanoparticle-based targeted drug delivery system against pancreatic cancer. Cancer Lett 2024; 589:216810. [PMID: 38494151 PMCID: PMC11793163 DOI: 10.1016/j.canlet.2024.216810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 02/22/2024] [Accepted: 03/07/2024] [Indexed: 03/19/2024]
Abstract
Pancreatic cancer is characterized by desmoplasia; crosstalk between pancreatic cancer cells (PCCs) and pancreatic stellate cells (PSCs) leads to the deposition of extracellular matrix proteins in the tumor environment resulting in poor vascularity. Targeting either PCCs or PSCs individually has produced mixed results, and there is currently no effective strategy to target both cell types simultaneously. Previously, we demonstrated, through in vitro cell culture experiments, that a specific gold nanoparticle-based nanoformulation containing the anti-EGFR antibody cetuximab (C225) as a targeting agent and gemcitabine as a chemotherapeutic agent effectively targets both PCCs and PSCs simultaneously. Herein, we extend our studies to test the ability of these in vitro tested nano formulations to inhibit tumor growth in an orthotopic co-implantation model of pancreatic cancer in vivo. Orthotopic tumors were established by co-implantation of equal numbers of PCCs and PSCs in the mouse pancreas. Among the various formulations tested, 5 nm gold nanoparticles coated with gemcitabine, cetuximab and poly-ethylene glycol (PEG) of molecular weight 1000 Da, which we named ACGP441000, demonstrated optimal efficacy in inhibiting tumor growth. The current study reveals an opportunity to target PCCs and PSCs simultaneously, by exploiting their overexpression of EGFR as a target, in order to inhibit pancreatic cancer growth.
Collapse
Affiliation(s)
- Chandra Kumar Elechalawar
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Suresh Kumar Gulla
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Ram Vinod Roy
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Nicolas Means
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Yushan Zhang
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Sima Asifa
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - David J Robertson
- Department of Chemistry and University of Missouri Research Reactor, University of Missouri, Columbia, MO 65211, USA
| | - Chao Xu
- Department of Biostatistics and Epidemiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Resham Bhattacharya
- Department of Obstetrics and Gynecology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA; Peggy and Charles Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Priyabrata Mukherjee
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA; Peggy and Charles Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA.
| |
Collapse
|
24
|
Zhao Z, Liu M, Lin Z, Zhu M, Lv L, Zhu X, Fan R, Al-Danakh A, He H, Tan G. The mechanism of USP43 in the development of tumor: a literature review. Aging (Albany NY) 2024; 16:6613-6626. [PMID: 38613804 PMCID: PMC11042928 DOI: 10.18632/aging.205731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 03/13/2024] [Indexed: 04/15/2024]
Abstract
Ubiquitination of the proteins is crucial for governing protein degradation and regulating fundamental cellular processes. Deubiquitinases (DUBs) have emerged as significant regulators of multiple pathways associated with cancer and other diseases, owing to their capacity to remove ubiquitin from target substrates and modulate signaling. Consequently, they represent potential therapeutic targets for cancer and other life-threatening conditions. USP43 belongs to the DUBs family involved in cancer development and progression. This review aims to provide a comprehensive overview of the existing scientific evidence implicating USP43 in cancer development. Additionally, it will investigate potential small-molecule inhibitors that target DUBs that may have the capability to function as anti-cancer medicines.
Collapse
Affiliation(s)
- Ziqi Zhao
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian Medical University, Dalian 116011, China
| | - Meichen Liu
- Department of Neurology, The First Affiliated Hospital of Dalian Medical University, Dalian Medical University, Dalian 116011, China
| | - Zhikun Lin
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian Medical University, Dalian 116011, China
- Liaoning Key Laboratory of Molecular Targeted Drugs in Hepatobiliary and Pancreatic Cancer, Dalian 116000, China
| | - Mengru Zhu
- Department of Plastic Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian Medical University, Dalian 116011, China
| | - Linlin Lv
- Department of Pharmacy, The First Affiliated Hospital of Dalian Medical University, Dalian Medical University, Dalian 116011, China
| | - Xinqing Zhu
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian Medical University, Dalian 116011, China
| | - Rui Fan
- Institute of Cardiovascular Sciences and Key Laboratory of Molecular Cardiovascular Sciences, National, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Abdullah Al-Danakh
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian Medical University, Dalian 116011, China
| | - Hui He
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian Medical University, Dalian 116011, China
| | - Guang Tan
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian Medical University, Dalian 116011, China
- Liaoning Key Laboratory of Molecular Targeted Drugs in Hepatobiliary and Pancreatic Cancer, Dalian 116000, China
| |
Collapse
|
25
|
Su K, Duan R, Wu Y. Identifying Optimal Candidates for Primary Tumor Resection Among Metastatic Pancreatic Cancer Patients: A Population-Based Predictive Model. Cancer Invest 2024; 42:333-344. [PMID: 38712480 DOI: 10.1080/07357907.2024.2349585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 04/25/2024] [Indexed: 05/08/2024]
Abstract
BACKGROUND There is a controversy about whether surgery should proceed among metastatic pancreatic cancer (mPC) patients. A survival benefit was observed in mPC patients who underwent primary tumor resection; however, determining which patients would benefit from surgery is complex. For this purpose, we created a model to identify mPC patients who may benefit from primary tumor excision. METHODS Patients with mPC were extracted from the Surveillance, Epidemiology, and End Results database, and separated into surgery and nonsurgery groups based on whether the primary tumor was resected. Propensity score matching (PSM) was applied to balance confounding factors between the two groups. A nomogram was developed using multivariable logistic regression to estimate surgical benefit. Our model is evaluated using multiple methods. RESULTS About 662 of 14,183 mPC patients had primary tumor surgery. Kaplan-Meier analyses showed that the surgery group had a better prognosis. After PSM, a survival benefit was still observed in the surgery group. Among the surgery cohort, 202 patients survived longer than 4 months (surgery-beneficial group). The nomogram discriminated better in training and validation sets under the receiver operating characteristic (ROC) curve (AUC), and calibration curves were consistent. Decision curve analysis (DCA) revealed that it was clinically valuable. This model is better at identifying candidates for primary tumor excision. CONCLUSION A helpful prediction model was developed and validated to identify ideal candidates who may benefit from primary tumor resection in mPC.
Collapse
Affiliation(s)
- Kaifeng Su
- Medical Faculty of Ludwig Maximilians University of Munich, University Hospital of LMU Munich, Munich, Germany
| | - Ruifeng Duan
- Department of Gastroenterology and Digestive Endoscopy Center, The Second Hospital of Jilin University, Changchun, China
| | - Yang Wu
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
26
|
Toledo B, Deiana C, Scianò F, Brandi G, Marchal JA, Perán M, Giovannetti E. Treatment resistance in pancreatic and biliary tract cancer: molecular and clinical pharmacology perspectives. Expert Rev Clin Pharmacol 2024; 17:323-347. [PMID: 38413373 DOI: 10.1080/17512433.2024.2319340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 02/12/2024] [Indexed: 02/29/2024]
Abstract
INTRODUCTION Treatment resistance poses a significant obstacle in oncology, especially in biliary tract cancer (BTC) and pancreatic cancer (PC). Current therapeutic options include chemotherapy, targeted therapy, and immunotherapy. Resistance to these treatments may arise due to diverse molecular mechanisms, such as genetic and epigenetic modifications, altered drug metabolism and efflux, and changes in the tumor microenvironment. Identifying and overcoming these mechanisms is a major focus of research: strategies being explored include combination therapies, modulation of the tumor microenvironment, and personalized approaches. AREAS COVERED We provide a current overview and discussion of the most relevant mechanisms of resistance to chemotherapy, target therapy, and immunotherapy in both BTC and PC. Furthermore, we compare the different strategies that are being implemented to overcome these obstacles. EXPERT OPINION So far there is no unified theory on drug resistance and progress is limited. To overcome this issue, individualized patient approaches, possibly through liquid biopsies or single-cell transcriptome studies, are suggested, along with the potential use of artificial intelligence, to guide effective treatment strategies. Furthermore, we provide insights into what we consider the most promising areas of research, and we speculate on the future of managing treatment resistance to improve patient outcomes.
Collapse
Affiliation(s)
- Belén Toledo
- Department of Health Sciences, University of Jaén, Jaén, Spain
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center (VUmc), Amsterdam, The Netherlands
| | - Chiara Deiana
- Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Fabio Scianò
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center (VUmc), Amsterdam, The Netherlands
- Lumobiotics GmbH, Karlsruhe, Germany
| | - Giovanni Brandi
- Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Juan Antonio Marchal
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of Granada, Granada, Spain
- Instituto de Investigación Sanitaria ibs. GRANADA, Hospitales Universitarios de Granada-Universidad de Granada, Granada, Spain
- Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, Granada, Spain
- Excellence Research Unit "Modeling Nature" (MNat), University of Granada, Granada, Spain
| | - Macarena Perán
- Department of Health Sciences, University of Jaén, Jaén, Spain
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of Granada, Granada, Spain
- Excellence Research Unit "Modeling Nature" (MNat), University of Granada, Granada, Spain
| | - Elisa Giovannetti
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center (VUmc), Amsterdam, The Netherlands
- Cancer Pharmacology Lab, Fondazione Pisana per la Scienza, Pisa, Italy
- Cancer Pharmacology Lab, Associazione Italiana per la Ricerca sul Cancro (AIRC) Start-Up Unit, Fondazione Pisana per la Scienza, University of Pisa, Pisa, Italy
| |
Collapse
|
27
|
Mokhtari A, Casale R, Salahuddin Z, Paquier Z, Guiot T, Woodruff HC, Lambin P, Van Laethem JL, Hendlisz A, Bali MA. Development of Clinical Radiomics-Based Models to Predict Survival Outcome in Pancreatic Ductal Adenocarcinoma: A Multicenter Retrospective Study. Diagnostics (Basel) 2024; 14:712. [PMID: 38611625 PMCID: PMC11011556 DOI: 10.3390/diagnostics14070712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 03/11/2024] [Accepted: 03/21/2024] [Indexed: 04/14/2024] Open
Abstract
PURPOSE This multicenter retrospective study aims to identify reliable clinical and radiomic features to build machine learning models that predict progression-free survival (PFS) and overall survival (OS) in pancreatic ductal adenocarcinoma (PDAC) patients. METHODS Between 2010 and 2020 pre-treatment contrast-enhanced CT scans of 287 pathology-confirmed PDAC patients from two sites of the Hopital Universitaire de Bruxelles (HUB) and from 47 hospitals within the HUB network were retrospectively analysed. Demographic, clinical, and survival data were also collected. Gross tumour volume (GTV) and non-tumoral pancreas (RPV) were semi-manually segmented and radiomics features were extracted. Patients from two HUB sites comprised the training dataset, while those from the remaining 47 hospitals of the HUB network constituted the testing dataset. A three-step method was used for feature selection. Based on the GradientBoostingSurvivalAnalysis classifier, different machine learning models were trained and tested to predict OS and PFS. Model performances were assessed using the C-index and Kaplan-Meier curves. SHAP analysis was applied to allow for post hoc interpretability. RESULTS A total of 107 radiomics features were extracted from each of the GTV and RPV. Fourteen subgroups of features were selected: clinical, GTV, RPV, clinical & GTV, clinical & GTV & RPV, GTV-volume and RPV-volume both for OS and PFS. Subsequently, 14 Gradient Boosting Survival Analysis models were trained and tested. In the testing dataset, the clinical & GTV model demonstrated the highest performance for OS (C-index: 0.72) among all other models, while for PFS, the clinical model exhibited a superior performance (C-index: 0.70). CONCLUSIONS An integrated approach, combining clinical and radiomics features, excels in predicting OS, whereas clinical features demonstrate strong performance in PFS prediction.
Collapse
Affiliation(s)
- Ayoub Mokhtari
- Radiology Department, Institut Jules Bordet Hôpital Universitaire de Bruxelles, Université Libre de Bruxelles, 1070 Brussels, Belgium
| | - Roberto Casale
- Radiology Department, Institut Jules Bordet Hôpital Universitaire de Bruxelles, Université Libre de Bruxelles, 1070 Brussels, Belgium
| | - Zohaib Salahuddin
- Department of Precision Medicine, GROW—Research Institute for Oncology and Reproduction, Maastricht University, 6220MD Maastricht, The Netherlands
| | - Zelda Paquier
- Medical Physics Department, Institut Jules Bordet Hôpital Universitaire de Bruxelles, Université Libre de Bruxelles, 1070 Brussels, Belgium
| | - Thomas Guiot
- Medical Physics Department, Institut Jules Bordet Hôpital Universitaire de Bruxelles, Université Libre de Bruxelles, 1070 Brussels, Belgium
| | - Henry C. Woodruff
- Department of Precision Medicine, GROW—Research Institute for Oncology and Reproduction, Maastricht University, 6220MD Maastricht, The Netherlands
- Department of Radiology and Nuclear Medicine, GROW—School for Oncology and Reproduction, Maastricht University Medical Centre+, 6229HX Maastricht, The Netherlands
| | - Philippe Lambin
- Department of Precision Medicine, GROW—Research Institute for Oncology and Reproduction, Maastricht University, 6220MD Maastricht, The Netherlands
- Department of Radiology and Nuclear Medicine, GROW—School for Oncology and Reproduction, Maastricht University Medical Centre+, 6229HX Maastricht, The Netherlands
| | - Jean-Luc Van Laethem
- Department of Gastroenterology and Digestive Oncology, Hôpital Universitaire de Bruxelles, Université Libre de Bruxelles, 1070 Brussels, Belgium
| | - Alain Hendlisz
- Department of Gastroenterology and Digestive Oncology, Hôpital Universitaire de Bruxelles, Université Libre de Bruxelles, 1070 Brussels, Belgium
| | - Maria Antonietta Bali
- Radiology Department, Institut Jules Bordet Hôpital Universitaire de Bruxelles, Université Libre de Bruxelles, 1070 Brussels, Belgium
| |
Collapse
|
28
|
Nguyen HD, Lin CC. Viscoelastic stiffening of gelatin hydrogels for dynamic culture of pancreatic cancer spheroids. Acta Biomater 2024; 177:203-215. [PMID: 38354874 PMCID: PMC10958777 DOI: 10.1016/j.actbio.2024.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 01/24/2024] [Accepted: 02/06/2024] [Indexed: 02/16/2024]
Abstract
The tumor microenvironment (TME) in pancreatic adenocarcinoma (PDAC) is a complex milieu of cellular and non-cellular components. Pancreatic cancer cells (PCC) and cancer-associated fibroblasts (CAF) are two major cell types in PDAC TME, whereas the non-cellular components are enriched with extracellular matrices (ECM) that contribute to high stiffness and fast stress-relaxation. Previous studies have suggested that higher matrix rigidity promoted aggressive phenotypes of tumors, including PDAC. However, the effects of dynamic viscoelastic matrix properties on cancer cell fate remain largely unexplored. The focus of this work was to understand the effects of such dynamic matrix properties on PDAC cell behaviors, particularly in the context of PCC/CAF co-culture. To this end, we engineered gelatin-norbornene (GelNB) based hydrogels with a built-in mechanism for simultaneously increasing matrix elastic modulus and viscoelasticity. Two GelNB-based macromers, namely GelNB-hydroxyphenylacetic acid (GelNB-HPA) and GelNB-boronic acid (GelNB-BA), were modularly mixed and crosslinked with 4-arm poly(ethylene glycol)-thiol (PEG4SH) to form elastic hydrogels. Treating the hybrid hydrogels with tyrosinase not only increased the elastic moduli of the gels (due to HPA dimerization) but also concurrently produced 1,2-diols that formed reversible boronic acid-diol bonding with the BA groups on GelNB-BA. We employed patient-derived CAF and a PCC cell line COLO-357 to demonstrate the effect of increasing matrix stiffness and viscoelasticity on CAF and PCC cell fate. Our results indicated that in the stiffened environment, PCC underwent epithelial-mesenchymal transition. In the co-culture PCC and CAF spheroid, CAF enhanced PCC spreading and stimulated collagen 1 production. Through mRNA-sequencing, we further showed that stiffened matrices, regardless of the degree of stress-relaxation, heightened the malignant phenotype of PDAC cells. STATEMENT OF SIGNIFICANCE: The pancreatic cancer microenvironment is a complex milieu composed of various cell types and extracellular matrices. It has been suggested that stiffer matrices could promote aggressive behavior in pancreatic cancer, but the effect of dynamic stiffening and matrix stress-relaxation on cancer cell fate remains largely undefined. This study aimed to explore the impact of dynamic changes in matrix viscoelasticity on pancreatic ductal adenocarcinoma (PDAC) cell behavior by developing a hydrogel system capable of simultaneously increasing stiffness and stress-relaxation on demand. This is achieved by crosslinking two gelatin-based macromers through orthogonal thiol-norbornene photochemistry and post-gelation stiffening with mushroom tyrosinase. The results revealed that higher matrix stiffness, regardless of the degree of stress relaxation, exacerbated the malignant characteristics of PDAC cells.
Collapse
Affiliation(s)
- Han D Nguyen
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
| | - Chien-Chi Lin
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA; Department of Biomedical Engineering, Purdue School of Engineering & Technology, Indiana University-Purdue University Indianapolis, Indianapolis, IN, USA.
| |
Collapse
|
29
|
Li J, Wei T, Ma K, Zhang J, Lu J, Zhao J, Huang J, Zeng T, Xie Y, Liang Y, Li X, Zhang Q, Liang T. Single-cell RNA sequencing highlights epithelial and microenvironmental heterogeneity in malignant progression of pancreatic ductal adenocarcinoma. Cancer Lett 2024; 584:216607. [PMID: 38246225 DOI: 10.1016/j.canlet.2024.216607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 12/05/2023] [Accepted: 12/21/2023] [Indexed: 01/23/2024]
Abstract
Intraductal papillary mucinous neoplasms (IPMNs) of the pancreas are bona fide precursor lesions of pancreatic ductal adenocarcinoma (PDAC). Single-cell transcriptomics provides a unique perspective for dissecting the epithelial and microenvironmental heterogeneity that accompanies progression from benign IPMNs to invasive PDAC. Single-cell RNA sequencing was performed through droplet-based sequencing on 35 693 cells from three high-grade IPMNs and two IPMN-derived PDACs (all surgically resected). Analysis of single-cell transcriptomes revealed heterogeneous alterations within the epithelium and the tumor microenvironment during the progression of noninvasive dysplasia to invasive cancer. For epithelial cells, we identified acinar-ductal cells and isthmus-pit cells enriched in IPMN lesions and profiled three types of PDAC-unique ductal cells. Notably, a proinflammatory immune component was distinctly observed in IPMNs, comprising CD4+ T cells, CD8+ T cells, and B cells, whereas M2 macrophages were significantly accumulated in PDAC. Through the analysis of cellular communication, the osteopontin gene (SPP1)-CD44 pathway between macrophages and epithelial cells were particularly strengthened in the PDAC group. Further prognostic analysis revealed that SPP1 is a biomarker of IPMN carcinogenesis for surveillance. This study demonstrates the ability to perform high-resolution profiling of single cellular transcriptomes during the progression of high-grade IPMNs to cancer. Notably, single-cell analysis provides an unparalleled insight into both epithelial and microenvironmental heterogeneity associated with early cancer pathogenesis and provides practical markers for surveillance and targets for cancer interception.
Collapse
Affiliation(s)
- Jin Li
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, China; Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Diseases, Hangzhou, Zhejiang, 310003, China
| | - Tao Wei
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, China; Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Diseases, Hangzhou, Zhejiang, 310003, China
| | - Ke Ma
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, China; Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Diseases, Hangzhou, Zhejiang, 310003, China
| | - Jian Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, China; Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Diseases, Hangzhou, Zhejiang, 310003, China
| | - Jianfeng Lu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, China; Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Diseases, Hangzhou, Zhejiang, 310003, China
| | - Jianhui Zhao
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, China; Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Diseases, Hangzhou, Zhejiang, 310003, China
| | - Jinyan Huang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, China; Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Diseases, Hangzhou, Zhejiang, 310003, China
| | - Tao Zeng
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, China; Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Diseases, Hangzhou, Zhejiang, 310003, China
| | - Yali Xie
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, China; Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Diseases, Hangzhou, Zhejiang, 310003, China
| | - Yingjiqiong Liang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, China; Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Diseases, Hangzhou, Zhejiang, 310003, China
| | - Xuejie Li
- Department of Pathology, The First Affiliated Hospital of Medical School of Zhejiang University, China
| | - Qi Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, China; Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Diseases, Hangzhou, Zhejiang, 310003, China
| | - Tingbo Liang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, China; Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Diseases, Hangzhou, Zhejiang, 310003, China; Cancer Center, Zhejiang University, Hangzhou, Zhejiang, 310014, China.
| |
Collapse
|
30
|
Abe S, Masuda A, Matsumoto T, Inoue J, Toyama H, Sakai A, Kobayashi T, Tanaka T, Tsujimae M, Yamakawa K, Gonda M, Masuda S, Uemura H, Kohashi S, Inomata N, Nagao K, Harada Y, Miki M, Irie Y, Juri N, Ko T, Yokotani Y, Oka Y, Ota S, Kanzawa M, Itoh T, Imai T, Fukumoto T, Hara E, Kodama Y. Impact of intratumoral microbiome on tumor immunity and prognosis in human pancreatic ductal adenocarcinoma. J Gastroenterol 2024; 59:250-262. [PMID: 38242997 PMCID: PMC10904450 DOI: 10.1007/s00535-023-02069-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 12/17/2023] [Indexed: 01/21/2024]
Abstract
BACKGROUND Recent evidence suggests that the presence of microbiome within human pancreatic ductal adenocarcinoma (PDAC) tissue potentially influences cancer progression and prognosis. However, the significance of tumor-resident microbiome remains unclear. We aimed to elucidate the impact of intratumoral bacteria on the pathophysiology and prognosis of human PDAC. METHODS The presence of intratumoral bacteria was assessed in 162 surgically resected PDACs using quantitative polymerase chain reaction (qPCR) and in situ hybridization (ISH) targeting 16S rRNA. The intratumoral microbiome was explored by 16S metagenome sequencing using DNA extracted from formalin-fixed paraffin-embedded tissues. The profile of intratumoral bacteria was compared with clinical information, pathological findings including tumor-infiltrating T cells, tumor-associated macrophage, fibrosis, and alterations in four main driver genes (KRAS, TP53, CDKN2A/p16, SMAD4) in tumor genomes. RESULTS The presence of intratumoral bacteria was confirmed in 52 tumors (32%) using both qPCR and ISH. The 16S metagenome sequencing revealed characteristic bacterial profiles within these tumors, including phyla such as Proteobacteria and Firmicutes. Comparison of bacterial profiles between cases with good and poor prognosis revealed a significant positive correlation between a shorter survival time and the presence of anaerobic bacteria such as Bacteroides, Lactobacillus, and Peptoniphilus. The abundance of these bacteria was correlated with a decrease in the number of tumor-infiltrating T cells positive for CD4, CD8, and CD45RO. CONCLUSIONS Intratumoral infection of anaerobic bacteria such as Bacteroides, Lactobacillus, and Peptoniphilus is correlated with the suppressed anti-PDAC immunity and poor prognosis.
Collapse
Affiliation(s)
- Shohei Abe
- Division of Gastroenterology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Hyogo, 650-0017, Japan
| | - Atsuhiro Masuda
- Division of Gastroenterology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Hyogo, 650-0017, Japan.
| | - Tomonori Matsumoto
- Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, 565-0871, Japan.
| | - Jun Inoue
- Division of Gastroenterology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Hyogo, 650-0017, Japan
| | - Hirochika Toyama
- Division of Hepato-Biliary-Pancreatic Surgery, Department of Surgery, Kobe University Graduate School of Medicine, Kobe, Hyogo, 650-0017, Japan
| | - Arata Sakai
- Division of Gastroenterology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Hyogo, 650-0017, Japan
| | - Takashi Kobayashi
- Division of Gastroenterology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Hyogo, 650-0017, Japan
| | - Takeshi Tanaka
- Division of Gastroenterology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Hyogo, 650-0017, Japan
| | - Masahiro Tsujimae
- Division of Gastroenterology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Hyogo, 650-0017, Japan
| | - Kohei Yamakawa
- Division of Gastroenterology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Hyogo, 650-0017, Japan
| | - Masanori Gonda
- Division of Gastroenterology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Hyogo, 650-0017, Japan
| | - Shigeto Masuda
- Division of Gastroenterology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Hyogo, 650-0017, Japan
| | - Hisahiro Uemura
- Division of Gastroenterology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Hyogo, 650-0017, Japan
| | - Shinya Kohashi
- Division of Gastroenterology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Hyogo, 650-0017, Japan
| | - Noriko Inomata
- Division of Gastroenterology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Hyogo, 650-0017, Japan
| | - Kae Nagao
- Division of Gastroenterology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Hyogo, 650-0017, Japan
| | - Yoshiyuki Harada
- Division of Gastroenterology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Hyogo, 650-0017, Japan
| | - Mika Miki
- Division of Gastroenterology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Hyogo, 650-0017, Japan
| | - Yosuke Irie
- Division of Gastroenterology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Hyogo, 650-0017, Japan
| | - Noriko Juri
- Division of Gastroenterology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Hyogo, 650-0017, Japan
| | - Testuhisa Ko
- Division of Gastroenterology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Hyogo, 650-0017, Japan
| | - Yusuke Yokotani
- Division of Gastroenterology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Hyogo, 650-0017, Japan
| | - Yuki Oka
- Division of Gastroenterology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Hyogo, 650-0017, Japan
| | - Shogo Ota
- Division of Gastroenterology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Hyogo, 650-0017, Japan
| | - Maki Kanzawa
- Division of Diagnostic Pathology, Kobe University Graduate School of Medicine, Kobe, Hyogo, 650-0017, Japan
| | - Tomoo Itoh
- Division of Diagnostic Pathology, Kobe University Graduate School of Medicine, Kobe, Hyogo, 650-0017, Japan
| | - Toshio Imai
- Division of Gastroenterology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Hyogo, 650-0017, Japan
| | - Takumi Fukumoto
- Division of Hepato-Biliary-Pancreatic Surgery, Department of Surgery, Kobe University Graduate School of Medicine, Kobe, Hyogo, 650-0017, Japan
| | - Eiji Hara
- Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Yuzo Kodama
- Division of Gastroenterology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Hyogo, 650-0017, Japan
| |
Collapse
|
31
|
Qiu L, Liu C, Li H. Successful immunotherapy with PD-1 Iinhibitor for advanced pancreatic cancer: report of two cases and review of literature. Anticancer Drugs 2024; 35:263-270. [PMID: 38194502 DOI: 10.1097/cad.0000000000001546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
Pancreatic cancer is a highly malignant tumor, and most patients are diagnosed at an advanced stage. Unfortunately, due to the immunosuppressive tumor microenvironment of pancreatic cancer, the benefits of immunotherapy for patients with advanced pancreatic cancer are still unclear. Here, we present two cases of advanced pancreatic cancer being controlled by immunotherapy, with pathological diagnoses of ductal adenocarcinoma and acinar cell carcinoma, respectively. Next-generation sequencing (NGS) of both patients is high tumor mutation burden (tumor mutation burden-High) and microsatellite stable. The patient with pancreatic ductal adenocarcinoma was diagnosed as a locally advanced disease (stage III). She received irreversible electroporation, used the programmed death receptor-1 (PD-1) inhibitor (pembrolizumab) combined with chemotherapy (S-1), and then used only the PD-1 inhibitor as a maintenance treatment. As a result, the patient's lesion was significantly reduced, with a partial response time of up to 31 months. The patient with acinar cell carcinoma was diagnosed as a metastatic disease (stage IV), next-generation sequencing revealed mutations in SMAD4 and KMT2D, and two chemotherapy regimens were used unsuccessfully. Then, the combination of chemotherapy with PD-1 (tislelizumab) and vascular endothelial growth factor/vascular endothelial growth factor receptor (anlotinib) inhibitors were used, and the lesions of the patient were significantly reduced, and the progression-free survival after immunotherapy was 19 months. In advanced pancreatic cancer, a prognosis of this magnitude is rare. Our cases reveal the potential of immunotherapy as a cornerstone treatment in the management of advanced pancreatic cancer.
Collapse
Affiliation(s)
- Lijie Qiu
- Department of Oncology, Sun Yat-sen University First Affiliated Hospital
- Department of Radiology, Sun Yat-sen University Sixth Affiliated Hospital
| | - Chen Liu
- Department of Radiology, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong Province, China
| | - Heping Li
- Department of Oncology, Sun Yat-sen University First Affiliated Hospital
| |
Collapse
|
32
|
Zhang J, Wang Y, Wang L, You L, Zhang T. Pancreatic ductal adenocarcinoma chemoresistance: From metabolism reprogramming to novel treatment. Chin Med J (Engl) 2024; 137:408-420. [PMID: 37545027 PMCID: PMC10876258 DOI: 10.1097/cm9.0000000000002758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Indexed: 08/08/2023] Open
Abstract
ABSTRACT As pancreatic cancer (PC) is highly malignant, its patients tend to develop metastasis at an early stage and show a poor response to conventional chemotherapies. First-line chemotherapies for PC, according to current guidelines, include fluoropyrimidine- and gemcitabine-based regimens. Accumulating research on drug resistance has shown that biochemical metabolic aberrations in PC, especially those involving glycolysis and glutamine metabolism, are highly associated with chemoresistance. Additionally, lipid metabolism is a major factor in chemoresistance. However, emerging compounds that target these key metabolic pathways have the potential to overcome chemoresistance. This review summarizes how PC develops chemoresistance through aberrations in biochemical metabolism and discusses novel critical targets and pathways within cancer metabolism for new drug research.
Collapse
Affiliation(s)
- Jingcheng Zhang
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
- Peking Union Medical College, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Yutong Wang
- Peking Union Medical College, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Lejunzi Wang
- Department of Anaesthesia, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Lei You
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Taiping Zhang
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
- Clinical Immunology Centre, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| |
Collapse
|
33
|
Chen K, Cheng X, Xue S, Chen J, Zhang X, Qi Y, Chen R, Zhang Y, Wang H, Li W, Cheng G, Huang Y, Xiong Y, Chen L, Mu C, Gu M. Albumin conjugation promotes arsenic trioxide transport through alkaline phosphatase-associated transcytosis in MUC4 wildtype pancreatic cancer cells. Int J Biol Macromol 2024; 257:128756. [PMID: 38092098 DOI: 10.1016/j.ijbiomac.2023.128756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 12/08/2023] [Accepted: 12/09/2023] [Indexed: 12/17/2023]
Abstract
Pancreatic cancer (PC) has a poor prognosis due to chemotherapy resistance and unfavorable drug transportation. Albumin conjugates are commonly used as drug carriers to overcome these obstacles. However, membrane-bound glycoprotein mucin 4 (MUC4) has emerged as a promising biomarker among the genetic mutations affecting albumin conjugates therapeutic window. Human serum albumin-conjugated arsenic trioxide (HSA-ATO) has shown potential in treating solid tumors but is limited in PC therapy due to unclear targets and mechanisms. This study investigated the transport mechanisms and therapeutic efficacy of HSA-ATO in PC cells with different MUC4 mutation statuses. Results revealed improved penetration of ATO into PC tumors through conjugated with HSA. However, MUC4 mutation significantly affected treatment sensitivity and HSA-ATO uptake both in vitro and in vivo. Mutant MUC4 cells exhibited over ten times higher IC50 for HSA-ATO and approximately half the uptake compared to wildtype cells. Further research demonstrated that ALPL activation by HSA-ATO enhanced transcytosis in wildtype MUC4 PC cells but not in mutant MUC4 cells, leading to impaired uptake and weaker antitumor effects. Reprogramming the transport process holds potential for enhancing albumin conjugate efficacy in PC patients with different MUC4 mutation statuses, paving the way for stratified treatment using these delivery vehicles.
Collapse
Affiliation(s)
- Kaidi Chen
- School of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang, PR China
| | - Xiao Cheng
- Huzhou Institute for Food and Drug Control, Huzhou 313000, PR China
| | - Shuai Xue
- School of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang, PR China
| | - Junyan Chen
- School of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang, PR China
| | - Xu Zhang
- Zhejiang Heze Pharmaceutical Technology Co., Ltd., Hangzhou 310018, Zhejiang, PR China
| | - Yuwei Qi
- School of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang, PR China
| | - Rong Chen
- School of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang, PR China
| | - Yan Zhang
- Department of Pharmacy, Hangzhou Red Cross Hospital, Hangzhou 310003, Zhejiang, PR China
| | - Hangjie Wang
- School of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang, PR China
| | - Wei Li
- Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang, PR China
| | - Guilin Cheng
- Department of Pharmacy, Hangzhou Red Cross Hospital, Hangzhou 310003, Zhejiang, PR China
| | - Ye Huang
- Department of Pharmacy, Zhejiang Provincial Dermatology Hospital, Huzhou 313200, Zhejiang, PR China
| | - Yang Xiong
- School of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang, PR China; Department of Pharmacy, Hangzhou Red Cross Hospital, Hangzhou 310003, Zhejiang, PR China
| | - Liping Chen
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, Zhejiang, PR China; School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, Jiangsu, PR China.
| | - Chaofeng Mu
- School of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang, PR China.
| | - Mancang Gu
- School of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang, PR China; Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang, PR China.
| |
Collapse
|
34
|
Uehara M, Domoto T, Takenaka S, Takeuchi O, Shimasaki T, Miyashita T, Minamoto T. Glycogen synthase kinase 3β: the nexus of chemoresistance, invasive capacity, and cancer stemness in pancreatic cancer. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2024; 7:4. [PMID: 38318525 PMCID: PMC10838383 DOI: 10.20517/cdr.2023.84] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 12/20/2023] [Accepted: 01/17/2024] [Indexed: 02/07/2024]
Abstract
The treatment of pancreatic cancer remains a significant clinical challenge due to the limited number of patients eligible for curative (R0) surgery, failures in the clinical development of targeted and immune therapies, and the pervasive acquisition of chemotherapeutic resistance. Refractory pancreatic cancer is typified by high invasiveness and resistance to therapy, with both attributes related to tumor cell stemness. These malignant characteristics mutually enhance each other, leading to rapid cancer progression. Over the past two decades, numerous studies have produced evidence of the pivotal role of glycogen synthase kinase (GSK)3β in the progression of over 25 different cancer types, including pancreatic cancer. In this review, we synthesize the current knowledge on the pathological roles of aberrant GSK3β in supporting tumor cell proliferation and invasion, as well as its contribution to gemcitabine resistance in pancreatic cancer. Importantly, we discuss the central role of GSK3β as a molecular hub that mechanistically connects chemoresistance, tumor cell invasion, and stemness in pancreatic cancer. We also discuss the involvement of GSK3β in the formation of desmoplastic tumor stroma and in promoting anti-cancer immune evasion, both of which constitute major obstacles to successful cancer treatment. Overall, GSK3β has characteristics of a promising therapeutic target to overcome chemoresistance in pancreatic cancer.
Collapse
Affiliation(s)
- Masahiro Uehara
- Division of Translational and Clinical Oncology, Cancer Research Institute, Kanazawa University, Kanazawa 920-0934, Japan
- Authors contributed equally
| | - Takahiro Domoto
- Division of Translational and Clinical Oncology, Cancer Research Institute, Kanazawa University, Kanazawa 920-0934, Japan
- Authors contributed equally
| | - Satoshi Takenaka
- Division of Translational and Clinical Oncology, Cancer Research Institute, Kanazawa University, Kanazawa 920-0934, Japan
- Department of Hepato-Biliary-Pancreatic Surgery and Transplantation, Graduate School of Medical Sciences, Kanazawa University, Kanazawa 920-8641, Japan
- Department of Surgery, Toyama City Hospital, Toyama 939-8511, Japan
| | - Osamu Takeuchi
- Biomedical Laboratory, Department of Research, Kitasato University Kitasato Institute Hospital, Tokyo 108-8642, Japan
| | - Takeo Shimasaki
- Division of Translational and Clinical Oncology, Cancer Research Institute, Kanazawa University, Kanazawa 920-0934, Japan
- Medical Research Institute, Kanazawa Medical University, Uchinada 920-0293, Japan
| | - Tomoharu Miyashita
- Division of Translational and Clinical Oncology, Cancer Research Institute, Kanazawa University, Kanazawa 920-0934, Japan
- Department of Hepato-Biliary-Pancreatic Surgery and Transplantation, Graduate School of Medical Sciences, Kanazawa University, Kanazawa 920-8641, Japan
- Department of Surgery, Toyama City Hospital, Toyama 939-8511, Japan
| | - Toshinari Minamoto
- Division of Translational and Clinical Oncology, Cancer Research Institute, Kanazawa University, Kanazawa 920-0934, Japan
| |
Collapse
|
35
|
Orlacchio A, Muzyka S, Gonda TA. Epigenetic therapeutic strategies in pancreatic cancer. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2024; 383:1-40. [PMID: 38359967 DOI: 10.1016/bs.ircmb.2023.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal solid malignancies, characterized by its aggressiveness and metastatic potential, with a 5-year survival rate of only 8-11%. Despite significant improvements in PDAC treatment and management, therapeutic alternatives are still limited. One of the main reasons is its high degree of intra- and inter-individual tumor heterogeneity which is established and maintained through a complex network of transcription factors and epigenetic regulators. Epigenetic drugs, have shown promising preclinical results in PDAC and are currently being evaluated in clinical trials both for their ability to sensitize cancer cells to cytotoxic drugs and to counteract the immunosuppressive characteristic of PDAC tumor microenvironment. In this review, we discuss the current status of epigenetic treatment strategies to overcome molecular and cellular PDAC heterogeneity in order to improve response to therapy.
Collapse
Affiliation(s)
- Arturo Orlacchio
- Division of Gastroenterology and Hepatology, New York University, New York, NY, United States
| | - Stephen Muzyka
- Division of Gastroenterology and Hepatology, New York University, New York, NY, United States
| | - Tamas A Gonda
- Division of Gastroenterology and Hepatology, New York University, New York, NY, United States.
| |
Collapse
|
36
|
Sharath NS, Misra R, Ghosh J. Application of hydrogel-based drug delivery system for pancreatic cancer. RECENT ADVANCES IN NANOCARRIERS FOR PANCREATIC CANCER THERAPY 2024:73-93. [DOI: 10.1016/b978-0-443-19142-8.00011-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
37
|
Mitha M, Aden D, Zaheer S, Alvi Y, Chintamani. Role of tumor budding and fibrotic cancer stroma in head and neck squamous cell carcinoma. Pathol Res Pract 2024; 253:155052. [PMID: 38176309 DOI: 10.1016/j.prp.2023.155052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 12/14/2023] [Accepted: 12/19/2023] [Indexed: 01/06/2024]
Abstract
BACKGROUND Head and neck squamous cell carcinoma (HNSCC) is an aggressive cancer with an increased frequency of lymph node metastasis at the time of presentation. Tumour budding, characterised by the presence of a single cell or a small grouping of tumour cells (a cluster containing fewer than five malignant cells) at the invasive front and composition of the fibrotic cancer stroma has been demonstrated to have a growing impact on the behaviour of the solid tumour. However exact role played by them is yet to be defined and a standardized scoring system needs to be incorporated. MATERIAL AND METHODS A total of 45 histopathologically confirmed cases of HNSCC were included in the study. Hematoxylin and Eosin staining (H&E staining), and immunohistochemistry for CK and alpha-SMA were applied to study the tumour budding and fibrotic cancer stroma in all HNSCC cases. The tumour budding was graded as, Grade 1: 0-4 tumour buds, Grade 2: 5-9 buds and Grade 3: ≥ 10 buds and the nature of fibrotic cancer stroma was categorized as mature, intermediate or immature. RESULTS Among 45 cases analyzed, well differentiated squamous cell carcinoma (WDSCC; Grade 1) accounted for 42.22% (19 cases), whereas moderately differentiated squamous cell carcinoma (MDSCC; Grade 2) and poorly differentiated squamous cell carcinoma (PDSCC; Grade 3) comprised 48.89% (22 cases) and 8.89% (4 cases) respectively. Tumour budding showed instances of 0-4 buds in 33.3% (Grade 1), 5-9 buds in 48.9% (Grade 2), and ≥ 10 buds in 17.8% of cases. Evaluating tumour stroma, Intermediate stroma led at 51.1%, Mature at 37.8%, and 11.1% displayed Immature stroma. Histologically, < 5 buds were seen in 47.4% of Grade 1 cases, while ≥ 10 buds were in 75.0% of Grade 3 cases, proven statistically significant (p = 0.021). However, an association between T&N Stage and tumour budding lacked significance. WDSCC notably had more mature stroma than MDSCC and PDSCC, whereas MDSCC showed higher rates of intermediate and immature stroma (p < 0.001). Comparatively, no significant correlation existed between fibrotic stroma and tumour budding (p = 0.076). Also, fibrotic stroma was compared with tumour budding, however, no significant correlation was found (p = 0.076) CONCLUSION: This study reveals a significant link between tumour budding, cancer stroma, and WHO tumour grade. Thus, evaluating these factors in HNSCC cases can serve as valuable histological prognostic indicators, aiding in treatment planning and prognosis assessment.
Collapse
Affiliation(s)
- Madhu Mitha
- Department of Pathology, Vardhman Mahavir Medical College and Safdarjung Hospital, New Delhi, India
| | - Durre Aden
- Department of Pathology, Vardhman Mahavir Medical College and Safdarjung Hospital, New Delhi, India
| | - Sufian Zaheer
- Department of Pathology, Vardhman Mahavir Medical College and Safdarjung Hospital, New Delhi, India.
| | - Yasir Alvi
- Department of Community Medicine, Hamdard Institute of Medical Sciences and Research New Delhi, India
| | - Chintamani
- Department of Surgery, Vardhman Mahavir Medical College and Safdarjung Hospital, New Delhi, India
| |
Collapse
|
38
|
Zhang Y, Yu R, Zhao C, Liang J, Zhang Y, Su H, Zhao J, Wu H, Xu S, Zhang Z, Wang L, Zou X, Zhu Y, Zhang S, Lv Y. CAFs Homologous Biomimetic Liposome Bearing BET Inhibitor and Pirfenidone Synergistically Promoting Antitumor Efficacy in Pancreatic Ductal Adenocarcinoma. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305279. [PMID: 37968249 PMCID: PMC10767438 DOI: 10.1002/advs.202305279] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/27/2023] [Indexed: 11/17/2023]
Abstract
BRD4 is a member of the BET protein family involved in chromatin remodeling and transcriptional regulation. Several BET inhibitors (BETi) have entered clinical trials, demonstrating potential in inducing cancer cell apoptosis and tumor regression. However, resistance to BETi is common in solid tumors. In pancreatic cancer, it is found that cancer-associated fibroblasts (CAFs) in the tumor microenvironment reduce the BET inhibitor JQ1 sensitivity by inducing BRD4 expression. Moreover, CAFs play a crucial role in the formation of a dense stromal barrier. Therefore, targeting CAFs in the tumor microenvironment of pancreatic cancer not only enhances cancer cells sensitivity to JQ1 but also increases drug perfusion and improves oxygen supply, thus reducing glycolysis and limiting energy supply. To address this challenge, a homologous targeting mechanism utilizing activated fibroblast membrane-coated liposomes is proposed for specific drug precise target to CAFs-rich pancreatic cancer. Additionally, TAT peptides enable liposomes penetration, delivering PFD for targeted anti-fibrotic therapy, reducing extracellular matrix generation and glycolysis, and enhancing JQ1 delivery and sensitivity. In conclusion, the findings indicate the tremendous potential of this CAFs-targeting liposomal delivery system in pancreatic cancer.
Collapse
Affiliation(s)
- Yin Zhang
- Department of GastroenterologyNanjing Drum Tower HospitalThe Affiliated Hospital of Nanjing University Medical SchoolNanjingJiangsu Province210008P. R. China
- Institute of PancreatologyNanjing UniversityNanjingJiangsu Province210008P. R. China
| | - Ranran Yu
- State Key Laboratory of Pharmaceutical BiotechnologySchool of Life Sciences Nanjing UniversityNanjingJiangsu Province210008P. R. China
| | - Cheng Zhao
- Department of GastroenterologyNanjing Drum Tower HospitalThe Affiliated Hospital of Nanjing University Medical SchoolNanjingJiangsu Province210008P. R. China
| | - Jiawei Liang
- Department of GastroenterologyNanjing Drum Tower HospitalThe Affiliated Hospital of Nanjing University Medical SchoolNanjingJiangsu Province210008P. R. China
- Institute of PancreatologyNanjing UniversityNanjingJiangsu Province210008P. R. China
| | - Yixuan Zhang
- Department of GastroenterologyNanjing Drum Tower HospitalThe Affiliated Hospital of Nanjing University Medical SchoolNanjingJiangsu Province210008P. R. China
- Institute of PancreatologyNanjing UniversityNanjingJiangsu Province210008P. R. China
| | - Haochen Su
- Institute of PancreatologyNanjing UniversityNanjingJiangsu Province210008P. R. China
- Department of GastroenterologyNanjing Drum Tower Hospital Clinical College of Nanjing Medical UniversityNanjingJiangsu Province210008P. R. China
| | - Jing Zhao
- Department of GastroenterologyNanjing Drum Tower HospitalThe Affiliated Hospital of Nanjing University Medical SchoolNanjingJiangsu Province210008P. R. China
- Institute of PancreatologyNanjing UniversityNanjingJiangsu Province210008P. R. China
| | - Hao Wu
- Department of GastroenterologyNanjing Drum Tower HospitalThe Affiliated Hospital of Nanjing University Medical SchoolNanjingJiangsu Province210008P. R. China
- Institute of PancreatologyNanjing UniversityNanjingJiangsu Province210008P. R. China
| | - Shijin Xu
- Institute of PancreatologyNanjing UniversityNanjingJiangsu Province210008P. R. China
- Department of GastroenterologyNanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese MedicineNanjingJiangsu Province210008P. R. China
| | - Ziying Zhang
- Institute of PancreatologyNanjing UniversityNanjingJiangsu Province210008P. R. China
- Department of GastroenterologyNanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese MedicineNanjingJiangsu Province210008P. R. China
| | - Lei Wang
- Department of GastroenterologyNanjing Drum Tower HospitalThe Affiliated Hospital of Nanjing University Medical SchoolNanjingJiangsu Province210008P. R. China
- Institute of PancreatologyNanjing UniversityNanjingJiangsu Province210008P. R. China
| | - Xiaoping Zou
- Department of GastroenterologyNanjing Drum Tower HospitalThe Affiliated Hospital of Nanjing University Medical SchoolNanjingJiangsu Province210008P. R. China
- Institute of PancreatologyNanjing UniversityNanjingJiangsu Province210008P. R. China
| | - Yun Zhu
- Department of GastroenterologyNanjing Drum Tower HospitalThe Affiliated Hospital of Nanjing University Medical SchoolNanjingJiangsu Province210008P. R. China
- Department of PharmacyNanjing Drum Tower HospitalDrum Tower Clinical Medical College of Nanjing Medical UniversityNanjingJiangsu Province210008P. R. China
- Nanjing Medical Center for Clinical PharmacyNanjingJiangsu Province210008P. R. China
| | - Shu Zhang
- Department of GastroenterologyNanjing Drum Tower HospitalThe Affiliated Hospital of Nanjing University Medical SchoolNanjingJiangsu Province210008P. R. China
- Institute of PancreatologyNanjing UniversityNanjingJiangsu Province210008P. R. China
| | - Ying Lv
- Department of GastroenterologyNanjing Drum Tower HospitalThe Affiliated Hospital of Nanjing University Medical SchoolNanjingJiangsu Province210008P. R. China
- Institute of PancreatologyNanjing UniversityNanjingJiangsu Province210008P. R. China
| |
Collapse
|
39
|
Zhang T, Gu Z, Ni R, Wang X, Jiang Q, Tao R. An Update on Gemcitabine-Based Chemosensitization Strategies in Pancreatic Ductal Adenocarcinoma. FRONT BIOSCI-LANDMRK 2023; 28:361. [PMID: 38179740 DOI: 10.31083/j.fbl2812361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/22/2023] [Accepted: 08/10/2023] [Indexed: 01/06/2024]
Abstract
Pancreatic cancer is the seventh leading cause of cancer-related deaths, and chemotherapy is one of the most important treatments for pancreatic cancer. Unfortunately, pancreatic cancer cells can block chemotherapy drugs from entering the tumor. This is owing to interactions between the tumor's environment and the cancer cells. Here, we review the latest research on the mechanisms by which pancreatic cancer cells block the chemotherapy drug, gemcitabine. The results of our review can help identify potential therapeutic targets for the blocking of gemcitabine by pancreatic cancer cells and may provide new strategies to help chemotherapy drugs penetrate tumors.
Collapse
Affiliation(s)
- Tianpeng Zhang
- Department of Surgery, Bengbu Medical College, 233030 Bengbu, AnHui, China
| | - Zongting Gu
- General Surgery, Cancer Center, Department of Hepatobiliary & Pancreatic Surgery and Minimally Invasive Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, 310000 Hangzhou, Zhejiang, China
| | - Ran Ni
- General Surgery, Cancer Center, Department of Hepatobiliary & Pancreatic Surgery and Minimally Invasive Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, 310000 Hangzhou, Zhejiang, China
| | - Xiao Wang
- General Surgery, Cancer Center, Department of Hepatobiliary & Pancreatic Surgery and Minimally Invasive Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, 310000 Hangzhou, Zhejiang, China
| | - Qitao Jiang
- Department of Surgery, Bengbu Medical College, 233030 Bengbu, AnHui, China
| | - Ran Tao
- General Surgery, Cancer Center, Department of Hepatobiliary & Pancreatic Surgery and Minimally Invasive Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, 310000 Hangzhou, Zhejiang, China
| |
Collapse
|
40
|
Zang L, Zhang B, Zhou Y, Zhang F, Tian X, Tian Z, Chen D, Miao Q. Machine learning algorithm integrates bulk and single-cell transcriptome sequencing to reveal immune-related personalized therapy prediction features for pancreatic cancer. Aging (Albany NY) 2023; 15:14109-14140. [PMID: 38095640 PMCID: PMC10756117 DOI: 10.18632/aging.205293] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 11/03/2023] [Indexed: 12/21/2023]
Abstract
Pancreatic cancer (PC) is a digestive malignancy with worse overall survival. Tumor immune environment (TIME) alters the progression and proliferation of various solid tumors. Hence, we aimed to detect the TIME-related classifier to facilitate the personalized treatment of PC. Based on the 1612 immune-related genes (IRGs), we classified patients into Immune_rich and Immune_desert subgroups via consensus clustering. Patients in distinct subtypes exhibited a difference in sensitivity to immune checkpoint blockers (ICB). Next, the immune-related signature (IRS) model was established based on 8 IRGs (SYT12, TNNT1, TRIM46, SMPD3, ANLN, AFF3, CXCL9 and RP1L1) and validated its predictive efficiency in multiple cohorts. RT-qPCR experiments demonstrated the differential expression of 8 IRGs between tumor and normal cell lines. Patients who gained lower IRS score tended to be more sensitive to chemotherapy and immunotherapy, and obtained better overall survival compared to those with higher IRS scores. Moreover, scRNA-seq analysis revealed that fibroblast and ductal cells might affect malignant tumor cells via MIF-(CD74+CD44) and SPP1-CD44 axis. Eventually, we identified eight therapeutic targets and one agent for IRS high patients. Our study screened out the specific regulation pattern of TIME in PC, and shed light on the precise treatment of PC.
Collapse
Affiliation(s)
- Longjun Zang
- Department of General Surgery, Taiyuan Central Hospital, Taiyuan 030009, Shanxi, P.R. China
| | - Baoming Zhang
- Department of General Surgery, Taiyuan Central Hospital, Taiyuan 030009, Shanxi, P.R. China
| | - Yanling Zhou
- University of Shanghai for Science and Technology, Shanghai 200093, P.R. China
| | - Fusheng Zhang
- Department of General Surgery, Peking University First Hospital, Beijing 100034, P.R. China
| | - Xiaodong Tian
- Department of General Surgery, Peking University First Hospital, Beijing 100034, P.R. China
| | - Zhongming Tian
- Department of General Surgery, Taiyuan Central Hospital, Taiyuan 030009, Shanxi, P.R. China
| | - Dongjie Chen
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P.R. China
- Research Institute of Pancreatic Diseases, Shanghai Key Laboratory of Translational Research for Pancreatic Neoplasms, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P.R. China
- State Key Laboratory of Oncogenes and Related Genes, Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai 200025, P.R. China
| | - Qingwang Miao
- Department of General Surgery, Taiyuan Central Hospital, Taiyuan 030009, Shanxi, P.R. China
| |
Collapse
|
41
|
Qin M, Xia H, Xu W, Chen B, Wang Y. The spatiotemporal journey of nanomedicines in solid tumors on their therapeutic efficacy. Adv Drug Deliv Rev 2023; 203:115137. [PMID: 37949414 DOI: 10.1016/j.addr.2023.115137] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/19/2023] [Accepted: 11/07/2023] [Indexed: 11/12/2023]
Abstract
The rapid development of nanomedicines is revolutionizing the landscape of cancer treatment, while effectively delivering them into solid tumors remains a formidable challenge. Currently, there is a huge disconnect on therapeutic response between regulatory approved nanomedicines and laboratory reported nanoparticles. The discrepancy is mainly resulted from the failure of using the classic overall pharmacokinetics behaviors of nanomedicines in tumors to predict the antitumor efficacy. Increasing evidence has revealed that the therapeutic efficacy predominantly relies on the intratumoral spatiotemporal distribution of nanomedicines. This review focuses on the spatiotemporal distribution of systemically administered chemotherapeutic nanomedicines in solid tumor. Firstly, the intratumoral biological barriers that regulate the spatiotemporal distribution of nanomedicines are described in detail. Next, the influences on antitumor efficacy caused by the spatial distribution and temporal drug release of nanomedicines are emphatically analyzed. Then, current methodologies for evaluating the spatiotemporal distribution of nanomedicines are summarized. Finally, the advanced strategies to positively modulate the spatiotemporal distribution of nanomedicines for an optimal tumor therapy are comprehensively reviewed.
Collapse
Affiliation(s)
- Mengmeng Qin
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China; Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, School of Pharmaceutical Sciences, Peking University, Beijing, China; CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, China
| | - Heming Xia
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Wenhao Xu
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Binlong Chen
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, School of Pharmaceutical Sciences, Peking University, Beijing, China.
| | - Yiguang Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China; Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, School of Pharmaceutical Sciences, Peking University, Beijing, China; Chemical Biology Center, Peking University, Beijing, China.
| |
Collapse
|
42
|
Park MN. Therapeutic Strategies for Pancreatic-Cancer-Related Type 2 Diabetes Centered around Natural Products. Int J Mol Sci 2023; 24:15906. [PMID: 37958889 PMCID: PMC10648679 DOI: 10.3390/ijms242115906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/23/2023] [Accepted: 10/30/2023] [Indexed: 11/15/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC), a highly malignant neoplasm, is classified as one of the most severe and devastating types of cancer. PDAC is a notable malignancy that exhibits a discouraging prognosis and a rising occurrence. The interplay between diabetes and pancreatic cancer exhibits a reciprocal causation. The identified metabolic disorder has been observed to possess noteworthy consequences on health outcomes, resulting in elevated rates of morbidity. The principal mechanisms involve the suppression of the immune system, the activation of pancreatic stellate cells (PSCs), and the onset of systemic metabolic disease caused by dysfunction of the islets. From this point forward, it is important to recognize that pancreatic-cancer-related diabetes (PCRD) has the ability to increase the likelihood of developing pancreatic cancer. This highlights the complex relationship that exists between these two physiological states. Therefore, we investigated into the complex domain of PSCs, elucidating their intricate signaling pathways and the profound influence of chemokines on their behavior and final outcome. In order to surmount the obstacle of drug resistance and eliminate PDAC, researchers have undertaken extensive efforts to explore and cultivate novel natural compounds of the next generation. Additional investigation is necessary in order to comprehensively comprehend the effect of PCRD-mediated apoptosis on the progression and onset of PDAC through the utilization of natural compounds. This study aims to examine the potential anticancer properties of natural compounds in individuals with diabetes who are undergoing chemotherapy, targeted therapy, or immunotherapy. It is anticipated that these compounds will exhibit increased potency and possess enhanced pharmacological benefits. According to our research findings, it is indicated that naturally derived chemical compounds hold potential in the development of PDAC therapies that are both safe and efficacious.
Collapse
Affiliation(s)
- Moon Nyeo Park
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Hoegidong Dongdaemungu, Seoul 05253, Republic of Korea
| |
Collapse
|
43
|
Wolf B, Weydandt L, Dornhöfer N, Hiller GGR, Höhn AK, Nel I, Jain RK, Horn LC, Aktas B. Desmoplasia in cervical cancer is associated with a more aggressive tumor phenotype. Sci Rep 2023; 13:18946. [PMID: 37919378 PMCID: PMC10622496 DOI: 10.1038/s41598-023-46340-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 10/31/2023] [Indexed: 11/04/2023] Open
Abstract
In cancer of the uterine cervix, the role of desmoplasia, i.e., peritumoral stromal remodeling characterized by fibroblast activation and increased extracellular matrix deposition, is not established. We conducted a retrospective cohort study based on data from 438 patients who had undergone surgical treatment for cervical cancer as part of the prospective Leipzig Mesometrial Resection study between 1999 and 2021. Using non-parametric tests, Kaplan-Meier plotting, and Cox regression modeling, we calculated the prognostic impact of desmoplasia and its association with other risk factors. Desmoplasia was present in 80.6% of cases and was associated with a higher frequency of lymphovascular space involvement (76.5 vs. 56.5%, p < 0.001) and venous infiltration (14.4 vs. 2.4%, p < 0.001). Lymph node metastasis (23.0 vs. 11.8%, p < 0.05) and parametrial involvement (47.3 vs. 17.6%, p < 0.0001) were also more common in patients with desmoplasia. The presence of desmoplasia was associated with inferior overall (80.2% vs. 94.5% hazard ratio [HR] 3.8 [95% CI 1.4-10.4], p = 0.002) and recurrence-free survival (75.3% vs. 87.3%, HR 2.3 [95% CI 1.2-4.6], p = 0.008). In addition, desmoplasia was associated with significantly less peritumoral inflammation (rho - 0.43, p < 0.0001). In summary, we link desmoplasia to a more aggressive phenotype of cervical cancer, reduced peritumoral inflammation, and inferior survival.
Collapse
Affiliation(s)
- Benjamin Wolf
- Department of Gynecology, University Hospital Leipzig, Liebigstr. 20a, 04103, Leipzig, Germany.
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital, Boston, USA.
- Harvard Medical School, Boston, USA.
| | - Laura Weydandt
- Department of Gynecology, University Hospital Leipzig, Liebigstr. 20a, 04103, Leipzig, Germany
| | - Nadja Dornhöfer
- Department of Gynecology, University Hospital Leipzig, Liebigstr. 20a, 04103, Leipzig, Germany
| | | | - Anne Kathrin Höhn
- Institute for Pathology, University Hospital Leipzig, Leipzig, Germany
| | - Ivonne Nel
- Department of Gynecology, University Hospital Leipzig, Liebigstr. 20a, 04103, Leipzig, Germany
| | - Rakesh K Jain
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital, Boston, USA
- Harvard Medical School, Boston, USA
| | | | - Bahriye Aktas
- Department of Gynecology, University Hospital Leipzig, Liebigstr. 20a, 04103, Leipzig, Germany
| |
Collapse
|
44
|
Jin L, Duan Y, Li X, Li Z, Hu J, Shi H, Su Z, Li Z, Du B, Chen Y, Tan Y. High expression ITGA2 affects the expression of MET, PD-L1, CD4 and CD8 with the immune microenvironment in pancreatic cancer patients. Front Immunol 2023; 14:1209367. [PMID: 37881431 PMCID: PMC10594995 DOI: 10.3389/fimmu.2023.1209367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 09/22/2023] [Indexed: 10/27/2023] Open
Abstract
Purpose Pancreatic cancer is characterized by a grim prognosis and is regarded as one of the most formidable malignancies. Among the genes exhibiting high expression in different tumor tissues, ITGA2 stands out as a promising candidate for cancer therapy. The promotion of cancer in pancreatic cancer is not effective. The objective of this study is to assess the presence of ITGA2, EMT and PD-L1 in pancreatic cancer. Experimental design We examined the expression of ITGA2, MET, E-cadherin, PD-L1, CD4, and CD8 proteins in 62 pancreatic cancer tissue samples using multi-tissue immunofluorescence and immunohistochemistry techniques. Functional assays, such as the cell migration assay and transwell assay, were used to determine the biological role of ITGA2 in pancreatic cancer. The relationship of ITGA2,EMT and PD-L1 were examined using Western blot analysis and RT-qPCR assay. Results In our study, we observed the expression of ITGA2, E-cadherin, and PD-L1 in both tumor and stroma tissues of pancreatic cancer. Additionally, a positive correlation between ITGA2, E-cadherin, and PD-L1 in the tumor region (r=0.559, P<0.001 and r=0.511, P<0.001), and PD-L1 in the stroma region (r=0.512, P<0.001).The expression levels of ITGA2, CD4, and CD8 were found to be higher in pancreatic cancer tissues compared to adjacent tissues (P < 0.05). Additionally, ITGA2 was negatively correlated with CD4 and CD8 (r = -0.344, P < 0.005 and r = -0.398, P < 0.005).Furthermore, ITGA2, CD4, and CD8 were found to be correlated with the survival time of patients (P < 0.05). Blocking ITGA2 inhibited the proliferation and invasion ability of pancreatic cancer cells significantly, Additionally, sh-ITGA2 can down-regulate the expression of EMT and PD-L1. Conclusions We identified a novel mechanism in which ITGA2 plays a crucial role in the regulation of pancreatic cancer growth and invasion. This mechanism involves the upregulation of MET and PD-L1 expression in pancreatic cancer cells. Additionally, we found that increased expression of ITGA2 is associated with a poor prognosis in pancreatic cancer patients. Furthermore, ITGA2 also affects immune regulation in these patients. Therefore, targeting ITGA2 is an effective method to enhance the efficacy of checkpoint immunotherapy and prohibiting tumor growth against pancreatic cancer.
Collapse
Affiliation(s)
- Liquan Jin
- 1St Department of General Surgery, The First Affiliated Hospital of Dali University, Dali, Yunnan, China
| | - Yaoqiang Duan
- Clinical Medical College of Dali University, Dali, Yunnan, China
| | - Xiaoxi Li
- Clinical Medical College of Dali University, Dali, Yunnan, China
| | - Zhenqi Li
- Clinical Medical College of Dali University, Dali, Yunnan, China
| | - Jifu Hu
- Clinical Medical College of Dali University, Dali, Yunnan, China
| | - Hongbo Shi
- 1St Department of General Surgery, The First Affiliated Hospital of Dali University, Dali, Yunnan, China
| | - Ziting Su
- 1St Department of General Surgery, The First Affiliated Hospital of Dali University, Dali, Yunnan, China
| | - Zhe Li
- Clinical Medical College of Dali University, Dali, Yunnan, China
| | - Bilian Du
- Clinical Medical College of Dali University, Dali, Yunnan, China
| | - Yiming Chen
- 1St Department of General Surgery, The First Affiliated Hospital of Dali University, Dali, Yunnan, China
| | - Yunbo Tan
- 1St Department of General Surgery, The First Affiliated Hospital of Dali University, Dali, Yunnan, China
| |
Collapse
|
45
|
Chehelgerdi M, Chehelgerdi M, Allela OQB, Pecho RDC, Jayasankar N, Rao DP, Thamaraikani T, Vasanthan M, Viktor P, Lakshmaiya N, Saadh MJ, Amajd A, Abo-Zaid MA, Castillo-Acobo RY, Ismail AH, Amin AH, Akhavan-Sigari R. Progressing nanotechnology to improve targeted cancer treatment: overcoming hurdles in its clinical implementation. Mol Cancer 2023; 22:169. [PMID: 37814270 PMCID: PMC10561438 DOI: 10.1186/s12943-023-01865-0] [Citation(s) in RCA: 228] [Impact Index Per Article: 114.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 09/21/2023] [Indexed: 10/11/2023] Open
Abstract
The use of nanotechnology has the potential to revolutionize the detection and treatment of cancer. Developments in protein engineering and materials science have led to the emergence of new nanoscale targeting techniques, which offer renewed hope for cancer patients. While several nanocarriers for medicinal purposes have been approved for human trials, only a few have been authorized for clinical use in targeting cancer cells. In this review, we analyze some of the authorized formulations and discuss the challenges of translating findings from the lab to the clinic. This study highlights the various nanocarriers and compounds that can be used for selective tumor targeting and the inherent difficulties in cancer therapy. Nanotechnology provides a promising platform for improving cancer detection and treatment in the future, but further research is needed to overcome the current limitations in clinical translation.
Collapse
Affiliation(s)
- Mohammad Chehelgerdi
- Novin Genome (NG) Institute, Research and Development Center for Biotechnology, Shahrekord, Chaharmahal and Bakhtiari, Iran.
- Young Researchers and Elite Club, Shahrekord Branch, Islamic Azad University, Shahrekord, Chaharmahal and Bakhtiari, Iran.
| | - Matin Chehelgerdi
- Novin Genome (NG) Institute, Research and Development Center for Biotechnology, Shahrekord, Chaharmahal and Bakhtiari, Iran
- Young Researchers and Elite Club, Shahrekord Branch, Islamic Azad University, Shahrekord, Chaharmahal and Bakhtiari, Iran
| | | | | | - Narayanan Jayasankar
- Department of Pharmacology, SRM Institute of Science and Technology, SRM College Of Pharmacy, Chengalpattu District, Kattankulathur, Tamil Nadu, 603203, India
| | - Devendra Pratap Rao
- Department of Chemistry, Coordination Chemistry Laboratory, Dayanand Anglo-Vedic (PG) College, Kanpur-208001, U.P, India
| | - Tamilanban Thamaraikani
- Department of Pharmacology, SRM Institute of Science and Technology, SRM College Of Pharmacy, Chengalpattu District, Kattankulathur, Tamil Nadu, 603203, India
| | - Manimaran Vasanthan
- Department of Pharmaceutics, SRM Institute of Science and Technology, SRM College Of Pharmacy, Chengalpattu District, Kattankulathur, Tamil Nadu, 603203, India
| | - Patrik Viktor
- Keleti Károly Faculty of Business and Management, Óbuda University, Tavaszmező U. 15-17, 1084, Budapest, Hungary
| | - Natrayan Lakshmaiya
- Department of Mechanical Engineering, Saveetha School of Engineering, SIMATS, Chennai, Tamil Nadu, India
| | - Mohamed J Saadh
- Faculty of Pharmacy, Middle East University, Amman, 11831, Jordan
| | - Ayesha Amajd
- Faculty of Organization and Management, Silesian University of Technology, 44-100, Gliwice, Poland
- Department of Mechanical Engineering, CEMMPRE, University of Coimbra, Polo II, 3030-788, Coimbra, Portugal
| | - Mabrouk A Abo-Zaid
- Department of Biology, College of Science, Jazan University, 82817, Jazan, Saudi Arabia
| | | | - Ahmed H Ismail
- Department of Biology, College of Science, Jazan University, 82817, Jazan, Saudi Arabia
| | - Ali H Amin
- Deanship of Scientific Research, Umm Al-Qura University, Makkah, 21955, Saudi Arabia
| | - Reza Akhavan-Sigari
- Department of Neurosurgery, University Medical Center, Tuebingen, Germany
- Department of Health Care Management and Clinical Research, Collegium Humanum Warsaw Management University Warsaw, Warsaw, Poland
| |
Collapse
|
46
|
Ashina S, Masuda A, Yamakawa K, Hamada T, Tsujimae M, Tanaka T, Toyama H, Sofue K, Shiomi H, Sakai A, Kobayashi T, Abe S, Gonda M, Masuda S, Inomata N, Uemura H, Kohashi S, Nagao K, Harada Y, Miki M, Juri N, Irie Y, Kanzawa M, Itoh T, Inoue J, Imai T, Fukumoto T, Kodama Y. A comprehensive analysis of tumor-stromal collagen in relation to pathological, molecular, and immune characteristics and patient survival in pancreatic ductal adenocarcinoma. J Gastroenterol 2023; 58:1055-1067. [PMID: 37477731 PMCID: PMC10522520 DOI: 10.1007/s00535-023-02020-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 07/03/2023] [Indexed: 07/22/2023]
Abstract
BACKGROUND Abundant collagen deposition is a hallmark of pancreatic ductal adenocarcinomas (PDACs). This study clarified the interactive relationship between tumor-stromal collagen, molecular and immune characteristics, and tumor pr ogression in human PDAC. METHODS We performed a comprehensive examination using an integrative molecular pathological epidemiology database on 169 cases with resected PDAC . The amount of tumor-stromal collagen was quantified through digital imaging analysis for Elastica van Gieson-stained whole-section tumor slides. We analyzed the association of tumor-stromal collagen with gene alterations (KRAS, TP53, CDKN2A/p16, and SMAD4), immune parameters (CD4+ tumor-infiltrating lymphocytes [TILs], CD8+ TILs, FOXP3+ TILs, and tertiary lymphoid structures), and patient prognosis. RESULTS Low amounts of tumor-stromal collagen were associated with poor differentiation (multivariable OR = 3.82, 95%CI = 1.41-12.2, P = 0.008) and CDKN2A/p16 alteration (OR [95%CI] = 2.06 [1.08-4.02], P = 0.03). Tumors with low collagen levels had shorter overall survival (HR [95%CI] = 2.38 [1.59-3.56], P < 0.0001). In the S-1 and gemcitabine (GEM) treatment groups, low tumor-stromal collagen was linked to poor prognosis of patients with PDAC (S-1 group: multivariable HR [95%CI] = 2.76 [1.36-5.79], P = 0.005; GEM group: multivariate HR [95%CI] = 2.91 [1.34-6.71], P = 0.007). Additionally, low amounts of tumor-stromal collagen were also linked to low levels of CD4+ TILs (P = 0.046), CD8+ TILs (P = 0.09), and tertiary lymphoid structures (P = 0.001). CONCLUSIONS Tumor-stromal collagen deposition may play a crucial role in modulating tumor-immune microenvironment and determining response to adjuvant chemotherapy and patient survival outcomes.
Collapse
Affiliation(s)
- Shigeto Ashina
- Division of Gastroenterology, Department of Internal Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-Cho, Chuo-ku, Kobe, Hyogo, 650-0017, Japan
| | - Atsuhiro Masuda
- Division of Gastroenterology, Department of Internal Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-Cho, Chuo-ku, Kobe, Hyogo, 650-0017, Japan.
| | - Kohei Yamakawa
- Division of Gastroenterology, Department of Internal Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-Cho, Chuo-ku, Kobe, Hyogo, 650-0017, Japan
| | - Tsuyoshi Hamada
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Masahiro Tsujimae
- Division of Gastroenterology, Department of Internal Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-Cho, Chuo-ku, Kobe, Hyogo, 650-0017, Japan
| | - Takeshi Tanaka
- Division of Gastroenterology, Department of Internal Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-Cho, Chuo-ku, Kobe, Hyogo, 650-0017, Japan
| | - Hirochika Toyama
- Division of Hepato-Biliary-Pancreatic Surgery, Department of Surgery, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-Cho, Chuo-ku, Kobe, Hyogo, 650-0017, Japan
| | - Keitaro Sofue
- Department of Radiology, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-Cho, Chuo-ku, Kobe, Hyogo, 650-0017, Japan
| | - Hideyuki Shiomi
- Division of Gastroenterology and Hepatobiliary and Pancreatic Diseases, Department of Internal Medicine, Hyogo College of Medicine, 1-1 Mukogawa-Cho, Nishinomiya, Hyogo, 650-0017, Japan
| | - Arata Sakai
- Division of Gastroenterology, Department of Internal Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-Cho, Chuo-ku, Kobe, Hyogo, 650-0017, Japan
| | - Takashi Kobayashi
- Division of Gastroenterology, Department of Internal Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-Cho, Chuo-ku, Kobe, Hyogo, 650-0017, Japan
| | - Shohei Abe
- Division of Gastroenterology, Department of Internal Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-Cho, Chuo-ku, Kobe, Hyogo, 650-0017, Japan
| | - Masanori Gonda
- Division of Gastroenterology, Department of Internal Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-Cho, Chuo-ku, Kobe, Hyogo, 650-0017, Japan
| | - Shigeto Masuda
- Division of Gastroenterology, Department of Internal Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-Cho, Chuo-ku, Kobe, Hyogo, 650-0017, Japan
| | - Noriko Inomata
- Division of Gastroenterology, Department of Internal Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-Cho, Chuo-ku, Kobe, Hyogo, 650-0017, Japan
| | - Hisahiro Uemura
- Division of Gastroenterology, Department of Internal Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-Cho, Chuo-ku, Kobe, Hyogo, 650-0017, Japan
| | - Shinya Kohashi
- Division of Gastroenterology, Department of Internal Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-Cho, Chuo-ku, Kobe, Hyogo, 650-0017, Japan
| | - Kae Nagao
- Division of Gastroenterology, Department of Internal Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-Cho, Chuo-ku, Kobe, Hyogo, 650-0017, Japan
| | - Yoshiyuki Harada
- Division of Gastroenterology, Department of Internal Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-Cho, Chuo-ku, Kobe, Hyogo, 650-0017, Japan
| | - Mika Miki
- Division of Gastroenterology, Department of Internal Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-Cho, Chuo-ku, Kobe, Hyogo, 650-0017, Japan
| | - Noriko Juri
- Division of Gastroenterology, Department of Internal Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-Cho, Chuo-ku, Kobe, Hyogo, 650-0017, Japan
| | - Yosuke Irie
- Division of Gastroenterology, Department of Internal Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-Cho, Chuo-ku, Kobe, Hyogo, 650-0017, Japan
| | - Maki Kanzawa
- Division of Diagnostic Pathology, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-Cho, Chuo-ku, Kobe, Hyogo, 650-0017, Japan
| | - Tomoo Itoh
- Division of Diagnostic Pathology, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-Cho, Chuo-ku, Kobe, Hyogo, 650-0017, Japan
| | - Jun Inoue
- Division of Gastroenterology, Department of Internal Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-Cho, Chuo-ku, Kobe, Hyogo, 650-0017, Japan
| | - Toshio Imai
- Division of Gastroenterology, Department of Internal Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-Cho, Chuo-ku, Kobe, Hyogo, 650-0017, Japan
| | - Takumi Fukumoto
- Division of Hepato-Biliary-Pancreatic Surgery, Department of Surgery, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-Cho, Chuo-ku, Kobe, Hyogo, 650-0017, Japan
| | - Yuzo Kodama
- Division of Gastroenterology, Department of Internal Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-Cho, Chuo-ku, Kobe, Hyogo, 650-0017, Japan
| |
Collapse
|
47
|
Rezaei S, Gharapapagh E, Dabiri S, Heidari P, Aghanejad A. Theranostics in targeting fibroblast activation protein bearing cells: Progress and challenges. Life Sci 2023; 329:121970. [PMID: 37481033 PMCID: PMC10773987 DOI: 10.1016/j.lfs.2023.121970] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/03/2023] [Accepted: 07/19/2023] [Indexed: 07/24/2023]
Abstract
Cancer cells are surrounded by a complex and highly dynamic tumor microenvironment (TME). Cancer-associated fibroblasts (CAFs), a critical component of TME, contribute to cancer cell proliferation as well as metastatic spread. CAFs express a variety of biomarkers, which can be targeted for detection and therapy. Most importantly, CAFs express high levels of fibroblast activation protein (FAP) which contributes to progression of cancer, invasion, metastasis, migration, immunosuppression, and drug resistance. As a consequence, FAP is an attractive theranostic target. In this review, we discuss the latest advancement in targeting FAP in oncology using theranostic biomarkers and imaging modalities such as single-photon emission computed tomography (SPECT), positron emission tomography (PET), computed tomography (CT), fluorescence imaging, and magnetic resonance imaging (MRI).
Collapse
Affiliation(s)
- Sahar Rezaei
- Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Nuclear Medicine, Faculty of Medicine, Imam Reza General Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Esmaeil Gharapapagh
- Department of Nuclear Medicine, Faculty of Medicine, Imam Reza General Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shahram Dabiri
- Department of Nuclear Medicine, Faculty of Medicine, Imam Reza General Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Pedram Heidari
- Departments of Radiology, Massachusetts General Hospital, Boston, United States
| | - Ayuob Aghanejad
- Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Nuclear Medicine, Faculty of Medicine, Imam Reza General Hospital, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
48
|
Bodoque-Villar R, Padilla-Valverde D, González-López LM, Muñoz-Rodríguez JR, Arias-Pardilla J, Villar-Rodríguez C, Gómez-Romero FJ, Verdugo-Moreno G, Redondo-Calvo FJ, Serrano-Oviedo L. The importance of CXCR4 expression in tumor stroma as a potential biomarker in pancreatic cancer. World J Surg Oncol 2023; 21:287. [PMID: 37697316 PMCID: PMC10496205 DOI: 10.1186/s12957-023-03168-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 09/02/2023] [Indexed: 09/13/2023] Open
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma (PDAC) is one of the main causes of cancer mortality in the world. A characteristic feature of this cancer is that a large part of the tumor volume is composed of a stroma with different cells and factors. Among these, we can highlight the cytokines, which perform their function through binding to their receptors. Given the impact of the CXCR4 receptor in the interactions between tumor cells and their microenvironment and its involvement in important signaling pathways in cancer, it is proposed as a very promising prognostic biomarker and as a goal for new targeted therapies. Numerous studies analyze the expression of CXCR4 but we suggest focusing on the expression of CXCR4 in the stroma. METHODS Expression of CXCR4 in specimens from 33 patients with PDAC was evaluated by immunohistochemistry techniques and matched with clinicopathological parameters, overall and disease-free survival rates. RESULTS The percentage of stroma was lower in non-tumor tissue (32.4 ± 5.2) than in tumor pancreatic tissue (67.4 ± 4.8), P-value = 0.001. The level of CXCR4 expression in stromal cells was diminished in non-tumor tissue (8.7 ± 4.6) and higher in tumor pancreatic tissue (23.5 ± 6.1), P-value = 0.022. No significant differences were identified in total cell count and inflammatory cells between non-tumor tissue and pancreatic tumor tissue. No association was observed between CXCR4 expression and any of the clinical or pathological data, overall and disease-free survival rates. Analyzing exclusively the stroma of tumor samples, the CXCR4 expression was associated with tumor differentiation, P-value = 0.05. CONCLUSIONS In this study, we reflect the importance of CXCR4 expression in the stroma of patients diagnosed with PDAC. Our results revealed a high CXCR4 expression in the tumor stroma, which is related to a poor tumor differentiation. On the contrary, we could not find an association between CXCR4 expression and survival and the rest of the clinicopathological variables. Focusing the study on the CXCR4 expression in the tumor stroma could generate more robust results. Therefore, we consider it key to develop more studies to enlighten the role of this receptor in PDAC and its implication as a possible biomarker.
Collapse
Affiliation(s)
- Raquel Bodoque-Villar
- Traslational Investigation Unit, University General Hospital of Ciudad Real, SESCAM, Ciudad Real, Spain
- Research Institute of Castilla-La Mancha (IDISCAM), Ciudad Real, Spain
| | - David Padilla-Valverde
- Traslational Investigation Unit, University General Hospital of Ciudad Real, SESCAM, Ciudad Real, Spain
- Research Institute of Castilla-La Mancha (IDISCAM), Ciudad Real, Spain
- Department of Surgery, University General Hospital of Ciudad Real, SESCAM, Ciudad Real, Spain
- Faculty of Medicine, University of Castilla-La Mancha, Castilla La Mancha, Ciudad Real, Spain
| | - Lucía María González-López
- Traslational Investigation Unit, University General Hospital of Ciudad Real, SESCAM, Ciudad Real, Spain
- Research Institute of Castilla-La Mancha (IDISCAM), Ciudad Real, Spain
- Faculty of Medicine, University of Castilla-La Mancha, Castilla La Mancha, Ciudad Real, Spain
- Department of Pathology, University General Hospital of Ciudad Real, SESCAM, Ciudad Real, Spain
| | - José Ramón Muñoz-Rodríguez
- Traslational Investigation Unit, University General Hospital of Ciudad Real, SESCAM, Ciudad Real, Spain
- Research Institute of Castilla-La Mancha (IDISCAM), Ciudad Real, Spain
- Faculty of Medicine, University of Castilla-La Mancha, Castilla La Mancha, Ciudad Real, Spain
| | - Javier Arias-Pardilla
- Traslational Investigation Unit, University General Hospital of Ciudad Real, SESCAM, Ciudad Real, Spain
- Research Institute of Castilla-La Mancha (IDISCAM), Ciudad Real, Spain
| | - Clara Villar-Rodríguez
- Traslational Investigation Unit, University General Hospital of Ciudad Real, SESCAM, Ciudad Real, Spain
- Research Institute of Castilla-La Mancha (IDISCAM), Ciudad Real, Spain
| | - Francisco Javier Gómez-Romero
- Traslational Investigation Unit, University General Hospital of Ciudad Real, SESCAM, Ciudad Real, Spain
- Research Institute of Castilla-La Mancha (IDISCAM), Ciudad Real, Spain
- Faculty of Medicine, University of Castilla-La Mancha, Castilla La Mancha, Ciudad Real, Spain
| | - Gema Verdugo-Moreno
- Traslational Investigation Unit, University General Hospital of Ciudad Real, SESCAM, Ciudad Real, Spain
- Research Institute of Castilla-La Mancha (IDISCAM), Ciudad Real, Spain
- Head of Research, University General Hospital of Ciudad Real, SESCAM, Ciudad Real, Spain
| | - Francisco Javier Redondo-Calvo
- Traslational Investigation Unit, University General Hospital of Ciudad Real, SESCAM, Ciudad Real, Spain
- Research Institute of Castilla-La Mancha (IDISCAM), Ciudad Real, Spain
- Faculty of Medicine, University of Castilla-La Mancha, Castilla La Mancha, Ciudad Real, Spain
- Department of Anesthesiology, University General Hospital of Ciudad Real SESCAM, Ciudad Real, Spain
| | - Leticia Serrano-Oviedo
- Traslational Investigation Unit, University General Hospital of Ciudad Real, SESCAM, Ciudad Real, Spain.
- Research Institute of Castilla-La Mancha (IDISCAM), Ciudad Real, Spain.
| |
Collapse
|
49
|
Chitty JL, Yam M, Perryman L, Parker AL, Skhinas JN, Setargew YFI, Mok ETY, Tran E, Grant RD, Latham SL, Pereira BA, Ritchie SC, Murphy KJ, Trpceski M, Findlay AD, Melenec P, Filipe EC, Nadalini A, Velayuthar S, Major G, Wyllie K, Papanicolaou M, Ratnaseelan S, Phillips PA, Sharbeen G, Youkhana J, Russo A, Blackwell A, Hastings JF, Lucas MC, Chambers CR, Reed DA, Stoehr J, Vennin C, Pidsley R, Zaratzian A, Da Silva AM, Tayao M, Charlton B, Herrmann D, Nobis M, Clark SJ, Biankin AV, Johns AL, Croucher DR, Nagrial A, Gill AJ, Grimmond SM, Pajic M, Timpson P, Jarolimek W, Cox TR. A first-in-class pan-lysyl oxidase inhibitor impairs stromal remodeling and enhances gemcitabine response and survival in pancreatic cancer. NATURE CANCER 2023; 4:1326-1344. [PMID: 37640930 PMCID: PMC10518255 DOI: 10.1038/s43018-023-00614-y] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 07/07/2023] [Indexed: 08/31/2023]
Abstract
The lysyl oxidase family represents a promising target in stromal targeting of solid tumors due to the importance of this family in crosslinking and stabilizing fibrillar collagens and its known role in tumor desmoplasia. Using small-molecule drug-design approaches, we generated and validated PXS-5505, a first-in-class highly selective and potent pan-lysyl oxidase inhibitor. We demonstrate in vitro and in vivo that pan-lysyl oxidase inhibition decreases chemotherapy-induced pancreatic tumor desmoplasia and stiffness, reduces cancer cell invasion and metastasis, improves tumor perfusion and enhances the efficacy of chemotherapy in the autochthonous genetically engineered KPC model, while also demonstrating antifibrotic effects in human patient-derived xenograft models of pancreatic cancer. PXS-5505 is orally bioavailable, safe and effective at inhibiting lysyl oxidase activity in tissues. Our findings present the rationale for progression of a pan-lysyl oxidase inhibitor aimed at eliciting a reduction in stromal matrix to potentiate chemotherapy in pancreatic ductal adenocarcinoma.
Collapse
Affiliation(s)
- Jessica L Chitty
- Cancer Ecosystems Program, The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia
- School of Clinical Medicine, St Vincent's Healthcare Clinical Campus, UNSW Medicine and Health, UNSW Sydney, Sydney, New South Wales, Australia
| | - Michelle Yam
- Cancer Ecosystems Program, The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia
| | - Lara Perryman
- Pharmaxis, Frenchs Forest, New South Wales, Australia
| | - Amelia L Parker
- Cancer Ecosystems Program, The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia
- School of Clinical Medicine, St Vincent's Healthcare Clinical Campus, UNSW Medicine and Health, UNSW Sydney, Sydney, New South Wales, Australia
| | - Joanna N Skhinas
- Cancer Ecosystems Program, The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia
| | - Yordanos F I Setargew
- Cancer Ecosystems Program, The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia
| | - Ellie T Y Mok
- Cancer Ecosystems Program, The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia
| | - Emmi Tran
- Cancer Ecosystems Program, The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia
| | - Rhiannon D Grant
- Cancer Ecosystems Program, The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia
| | - Sharissa L Latham
- School of Clinical Medicine, St Vincent's Healthcare Clinical Campus, UNSW Medicine and Health, UNSW Sydney, Sydney, New South Wales, Australia
- The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia
| | - Brooke A Pereira
- School of Clinical Medicine, St Vincent's Healthcare Clinical Campus, UNSW Medicine and Health, UNSW Sydney, Sydney, New South Wales, Australia
- The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia
| | - Shona C Ritchie
- The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia
| | - Kendelle J Murphy
- School of Clinical Medicine, St Vincent's Healthcare Clinical Campus, UNSW Medicine and Health, UNSW Sydney, Sydney, New South Wales, Australia
- The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia
| | - Michael Trpceski
- School of Clinical Medicine, St Vincent's Healthcare Clinical Campus, UNSW Medicine and Health, UNSW Sydney, Sydney, New South Wales, Australia
- The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia
| | | | - Pauline Melenec
- The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia
| | - Elysse C Filipe
- Cancer Ecosystems Program, The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia
- School of Clinical Medicine, St Vincent's Healthcare Clinical Campus, UNSW Medicine and Health, UNSW Sydney, Sydney, New South Wales, Australia
| | - Audrey Nadalini
- Cancer Ecosystems Program, The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia
| | - Sipiththa Velayuthar
- Cancer Ecosystems Program, The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia
| | - Gretel Major
- Cancer Ecosystems Program, The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia
| | - Kaitlin Wyllie
- Cancer Ecosystems Program, The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia
| | - Michael Papanicolaou
- Cancer Ecosystems Program, The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia
| | - Shivanjali Ratnaseelan
- Cancer Ecosystems Program, The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia
| | - Phoebe A Phillips
- School of Biomedical Sciences, Faculty of Medicine, Lowy Cancer Research Centre, UNSW Sydney, Sydney, New South Wales, Australia
| | - George Sharbeen
- School of Biomedical Sciences, Faculty of Medicine, Lowy Cancer Research Centre, UNSW Sydney, Sydney, New South Wales, Australia
| | - Janet Youkhana
- School of Biomedical Sciences, Faculty of Medicine, Lowy Cancer Research Centre, UNSW Sydney, Sydney, New South Wales, Australia
| | - Alice Russo
- The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia
| | - Antonia Blackwell
- The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia
| | - Jordan F Hastings
- The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia
| | - Morghan C Lucas
- The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia
| | - Cecilia R Chambers
- The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia
| | - Daniel A Reed
- The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia
| | - Janett Stoehr
- The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia
| | - Claire Vennin
- The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia
| | - Ruth Pidsley
- School of Clinical Medicine, St Vincent's Healthcare Clinical Campus, UNSW Medicine and Health, UNSW Sydney, Sydney, New South Wales, Australia
- The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia
| | - Anaiis Zaratzian
- The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia
| | - Andrew M Da Silva
- The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia
| | - Michael Tayao
- The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia
| | | | - David Herrmann
- Cancer Ecosystems Program, The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia
- School of Clinical Medicine, St Vincent's Healthcare Clinical Campus, UNSW Medicine and Health, UNSW Sydney, Sydney, New South Wales, Australia
| | - Max Nobis
- School of Clinical Medicine, St Vincent's Healthcare Clinical Campus, UNSW Medicine and Health, UNSW Sydney, Sydney, New South Wales, Australia
- The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia
- Intravital Imaging Expertise Center, VIB Center for Cancer Biology, VIB, Leuven, Belgium
| | - Susan J Clark
- School of Clinical Medicine, St Vincent's Healthcare Clinical Campus, UNSW Medicine and Health, UNSW Sydney, Sydney, New South Wales, Australia
- The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia
| | - Andrew V Biankin
- Wolfson Wohl Cancer Research Centre, School of Cancer Sciences, University of Glasgow, Glasgow, UK
- West of Scotland Pancreatic Unit, Glasgow Royal Infirmary, Glasgow, UK
| | - Amber L Johns
- The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia
| | - David R Croucher
- School of Clinical Medicine, St Vincent's Healthcare Clinical Campus, UNSW Medicine and Health, UNSW Sydney, Sydney, New South Wales, Australia
- The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia
| | - Adnan Nagrial
- Department of Medical Oncology, Westmead Hospital, Sydney, New South Wales, Australia
| | - Anthony J Gill
- The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia
- Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
- NSW Health Pathology, Department of Anatomical Pathology, Royal North Shore Hospital, Sydney, New South Wales, Australia
- Cancer Diagnosis and Pathology Research Group, Kolling Institute of Medical Research, Sydney, New South Wales, Australia
| | - Sean M Grimmond
- University of Melbourne Centre for Cancer Research, VCCC, Melbourne, Victoria, Australia
| | - Marina Pajic
- School of Clinical Medicine, St Vincent's Healthcare Clinical Campus, UNSW Medicine and Health, UNSW Sydney, Sydney, New South Wales, Australia
- The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia
| | - Paul Timpson
- Cancer Ecosystems Program, The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia
- School of Clinical Medicine, St Vincent's Healthcare Clinical Campus, UNSW Medicine and Health, UNSW Sydney, Sydney, New South Wales, Australia
| | | | - Thomas R Cox
- Cancer Ecosystems Program, The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia.
- School of Clinical Medicine, St Vincent's Healthcare Clinical Campus, UNSW Medicine and Health, UNSW Sydney, Sydney, New South Wales, Australia.
| |
Collapse
|
50
|
Urbanova M, Cihova M, Buocikova V, Slopovsky J, Dubovan P, Pindak D, Tomas M, García-Bermejo L, Rodríguez-Garrote M, Earl J, Kohl Y, Kataki A, Dusinska M, Sainz B, Smolkova B, Gabelova A. Nanomedicine and epigenetics: New alliances to increase the odds in pancreatic cancer survival. Biomed Pharmacother 2023; 165:115179. [PMID: 37481927 DOI: 10.1016/j.biopha.2023.115179] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/04/2023] [Accepted: 07/12/2023] [Indexed: 07/25/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is among the deadliest cancers worldwide, primarily due to its robust desmoplastic stroma and immunosuppressive tumor microenvironment (TME), which facilitate tumor progression and metastasis. In addition, fibrous tissue leads to sparse vasculature, high interstitial fluid pressure, and hypoxia, thereby hindering effective systemic drug delivery and immune cell infiltration. Thus, remodeling the TME to enhance tumor perfusion, increase drug retention, and reverse immunosuppression has become a key therapeutic strategy. In recent years, targeting epigenetic pathways has emerged as a promising approach to overcome tumor immunosuppression and cancer progression. Moreover, the progress in nanotechnology has provided new opportunities for enhancing the efficacy of conventional and epigenetic drugs. Nano-based drug delivery systems (NDDSs) offer several advantages, including improved drug pharmacokinetics, enhanced tumor penetration, and reduced systemic toxicity. Smart NDDSs enable precise targeting of stromal components and augment the effectiveness of immunotherapy through multiple drug delivery options. This review offers an overview of the latest nano-based approaches developed to achieve superior therapeutic efficacy and overcome drug resistance. We specifically focus on the TME and epigenetic-targeted therapies in the context of PDAC, discussing the advantages and limitations of current strategies while highlighting promising new developments. By emphasizing the immense potential of NDDSs in improving therapeutic outcomes in PDAC, our review paves the way for future research in this rapidly evolving field.
Collapse
Affiliation(s)
- Maria Urbanova
- Department of Molecular Oncology, Cancer Research Institute, Biomedical Research Center of the Slovak Academy of Sciences, Dubravska Cesta 9, 845 05 Bratislava, Slovakia
| | - Marina Cihova
- Department of Molecular Oncology, Cancer Research Institute, Biomedical Research Center of the Slovak Academy of Sciences, Dubravska Cesta 9, 845 05 Bratislava, Slovakia
| | - Verona Buocikova
- Department of Molecular Oncology, Cancer Research Institute, Biomedical Research Center of the Slovak Academy of Sciences, Dubravska Cesta 9, 845 05 Bratislava, Slovakia
| | - Jan Slopovsky
- 2nd Department of Oncology, National Cancer Institute, Klenova 1, 833 10 Bratislava, Slovakia; Faculty of Medicine, Comenius University, Spitalska 24, 813 72 Bratislava, Slovakia
| | - Peter Dubovan
- Department of Molecular Oncology, Cancer Research Institute, Biomedical Research Center of the Slovak Academy of Sciences, Dubravska Cesta 9, 845 05 Bratislava, Slovakia; Department of Surgical Oncology, National CancerInstitute in Bratislava, Klenova 1, 833 10 Bratislava, Slovakia; Faculty of Medicine, Slovak Medical University in Bratislava, Limbová12, 833 03 Bratislava
| | - Daniel Pindak
- Department of Surgical Oncology, National CancerInstitute in Bratislava, Klenova 1, 833 10 Bratislava, Slovakia; Faculty of Medicine, Slovak Medical University in Bratislava, Limbová12, 833 03 Bratislava
| | - Miroslav Tomas
- Department of Molecular Oncology, Cancer Research Institute, Biomedical Research Center of the Slovak Academy of Sciences, Dubravska Cesta 9, 845 05 Bratislava, Slovakia; Department of Surgical Oncology, National CancerInstitute in Bratislava, Klenova 1, 833 10 Bratislava, Slovakia; Faculty of Medicine, Slovak Medical University in Bratislava, Limbová12, 833 03 Bratislava
| | - Laura García-Bermejo
- Biomarkers and Therapeutic Targets Group, Area4, Ramón y Cajal Health Research Institute (IRYCIS), Carretera Colmenar Km 9100, 28034 Madrid, Spain
| | - Mercedes Rodríguez-Garrote
- Molecular Epidemiology and Predictive Tumor Markers Group, Area 3, Ramón y Cajal Health Research Institute (IRYCIS), Carretera Colmenar Km 9100, 28034 Madrid, Spain; CIBERONC, Madrid, Spain
| | - Julie Earl
- Molecular Epidemiology and Predictive Tumor Markers Group, Area 3, Ramón y Cajal Health Research Institute (IRYCIS), Carretera Colmenar Km 9100, 28034 Madrid, Spain; CIBERONC, Madrid, Spain
| | - Yvonne Kohl
- Department Bioprocessing & Bioanalytics, Fraunhofer Institute for Biomedical Engineering IBMT, 66280 Sulzbach, Germany
| | - Agapi Kataki
- 1st Department of Propaedeutic Surgery, National and Kapodistrian University of Athens, Vasilissis Sofias 114, 11527 Athens, Greece
| | - Maria Dusinska
- Health Effects Laboratory, Department of Environmental Chemistry, NILU-Norwegian Institute for Air Research, Instituttveien 18, 2002 Kjeller, Norway
| | - Bruno Sainz
- CIBERONC, Madrid, Spain; Instituto de Investigaciones Biomédicas"Alberto Sols" (IIBM), CSIC-UAM, 28029 Madrid, Spain; Biomarkers and Personalized Approach to Cancer (BIOPAC) Group, Area 3, Ramón y Cajal Health Research Institute (IRYCIS), 28034 Madrid, Spain
| | - Bozena Smolkova
- Department of Molecular Oncology, Cancer Research Institute, Biomedical Research Center of the Slovak Academy of Sciences, Dubravska Cesta 9, 845 05 Bratislava, Slovakia
| | - Alena Gabelova
- Department of Nanobiology, Cancer Research Institute, Biomedical Research Center of the Slovak Academy of Sciences, Dubravska Cesta 9, 84505 Bratislava, Slovakia..
| |
Collapse
|